WO2023068545A1 - Method for manufacturing optical device for augmented reality, and optical device for augmented reality manufactured thereby - Google Patents

Method for manufacturing optical device for augmented reality, and optical device for augmented reality manufactured thereby Download PDF

Info

Publication number
WO2023068545A1
WO2023068545A1 PCT/KR2022/013278 KR2022013278W WO2023068545A1 WO 2023068545 A1 WO2023068545 A1 WO 2023068545A1 KR 2022013278 W KR2022013278 W KR 2022013278W WO 2023068545 A1 WO2023068545 A1 WO 2023068545A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflector
augmented reality
optical device
manufacturing
plate
Prior art date
Application number
PCT/KR2022/013278
Other languages
French (fr)
Korean (ko)
Inventor
정진영
박영수
Original Assignee
주식회사 레티널
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 레티널 filed Critical 주식회사 레티널
Publication of WO2023068545A1 publication Critical patent/WO2023068545A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00317Production of lenses with markings or patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00605Production of reflex reflectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00865Applying coatings; tinting; colouring
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/001General methods for coating; Devices therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment
    • C03C2218/328Partly or completely removing a coating
    • C03C2218/33Partly or completely removing a coating by etching
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/34Masking

Definitions

  • the present invention relates to a method for manufacturing an optical device for augmented reality and an optical device for augmented reality manufactured thereby, and more particularly, to an optical device for augmented reality while preventing a shape error of a reflector due to a mask tolerance in a conventional deposition process. It relates to a manufacturing method of an optical device for augmented reality capable of efficiently forming a reflector on an inclined surface of an optical device for augmented reality and an optical device for augmented reality manufactured thereby.
  • AR augmented reality
  • an optical system capable of overlapping a virtual image generated by a device such as a computer with an image of the real world is required.
  • a technology using an optical means such as a prism that reflects or refracts a virtual image applied to a Head Mounted Display (HMD) or a glasses-type augmented reality device is known.
  • HMD Head Mounted Display
  • the present applicant has developed a device capable of implementing augmented reality by projecting a virtual image onto the retina through a pupil of a reflector having a size smaller than that of a human pupil.
  • FIG. 1 shows a side view of an optical device 100 for augmented reality by the present applicant.
  • the optical device 100 for augmented reality of FIG. 1 includes an image output unit 10 , a reflector 20 and an optical means 30 .
  • the image emitter 10 is means for emitting virtual video image light, for example, a micro display device that displays a virtual image on a screen and emits virtual image image light corresponding to the displayed virtual image, and image light emitted from the micro display device. may be provided with a collimator for collimating the
  • the reflector 20 is a means for providing a virtual image to the user by reflecting the virtual image image light emitted from the image emitter 10 and passing it toward the user's pupil 50 .
  • the reflecting unit 20 has an appropriate angle between the image emitting unit 10 and the pupil 50 so as to reflect the virtual video image light emitted from the image emitting unit 10 to the pupil 50, and has an optical means ( 30) It is buried and placed inside.
  • the optical unit 30 transmits real object image light, which is image light emitted from objects in the real world, and emits virtual image image light reflected by the reflector 20 to the pupil 50.
  • the optical means 30 may be formed of a transparent material such as, for example, a spectacle lens, and is fixed by the frame part 40 .
  • the frame unit 40 is a unit for fixing and supporting the image output unit 10 and the optical unit 30, and may be formed in the form of glasses, for example.
  • the reflector 20 of FIG. 1 is formed to have a smaller size than a human pupil. Since it is known that the size of a typical human pupil is about 4 to 8 mm, it is preferable to form the reflector 20 to be 8 mm or less. By forming the reflector 20 to a thickness of 8 mm or less, the depth of field for light entering the pupil 50 through the reflector 20 can be made almost infinite, that is, very deep.
  • the reflector 20 It is formed with a size smaller than the average pupil size of a person, that is, 8 mm or less. In this way, by forming the reflector 20 smaller than the average pupil size of a person, the light incident to the pupil through the reflector 20 Depth of Field is almost infinite, that is, the depth of field can be made very deep.
  • the depth of field refers to a range recognized as being in focus.
  • the range of the focal length of the virtual image correspondingly widens. Therefore, even if the user changes the focal length of the real world while gazing at the real world, it is recognized that the focus of the virtual image is always correct regardless of this. This can be regarded as a kind of pinhole effect.
  • the optical apparatus 100 for augmented reality as shown in FIG. 1 , even if the user changes the focal length of a real object, the user can always observe a clear virtual image.
  • the virtual video image light emitted from the image emitter 10 is transmitted to the reflector 20, and the reflector 20 reflects the virtual image image light toward the user's pupil 50.
  • the unit 20 should be arranged to have an appropriate inclination angle inside the optical means 30 in consideration of the positions of the image output unit 10 and the pupil 50.
  • Various methods may be used to arrange the reflector 20 at an appropriate inclination angle inside the optical means 30.
  • the present applicant proposes a pair of first optics having inclined corresponding surfaces.
  • a method has been developed for preparing an element and a second optical element, forming a reflector on a corresponding surface of the first optical element, and then fixing the first optical element and the second optical element in close contact. According to this, it is possible to prepare an optical element having a plurality of inclined surfaces and deposit the reflector using a 3D deposition mask corresponding to the reflector pattern.
  • This method can change the shape of the reflector from the mask tolerance due to the basic process limitation of inclined surface deposition. There was a problem that an error occurred in .
  • an object of the present invention is to form a reflector on an inclined surface of an optical device for augmented reality by a simple process while preventing a shape error of the reflector due to a mask tolerance in a conventional deposition process. Accordingly, an object of the present invention is to provide a method for manufacturing an optical device for augmented reality that is efficient compared to the prior art, reduces manufacturing cost, and is suitable for mass production, and an optical device for augmented reality manufactured thereby.
  • Another object of the present invention is to provide a method for manufacturing an optical device for augmented reality capable of adjusting the reflectance of a reflector when forming a reflector and an optical device for augmented reality manufactured thereby.
  • a method of manufacturing an optical device for augmented reality includes a first step of preparing a first plate having a plurality of inclined surfaces on an upper surface; a second step of performing patterning of the reflector by spraying a light reflector at positions where the reflector is to be formed on the plurality of inclined surfaces using a jet dispenser; A third step of curing the sprayed light reflecting material; and a fourth step of coupling the second plate to the first plate.
  • At least some of the plurality of inclined surfaces of the first plate member may have different heights.
  • top of the plurality of teeth forming the plurality of inclined surfaces on the upper surface of the first plate member may have different cross-sectional shapes.
  • the jet dispenser has at least one nozzle for injecting a light reflecting material at an end thereof, and the jet dispenser moves according to a control algorithm so that the nozzle of the jet dispenser moves on the inclined surface of the first plate material. By moving close to a specific location, the light reflecting material may be sprayed onto the inclined surface.
  • the light reflecting material may be sprayed onto the inclined surface while the plurality of nozzles simultaneously move close to the inclined surface of the first plate member.
  • the jet dispenser may form a reflector by injecting a light reflector in the form of a plurality of fine dots with respect to the entire area of one reflector.
  • the jet dispenser may form the reflector by calculating the size and number of fine dots constituting the reflector within the region of the reflector and spraying a light reflector according to the calculated size and number of fine dots.
  • the jet dispenser may form a reflector by spraying a light reflector in the form of fine dots with respect to a part of the entire area of the reflector.
  • the size of the fine dots may be 10 ⁇ m or less.
  • the jet dispenser is tilted at a predetermined angle with respect to the upper surface of the first plate, so that the nozzle provided in the jet dispenser can vertically approach the inclined surface.
  • the nozzle of the jet dispenser moves from the lower part to the upper part It is possible to perform reflector patterning while moving.
  • patterning of the reflectors may be performed by forming a plurality of reflectors on each inclined surface of the first plate member.
  • the light reflecting material may be sprayed onto the inclined surface so that the size of the reflecting portion is 4 mm or less.
  • the second plate member may be formed of the same material as the first plate member.
  • the refractive index of the second plate material may have a refractive index deviation of less than 0.01 from the refractive index of the first plate material.
  • the second plate material may be adhesively laminated to the first plate material using an adhesive.
  • the refractive index of the adhesive may have a refractive index deviation of less than 0.01 from the refractive indices of the first and second plate materials.
  • the light reflecting material may be a metal paste in which metal nanoparticles made of gold, silver, aluminum, or a mixture thereof are dispersed in a solvent.
  • a second plate material may be molded on the first plate material in a casting method using the first plate material as a mold.
  • an optical device for augmented reality manufactured by the method for manufacturing an optical device for augmented reality as described above is provided.
  • the reflector is formed on the inclined surface of the optical device for augmented reality with a simple process while preventing the shape error of the reflector due to the mask tolerance in the conventional deposition process, thereby reducing manufacturing cost and efficiency compared to the prior art. It is possible to provide a method for manufacturing an optical device for augmented reality suitable for mass production and an optical device for augmented reality manufactured thereby.
  • the present invention relates to a mask having a reflector pattern on an inclined surface of a conventional optical element to cover a mask having a reflector pattern and to prevent a mask tolerance occurring in the process of depositing a reflector or a shape error of a reflector due to a gap generated when a mask and a plate are combined. It is possible to improve the generation of foreign substances according to the problem, and it is possible to efficiently mass-produce optical devices for augmented reality according to the simplification of deposition formation and the improvement of yield, and there is an effect of significantly reducing manufacturing costs.
  • the reflector formed on the inclined surface is formed by a plurality of fine dots, and the size, number, spacing, etc. of the fine dots are adjusted to spray the light reflector in the form of fine dots only to a part of each reflector area, thereby reflecting the reflection. It has the effect of adjusting the negative reflectance.
  • the reflectance of the reflector may be 100% or close to it, but the method of the present invention, that is, by adjusting the size and spacing of the fine dots, the reflectance of the reflector can be adjusted without adjusting the reflectance of the light reflector itself, so that the optical device for augmented reality can be adjusted. Functions and usage environment can be extended.
  • FIG. 1 is a view showing a conventional optical device 100 for augmented reality.
  • FIG. 2 and 3 show an optical device 200 for augmented reality manufactured by the manufacturing method of an optical device for augmented reality according to the present invention, wherein FIG. 2 is a side view and FIG. 3 is a perspective view.
  • FIG. 4 and 5 show another embodiment of an optical device 300 for augmented reality manufactured by the manufacturing method of an optical device for augmented reality according to the present invention, and FIG. 4 is a perspective view and FIG. 5 is a front view.
  • FIG. 6 and 7 show another embodiment of an optical device 400 for augmented reality manufactured by the manufacturing method of an optical device for augmented reality according to the present invention, wherein FIG. 6 is a perspective view and FIG. 7 is a front view.
  • FIG. 8 is a flowchart illustrating the overall process of a manufacturing method of optical devices 200 to 400 for augmented reality according to the present invention.
  • FIG. 9 is a perspective view of the first plate member 30a.
  • FIG. 10 is a view showing a process of forming a reflector on the first plate member 30a.
  • FIG. 11 is a view showing a process of forming a reflector according to the present invention.
  • FIG. 12 is a view for explaining a process of forming a reflector using a jet dispenser having a plurality of nozzles.
  • FIG. 13 illustrates a plan view and a perspective view of the first plate 30a on which the reflector patterning is completed.
  • FIG 14 is a side view showing a state in which the second plate member 30b is coupled to the first plate member 30a.
  • FIG. 2 and 3 show an embodiment of an optical device 200 for augmented reality manufactured by the method of manufacturing an optical device for augmented reality according to the present invention
  • FIG. 2 is a side view
  • FIG. 3 is a perspective view.
  • the image output unit 10 is omitted in FIG. 3 .
  • the optical device 200 for augmented reality includes a reflection unit 20 and an optical unit 30 .
  • the image emitting unit 10 is means for emitting virtual image light corresponding to a virtual image, which is an image for augmented reality, toward the optical means 30, for example, by displaying a virtual image on a screen. It may be composed of a display device 11 such as a small LCD that emits virtual image image light through a screen and a collimator 12 that emits collimated light emitted from the virtual image image light emitted from the display device 11. Since the image output unit 10 itself is not a direct object of the present invention and is known in the prior art, a detailed description thereof will be omitted.
  • the image for augmented reality is displayed on the screen of the display device 11 of the image output unit 10 and transmitted to the user's pupil 50 through the reflection unit 20 and the optical unit 30. It means a virtual image, and may be a still image or a moving image.
  • the image for augmented reality is emitted as virtual image image light from the image emitter 10 and transmitted to the user's pupil 50 through the reflection unit 20 and the optical unit 30 to provide a virtual image to the user.
  • the user is provided with an augmented reality service by directly receiving image light emitted from a real object in the real world through the optical means 30 to the user's eyes.
  • the image emitting unit 10 is disposed at a position as shown in FIGS. 2 and 3. , This is an example, and when the total reflection structure is not used or two or more total reflections are used, the image output unit 10 is at an appropriate position for transferring virtual image image light to the reflection unit 20 through the optical unit 30. is placed on That is, the image emitting unit 10 is disposed at an appropriate position considering the position and angle of the reflection unit 20 and the position of the pupil 50 .
  • the reflector 20 is a means for reflecting and transmitting the virtual video image light emitted from the image output unit 10 toward the pupil 50 of the user's eye.
  • the reflection means 20 may be composed of a plurality of reflectors 21 to 29, and reference numeral 20 collectively refers to the plurality of reflectors 21 to 29.
  • the reflection unit 20 is buried inside the optical unit 30 .
  • the optical means 30 includes a first surface 31 from which at least a part of the virtual video image light and the real object image light reflected by the reflecting means 20 are emitted toward the user's pupil 50; It has a second surface 32 opposite to the first surface 31 and into which real object image light is incident. (32) is buried in the inner space between them.
  • the first surface 31 of the optical means 30 is a surface facing the user's pupil 50 when the user places the optical device 200 for augmented reality in front of the pupil 50, and the second Face 32 is the opposite side, that is, the side facing objects in the real world.
  • the virtual video image light emitted from the image emitting unit 10 is totally reflected once on the inner surface of the optical unit 30 and then transmitted to the reflecting unit 20.
  • the reflection means 20 includes a plurality of reflectors 21 to 29, and each of the reflectors 21 to 29 reflects incident virtual image light to the user. It is disposed with an appropriate inclination angle inside the optical means 30 in consideration of the positions of the image output unit 10 and the pupil 50 so as to transmit the image to the pupil 50 of the image.
  • each of the reflectors 21 to 29 is preferably formed to a size smaller than the size of a human pupil, that is, 8 mm or less, more preferably 4 mm or less, to obtain a pinhole effect by deepening the depth. do.
  • the depth of field for the light incident to the pupil through each of the reflectors 21 to 29 can be made close to infinity, that is, the depth of field can be made very deep. Therefore, even if the user changes the focal distance with respect to the real world while gazing at the real world, a pinhole effect may be generated to recognize that the focus of the virtual image is always correct regardless of this.
  • each of the reflectors 21 to 29 is defined as the maximum length between any two points on the edge boundary line of each reflector 21 to 29 .
  • each of the reflectors 21 to 29 is a projection of each reflector 21 to 29 on a plane perpendicular to the direction when the user looks at the front and including the center of the pupil 50. It can be the maximum length between any two points on the edge boundary.
  • each size of the reflectors 21 to 29 is larger than 0.3 mm it is desirable
  • each of the reflectors 21 to 29 is preferably formed to look circular when viewed from the pupil 50 .
  • At least two or more of the reflectors 26 to 29 and 20A among the reflectors 21 to 29 are more distant from the second surface 32 of the optical means 30 as the distance from the image output unit 10 increases. placed so as to come close to Except for the reflectors 26 to 29, the remaining reflectors 21 to 25 and 20B have the same distance as the second surface 32 of the optical means 30 regardless of the distance from the image output unit 10. are placed
  • the reflectors 21 to 29 are spaced apart from each other at a distance, and preferably, the reflectors 21 to 29 are disposed at a distance smaller than the size of the reflectors 21 to 29.
  • the optical means 30 is a means for transmitting at least a part of real object image light, which is image light emitted from the real object, in which the reflectors 21 to 29 are buried, toward the pupil 50 of the user's eye.
  • transmitting at least a part of the real object image light toward the pupil 50 means that the light transmittance of the real object image light through the optical means 30 does not necessarily have to be 100%.
  • the optical means 30 directly transmits the virtual video image light emitted from the image output unit 10 to the reflectors 21 to 29 through the inside of the optical means 30 or the optical means After total reflection is performed at least once on the inner surface of (30), it is transmitted to the reflection units (21 to 29).
  • the optical means 30 includes a first surface 31 from which at least a part of the virtual video image light and the real object image light reflected by the reflectors 21 to 29 are emitted toward the user's pupil; It has a second surface 32 opposite to the first surface 31 and into which real object image light is incident, and the reflectors 21 to 29 are formed between the first surface 31 and the second surface 32. landfill is placed in
  • the optical means 30 may be formed of a lens made of glass or plastic material or other synthetic resin material, and may have various refractive indices and transparency.
  • first surface 31 and the second surface 32 of the optical means 30 are shown as being parallel to each other, this is exemplary and may be configured not to be parallel to each other.
  • first surface 31 and the second surface 32 of the optical means 30 may be formed as a curved surface. That is, any one of the first surface 31 or the second surface 32 may be a curved surface, and both the first surface 31 and the second surface 32 may be formed as a curved surface.
  • FIGS. 4 and 5 show another embodiment of an optical device 300 for augmented reality manufactured by the manufacturing method of an optical device for augmented reality according to the present invention, and FIG. 4 is a perspective view and FIG. 5 is a front view.
  • the image output unit 10 is omitted in FIGS. 4 and 5 .
  • the optical device 300 for augmented reality of FIGS. 4 and 5 has the same basic configuration as the optical device 200 for augmented reality of the embodiment described with reference to FIGS. 2 and 3 , but includes a plurality of reflecting means 20 . characterized by Here, each of the reflectors 201 to 211 also includes a plurality of reflectors 21 to 29.
  • the plurality of reflectors 201 to 211 have the following arrangement structure. That is, as described above, when the optical means 30 is placed in front of the user's pupil 50, the front direction of the pupil 50 is referred to as the x-axis, and a vertical line from the image output unit 10 to the x-axis One of the line segments parallel to the x-axis and passing between the first surface 31 and the second surface 32 of the optical means 30 is referred to as the y-axis, and the line segment orthogonal to the x-axis and the y-axis is z When referred to as an axis, the reflectors 201 to 211 are spaced apart in parallel along the z-axis direction.
  • the reflectors 201 to 211 are arranged with equal intervals in parallel along the z-axis direction, but this is exemplary and does not necessarily have to have equal intervals.
  • intervals along the z-axis direction of the reflectors 201 to 211 shown in FIGS. 4 and 5 are illustratively shown for convenience of explanation, and may be arranged closer or farther than this in reality.
  • the intervals between the reflectors 201 to 211 may be less than or equal to the size of the reflectors 21 to 29 .
  • the number of reflectors 21 to 29 constituting the reflectors 201 to 211 need not be the same.
  • each of the reflecting units 201 to 211 is such that each of the reflecting units 21 to 29 constituting each reflecting unit 201 to 211 is a reflecting unit constituting the adjacent reflecting units 201 to 211 ( 21 to 29) may be arranged to be located along an imaginary straight line parallel to any one of the z-axis.
  • the plurality of reflectors 201 to 211 are viewed from the outside toward the plane perpendicular to the z-axis, they look the same as shown in FIG. 2 .
  • FIGS. 6 and 7 show another embodiment of an optical device 400 for augmented reality manufactured by the manufacturing method of an optical device for augmented reality according to the present invention, wherein FIG. 6 is a perspective view and FIG. 7 is a front view. However, it should be noted that the image output unit 10 is omitted in FIGS. 6 and 7 .
  • the optical device 400 for augmented reality of FIGS. 6 and 7 is basically the same as the embodiment of FIGS. 4 and 5 , but each reflector 21 to 28 constituting each reflector 201 to 211 or 21 to 29 are arranged so as not to be located along an imaginary straight line parallel to the z-axis with all the reflectors 21 to 28 or 21 to 29 constituting the adjacent reflection means 201 to 211. there is
  • each of the reflecting units 21 to 28 of the first reflecting unit 201 is equal to all the reflecting units 21 to 29 of the second reflecting unit 202. It can be seen that it is arranged so as not to be located along an imaginary straight line parallel to the field and the z-axis.
  • the reflectors 21 to 28 of the first reflector 201 and the reflectors 21 to 29 of the second reflector 202 are not aligned parallel to the z-axis but are staggered from each other.
  • the reflectors 201 to 211 are arranged with equal intervals in parallel along the z-axis direction, but this is exemplary and does not necessarily have to have equal intervals.
  • the intervals along the z-axis direction of the reflectors 201 to 211 shown in FIGS. 6 and 7 are shown by way of example for convenience of description, and may be arranged closer or farther than this in reality.
  • FIGS. 9 to 14 explain the manufacturing process of the optical devices 200 to 400 for augmented reality. It is a drawing for
  • FIG. 9 is a perspective view of the first plate member 30a
  • FIG. 10 illustrates a process of forming the reflector 16 on the first plate member 30a.
  • the first plate material 30a constituting the optical means 30 is prepared (S10).
  • the first plate member 30a is a lower base substrate of the optical means 30 .
  • the first plate member 30a may be formed of a resin material and may be molded by an injection or casting method as known in the art.
  • the first plate member 30a is preferably formed of a transparent material, but may be formed of a translucent or opaque material as needed.
  • a plurality of inclined surfaces 13a are formed on the upper surface of the first plate member 30a.
  • a plurality of inclined surfaces 13a are formed along the y-axis direction (see FIG. 9), and reflections of the optical devices 200 to 400 for augmented reality as described above with reference to FIGS. 2 to 7 are formed on these inclined surfaces 13a.
  • a reflecting part 16 Corresponding to the parts 21 to 29, a reflecting part 16 (see FIGS. 10 to 14) is formed.
  • the number of reflectors 21 to 29 in the y-axis direction described below in FIG. 9 is the number of reflectors 21 to 29 in the y-axis direction of the optical devices 200 to 400 for augmented reality of FIGS. 2 to 7 . 29), but it should be noted that this is for convenience of description.
  • each inclined surface 13a formed on the upper surface of the first plate 30a is sequentially increased in the right direction, but this is exemplary, and the height of the inclined surface 13a may be sequentially decreased. And, of course, they may all be the same. In addition, the height of the inclined surface 13a may have various other profiles depending on the arrangement of the reflectors 21 to 29 .
  • each inclined surface 13a of the first plate member 30a is formed by a plurality of upper teeth 13 having a sawtooth structure, and the plurality of upper teeth 13 may have different cross-sectional shapes.
  • the different shape of the cross-section of the tooth top 13 means that the height, shape, and length or angle of the inclined surface are different.
  • a jet dispenser 70 is used to generate light at a location where the reflector 16 is to be formed on the plurality of inclined surfaces 13a of the first plate 30a.
  • Reflector patterning is performed by spraying a reflector (S20).
  • the light reflecting material is a metal paste in which metal nanoparticles made of aluminum, gold, silver, or mixtures thereof are dispersed in a solvent.
  • the reflectance of the reflector 16 formed by spraying the light reflector may have a reflectance of 100% or a high reflectance close thereto, but preferably has a reflectance of 85 to 100%.
  • the jet dispenser 70 may include one or a plurality of nozzles 72 (nozzle), and the light reflecting material is injected from the tip of the nozzle 72 of the dispenser 70.
  • the jet dispenser 70 repeatedly performs an operation of jetting the light reflecting material to the position where the reflector 16 is to be formed at preset intervals on the inclined surface 13a using a control algorithm.
  • the jet dispenser 70 moves according to the control algorithm and the nozzle 72 moves close to a specific position on the inclined surface 13a, whereby the proximity movement ends At this point, a certain amount of light reflecting material is sprayed onto the inclined surface 13a to pattern the reflection part. At this time, the nozzle 72 moves close to the inclined surface 13a and a light reflecting material is sprayed from the tip of the nozzle 72 to form the reflecting part 16 .
  • the jet dispenser 70 may perform reflector patterning while moving to a different depth with respect to each inclined surface 13a where the plurality of reflectors 16 are formed.
  • the body of the jet dispenser 70 tilts at a predetermined angle with respect to the inclined surface 13a and moves.
  • the nozzle 72 can also move at a predetermined angle, so the nozzle ( 72) can approach in a vertical direction with respect to the inclined surface 13a.
  • the jet dispenser 70 may form the reflector 16 with one injection through the nozzle 72, but the reflector 16 is formed by repeating the fine injection process through a control algorithm You may.
  • the reflector 16 may be formed by a plurality of fine dots 15 (dot). That is, the jet dispenser 70 may configure one reflector 16 by spraying a light reflector in the form of a plurality of fine dots 15 to the entire area of the reflector 16 .
  • the jet dispenser 70 may control the size of the fine dots 15 by controlling the size of the nozzle 72 and the spray amount of the light reflecting material sprayed through the nozzle 72 .
  • the jet dispenser 70 first determines the size of the reflector 16, and calculates the size and number of fine dots 15 constituting one reflector 16 within the determined size of the reflector 16. there is.
  • the jet dispenser 70 sprays the light reflecting material according to the calculated size and number of the fine dots 15 and the location distribution in the reflector 16 to form a plurality of fine dots 15 and the position of the nozzle 72 By repeating the process of finely controlling , it is possible to form one reflector 16 .
  • the size of the fine dots 15 can be appropriately selected as needed, preferably 100 ⁇ m or less, more preferably 10 ⁇ m or less.
  • the jet dispenser 70 may form the reflector 16 by injecting the light reflector in the form of a plurality of fine dots 15 over the entire area of one reflector 16, but the reflector 16
  • the reflectance of the reflector 16 may be adjusted by forming the reflector 16 by spraying a light reflector in the form of fine dots 15 on a portion of the entire area of the reflector 16 . That is, it is possible to form the reflector 16 capable of adjusting the reflectance.
  • the position, size and number of the fine dots 15 and the interval between the fine dots 15 may be adaptively adjusted by the jet dispenser 70 as described above.
  • the jet dispenser 70 uses a light reflector having 100% reflectance
  • a reflector 16 having transmittance of 50% may be formed.
  • a method of spraying the fine dots 15 calculated for the entire area of the reflector 16 while skipping one by one may be used.
  • the reflectance of the reflector 16 can be variably adjusted through the spraying method of the jet dispenser 70 using a light reflector having a reflectance of 100%, and the light reflector itself forming the reflector 16 It should be noted that this does not imply adjusting the reflectance of 50%.
  • patterning of the reflector can be performed while the plurality of nozzles 72 simultaneously move close to the inclined surface 13a according to a control algorithm. there is.
  • the jet dispenser 70 performs patterning of the reflector while moving on the upper surface of the first plate 30a, but considering the viscosity or surface tension of the light reflecting material, as shown in (b) of FIG. After disposing the first plate 30a so that the inclined surface 13a of the first plate 30a faces downward, and placing the jet dispenser 70 below the first plate 30a, the nozzle 72 By moving upward from the reflector, patterning of the reflector may be performed in the opposite direction of gravity.
  • the jet dispenser 70 forms one reflector 16 on each inclined surface 13a along the y-axis direction, thereby patterning the reflector can be performed.
  • the jet dispenser 70 forms a plurality of reflectors 16 along the z-axis direction on each inclined surface 13a, thereby forming a reflector patterning can be performed.
  • the jet dispenser 70 may include a plurality of nozzles 72 disposed along the z-axis direction to form a plurality of reflectors 16 for each inclined surface 13a.
  • the jet dispenser 70 having a plurality of nozzles 72 disposed along the z-axis direction simultaneously patterns the reflector at a position corresponding to the first reflector 21 of each reflector 201 to 211. Then, the process of moving to the next inclined surface 13a and simultaneously performing patterning of the reflector at a position corresponding to the second reflector 22 may be performed up to a position corresponding to the last reflector 29 . At this time, the jet dispenser 70 moves in the y-axis direction by the distance of the inclined surface 13a, the length of the plurality of nozzles 72 is the same, and the x-axis moving distance of the nozzle 72 on each inclined surface 13a is different do.
  • patterning of the reflector is performed in the same manner as the optical device 300 for augmented reality as described above, but the jet dispenser 70 moves in the y-axis direction After moving to the next inclined surface 13a, patterning of the reflector may be performed in such a way that it moves at a predetermined interval in the z-axis direction.
  • the reflector 16 can be formed in a two-dimensional array structure at once without the need to move the jet dispenser 70 .
  • the reflector patterning method described above is exemplary, and various other methods may be used using other suitable control algorithms.
  • the size of the reflector 16 formed on the inclined surface 13a is preferably sprayed onto the inclined surface 13a such that the size of the reflecting part 16 is 4 mm or less, as described above.
  • a curing process for the reflector 16 may be a thermal curing process or an ultraviolet curing process.
  • FIG. 13 is a plan view and a perspective view of the first plate 30a in a state in which a curing process has been performed, and the first plate 30a corresponding to the optical device 400 for augmented reality of FIGS. 6 and 7 described above.
  • a perspective view is shown as an example.
  • a plurality of reflectors 16 are formed on the inclined surface 13a of the first plate member 30a.
  • the optical means 30 is formed by coupling the second plate material 30b to the first plate material 30a on which the reflector 16 is formed (S40).
  • the second plate 30b is an upper base substrate of the optical means 30 and has a shape that is engaged with the shape of the first plate 30a.
  • the second plate member 30b is preferably formed of the same material as the first plate member 30a and has the same refractive index.
  • the refractive index of the second plate member 30b may have a refractive index deviation of less than 0.01 from the refractive index of the first plate member 30a.
  • the second plate member 30b is also preferably formed of a transparent material, but may be formed of a translucent or opaque material as needed.
  • FIG 14 is a side view showing a state in which the second plate material 30b is coupled to the first plate material 30a. It can be seen that the optical means 30 in which the reflector 16 is formed can be manufactured.
  • the second plate member 30b may be closely coupled to the first plate member 30a using the adhesive 17 .
  • the refractive index of the adhesive 17 preferably has a refractive index deviation of less than 0.01 from the refractive index of the first plate material 30a and the second plate material 30b.
  • the first plate material 30a itself is used as a forming mold to cast the material of the second plate material 30b on the first plate material 30a.
  • the optical means 30 can also be formed by molding the two-plate material 30b.
  • the optical device 400 for augmented reality of FIGS. 6 and 7 is shown as an example, but the present invention can be applied to the optical devices 200 and 300 for augmented reality of FIGS. 2 to 5 as it is. is of course
  • the present invention can be applied to various other types of optical devices for augmented reality in addition to the optical devices 200 to 400 for augmented reality of FIGS. 2 to 7 .

Abstract

The present invention provides: a method for manufacturing an optical device for augmented reality, and an optical device for augmented reality manufactured thereby, the method comprising: a first step of preparing a first plate having a plurality of inclined surfaces on the upper surface thereof; a second step of using a jet dispenser so as to spray a light-reflecting material at locations at which reflecting parts are to be formed on the plurality of inclined surfaces, thereby patterning the reflecting parts; a third step of curing the sprayed light-reflecting material; and a fourth step of coupling a second plate to the first plate.

Description

증강 현실용 광학 장치의 제조 방법 및 이에 의해 제조된 증강 현실용 광학 장치Manufacturing method of optical device for augmented reality and optical device for augmented reality manufactured thereby
본 발명은 증강 현실용 광학 장치의 제조 방법 및 이에 의해 제조된 증강 현실용 광학 장치에 관한 것으로서, 보다 상세하게는 종래 증착 과정에서 마스크 공차에 기인한 반사부의 형상 오차를 방지하면서 증강 현실용 광학 장치의 경사면에 효율적으로 반사부를 형성할 수 있는 증강 현실용 광학 장치의 제조 방법 및 이에 의해 제조된 증강 현실용 광학 장치에 관한 것이다. The present invention relates to a method for manufacturing an optical device for augmented reality and an optical device for augmented reality manufactured thereby, and more particularly, to an optical device for augmented reality while preventing a shape error of a reflector due to a mask tolerance in a conventional deposition process. It relates to a manufacturing method of an optical device for augmented reality capable of efficiently forming a reflector on an inclined surface of an optical device for augmented reality and an optical device for augmented reality manufactured thereby.
증강 현실(AR, Augmented Reality)이란 주지된 바와 같이, 현실 세계의 실제 영상에 컴퓨터 등에 의해 제공되는 가상의 영상이나 이미지를 중첩시켜 제공하는 것을 의미한다.As is well known, augmented reality (AR) means superimposing a virtual image or image provided by a computer or the like on an actual image of the real world and providing it.
이러한 증강 현실을 구현하기 위해서는, 컴퓨터와 같은 디바이스에 의해 생성되는 가상 영상을 현실 세계의 영상에 겹쳐서 제공할 수 있도록 하는 광학계를 필요로 한다. 이러한 광학계로서 HMD(Head Mounted Display)나 안경형 증강 현실 장치 등에 적용되는 가상 영상을 반사 또는 굴절시키는 프리즘 등과 같은 광학 수단을 사용하는 기술이 알려져 있다.In order to implement such augmented reality, an optical system capable of overlapping a virtual image generated by a device such as a computer with an image of the real world is required. As such an optical system, a technology using an optical means such as a prism that reflects or refracts a virtual image applied to a Head Mounted Display (HMD) or a glasses-type augmented reality device is known.
그러나, 이러한 종래의 광학계를 이용한 장치들은 그 구성이 복잡하여 무게와 부피가 상당하므로 사용자가 착용하기에 불편함이 있고 제조 공정 또한 복잡하므로 제조 비용이 높다는 문제가 있다.However, devices using such a conventional optical system have a problem in that the structure is complicated and the weight and volume are considerable, so it is inconvenient for users to wear them, and the manufacturing process is also complicated, so the manufacturing cost is high.
또한, 종래의 장치들은 사용자가 현실 세계를 응시할 때 초점 거리를 변경하는 경우 가상 영상의 초점이 맞지 않게 된다는 한계가 있다. 이를 해결하기 위하여 가상 영상에 대한 초점 거리를 조절할 수 있는 프리즘과 같은 구성을 이용하거나 초점 거리의 변경에 따라 가변형 초점 렌즈를 전기적으로 제어하는 등의 기술이 제안되어 있다. 그러나 이러한 기술 또한 초점 거리를 조절하기 위하여 사용자가 별도의 조작을 해야 하거나 초점 거리의 제어를 위한 별도의 프로세서 등과 같은 하드웨어 및 소프트웨어를 필요로 한다는 점에서 문제가 있다.In addition, conventional devices have a limitation in that the virtual image is out of focus when the user changes the focal length when gazing at the real world. In order to solve this problem, technologies such as using a prism-like structure capable of adjusting the focal length of a virtual image or electrically controlling a variable focus lens according to a change in focal length have been proposed. However, this technique also has a problem in that a user must perform a separate operation to adjust the focal length or hardware and software such as a separate processor for controlling the focal length are required.
이와 같은 종래 기술의 문제점을 해결하기 위하여, 본 출원인은 사람의 동공보다 작은 크기의 반사부를 이용하여 가상 영상을 동공을 통해 망막에 투영함으로써 증강 현실을 구현할 수 있는 장치를 개발한 바 있다.In order to solve the problems of the prior art, the present applicant has developed a device capable of implementing augmented reality by projecting a virtual image onto the retina through a pupil of a reflector having a size smaller than that of a human pupil.
도 1은 본 출원인에 의한 증강 현실용 광학 장치(100)의 측면도를 나타낸 것이다.1 shows a side view of an optical device 100 for augmented reality by the present applicant.
도 1의 증강 현실용 광학 장치(100)는, 화상 출사부(10), 반사부(20) 및 광학 수단(30)을 포함한다.The optical device 100 for augmented reality of FIG. 1 includes an image output unit 10 , a reflector 20 and an optical means 30 .
화상 출사부(10)는 가상 영상 화상광을 출사하는 수단으로서, 예컨대 가상 영상을 화면에 표시하고 표시된 가상 영상에 상응하는 가상 영상 화상광을 출사하는 마이크로 디스플레이 장치와 마이크로 디스플레이 장치로부터 출사하는 화상광을 평행광으로 시준하기 위한 콜리메이터(collimator)를 구비할 수 있다The image emitter 10 is means for emitting virtual video image light, for example, a micro display device that displays a virtual image on a screen and emits virtual image image light corresponding to the displayed virtual image, and image light emitted from the micro display device. may be provided with a collimator for collimating the
반사부(20)는 화상 출사부(10)로부터 출사된 가상 영상 화상광을 반사시켜 사용자의 동공(50)을 향해 전달함으로써, 사용자에게 가상 영상을 제공하는 수단이다. 반사부(20)는, 화상 출사부(10)로부터 출사되는 가상 영상 화상광을 동공(50)으로 반사시킬 수 있도록 화상 출사부(10)와 동공(50) 사이에서 적절한 각도를 가지고 광학 수단(30) 내부에 매립되어 배치된다.The reflector 20 is a means for providing a virtual image to the user by reflecting the virtual image image light emitted from the image emitter 10 and passing it toward the user's pupil 50 . The reflecting unit 20 has an appropriate angle between the image emitting unit 10 and the pupil 50 so as to reflect the virtual video image light emitted from the image emitting unit 10 to the pupil 50, and has an optical means ( 30) It is buried and placed inside.
광학 수단(30)은 실제 세계의 사물로부터 출사된 화상광인 실제 사물 화상광을 투과시키는 한편 반사부(20)에서 반사된 가상 영상 화상광을 동공(50)으로 출사하는 기능을 수행한다.The optical unit 30 transmits real object image light, which is image light emitted from objects in the real world, and emits virtual image image light reflected by the reflector 20 to the pupil 50.
광학 수단(30)의 내부에는 반사부(20)가 매립 배치되어 있다. 이러한 광학 수단(30)은 예컨대 안경 렌즈와 같은 투명 재질로 형성될 수 있으며, 프레임부(40)에 의해 고정된다.Inside the optical means 30, the reflector 20 is buried and disposed. The optical means 30 may be formed of a transparent material such as, for example, a spectacle lens, and is fixed by the frame part 40 .
프레임부(40)는 화상 출사부(10)와 광학 수단(30)을 고정 및 지지하는 수단으로서, 예컨대 안경 형태로 형성될 수 있다.The frame unit 40 is a unit for fixing and supporting the image output unit 10 and the optical unit 30, and may be formed in the form of glasses, for example.
도 1의 반사부(20)는 사람의 동공보다 작은 크기로 형성된다. 사람의 일반적인 동공의 크기는 4~8mm 정도인 것으로 알려져 있으므로, 반사부(20)는 8mm 이하로 형성하는 것이 바람직하다. 반사부(20)를 8mm 이하로 형성함으로써, 반사부(20)를 통해 동공(50)으로 입사하는 빛에 대한 심도(Depth of Field)를 거의 무한대에 가깝게 즉, 매우 깊게 할 수 있다.The reflector 20 of FIG. 1 is formed to have a smaller size than a human pupil. Since it is known that the size of a typical human pupil is about 4 to 8 mm, it is preferable to form the reflector 20 to be 8 mm or less. By forming the reflector 20 to a thickness of 8 mm or less, the depth of field for light entering the pupil 50 through the reflector 20 can be made almost infinite, that is, very deep.
사람의 평균적인 동공 크기보다 작은 크기 즉, 8mm 이하로 형성되어 있는데, 이와 같이 반사부(20)를 사람의 평균적인 동공 크기보다 작게 형성함으로써 반사부(20)를 통해 동공으로 입사하는 빛에 대한 심도(Depth of Field)를 거의 무한대에 가깝게 즉, 심도를 매우 깊게 할 수 있다.It is formed with a size smaller than the average pupil size of a person, that is, 8 mm or less. In this way, by forming the reflector 20 smaller than the average pupil size of a person, the light incident to the pupil through the reflector 20 Depth of Field is almost infinite, that is, the depth of field can be made very deep.
여기서, 심도(Depth of Field)라 함은, 초점이 맞는 것으로 인식되는 범위를 말하는데, 심도가 깊어지면 그에 상응하여 가상 영상에 대한 초점 거리의 범위도 넓어진다. 따라서 사용자가 실제 세계를 응시하면서 실제 세계에 대한 초점 거리를 변경하더라도 이와 관계없이 가상 영상의 초점이 항상 맞는 것으로 인식하게 된다. 이는 일종의 핀홀 효과(pinhole effect)라고 볼 수 있다. Here, the depth of field refers to a range recognized as being in focus. As the depth of field increases, the range of the focal length of the virtual image correspondingly widens. Therefore, even if the user changes the focal length of the real world while gazing at the real world, it is recognized that the focus of the virtual image is always correct regardless of this. This can be regarded as a kind of pinhole effect.
도 1에 나타낸 바와 같은 증강 현실용 광학 장치(100)는, 사용자가 실제 사물에 대한 초점 거리를 변경하더라도 사용자는 항상 선명한 가상 영상을 관찰할 수 있다.In the optical apparatus 100 for augmented reality as shown in FIG. 1 , even if the user changes the focal length of a real object, the user can always observe a clear virtual image.
이와 같이, 화상 출사부(10)로부터 출사된 가상 영상 화상광은 반사부(20)로 전달되고, 반사부(20)는 사용자의 동공(50)을 향해 가상 영상 화상광을 반사시켜야 하므로, 반사부(20)는 화상 출사부(10)와 동공(50)의 위치를 고려하여 광학 수단(30)의 내부에서 적절한 경사각을 가지도록 배치되어야 한다In this way, the virtual video image light emitted from the image emitter 10 is transmitted to the reflector 20, and the reflector 20 reflects the virtual image image light toward the user's pupil 50. The unit 20 should be arranged to have an appropriate inclination angle inside the optical means 30 in consideration of the positions of the image output unit 10 and the pupil 50.
광학 수단(30) 내부에 적절한 경사각으로 반사부(20)를 배치하기 위해 다양한 방법이 사용될 수 있는데, 본 출원인은 하기 선행 기술 문헌에 기재된 바와 같이, 경사진 대응면을 가진 한 쌍의 제1 광학 소자와 제2 광학 소자를 준비하여 제1 광학 소자의 대응면에 반사부를 형성한 후 제1 광학 소자와 제2 광학 소자를 밀착 고정시키는 방법을 개발한 바 있다. 이에 의하면, 복수의 경사면을 가진 광학 소자를 준비하고 반사부 패턴에 상응하는 3D 증착 마스크를 이용하여 반사부를 증착할 수 있는데, 이러한 방법은 경사면 증착이라는 기본적인 공정상의 제약으로 인해 마스크 공차로부터 반사부 형상에 오차가 발생하게 되는 문제점이 있었다. Various methods may be used to arrange the reflector 20 at an appropriate inclination angle inside the optical means 30. As described in the prior art document below, the present applicant proposes a pair of first optics having inclined corresponding surfaces. A method has been developed for preparing an element and a second optical element, forming a reflector on a corresponding surface of the first optical element, and then fixing the first optical element and the second optical element in close contact. According to this, it is possible to prepare an optical element having a plurality of inclined surfaces and deposit the reflector using a 3D deposition mask corresponding to the reflector pattern. This method can change the shape of the reflector from the mask tolerance due to the basic process limitation of inclined surface deposition. There was a problem that an error occurred in .
또한, 증착 공정 간 마스크 변형 문제, 기계 가공의 어려움(홀 가공), 증착면과 병합되는 반대 형상 사출품의 필요 등과 같이 반사부 형성에 있어서 고비용 및 저생산성의 문제점이 존재하고 있다. In addition, there are problems of high cost and low productivity in forming the reflector, such as mask deformation between deposition processes, difficulty in machining (hole processing), and the need for an injection molding product of the opposite shape merged with the deposition surface.
[선행기술문헌][Prior art literature]
한국공개특허공보 제10-2019-0063442호(2019.06.07.공개)Korean Patent Publication No. 10-2019-0063442 (published on June 7, 2019)
본 발명은 상기와 같은 문제점을 해결하기 위해 창안된 것으로서, 본 발명의 목적은 종래 증착 과정에서 마스크 공차에 기인한 반사부의 형상 오차를 방지하면서 증강 현실용 광학 장치의 경사면에 간단한 공정으로 반사부를 형성함으로써 종래 기술에 비하여 효율적이고 제조 원가를 절감하고 양산에 적합한 증강 현실용 광학 장치의 제조 방법 및 이에 의해 제조된 증강 현실용 광학 장치를 제공하는 것이다.The present invention has been devised to solve the above problems, and an object of the present invention is to form a reflector on an inclined surface of an optical device for augmented reality by a simple process while preventing a shape error of the reflector due to a mask tolerance in a conventional deposition process. Accordingly, an object of the present invention is to provide a method for manufacturing an optical device for augmented reality that is efficient compared to the prior art, reduces manufacturing cost, and is suitable for mass production, and an optical device for augmented reality manufactured thereby.
또한, 본 발명의 다른 목적은 반사부를 형성할 때 반사부의 반사율을 조절할 수 있는 증강 현실용 광학 장치의 제조 방법 및 이에 의해 제조된 증강 현실용 광학 장치를 제공하는 것이다.Another object of the present invention is to provide a method for manufacturing an optical device for augmented reality capable of adjusting the reflectance of a reflector when forming a reflector and an optical device for augmented reality manufactured thereby.
이를 위하여, 본 발명에 따른 증강 현실용 광학 장치의 제조 방법은, 증강 현실용 광학 장치의 제조 방법으로서, 상면에 복수 개의 경사면을 가진 제1 판재를 준비하는 제1 단계; 젯 디스펜서(jet dispenser)를 이용해 상기 복수 개의 경사면에서 반사부가 형성될 위치에 광반사재를 분사시켜 반사부 패터닝을 수행하는 제2 단계; 상기 분사된 광반사재를 경화시키는 제3 단계; 및 상기 제1 판재에 제2 판재를 결합시키는 제4 단계를 포함하는 증강 현실용 광학 장치의 제조 방법을 제공한다.To this end, a method of manufacturing an optical device for augmented reality according to the present invention includes a first step of preparing a first plate having a plurality of inclined surfaces on an upper surface; a second step of performing patterning of the reflector by spraying a light reflector at positions where the reflector is to be formed on the plurality of inclined surfaces using a jet dispenser; A third step of curing the sprayed light reflecting material; and a fourth step of coupling the second plate to the first plate.
여기에서, 상기 제1 판재의 복수 개의 경사면 중 적어도 일부는 그 높이가 서로 다를 수도 있다.Here, at least some of the plurality of inclined surfaces of the first plate member may have different heights.
또한, 상기 제1 판재의 상면에서 상기 복수 개의 경사면을 형성하는 복수 개의 톱니 상부는 그 단면의 형태가 서로 다를 수도 있다.In addition, the top of the plurality of teeth forming the plurality of inclined surfaces on the upper surface of the first plate member may have different cross-sectional shapes.
또한, 상기 제2 단계에서, 상기 젯 디스펜서는 그 단부에 광반사재를 분사하는 적어도 하나 이상의 노즐을 구비하고, 상기 젯 디스펜서는 제어 알고리즘에 의해 이동하면서 젯 디스펜서의 노즐이 상기 제1 판재의 경사면의 특정 위치로 근접 이동함으로써 광반사재가 경사면에 분사될 수 있다.In addition, in the second step, the jet dispenser has at least one nozzle for injecting a light reflecting material at an end thereof, and the jet dispenser moves according to a control algorithm so that the nozzle of the jet dispenser moves on the inclined surface of the first plate material. By moving close to a specific location, the light reflecting material may be sprayed onto the inclined surface.
또한, 상기 노즐이 복수 개인 경우, 복수 개의 노즐이 동시에 상기 제1 판재의 경사면으로 근접 이동하면서 광반사재가 경사면에 분사될 수도 있다.In addition, when there are a plurality of nozzles, the light reflecting material may be sprayed onto the inclined surface while the plurality of nozzles simultaneously move close to the inclined surface of the first plate member.
또한, 젯 디스펜서가 하나의 반사부의 전체 영역에 대해 복수 개의 미세 도트 형태로 광반사재를 분사함으로써 반사부를 형성할 수 있다.In addition, the jet dispenser may form a reflector by injecting a light reflector in the form of a plurality of fine dots with respect to the entire area of one reflector.
또한, 상기 젯 디스펜서는 반사부의 영역 내에서 반사부를 구성할 미세 도트의 크기와 갯수를 산출하고 산출된 미세 도트의 크기 및 갯수에 따라 광반사재를 분사함으로써 반사부를 형성할 수 있다.In addition, the jet dispenser may form the reflector by calculating the size and number of fine dots constituting the reflector within the region of the reflector and spraying a light reflector according to the calculated size and number of fine dots.
또한, 상기 젯 디스펜서는 상기 반사부의 전체 영역 중 일부에 대해서 미세 도트 형태의 광반사재를 분사함으로써 반사부를 형성할 수도 있다.In addition, the jet dispenser may form a reflector by spraying a light reflector in the form of fine dots with respect to a part of the entire area of the reflector.
또한, 상기 미세 도트의 크기는 10㎛ 이하일 수도 있다.In addition, the size of the fine dots may be 10 μm or less.
또한, 상기 제2 단계에서, 상기 젯 디스펜서가 상기 제1 판재의 상면에 대해 일정 각도로 기울어져 이동하여 상기 젯 디스펜서에 구비된 노즐이 상기 경사면에 수직으로 근접 이동할 수 있다.In addition, in the second step, the jet dispenser is tilted at a predetermined angle with respect to the upper surface of the first plate, so that the nozzle provided in the jet dispenser can vertically approach the inclined surface.
또한, 상기 제2 단계는, 상기 제1 판재의 경사면이 하부를 향하게 상기 제1 판재를 배치하고, 상기 젯 디스펜서를 상기 제1 판재의 하부에 배치한 후, 상기 젯 디스펜서의 노즐이 하부에서 상부로 이동하면서 반사부 패터닝을 수행할 수 있다.In addition, in the second step, after disposing the first plate material so that the inclined surface of the first plate material faces downward, and disposing the jet dispenser below the first plate material, the nozzle of the jet dispenser moves from the lower part to the upper part It is possible to perform reflector patterning while moving.
또한, 상기 제2 단계에서, 상기 제1 판재의 각각의 경사면에 복수 개의 반사부를 형성함으로써 반사부 패터닝을 수행할 수 있다.In the second step, patterning of the reflectors may be performed by forming a plurality of reflectors on each inclined surface of the first plate member.
또한, 상기 제2 단계에서, 상기 반사부의 크기가 4mm 이하가 되도록 광반사재가 경사면에 분사될 수 있다.In addition, in the second step, the light reflecting material may be sprayed onto the inclined surface so that the size of the reflecting portion is 4 mm or less.
또한, 상기 제2 판재는 제1 판재와 동일한 재질로 형성될 수 있다.In addition, the second plate member may be formed of the same material as the first plate member.
또한, 상기 제2 판재의 굴절률은 상기 제1 판재의 굴절률과 0.01 이내의 굴절률 편차를 가질 수 있다.In addition, the refractive index of the second plate material may have a refractive index deviation of less than 0.01 from the refractive index of the first plate material.
또한, 상기 제4 단계는, 상기 제1 판재에 접착제를 이용해 제2 판재를 접착 적층할 수 있다.In the fourth step, the second plate material may be adhesively laminated to the first plate material using an adhesive.
또한, 상기 접착제의 굴절률은 상기 제1 판재 및 제2 판재의 굴절률과 0.01 이내의 굴절률 편차를 가질 수 있다.In addition, the refractive index of the adhesive may have a refractive index deviation of less than 0.01 from the refractive indices of the first and second plate materials.
또한, 상기 광반사재는 금, 은, 알루미늄 또는 이들의 혼합물로 이루어진 금속 나노입자를 용매에 분산시킨 금속 페이스트일 수 있다.In addition, the light reflecting material may be a metal paste in which metal nanoparticles made of gold, silver, aluminum, or a mixture thereof are dispersed in a solvent.
또한, 상기 제4 단계는, 상기 제1 판재를 성형틀로 사용해 주조 방식으로 상기 제1 판재 위에 제2 판재를 성형할 수 있다.In the fourth step, a second plate material may be molded on the first plate material in a casting method using the first plate material as a mold.
본 발명의 다른 측면에 의하면, 상기한 바와 같은 증강 현실용 광학 장치의 제조 방법에 의해 제조된 증강 현실용 광학 장치를 제공한다.According to another aspect of the present invention, an optical device for augmented reality manufactured by the method for manufacturing an optical device for augmented reality as described above is provided.
상술한 바와 같이, 본 발명에 의하면 종래 증착 과정에서 마스크 공차에 기인한 반사부의 형상 오차를 방지하면서 증강 현실용 광학 장치의 경사면에 간단한 공정으로 반사부를 형성함으로써 종래 기술에 비하여 효율적이고 제조 원가를 절감하고 양산에 적합한 증강 현실용 광학 장치의 제조 방법 및 이에 의해 제조된 증강 현실용 광학 장치를 제공할 수 있다.As described above, according to the present invention, the reflector is formed on the inclined surface of the optical device for augmented reality with a simple process while preventing the shape error of the reflector due to the mask tolerance in the conventional deposition process, thereby reducing manufacturing cost and efficiency compared to the prior art. It is possible to provide a method for manufacturing an optical device for augmented reality suitable for mass production and an optical device for augmented reality manufactured thereby.
특히, 본 발명은 종래 광학소자의 경사면 위에 반사부 패턴을 가진 마스크를 씌어 반사부를 증착하는 과정에서 발생하는 마스크 공차 또는 마스크와 판재의 결합 시 발생하는 갭(gap)에 의한 반사부의 형상 오차 및 장비 문제에 따른 이물질 발생 현상을 개선할 수 있으며, 증착 형성 간소화 및 수율 향상에 따라 증강 현실용 광학 장치를 효율적으로 양산할 수 있으며 제조 원가를 대폭적으로 절감할 수 있는 효과가 있다. In particular, the present invention relates to a mask having a reflector pattern on an inclined surface of a conventional optical element to cover a mask having a reflector pattern and to prevent a mask tolerance occurring in the process of depositing a reflector or a shape error of a reflector due to a gap generated when a mask and a plate are combined. It is possible to improve the generation of foreign substances according to the problem, and it is possible to efficiently mass-produce optical devices for augmented reality according to the simplification of deposition formation and the improvement of yield, and there is an effect of significantly reducing manufacturing costs.
또한 본 발명은 경사면에 형성되는 반사부를 복수 개의 미세 도트에 의해 형성하되, 미세 도트의 크기, 개수, 간격 등을 조절하여 각각의 반사부 영역 중 일부에 대해서만 미세 도트 형태의 광반사재를 분사함으로써 반사부의 반사율을 조절할 수 있는 효과가 있다. In addition, in the present invention, the reflector formed on the inclined surface is formed by a plurality of fine dots, and the size, number, spacing, etc. of the fine dots are adjusted to spray the light reflector in the form of fine dots only to a part of each reflector area, thereby reflecting the reflection. It has the effect of adjusting the negative reflectance.
일반적으로 반사부의 반사율이 100%이거나 그에 가까울 수 있으나, 본 발명의 방법, 즉 미세 도트의 크기 및 간격을 조정하게 되면 광반사재 자체의 반사율 조정 없이도 반사부의 반사율 조절이 가능함으로 증강 현실용 광학 장치의 기능 및 사용 환경을 확장할 수 있다. In general, the reflectance of the reflector may be 100% or close to it, but the method of the present invention, that is, by adjusting the size and spacing of the fine dots, the reflectance of the reflector can be adjusted without adjusting the reflectance of the light reflector itself, so that the optical device for augmented reality can be adjusted. Functions and usage environment can be extended.
도 1은 종래 증강 현실용 광학 장치(100)를 나타낸 도면이다.1 is a view showing a conventional optical device 100 for augmented reality.
도 2 및 도 3은 본 발명에 따른 증강 현실용 광학 장치의 제조 방법에 의해 제작된 증강 현실용 광학 장치(200)를 나타낸 것으로서, 도 2는 측면도이고 도 3은 사시도이다.2 and 3 show an optical device 200 for augmented reality manufactured by the manufacturing method of an optical device for augmented reality according to the present invention, wherein FIG. 2 is a side view and FIG. 3 is a perspective view.
도 4 및 도 5는 본 발명에 따른 증강 현실용 광학 장치의 제조 방법에 의해 제작된 증강 현실용 광학 장치(300)의 다른 실시예를 나타낸 것으로서, 도 4는 사시도이고 도 5는 정면도이다.4 and 5 show another embodiment of an optical device 300 for augmented reality manufactured by the manufacturing method of an optical device for augmented reality according to the present invention, and FIG. 4 is a perspective view and FIG. 5 is a front view.
도 6 및 도 7은 본 발명에 따른 증강 현실용 광학 장치의 제조 방법에 의해 제작된 증강 현실용 광학 장치(400)의 다른 실시예를 나타낸 것으로서, 도 6은 사시도이고 도 7은 정면도이다.6 and 7 show another embodiment of an optical device 400 for augmented reality manufactured by the manufacturing method of an optical device for augmented reality according to the present invention, wherein FIG. 6 is a perspective view and FIG. 7 is a front view.
도 8은 본 발명에 따른 증강 현실용 광학 장치(200~400)의 제조 방법의 전체적인 과정을 나타낸 흐름도이다.8 is a flowchart illustrating the overall process of a manufacturing method of optical devices 200 to 400 for augmented reality according to the present invention.
도 9는 제1 판재(30a)의 사시도를 나타낸 것이다.9 is a perspective view of the first plate member 30a.
도 10은 제1 판재(30a)에 반사부를 형성하는 과정을 나타낸 도면이다. 10 is a view showing a process of forming a reflector on the first plate member 30a.
도 11은 본 발명에 따른 반사부를 형성하는 과정을 나타낸 도면이다.11 is a view showing a process of forming a reflector according to the present invention.
도 12는 복수 개의 노즐을 구비한 젯 디스펜서를 이용해 반사부를 형성하는 과정을 설명하기 위한 도면이다.12 is a view for explaining a process of forming a reflector using a jet dispenser having a plurality of nozzles.
도 13은 반사부 패터닝이 완료된 제1 판재(30a)의 평면도 및 사시도를 나타낸 것이다.13 illustrates a plan view and a perspective view of the first plate 30a on which the reflector patterning is completed.
도 14는 제1 판재(30a)에 제2 판재(30b)를 결합시킨 상태를 나타낸 측면도이다.14 is a side view showing a state in which the second plate member 30b is coupled to the first plate member 30a.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시예를 상세히 설명한다. 각 도면에서 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. Hereinafter, embodiments disclosed herein will be described in detail with reference to the accompanying drawings. Similar components in each drawing are assigned the same reference numerals, and duplicate descriptions thereof will be omitted.
본 명세서에 개시된 실시예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. In describing the embodiments disclosed in this specification, if it is determined that a detailed description of a related known technology may obscure the gist of the embodiment disclosed in this specification, the detailed description thereof will be omitted.
첨부된 도면은 본 명세서에 개시된 실시예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.The accompanying drawings are only for easy understanding of the embodiments disclosed in this specification, and the technical idea disclosed in this specification is not limited by the accompanying drawings, and all changes and equivalents included in the spirit and technical scope of the present invention to substitutes.
도 2 및 도 3은 본 발명에 따른 증강 현실용 광학 장치의 제조 방법에 의해 제작된 증강 현실용 광학 장치(200)의 일실시예를 나타낸 것으로서, 도 2는 측면도이고 도 3은 사시도이다. 다만, 도 3에서는 화상 출사부(10)는 생략하여 나타내었음을 유의해야 한다.2 and 3 show an embodiment of an optical device 200 for augmented reality manufactured by the method of manufacturing an optical device for augmented reality according to the present invention, and FIG. 2 is a side view and FIG. 3 is a perspective view. However, it should be noted that the image output unit 10 is omitted in FIG. 3 .
도 2 및 도 3을 참조하면, 본 실시예에 의한 증강 현실용 광학 장치(200)는 반사 수단(20) 및 광학 수단(30)을 포함한다.Referring to FIGS. 2 and 3 , the optical device 200 for augmented reality according to the present embodiment includes a reflection unit 20 and an optical unit 30 .
화상 출사부(10)는, 증강 현실용 화상인 가상 영상에 상응하는 화상광인 가상 영상 화상광(virtual image light)을 광학 수단(30)을 향해 출사하는 수단으로서, 예컨대 가상 영상을 화면에 표시함으로써 화면을 통해 가상 영상 화상광을 출사하는 소형 LCD와 같은 디스플레이 장치(11)와 디스플레이 장치(11)에서 출사되는 가상 영상 화상광을 시준한 광으로 출사하는 콜리메이터(12)로 구성될 수 있다. 이러한 화상 출사부(10) 자체는 본 발명의 직접적인 목적이 아니며 종래 기술에 의해 알려져 있는 것이므로 여기에서는 상세 설명은 생략한다.The image emitting unit 10 is means for emitting virtual image light corresponding to a virtual image, which is an image for augmented reality, toward the optical means 30, for example, by displaying a virtual image on a screen. It may be composed of a display device 11 such as a small LCD that emits virtual image image light through a screen and a collimator 12 that emits collimated light emitted from the virtual image image light emitted from the display device 11. Since the image output unit 10 itself is not a direct object of the present invention and is known in the prior art, a detailed description thereof will be omitted.
여기에서, 증강 현실용 화상이라 함은, 화상 출사부(10)의 디스플레이 장치(11)의 화면에 표시되어 반사 수단(20) 및 광학 수단(30)을 통해 사용자의 동공(50)으로 전달되는 가상 영상(virtual image)을 의미하며, 이미지(still image) 또는 동영상(moving image)일 수 있다.Here, the image for augmented reality is displayed on the screen of the display device 11 of the image output unit 10 and transmitted to the user's pupil 50 through the reflection unit 20 and the optical unit 30. It means a virtual image, and may be a still image or a moving image.
이러한 증강 현실용 화상은 화상 출사부(10)에서 가상 영상 화상광으로서 출사되어, 반사 수단(20) 및 광학 수단(30)을 통해 사용자의 동공(50)으로 전달됨으로써 사용자에게 가상 영상을 제공하게 되고, 이와 동시에 사용자는 광학 수단(30)을 통해 실제 세계에 존재하는 실제 사물로부터 출사되는 화상광인 실제 사물 화상광을 눈으로 직접 전달받음으로써 증강 현실 서비스를 제공받게 된다.The image for augmented reality is emitted as virtual image image light from the image emitter 10 and transmitted to the user's pupil 50 through the reflection unit 20 and the optical unit 30 to provide a virtual image to the user. At the same time, the user is provided with an augmented reality service by directly receiving image light emitted from a real object in the real world through the optical means 30 to the user's eyes.
여기에서, 가상 영상 화상광은 광학 수단(30)의 내면에서 1회 전반사되어 반사 수단(20)으로 전달되므로, 화상 출사부(10)는 도 2 및 도 3에 도시된 바와 같은 위치에 배치되지만, 이는 예시적인 것이며, 전반사 구조를 사용하지 않거나 2회 이상의 전반사를 사용하는 경우 화상 출사부(10)는 가상 영상 화상광을 광학 수단(30)을 통해 반사 수단(20)으로 전달하기 위한 적절한 위치에 배치된다. 즉, 화상 출사부(10)는 반사 수단(20)의 위치, 각도 및 동공(50)의 위치를 고려하여 적절한 위치에 배치된다.Here, since the virtual video image light is totally reflected once on the inner surface of the optical means 30 and transmitted to the reflecting means 20, the image emitting unit 10 is disposed at a position as shown in FIGS. 2 and 3. , This is an example, and when the total reflection structure is not used or two or more total reflections are used, the image output unit 10 is at an appropriate position for transferring virtual image image light to the reflection unit 20 through the optical unit 30. is placed on That is, the image emitting unit 10 is disposed at an appropriate position considering the position and angle of the reflection unit 20 and the position of the pupil 50 .
반사 수단(20)은, 화상 출사부(10)로부터 출사된 가상 영상 화상광을 사용자의 눈의 동공(50)을 향해 반사시켜 전달하는 수단이다.The reflector 20 is a means for reflecting and transmitting the virtual video image light emitted from the image output unit 10 toward the pupil 50 of the user's eye.
반사 수단(20)은 복수 개의 반사부(21~29)로 구성될 수 있으며, 도면 부호 20은 이러한 복수 개의 반사부(21~29) 전체를 통칭하는 것으로 한다.The reflection means 20 may be composed of a plurality of reflectors 21 to 29, and reference numeral 20 collectively refers to the plurality of reflectors 21 to 29.
이러한 반사 수단(20)은, 도시된 바와 같이, 광학 수단(30)의 내부에 매립 배치된다. 후술하는 바와 같이, 광학 수단(30)은, 반사 수단(20)에서 반사된 가상 영상 화상광과 실제 사물 화상광의 적어도 일부가 사용자의 동공(50)을 향해 출사되는 제1 면(31)과, 상기 제1 면(31)에 대향하며 실제 사물 화상광이 입사하는 제2 면(32)을 구비하는데, 반사 수단(20)은 이러한 광학 수단(30)의 제1 면(31)과 제2 면(32) 사이의 내부 공간에 매립 배치된다.As shown, the reflection unit 20 is buried inside the optical unit 30 . As will be described later, the optical means 30 includes a first surface 31 from which at least a part of the virtual video image light and the real object image light reflected by the reflecting means 20 are emitted toward the user's pupil 50; It has a second surface 32 opposite to the first surface 31 and into which real object image light is incident. (32) is buried in the inner space between them.
광학 수단(30)의 제1 면(31)은, 사용자가 증강 현실용 광학 장치(200)를 동공(50) 정면에 두었을 때 사용자의 동공(50) 쪽을 향하고 있는 면이 되고, 제2 면(32)은 그 반대면 즉, 실제 세계의 사물을 향하는 면이다.The first surface 31 of the optical means 30 is a surface facing the user's pupil 50 when the user places the optical device 200 for augmented reality in front of the pupil 50, and the second Face 32 is the opposite side, that is, the side facing objects in the real world.
한편, 도 2 및 도 3의 실시예에서는, 화상 출사부(10)로부터 출사되는 가상 영상 화상광은 광학 수단(30)의 내면에서 1회 전반사된 후 반사 수단(20)으로 전달되는 것으로 나타내었으나, 이는 예시적인 것이며, 전반사를 사용하지 않거나 광학 수단(30)의 내면에서 2회 이상 전반사된 후 반사 수단(20)으로 전달되도록 할 수도 있다.Meanwhile, in the embodiments of FIGS. 2 and 3 , the virtual video image light emitted from the image emitting unit 10 is totally reflected once on the inner surface of the optical unit 30 and then transmitted to the reflecting unit 20. , This is an example, and total reflection may not be used, or total reflection may be performed two or more times on the inner surface of the optical means 30 and then transmitted to the reflection means 20.
도 2 및 도 3의 실시예에서, 반사 수단(20)은 복수개의 반사부(21~29)를 포함하며, 각각의 반사부들(21~29)은 입사하는 가상 영상 화상광을 각각 반사시켜 사용자의 동공(50)으로 전달하도록 화상 출사부(10)와 동공(50)의 위치를 고려하여 광학 수단(30)의 내부에 적절한 경사각을 가지고 배치된다.2 and 3, the reflection means 20 includes a plurality of reflectors 21 to 29, and each of the reflectors 21 to 29 reflects incident virtual image light to the user. It is disposed with an appropriate inclination angle inside the optical means 30 in consideration of the positions of the image output unit 10 and the pupil 50 so as to transmit the image to the pupil 50 of the image.
한편, 반사부(21~29) 각각은, 심도를 깊게 하여 핀홀 효과(pinhole effect)를 얻을 수 있도록 사람의 동공 크기보다 작은 크기 즉, 8mm 이하로, 보다 바람직하게는 4mm 이하로 형성되는 것이 바람직하다. 이에 의해 반사부(21~29) 각각을 통해 동공으로 입사하는 빛에 대한 심도(Depth of Field)를 거의 무한대에 가깝게 즉, 심도를 매우 깊게 할 수 있다. 따라서 사용자가 실제 세계를 응시하면서 실제 세계에 대한 초점 거리를 변경하더라도 이와 관계없이 가상 영상의 초점은 항상 맞는 것으로 인식하게 하는 핀홀 효과를 발생시킬 수 있다.On the other hand, each of the reflectors 21 to 29 is preferably formed to a size smaller than the size of a human pupil, that is, 8 mm or less, more preferably 4 mm or less, to obtain a pinhole effect by deepening the depth. do. As a result, the depth of field for the light incident to the pupil through each of the reflectors 21 to 29 can be made close to infinity, that is, the depth of field can be made very deep. Therefore, even if the user changes the focal distance with respect to the real world while gazing at the real world, a pinhole effect may be generated to recognize that the focus of the virtual image is always correct regardless of this.
여기에서, 반사부(21~29) 각각의 크기는, 각 반사부(21~29)의 가장자리 경계선 상의 임의의 두 점 간의 최대 길이를 의미하는 것으로 정의한다.Here, the size of each of the reflectors 21 to 29 is defined as the maximum length between any two points on the edge boundary line of each reflector 21 to 29 .
또한, 반사부(21~29) 각각의 크기는, 사용자가 정면을 바라볼 때의 방향에 수직하면서 동공(50)의 중심을 포함하는 평면에 각 반사부(21~29)를 투영한 정사영의 가장자리 경계선 상의 임의의 두 점 간의 최대 길이일 수 있다.In addition, the size of each of the reflectors 21 to 29 is a projection of each reflector 21 to 29 on a plane perpendicular to the direction when the user looks at the front and including the center of the pupil 50. It can be the maximum length between any two points on the edge boundary.
한편, 반사부(21~29)의 크기가 지나치게 작은 경우에는 반사부(21~29)에서의 회절(diffraction) 현상이 커지기 때문에, 반사부(21~29) 각각의 크기는 예컨대 0.3mm 보다는 큰 것이 바람직하다. On the other hand, when the size of the reflectors 21 to 29 is too small, the diffraction phenomenon in the reflectors 21 to 29 increases, so each size of the reflectors 21 to 29 is larger than 0.3 mm it is desirable
또한, 반사부(21~29) 각각의 형상은 동공(50)에서 반사부(21~29)를 바라보았을 때 원형으로 보이도록 형성하는 것이 바람직하다.In addition, each of the reflectors 21 to 29 is preferably formed to look circular when viewed from the pupil 50 .
한편, 반사부들(21~29) 중 적어도 2 이상의 반사부들(26~29, 20A)은, 화상 출사부(10)로부터의 거리가 멀수록 광학 수단(30)의 제2 면(32)에 더 가까와지도록 배치된다. 상기 반사부(26~29)들을 제외한 나머지 반사부들(21~25, 20B)은 화상 출사부(10)로부터의 거리와 관계없이 광학 수단(30)의 제2 면(32)과 동일한 거리를 갖도록 배치된다.Meanwhile, at least two or more of the reflectors 26 to 29 and 20A among the reflectors 21 to 29 are more distant from the second surface 32 of the optical means 30 as the distance from the image output unit 10 increases. placed so as to come close to Except for the reflectors 26 to 29, the remaining reflectors 21 to 25 and 20B have the same distance as the second surface 32 of the optical means 30 regardless of the distance from the image output unit 10. are placed
다만, 이는 예시적인 것이며, 반사부들(21~29)의 배치 구조 및 방향은 필요에 따라 다른 형태를 가질 수도 있음은 물론이다.However, this is exemplary, and the arrangement structure and direction of the reflectors 21 to 29 may have other forms as needed.
한편, 반사부들(21~29)은 서로 거리를 두고 이격되어 배치되는데, 바람직하게는 반사부들(21~29)의 크기보다 작은 거리를 두도록 배치되는 것이 바람직하다.On the other hand, the reflectors 21 to 29 are spaced apart from each other at a distance, and preferably, the reflectors 21 to 29 are disposed at a distance smaller than the size of the reflectors 21 to 29.
한편, 광학 수단(30)은, 반사부(21~29)가 매립 배치되며, 실제 사물로부터 출사된 화상광인 실제 사물 화상광의 적어도 일부를 사용자의 눈의 동공(50)을 향해 투과시키는 수단이다.On the other hand, the optical means 30 is a means for transmitting at least a part of real object image light, which is image light emitted from the real object, in which the reflectors 21 to 29 are buried, toward the pupil 50 of the user's eye.
여기에서, 실제 사물 화상광의 적어도 일부를 동공(50)을 향해 투과시킨다는 것은 광학 수단(30)을 통한 실제 사물 화상광의 빛 투과율이 반드시 100%일 필요는 없다는 의미이다.Here, transmitting at least a part of the real object image light toward the pupil 50 means that the light transmittance of the real object image light through the optical means 30 does not necessarily have to be 100%.
또한, 광학 수단(30)은, 전술한 바와 같이, 화상 출사부(10)로부터 출사되는 가상 영상 화상광을 광학 수단(30)의 내부를 통해 반사부(21~29)로 직접 전달하거나 광학 수단(30)의 내면에서 적어도 1회 이상 전반사시킨 후 반사부(21~29)로 전달한다.In addition, as described above, the optical means 30 directly transmits the virtual video image light emitted from the image output unit 10 to the reflectors 21 to 29 through the inside of the optical means 30 or the optical means After total reflection is performed at least once on the inner surface of (30), it is transmitted to the reflection units (21 to 29).
광학 수단(30)은, 전술한 바와 같이, 반사부(21~29)에서 반사된 가상 영상 화상광과 실제 사물 화상광의 적어도 일부가 사용자의 동공을 향해 출사되는 제1 면(31)과, 상기 제1 면(31)에 대향하며 실제 사물 화상광이 입사하는 제2 면(32)을 구비하며, 반사부(21~29)는 제1 면(31)과 제2 면(32) 사이의 내부에 매립 배치된다.As described above, the optical means 30 includes a first surface 31 from which at least a part of the virtual video image light and the real object image light reflected by the reflectors 21 to 29 are emitted toward the user's pupil; It has a second surface 32 opposite to the first surface 31 and into which real object image light is incident, and the reflectors 21 to 29 are formed between the first surface 31 and the second surface 32. landfill is placed in
광학 수단(30)은, 유리 또는 플라스틱 재질 및 기타 합성 수지(resin)재의 렌즈로 형성할 수 있고, 다양한 굴절률 및 투명도를 가질 수 있다.The optical means 30 may be formed of a lens made of glass or plastic material or other synthetic resin material, and may have various refractive indices and transparency.
광학 수단(30)의 제1 면(31)과 제2 면(32)은 서로 평행한 것으로 나타내었으나, 이는 예시적인 것이며 서로 평행하지 않도록 구성할 수도 있다. Although the first surface 31 and the second surface 32 of the optical means 30 are shown as being parallel to each other, this is exemplary and may be configured not to be parallel to each other.
또한, 광학 수단(30)의 제1 면(31)과 제2 면(32) 중 적어도 어느 하나는 곡면으로 형성될 수 있다. 즉, 제1 면(31) 또는 제2 면(32) 중 어느 하나가 곡면일 수 있고, 제1 면(31) 및 제2 면(32) 모두 곡면으로 형성될 수 있다.In addition, at least one of the first surface 31 and the second surface 32 of the optical means 30 may be formed as a curved surface. That is, any one of the first surface 31 or the second surface 32 may be a curved surface, and both the first surface 31 and the second surface 32 may be formed as a curved surface.
도 4 및 도 5는 본 발명에 따른 증강 현실용 광학 장치의 제조 방법에 의해 제작된 증강 현실용 광학 장치(300)의 다른 실시예를 나타낸 것으로서, 도 4는 사시도이고 도 5는 정면도이다. 다만, 도 4 및 도 5에서도 화상 출사부(10)는 생략하였음을 유의해야 한다.4 and 5 show another embodiment of an optical device 300 for augmented reality manufactured by the manufacturing method of an optical device for augmented reality according to the present invention, and FIG. 4 is a perspective view and FIG. 5 is a front view. However, it should be noted that the image output unit 10 is omitted in FIGS. 4 and 5 .
도 4 및 도 5의 증강 현실용 광학 장치(300)는, 도 2 및 도 3을 참조하여 설명한 실시예의 증강 현실용 광학 장치(200)와 기본적인 구성은 동일하되, 반사 수단(20)이 복수개 형성된 것을 특징으로 한다. 여기에서, 각 반사 수단(201~211)들 또한 복수개의 반사부(21~29)를 포함한다.The optical device 300 for augmented reality of FIGS. 4 and 5 has the same basic configuration as the optical device 200 for augmented reality of the embodiment described with reference to FIGS. 2 and 3 , but includes a plurality of reflecting means 20 . characterized by Here, each of the reflectors 201 to 211 also includes a plurality of reflectors 21 to 29.
여기에서, 복수개의 반사 수단(201~211)은, 다음과 같은 배치 구조를 갖는다. 즉, 앞서 설명한 바와 같이, 광학 수단(30)을 사용자의 동공(50) 정면에 두었을 때, 동공(50)에서 정면 방향을 x축이라 하고, 화상 출사부(10)로부터 x축으로의 수직선에 대해 x축을 따라 평행하면서 광학 수단(30)의 제1 면(31)과 제2 면(32) 사이를 지나는 선분 중 어느 하나를 y축이라 하고, x축 및 y축과 직교하는 선분을 z축이라 할 때, 반사 수단(201~211)들은 z축 방향을 따라 평행하게 간격을 두고 배치된다.Here, the plurality of reflectors 201 to 211 have the following arrangement structure. That is, as described above, when the optical means 30 is placed in front of the user's pupil 50, the front direction of the pupil 50 is referred to as the x-axis, and a vertical line from the image output unit 10 to the x-axis One of the line segments parallel to the x-axis and passing between the first surface 31 and the second surface 32 of the optical means 30 is referred to as the y-axis, and the line segment orthogonal to the x-axis and the y-axis is z When referred to as an axis, the reflectors 201 to 211 are spaced apart in parallel along the z-axis direction.
도 4 및 도 5에서는, 반사 수단(201~211)들이 z축 방향을 따라 평행하게 동일한 간격을 가지고 배치되어 있으나 이는 예시적인 것이며 반드시 동일한 간격을 가질 필요는 없다.In FIGS. 4 and 5 , the reflectors 201 to 211 are arranged with equal intervals in parallel along the z-axis direction, but this is exemplary and does not necessarily have to have equal intervals.
또한, 도 4 및 도 5에 도시된 반사 수단(201~211)들의 z축 방향을 따른 간격은 설명의 편의를 위해 예시적으로 나타낸 것이며, 실제는 이보다 더 가깝게 또는 더 멀게 배치될 수 있다. 예컨대, 반사 수단(201~211)들의 간격은 반사부(21~29)들의 크기 이하가 되도록 배치될 수 있다.In addition, the intervals along the z-axis direction of the reflectors 201 to 211 shown in FIGS. 4 and 5 are illustratively shown for convenience of explanation, and may be arranged closer or farther than this in reality. For example, the intervals between the reflectors 201 to 211 may be less than or equal to the size of the reflectors 21 to 29 .
또한, 반사 수단(201~211)을 구성하는 반사부(21~29)들의 갯수는 모두 동일할 필요는 없다.In addition, the number of reflectors 21 to 29 constituting the reflectors 201 to 211 need not be the same.
또한, 각각의 반사 수단(201~211)은, 각 반사 수단(201~211)을 구성하는 각각의 반사부(21~29)들이, 인접하는 반사 수단(201~211)을 구성하는 반사부(21~29)들 중 어느 하나와 z축에 평행한 가상의 직선을 따라 위치하도록 배치될 수 있다. 이 때, 복수개의 반사 수단(201~211)들을 외부에서 z축에 수직한 면쪽으로 보면 도 2에 나타낸 바와 동일하게 보이게 된다.In addition, each of the reflecting units 201 to 211 is such that each of the reflecting units 21 to 29 constituting each reflecting unit 201 to 211 is a reflecting unit constituting the adjacent reflecting units 201 to 211 ( 21 to 29) may be arranged to be located along an imaginary straight line parallel to any one of the z-axis. At this time, when the plurality of reflectors 201 to 211 are viewed from the outside toward the plane perpendicular to the z-axis, they look the same as shown in FIG. 2 .
도 4 및 도 5의 실시예에 의하면, 앞서 설명한 바와 같이 가상 영상에 대한 심도를 깊게 하여 핀홀 효과를 발생시킴으로써 초점 거리의 변경과 관계없이 항상 선명한 가상 영상을 제공할 수 있다는 작용 효과를 가지면서 시야각과 z축 방향의 아이박스(eye box)를 넓힐 수 있는 장점이 있다.According to the embodiments of FIGS. 4 and 5 , as described above, by deepening the depth of field to generate a pinhole effect, a clear virtual image can always be provided regardless of a change in focal length, and the viewing angle There is an advantage in that the eye box in the and z-axis directions can be widened.
도 6 및 도 7은 본 발명에 따른 증강 현실용 광학 장치의 제조 방법에 의해 제작된 증강 현실용 광학 장치(400)의 다른 실시예를 나타낸 것으로서, 도 6은 사시도이고 도 7은 정면도이다. 다만, 도 6 및 도 7에서도 화상 출사부(10)는 생략하였음을 유의해야 한다.6 and 7 show another embodiment of an optical device 400 for augmented reality manufactured by the manufacturing method of an optical device for augmented reality according to the present invention, wherein FIG. 6 is a perspective view and FIG. 7 is a front view. However, it should be noted that the image output unit 10 is omitted in FIGS. 6 and 7 .
도 6 및 도 7의 증강 현실용 광학 장치(400)는, 도 4 및 도 5의 실시예와 기본적으로 동일하되, 각 반사 수단(201~211)을 구성하는 각각의 반사부(21~28 또는 21~29)들이, 인접하는 반사 수단(201~211)을 구성하는 모든 반사부(21~28 또는 21~29)들과 z축에 평행한 가상의 직선을 따라 위치하지 않도록 배치된다는 점에서 차이가 있다.The optical device 400 for augmented reality of FIGS. 6 and 7 is basically the same as the embodiment of FIGS. 4 and 5 , but each reflector 21 to 28 constituting each reflector 201 to 211 or 21 to 29 are arranged so as not to be located along an imaginary straight line parallel to the z-axis with all the reflectors 21 to 28 or 21 to 29 constituting the adjacent reflection means 201 to 211. there is
즉, 도 7에 나타낸 바와 같이, z축의 왼쪽 방향으로부터 서로 인접하는 첫번째 반사 수단(201)의 반사부(21~28)들과 두번째 반사 수단(202)의 반사부(21~29)들을 y축 방향의 위쪽(화상 출사부(10)쪽)으로부터 순서대로 비교해 보면, 첫번째 반사 수단(201)의 각각의 반사부(21~28)들은 두번째 반사 수단(202)의 모든 반사부(21~29)들과 z축에 평행한 가상의 직선을 따라 위치하지 않도록 배치되어 있음을 알 수 있다. That is, as shown in FIG. 7, the reflectors 21 to 28 of the first reflector 201 and the reflectors 21 to 29 of the second reflector 202 adjacent to each other from the left direction of the z-axis are aligned along the y-axis. Comparing in order from the upper direction (towards the image emitting unit 10), each of the reflecting units 21 to 28 of the first reflecting unit 201 is equal to all the reflecting units 21 to 29 of the second reflecting unit 202. It can be seen that it is arranged so as not to be located along an imaginary straight line parallel to the field and the z-axis.
즉, 첫번째 반사 수단(201)의 반사부(21~28)들과 두번째 반사 수단(202)의 반사부(21~29)들은 z축에 평행하게 나란히 정렬되어 있지 않고 서로 엇갈리게 배치된다.That is, the reflectors 21 to 28 of the first reflector 201 and the reflectors 21 to 29 of the second reflector 202 are not aligned parallel to the z-axis but are staggered from each other.
도 6 및 도 7에서도 반사 수단(201~211)들은, z축 방향을 따라 평행하게 동일한 간격을 가지고 배치되어 있으나 이는 예시적인 것이며 반드시 동일한 간격을 가질 필요는 없다. 또한, 도 6 및 도 7에 도시된 반사 수단(201~211)들의 z축 방향을 따른 간격은 설명의 편의를 위해 예시적으로 나타낸 것이며, 실제는 이보다 더 가깝게 또는 더 멀게 배치될 수 있다.In FIGS. 6 and 7 , the reflectors 201 to 211 are arranged with equal intervals in parallel along the z-axis direction, but this is exemplary and does not necessarily have to have equal intervals. In addition, the intervals along the z-axis direction of the reflectors 201 to 211 shown in FIGS. 6 and 7 are shown by way of example for convenience of description, and may be arranged closer or farther than this in reality.
다음으로, 도 8 이하를 참조하여 본 발명에 의한 증강 현실용 광학 장치를 제조하는 방법에 대해 설명한다. Next, with reference to FIG. 8 and below, a method of manufacturing an optical device for augmented reality according to the present invention will be described.
도 8은 본 발명에 따른 증강 현실용 광학 장치(200~400)의 제조 방법의 전체적인 과정을 나타낸 흐름도이고, 도 9 내지 도 14는 증강 현실용 광학 장치(200~400)를 제조하는 과정을 설명하기 위한 도면이다.8 is a flowchart illustrating the overall process of a manufacturing method of the optical devices 200 to 400 for augmented reality according to the present invention, and FIGS. 9 to 14 explain the manufacturing process of the optical devices 200 to 400 for augmented reality. It is a drawing for
도 9는 제1 판재(30a)의 사시도를 나타낸 것이고, 도 10은 제1 판재(30a)에 반사부(16)를 형성하는 과정을 나타낸 것이다.9 is a perspective view of the first plate member 30a, and FIG. 10 illustrates a process of forming the reflector 16 on the first plate member 30a.
먼저, 도 9 및 도 10의 (a)에 도시된 바와 같이, 광학 수단(30)을 구성하는 제1 판재(30a)를 준비한다(S10).First, as shown in (a) of FIGS. 9 and 10 , the first plate material 30a constituting the optical means 30 is prepared (S10).
제1 판재(30a)는 광학 수단(30)의 하부 베이스 기판이다. 제1 판재(30a)는 수지(resin)재로 형성될 수 있으며, 종래 알려져 있는 바와 같은 사출 또는 주조 방식으로 성형될 수 있다.The first plate member 30a is a lower base substrate of the optical means 30 . The first plate member 30a may be formed of a resin material and may be molded by an injection or casting method as known in the art.
제1 판재(30a)는 투명 재질로 형성되는 것이 바람직하지만, 필요에 따라 반투명 또는 불투명 재질로 형성될 수도 있음은 물론이다.The first plate member 30a is preferably formed of a transparent material, but may be formed of a translucent or opaque material as needed.
제1 판재(30a)의 상면에는 복수 개의 경사면(13a)이 형성되어 있다. 복수 개의 경사면(13a)은 y축 방향(도 9 참조)을 따라 형성되며, 이들 경사면(13a)에는 도 2 내지 도 7을 참조하여 앞서 설명한 바와 같은 증강 현실용 광학 장치(200~400)의 반사부(21~29)들에 상응하는 반사부(16, 도 10 내지 도 14 참조)가 형성된다. A plurality of inclined surfaces 13a are formed on the upper surface of the first plate member 30a. A plurality of inclined surfaces 13a are formed along the y-axis direction (see FIG. 9), and reflections of the optical devices 200 to 400 for augmented reality as described above with reference to FIGS. 2 to 7 are formed on these inclined surfaces 13a. Corresponding to the parts 21 to 29, a reflecting part 16 (see FIGS. 10 to 14) is formed.
한편, 도 9 이하에서 설명하는 y축 방향으로의 반사부(21~29)들의 갯수는 도 2 내지 도 7의 증강 현실용 광학 장치(200~400)의 y축 방향으로의 반사부(21~29)들의 갯수보다 작지만, 이는 설명의 편의를 위한 것임을 유의해야 한다.Meanwhile, the number of reflectors 21 to 29 in the y-axis direction described below in FIG. 9 is the number of reflectors 21 to 29 in the y-axis direction of the optical devices 200 to 400 for augmented reality of FIGS. 2 to 7 . 29), but it should be noted that this is for convenience of description.
도 10의 (a)에서는 제1 판재(30a)의 상면에 형성된 각 경사면(13a)의 높이는 우측 방향으로 갈수록 순차적으로 높아지도록 되어 있으나, 이는 예시적인 것이며, 경사면(13a)의 높이는 순차적으로 낮아질 수도 있고 또한 모두 동일할 수도 있음은 물론이다. 또한, 경사면(13a)의 높이는 반사부(21~29)들의 배치 형태에 따라 기타 다른 다양한 프로파일을 가질 수 있다.In (a) of FIG. 10 , the height of each inclined surface 13a formed on the upper surface of the first plate 30a is sequentially increased in the right direction, but this is exemplary, and the height of the inclined surface 13a may be sequentially decreased. And, of course, they may all be the same. In addition, the height of the inclined surface 13a may have various other profiles depending on the arrangement of the reflectors 21 to 29 .
또한 제1 판재(30a)의 각 경사면(13a)은 톱니 모양 구조의 복수 개의 톱니 상부(13)에 의해 형성되는데, 이들 복수 개의 톱니 상부(13)는 그 단면의 형태가 서로 다를 수 있다. 톱니 상부(13) 단면의 형태가 다르다는 것은 경사면의 높이, 형태, 그리고 길이나 각도가 다르다는 것을 의미한다. In addition, each inclined surface 13a of the first plate member 30a is formed by a plurality of upper teeth 13 having a sawtooth structure, and the plurality of upper teeth 13 may have different cross-sectional shapes. The different shape of the cross-section of the tooth top 13 means that the height, shape, and length or angle of the inclined surface are different.
다음으로, 도 10의 (b)에 나타난 바와 같이, 젯 디스펜서(jet dispenser)(70)를 이용해 제1 판재(30a)의 복수 개의 경사면(13a)에서 반사부(16)가 형성될 위치에 광반사재를 분사시켜 반사부 패터닝(patterning)을 수행한다(S20).Next, as shown in (b) of FIG. 10, a jet dispenser 70 is used to generate light at a location where the reflector 16 is to be formed on the plurality of inclined surfaces 13a of the first plate 30a. Reflector patterning is performed by spraying a reflector (S20).
광반사재의 재료로는 광을 반사시키는 알루미늄, 금, 은 등의 금속 물질이 사용될 수 있다. 구체적으로 광반사재는 알루미늄, 금, 은 또는 이들의 혼합물로 이루어진 금속 나노입자를 용매에 분산시킨 금속 페이스트이다. Metal materials such as aluminum, gold, and silver that reflect light may be used as a material of the light reflection material. Specifically, the light reflecting material is a metal paste in which metal nanoparticles made of aluminum, gold, silver, or mixtures thereof are dispersed in a solvent.
광반사재의 분사로 형성되는 반사부(16)의 반사율은 100%이거나 이에 근접하는 높은 반사율을 가질 수 있으나, 85~100%의 반사율을 갖는 것이 바람직하다.The reflectance of the reflector 16 formed by spraying the light reflector may have a reflectance of 100% or a high reflectance close thereto, but preferably has a reflectance of 85 to 100%.
젯 디스펜서(70)는 한 개 또는 복수 개의 노즐(72,nozzle)로 구성될 수 있으며, 디스펜서(70)의 노즐(72) 끝에서 광반사재가 분사된다. The jet dispenser 70 may include one or a plurality of nozzles 72 (nozzle), and the light reflecting material is injected from the tip of the nozzle 72 of the dispenser 70.
젯 디스펜서(70)는 제어 알고리즘을 사용해 경사면(13a)에 미리 설정된 간격으로 반사부(16)가 형성될 위치에 광반사재를 분사시키는 동작을 반복적으로 수행한다.The jet dispenser 70 repeatedly performs an operation of jetting the light reflecting material to the position where the reflector 16 is to be formed at preset intervals on the inclined surface 13a using a control algorithm.
예컨대, 하나의 노즐(72)을 사용하는 경우, 제어 알고리즘에 따라 젯 디스펜서(70)가 이동하면서 노즐(72)이 경사면(13a)의 특정 위치로 근접 이동하게 되고, 이에 의해 근접 이동이 종료된 시점에 일정량의 광반사재가 경사면(13a)에 분사되어 반사부 패터닝이 이루어진다. 이 때, 노즐(72)은 경사면(13a)에 근접하게 이동하고 노즐(72) 끝에서 광반사재가 분사되어 반사부(16)가 형성될 수 있다. For example, in the case of using one nozzle 72, the jet dispenser 70 moves according to the control algorithm and the nozzle 72 moves close to a specific position on the inclined surface 13a, whereby the proximity movement ends At this point, a certain amount of light reflecting material is sprayed onto the inclined surface 13a to pattern the reflection part. At this time, the nozzle 72 moves close to the inclined surface 13a and a light reflecting material is sprayed from the tip of the nozzle 72 to form the reflecting part 16 .
이후, 노즐(72)이 이격되면 노즐(72) 끝에 다시 일정량의 광반사재가 충진되고, 다음 경사면(13a)으로 이동하여 반사부 패터닝을 수행한다. 이 경우, 젯 디스펜서(70)는 복수 개의 반사부(16)가 형성되는 각 경사면(13a)에 대해 다른 깊이로 이동하면서 반사부 패터닝을 수행할 수 있다.Thereafter, when the nozzle 72 is spaced apart, a certain amount of the light reflecting material is filled at the tip of the nozzle 72 again, and then moved to the next inclined surface 13a to perform patterning of the reflecting part. In this case, the jet dispenser 70 may perform reflector patterning while moving to a different depth with respect to each inclined surface 13a where the plurality of reflectors 16 are formed.
이때 젯 디스펜서(70)의 본체는 경사면(13a)에 대해 일정 각도 기울어져 이동하게 되는데, 젯 디스펜서(70)의 본체를 일정 각도 기울이게 되면 노즐(72) 역시 일정 각도 기울어져서 이동할 수 있기 때문에 노즐(72)이 경사면(13a)에 대해 수직 방향으로 근접 이동할 수 있다. At this time, the body of the jet dispenser 70 tilts at a predetermined angle with respect to the inclined surface 13a and moves. When the body of the jet dispenser 70 is tilted at a predetermined angle, the nozzle 72 can also move at a predetermined angle, so the nozzle ( 72) can approach in a vertical direction with respect to the inclined surface 13a.
본 발명의 실시예에서는 젯 디스펜서(70)가 노즐(72)을 통해 한 번의 분사로 반사부(16)를 형성할 수 있으나, 제어 알고리즘을 통해 미세 분사 과정을 반복하여 반사부(16)를 형성할 수도 있다. In the embodiment of the present invention, the jet dispenser 70 may form the reflector 16 with one injection through the nozzle 72, but the reflector 16 is formed by repeating the fine injection process through a control algorithm You may.
도 11을 참조하면, 반사부(16)는 복수 개의 미세 도트(15,dot)에 의해 형성될 수 있다. 즉, 젯 디스펜서(70)가 하나의 반사부(16)의 전체 영역에 대해 복수 개의 미세 도트(15) 형태로 광반사재를 분사함으로써 하나의 반사부(16)를 구성할 수 있다.Referring to FIG. 11 , the reflector 16 may be formed by a plurality of fine dots 15 (dot). That is, the jet dispenser 70 may configure one reflector 16 by spraying a light reflector in the form of a plurality of fine dots 15 to the entire area of the reflector 16 .
젯 디스펜서(70)는 노즐(72) 크기 및 노즐(72)을 통해 분사되는 광반사재의 분사량을 제어하여 미세 도트(15)의 크기를 조절할 수 있다. 젯 디스펜서(70)는 먼저 반사부(16)의 크기를 결정하고, 결정된 반사부(16)의 크기 안에서 하나의 반사부(16)를 구성하는 미세 도트(15)의 크기와 갯수를 산출할 수 있다. The jet dispenser 70 may control the size of the fine dots 15 by controlling the size of the nozzle 72 and the spray amount of the light reflecting material sprayed through the nozzle 72 . The jet dispenser 70 first determines the size of the reflector 16, and calculates the size and number of fine dots 15 constituting one reflector 16 within the determined size of the reflector 16. there is.
젯 디스펜서(70)는 산출한 미세 도트(15)의 크기, 갯수 그리고 반사부(16) 안에서의 위치 분포에 따라 광반사재를 분사하여 복수 개의 미세 도트(15)를 형성하고 노즐(72)의 위치를 미세 제어하는 과정을 반복함으로써 하나의 반사부(16)를 형성할 수 있다. 미세 도트(15)의 크기는 필요에 따라 적절하게 선택할 수 있으며, 바람직하게는 100㎛ 이하, 보다 바람직하게는 10㎛ 이하로 할 수 있다.The jet dispenser 70 sprays the light reflecting material according to the calculated size and number of the fine dots 15 and the location distribution in the reflector 16 to form a plurality of fine dots 15 and the position of the nozzle 72 By repeating the process of finely controlling , it is possible to form one reflector 16 . The size of the fine dots 15 can be appropriately selected as needed, preferably 100 μm or less, more preferably 10 μm or less.
젯 디스펜서(70)는 이와 같이 하나의 반사부(16)의 전체 영역에 대해 복수 개의 미세 도트(15) 형태로 광반사재를 분사하여 반사부(16)를 형성할 수 있으나, 반사부(16)의 전체 영역 중 일부에 대해 미세 도트(15) 형태의 광반사재를 분사하여 반사부(16)를 형성함으로써, 반사부(16)에 대한 반사율을 조절할 수도 있다. 즉, 반사율 조정이 가능한 반사부(16)를 형성할 수 있다. 이 경우, 미세 도트(15)의 위치, 및 크기와 갯수 그리고 미세 도트(15) 사이의 간격은 상술한 바와 같이 젯 디스펜서(70)에 의해 적응적으로 조절될 수 있다. The jet dispenser 70 may form the reflector 16 by injecting the light reflector in the form of a plurality of fine dots 15 over the entire area of one reflector 16, but the reflector 16 The reflectance of the reflector 16 may be adjusted by forming the reflector 16 by spraying a light reflector in the form of fine dots 15 on a portion of the entire area of the reflector 16 . That is, it is possible to form the reflector 16 capable of adjusting the reflectance. In this case, the position, size and number of the fine dots 15 and the interval between the fine dots 15 may be adaptively adjusted by the jet dispenser 70 as described above.
예를 들어, 젯 디스펜서(70)가 100% 반사율을 가진 광반사재를 사용하는 경우, 반사부(16)의 전체 영역 중 1/2 크기의 영역에만 미세 도트(15) 형태로 광반사재를 분사함으로써 50%의 투과율을 갖는 반사부(16)를 형성할 수 있다. 이 경우, 반사부(16)의 전체 영역에 대해 산출되는 미세 도트(15)들을 하나씩 건너 뛰면서 분사하는 방법을 사용할 수 있다. 이는 100%의 반사율을 갖는 광반사재를 사용하여 젯 디스펜서(70)의 분사 방식을 통해 반사부(16)의 반사율을 가변적으로 조절할 수 있다는 것을 의미하며, 반사부(16)를 형성하는 광반사재 자체의 반사율을 50%로 조절한다는 것을 의미하지는 않는다는 점을 유의해야 한다.For example, when the jet dispenser 70 uses a light reflector having 100% reflectance, by spraying the light reflector in the form of fine dots 15 only in an area of 1/2 size of the total area of the reflector 16 A reflector 16 having transmittance of 50% may be formed. In this case, a method of spraying the fine dots 15 calculated for the entire area of the reflector 16 while skipping one by one may be used. This means that the reflectance of the reflector 16 can be variably adjusted through the spraying method of the jet dispenser 70 using a light reflector having a reflectance of 100%, and the light reflector itself forming the reflector 16 It should be noted that this does not imply adjusting the reflectance of 50%.
도 12를 참조하여, 젯 디스펜서(70)가 복수 개의 노즐(72)을 사용하는 경우에는 제어 알고리즘에 따라 복수 개의 노즐(72)이 동시에 경사면(13a)에 근접 이동하면서 반사부 패터닝을 수행할 수 있다.Referring to FIG. 12, when the jet dispenser 70 uses a plurality of nozzles 72, patterning of the reflector can be performed while the plurality of nozzles 72 simultaneously move close to the inclined surface 13a according to a control algorithm. there is.
도 12의 (a)에서는 젯 디스펜서(70)가 제1 판재(30a)의 상면에서 이동하면서 반사부 패터닝을 수행하고 있으나, 광반사재의 점도 또는 표면 장력을 고려하여 도 12의 (b)와 같이 제1 판재(30a)의 경사면(13a)이 하부를 향하도록 제1 판재(30a)를 배치하고, 젯 디스펜서(70)를 제1 판재(30a) 하부에 배치한 후, 노즐(72)이 하부에서 상부로 이동하도록 함으로써 중력의 반대 방향으로 반사부 패터닝이 수행되도록 할 수도 있다. In (a) of FIG. 12, the jet dispenser 70 performs patterning of the reflector while moving on the upper surface of the first plate 30a, but considering the viscosity or surface tension of the light reflecting material, as shown in (b) of FIG. After disposing the first plate 30a so that the inclined surface 13a of the first plate 30a faces downward, and placing the jet dispenser 70 below the first plate 30a, the nozzle 72 By moving upward from the reflector, patterning of the reflector may be performed in the opposite direction of gravity.
도 2 및 도 3의 증강 현실용 광학 장치(200)를 제조하는 경우에는, 젯 디스펜서(70)가 y축 방향을 따라 각 경사면(13a)에 하나의 반사부(16)를 형성함으로써 반사부 패터닝을 수행할 수 있다.In the case of manufacturing the optical device 200 for augmented reality of FIGS. 2 and 3, the jet dispenser 70 forms one reflector 16 on each inclined surface 13a along the y-axis direction, thereby patterning the reflector can be performed.
도 4 및 도 5의 증강 현실용 광학 장치(300)를 제조하는 경우에는, 젯 디스펜서(70)가 각각의 경사면(13a)에서 z축 방향을 따라 복수 개의 반사부(16)를 형성함으로써 반사부 패터닝을 수행할 수 있다. In the case of manufacturing the optical device 300 for augmented reality of FIGS. 4 and 5, the jet dispenser 70 forms a plurality of reflectors 16 along the z-axis direction on each inclined surface 13a, thereby forming a reflector patterning can be performed.
예컨대, 젯 디스펜서(70)가 z축 방향을 따라 배치된 복수 개의 노즐(72)을 구비하여 각 경사면(13a)마다 복수 개의 반사부(16)를 형성할 수 있다.For example, the jet dispenser 70 may include a plurality of nozzles 72 disposed along the z-axis direction to form a plurality of reflectors 16 for each inclined surface 13a.
즉, z축 방향을 따라 배치된 복수 개의 노즐(72)을 구비한 젯 디스펜서(70)가 각 반사 수단(201~211)의 첫 번째 반사부(21)에 상응하는 위치에서 동시에 반사부 패터닝을 수행하고, 다음 경사면(13a)으로 이동하여 두 번째 반사부(22)에 상응하는 위치에서 동시에 반사부 패터닝을 수행하는 과정을, 마지막 반사부(29)에 상응하는 위치까지 수행할 수 있다. 이 때, 젯 디스펜서(70)는 y축 방향으로 경사면(13a) 간격만큼 이동하며 복수 개의 노즐(72)의 길이는 동일하며, 각 경사면(13a)에서 노즐(72)의 x축 이동거리가 다르게 된다. That is, the jet dispenser 70 having a plurality of nozzles 72 disposed along the z-axis direction simultaneously patterns the reflector at a position corresponding to the first reflector 21 of each reflector 201 to 211. Then, the process of moving to the next inclined surface 13a and simultaneously performing patterning of the reflector at a position corresponding to the second reflector 22 may be performed up to a position corresponding to the last reflector 29 . At this time, the jet dispenser 70 moves in the y-axis direction by the distance of the inclined surface 13a, the length of the plurality of nozzles 72 is the same, and the x-axis moving distance of the nozzle 72 on each inclined surface 13a is different do.
또한, 도 6 및 도 7의 증강 현실용 광학 장치(400)의 경우에는, 상기한 바와 같은 증강 현실용 광학 장치(300)와 마찬가지로 반사부 패터닝을 수행하되, 젯 디스펜서(70)가 y축 방향으로 다음 경사면(13a)으로 이동한 후 z축 방향으로 소정 간격 이동하는 방식으로 반사부 패터닝을 수행할 수 있다.In addition, in the case of the optical device 400 for augmented reality of FIGS. 6 and 7 , patterning of the reflector is performed in the same manner as the optical device 300 for augmented reality as described above, but the jet dispenser 70 moves in the y-axis direction After moving to the next inclined surface 13a, patterning of the reflector may be performed in such a way that it moves at a predetermined interval in the z-axis direction.
또한, 2차원의 어레이 구조의 복수 개의 노즐(72)을 이용하는 경우에는, 젯 디스펜서(70)를 이동시킬 필요 없이 한 번에 반사부(16)를 2차원 어레이 구조로 형성할 수 있다.In addition, in the case of using a plurality of nozzles 72 of a two-dimensional array structure, the reflector 16 can be formed in a two-dimensional array structure at once without the need to move the jet dispenser 70 .
이상에서 설명한 반사부 패터닝 방식은 예시적이며, 기타 적절한 제어 알고리즘을 사용하여 다양한 기타 다른 방법을 사용할 수 있음은 물론이다.The reflector patterning method described above is exemplary, and various other methods may be used using other suitable control algorithms.
반사부 패터닝 공정에서, 경사면(13a)에 형성되는 반사부(16)의 크기는 앞서 설명한 바와 같이 4mm 이하가 되도록 경사면(13a)에 광반사재가 분사되도록 하는 것이 바람직하다.In the reflector patterning process, the size of the reflector 16 formed on the inclined surface 13a is preferably sprayed onto the inclined surface 13a such that the size of the reflecting part 16 is 4 mm or less, as described above.
이와 같이 반사부 패터닝이 완료되면, 경사면(13a)에 형성된 반사부(16)에 대한 경화 공정을 수행한다(S30). 반사부(16)에 대한 경화 공정은 열 경화 또는 자외선 경화 과정이 될 수 있다.When the patterning of the reflector is completed in this way, a hardening process is performed on the reflector 16 formed on the inclined surface 13a (S30). A curing process for the reflector 16 may be a thermal curing process or an ultraviolet curing process.
도 13은 경화 공정이 수행된 상태의 제1 판재(30a)의 평면도 및 사시도를 나타낸 것으로서, 앞서 설명한 도 6 및 도 7의 증강 현실용 광학 장치(400)에 상응하는 제1 판재(30a)의 사시도를 예시적으로 나타낸 것이다. 13 is a plan view and a perspective view of the first plate 30a in a state in which a curing process has been performed, and the first plate 30a corresponding to the optical device 400 for augmented reality of FIGS. 6 and 7 described above. A perspective view is shown as an example.
도 13에 도시된 바와 같이, 제1 판재(30a)의 경사면(13a)에는 복수 개의 반사부(16)가 형성되어 있음을 알 수 있다.As shown in FIG. 13 , it can be seen that a plurality of reflectors 16 are formed on the inclined surface 13a of the first plate member 30a.
다음으로, 반사부(16)가 형성된 제1 판재(30a)에 제2 판재(30b)를 결합시킴으로써 광학 수단(30)을 형성한다(S40).Next, the optical means 30 is formed by coupling the second plate material 30b to the first plate material 30a on which the reflector 16 is formed (S40).
제2 판재(30b)는 광학 수단(30)의 상부 베이스 기판으로서, 제1 판재(30a)의 형상에 상응하여 맞물리는 형상을 가진다. 제2 판재(30b)는 제1 판재(30a)와 동일한 재질로 형성되어 동일한 굴절률을 갖는 것이 바람직하다. 또는, 제2 판재(30b)의 굴절률은 제1 판재(30a)의 굴절률과 0.01 이내의 굴절률 편차를 가질 수 있다.The second plate 30b is an upper base substrate of the optical means 30 and has a shape that is engaged with the shape of the first plate 30a. The second plate member 30b is preferably formed of the same material as the first plate member 30a and has the same refractive index. Alternatively, the refractive index of the second plate member 30b may have a refractive index deviation of less than 0.01 from the refractive index of the first plate member 30a.
제2 판재(30b) 또한 투명 재질로 형성되는 것이 바람직하지만, 필요에 따라 반투명 또는 불투명 재질로 형성될 수도 있음은 물론이다. The second plate member 30b is also preferably formed of a transparent material, but may be formed of a translucent or opaque material as needed.
도 14는 제1 판재(30a)에 제2 판재(30b)를 결합시킨 상태를 나타낸 측면도로서, 도시된 바와 같이, 제2 판재(30b)를 제1 판재(30a)에 밀착 결합시킴으로써 경사면(13a)에 반사부(16)가 형성된 광학 수단(30)을 제조할 수 있음을 알 수 있다.14 is a side view showing a state in which the second plate material 30b is coupled to the first plate material 30a. It can be seen that the optical means 30 in which the reflector 16 is formed can be manufactured.
여기에서, 제2 판재(30b)는 접착제(17)를 이용해 제1 판재(30a)에 밀착 결합될 수 있다. 접착제(17)의 굴절률은 상기 제1 판재(30a) 및 제2 판재(30b)의 굴절률과 0.01 이내의 굴절률 편차를 갖는 것이 바람직하다.Here, the second plate member 30b may be closely coupled to the first plate member 30a using the adhesive 17 . The refractive index of the adhesive 17 preferably has a refractive index deviation of less than 0.01 from the refractive index of the first plate material 30a and the second plate material 30b.
한편, 제2 판재(30b)의 결합 공정(S40)에서, 제1 판재(30a) 자체를 성형틀로 사용해 제2 판재(30b)의 재료를 주조하는 방식으로 제1 판재(30a) 상에 제2 판재(30b)를 성형함으로써 광학 수단(30)을 형성할 수도 있다. Meanwhile, in the bonding process (S40) of the second plate material 30b, the first plate material 30a itself is used as a forming mold to cast the material of the second plate material 30b on the first plate material 30a. The optical means 30 can also be formed by molding the two-plate material 30b.
이상에서, 본 발명의 바람직한 실시예를 설명하였으나, 이는 제한적으로 해석되어서는 안 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.In the above, the preferred embodiment of the present invention has been described, but it should not be construed as limiting and should be considered as illustrative. The scope of the present invention should be determined by reasonable interpretation of the appended claims, and all changes within the equivalent scope of the present invention are included in the scope of the present invention.
예컨대, 도 8 내지 도 14에서는 도 6 및 도 7의 증강 현실용 광학 장치(400)를 예로 들어 나타내었으나, 본 발명은 도 2 내지 도 5의 증강 현실용 광학 장치(200,300)에도 그대로 적용될 수 있음은 물론이다.For example, in FIGS. 8 to 14, the optical device 400 for augmented reality of FIGS. 6 and 7 is shown as an example, but the present invention can be applied to the optical devices 200 and 300 for augmented reality of FIGS. 2 to 5 as it is. is of course
또한, 본 발명은 도 2 내지 도 7의 증강 현실용 광학 장치(200~400) 이외에도 기타 다른 다양한 형태의 증강 현실용 광학 장치에도 적용될 수 있음은 물론이다.In addition, it goes without saying that the present invention can be applied to various other types of optical devices for augmented reality in addition to the optical devices 200 to 400 for augmented reality of FIGS. 2 to 7 .

Claims (20)

  1. 증강 현실용 광학 장치의 제조 방법으로서,As a manufacturing method of an optical device for augmented reality,
    상면에 복수 개의 경사면을 가진 제1 판재를 준비하는 제1 단계;A first step of preparing a first plate having a plurality of inclined surfaces on an upper surface;
    젯 디스펜서(jet dispenser)를 이용해 상기 복수 개의 경사면에서 반사부가 형성될 위치에 광반사재를 분사시켜 반사부 패터닝을 수행하는 제2 단계;a second step of performing patterning of the reflector by spraying a light reflector at positions where the reflector is to be formed on the plurality of inclined surfaces using a jet dispenser;
    상기 분사된 광반사재를 경화시키는 제3 단계; 및A third step of curing the sprayed light reflecting material; and
    상기 제1 판재에 제2 판재를 결합시키는 제4 단계A fourth step of bonding the second plate to the first plate
    를 포함하는 증강 현실용 광학 장치의 제조 방법.Method of manufacturing an optical device for augmented reality comprising a.
  2. 제1항에 있어서,According to claim 1,
    상기 제1 판재의 복수 개의 경사면 중 적어도 일부는 그 높이가 서로 다른 것을 특징으로 하는 증강 현실용 광학 장치의 제조 방법.At least some of the plurality of inclined surfaces of the first plate member have different heights.
  3. 제1항에 있어서,According to claim 1,
    상기 제1 판재의 상면에서 상기 복수 개의 경사면을 형성하는 복수 개의 톱니 상부는 그 단면의 형태가 서로 다른 것을 특징으로 하는 증강 현실용 광학 장치의 제조 방법.The method of manufacturing an optical device for augmented reality, characterized in that the shape of the cross section of the upper part of the plurality of teeth forming the plurality of inclined surfaces on the upper surface of the first plate material is different from each other.
  4. 제1항에 있어서, According to claim 1,
    상기 제2 단계에서, 상기 젯 디스펜서는 그 단부에 광반사재를 분사하는 적어도 하나 이상의 노즐을 구비하고, In the second step, the jet dispenser has at least one nozzle for spraying a light reflecting material at its end,
    상기 젯 디스펜서는 제어 알고리즘에 의해 이동하면서 젯 디스펜서의 노즐이 상기 제1 판재의 경사면의 특정 위치로 근접 이동함으로써 광반사재가 경사면에 분사되는 것을 특징으로 하는 증강 현실용 광학 장치의 제조 방법.The jet dispenser is moved by a control algorithm, and the nozzle of the jet dispenser moves close to a specific position on the inclined surface of the first plate material, so that the light reflecting material is sprayed onto the inclined surface. Method of manufacturing an optical device for augmented reality.
  5. 제4항에 있어서, According to claim 4,
    상기 노즐이 복수 개인 경우, 복수 개의 노즐이 동시에 상기 제1 판재의 경사면으로 근접 이동하면서 광반사재가 경사면에 분사되는 것을 특징으로 하는 증강 현실용 광학 장치의 제조 방법.In the case where there are a plurality of nozzles, the light reflecting material is sprayed onto the inclined surface while the plurality of nozzles simultaneously move close to the inclined surface of the first plate material.
  6. 제4항에 있어서,According to claim 4,
    젯 디스펜서가 하나의 반사부의 전체 영역에 대해 복수 개의 미세 도트 형태로 광반사재를 분사함으로써 반사부를 형성하는 것을 특징으로 하는 증강 현실용 광학 장치의 제조 방법.A method of manufacturing an optical device for augmented reality, characterized in that a jet dispenser forms a reflector by injecting a light reflector in the form of a plurality of fine dots over the entire area of one reflector.
  7. 청구항 6에 있어서,The method of claim 6,
    상기 젯 디스펜서는 반사부의 영역 내에서 반사부를 구성할 미세 도트의 크기와 갯수를 산출하고 산출된 미세 도트의 크기 및 갯수에 따라 광반사재를 분사함으로써 반사부를 형성하는 것을 특징으로 하는 증강 현실용 광학 장치의 제조 방법.The jet dispenser calculates the size and number of fine dots constituting the reflector within the region of the reflector and sprays a light reflector according to the calculated size and number of fine dots to form a reflector Optical device for augmented reality, characterized in that manufacturing method.
  8. 제7항에 있어서,According to claim 7,
    상기 젯 디스펜서는 The jet dispenser
    상기 반사부의 전체 영역 중 일부에 대해서 미세 도트 형태의 광반사재를 분사함으로써 반사율 조정이 가능한 반사부를 형성하는 것을 특징으로 하는 증강 현실용 광학 장치의 제조 방법.A method of manufacturing an optical device for augmented reality, characterized in that forming a reflector capable of adjusting the reflectance by spraying a light reflector in the form of fine dots on a part of the entire area of the reflector.
  9. 제7항에 있어서,According to claim 7,
    상기 미세 도트의 크기는 10㎛ 이하인 것을 특징으로 하는 증강 현실용 광학 장치의 제조 방법.The method of manufacturing an optical device for augmented reality, characterized in that the size of the fine dots is 10 μm or less.
  10. 제1항에 있어서,According to claim 1,
    상기 제2 단계에서, 상기 젯 디스펜서가 상기 제1 판재의 상면에 대해 일정 각도로 기울어져 이동하여 상기 젯 디스펜서에 구비된 노즐이 상기 경사면에 수직으로 근접 이동하는 것을 특징으로 하는 증강 현실용 광학 장치의 제조 방법.In the second step, the jet dispenser is tilted at a predetermined angle with respect to the upper surface of the first plate, so that the nozzle provided in the jet dispenser vertically approaches the inclined surface. Optical device for augmented reality, characterized in that manufacturing method.
  11. 제1항에 있어서,According to claim 1,
    상기 제2 단계는, 상기 제1 판재의 경사면이 하부를 향하게 상기 제1 판재를 배치하고, 상기 젯 디스펜서를 상기 제1 판재의 하부에 배치한 후, 상기 젯 디스펜서의 노즐이 하부에서 상부로 이동하면서 반사부 패터닝을 수행하는 것을 특징으로 하는 증강 현실용 광학 장치의 제조 방법.In the second step, the first plate is disposed so that the inclined surface of the first plate faces downward, and the jet dispenser is disposed below the first plate, and then the nozzle of the jet dispenser moves from the bottom to the top A method of manufacturing an optical device for augmented reality, characterized in that performing patterning of the reflector while doing so.
  12. 제1항에 있어서,According to claim 1,
    상기 제2 단계에서, 상기 제1 판재의 각각의 경사면에 복수 개의 반사부를 형성함으로써 반사부 패터닝을 수행하는 것을 특징으로 하는 증강 현실용 광학 장치의 제조 방법.In the second step, the method of manufacturing an optical device for augmented reality, characterized in that performing reflector patterning by forming a plurality of reflectors on each inclined surface of the first plate member.
  13. 제1항에 있어서,According to claim 1,
    상기 제2 단계에서, 상기 반사부의 크기가 4mm 이하가 되도록 광반사재가 경사면에 분사되는 것을 특징으로 하는 증강 현실용 광학 장치의 제조 방법.In the second step, the method of manufacturing an optical device for augmented reality, characterized in that the light reflecting material is sprayed on the inclined surface so that the size of the reflecting portion is 4 mm or less.
  14. 제1항에 있어서,According to claim 1,
    상기 제2 판재는 제1 판재와 동일한 재질로 형성된 것을 특징으로 하는 증강 현실용 광학 장치의 제조 방법.The method of manufacturing an optical device for augmented reality, characterized in that the second plate is formed of the same material as the first plate.
  15. 제1항에 있어서,According to claim 1,
    상기 제2 판재의 굴절률은 상기 제1 판재의 굴절률과 0.01 이내의 굴절률 편차를 갖는 것을 특징으로 하는 증강 현실용 광학 장치의 제조 방법.The method of manufacturing an optical device for augmented reality, characterized in that the refractive index of the second plate material has a refractive index deviation of less than 0.01 from the refractive index of the first plate material.
  16. 제1항에 있어서,According to claim 1,
    상기 제4 단계는, 상기 제1 판재에 접착제를 이용해 제2 판재를 접착 적층하는 것을 특징으로 하는 증강 현실용 광학 장치의 제조 방법.The method of manufacturing an optical device for augmented reality, characterized in that in the fourth step, the second plate material is adhered and laminated to the first plate material using an adhesive.
  17. 제16항에 있어서,According to claim 16,
    상기 접착제의 굴절률은 상기 제1 판재 및 제2 판재의 굴절률과 0.01 이내의 굴절률 편차를 갖는 것을 특징으로 하는 증강 현실용 광학 장치의 제조 방법.The method of manufacturing an optical device for augmented reality, characterized in that the refractive index of the adhesive has a refractive index deviation of less than 0.01 from the refractive index of the first plate and the second plate.
  18. 제1항에 있어서,According to claim 1,
    상기 광반사재는 금, 은, 알루미늄 또는 이들의 혼합물로 이루어진 금속 나노입자를 용매에 분산시킨 금속 페이스트인 것을 특징으로 하는 증강 현실용 광학 장치의 제조 방법.The method of manufacturing an optical device for augmented reality, characterized in that the light reflecting material is a metal paste in which metal nanoparticles made of gold, silver, aluminum or a mixture thereof are dispersed in a solvent.
  19. 제1항에 있어서,According to claim 1,
    상기 제4 단계는, 상기 제1 판재를 성형틀로 사용해 주조 방식으로 상기 제1 판재 위에 제2 판재를 성형하는 것을 특징으로 하는 증강 현실용 광학 장치의 제조 방법.In the fourth step, a second plate material is molded on the first plate material by a casting method using the first plate material as a molding mold.
  20. 제1항 내지 제19항 중 어느 한 항에 의한 증강 현실용 광학 장치의 제조 방법에 의해 제조된 증강 현실용 광학 장치.An optical device for augmented reality manufactured by the method of manufacturing an optical device for augmented reality according to any one of claims 1 to 19.
PCT/KR2022/013278 2021-10-20 2022-09-05 Method for manufacturing optical device for augmented reality, and optical device for augmented reality manufactured thereby WO2023068545A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0140277 2021-10-20
KR1020210140277A KR102640066B1 (en) 2021-10-20 2021-10-20 Method for manufacturing optical device for augmented reality and optical device for augmented reality manufactured by using the same

Publications (1)

Publication Number Publication Date
WO2023068545A1 true WO2023068545A1 (en) 2023-04-27

Family

ID=86059381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/013278 WO2023068545A1 (en) 2021-10-20 2022-09-05 Method for manufacturing optical device for augmented reality, and optical device for augmented reality manufactured thereby

Country Status (2)

Country Link
KR (1) KR102640066B1 (en)
WO (1) WO2023068545A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130016292A1 (en) * 2011-07-15 2013-01-17 Google Inc. Eyepiece for near-to-eye display with multi-reflectors
KR20130069523A (en) * 2011-12-15 2013-06-26 주식회사 엘지화학 Reflective polarizing plate
US20190227309A1 (en) * 2016-07-12 2019-07-25 Sony Corporation Dimming device, image display device, and display device
KR20200061043A (en) * 2018-11-23 2020-06-02 엘지디스플레이 주식회사 Head Mounted Display
KR20210046611A (en) * 2017-11-29 2021-04-28 주식회사 레티널 Method for manufacturing an optical device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004061767A (en) * 2002-07-26 2004-02-26 Alps Electric Co Ltd Reflector and manufacturing method therefor, and reflection type liquid crystal display
JP6520015B2 (en) * 2014-08-20 2019-05-29 大日本印刷株式会社 Reflective screen, image display system
CN111373306B (en) 2017-11-29 2023-05-30 株式会社籁天那 Method for manufacturing optical device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130016292A1 (en) * 2011-07-15 2013-01-17 Google Inc. Eyepiece for near-to-eye display with multi-reflectors
KR20130069523A (en) * 2011-12-15 2013-06-26 주식회사 엘지화학 Reflective polarizing plate
US20190227309A1 (en) * 2016-07-12 2019-07-25 Sony Corporation Dimming device, image display device, and display device
KR20210046611A (en) * 2017-11-29 2021-04-28 주식회사 레티널 Method for manufacturing an optical device
KR20200061043A (en) * 2018-11-23 2020-06-02 엘지디스플레이 주식회사 Head Mounted Display

Also Published As

Publication number Publication date
KR20230056348A (en) 2023-04-27
KR102640066B1 (en) 2024-02-23

Similar Documents

Publication Publication Date Title
KR100639575B1 (en) Optical element with light extracting dots and display device using same
KR102661322B1 (en) Method and system for textile scanning projector
WO2020096188A1 (en) Optical device for augmented reality
JP3645698B2 (en) Optical prism, lens frame and optical assembly
WO2012015191A2 (en) Three-dimensional image display panel structure
WO2019124769A1 (en) Optical system and wearable display apparatus having the same
WO2013055020A1 (en) Optical assembly, backlight unit having the same, and display apparatus thereof
WO2023128168A1 (en) Compact augmented reality optical device using embedded collimator and optical element having negative refractive index
WO2011111957A2 (en) Stereolithography apparatus for the rapid production of layer-upon-layer forms
US20220408075A1 (en) Eyewear display device for displaying a virtual image in a field of view of a user, augmented reality eyewear display device
WO2023128167A1 (en) Compact optical device for augmented reality, using negative refraction optical element
WO2022255579A1 (en) Optical apparatus for augmented reality having refractive space
WO2020004850A1 (en) Wearable smart optical system using hologram optical element
WO2017179938A1 (en) Device for photographing eye
KR20150064618A (en) Multi-screen display apparatus
WO2021010603A1 (en) Near-eye display device, augmented reality glasses including same, and operating method therefor
WO2020251083A1 (en) Electronic device
WO2023068545A1 (en) Method for manufacturing optical device for augmented reality, and optical device for augmented reality manufactured thereby
WO2021034096A1 (en) Optical apparatus for augmented reality with vision correction function
CN113574442B (en) Optical system for generating virtual image and intelligent glasses
WO2020197134A1 (en) Optical device for augmented reality using multiple augmented reality images
WO2019107959A1 (en) Method for manufacturing optical device
WO2023043055A1 (en) Method for manufacturing optical device for augmented reality and optical device for augmented reality, which is manufactured thereby
WO2020251084A1 (en) Electronic device
WO2023200123A1 (en) Optical device for augmented reality having extended eyebox

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22883770

Country of ref document: EP

Kind code of ref document: A1