WO2023068763A1 - 친환경 고강도 고성형성 강판 및 그 제조방법 - Google Patents

친환경 고강도 고성형성 강판 및 그 제조방법 Download PDF

Info

Publication number
WO2023068763A1
WO2023068763A1 PCT/KR2022/015870 KR2022015870W WO2023068763A1 WO 2023068763 A1 WO2023068763 A1 WO 2023068763A1 KR 2022015870 W KR2022015870 W KR 2022015870W WO 2023068763 A1 WO2023068763 A1 WO 2023068763A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
less
strength
excluding
eco
Prior art date
Application number
PCT/KR2022/015870
Other languages
English (en)
French (fr)
Inventor
김성규
조경래
박준호
황현규
한상호
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to MX2024004760A priority Critical patent/MX2024004760A/es
Priority to EP22883985.8A priority patent/EP4421204A1/en
Priority to CN202280070175.2A priority patent/CN118159679A/zh
Publication of WO2023068763A1 publication Critical patent/WO2023068763A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C47/00Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
    • B21C47/02Winding-up or coiling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/20Isothermal quenching, e.g. bainitic hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/84Controlled slow cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • C21D8/0215Rapid solidification; Thin strip casting
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a steel sheet used in automobiles, etc., and relates to a steel sheet having characteristics of high strength and high formability, as well as an eco-friendly manufacturing method and a manufacturing method thereof.
  • structural members such as members, seat rails, and pillars for improving the impact resistance of automobile bodies are using steel with excellent strength. Since these parts have complex shapes depending on stability and design, and are mainly manufactured by forming in a press mold, a high level of formability is required in addition to high strength.
  • DP steel dual phase steel
  • TRIP steel transformation induced plasticity steel
  • CP steel complex phase steel
  • FB steel ferrite-bainite steel Steel
  • the energy required for cold rolling and annealing uses by-product gases from the iron making process.
  • by-product gases are reduced and energy costs increase.
  • a technology to lower the heat treatment temperature is required.
  • a heat source is created using by-product gas, it also generates CO 2 , so it is necessary to minimize the amount used.
  • One aspect of the present invention is to provide a steel sheet having high strength and formability that is produced in an environmentally friendly manner by reducing carbon dioxide (CO 2 ) generation and a method for manufacturing the same.
  • CO 2 carbon dioxide
  • C 0.05 to 0.10%, Si: 0.3% or less (excluding 0), Mn: 2.0 to 2.5%, Ti: 0.05% or less (excluding 0), Nb: 0.1% or less (excluding 0), Cr: 1.5% or less (excluding 0), P: 0.1% or less, S: 0.01% or less, the remainder including Fe and unavoidable impurities,
  • the microstructure relates to an eco-friendly, high-strength, high-formability steel sheet containing, in area fraction, a hard phase of 15 to 35% and a soft phase of 65 to 85%.
  • C 0.05 to 0.10%, Si: 0.3% or less (excluding 0), Mn: 2.0 to 2.5%, Ti: 0.05% or less (excluding 0), Nb: 0.1 % or less (excluding 0), Cr: 1.5% or less (excluding 0), P: 0.1% or less, S: 0.01% or less, and the rest to manufacture a hot-rolled steel sheet using a steel slab containing Fe and unavoidable impurities step;
  • Cooling in which the cold-rolled steel sheet is slowly cooled at an average cooling rate of 1 to 10° C./s to a temperature range of 650 to 700° C., and then rapidly cooled at an average cooling rate of 5 to 50° C./s to a temperature range of 300 to 580° C. It relates to a method for manufacturing an eco-friendly, high-strength, high-formability steel sheet comprising the step.
  • a steel sheet having high strength and formability particularly excellent balance between strength and ductility (TS*El), thereby preventing processing defects such as cracks or wrinkles during press forming, and thus forming complex shapes. It can be suitably applied to parts such as structures that require machining. In addition, it is effective in manufacturing automobile parts having excellent collision resistance in which cracks are not easily formed when a car inevitably collides.
  • CO 2 generation can be reduced to provide an eco-friendly steel sheet and its manufacturing method.
  • 1 is a graph showing a heat treatment step of a continuous annealing process.
  • Figure 2 is an arbitrary Fe—C phase diagram, for explaining the relationship between components and annealing temperature.
  • FIG. 3 is a schematic diagram illustrating an example of a method for measuring the aspect ratio of a hard phase.
  • Example 4 is a photograph of the microstructure of Inventive Example 1 of Examples.
  • High-strength steels used as automobile materials are typically dual phase steel (DP steel), transformation induced plasticity steel (TRIP steel), complex phase steel (CP steel), ferrite -Bainite steel (Ferrite-Bainite Steel, FB steel), etc.
  • DP steel includes a soft phase and a hard phase, and may include some retained austenite. These DP steels have low yield strength, high tensile strength, low yield ratio (YR), high work hardening rate, high ductility, continuous yield behavior, room temperature aging resistance, and excellent baking hardenability. It has excellent hole expandability.
  • the inventors of the present invention have increased the recrystallization driving force by increasing the rolling reduction ratio of cold rolling at room temperature to finely disperse the structure and adjusting the heat treatment temperature, thereby sufficient recrystallization of the soft phase that affects the ductility of steel. was made possible to induce.
  • an excellent balance of strength and elongation can be secured by uniformly securing the miniaturization and distribution of the hard phase, which is advantageous for securing strength, and the present invention was completed.
  • the cold rolling process is a process mainly performed during the manufacture of cold-rolled steel sheet, and means rolling a hot-rolled coil at a constant rolling reduction ratio at room temperature.
  • the cold rolling is performed by reversible rolling in a TCM (Tandum Cold Rolling Mill).
  • TCM Thermal Cold Rolling Mill
  • the TCM has the advantage of mass production at a low manufacturing cost.
  • annealing process by heating and maintaining the steel sheet (cold-rolled steel sheet) at a constant temperature in a heating furnace, hardness may be reduced and workability may be improved through recrystallization and phase transformation.
  • the steel sheet that has not been subjected to the annealing process has high hardness, particularly surface hardness, and lacks workability
  • the steel sheet subjected to the annealing process has a recrystallized structure, thereby reducing hardness, yield point, and tensile strength.
  • the annealing process requires a large amount of energy because the steel sheet must be heated at room temperature and heated to a high temperature, which increases energy costs, incurs costs for purifying gas generated after combustion, and inevitably It is not eco-friendly because it increases the generation of pollutants such as carbon dioxide (CO 2 ). Accordingly, the inventors of the present invention studied ways to lower the heating temperature of the annealing process, and studied ways to minimize the generation of pollutants such as carbon dioxide (CO 2 ) in the process of generating energy and post-combustion treatment.
  • the inventors of the present invention have developed a technology for securing excellent materials even when the heat treatment temperature is lowered by increasing the cold rolling reduction ratio during cold rolling after hot rolling in order to save energy in the heat treatment process, which has a high CO 2 generation rate and high energy costs. This led to the present invention.
  • the present invention provides a steel sheet having an excellent balance between strength and elongation and a method for manufacturing the same, as well as being eco-friendly by applying the low annealing temperature to save energy and minimize pollutants.
  • the alloy composition of the steel sheet is, by weight%, C: 0.05 to 0.10%, Si: 0.3% or less (excluding 0), Mn: 2.0 to 2.5%, Ti: 0.05% or less (excluding 0), Nb: 0.1% or less (excluding 0), Cr: 1.5% or less (excluding 0), P: 0.1% or less, S: 0.01% or less, the remainder including Fe and unavoidable impurities.
  • C 0.05 to 0.10%
  • Si 0.3% or less
  • Mn 2.0 to 2.5%
  • Ti 0.05% or less
  • Nb 0.1% or less
  • Cr 1.5% or less
  • P 0.1% or less
  • S 0.01% or less
  • the C is an important element added for solid solution strengthening, and this C contributes to improving the strength of steel by forming fine precipitates in combination with precipitated elements.
  • the content of C exceeds 0.10%, hardenability increases, and as martensite is formed during cooling during steel production, strength excessively increases, while elongation may decrease. In addition, weldability is inferior, and there is a concern that welding defects may occur during processing into parts.
  • the C content is less than 0.05%, it may be difficult to secure a target level of strength. More advantageously, it is preferably 0.06 to 0.08%.
  • Si is a ferrite stabilizing element, and it is advantageous to secure a target level of ferrite fraction by accelerating ferrite transformation. In addition, it is effective in increasing the strength of ferrite due to its excellent solid solution strengthening ability, and is a useful element in securing strength without reducing the ductility of steel.
  • the Si content exceeds 0.3%, the solid solution strengthening effect is excessive, rather, the ductility is lowered, and surface scale defects are caused to adversely affect the plating surface quality and deteriorate the conversion processability. More advantageously, it is preferably 0.1% or less.
  • the Mn is an element that is advantageous for preventing hot brittleness due to the formation of FeS by precipitating sulfur (S) in steel as MnS, and for solid solution strengthening of steel. If the Mn content is less than 2.0%, the above effect cannot be obtained, and it is difficult to secure a target level of strength. On the other hand, when the content exceeds 2.5%, problems such as weldability and hot rolling are likely to occur, and at the same time, as martensite is more easily formed due to an increase in hardenability, there is a risk of deterioration in ductility. In addition, there is a problem in that the risk of occurrence of defects such as processing cracks increases due to excessive formation of a Mn-band of Mn oxide in the structure. In addition, during annealing, Mn oxide is eluted on the surface, which significantly impairs plating properties. More advantageously, it is preferably 2.2 to 2.4%.
  • Ti is an element that forms fine carbides and contributes to securing yield strength and tensile strength.
  • Ti has an effect of suppressing the formation of AlN in Al inevitably present in steel by precipitating N in steel as TiN, and has an effect of reducing the possibility of cracking during continuous casting.
  • the Ti content exceeds 0.05%, coarse carbides are precipitated, and there is a risk of reduction in strength and elongation due to a decrease in carbon content in steel.
  • the Ti content is preferably 0.05% or less, and preferably more than 0%.
  • Nb is an element that is segregated at austenite grain boundaries to suppress coarsening of austenite crystal grains during annealing heat treatment and to form fine carbides to contribute to strength improvement.
  • the Nb content is preferably 0.1% or less, and preferably greater than 0%.
  • Cr is an element that facilitates the formation of bainite, suppresses the formation of martensite during annealing heat treatment, and forms fine carbides to contribute to strength improvement.
  • the Cr content exceeds 1.5%, bainite is excessively formed and elongation decreases.
  • carbides are formed at grain boundaries, strength and elongation may be inferior, and manufacturing cost increases. Therefore, the Cr content is preferably 1.5% or less, and preferably greater than 0%.
  • Phosphorus (P) 0.1% or less
  • P is a substitutional element having the greatest solid-solution strengthening effect, and is an element that is advantageous for improving in-plane anisotropy and securing strength without significantly deteriorating formability.
  • the amount of P is 0.1% or less, and 0% may be excluded in consideration of an unavoidable level.
  • S is an element that is unavoidably added as an impurity element in steel, and since it inhibits ductility, it is preferable to manage its content as low as possible. In particular, since S has a problem of increasing the possibility of generating red heat brittleness, it is preferable to manage its content to 0.01% or less. However, considering the level that is unavoidably included, 0% can be excluded.
  • the rest includes iron (Fe), and since unintended impurities from raw materials or the surrounding environment may inevitably be mixed in a normal manufacturing process, they cannot be excluded. Since these impurities are known to anyone skilled in the art during the manufacturing process, not all of them are specifically mentioned in the present specification.
  • the high-strength steel sheet of the present invention is composed of a hard phase and a soft phase as a microstructure, and in particular, by maximizing ferrite recrystallization through an optimized annealing process, a structure in which bainite and martensite phases, which are hard phases, are uniformly distributed in the final recrystallized ferrite base, is obtained. It is preferable to include In the microstructure, the hard phase is mainly martensite, and a small amount of bainite is included to mean a mixed phase, and the soft phase means a ferrite phase. In a structure composed of soft and hard phases, the deformation characteristics determine the formability of the soft phase and the strength of the hard phase.
  • the hard phase preferably contains 15 to 35% in area fraction. If the fraction of the hard phase is too high, the strength is high but the elongation is low, and if the fraction of the soft phase is high, the elongation is high but the strength is low. In order to secure the strength of 780 MPa or more provided by the present invention, it is preferable that the hard phase contains 15% or more in area fraction, and it is preferable not to exceed 35% to secure formability.
  • the area fraction of the soft phase is 65 to 85%.
  • the soft phase ferrite may be classified into recrystallized ferrite and non-recrystallized ferrite. As shown in FIG. 3, the difference between recrystallized ferrite and non-recrystallized ferrite can be distinguished by the aspect ratio of grain size with respect to the rolling direction.
  • the unrecrystallized ferrite has a large aspect ratio, as shown in FIG. 3(b), and when analyzed in detail, a linear deformed structure within the ferrite grains is observed.
  • recrystallized ferrite is advantageous in securing formability, it is preferable that recrystallized ferrite in the soft phase is 60% or more, and non-recrystallized ferrite is soft, but when the fraction is high, formability is reduced, so it is preferably 5% or less.
  • the aspect ratio of the hard phase is 1.2 or less.
  • the aspect ratio means the ratio (b/a) of the major axis (b) and the minor axis (a) of the grain size in the rolling direction
  • the aspect ratio of the hard phase is the hard phase.
  • This is the aspect ratio of the tissue formed by stretching the phase in the rolling direction.
  • An increase in the aspect ratio of the hard phase adversely affects bending, which is important for deformation resistance in the thickness direction.
  • the aspect ratio of the hard phase is increased, the hole expandability is lowered. Therefore, since it is important to manage the aspect ratio of the hard phase as low as possible, it is preferable not to exceed 1.2.
  • the steel sheet of the present invention has a high tensile strength (TS) of 780 MPa or more and an elongation of 18% or more, so that excellent strength and formability can be secured.
  • TS tensile strength
  • the steel sheet of the present invention may be manufactured by first preparing a steel slab, heating it, performing hot rolling, winding and cooling, cold rolling, and continuous annealing. Hereinafter, each step will be described in detail.
  • the above-mentioned alloy composition that is, by weight, C: 0.05 ⁇ 0.10%, Si: 0.3% or less (excluding 0), Mn: 2.0 ⁇ 2.5%, Ti: 0.05% or less (excluding 0), Nb: 0.1%
  • the heating process conditions are not particularly limited, and any method or condition commonly used in the art to which the present invention belongs may be used. As an example, it is preferable to heat to a temperature range of 1100 ⁇ 1300 °C.
  • the heated steel slab is hot-rolled to produce a hot-rolled steel sheet.
  • the exit temperature is preferably performed in the temperature range of Ar3 ⁇ 1000 °C finish hot rolling.
  • the hot deformation resistance increases rapidly, and the top, bottom, and edge of the hot-rolled coil become a single-phase region, resulting in in-plane anisotropy It may increase and the formability may be inferior.
  • the rolling load is relatively reduced, which is advantageous for productivity, but there is a risk of thick oxide scale. More preferably, it can be performed in the temperature range of 760-940 degreeC.
  • the hot-rolled steel sheet manufactured by the hot rolling may be wound into a coil shape.
  • the winding may be performed in a temperature range of 400 to 700 °C.
  • the coiling temperature is less than 400° C.
  • excessive formation of martensite or bainite causes an excessive increase in strength of the hot-rolled steel sheet, which may cause problems such as shape defects due to load during subsequent cold rolling.
  • the coiling temperature exceeds 700 ° C., surface scale may increase and pickling performance may be deteriorated.
  • the rolled hot-rolled steel sheet it is preferable to cool the rolled hot-rolled steel sheet to room temperature at an average cooling rate of 0.1° C./s or less (excluding 0).
  • the rolled hot-rolled steel sheet may be cooled after passing through processes such as transfer and stacking, and the process prior to cooling is not limited thereto.
  • a hot-rolled steel sheet in which carbides serving as austenite nucleation sites are finely dispersed can be obtained.
  • a process of pickling the surface of the hot-rolled steel sheet to remove surface scale may be additionally performed prior to subsequent cold rolling.
  • the pickling method is not particularly limited, and it is sufficient to perform it in a method commonly performed in the technical field to which the present invention belongs.
  • the hot-rolled steel sheet wound as described above may be cold-rolled at a constant reduction ratio at room temperature to produce a cold-rolled steel sheet.
  • the method of performing the cold rolling is not particularly limited in the present invention, and any method can be applied as long as it is performed in the technical field to which the present invention belongs.
  • TCM Total Cold Rolling Mill
  • ZRM Sendzimir rolling mill
  • TCM is a reversible rolling, and since low manufacturing cost and mass production are possible, it has the advantage of excellent productivity, but has the disadvantage of being somewhat restricted in applying a rolling force.
  • ZRM is a reversible batch type, and has the disadvantage of low productivity, but has the advantage of being somewhat easy to apply the pressing force.
  • the reduction rate of the cold rolling is an important operation factor for improving various physical properties by improving the phase transformation of steel, controlling the reduction rate is particularly important for securing quality.
  • the manufactured cold-rolled steel sheet is subjected to continuous annealing.
  • the continuous annealing treatment may be performed, for example, in a continuous annealing furnace (CAL).
  • An example of the heat treatment step of the continuous annealing process is shown as a graph in FIG.
  • the heating section (HS) in the annealing furnace, the soaking section (SS), the slow cooling section (SCS), the rapid cooling section (RCS), the overaging zone ( It may consist of a heat treatment step of Over Aging Section (OAS).
  • the temperature of each section measures the temperature attached to the point at which each section ends, the temperature means the temperature at the point where each section ends.
  • the temperature of the quench zone (RCS) is the temperature of the section where the quench zone ends, and is indicated by 4 in FIG. 1 .
  • the steel sheet is heated at a constant temperature increase rate, and as the temperature of the steel sheet increases, dislocation recovery, cementite precipitation, ferrite recrystallization, and reverse transformation occur.
  • the sheet-threading speed varies depending on the thickness and width of the steel sheet, and the change in the microstructure for each temperature section may vary according to the initial hot-rolled structure and the cold rolling reduction rate.
  • the crack zone (SS) section When entering the cracking zone (SS) section, it is maintained at a constant temperature for a certain period of time, and at this time, the reverse transformation of austenite or single-phase austenite is observed according to the annealing temperature.
  • the crack zone (SS) section is known as one of the sections that consume the most energy in an annealing furnace.
  • SCS slow cooling zone
  • RCS rapid cooling zone
  • Some bainite may be formed during cooling depending on the RCS set temperature and hardenability.
  • FIG. 2 is an arbitrary Fe—C phase diagram.
  • T1 the ratio of austenite and ferrite corresponding to the temperature may be determined by a lever rule. That is, the temperature of the crack zone (SS) is closely related to the phase transformation. Factors that affect phase transformation and change in the state of matter include temperature, pressure, composition, and the like, and when the composition is determined, it can be adjusted through temperature and pressure. In particular, the higher the temperature and pressure, the faster the phase transformation during heating in the annealing furnace, but the higher the temperature, the higher the energy cost and the higher the carbon emissions such as carbon dioxide after combustion, which is not environmentally friendly.
  • the variable compared to the pressure in the steel manufacturing process is the cold reduction rate. If the cold reduction rate is increased at the same temperature, the phase transformation proceeds quickly. Using this principle, in the present invention, the cold rolling reduction is performed at 70 to 90% higher than the conventional method.
  • the soaking zone temperature in a typical annealing process is generally in the range of Ac1+30°C to Ac3-30°C.
  • the annealing process of the present invention It is preferable to heat and maintain to a temperature range of Ac1 ⁇ Ac1 + 50 °C.
  • the present invention can reduce hardness and improve workability through recrystallization and phase transformation even in the above temperature range.
  • the stepwise cooling may be performed in a slow cooling zone (SCS) and a rapid cooling zone (RCS).
  • SCS slow cooling zone
  • RCS rapid cooling zone
  • the end temperature of the slow cooling is less than 650 ° C, the diffusion activity of carbon is low due to too low temperature, and the carbon concentration in ferrite increases, while the fraction of hard phase becomes excessive as the carbon concentration in austenite decreases, increasing the yield ratio, , thereby increasing the tendency to crack during machining.
  • a problem in that the shape of the plate becomes non-uniform may occur because the temperature difference with the cracking zone is too large.
  • the end temperature exceeds 700° C., there is a disadvantage in that an excessively high cooling rate is required during subsequent cooling (rapid cooling).
  • the average cooling rate during slow cooling exceeds 10 ° C / s, carbon diffusion cannot sufficiently occur, and it is preferable to cool at an average cooling rate of 1 ° C / s or more in consideration of productivity.
  • the quench cooling end temperature is less than 300 ° C, there is a concern that the cooling deviation occurs in the width and length directions of the steel sheet, resulting in poor plate shape, and if it exceeds 580 ° C, it is impossible to sufficiently secure a hard phase and the strength is lowered.
  • the average cooling rate during the rapid cooling is less than 5 ° C / s, there is a risk that the fraction of the hard phase will be excessive, and if it exceeds 50 ° C / s, there is a risk that the hard phase will be insufficient.
  • overaging treatment (OAS) may be performed if necessary.
  • the overaging treatment is a process of holding for a certain period of time after the quenching end temperature.
  • the overaging treatment does not perform a separate treatment, and can be regarded as the same as a kind of air cooling treatment.
  • the overaging treatment may be performed for 200 to 800 seconds.
  • each steel slab was heated at 1200 ° C. for 1 hour, and then , Finish hot rolling was performed at a finish rolling temperature of 800 to 920° C. to prepare a hot-rolled steel sheet.
  • the hot-rolled steel sheet was cooled at a cooling rate of 0.1° C./s and wound at 650° C. Thereafter, the rolled hot-rolled steel sheet was cold-rolled at a reduction ratio of 40% and 80% to manufacture a cold-rolled steel sheet.
  • the annealing temperature was heated to a temperature range of 730 to 860 ° C., and heat treatment was performed under the annealing temperature conditions in Table 2.
  • Table 2 shows the temperatures of each step in the heating zone (HS), soaking zone (SS), slow cooling zone (SCS), rapid cooling zone (RCS), and overaging zone (OAS) in FIG. 1.
  • slow cooling SCS section in Table 2
  • rapid cooling RCS section in Table 2
  • the tensile test for each test piece was performed at a strain rate of 0.01 / s after taking a JIS No. 5 size tensile test piece in the direction perpendicular to the rolling direction.
  • non-recrystallized ferrite in the texture phase was observed through SEM at 5000 magnification after nital etching.
  • SEM scanning electron microscope
  • sub grains observed in normal unrecrystallized ferrite or particles elongated in the rolling direction were analyzed as unrecrystallized ferrite, and the fraction thereof was measured.
  • each fraction was measured using a SEM and an image analyzer after nital etching.
  • the aspect ratio of the hard phase was measured by measuring the ratio of the width (a) and the length (b) with respect to the rolling direction as shown in FIG. 3, which is a commonly used method.
  • inventive examples 1 to 3 which satisfy all of the steel alloy composition and manufacturing conditions, particularly the continuous annealing process proposed in the present invention, obtain the required microstructure even at a low annealing temperature, and have physical properties This is good, so it has high strength, excellent elongation, and provides an environmentally friendly manufacturing process with a low annealing temperature.
  • Example 4 is an SEM photograph of the microstructure of Inventive Example 1, in which 60% or more of ferrite is recrystallized, and the hard phase has a round shape and an aspect ratio of 1.2 or less.
  • Comparative Examples 1 and 2 since the reduction ratio is low, when the annealing temperature is lowered, ferrite recrystallization is insufficient, and austenite is quickly formed during heating, so that strength is secured but elongation is low.
  • Comparative Example 2 was subjected to the same heat treatment as Inventive Example 2, but recrystallization did not occur smoothly due to a low reduction ratio, and the fraction of recrystallized ferrite was low, resulting in poor elongation.
  • 5 is an SEM photograph of the microstructure of Comparative Example 1, in which a number of non-recrystallized ferrites are observed.
  • Comparative Examples 3 to 7 did not satisfy the physical properties targeted at elongation. In particular, there are problems in that the reduction ratio is low and austenite is coarsely formed, resulting in low elongation and low energy efficiency due to high annealing temperature.
  • Figure 6 is a microstructure SEM picture of Comparative Example 4, showing the characteristics of a large hard phase fraction and a large aspect ratio, and it was confirmed that formability such as elongation was inferior.
  • Comparative Examples 8 to 11 have a problem of low energy efficiency due to a high annealing temperature, and a problem of low elongation due to a high fraction of the secondary phase.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

본 발명은 자동차 등에 사용되는 강판에 관한 것으로서, 고강도 및 고성형성의 특징을 가지고 있을 뿐만 아니라, 친환경적으로 제조되는 강판과 이의 제조방법에 관한 것이다.

Description

친환경 고강도 고성형성 강판 및 그 제조방법
본 발명은 자동차 등에 사용되는 강판에 관한 것으로서, 고강도 및 고성형성의 특징을 가지고 있을 뿐만 아니라, 친환경적으로 제조되는 강판과 이의 제조방법에 관한 것이다.
연비 및 내구성 향상은 자동차 사가 해결해야 하는 중요한 이슈이다. 이를 위해 얇은 고강도 강(steel)을 사용하면 환경, 연비, 내충돌성 및 내구성의 다양한 이슈들을 동시에 개선하는 것이 가능하다. 일예로 미국의 고속도로 안전보험협회는 탑승자 보호를 위한 충돌 안정성 규제를 점차 강화해 왔으며, 2013년부터는 25% 스몰 오버랩(small overlap)과 같은 가혹한 충돌 성분을 요구하고 있다. 이러한 해결책으로는 자동차의 경량화에 있고, 경량화를 위해서는 강재의 고강도화가 필요하고, 높은 성형성도 함께 요구된다.
특히, 자동차의 충격 안정성 규제가 확대되면서 차체의 내충격성 향상을 위한 멤버(member), 시트레일(seat rail), 필러(pillar) 등의 구조 부재는 강도가 우수한 강이 채용되고 있다. 이러한 부품들은 안정성, 디자인에 따라 복잡한 형성을 가지며, 주로 프레스 금형에서 형성하여 제조되므로, 고강도와 더불어 높은 수준의 성형성이 요구된다.
그러나, 강의 강도가 높아지면 충격에너지 흡수에 유리한 특징을 가지지만, 일반적으로 강도가 높아지면 연신율이 감소하여 성형 가공성이 저하되는 문제점이 있다. 뿐만 아니라, 항복강도가 과도하게 높은 경우에는 성형시 금형에서 소재의 유입이 감소하여 성형성이 열위하는 문제가 있다. 이에 자동차 산업계에서는 강도와 성형성이 우수한 즉, 강도와 연신율 밸런스(TS*El)이 우수한 강재 개발을 철강 업계에 요구하고 있는 실정이다.
철강사는 이러한 요구에 부응하고자 다양한 제품을 개발하고 있다. 일예로, 이상조직강(Dual Phase Steel, DP강), 변태유기소성강(Transformation Induced Plasticity Steel, TRIP강), 복합조직강(Complex Phase Steel, CP강), 페라이트-베이나이트강(Ferrite-Bainite Steel, FB강) 등이 있으며, 제선, 제강, 연주, 열연 및 냉간압연과 소둔공정을 통해 제품이 제조된다.
한편, 전세계 환경보호에 대한 요구가 증가하고 있으며, 기업들은 ESG(Environment, Social, Governance) 이산화탄소(CO2) 배출 감소를 위해 역량을 집중하고 있다. 여러 철강사들은 이산화탄소 배출 제로(zero) 계획을 발표하며 코크스 환원을 하던 기존의 방식이 이산화탄소 배출량이 많은 문제를 가지고 있으므로, 수소를 이용하는 환원하는 DRI 기술 등 친환경 기술에 관심이 높다.
통상 냉간압연과 소둔에 필요한 에너지는 제선 공정의 부생가스를 사용하는데 DRI 등 친환경 기술을 적용하는 경우 부생가스가 감소하여 에너지 비용이 증가하며, 에너지 절감을 위해서는 열처리 온도를 낮게 하는 기술이 필요하다. 그리고 부생가스를 사용하여 열원을 만들면 이 역시 CO2를 발생시키므로 사용량을 최소화 하는 것이 필요하다.
본 발명의 일측면은 이산화탄소(CO2) 발생을 저감시켜 친환경적으로 제조되는 높은 강도와 성형성을 갖는 강판과 이를 제조하는 방법을 제공하고자 하는 것이다.
본 발명의 과제는 상술한 사항에 한정되지 아니한다. 본 발명의 추가적인 과제는 명세서 전반적인 내용에 기술되어 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 명세서에 기재된 내용으로부터 본 발명의 추가적인 과제를 이해하는데 아무런 어려움이 없을 것이다.
본 발명의 일태양은 중량%로, C: 0.05~0.10%, Si: 0.3% 이하(0은 제외), Mn: 2.0~2.5%, Ti: 0.05% 이하(0은 제외), Nb: 0.1% 이하(0은 제외), Cr: 1.5% 이하(0은 제외), P: 0.1% 이하, S: 0.01% 이하, 나머지는 Fe 및 불가피한 불순물을 포함하고,
미세조직은 면적분율로, 15~35%의 경질상 및 65~85%의 연질상을 포함하는 친환경 고강도 고성형성 강판에 관한 것이다.
본 발명의 다른 일태양은 중량%로, C: 0.05~0.10%, Si: 0.3% 이하(0은 제외), Mn: 2.0~2.5%, Ti: 0.05% 이하(0은 제외), Nb: 0.1% 이하(0은 제외), Cr: 1.5% 이하(0은 제외), P: 0.1% 이하, S: 0.01% 이하, 나머지는 Fe 및 불가피한 불순물을 포함하는 강 슬라브를 이용하여 열연강판을 제조하는 단계;
상기 열연강판을 70~90%의 압하율로 냉간압연하여 냉연강판을 제조하는 단계;
상기 냉연강판은 Ac1~Ac1+50℃의 온도범위까지 가열하고 유지하는 단계; 및
상기 냉연강판을 650~700℃의 온도범위까지 1~10℃/s 의 평균 냉각속도로 서냉한 후, 300~580℃의 온도범위까지 5~50℃/s의 평균 냉각속도로 급냉을 행하는 냉각단계를 포함하는 친환경 고강도 고성형성 강판의 제조방법에 관한 것이다.
본 발명에 의한 높은 강도와 성형성, 특히 강도와 연성의 밸런스(TS*El)가 우수한 강판을 제공할 수 있음으로써, 프레스 성형시 크랙 또는 주름 등의 가공 결함을 방지할 수 있으므로, 복잡한 형상으로의 가공이 요구되는 구조용 등의 부품에 적합하게 적용할 수 있다. 또한 불가피하게 자동차가 충돌하는 경우 크랙이 잘 형성되지 않은 내충돌성이 우수한 자동차 부품을 제조하는데 효과적이다.
또한, 제조과정에서 소둔 열처리 온도를 낮춤으로써 이산화탄소(CO2) 발생을 저감시켜 친환경(Eco-Friendly)으로 제조되는 강판과 그 제조방법 제공할 수 있다.
본 발명의 다양하면서도 유익한 장점과 효과는 상술한 내용에 한정되지 않고, 본 발명의 구체적인 실시 태양을 설명하는 과정에서 보다 쉽게 이해될 수 있을 것이다.
도 1은 연속소둔 공정의 열처리 단계를 그래프로 도시한 것이다.
도 2는 임의의 Fe-C 상태도로서, 성분과 소둔 온도의 관계를 설명하기 위한 것이다.
도 3은 경질상의 종횡비를 측정하는 방법의 일예를 모식화한 모식도이다.
도 4는 실시예 중 발명예 1의 미세조직을 관찰한 사진이다.
도 5는 실시예 중 비교예 1의 미세조직을 관찰한 사진이다.
도 6는 실시예 중 비교예 4의 미세조직을 관찰한 사진이다.
본 명세서에서 사용되는 용어는 본 발명을 설명하기 위한 것이고, 본 발명을 한정하는 것을 의도하지 않는다. 또한, 본 명세서에서 사용되는 단수 형태들은 관련 정의가 이와 명백히 반대되는 의미를 나타내지 않는 한 복수 형태들도 포함한다.
명세서에서 사용되는 "포함하는"의 의미는 구성을 구체화하고, 다른 구성의 존재나 부가를 제외하는 것은 아니다.
달리 정의하지 않는 한, 본 명세서에서 사용되는 기술 용어 및 과학 용어를 포함하는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 일반적으로 이해하는 의미와 동일한 의미를 가진다. 사전에 정의된 용어들은 관련 기술문헌과 현재 개시된 내용에 부합하는 의미를 가지도록 해석된다.
자동차 소재로 사용되는 고강도 강은 대표적으로, 이상조직강(Dual Phase Steel, DP강), 변태유기소성강(Transformation Induced Plasticity Steel, TRIP강), 복합조직강(Complex Phase Steel, CP강), 페라이트-베이나이트강(Ferrite-Bainite Steel, FB강) 등이 있다.
이 중에서 DP강은 연질상(soft phase)과 경질상(hard phase)을 포함하며, 일부 잔류 오스테나이트를 포함할 수 있다. 이러한 DP강은 항복강도가 낮고, 인장강도가 높아 항복비(Yield Ratio, YR)이 낮고, 높은 가공경화율, 고연성, 연속항복거동, 상온 내시효성, 소부경화성 등이 우수하고, 경우에 따라 구멍확장성이 우수하다는 특징이 있다.
그러나, 인장강도 780MPa 이상의 초고강도를 확보하기 위해서는 강도 향상에 유리한 마르텐사이트와 같은 경질상(hard phase)의 분율을 높여야 하며, 이 경우에는 항복강도가 상승하여 프레스 성형 중에 크랙 등의 결함이 발생할 수 있다는 문제가 있다. 따라서, 강도와 연신율이 동시에 우수한 특성을 확보하는 것이 중요하다.
이에 본 발명의 발명자들은 상온에서 진행하는 냉간압연의 압하율을 상향시켜 조직을 미세하게 분산시키고 열처리 온도를 조정함으로써, 재결정구동력을 증가시켜 강의 연성에 영향을 미치는 연질상(soft phase)의 충분한 재결정을 유도할 수 있도록 하였다. 또한, 강도 확보에 유리한 경질상의 미세화 및 분포도를 균일하게 확보함으로써, 우수한 강도와 연신율의 밸런스를 확보할 수 있음을 확인하고 본 발명을 완성하기에 이르렀다.
한편, 상기 DP강을 제조하기 위해서는 강 슬라브를 제작한 다음, 이 강 슬라브를 열간압연, 냉간압연, 소둔 공정을 거쳐 제조한다. 상기 냉간압연 공정은 주로 냉연강판 제조 시 행해지는 공정으로 열연코일을 상온에서 일정한 압하율로 압연하는 것을 의미한다. 통상적으로 상기 냉간압연은 TCM(Tandum Cold rolling Mill)에서 가역식 압연을 행한다. 상기 TCM은 낮은 제조원가로 대량생산의 장점을 갖는다. 한편, 소둔 공정은 가열로 내에서 강판(냉연강판)을 일정한 온도구간으로 가열, 유지함으로써, 재결정과 상변태를 현상을 통해 경도를 저하시키고 가공성을 개선할 수 있다. 상기 소둔 공정을 거치지 않은 강판은 경도 특히, 표면경도가 높고 가공성이 부족한 반면, 소둔 공정이 행해진 강판은 재결정 조직을 가짐으로써, 경도, 항복점, 항장력이 낮아지는 효과를 얻을 수 있다.
상기 소둔 공정은 상온의 강판을 가열하고, 또 고온으로 가열해야 하기 때문에 많은 양의 에너지를 필요로 하고, 이는 에너지 비용이 증가하고, 연소 후 발생하는 가스의 정화 비용 등이 발생할 뿐만 아니라, 필연적으로 이산화탄소(CO2) 등 오염물질의 발생을 높여 친환경적이지 않다. 이에 본 발명의 발명자들은 상기 소둔 공정의 가열 온도를 낮출 수 있는 방안을 연구하고, 에너지를 만드는 과정과 연소 후 처리하는 과정에서 이산화탄소(CO2) 등 오염물질의 발생을 최소화하는 방안을 연구하였다. 이에 본 발명자들은 CO2 발생 비율이 높고, 에너지 비용이 많이 드는 열처리 공정의 에너지 절감을 위해, 열간압연 후 냉간압연 시 냉간 압하율을 높게 하여 열처리 온도를 낮게 하여도 우수한 재질을 확보하는 기술을 개발하여 본 발명을 이르게 되었다.
즉, 본 발명은 상기 낮은 소둔 온도를 적용하여 에너지 절감 및 오염물질을 최소화하여 친환적일 뿐만 아니라, 우수한 강도와 연신율의 밸런스를 갖는 강판 및 그 제조방법을 제공한다.
먼저, 본 발명의 일태양인 강판에 대해 상세히 설명한다. 상기 강판의 합금조성은 중량%로, C: 0.05~0.10%, Si: 0.3% 이하(0은 제외), Mn: 2.0~2.5%, Ti: 0.05% 이하(0은 제외), Nb: 0.1% 이하(0은 제외), Cr: 1.5% 이하(0은 제외), P: 0.1% 이하, S: 0.01% 이하, 나머지는 Fe 및 불가피한 불순물을 포함한다. 상기 합금조성에 대해 상세히 설명하면 다음과 같다. 본 발명에서 특별히 언급하지 않는 한 각 원소의 함량은 중량%을 기준으로 한다.
탄소(C): 0.05~0.10%
상기 C는 고용강화를 위해 첨가되는 중요한 원소이며, 이러한 C는 석출원소와 결합하여 미세 석출물을 형성함으로 강의 강도 향상에 기여한다. 상기 C의 함량이 0.10%를 초과하게 되면 경화능이 증가하여 강 제조시 냉각 중 마르텐사이트가 형성됨에 따라 강도가 과도하게 상승하는 한편, 연신율의 감소를 초래할 수 있다. 또한 용접성이 열위하게 되어 부품으로 가공시 용접 결함이 발생할 우려가 있다. 상기 C 함량이 0.05% 미만이면 목표 수준의 강도 확보가 어려워질 수 있다. 보다 유리하게는 0.06~0.08%인 것이 바람직하다.
실리콘(Si): 0.3% 이하 (0은 제외)
상기 Si은 페라이트 안정화 원소로서, 페라이트 변태를 촉진함으로써 목표 수준의 페라이트 분율 확보가 유리하다. 또한, 고용 강화능이 우수하여 페라이트의 강도를 높이는데 효과적이고, 강의 연성을 저하시키지 않으면서 강도를 확보하는데 유용한 원소이다. 상기 Si 함량이 0.3% 초과하게 되면 고용강화 효과가 과도해져 오히려 연성이 저하되며, 표면 스케일 결함을 유발하여 도금 표면품질에 악영향을 미치게 되고, 화성처리성을 저해할 수 있다. 보다 유리하게는 0.1% 이하인 것이 바람직하다.
망간(Mn): 2.0~2.5%
상기 Mn은 강 중의 황(S)을 MnS로 석출시켜 FeS의 생성에 의한 열간취성을 방지하며, 강을 고용강화 시키는데 유리한 원소이다. 상기 Mn의 함량이 2.0% 미만이면 위의 효과를 얻을 수 없을 뿐만 아니라, 목표 수준의 강도를 확보하는데 어려움이 있다. 반면 그 함량이 2.5% 초과하게 되면 용접성, 열간압연성 등의 문제가 발생할 가능성이 높고, 동시에 경화능의 증가로 마르텐사이트가 보다 용이하게 형성됨에 따라 연성이 저하될 우려가 있다. 또한, 조직 내 Mn 산화물의 띠(Mn-band)가 과도하게 형성되어 가공 크랙과 같은 결함 발생의 위험이 높아지는 문제가 있다. 그리고, 소둔시 Mn 산화물이 표면에 용출되어 도금성을 크게 저해하는 문제가 있다. 보다 유리하게는 2.2~2.4%인 것이 바람직하다.
티타늄(Ti): 0.05% 이하 (0은 제외)
상기 Ti은 미세 탄화물을 형성하는 원소로서 항복강도 및 인장강도 확보에 기여한다. 또한 Ti은 강 중 N를 TiN으로 석출시켜 강 중에 불가피하게 존재하는 Al에 AlN의 형성을 억제하는 효과가 있어, 연속주조시 크랙의 발생 가능성을 저감시키는 효과가 있다. 상기 Ti 함량이 0.05%를 초과하게 되면 조대한 탄화물이 석출되고, 강 중 탄소량 저감에 의하여 강도 및 연신율의 감소 우려가 있다. 또한, 연속 주조시 노즐 막힘을 유발할 우려가 있으며, 제조원가가 상승하는 문제점이 있다. 따라서, 상기 Ti은 0.05% 이하인 것이 바람직하며, 0% 초과인 것이 바람직하다.
니오븀(Nb): 0.1% 이하 (0은 제외)
상기 Nb은 오스테나이트 입계에 편석되어 소둔 열처리시 오스테나이트 결정립의 조대화를 억제하고, 미세한 탄화물을 형성하여 강도 향상에 기여하는 원소이다. 상기 Nb의 함량이 0.1%를 초과하게 되면 조대한 탄화물이 석출되고, 강중 탄화물 저감에 의해 강도 및 연신율이 열위할 수 있으며, 제조원가가 상승하는 문제가 있다. 상기 Nb는 0.1% 이하인 것이 바람직하며, 0% 초과인 것이 바람직하다.
크롬(Cr): 1.5% 이하 (0은 제외)
상기 Cr은 베이나이트 형성을 용이하게 하는 원소이며, 소둔 열처리 시 마르텐사이트의 형성을 억제하고, 미세한 탄화물을 형성하여 강도 향상에 기여하는 원소이다. 상기 Cr의 함량이 1.5%를 초과하게 되면 베이나이트가 과도하게 형성되어 연신율이 감소하며, 입계에 탄화물이 형성되는 경우 강도 및 연신율이 열위할 수 있으며, 제조원가가 상승하는 문제가 있다. 따라서, 상기 Cr은 1.5% 이하로 포함하는 것이 바람직하며, 0% 초과인 것이 바람직하다.
인(P): 0.1% 이하
상기 P은 고용강화 효과가 가장 큰 치환형 원소로서, 면내 이방성을 개선하고, 성형성을 크게 저하시키지 않으면서 강도 확보에 유리한 원소이다. 그러나, 상기 P를 과잉 첨가할 경우 취성 파괴 발생 가능성이 크게 증가하여 열간압연 도중 슬라브의 판파단 발생 가능성이 증가하며, 도금표면 특성을 저해하는 문제가 있다. 따라서, 상기 P의 햠량은 0.1% 이하인 것이 바람직하며, 불가피하게 포함되는 수준을 고려하여 0%는 제외할 수 있다.
황(S): 0.01% 이하
상기 S은 강 중 불순물 원소로서 불가피하게 첨가되는 원소이고, 연성을 저해하므로 그 함량을 가능한 낮게 관리하는 것이 바람직하다. 특히 S은 적열 취성을 발생시킬 가능성을 높이는 문제가 있으므로, 그 함량을 0.01% 이하로 관리하는 것이 바람직하다. 다만, 불가피하게 포함되는 수준을 고려하여 0%는 제외할 수 있다.
나머지는 철(Fe)를 포함하며, 통상의 제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이들 불순물들은 제조과정에서 통상의 기술자가라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 특별히 본 명세서에서 언급하지는 않는다.
본 발명의 고강도 강판은 미세조직으로 경질상과 연질상으로 구성되며, 특히 최적화된 소둔 공정에 의해 페라이트 재결정을 극대화시킴으로써 최종적으로 재결정 페라이트 기지에 경질상인 베이나이트와 마르텐사이트 상이 균일하게 분포된 조직을 포함하는 것이 바람직하다. 상기 미세조직에서 경질상은 주로 마르텐사이트이며, 일부 미량의 베이나이트가 포함되어 혼재되어 있는 상을 의미하며, 연질상은 페라이트 상을 의미한다. 연질상과 경질상으로 구성된 조직에서 변형특성은 연질상이 성형성을 결정하며, 경질상은 강도를 결정한다.
상기 경질상은 면적분율로 15~35%을 포함하는 것이 바람직하다. 상기 경질상의 분율이 너무 높으면 강도는 높으나 연신율이 낮아지며, 연질상의 분율이 높으면 반대로 연신율은 높아지나 강도는 낮아지는 문제가 있다. 본 발명에서 제공하는 780MPa 이상의 강도를 확보하기 위해서는 경질상이 면적분율로 15% 이상 포함하는 것이 바람직하고, 성형성을 확보하기 위해 35%를 넘지 않는 것이 바람직하다.
적정한 강도를 확보하는 동시에 성형성을 확보하기 위해서, 상기 연질상은 면적분율로 65~85%인 것이 바람직하다. 상기 연질상의 페라이트는 재결정 페라이트와 미재결정 페라이트로 구분될 수 있다. 재결정 페라이트와 미재결정 페라이트의 차이는 도 3에 나타난 바와 같이, 압연방향에 대한 결정립도의 종횡비(aspect ratio)로 구분이 가능하다. 미재결정 페라이트는 도 3(b)와 같이, 종횡비가 크고, 상세하게 분석한 경우 페라이트 입내의 선상의 변형조직이 관찰된다. 한편, 재결정 페라이트가 성형성 확보에 유리하므로, 연질상 중 재결정 페라이트가 60% 이상인 것이 바람직하고, 미재결정 페라이트는 연질상이지만 분율이 높은 경우에는 성형성을 감소시키므로, 5% 이하인 것이 바람직하다.
한편, 상기 경질상의 종횡비(aspect ratio)는 1.2 이하인 것이 바람직하다. 종횡비는 도 3 (a) 및 (b)에 도시한 바와 같이, 압연방향에 대한 결정입도의 장축(b)과 단축(a)의 비(b/a)를 의미하며, 경질상의 종횡비는 상기 경질상이 압연방향으로 연신되어 형성된 조직의 종횡비이다. 상기 경질상의 종횡비가 증가하면 두께 방향의 변형 저항성에 중요한 벤딩성(bending)에 악영향을 준다. 또한, 상기 경질상의 종횡비가 증가하면, 구멍 확장성을 저하시키게 된다. 따라서, 상기 경질상의 종횡비는 가능한 낮게 관리하는 것이 중요하므로, 1.2를 넘지 않는 것이 바람직하다.
본 발명의 강판은 인장강도(TS) 780MPa 이상의 고강도를 가지며 연신율이 18% 이상으로써, 우수한 강도와 성형성을 확보할 수 있다.
다음으로 본 발명 강판의 제조방법에 대한 일태양을 상세히 설명한다. 본 발명의 강판은 먼저 강 슬라브를 준비하여 이를 가열하고, 열간압연을 행한 후, 권취 및 냉각하고, 냉간압연하고 연속소둔을 거쳐 제조할 수 있다. 이하, 각 단계에 대해 상세히 설명한다.
강 슬라브 가열
전술한 합금조성 즉, 중량%로, C: 0.05~0.10%, Si: 0.3% 이하(0은 제외), Mn: 2.0~2.5%, Ti: 0.05% 이하(0은 제외), Nb: 0.1% 이하(0은 제외), Cr: 1.5% 이하(0은 제외), P: 0.1% 이하, S: 0.01% 이하, 나머지는 Fe 및 불가피한 불순물을 포함하는 강 슬라브를 준비한 후, 이를 가열한다. 이는 후속하는 열간압연 공정을 원활히 수행하고, 목표로 하는 강판의 물성을 확보하기 위한 것으로서, 가열 공정 조건을 특별히 한정하지 않으며, 본 발명이 속하는 기술분야에서 통상 행해지는 방법, 조건이면 무방하다. 일 예로써, 1100~1300℃의 온도범위로 가열하는 것이 바람직하다.
열간압연
상기 가열된 강 슬라브를 열간압연하여 열연강판을 제조한다. 이때 출구측 온도는 Ar3~1000℃의 온도범위에서 마무리 열간압연을 행하는 것이 바람직하다. 상기 마무리 열간압연시 출구측 온도가 Ar3 미만이면 열간 변형 저항이 급격히 증가하고, 열연 코일(coil)의 상(top)부, 하(tail)부 및 에지(edge)부가 단상영역으로 되어 면내이방성이 증가되어 성형성이 열위해질 수 있다. 한편, 1000℃를 초과하는 경우에는 상대적으로 압연 하중이 감소하여 생산성에는 유리하나, 두꺼운 산화 스케일(scale)이 발생할 우려가 있다. 보다 바람직하게는 760~940℃의 온도범위에 행할 수 있다.
권취 및 냉각
상기 열간압연으로 제조된 열연강판을 코일(coil) 형상으로 권취할 수 있다. 상기 권취는 400~700℃의 온도범위에서 행할 수 있다. 상기 권취온도가 400℃ 미만이면 과다한 마르텐사이트 또는 베이나이트의 형성으로 인해 열연강판의 과도한 강도 상승을 초래하여 이후의 냉간압연시 부하로 인한 형상 불량 등의 문제가 야기될 수 있다. 반면, 권취 온도가 700℃를 초과하는 경우에는 표면 스케일이 증가하여 산세성이 열화될 수 있다.
한편, 상기 권취된 열연강판을 상온까지 0.1℃/s 이하(0 제외)의 평균 냉각속도로 냉각하는 것이 바람직하다. 상기 권취된 열연강판은 이송, 적치 등의 과정을 거친 후 냉각이 행해질 수 있으며, 냉각 이전의 공정이 이에 한정되는 것은 아니다. 상기 권취된 열연강판을 일정 속도로 냉각을 행함으로써, 오스테나이트 핵생성 사이트(site)가 되는 탄화물을 미세하게 분산시킨 열연강판을 얻을 수 있다.
이후, 후속하는 냉간압연을 행하기 전에 열연강판 표면을 산세하여 표면 스케일을 제거하는 공정이 추가로 행해질 수 있다. 상기 산세 방식은 특별한 한정되지 않으며, 본 발명의 속하는 기술분야에서 통상 행해지는 방식으로 행하면 충분하다.
냉간압연
위와 같이 권취된 열연강판을 상온에서 일정한 압하율로 냉간압연하여 냉연강판으로 제조할 수 있다.
상기 냉간압연시 70~90%의 압하율로 냉간압연을 행하는 것이 바람직하다. 상기 냉간 압연의 압하율이 70% 미만이면 재결정 구동력이 감소하여 페라이트가 조대하게 형성되고, 오스테나이트 형성도 감소하여 소둔로 균열대 온도를 높게 하여야 오스테나이트 분율이 충분히 확보된다. 반면, 냉간 압하율이 90%를 초과하게 되면 강판 에지(edge)부에서 크랙이 발생할 가능성이 높고, 압연 전의 초기 두께가 과도하게 두꺼워져야 하고 압연 패스가 증가하여 생산성이 낮아지는 문제가 있다.
상기 냉간압연을 행하는 방식에 대해, 본 발명에서는 특별히 제한하지 않으며, 본 발명이 속하는 기술분야에서 행해지는 방식이면 어느 것이든 적용이 가능하다. 예를 들면, TCM(Tandum Cold rolling Mill) 방식, ZRM(Sendzimir rolling mill) 방식 등이 있다. 이들에 대해 개략적으로 설명하면, TCM은 가역식 압연으로서, 낮은 제조원가, 대량생산이 가능하므로, 생산성이 우수하다는 장점이 있으나, 압하력을 가하는데 다소 제약이 있는 단점이 있다. ZRM은 가역 배치식으로서, 생산성이 낮은 단점이 있으나, 압하력을 가하는데 다소 용이하다는 장점이 있다.
상기 냉간압연의 압하율은 철강의 상변태를 개선하여 다양한 물성을 향상시키는 중요한 조업인자이므로, 압하율을 제어하는 것은 품질 확보에 특히 중요하다. 본 발명에서는 제품 재질, 크기, 조업환경 등을 고려하여 적정한 방식을 채용하는 것이 바람직하다.
연속소둔
상기 제조된 냉연강판을 연속소둔하는 것이 바람직하다. 연속소둔 처리는 일예로 연속소둔로(CAL)에서 행해질 수 있다. 연속소둔 공정의 열처리 단계에 대한 일예를 도 1에 그래프로 나타내었다. 도 1에 도시된 바와 같이 소둔로 내의 가열대(Heating Section: HS), 균열대 (Soaking Section: SS), 서냉대 (Slow Cooling Section: SCS), 급냉도 (Rapid Cooling Section: RCS), 과시효대 (Over Aging Section: OAS)의 열처리 단계로 구성될 수 있다. 일반적으로 각 구간(section)의 온도는 각 구간(section)이 끝나는 지점에 부착된 온도를 측정하므로, 온도는 각 구간(section)이 끝나는 위치의 온도를 의미한다. 예를 들어, 급냉대(RCS) 온도는 급냉대가 끝나는 구간의 온도로써, 도 1의 경우 4로 표시된다.
상기 가열대(HS)에서 강판은 일정 승온속도로 가열되며, 강판이 온도가 증가하면서 전위의 회복, 시멘타이트의 석출, 페라이트의 재결정 및 이상역 역변태가 일어난다. 강판의 두께와 폭에 따라 통판속도가 달라지게 되고, 열연 초기조직 및 냉간압하율에 따라 상기 온도구간별 미세조직의 변화는 달라질 수 있다.
균열대(SS) 구간에 진입하면 일정한 온도로 일정 시간 유지되며, 이때 소둔 온도에 따라 이상역 오스테나이트 또는 단상역 오스테나이트 역변태가 관찰된다. 상기 균열대(SS) 구간은 소둔로에서 에너지를 가장 많이 소비하는 구간 중 하나로 알려져 있다. 서냉대(SCS) 구간에서는 통상 낮은 냉각속도로 냉각되며, SCS 구간 이후, 급냉대(RCS)에서는 높은 냉각속도로 연속냉각되며, RCS 설정온도 및 경화능 정도에 따라 냉각 중에 일부 베이나이트가 생성 될 수 있다.
한편, 도 2는 임의의 Fe-C 상태도로써, 임의의 성분에 대해 온도 T1이 정해지면 온도에 해당되는 오스테나이트와 페라이트 등의 비율이 레버룰(lever rule)에 의해 정해질 수 있다. 즉, 균열대(SS)의 온도는 상변태와 밀접한 연관이 있다. 상변태, 물질의 상태 변화에 영향을 미치는 인자는 온도, 압력, 조성 등이 있으며, 조성이 정해지는 경우에는 온도와 압력을 통해 조정이 가능하다. 특히 온도와 압력이 높을수록 소둔로 가열 중의 상변태는 빨리 진행할 수 있으나, 온도를 높일수록 소요되는 에너지 비용이 증가하고, 연소 후에 이산화탄소 등의 탄소 배출이 증가하게 되어, 친환경적이지 못하다. 철강 제조공정에서 압력에 비교되는 변수는 냉간 압하율로, 같은 온도에서 냉간 압하율을 높이면 빨리 상변태가 진행되며, 반대 개념으로 냉간 압하율을 높이면 낮은 온도에서도 상변태를 만들 수 있다. 이러한 원리를 이용하여 본 발명에서는 상기 냉간 압하율을 기존의 방식보다 높은 70~90%로 행한다.
통상적인 소둔공정에서의 균열대 온도는 Ac1+30℃ ~ Ac3-30℃의 범위인 것이 일반적이다. 그러나, 본 발명은 전술한 바와 같이, 냉간압하율을 높게 하여 낮은 온도에서 열처리 하여도 페라이트 재결정 및 오스테나이트 형성이 가능하므로, 본 발명의 소둔공정은 Ac1~Ac1+50℃의 온도범위까지 가열하고 유지하는 것이 바람직하다. 본 발명은 상기 온도범위에서도 재결정과 상변태 현상을 통해 경도를 저하시키고 가공성을 개선할 수 있다.
상기 온도범위에서 열처리된 냉연강판을 냉각함으로써, 목표로 하는 조직을 형성할 수 있으며, 이때 단계적(stepwise)으로 냉각을 행하는 것이 바람직하다. 본 발명에서 상기 단계적 냉각은 서냉대(SCS)와 급냉대(RCS)에서 이루어질 수 있으며, 일예로, 650~700℃의 온도범위까지 1~10℃/s 의 평균 냉각속도로 서냉한 후, 300~580℃의 온도범위까지 5~50℃/s의 평균 냉각속도로 급냉을 행하는 것이 바람직하다. 서냉 시 냉각속도를 느리게 행함으로써, 이후 급냉 시의 급격한 온도 하락에 의한 판 형상 불량을 억제할 수 있다.
상기 서냉의 종료온도가 650℃ 미만이면 너무 낮은 온도로 인해 탄소의 확산 활동도가 낮아 페라이트 내 탄소 농도가 높아지는 반면, 오스테나이트 내의 탄소 농도가 낮아짐에 따라 경질상의 분율이 과도해져, 항복비가 증가하며, 그로 인해 가공시 크랙 발생 경향이 높아진다. 또한, 균열대와의 온도 차이가 너무 커져서 판의 형상이 불균일해지는 문제가 발생할 수 있다. 상기 종료온도가 700℃를 초과하게 되면, 후속 냉각(급냉)시 지나치게 높은 냉각 속도가 요구되는 단점이 있다. 또한, 상기 서냉 시 평균 냉각속도가 10℃/s를 초과하면 탄소 확산이 충분히 일어날 수 없고, 생산성을 고려하여 1℃/s 이상의 평균 냉각속도로 냉각하는 것이 바람직하다.
상기 서냉을 완료한 후 급냉을 행한다. 상기 급냉 냉각종료 온도가 300℃ 미만에서는 강판의 폭 방향 및 길이 방향으로 냉각 편차가 발생하여 판 형상이 열위해질 우려가 있으며, 580℃를 초과하게 되면 경질상을 충분히 확보할 수 없게 되어 강도가 낮아질 수 있다. 한편, 상기 급냉 시 평균 냉각속도가 5℃/s 미만이면 경질상의 분율이 과도해질 우려가 있고, 50℃/s를 초과하게 되면 오히려 경질상이 불충분해질 우려가 있다.
한편, 상기 소둔공정에서는 냉각이 완료된 후, 필요에 따라 과시효 처리(OAS)를 행할 수 있다. 상기 과시효 처리는 상기 급냉 종료온도 후 일정시간 유지하는 공정이다. 상기 과시효 처리는 별도의 처리를 행하지 않는 것으로, 일종의 공냉 처리와 동일하게 볼 수 있다. 상기 과시효를 행함으로서, 코일의 폭방향, 길이 방향으로 코일의 균질화가 이루어짐으로써 형상 품질을 향상시키는 효과가 있다. 이를 위해, 상기 과시효 처리는 200~800초 동안 행할 수 있다.
이하, 본 발명의 실시예에 대해 설명한다. 하기 실시예는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 범주에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다. 하기 실시예는 본 발명의 이해를 위한 것으로서, 본 발명의 권리범위는 하기 실시예에 국한되어 정해져서는 안되며, 후술하는 청구범위뿐만 아니라, 이와 균등한 것들에 의해 정해져야 한다.
(실시예)
하기 표 1에 나타난 합금조성(단위는 중량%이며, 표 1에 표시되지 않은 나머지는 Fe와 불가피한 불순물임)을 갖는 강 슬라브를 제작한 후, 각각의 강 슬라브를 1200℃에서 1시간 가열한 다음, 마무리 압연온도 800~920℃에서 마무리 열간압연하여 열연강판을 제조하였다. 상기 열연강판을 0.1℃/s의 냉각속도로 냉각하여 650℃에서 권취하였다. 이후 권취된 열연강판을 40%, 80%의 압하율로 냉간압연하여 냉연강판을 제조하였다.
제조된 냉연강판에 대해 소둔온도를 730~860℃의 온도범위로 가열하고, 표 2의 소둔온도 조건으로 열처리를 행하였다. 소둔 열처리는 도 1의 가열대(HS), 균열대(SS), 서냉대(SCS), 급냉대(RCS), 과시효 처리대(OAS)에서 각 단계의 온도를 표 2에 나타내었다. 한편, 서냉(표 2에서 SCS 구간)은 3℃/s의 평균 냉각속도로, 급냉(표 2에서 RCS 구간)은 20℃/s의 평균 냉각속도로 행하였다.
강종 C Si Mn P S Cr Ti Nb Ac1
(℃)
1 0.07 0.18 2.4 0.01 0.0052 0.98 0.015 0.08 719.1
2 0.092 0.27 2.41 0.011 0.004 1.02 0.042 0.04 722.3
강종 냉연 압하율(%) 소둔공정 단계별 온도(℃) SS 온도범위 비고
HS SS SCS RCS OAS
2 40 730 730 650 450 360 Ac1≤SS≤Ac1+50℃ 비교예1
1 40 750 750 650 450 360 Ac1≤SS≤Ac1+50℃ 비교예2
2 40 790 790 650 450 360 Ac1+50℃ < SS 비교예3
1 40 800 800 650 450 360 Ac1+50℃ < SS 비교예4
2 40 820 820 650 450 360 Ac1+50℃ < SS 비교예5
1 40 840 840 650 450 360 Ac1+50℃ < SS 비교예6
1 40 860 860 650 450 360 Ac1+50℃ < SS 비교예7
1 80 730 730 650 450 360 Ac1≤SS≤Ac1+50℃ 발명예1
2 80 750 750 650 450 360 Ac1≤SS≤Ac1+50℃ 발명예2
2 80 770 770 650 450 360 Ac1≤SS≤Ac1+50℃ 발명예3
2 80 790 790 650 450 360 Ac1+50℃ < SS 비교예8
1 80 810 810 650 450 360 Ac1+50℃ < SS 비교예9
2 80 830 830 650 450 360 Ac1+50℃ < SS 비교예10
1 80 850 850 650 450 360 Ac1+50℃ < SS 비교예11
상기 방법으로 제조된 각 강판의 미세조직을 관찰하고, 기계적 특성 및 도금 특성을 평가하여 그 결과를 하기 표 3에 나타내었다.
이때, 각각의 시험편에 대한 인장시험은 압연 방향의 수직 방향으로 JIS 5호 사이즈의 인장시험편을 채취한 후 변형률(strain rate) 0.01/s로 인장시험을 행하였다.
그리고, 조직 상(phase) 중 미재결정 페라이트는 나이탈(nital) 에칭 후 5000배율로 SEM을 통해 관찰하였다. 이때, 관찰된 페라이트 상의 결정립 형상으로부터 통상의 미재결정된 페라이트에서 관찰되는 sub grain 또는 압연방향으로 연신된 입자를 미재결정 페라이트로 분석하고, 그 분율을 측정하였다. 그 외 상(phase) 등에 대해서도 나이탈 에칭 후 SEM과 이미지 분석기(Image analyzer)를 이용하여 각각의 분율을 측정하였다. 경질상의 종횡비는 도 3과 같이 압연방향에 대해 가로(a)와 세로(b)의 비율을 측정하여 비율을 측정하였으며, 이는 일반적으로 사용되는 방법이다.
강종 미세조직 면적분율(%) 경질상 종횡비 기계적 특성 구분
재결정 F 미재결정 F 경질상 YS
(MPa)
TS
(MPa)
항복비 연신율(%)
2 7 65 28 3.1 611 1325 0.46 9.8 비교예1
1 16 49 35 2.8 602 1135 0.53 10.5 비교예2
2 26 26 48 2.5 683 1048 0.65 11.3 비교예3
1 28 18 54 2.1 736 1072 0.69 14 비교예4
2 26 9 65 1.9 779 1087 0.72 7.7 비교예5
1 12 3 85 1.2 804 1109 0.72 7.6 비교예6
1 5 1 94 1.19 809 1125 0.72 8.9 비교예7
1 71 5 24 1.1 577 782 0.74 22.7 발명예1
2 69 1 30 1.08 408 830 0.49 20.7 발명예2
2 65 0 35 1.05 543 965 0.56 18.1 발명예3
2 57 0 43 1.05 667 1055 0.63 13.1 비교예8
1 45 0 55 1.03 720 1078 0.67 12.7 비교예9
2 25 0 75 1.01 769 1089 0.71 8.3 비교예10
1 18 0 82 1.01 836 1128 0.74 7.3 비교예11
상기 표 3에서 F: 페라이트, YS: 항복강도, TS: 인장강도를 의미한다.
상기 표 1 내지 3에 나타낸 바와 같이, 강 합금조성과 제조조건 특히, 연속소둔 공정이 본 발명에서 제안하는 바를 모두 만족하는 발명예 1 내지 3은 낮은 소둔온도에서도 요구되는 미세조직이 얻어지고, 물성이 양호하여 고강도를 가지면서도 연신율이 우수하며 소둔 온도가 낮아 친환경적인 제조공정을 제공한다.
도 4는 발명예 1의 미세조직을 관찰한 SEM 사진으로 페라이트가 60% 이상 재결정 되고, 경질상이 둥근 모양으로 종횡비가 1.2 이하이다.
비교예 1 내지 2는 압하율이 낮아서 소둔온도를 낮게 하면 페라이트 재결정이 부족하고, 오스테나이트가 가열 중에 빨리 형성되어 강도는 확보되나 연신율이 낮은 문제가 있다. 특히, 비교예 2는 발명예 2와 동일한 열처리를 하였으나, 압하율이 낮아서 재결정이 원활하게 발생하지 않아 재결정 페라이트의 분율이 낮아 연신율이 열위하다. 도 5는 비교예 1의 미세조직을 관찰한 SEM 사진으로, 재결정되지 않은 페라이트가 다수 관찰된다.
비교예 3 내지 7은 연신율 목표 목표로 하는 물성을 만족하지 못하였다. 특히 압하율이 낮아서 오스테나이트가 조대하게 형성되어 연신율이 낮고, 소둔온도가 높아서 에너지 효율이 낮은 문제가 있다. 도 6은 비교예 4의 미세조직 SEM 사진으로 경질상의 분율이 크고 종횡비가 큰 특성을 보이며, 연신율 등 성형성이 열위한 것을 확인할 수 있었다.
비교예 8 내지 11은 소둔온도가 높아서 에너지 효율이 낮은 문제가 있으며, 2차상의 분율이 높아 연신율이 낮은 문제가 있다.

Claims (8)

  1. 중량%로, C: 0.05~0.10%, Si: 0.3% 이하(0은 제외), Mn: 2.0~2.5%, Ti: 0.05% 이하(0은 제외), Nb: 0.1% 이하(0은 제외), Cr: 1.5% 이하(0은 제외), P: 0.1% 이하, S: 0.01% 이하, 나머지는 Fe 및 불가피한 불순물을 포함하고,
    미세조직은 면적분율로, 15~35%의 경질상 및 65~85%의 연질상을 포함하는 친환경 고강도 고성형성 강판.
  2. 청구항 1에 있어서,
    상기 연질상은 면적분율로, 재결정 페라이트가 60% 이상, 미재결정 페라이트가 5% 이하인 것을 포함하는 친환경 고강도 고성형성 강판.
  3. 청구항 1에 있어서,
    상기 경질상은 마르텐사이트 또는 마르텐사이트와 미량의 베이나이트가 혼합된 혼합조직인 것을 포함하는 친환경 고강도 고성형성 강판.
  4. 청구항 1에 있어서,
    상기 경질상의 종횡비는 1.2 이하인 것을 포함하는 친환경 고강도 고성형성 강판.
  5. 청구항 1에 있어서,
    상기 강판은 인장강도(TS) 780MPa 이상이고, 연신율(El)이 18% 이상인 친환경 고강도 고성형성 강판.
  6. 중량%로, C: 0.05~0.10%, Si: 0.3% 이하(0은 제외), Mn: 2.0~2.5%, Ti: 0.05% 이하(0은 제외), Nb: 0.1% 이하(0은 제외), Cr: 1.5% 이하(0은 제외), P: 0.1% 이하, S: 0.01% 이하, 나머지는 Fe 및 불가피한 불순물을 포함하는 강 슬라브를 이용하여 열연강판을 제조하는 단계;
    상기 열연강판을 70~90%의 압하율로 냉간압연하여 냉연강판을 제조하는 단계;
    상기 냉연강판은 Ac1~Ac1+50℃의 온도범위까지 가열하고 유지하는 단계; 및
    상기 냉연강판을 650~700℃의 온도범위까지 1~10℃/s 의 평균 냉각속도로 서냉한 후, 300~580℃의 온도범위까지 5~50℃/s의 평균 냉각속도로 급냉을 행하는 냉각단계;
    를 포함하는 친환경 고강도 고성형성 강판의 제조방법.
  7. 청구항 6에 있어서,
    상기 열연강판은,
    강 슬라브를 1100~1300℃의 온도범위로 가열하는 단계;
    가열된 강 슬라브를 Ar3~1000℃의 온도범위에서 마무리 압연하여 열간압연을 행하는 단계; 및
    상기 열간압연 후 400~700℃의 온도범위에서 권취하고, 0.1℃/s 이하의 냉각속도로 냉각하는 단계;
    를 포함하는 친환경 고강도 고성형성 강판의 제조방법.
  8. 청구항 6에 있어서,
    상기 급냉 후 200~800초 동안 과시효 처리하는 단계를 더 포함하는 친환경 고강도 고성형성 강판의 제조방법.
PCT/KR2022/015870 2021-10-19 2022-10-18 친환경 고강도 고성형성 강판 및 그 제조방법 WO2023068763A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
MX2024004760A MX2024004760A (es) 2021-10-19 2022-10-18 Lamina de acero ecologicamente favorable que tiene alta resistencia y alta formabilidad, y metodo para fabricar la misma.
EP22883985.8A EP4421204A1 (en) 2021-10-19 2022-10-18 Eco-friendly steel sheet having high strength and high formability, and method for manufacturing same
CN202280070175.2A CN118159679A (zh) 2021-10-19 2022-10-18 环保高强度高成型性钢板及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210139497A KR20230055740A (ko) 2021-10-19 2021-10-19 친환경 고강도 고성형성 강판 및 그 제조방법
KR10-2021-0139497 2021-10-19

Publications (1)

Publication Number Publication Date
WO2023068763A1 true WO2023068763A1 (ko) 2023-04-27

Family

ID=86059411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/015870 WO2023068763A1 (ko) 2021-10-19 2022-10-18 친환경 고강도 고성형성 강판 및 그 제조방법

Country Status (5)

Country Link
EP (1) EP4421204A1 (ko)
KR (1) KR20230055740A (ko)
CN (1) CN118159679A (ko)
MX (1) MX2024004760A (ko)
WO (1) WO2023068763A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140041838A (ko) * 2011-07-29 2014-04-04 신닛테츠스미킨 카부시키카이샤 내충격 특성이 우수한 고강도 강판 및 그 제조 방법, 고강도 아연 도금 강판 및 그 제조 방법
KR20140047960A (ko) * 2012-10-15 2014-04-23 주식회사 포스코 용접성 및 굽힘가공성이 우수한 초고강도 냉연강판 및 그 제조방법
JP2014196557A (ja) * 2013-03-06 2014-10-16 株式会社神戸製鋼所 鋼板形状および形状凍結性に優れた高強度冷延鋼板およびその製造方法
KR20190076258A (ko) * 2017-12-22 2019-07-02 주식회사 포스코 충돌특성 및 성형성이 고강도 강판 및 이의 제조방법
KR102255823B1 (ko) * 2019-12-11 2021-05-26 주식회사 포스코 성형성이 우수한 고항복비형 강판 및 그 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140041838A (ko) * 2011-07-29 2014-04-04 신닛테츠스미킨 카부시키카이샤 내충격 특성이 우수한 고강도 강판 및 그 제조 방법, 고강도 아연 도금 강판 및 그 제조 방법
KR20140047960A (ko) * 2012-10-15 2014-04-23 주식회사 포스코 용접성 및 굽힘가공성이 우수한 초고강도 냉연강판 및 그 제조방법
JP2014196557A (ja) * 2013-03-06 2014-10-16 株式会社神戸製鋼所 鋼板形状および形状凍結性に優れた高強度冷延鋼板およびその製造方法
KR20190076258A (ko) * 2017-12-22 2019-07-02 주식회사 포스코 충돌특성 및 성형성이 고강도 강판 및 이의 제조방법
KR102255823B1 (ko) * 2019-12-11 2021-05-26 주식회사 포스코 성형성이 우수한 고항복비형 강판 및 그 제조방법

Also Published As

Publication number Publication date
KR20230055740A (ko) 2023-04-26
MX2024004760A (es) 2024-05-27
CN118159679A (zh) 2024-06-07
EP4421204A1 (en) 2024-08-28

Similar Documents

Publication Publication Date Title
WO2015174605A1 (ko) 연성이 우수한 고강도 냉연강판, 용융아연도금강판 및 이들의 제조방법
WO2017111407A1 (ko) 고항복비형 고강도 냉연강판 및 그 제조방법
WO2018110867A1 (ko) 항복강도, 연성 및 구멍확장성이 우수한 고강도 냉연강판, 용융아연도금강판 및 이들의 제조방법
WO2018117501A1 (ko) 굽힘 가공성이 우수한 초고강도 강판 및 이의 제조방법
WO2020067752A1 (ko) 구멍확장성이 높은 고강도 냉연강판, 고강도 용융아연도금강판 및 이들의 제조방법
WO2012064129A2 (ko) 인장강도 590MPa급의 가공성 및 재질편차가 우수한 고강도 냉연/열연 TRIP강의 제조방법
WO2018110853A1 (ko) 저온역 버링성이 우수한 고강도 복합조직강 및 그 제조방법
WO2017111524A1 (ko) 구멍확장성이 우수한 초고강도 강판 및 그 제조방법
WO2017188654A1 (ko) 항복비가 우수한 초고강도 고연성 강판 및 이의 제조방법
WO2015099222A1 (ko) 용접성 및 버링성이 우수한 열연강판 및 그 제조방법
WO2017222159A1 (ko) 가공성이 우수한 고강도 냉연강판 및 그 제조 방법
WO2023022445A1 (ko) 열간성형용 강재, 열간성형 부재 및 이들의 제조방법
WO2022119253A1 (ko) 굽힘가공성이 우수한 초고강도 냉연강판 및 그 제조방법
WO2021117989A1 (ko) 초고강도 냉연강판 및 이의 제조방법
WO2019088552A1 (ko) 냉간압연성이 우수한 초고강도 냉연강판 및 이의 제조방법
WO2013154254A1 (ko) 재질 균일성이 우수한 고탄소 열연강판 및 이의 제조방법
WO2016093513A2 (ko) 성형성이 우수한 복합조직강판 및 이의 제조방법
WO2019125018A1 (ko) 초고강도 냉연강판 및 그 제조방법
WO2018084685A1 (ko) 항복비가 우수한 초고강도 강판 및 그 제조방법
WO2023068763A1 (ko) 친환경 고강도 고성형성 강판 및 그 제조방법
WO2021091140A1 (ko) 내구성이 우수한 고항복비형 후물 고강도강 및 그 제조방법
WO2020130329A1 (ko) 성형성이 우수한 고강도 열연강판 및 그 제조방법
WO2024143768A1 (ko) 초고강도 냉연강판 및 그 제조방법
WO2023048450A1 (ko) 표면 품질이 우수하고 재질 편차가 적은 고강도 냉연강판 및 이의 제조 방법
WO2024136222A1 (ko) 냉연강판 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22883985

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024523510

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280070175.2

Country of ref document: CN

Ref document number: MX/A/2024/004760

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2022883985

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022883985

Country of ref document: EP

Effective date: 20240521