WO2023068273A1 - 装置、基地局及び方法 - Google Patents

装置、基地局及び方法 Download PDF

Info

Publication number
WO2023068273A1
WO2023068273A1 PCT/JP2022/038775 JP2022038775W WO2023068273A1 WO 2023068273 A1 WO2023068273 A1 WO 2023068273A1 JP 2022038775 W JP2022038775 W JP 2022038775W WO 2023068273 A1 WO2023068273 A1 WO 2023068273A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
base station
measurement gap
sharing
bwp
Prior art date
Application number
PCT/JP2022/038775
Other languages
English (en)
French (fr)
Inventor
秀明 ▲高▼橋
智之 山本
Original Assignee
株式会社デンソー
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー, トヨタ自動車株式会社 filed Critical 株式会社デンソー
Priority to JP2023554709A priority Critical patent/JPWO2023068273A1/ja
Priority to CN202280070433.7A priority patent/CN118140518A/zh
Priority to EP22883577.3A priority patent/EP4422258A1/en
Publication of WO2023068273A1 publication Critical patent/WO2023068273A1/ja
Priority to US18/639,392 priority patent/US20240267929A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/231Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the layers above the physical layer, e.g. RRC or MAC-CE signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality

Definitions

  • the present disclosure relates to devices, base stations and methods.
  • Non-Patent Documents 2 to 6 describe signaling and procedures related to P-MG (Pre-configured Measurement Gap), which is different from conventional MG (Legacy Measurement Gap). Unlike conventional MGs, P-MGs can be activated or deactivated.
  • Non-Patent Document 5 describes a discussion of the relationship between conventional MG and P-MG, and a discussion of criteria by which P-MG is activated or deactivated.
  • TS Technical Specification
  • MG sharing MGs are shared when MGs overlap.
  • MG sharing may be configured with MG configuration.
  • the MG sharing setup may be discarded along with the MG setup discard.
  • An object of the present disclosure is to provide an apparatus, base station, and method that enable MG sharing to be applied to MGs that can be in an activated or deactivated state.
  • An apparatus (100) includes information for indicating that a measurement gap is a preset measurement gap, information for indicating whether the preset measurement gap is activated, and , a communication processing unit (135) for receiving a Radio Resource Control (RRC) message containing information about the sharing of the measurement gaps; and information for indicating whether the preset measurement gaps are activated. a control unit (133) for applying measurement gap sharing based on the information on the measurement gap sharing to the preset measurement gap, if the preset measurement gap is activated based on And prepare.
  • RRC Radio Resource Control
  • An apparatus (200) includes information to indicate that a measurement gap is a preset measurement gap, information to indicate whether the preset measurement gap is activated, and , a communication processing unit (245) for transmitting a Radio Resource Control (RRC) message containing information about the sharing of the measurement gap; and information for indicating whether the preset measurement gap is activated. a control unit (243) for applying measurement gap sharing based on the information on the measurement gap sharing to the preset measurement gap, if the preset measurement gap is activated based on And prepare.
  • RRC Radio Resource Control
  • a method performed by an apparatus (100) includes information for indicating that a measurement gap is a preset measurement gap, for indicating whether said preset measurement gap is activated. and receiving a Radio Resource Control (RRC) message containing information about the sharing of the measurement gaps, and information for indicating whether the preset measurement gaps are activated. applying measurement gap sharing based on the information on the measurement gap sharing to the preset measurement gap if the preset measurement gap is activated based on.
  • RRC Radio Resource Control
  • a method performed by an apparatus (200) includes information for indicating that a measurement gap is a preset measurement gap, information for indicating whether said preset measurement gap is activated. and transmitting a Radio Resource Control (RRC) message containing information about the sharing of the measurement gaps, and information for indicating whether the preset measurement gaps are activated. applying measurement gap sharing based on the information on the measurement gap sharing to the preset measurement gap if the preset measurement gap is activated based on.
  • RRC Radio Resource Control
  • FIG. 1 is an explanatory diagram showing an example of a schematic configuration of a system according to an embodiment of the present disclosure
  • FIG. FIG. 4 is an explanatory diagram for explaining an example in which a user device according to an embodiment of the present disclosure measures a signal using MG
  • 2 is a block diagram showing an example of a schematic functional configuration of a user device according to an embodiment of the present disclosure
  • FIG. 2 is a block diagram showing an example of a schematic hardware configuration of a user device according to an embodiment of the present disclosure
  • FIG. 2 is a block diagram showing an example of a schematic functional configuration of a base station according to an embodiment of the present disclosure
  • FIG. 2 is a block diagram showing an example of a schematic hardware configuration of a base station according to an embodiment of the present disclosure
  • FIG. 4 is a diagram for explaining an example of MG setting information according to the first embodiment of the present disclosure
  • FIG. 4 is a diagram for explaining an example of common setting information and P-MG setting information included in MG setting information according to the first embodiment of the present disclosure
  • FIG. FIG. 4 is a diagram for explaining an example of a schematic flow of processing according to the first embodiment of the present disclosure
  • FIG. 4 is a flowchart for explaining an example of a schematic flow of MG setting according to the first embodiment of the present disclosure
  • FIG. 4 is a diagram for explaining a specific example of MG setting according to the first embodiment of the present disclosure
  • FIG. 5 is a diagram for explaining an example of P-MG setting information and P-MG state information included in MG setting information according to the first modification of the first embodiment of the present disclosure
  • FIG. 7 is a diagram for explaining a specific example of MG setting according to the first modification of the first embodiment of the present disclosure
  • FIG. 11 is a flowchart for explaining an example of a schematic flow of processing according to a first operation example of the second embodiment of the present disclosure
  • FIG. FIG. 11 is a flowchart for explaining an example of a schematic flow of MG necessity determination processing according to a first operation example of the second embodiment of the present disclosure
  • FIG. FIG. 11 is a diagram for explaining a specific example of MG setting according to the first operation example of the second embodiment of the present disclosure
  • FIG. 12 is a diagram for explaining an example of MG setting information according to a second operation example of the second embodiment of the present disclosure
  • FIG. FIG. 11 is a flowchart for explaining an example of a schematic flow of processing according to a second operation example of the second embodiment of the present disclosure
  • FIG. 11 is a diagram for explaining a specific example of MG setting according to a second operation example of the second embodiment of the present disclosure
  • FIG. FIG. 12 is a diagram for explaining an example of a schematic flow of processing according to the third embodiment of the present disclosure
  • FIG. FIG. 12 is a flowchart for explaining an example of a schematic flow of activation state determination of MG sharing according to the third embodiment of the present disclosure
  • FIG. FIG. 11 is a diagram for explaining an example of MG sharing activation state determination according to the third embodiment of the present disclosure
  • FIG. 11 is a diagram for explaining another example of MG sharing activation state determination according to the third embodiment of the present disclosure;
  • System configuration 2 Configuration of User Equipment 3 .
  • Configuration of base station 4 First embodiment (MG setting information for P-MG) 5.
  • Second Embodiment MG Activation State Management
  • Third Embodiment Interlocking MG and MG Sharing Activation
  • system 1 includes user equipment 100 and base station 200 .
  • System 1 is a system conforming to 3GPP TS. More specifically, for example, the system 1 is a system conforming to 5G or NR (New Radio) TS. Naturally, the system 1 is not limited to this example.
  • the system 1 may be any other TS compliant system of 3GPP.
  • the system 1 may be a system conforming to LTE, LTE-A (LTE Advanced) or 4G TS, and the base station 200 may be an eNB (evolved Node B).
  • base station 200 may be an ng-eNB.
  • system 1 may be a 3G TS-compliant system and base station 200 may be a NodeB.
  • the system 1 may be a next generation (eg, 6G) TS compliant system.
  • system 1 may be a TS-compliant system of another standards body for mobile communications.
  • UE 100 UE 100 communicates with a base station.
  • UE 100 communicates with base station 200 when located within coverage area 10 of base station 200 .
  • the UE 100 communicates with a base station (eg, base station 200) using a radio access network (RAN) protocol stack.
  • RAN radio access network
  • the protocol stack includes RRC (Radio Resource Control), SDAP (Service Data Adaptation Protocol), PDCP (Packet Data Convergence Protocol), RLC (Radio Link Control), MAC (Medium Access Control), and Physical: PHY) layer protocol.
  • the protocol stack may not include all of these protocols, but some of these protocols.
  • the UE 100 measures the signal transmitted from the base station using the MG.
  • the MG is configured for inter-frequency, inter-system, or intra-frequency measurements.
  • the UE 100 measures the signal by switching the frequency or system during the set MG period.
  • the UE 100 can measure a signal from the base station 200B, which has a different communication frequency than the connected base station 200A. Specifically, the UE 100 does not communicate with the base station 200A during the set MG period, receives the signal transmitted from the base station 200B, and measures the reception quality of the signal. For example, the UE 100 may switch connection from the base station 200A to the base station 200B when the reception quality of the signal from the base station 200B is better than the reception quality of the signal from the base station 200A.
  • Base station 200 The base station 200 is a node of the RAN and communicates with UEs (eg, UE 100) located within the coverage area 10 of the base station 200.
  • UEs eg, UE 100
  • the base station 200 communicates with the UE (eg, UE 100) using the above protocol stack.
  • the UE eg, UE 100
  • the base station 200 is a gNB.
  • a gNB is a node that provides NR user plane and control plane protocol terminations towards the UE and is connected to the 5GC (5G Core Network) via the NG interface.
  • base station 200 may be an en-gNB.
  • An en-gNB is a node that provides NR user plane and control plane protocol termination for UEs and acts as a secondary node in EN-DC (E-UTRA-NR Dual Connectivity).
  • the base station 200 may include multiple nodes.
  • the plurality of nodes may include a first node that hosts a higher layer included in the protocol stack and a second node that hosts a lower layer included in the protocol stack. good.
  • the upper layers may include RRC, SDAP and PDCP, and the lower layers may include RLC, MAC and PHY layers.
  • the first node may be a CU (central unit), and the second node may be a DU (Distributed Unit).
  • the plurality of nodes may include a third node that performs lower-level processing of the PHY layer, and the second node may perform higher-level processing of the PHY layer.
  • the third node may be an RU (Radio Unit).
  • the base station 200 may be one of the plurality of nodes, or may be connected to another unit of the plurality of nodes.
  • the base station 200 may be an IAB (Integrated Access and Backhaul) donor or an IAB node.
  • IAB Integrated Access and Backhaul
  • the UE 100 includes a wireless communication unit 110, a storage unit 120 and a processing unit .
  • the wireless communication unit 110 wirelessly transmits and receives signals.
  • the wireless communication unit 110 receives signals from base stations and transmits signals to the base stations.
  • the radio communication unit 110 receives signals from other UEs and transmits signals to other UEs.
  • the storage unit 120 stores various information for the UE 100.
  • the processing unit 130 provides various functions of the UE 100.
  • the processing unit 130 includes an information acquisition unit 131 , a control unit 133 and a communication processing unit 135 .
  • the processing unit 130 may further include components other than these components. That is, the processing unit 130 can perform operations other than those of these components. Specific operations of the information acquisition unit 131, the control unit 133, and the communication processing unit 135 will be described in detail later.
  • the processing unit 130 communicates with a base station (for example, the base station 200) or another UE via the wireless communication unit 110.
  • a base station for example, the base station 200
  • another UE via the wireless communication unit 110.
  • UE 100 comprises antenna 181 , RF (radio frequency) circuitry 183 , processor 185 , memory 187 and storage 189 .
  • RF radio frequency
  • Antenna 181 converts a signal into radio waves and radiates the radio waves into space. Also, the antenna 181 receives radio waves in space and converts the radio waves into signals.
  • Antenna 181 may include a transmit antenna and a receive antenna, or may be a single antenna for transmission and reception.
  • Antenna 181 may be a directional antenna and may include multiple antenna elements.
  • the RF circuit 183 performs analog processing of signals transmitted and received via the antenna 181 .
  • RF circuitry 183 may include high frequency filters, amplifiers, modulators, low pass filters, and the like.
  • the processor 185 performs digital processing of signals transmitted and received via the antenna 181 and the RF circuit 183.
  • the digital processing includes processing of the protocol stack of the RAN.
  • Processor 185 may include multiple processors or may be a single processor.
  • the multiple processors may include a baseband processor that performs the digital processing and one or more processors that perform other processing.
  • the memory 187 stores programs executed by the processor 185, parameters related to the programs, and various other information.
  • the memory 187 may include at least one of ROM (Read Only Memory), EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable Read Only Memory), RAM (Random Access Memory), and flash memory. All or part of memory 187 may be included within processor 185 .
  • the storage 189 stores various information.
  • the storage 189 may include at least one of SSD (Solid State Drive) and HDD (Hard Disc Drive).
  • the wireless communication unit 110 may be implemented by an antenna 181 and an RF circuit 183.
  • Storage unit 120 may be implemented by storage 189 .
  • Processing unit 130 may be implemented by processor 185 and memory 187 .
  • the processing unit 130 may be implemented by an SoC (System on Chip) including a processor 185 and a memory 187.
  • SoC System on Chip
  • the SoC may include RF circuitry 183 and the wireless communication unit 110 may also be implemented by the SoC.
  • the UE 100 may include a memory that stores the program (ie, memory 187) and one or more processors that can execute the program (ie, processor 185).
  • One or more processors may execute the programs described above to perform the operations of the processing unit 130 .
  • the program may be a program for causing the processor to execute the operation of the processing unit 130 .
  • the base station 200 includes a wireless communication unit 210, a network communication unit 220, a storage unit 230 and a processing unit 240.
  • FIG. 5 An example of the functional configuration of the base station 200 according to the embodiment of the present disclosure will be described with reference to FIG. Referring to FIG. 5, the base station 200 includes a wireless communication unit 210, a network communication unit 220, a storage unit 230 and a processing unit 240.
  • the wireless communication unit 210 wirelessly transmits and receives signals.
  • the radio communication unit 210 receives signals from UEs and transmits signals to the UEs.
  • the network communication unit 220 receives signals from the network and transmits signals to the network.
  • the storage unit 230 stores various information for the base station 200.
  • the processing unit 240 provides various functions of the base station 200.
  • the processing unit 240 includes an information acquisition unit 241 , a control unit 243 and a communication processing unit 245 .
  • the processing unit 240 may further include other components other than these components. That is, the processing unit 240 can perform operations other than those of these components. Specific operations of the information acquisition unit 241, control unit 243, and communication processing unit 245 will be described in detail later.
  • the processing unit 240 communicates with the UE (eg, UE 100) via the wireless communication unit 210.
  • the processing unit 240 (communication processing unit 245) communicates with other nodes (for example, network nodes in the core network or other base stations) via the network communication unit 220.
  • base station 200 comprises antenna 281 , RF circuitry 283 , network interface 285 , processor 287 , memory 289 and storage 291 .
  • the antenna 281 converts the signal into radio waves and radiates the radio waves into space. Also, the antenna 281 receives radio waves in space and converts the radio waves into signals.
  • Antenna 281 may include a transmit antenna and a receive antenna, or may be a single antenna for transmission and reception. Antenna 281 may be a directional antenna and may include multiple antenna elements.
  • the RF circuit 283 performs analog processing of signals transmitted and received via the antenna 281 .
  • RF circuitry 283 may include high frequency filters, amplifiers, modulators, low pass filters, and the like.
  • the network interface 285 is, for example, a network adapter, which transmits signals to and receives signals from the network.
  • the processor 287 performs digital processing of signals transmitted and received via the antenna 281 and the RF circuit 283.
  • the digital processing includes processing of the protocol stack of the RAN.
  • Processor 287 also processes signals sent and received via network interface 285 .
  • Processor 287 may include multiple processors or may be a single processor.
  • the multiple processors may include a baseband processor that performs the digital processing and one or more processors that perform other processing.
  • the memory 289 stores programs executed by the processor 287, parameters related to the programs, and various other information.
  • Memory 289 may include at least one of ROM, EPROM, EEPROM, RAM, and flash memory. All or part of memory 289 may be included within processor 287 .
  • the storage 291 stores various information.
  • the storage 291 may include at least one of SSD and HDD.
  • the wireless communication unit 210 may be implemented by an antenna 281 and an RF circuit 283.
  • Network communication unit 220 may be implemented by network interface 285 .
  • Storage unit 230 may be implemented by storage 291 .
  • Processing unit 240 may be implemented by processor 287 and memory 289 .
  • a part or all of the processing unit 240 may be virtualized. In other words, part or all of the processing unit 240 may be implemented as a virtual machine. In this case, part or all of the processing unit 240 may operate as a virtual machine on a physical machine (that is, hardware) including a processor, memory, etc. and a hypervisor.
  • the base station 200 may include a memory for storing programs (ie, memory 289) and one or more processors (ie, processor 287) capable of executing the programs.
  • the one or more processors may execute the program to perform the operation of the processing unit 240 .
  • the program may be a program for causing the processor to execute the operation of the processing unit 240 .
  • First Embodiment> A first embodiment of the present disclosure will be described.
  • the MG configuration information for the P-MG jointly utilizes the MG configuration information for the conventional MG.
  • UE 100 receives MG configuration information from base station 200 .
  • the UE 100 sets the MG based on the common setting information and the P-MG setting information included in the received MG setting information.
  • the operation of the UE 100 and related information will be described in detail below.
  • the UE 100 receives MG setting information from the base station 200 .
  • UE 100 (communication processing unit 135 ) receives an RRC message including MG setting information from base station 200 .
  • UE 100 (information acquisition unit 131) acquires the MG setting information included in the RRC message.
  • MG setting information includes common setting information used in conventional MG (first MG) and P-MG (second MG), and P-MG setting information indicating that P-MG is set. .
  • the P-MG configuration information indicates activation or deactivation of the P-MG when the P-MG is configured.
  • the P-MG setting information indicates that the P-MG is not set when the P-MG is not set.
  • the MG setting information is MeasGapConfig, which is an RRC IE (Information Element).
  • the common setting information includes at least one parameter included in GapConfig set in MeasGapConfig.
  • P-MG setting information is included in GapConfig.
  • MeasGapConfig indicates whether MG is configured and can take values of setup or release.
  • MeasGapConfig includes parameters such as gapUE, gapFR1, and gapFR2.
  • This parameter is a setting presence/absence parameter indicating whether or not the MG is set for the unit in which the MG is set, and can take a value of setup or release.
  • gapUE is setup
  • MG is set for each UE (per UE)
  • gapFR1 and gapFR2 are setup
  • MG is set for each FR (per frequency range).
  • the setting presence/absence parameter is setup, the IE GapConfig is set as the value.
  • the MG configuration parameters for each unit are contained in GapConfig.
  • GapConfig includes parameters such as gapOffset, mgl, mgrp, mgta, refServCellIndicator, refFR2ServCellAsyncCA-r16 and mgl-r16 as common setting information.
  • gapOffset indicates the offset of the gap pattern with MGRP (Measurement Gap Repetition Period).
  • mgl and mgl-r16 indicate the length of MG, that is, MGP (Measurement Gap Length).
  • mgrp indicates the MG repetition period, ie, MGRP.
  • mgta indicates the timing advance of MG.
  • refServCellIndicator and refFR2ServCellAsyncCA-r16 indicate the SFN (System Frame Number) and subframe of the serving cell used for MG calculation.
  • the above parameters as common configuration information can be used in both conventional MG and P-MG. Note that the common setting information may be at least one of the above parameters.
  • GapConfig includes preconfiguredGap-r17 as P-MG setting information.
  • preconfiguredGap-r17 indicates whether the P-MG is configured and can take the values setup or release. If preconfiguredGap-r17 is setup, P-MG is set. In other words, the MG is preconfigured. In this case, the IE PreconfiguredGapConfig-r17 is set as the value.
  • PreconfiguredGapConfig-r17 contains preconfiguredGapState-r17. preconfiguredGapState-r17 indicates whether the P-MG is activated or deactivated. PreconfiguredGap-r17 as the setting information of the P-MG is optional.
  • P-MG setting information indicates activation or deactivation of P-MG.
  • information indicating activation or deactivation of the P-MG can be included in the MG setting information only when the P-MG is set. Therefore, it is possible to improve the efficiency of signaling. Also, by managing the activation or deactivation of MG as a state, it is possible to control whether or not to apply MG without discarding the MG settings.
  • the P-MG setting information indicates that the P-MG is not set. This can clearly indicate that the P-MG is not set. Also, it is possible to specify whether the applied MG is a conventional MG or a P-MG. Therefore, inconsistency of MG setting information between the UE 100 and the base station 200 can be suppressed.
  • the MG setting information is MeasGapConfig
  • the common setting information includes at least one parameter included in GapConfig set in MeasGapConfig
  • the P-MG setting information is included in GapConfig.
  • An RRC message containing MG configuration information may be an RRCReconfiguration message or a RRCResume message.
  • MG configuration information including P-MG configuration information can be transmitted from the base station 200 to the UE 100 using existing signaling between the UE and the base station. Therefore, addition of new signaling can be prevented.
  • the RRC message including the MG configuration information including the P-MG configuration information is an additionally defined RRC message, which is an RRC message for transmitting the MG configuration information including the P-MG configuration information. There may be.
  • MG configuration information including P-MG configuration information can be transmitted to UE 100 without changing existing RRC messages.
  • the UE 100 sets the MG based on the MG setting information. Specifically, UE 100 (control unit 133 ) sets conventional MG or P-MG based on MG setting information included in the RRC message received from base station 200 .
  • the UE 100 sets the P-MG when the P-MG setting information included in the MG setting information indicates that the P-MG is set. Also, the UE 100 sets the conventional MG when the P-MG setting information indicates that the P-MG is not set.
  • UE 100 sets P-MG when preconfiguredGap-r17 included in Gapconfig shown in FIG. 8 is setup. That is, PreconfiguredGapConfig-r17 is set, which includes preconfiguredGapState-r17 set to activation or deactivation as a parameter.
  • the UE 100 sets the conventional MG. Therefore PreconfiguredGapConfig-r17 is not set. That is, the P-MG mechanism is not applied to MG. Therefore, MG is not controlled using the state of activation. In other words, it can be said that MG is always in an activated state. Thus, when the P-MG setting information indicates that the P-MG is not set, the conventional MG is set, thereby maintaining compatibility with the conventional MG.
  • Base station 200 sets either conventional MG or P-MG.
  • the base station 200 transmits MG configuration information including common configuration information and P-MG configuration information to the UE 100 .
  • the operation of the base station 200 and related information will be described in detail below. In addition, detailed description of the contents that are substantially the same as the description of the operation of the UE 100 will be omitted.
  • (2-1) Setting MG Base station 200 sets either conventional MG or P-MG. Specifically, the base station 200 (control unit 243) selectively sets conventional MG or P-MG based on conditions. For example, the conventional MG or P-MG is selectively set based on the presence or absence of an MG setting request from the UE 100, or the adaptability or ability of the UE 100 to the P-MG.
  • the base station 200 sets the common setting information and the P-MG setting information. For example, the base station 200 sets MeasGapConfig as MG configuration information, sets one parameter included in GapConfig as common configuration information, and preconfiguredGap-r17 as P-MG configuration information.
  • the base station 200 sets preconfiguredGap-r17 to setup and sets PreconfiguredGapConfig-r17 including preconfiguredGapState-r17 set to activation or deactivation as a parameter. Also, when P-MG is not set, base station 200 sets preconfiguredGap-r17 to release.
  • the base station 200 transmits MG setting information to the UE 100 .
  • the base station 200 (information acquisition unit 241) acquires MG setting information.
  • the base station 200 (communication processing unit 245) transmits an RRC message including the acquired MG setting information to the UE100.
  • the base station 200 transmits to the UE 100 an RRC message including MG configuration information including common configuration information for the configured MG and configuration information for the P-MG.
  • the RRC message including the MG configuration information may be the RRCReconfiguration message or the RRCResume message.
  • FIG. 9 (3) Flow of Processing An example of processing according to the first embodiment of the present disclosure will be described with reference to FIGS. 9 and 10.
  • FIG. 9 (3) Flow of Processing An example of processing according to the first embodiment of the present disclosure will be described with reference to FIGS. 9 and 10.
  • the base station 200 sets the MG (S310). For example, base station 200 configures P-MG. That is, settings are made for common setting information and P-MG setting information.
  • the base station 200 transmits an RRC message including MG setting information to the UE 100 (S320). For example, the base station 200 transmits to the UE 100 an RRCReconfiguration message or a RRCResume message including measGapConfig as MG configuration information including common configuration information and P-MG configuration information.
  • the UE 100 transmits a response message to the received RRC message to the base station 200 (S330). For example, upon receiving an RRCReconfiguration message or RRCResume message including measGapConfig from base station 200 , UE 100 transmits an RRCReconfigurationComp message or RRCResumeComp message to base station 200 . If the activation state of the P-MG is changed at this timing, the response message contains information indicating the activation state of the P-MG (that is, information indicating activation or deactivation). may
  • the UE 100 acquires MG setting information from the received RRC message (S340). For example, the UE 100 acquires measGapConfig as MG configuration information from the received RRCReconfiguration message or RRCResume message.
  • the UE 100 sets the MG based on the common setting information and the P-MG setting information included in the acquired MG setting information (S350). For example, the UE 100 sets either the conventional MG or the P-MG based on the P-MG setting information included in the acquired measGapConfig. Details of the MG setting will be described later with reference to FIG.
  • the UE 100 determines whether or not the setting information of the P-MG indicates release (S410). For example, the UE 100 determines whether preconfiguredGap-r17 included in GapConfig set as the value of the parameter set in setup among gapUE, gapFR1, or gapFR2 in measGapConfig is setup or release.
  • the UE 100 determines whether or not the P-MG setting information indicates activated (S420). For example, when preconfiguredGap-r17 is setup, UE 100 determines whether preconfiguredGapState-r17 included in PreconfiguredGapConfig-r17 set as the value of preconfiguredGap-r17 is activated or deactivated.
  • the UE 100 sets the MG in activated state (S430). For example, when preconfiguredGapState-r17 is activated, UE 100 configures an MG whose activation state is activated. In other words, the UE 100 operates as if the P-MG is activated.
  • the UE 100 sets the MG in deactivated state (S440).
  • UE 100 configures an MG whose activation state is deactivated. In other words, the UE 100 operates as if the P-MG is deactivated.
  • the UE 100 sets the conventional MG (S450). For example, UE 100 sets the conventional MG when preconfiguredGap-r17 is release. That is, PreconfiguredGapConfig-r17 is not set. In this case, as in the conventional case, the MG settings in measGapConfig continue to be applied until measGapConfig is released.
  • the above P-MG settings can be reflected in the TS.
  • the information 25 in FIG. 11 is an example of reflecting the setting of the P-MG to the TS.
  • the mode of reflecting the setting of the P-MG to the TS is not limited to this.
  • an RRC message including MG setting information is transmitted from the base station to the UE 100, and the MG setting information is used in conventional MG and P-MG. and P-MG configuration information indicating that the P-MG is configured.
  • the MG setting information can be used separately for the conventional MG and for the P-MG.
  • the configuration of the conventional MG can be transformed into the configuration of the P-MG, or the configuration of the P-MG can be transformed into the configuration of the conventional MG.
  • information other than P-MG setting information may indicate P-MG activation or deactivation.
  • the P-MG configuration information indicates whether or not the P-MG is configured, and the P-MG state information separate from the P-MG configuration information indicates activation or deactivation of the P-MG. indicates activation.
  • GapConfig includes preconfiguredGap-r17 as P-MG configuration information and preconfiguredGapState-r17 as P-MG state information as parameters.
  • preconfiguredGap-r17 indicates whether P-MG is configured and can take the value of TRUE or FALSE.
  • preconfiguredGapState-r17 indicates whether the P-MG is activated or deactivated.
  • preconfiguredGapState-r17 is set if preconfiguredGap-r17 is TRUE.
  • the UE 100 determines whether the P-MG setting information indicates TRUE. For example, the UE 100 determines whether preconfiguredGap-r17 included in GapConfig is TRUE or FALSE.
  • the UE 100 determines whether the P-MG state information indicates activated. For example, when preconfiguredGap-r17 is TRUE, UE 100 determines whether preconfiguredGapState-r17 is activated or deactivated.
  • the UE 100 sets the MG in activated state.
  • the UE 100 sets the MG in deactivated state.
  • the UE 100 sets the conventional MG.
  • the above P-MG settings can be reflected in the TS.
  • the information 29 in FIG. 13 is an example of reflecting the P-MG setting to the TS.
  • the mode of reflecting the settings of the P-MG to the TS is not limited to this.
  • information other than the P-MG setting information indicates activation or deactivation of the P-MG.
  • the activation state of the P-MG can be controlled without the P-MG setting information being kept in the UE 100 .
  • the P-MG setting information and the P-MG state information it is possible to indicate the activation state of the P-MG to the UE 100 regardless of the setting of the P-MG.
  • activation states can be indicated at the RRC layer or PHY layer, or changed with other triggers (eg, timer-based BWP switching).
  • P-MG setting information indicates whether or not P-MG is set. indicates
  • the P-MG setting information according to the first embodiment of the present disclosure is not limited to this example.
  • the P-MG setting information may indicate whether or not the P-MG is set according to the presence/absence.
  • the P-MG setting information may not be included in the MG setting information if the P-MG is not set. More specifically, the P-MG setting information may be information indicating the activation state.
  • the P-MG configuration information may be preconfiguredGapState-r17 as shown in FIG. preconfiguredGapState-r17 is included in GapConfig if P-MG is configured and not included in GapConfig if P-MG is not configured.
  • P-MG configuration information is not included in MG configuration information when P-MG is not configured.
  • the amount of communication in signaling can be suppressed while indicating whether or not the P-MG is set.
  • MG setting information is shared between conventional MG and P-MG be done.
  • the MG setting information according to the first embodiment of the present disclosure is not limited to this example.
  • MG setting information may be defined individually for each of conventional MG and P-MG.
  • the MG setting information for the conventional MG and the MG setting information for the P-MG can be independently included in the measurement setting information.
  • MeasConfig can include measGapConfig for conventional MG and measGapConfig for P-MG.
  • the MG setting information for the conventional MG is the conventional MG setting information.
  • the MG setting information for the P-MG includes the P-MG setting information as described above in addition to the conventional MG setting information.
  • the MG setting information for the P-MG may partially include the P-MG setting information as described above. Specifically, only information indicating the activation state of the P-MG may be included in the MG configuration information. For example, instead of preconfiguredGap-r17 shown in FIG. 8, only preconfiguredGapState-r17 may be included in GapConfig. Alternatively, the information indicating the activation state of the P-MG may be included directly under the measurement configuration information without being included in the MG configuration information. For example, preconfiguredGapState-r17 shown in FIG. 8 may be included in parallel with measGapConfig directly under MeasConfig.
  • the network (that is, the base station 200) sets only one MG when setting the MG. That is, the base station 200 generates only one of MG configuration information for conventional MG and MG configuration information for P-MG.
  • the UE 100 may select one piece of MG setting information. For example, UE 100 leaves the MG setting information for P-MG and discards the conventional MG setting information ( discard). If only one of the MG setting information about the conventional MG and the MG setting information about the P-MG is included, the MG is set based on the included MG setting information.
  • MG setting information is individually defined for each of the conventional MG and P-MG.
  • the MG setting information for the conventional MG and the MG setting information for the P-MG can be managed independently. Therefore, different settings can be easily applied between the conventional MG and the P-MG. For example, it becomes easier to identify and manage settings that are used only for P-MG or only for conventional MG.
  • Second Embodiment> A second embodiment of the present disclosure will be described.
  • the activation state of MG is set according to the BWP after switching.
  • the activation state of the P-MG is set according to the BWP after switching.
  • First operation example> A first operation example of the second embodiment of the present disclosure will be described.
  • the MG activation state is set according to the MG requirement in the post-switch BWP.
  • the UE 100 determines whether or not BWP switching has occurred. Specifically, the UE 100 (control unit 133) determines whether or not BWP switching based on the timer has occurred.
  • the UE 100 determines whether the timer for BWP switching has expired.
  • the timer is the BWP inactivity timer.
  • the BWP switches to a predetermined BWP.
  • the predetermined BWP is the default DL (Downlink) BWP. If the default DL BWP is not set, the predetermined BWP may be the initial DL BWP.
  • the predetermined BWP may be a specific BWP other than the default DL BWP or the initial DL BWP.
  • the UE 100 determines the necessity of MG in BWP after switching. Specifically, the UE 100 determines the necessity of the MG based on the conventional criteria for determining the necessity of the MG. For example, the UE 100 determines whether MG is required for Measurement described in 3GPP TS38.300 (i.e. gap-assisted or non-gap-assisted) based on the conditions that determine the necessity of MG. do. Also, the need for MG is determined for a measurement scheme based on a predetermined control signal. In other words, the predetermined control signal is the signal used for measurement.
  • the need for MG may be determined based on a report on the need for MG from UE 100 in BWP after switching.
  • the measurement method is SSB (Synchronization Signal Block)-based inter-frequency measurement or SSB-based intra-frequency measurement
  • UE 100 determines whether MG requirement information is reported to base station 200 or not. determine gender.
  • UE 100 determines that MG is required when reporting MG requirement information.
  • the report is the transmission of an RRC message such as RRCReconfigurationComp or RRCResumeComp containing MG requirement information.
  • the need for MG may be determined based on the UE 100's capability for BWP after switching. For example, when the measurement method is SSB-based inter-frequency measurement, UE 100 determines the necessity of MG according to the type of MG it supports for BWP after switching. UE 100 determines that MG is required when it itself supports only per-UE MG.
  • the need for MG may be determined based on the frequency for measurement in the serving cell in the post-switch BWP. For example, when the measurement method is SSB-based inter-frequency measurement, UE 100 has the same frequency range for measurement in multiple serving cells in BWP after switching when it supports per-FR MG. The necessity of MG is determined according to whether or not. UE 100 determines that MG is required when the frequency range for measurement in multiple serving cells is the same.
  • the necessity of MG may be determined based on the frequency resource of the predetermined control signal in the BWP after switching. For example, when the measurement method is SSB-based intra-frequency measurement, UE 100 determines the necessity of MG depending on whether or not the BWP after switching includes SSB frequency resources related to the initial DL BWP. The UE 100 determines that MG is required when the BWP after switching does not include the frequency resource of the SSB.
  • the measurement method may be CSI-RS (Cannel State Information Reference Signal)-based inter-frequency measurement.
  • CSI-RS Cell State Information Reference Signal
  • the UE 100 sets the MG activation state according to the necessity of the MG. Specifically, the UE 100 (control unit 133) sets activation or deactivation of the MG according to the necessity of the MG in the BWP after switching.
  • the UE 100 activates MG when MG is required in BWP after switching. That is, the state is set to activated. If the MG is not needed in the post-switch BWP, deactivate the MG. That is, the state is set to deactivation.
  • the base station 200 determines the necessity of MG when BWP switching occurs.
  • the base station 200 sets the MG activation state according to the MG's need.
  • detailed description of the contents that are substantially the same as the description of the operation of the UE 100 will be omitted.
  • the base station 200 determines whether or not BWP switching has occurred. Specifically, base station 200 (control unit 243) determines whether or not BWP switching based on a timer has occurred. Since the determination of BWP switching based on the timer is substantially the same as the operation of the UE 100, the description is omitted.
  • Base station 200 determines necessity of MG in BWP after switching. Specifically, base station 200 determines the necessity of MG based on the conditions described in 3GPP TS38.300, similar to the operation of UE 100 .
  • the determination of the necessity of MG is substantially the same as the operation of UE 100 except for the determination of necessity of MG based on the report on the necessity of MG from UE 100, so description thereof will be omitted.
  • base station 200 In determining the necessity of MG based on the report on the necessity of MG from UE 100, base station 200 operates differently from UE 100 in that it is reported from UE 100.
  • the base station 200 determines the necessity of MG according to whether MG requirement information has been reported from the UE 100 or not. The base station 200 determines that MG is required when MG requirement information is reported. Note that the base station 200 may request a report of MG requirement information. For example, base station 200 may transmit to UE 100 an RRC message such as RRC Reconfiguration or RRC Resume that includes information for causing UE 100 to report MG requirement information.
  • RRC message such as RRC Reconfiguration or RRC Resume that includes information for causing UE 100 to report MG requirement information.
  • the base station 200 sets the MG activation state according to the necessity of the MG. Specifically, the base station 200 (control unit 243) sets activation or deactivation of MG according to the necessity of MG in BWP after switching. Since the setting of the activation state is substantially the same as the operation of the UE 100, the description is omitted.
  • the UE 100 and the base station 200 determine whether or not BWP switching has occurred based on the timer (S510). For example, the UE 100 and the base station 200 determine whether or not the BWP switching timer has expired.
  • the UE 100 and the base station 200 determine whether MG is required in the BWP after switching (S520). For example, when the timer for BWP switching expires, UE 100 and base station 200 determine the necessity of MG in BWP after switching based on the MG required conditions described in TS38.300. Details will be described later with reference to FIG. 15 .
  • the UE 100 and the base station 200 set an activated MG (S530). For example, if MG is required in BWP after switching, UE 100 and base station 200 configure MG whose activation state is activated. In other words, UE 100 and base station 200 operate as MG is activated.
  • the UE 100 and the base station 200 set the deactivated MG (S540). For example, if MG is not required in BWP after switching, UE 100 and base station 200 configure MG whose activation state is deactivated. In other words, UE 100 and base station 200 operate as if MG is deactivated.
  • the UE 100 and the base station 200 determine whether or not the UE 100 reports the necessity of MG for the BWP after switching (S610). For example, UE 100 determines whether or not to report MG requirement information to base station 200 . Also, the base station 200 determines whether or not MG requirement information has been reported from the UE 100 .
  • the UE 100 and the base station 200 determine whether the capability of the UE 100 is suitable for the BWP after switching (S620). For example, UE 100 and base station 200 determine whether UE 100 supports only per-UE MG for BWP after switching. When only per-UE MG is supported, it can be said that UE 100 is not adapted to BWP after switching.
  • the UE 100 and the base station 200 determine whether or not the BWP after switching has the same measurement frequency in a plurality of serving cells (S630). For example, the UE 100 and the base station 200 determine whether or not the frequency ranges for measurement in multiple serving cells are the same for the BWP after switching.
  • the UE 100 and the base station 200 determine whether or not the BWP after switching includes the frequency resource of the predetermined control signal (S640). For example, the UE 100 and the base station 200 determine whether or not the BWP after switching includes SSB frequency resources related to the initial BWP.
  • the MG setting according to the first operation example described with reference to FIGS. 14 and 15 can be reflected in the TS.
  • Information 35 in FIG. 16 is an example of reflecting the setting of the MG to the TS.
  • the mode of reflecting the setting of the MG to the TS is not limited to this.
  • the BWP after switching MG activation or deactivation is set accordingly.
  • the same activation state according to the BWP after switching can be set in the UE 100 and the base station 200 without signaling between the UE 100 and the base station 200 . Therefore, it is possible to suppress the deterioration of signaling efficiency while matching the MG activation state between the network and the UE.
  • activation or deactivation of MG is set according to the necessity of MG in BWP after switching. Thereby, the same activation state suitable for BWP after switching can be set in the UE 100 and the base station 200 respectively.
  • the necessity of the MG in the BWP after switching is determined based on the criteria for determining the necessity of the first MG (conventional MG).
  • the need for MG may be based on reports of need for MG from UE 100 in post-switch BWP.
  • the need for MG may be based on the UE 100's capability for BWP after switching.
  • the MG need may be based on the frequency for measurements in the serving cell in the post-switch BWP.
  • the MG need may be based on resources for a given control signal in the post-switch BWP.
  • the necessity of MG may be about the method of measurement based on a predetermined control signal.
  • the predetermined control signal may be SSB or CSI-RS.
  • BWP switching includes timer-based BWP switching.
  • the UE and the base station operate independently for BWP switching, ie, set the MG activation state independently.
  • the activation state may be inconsistencies in the activation state between the UE and the base station, since the activation state is not synchronized or signaled between the UE and the base station.
  • synchronizing or signaling activation status in the UE and base station is undesirable as it would add signaling.
  • the activation state during BWP switching is set between the UE 100 and the base station 200 using a common criterion of necessity of MG. Therefore, even with timer-based BWP switching, the activation state can be aligned between the UE 100 and the base station 200 without signaling for activation state synchronization or notification.
  • switching of BWPs includes switching to a predetermined BWP, and the predetermined BWP includes a default BWP or an initial BWP. Accordingly, by defining the operation for switching to a specific BWP, it is possible to prevent complication of setting the activation state according to BWP switching.
  • Second operation example> Next, a second operation example of the second embodiment of the present disclosure will be described.
  • the activation state of the MG is set based on the setting of the activation state corresponding to the BWP after switching. Detailed descriptions of the contents that are substantially the same as those described in the first operation example will be omitted.
  • the UE 100 sets the activation state of the MG based on the setting of the activation state corresponding to BWP switching.
  • the UE 100 determines whether or not BWP switching has occurred. Specifically, the UE 100 (control unit 133) determines whether or not BWP switching based on the timer has occurred. Determination of BWP switching based on the timer is substantially the same as in the first operation example, so description thereof is omitted.
  • the UE 100 sets the MG activation state. Specifically, the UE 100 (control unit 133) sets activation or deactivation of the MG based on the setting of the activation state corresponding to the BWP after switching.
  • the UE 100 sets MG activation or deactivation based on the default setting of the activation state corresponding to the post-switch BWP.
  • the default setting indicates activation or deactivation of MG.
  • the UE 100 activates the MG if the default setting indicates activation. That is, the state is set to activated. If the default setting indicates deactivation, the UE 100 deactivates the MG. That is, the state is set to deactivation.
  • the activation state setting corresponding to the BWP after switching is included in the MG setting.
  • PreconfiguredGap-r17 is set in the case of setup, and PreconfiguredGapConfig-r17 includes defaultBWP-PreconfigurdGapState-r17 as the default setting .
  • defaultBWP-PreconfigurdGapState-r17 can take the value of activated or deactivated.
  • the UE 100 receives an RRC message containing MG setting information indicating MG settings including activation state settings corresponding to BWP after switching.
  • MG setting information indicating MG settings including activation state settings corresponding to BWP after switching.
  • preconfiguredGap-r17 including defaultBWP-PreconfigurdGapState-r17 is included in GapConfig.
  • MeasGapConfig as MG setting information including GapConfig is an RRC Information Element and is included in the RRC message.
  • the RRC message may be, for example, an RRCReconfiguration message or a RRCResume message.
  • the MG setting information including the setting of the activation state corresponding to the BWP of the switch may be the MG setting information according to the first embodiment, or may be the MG setting information according to the second modification of the first embodiment. It may be MG setting information for such P-MG.
  • the base station 200 determines whether or not BWP switching has occurred. Specifically, base station 200 (control unit 243) determines whether or not BWP switching based on a timer has occurred. Determination of BWP switching based on the timer is substantially the same as in the first operation example, so description thereof is omitted.
  • the base station 200 sets the MG activation state. Specifically, the base station 200 (control unit 243) sets activation or deactivation of the MG based on the setting of the activation state corresponding to the BWP after switching. Since the setting of the activation state is substantially the same as the operation of the UE 100, the description is omitted.
  • the UE 100 and the base station 200 determine whether or not BWP switching has occurred based on the timer (S710).
  • the UE 100 and the base station 200 determine whether the MG state setting corresponding to the BWP switch is activated (S720). For example, when the BWP switching timer expires, the UE 100 and the base station 200 determine whether or not the default setting of the activation state corresponding to the BWP after switching is activated.
  • the UE 100 and the base station 200 set the MG in the activated state (S730). For example, when the default setting of the activation state corresponding to the BWP after switching is activated, the UE 100 and the base station 200 set the MG whose activation state is activated. In other words, UE 100 and base station 200 operate as MG is activated.
  • the UE 100 and the base station 200 set the MG to the deactivated state (S740). For example, if the default setting of the activation state corresponding to the BWP after switching is deactivated, the UE 100 and the base station 200 set the MG whose activation state is deactivated. In other words, UE 100 and base station 200 operate as if MG is deactivated.
  • the information 45 in FIG. 19 is an example of reflecting the setting of the MG to the TS.
  • the mode of reflecting the setting of the MG to the TS is not limited to this.
  • the activation state of the MG between the network and the UE is matched. It is possible to suppress the deterioration of the efficiency of signaling while keeping the
  • MG activation or deactivation is set based on the setting of the activation state corresponding to the BWP after switching.
  • the same activation state can be set in the UE 100 and the base station 200 at the time of BWP switching.
  • the activation state at the time of BWP switching can be specified without depending on the existing TS.
  • the activation state setting corresponding to the BWP after switching is included in the MG setting.
  • the base station 200 transmits to the UE 100 an RRC message containing MG setting information indicating MG settings including activation state settings corresponding to the post-switch BWP.
  • the existing MG setting information can be used to notify the UE 100 of the setting of the activation state corresponding to the BWP after switching.
  • the activation state setting indicates the activation or deactivation of the MG corresponding to the BWP after switching.
  • the setting value directly indicates the activation state, thereby simplifying the setting of the activation state.
  • BWP switching based on DL control signal
  • BWP switching is timer-based BWP switching.
  • BWP switching according to the second embodiment of the present disclosure is not limited to this example.
  • the BWP switching may be BWP switching based on the DL control signal.
  • the UE 100 receives the DL control signal.
  • the UE 100 determines whether information indicating BWP switching is included in the received DL control signal.
  • the UE 100 determines whether DCI (Downlink Control Information) indicating BWP switching has been received on the PDCCH (Physical Downlink Control Channel).
  • DCI Downlink Control Information
  • BWP switching includes BWP switching based on the DL control signal. Therefore, BWP switching can be explicitly synchronized between the UE 100 and the base station 200 . Therefore, the activation state setting timing can be more reliably synchronized without signaling for setting the activation state.
  • the activation state of MG sharing (that is, the applicability or effectiveness of MG sharing) is determined in conjunction with the activation state of MG.
  • UE 100 receives MG sharing configuration information from base station 200 .
  • the UE 100 determines whether or not to apply MG sharing to the MG based on the activation state of the MG.
  • the operation of the UE 100 and related information will be described in detail below.
  • the UE 100 receives MG sharing setting information. Specifically, UE 100 (communication processing unit 135 ) receives an RRC message including MG sharing setting information from base station 200 . UE 100 (information acquisition unit 131) acquires the MG sharing setting information included in the RRC message.
  • the MG sharing configuration information is the RRC IE MeasGapSharingConfig.
  • the UE 100 receives information indicating the activation state of the MG. Specifically, the UE 100 receives from the base station 200 an RRC message including information indicating the MG activation state. Information indicating the activation state of the MG may be included in the MG setting information.
  • an RRC message including MG sharing configuration information and MG configuration information may be transmitted from the base station 200 to the UE 100.
  • an RRC message including measurement configuration information including MG sharing configuration information and MG configuration information is transmitted from base station 200 to UE 100 .
  • the RRC message may be an RRCReconfiguration message or a RRCResume message.
  • the UE 100 determines the MG activation state. Specifically, the UE 100 (control unit 133) determines the activation state of the MG based on the information indicating the activation state of the MG.
  • the information indicating the MG activation state may be preconfiguredGapState-r17 as shown in FIG. 8 or FIG.
  • the information indicating the MG activation state indicates whether the MG is activated or deactivated.
  • the MG activation state is set or determined based on the processing shown in FIG. 10 in the first embodiment or the processing shown in FIG. 14 or 18 in the second embodiment. be.
  • (1-3) Determining MG Sharing Activation State The UE 100 determines the MG sharing activation state. Activation or deactivation of MG sharing corresponds to activation or deactivation of MG.
  • the UE 100 determines activation or deactivation of MG sharing based on the determination of the MG activation state.
  • the UE 100 determines the MG activation state based on the information indicating the MG activation state.
  • the UE 100 determines that MG sharing is activated when MG is set to be activated.
  • UE 100 determines that MG sharing is deactivated when MG is set to be deactivated.
  • the MG sharing settings are applied to the MG. In other words, the MG sharing setting is enabled. If it is determined that MG sharing is deactivated, the MG sharing settings are not applied to the MG. In other words, the setting of MG sharing is invalidated. Note that even if it is determined that MG sharing is deactivated, the setting of MG sharing is not discarded.
  • Base station 200 sets MG and MG sharing, and transmits MG setting information and MG sharing setting information to UE 100 .
  • Base station 200 determines whether to apply MG sharing to MG based on the activation state of MG.
  • the operation of the base station 200 and related information will be described in detail below. In addition, detailed description of the contents that are substantially the same as the description of the operation of the UE 100 will be omitted.
  • Base station 200 transmits MG sharing setting information to UE 100 .
  • the base station 200 (information acquisition unit 241) acquires MG sharing setting information.
  • Base station 200 (communication processing unit 245 ) transmits an RRC message including the acquired MG sharing setting information to UE 100 .
  • the base station 200 acquires MG sharing setting information indicating the setting of the MG sharing.
  • the base station 200 transmits information indicating the activation state of the MG to the UE 100. Specifically, base station 200 transmits to UE 100 an RRC message including information indicating the activation state of MG. For example, the base station 200 acquires information indicating the activation state of the MG by also setting the activation state of the MG when setting the MG.
  • the base station 200 determines the MG activation state. Specifically, the base station 200 (control unit 243) determines the activation state of the MG based on the information indicating the activation state of the MG. Determination of the activation state of the MG is substantially the same as the operation of the UE 100, so description thereof will be omitted.
  • the base station 200 determines the MG sharing activation state. Specifically, the base station 200 (control unit 243) determines activation or deactivation of MG sharing based on determination of the activation state of MG. Determination of the activation state of MG sharing is substantially the same as the operation of UE 100, so description thereof will be omitted.
  • FIG. 20 (3) Flow of Processing An example of processing according to the third embodiment of the present disclosure will be described with reference to FIGS. 20 and 21.
  • FIG. 20 (3) Flow of Processing An example of processing according to the third embodiment of the present disclosure will be described with reference to FIGS. 20 and 21.
  • the base station 200 sets MG and MG sharing (S810). For example, the base station 200 sets MG and MG sharing, and generates MG setting information and MG sharing setting information.
  • the base station 200 transmits an RRC message including MG setting information and MG sharing setting information to the UE 100 (S820). For example, base station 200 transmits an RRCReconfiguration message or RRCResume message including measGapConfig and measGapSharingConfig to UE 100 .
  • measGapConfig includes preconfiguredGapState-r17 as information indicating the activation state of MG.
  • the UE 100 transmits a response message to the received RRC message to the base station 200 (S830). For example, upon receiving an RRCReconfiguration message or RRCResume message including measGapConfig and measGapSharingConfig from base station 200 , UE 100 transmits an RRCReconfigurationComp message or RRCResumeComp message to base station 200 .
  • the UE 100 acquires MG setting information and MG sharing setting information from the received RRC message (S840). For example, the UE 100 acquires measGapConfig and measGapSharingConfig from the received RRCReconfiguration message or RRCResume message.
  • the UE 100 and the base station 200 determine the activation state of MG sharing (S850). For example, the UE 100 and the base station 200 determine the MG sharing activation state based on the information indicating the MG activation state. Details of the processing of S850 will be described later with reference to FIG.
  • the UE 100 and the base station 200 determine whether or not the MG is activated (S910). For example, the UE 100 and the base station 200 determine whether or not the MG is activated based on information indicating the activation state of the MG.
  • UE 100 and base station 200 determine whether MG sharing is set (S920). For example, when the information indicating the activation state of MG indicates activation, UE 100 determines whether or not MG sharing configuration information has been received from base station 200 . Base station 200 determines whether or not MG sharing is set.
  • the UE 100 and base station 200 determine that MG sharing is activated (S930). For example, when MG sharing is configured, UE 100 and base station 200 determine that MG sharing is activated. In other words, UE 100 and base station 200 operate as if MG sharing is activated.
  • the UE 100 and the base station 200 determine whether MG sharing is set (S940).
  • the UE 100 and base station 200 determine that MG sharing is deactivated (S950). For example, when MG sharing is configured, UE 100 and base station 200 determine that MG sharing is deactivated. In other words, UE 100 and base station 200 operate as if MG sharing is deactivated.
  • the MG sharing activation state determination described with reference to FIG. 21 can be reflected in the TS.
  • the information 51 in FIG. 22 and the information 53 in FIG. 23 are an example of reflecting the activation state determination of the MG sharing to the TS.
  • the mode of reflecting the MG sharing activation state determination on the TS is not limited to this.
  • an RRC message including MG sharing setting information is transmitted from the base station 200 to the UE 100, and activation or deactivation of MG sharing is , corresponding to the activation or deactivation of MG. Accordingly, whether or not MG sharing is applied can be determined according to the activation state of MG. Therefore, MG sharing can be applied to MGs that can be in an activated or deactivated state.
  • the activation or deactivation of MG sharing is determined based on the determination of the activation state of MG.
  • the MG sharing activation state can be determined in each of the UE 100 and the base station 200 that can grasp the MG activation state.
  • the activation state of the MG is determined based on the information indicating the activation state of the MG. As a result, the activation state of MG sharing can more reliably correspond to the activation state of MG.
  • an RRC message including information indicating the activation state of the MG is transmitted from the base station 200 to the UE 100.
  • the activation state of MG can be synchronized between the UE 100 and the base station 200, so that the activation state of MG sharing can also be synchronized.
  • information indicating the activation state of MG is included in the MG setting information, and an RRC message including the MG setting information and the MG sharing setting information is transmitted from the base station 200 to the UE 100.
  • an RRC message including the MG setting information and the MG sharing setting information is transmitted from the base station 200 to the UE 100.
  • MG sharing is determined to be activated, and when MG is set to deactivation, MG sharing is determined to be deactivated. This makes it possible to match activation states between MG and MG sharing.
  • steps in the processes described in this specification do not necessarily have to be executed in chronological order according to the order described in the flowcharts or sequence diagrams.
  • steps in a process may be performed in an order different from that depicted in a flowchart or sequence diagram, or in parallel.
  • some of the steps in the process may be deleted and additional steps may be added to the process.
  • a method may be provided that includes the operation of one or more components of the apparatus described herein, and a program may be provided for causing a computer to perform the operation of the components. Further, a computer-readable non-transitional tangible recording medium recording the program may be provided.
  • a method may be provided that includes the operation of one or more components of the apparatus described herein, and a program may be provided for causing a computer to perform the operation of the components.
  • a computer-readable non-transitional tangible recording medium recording the program may be provided.
  • such methods, programs, and computer-readable non-transitory tangible computer-readable storage mediums are also included in the present disclosure.
  • user equipment refers to a mobile station, mobile terminal, mobile device, mobile unit, subscriber station, subscriber terminal, subscriber equipment, subscriber unit, wireless It may also be called a station, a wireless terminal, a wireless device, a wireless unit, a remote station, a remote terminal, a remote device, a remote unit, or the like.
  • transmit may mean performing at least one layer of processing within the protocol stack used for transmission, or physically transmitting a signal wirelessly or by wire. may mean sending to Alternatively, “transmitting” may mean a combination of performing the at least one layer of processing and physically transmitting the signal wirelessly or by wire.
  • receive may mean processing at least one layer in the protocol stack used for reception, or physically receiving a signal wirelessly or by wire. may mean that Alternatively, “receiving” may mean a combination of performing the at least one layer of processing and physically receiving the signal wirelessly or by wire.
  • the at least one layer may also be translated as at least one protocol.
  • “obtain/acquire” may mean obtaining information among stored information, obtaining information among information received from other nodes. or to obtain the information by generating the information.
  • the terms “include” and “comprise” do not mean to include only the recited items, but may include only the recited items, or may include only the recited items. It means that further items may be included in addition to the
  • a user equipment 100
  • a communication processing unit (135) that receives an RRC (Radio Resource Control) message including MG (Measurement Gap) sharing setting information from a base station (200); an information acquisition unit (131) that acquires the MG sharing setting information included in the RRC message; with The MG sharing activation or deactivation corresponds to MG activation or deactivation of the user equipment.
  • RRC Radio Resource Control
  • MG Measurement Gap
  • the MG sharing activation or deactivation corresponds to MG activation or deactivation of the user equipment.
  • (Feature 2) The user equipment of feature 1, wherein the activation or deactivation of the MG sharing is determined based on determining the activation state of the MG.
  • Feature 4 The user equipment according to feature 3, wherein the communication processing unit receives an RRC message including information indicating activation status of the MG from a base station.
  • RRC Radio Resource Control
  • RRC Radio Resource Control
  • MG Measurement Gap
  • RRC Radio Resource Control
  • a computer-readable non-transitional tangible recording medium recording a program that causes a computer to execute Activation or deactivation of MG sharing corresponds to activation or deactivation of MG.
  • a non-transitional material recording medium
  • a computer-readable non-transitional tangible recording medium recording a program that causes a computer to execute Activation or deactivation of MG sharing corresponds to activation or deactivation of MG.
  • a non-transitional material recording medium

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本開示の一態様に係る装置(100)は、測定ギャップが事前設定された測定ギャップであることを示すための情報、上記事前設定された測定ギャップがアクティベートされるかを示すための情報、及び、上記測定ギャップのシェアリングに関する情報を含む無線リソース制御メッセージを受信する通信処理部(135)と、上記事前設定された測定ギャップがアクティベートされるかを示すための情報に基づいて、上記事前設定された測定ギャップがアクティベートされる場合には、上記測定ギャップのシェアリングに関する情報に基づく測定ギャップのシェアリングを上記事前設定された測定ギャップに適用する制御部(133)と、を備える。

Description

装置、基地局及び方法 関連出願の相互参照
 本出願は、2021年10月20日に出願された日本出願番号2021-171755号に基づくもので、ここにその記載内容を援用する。
 本開示は、装置、基地局及び方法に関する。
 3GPP(3rd Generation Partnership Project)のRelease 17では、ユーザ機器(User Equipment:UE)及びネットワークにおけるRRM(Radio Resource Management)機能の効率化を目的としてMeasurement Gap Enhancementについてのワークアイテムが立ち上がっている(非特許文献1)。
 例えば、非特許文献2~6には、従来のMG(Legacy Measurement Gap)とは別のP-MG(Pre-configured Measurement Gap)に関するシグナリング及びプロシージャについての議論が記載されている。P-MGは、従来のMGと異なり、アクティベーション又はディアクティベーションが可能である。
 とりわけ、非特許文献5には、従来のMGとP-MGとの関係についての議論、及びP-MGがアクティベーション又はディアクティベーションされる基準(criteria)についての議論が記載されている。
 また、現状の技術仕様(Technical Specification:TS)では、MGをシェアリングするスキームが規定されている(非特許文献7)。MGシェアリングでは、MGが重複していた場合にMGがシェアされる。MGシェアリングは、MGの設定と共に設定され得る。MGシェアリングの設定は、MGの設定の破棄と共に破棄され得る。
3GPP TSG RAN Meeting #92e, Electronic Meeting, June 14-18 2021, RP-211591, Intel Corporation, MediaTek Inc., "Revised WID on NR and MR-DC measurement gap enhancements" 3GPP TSG RAN meeting #93e, Electronic Meeting, Sep. 13-17 2021, RP-212311, MediaTek Inc., Intel Corporation, "Status Report to TSG" 3GPP TSG-RAN WG4 Meeting #100-e, Electronic Meeting, August 16-27 2021, R4-2115438, RAN4, "LS on R17 NR MG enhancements - Pre-configured MG" 3GPP TSG RAN WG4 Meeting #100-e, Electronic Meeting, August 16-27 2021, R4-2115340, Intel Corporation, "WF on R17 NR MG enhancements - Pre-configured MG" 3GPP TSG RAN WG4 Meeting #100-e, Electronic Meeting, August 16-27 2021, R4-2115398, "Email discussion summary for [100-e][224] NR_MG_Part_2" 3GPP TSG-RAN WG4 Meeting #99-e, Electronic Meeting, 19 - 27 May 2021, R4-2108034, Intel Corporation, "WF on R17 NR MG enhancements - Pre-configured MG" 3GPP TS 38.331 V16.6.0 (2021-09), "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Radio Resource Control (RRC) protocol specification (Release 16)"
 発明者の詳細な検討の結果、以下の課題が見出された。即ち、アクティベーション又はディアクティベーションの状態を取り得るP-MGに対して、MGシェアリングを適用することができないおそれがある。しかし、現時点ではP-MGに対するMGシェアリングの設定については検討されてない。
 本開示の目的は、アクティベーション又はディアクティベーションの状態を取り得るMGに対してMGシェアリングを適用することを可能にする装置、基地局及び方法を提供することにある。
 本開示の一態様に係る装置(100)は、測定ギャップが事前設定された測定ギャップであることを示すための情報、上記事前設定された測定ギャップがアクティベートされるかを示すための情報、及び、上記測定ギャップのシェアリングに関する情報を含む無線リソース制御(RRC:Radio Resource Control)メッセージを受信する通信処理部(135)と、上記事前設定された測定ギャップがアクティベートされるかを示すための情報に基づいて、上記事前設定された測定ギャップがアクティベートされる場合には、上記測定ギャップのシェアリングに関する情報に基づく測定ギャップのシェアリングを上記事前設定された測定ギャップに適用する制御部(133)と、を備える。
 本開示の一態様に係る装置(200)は、測定ギャップが事前設定された測定ギャップであることを示すための情報、上記事前設定された測定ギャップがアクティベートされるかを示すための情報、及び、上記測定ギャップのシェアリングに関する情報を含む無線リソース制御(RRC:Radio Resource Control)メッセージを送信する通信処理部(245)と、上記事前設定された測定ギャップがアクティベートされるかを示すための情報に基づいて、上記事前設定された測定ギャップがアクティベートされる場合には、上記測定ギャップのシェアリングに関する情報に基づく測定ギャップのシェアリングを上記事前設定された測定ギャップに適用する制御部(243)と、を備える。
 本開示の一態様に係る装置(100)により行われる方法は、測定ギャップが事前設定された測定ギャップであることを示すための情報、上記事前設定された測定ギャップがアクティベートされるかを示すための情報、及び、上記測定ギャップのシェアリングに関する情報を含む無線リソース制御(RRC:Radio Resource Control)メッセージを受信することと、上記事前設定された測定ギャップがアクティベートされるかを示すための情報に基づいて、上記事前設定された測定ギャップがアクティベートされる場合には、上記測定ギャップのシェアリングに関する情報に基づく測定ギャップのシェアリングを上記事前設定された測定ギャップに適用することと、を含む。
 本開示の一態様に係る装置(200)により行われる方法は、測定ギャップが事前設定された測定ギャップであることを示すための情報、上記事前設定された測定ギャップがアクティベートされるかを示すための情報、及び、上記測定ギャップのシェアリングに関する情報を含む無線リソース制御(RRC:Radio Resource Control)メッセージを送信することと、上記事前設定された測定ギャップがアクティベートされるかを示すための情報に基づいて、上記事前設定された測定ギャップがアクティベートされる場合には、上記測定ギャップのシェアリングに関する情報に基づく測定ギャップのシェアリングを上記事前設定された測定ギャップに適用することと、を含む。
 本開示によれば、アクティベーション又はディアクティベーションの状態を取り得るMGに対してMGシェアリングを適用することが可能になる。なお、本開示により、当該効果の代わりに、又は当該効果とともに、他の効果が奏されてもよい。
本開示の実施形態に係るシステムの概略的な構成の一例を示す説明図である。 本開示の実施形態に係るユーザ機器がMGを用いて信号を測定する例を説明するための説明図である。 本開示の実施形態に係るユーザ機器の概略的な機能構成の例を示すブロック図である。 本開示の実施形態に係るユーザ機器の概略的なハードウェア構成の例を示すブロック図である。 本開示の実施形態に係る基地局の概略的な機能構成の例を示すブロック図である。 本開示の実施形態に係る基地局の概略的なハードウェア構成の例を示すブロック図である。 本開示の第1の実施形態に係るMG設定情報の例を説明するための図である。 本開示の第1の実施形態に係るMG設定情報に含まれる共通設定情報及びP-MGの設定情報の例を説明するための図である。 本開示の第1の実施形態に係る処理の概略的な流れの例を説明するための図である。 本開示の第1の実施形態に係るMG設定の概略的な流れの例を説明するためのフローチャートである。 本開示の第1の実施形態に係るMG設定の具体例を説明するための図である。 本開示の第1の実施形態の第1の変形例に係るMG設定情報に含まれるP-MGの設定情報及びP-MG状態情報の例を説明するための図である。 本開示の第1の実施形態の第1の変形例に係るMG設定の具体例を説明するための図である。 本開示の第2の実施形態の第1の動作例に係る処理の概略的な流れの例を説明するためのフローチャートである。 本開示の第2の実施形態の第1の動作例に係るMGの必要性の判定処理の概略的な流れの例を説明するためのフローチャートである。 本開示の第2の実施形態の第1の動作例に係るMG設定の具体例を説明するための図である。 本開示の第2の実施形態の第2の動作例に係るMG設定情報の例を説明するための図である。 本開示の第2の実施形態の第2の動作例に係る処理の概略的な流れの例を説明するためのフローチャートである。 本開示の第2の実施形態の第2の動作例に係るMG設定の具体例を説明するための図である。 本開示の第3の実施形態に係る処理の概略的な流れの例を説明するための図である。 本開示の第3の実施形態に係るMGシェアリングのアクティベーションの状態判定の概略的な流れの例を説明するためのフローチャートである。 本開示の第3の実施形態に係るMGシェアリングのアクティベーションの状態判定の例を説明するための図である。 本開示の第3の実施形態に係るMGシェアリングのアクティベーションの状態判定の別の例を説明するための図である。
 以下、添付の図面を参照して本開示の実施形態を詳細に説明する。なお、本明細書及び図面において、同様に説明されることが可能な要素については、同一の符号を付することにより重複説明が省略され得る。
 説明は、以下の順序で行われる。
 1.システムの構成
 2.ユーザ機器の構成
 3.基地局の構成
 4.第1の実施形態(P-MGについてのMG設定情報)
 5.第2の実施形態(MGのアクティベーションの状態の管理)
 6.第3の実施形態(MG及びMGシェアリングのアクティベーションの連動)
 <1.システムの構成>
 図1を参照して、本開示の実施形態に係るシステム1の構成の例を説明する。図1を参照すると、システム1は、ユーザ機器100及び基地局200を含む。
 例えば、システム1は、3GPPのTSに準拠したシステムである。より具体的には、例えば、システム1は、5G又はNR(New Radio)のTSに準拠したシステムである。当然ながら、システム1は、この例に限定されない。システム1は、3GPPの他のTSに準拠したシステムであってもよい。一例として、システム1は、LTE、LTE-A(LTE Advanced)又は4GのTSに準拠したシステムであってもよく、基地局200は、eNB(evolved Node B)であってもよい。あるいは、基地局200は、ng-eNBであってもよい。別の例として、システム1は、3GのTSに準拠したシステムであってもよく、基地局200は、NodeBであってもよい。さらに別の例として、システム1は、次世代(例えば、6G)のTSに準拠したシステムであってもよい。あるいは、システム1は、移動体通信についての他の標準化団体のTSに準拠したシステムであってもよい。
 (1)UE100
 UE100は、基地局と通信する。例えば、UE100は、基地局200のカバレッジエリア10内に位置する場合に、基地局200と通信する。
 例えば、UE100は、無線アクセスネットワーク(Radio Access Network:RAN)のプロトコルスタックを使用して基地局(例えば、基地局200)と通信する。例えば、当該プロトコルスタックは、RRC(Radio Resource Control)、SDAP(Service Data Adaptation Protocol)、PDCP(Packet Data Convergence Protocol)、RLC(Radio Link Control)、MAC(Medium Access Control)、及び、物理(Physical:PHY)レイヤのプロトコルを含む。あるいは、上記プロトコルスタックは、これらのプロトコルの全てを含まず、これらのプロトコルの一部を含んでもよい。
 また、UE100は、MGを用いて基地局から送信される信号を測定する。MGは、周波数間(inter-frequency)、システム間(inter-system)、又は周波数内(intra-frequency)の測定について設定(configure)される。UE100は、設定されたMGの期間に、周波数又はシステムを切り替えて信号を測定する。
 例えば、図2の例を参照すると、UE100は、接続されている基地局200Aと通信周波数が異なる基地局200Bからの信号を測定することができる。具体的には、UE100は、設定されたMGの期間、基地局200Aと通信せず、基地局200Bから送信される信号を受信し、当該信号の受信品質を測定する。例えば、UE100は、基地局200Bからの信号の受信品質が基地局200Aからの信号の受信品質よりも良い場合、基地局200Aから基地局200Bへ接続を切り替えてもよい。
 (2)基地局200
 基地局200は、RANのノードであり、基地局200のカバレッジエリア10内に位置するUE(例えば、UE100)と通信する。
 例えば、基地局200は、上記プロトコルスタックを使用してUE(例えば、UE100)と通信する。
 例えば、基地局200は、gNBである。gNBは、UEに対するNRユーザプレーン及び制御プレーンプロトコル終端(NR user plane and control plane protocol terminations towards the UE)を提供し、NGインターフェースを介して5GC(5G Core Network)に接続されるノードである。あるいは、基地局200は、en-gNBであってもよい。en-gNBは、UEに対するNRユーザプレーン及び制御プレーンプロトコル終端を提供し、EN-DC(E-UTRA-NR Dual Connectivity)においてセカンダリノードとして動作するノードである。
 基地局200は、複数のノードを含んでもよい。当該複数のノードは、上記プロトコルスタックに含まれる上位レイヤ(higher layer)をホストする第1のノードと、当該プロトコルスタックに含まれる下位レイヤ(lower layer)をホストする第2のノードとを含んでもよい。上記上位レイヤは、RRC、SDAP及びPDCPを含んでもよく、上記下位レイヤは、RLC、MAC、及びPHYレイヤを含んでもよい。上記第1のノードは、CU(central unit)であってもよく、上記第2のノードは、DU(Distributed Unit)であってもよい。なお、上記複数のノードは、PHYレイヤの下位の処理を行う第3のノードを含んでもよく、上記第2のノードは、PHYレイヤの上位の処理を行ってもよい。当該第3のノードは、RU(Radio Unit)であってもよい。
 あるいは、基地局200は、上記複数のノードのうちの1つであってもよく、上記複数のノードのうちの他のユニットと接続されていてもよい。
 基地局200は、IAB(Integrated Access and Backhaul)ドナー又はIABノードであってもよい。
 <2.ユーザ機器の構成>
 図3及び図4を参照して、本開示の実施形態に係るUE100の構成の例を説明する。
 (1)機能構成
 まず、図3を参照して、本開示の実施形態に係るUE100の機能構成の例を説明する。図3を参照すると、UE100は、無線通信部110、記憶部120及び処理部130を備える。
 無線通信部110は、信号を無線で送受信する。例えば、無線通信部110は、基地局からの信号を受信し、基地局への信号を送信する。例えば、無線通信部110は、他のUEからの信号を受信し、他のUEへの信号を送信する。
 記憶部120は、UE100のために様々な情報を記憶する。
 処理部130は、UE100の様々な機能を提供する。処理部130は、情報取得部131、制御部133及び通信処理部135を含む。なお、処理部130は、これらの構成要素以外の他の構成要素をさらに含み得る。即ち、処理部130は、これらの構成要素の動作以外の動作も行い得る。情報取得部131、制御部133及び通信処理部135の具体的な動作は、後に詳細に説明する。
 例えば、処理部130(通信処理部135)は、無線通信部110を介して基地局(例えば、基地局200)又は他のUEと通信する。
 (2)ハードウェア構成
 次に、図4を参照して、本開示の実施形態に係るUE100のハードウェア構成の例を説明する。図4を参照すると、UE100は、アンテナ181、RF(radio frequency)回路183、プロセッサ185、メモリ187及びストレージ189を備える。
 アンテナ181は、信号を電波に変換し、当該電波を空間に放射する。また、アンテナ181は、空間における電波を受信し、当該電波を信号に変換する。アンテナ181は、送信アンテナ及び受信アンテナを含んでもよく、又は、送受信用の単一のアンテナであってもよい。アンテナ181は、指向性アンテナであってもよく、複数のアンテナ素子を含んでもよい。
 RF回路183は、アンテナ181を介して送受信される信号のアナログ処理を行う。RF回路183は、高周波フィルタ、増幅器、変調器及びローパスフィルタ等を含んでもよい。
 プロセッサ185は、アンテナ181及びRF回路183を介して送受信される信号のデジタル処理を行う。当該デジタル処理は、RANのプロトコルスタックの処理を含む。プロセッサ185は、複数のプロセッサを含んでもよく、又は、単一のプロセッサであってもよい。当該複数のプロセッサは、上記デジタル処理を行うベースバンドプロセッサと、他の処理を行う1つ以上のプロセッサとを含んでもよい。
 メモリ187は、プロセッサ185により実行されるプログラム、当該プログラムに関するパラメータ、及び、その他の様々な情報を記憶する。メモリ187は、ROM(Read Only Memory)、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)、RAM(Random Access Memory)及びフラッシュメモリの少なくとも1つを含んでもよい。メモリ187の全部又は一部は、プロセッサ185内に含まれていてもよい。
 ストレージ189は、様々な情報を記憶する。ストレージ189は、SSD(Solid State Drive)及びHDD(Hard Disc Drive)の少なくとも1つを含んでもよい。
 無線通信部110は、アンテナ181及びRF回路183により実装されてもよい。記憶部120は、ストレージ189により実装されてもよい。処理部130は、プロセッサ185及びメモリ187により実装されてもよい。
 処理部130は、プロセッサ185及びメモリ187を含むSoC(System on Chip)により実装されてもよい。当該SoCは、RF回路183を含んでもよく、無線通信部110も、当該SoCにより実装されてもよい。
 以上のハードウェア構成を考慮すると、UE100は、プログラムを記憶するメモリ(即ち、メモリ187)と、当該プログラムを実行可能な1つ以上のプロセッサ(即ち、プロセッサ185)とを備えてもよく、当該1つ以上のプロセッサは、上記プログラムを実行して、処理部130の動作を行ってもよい。上記プログラムは、処理部130の動作をプロセッサに実行させるためのプログラムであってもよい。
 <3.基地局の構成>
 図5及び図6を参照して、本開示の実施形態に係る基地局200の構成の例を説明する。
 (1)機能構成
 まず、図5を参照して、本開示の実施形態に係る基地局200の機能構成の例を説明する。図5を参照すると、基地局200は、無線通信部210、ネットワーク通信部220、記憶部230及び処理部240を備える。
 無線通信部210は、信号を無線で送受信する。例えば、無線通信部210は、UEからの信号を受信し、UEへの信号を送信する。
 ネットワーク通信部220は、ネットワークから信号を受信し、ネットワークへ信号を送信する。
 記憶部230は、基地局200のために様々な情報を記憶する。
 処理部240は、基地局200の様々な機能を提供する。処理部240は、情報取得部241、制御部243、及び通信処理部245を含む。なお、処理部240は、これらの構成要素以外の他の構成要素をさらに含み得る。即ち、処理部240は、これらの構成要素の動作以外の動作も行い得る。情報取得部241、制御部243、及び通信処理部245の具体的な動作は、後に詳細に説明する。
 例えば、処理部240(通信処理部245)は、無線通信部210を介してUE(例えば、UE100)と通信する。例えば、処理部240(通信処理部245)は、ネットワーク通信部220を介して他のノード(例えば、コアネットワーク内のネットワークノード又は他の基地局)と通信する。
 (2)ハードウェア構成
 次に、図6を参照して、本開示の実施形態に係る基地局200のハードウェア構成の例を説明する。図6を参照すると、基地局200は、アンテナ281、RF回路283、ネットワークインターフェース285、プロセッサ287、メモリ289及びストレージ291を備える。
 アンテナ281は、信号を電波に変換し、当該電波を空間に放射する。また、アンテナ281は、空間における電波を受信し、当該電波を信号に変換する。アンテナ281は、送信アンテナ及び受信アンテナを含んでもよく、又は、送受信用の単一のアンテナであってもよい。アンテナ281は、指向性アンテナであってもよく、複数のアンテナ素子を含んでもよい。
 RF回路283は、アンテナ281を介して送受信される信号のアナログ処理を行う。RF回路283は、高周波フィルタ、増幅器、変調器及びローパスフィルタ等を含んでもよい。
 ネットワークインターフェース285は、例えばネットワークアダプタであり、ネットワークへ信号を送信し、ネットワークから信号を受信する。
 プロセッサ287は、アンテナ281及びRF回路283を介して送受信される信号のデジタル処理を行う。当該デジタル処理は、RANのプロトコルスタックの処理を含む。プロセッサ287は、ネットワークインターフェース285を介して送受信される信号の処理も行う。プロセッサ287は、複数のプロセッサを含んでもよく、又は、単一のプロセッサであってもよい。当該複数のプロセッサは、上記デジタル処理を行うベースバンドプロセッサと、他の処理を行う1つ以上のプロセッサとを含んでもよい。
 メモリ289は、プロセッサ287により実行されるプログラム、当該プログラムに関するパラメータ、及び、その他の様々な情報を記憶する。メモリ289は、ROM、EPROM、EEPROM、RAM及びフラッシュメモリの少なくとも1つを含んでもよい。メモリ289の全部又は一部は、プロセッサ287内に含まれていてもよい。
 ストレージ291は、様々な情報を記憶する。ストレージ291は、SSD及びHDDの少なくとも1つを含んでもよい。
 無線通信部210は、アンテナ281及びRF回路283により実装されてもよい。ネットワーク通信部220は、ネットワークインターフェース285により実装されてもよい。記憶部230は、ストレージ291により実装されてもよい。処理部240は、プロセッサ287及びメモリ289により実装されてもよい。
 処理部240の一部又は全部は、仮想化されていてもよい。換言すると、処理部240の一部又は全部は、仮想マシンとして実装されてもよい。この場合に、処理部240の一部又は全部は、プロセッサ及びメモリ等を含む物理マシン(即ち、ハードウェア)及びハイパーバイザ上で仮想マシンとして動作してもよい。
 以上のハードウェア構成を考慮すると、基地局200は、プログラムを記憶するメモリ(即ち、メモリ289)と、当該プログラムを実行可能な1つ以上のプロセッサ(即ち、プロセッサ287)とを備えてもよく、当該1つ以上のプロセッサは、上記プログラムを実行して、処理部240の動作を行ってもよい。上記プログラムは、処理部240の動作をプロセッサに実行させるためのプログラムであってもよい。
 <4.第1の実施形態>
 本開示の第1の実施形態について説明する。第1の実施形態では、P-MGについてのMG設定情報は、従来のMGについてのMG設定情報を共有的に利用する。
 <4-1.動作例>
 図7~図10を参照して、本開示の第1の実施形態に係るUE100及び基地局200の動作の例を説明する。
 (1)UE100の動作
 UE100は、MG設定情報を基地局200から受信する。UE100は、受信したMG設定情報に含まれる共通設定情報及びP-MGの設定情報に基づきMGを設定する。以下、UE100の動作及び関係する情報について詳細に説明する。
 (1-1)MG設定情報を受信
 UE100は、MG設定情報を基地局200から受信する。具体的にはUE100(通信処理部135)は、MG設定情報を含むRRCメッセージを基地局200から受信する。UE100(情報取得部131)は、当該RRCメッセージに含まれるMG設定情報を取得する。
 MG設定情報は、従来のMG(第1のMG)及びP-MG(第2のMG)において用いられる共通設定情報、及びP-MGが設定されることを示すP-MGの設定情報を含む。具体的には、P-MGの設定情報は、P-MGが設定される場合、P-MGのアクティベーション又はディアクティベーションを示す。また、P-MGの設定情報は、P-MGが設定されない場合、P-MGが設定されないことを示す。
 例えば、MG設定情報は、RRC IE(Information Element)であるMeasGapConfigである。また、共通設定情報は、MeasGapConfigにおいて設定されるGapConfigに含まれるパラメータの少なくとも1つを含む。また、P-MGの設定情報は、GapConfigに含まれる。MeasGapConfigは、MGが設定されるか否かを示し、setup又はreleaseの値を取り得る。
 図7の情報21を参照すると、MeasGapConfigは、gapUE、gapFR1、及びgapFR2といったパラメータを含む。当該パラメータは、MGが設定される単位についてMGが設定されるか否かを示す設定有無パラメータであり、setup又はreleaseの値を取り得る。gapUEがsetupの場合、UEごと(per UE)にMGが設定され、gapFR1及びgapFR2がsetupの場合、FRごと(per frequency Range)にMGが設定される。設定有無パラメータがsetupの場合、IEであるGapConfigが値として設定される。各単位についてのMGの設定パラメータは、GapConfigに含まれる。
 図8の情報23を参照すると、GapConfigは、共通設定情報として、gapOffset、mgl、mgrp、mgta、refServCellIndicator、refFR2ServCellAsyncCA-r16及びmgl-r16といったパラメータを含む。gapOffsetは、MGRP(Measurement Gap Repetition Period)を伴うgap patternのオフセットを示す。mgl及びmgl-r16は、MGの長さ、即ちMGP(Measurement Gap Length)を示す。mgrpは、MGの繰り返し期間、即ちMGRPを示す。mgtaは、MGのタイミングアドバンスを示す。refServCellIndicator及びrefFR2ServCellAsyncCA-r16は、MGの計算に用いられるサービングセルのSFN(System Frame Number)及びサブフレームを示す。共通設定情報としての上記パラメータは、従来のMG及びP-MGの両方において用いられ得る。なお、共通設定情報は、上記パラメータのうちの少なくとも1つであってよい。
 また、GapConfigは、P-MGの設定情報として、preconfiguredGap-r17を含む。preconfiguredGap-r17は、P-MGが設定されるか否かを示し、setup又はreleaseの値を取り得る。preconfiguredGap-r17がsetupの場合、P-MGが設定される。換言すると、MGがpreconfiguredされる。この場合、IEであるPreconfiguredGapConfig-r17が値として設定される。PreconfiguredGapConfig-r17は、preconfiguredGapState-r17を含む。preconfiguredGapState-r17は、P-MGがアクティベートされているか又はディアクティベートされているかを示す。上記P-MGの設定情報としてのpreconfiguredGap-r17は、オプショナルである。
 このように、P-MGが設定される場合、P-MGの設定情報は、P-MGのアクティベーション又はディアクティベーションを示す。これにより、P-MGが設定される場合にのみP-MGのアクティベーション又はディアクティベーションを示す情報をMG設定情報に含めることができる。そのため、シグナリングの効率化が可能となる。また、MGのアクティベーション又はディアクティベーションを状態として管理することにより、MGの設定を破棄することなく、MGを適用するか否かを制御することができる。
 また、P-MGが設定されない場合、P-MGの設定情報は、P-MGが設定されないことを示す。これにより、P-MGが設定されないことを明示することができる。また、適用されるMGが、従来のMGであるかP-MGであるかを明示することができる。そのため、UE100及び基地局200間のMG設定情報の不整合が抑制され得る。
 また、MG設定情報は、MeasGapConfigであり、共通設定情報は、MeasGapConfigにおいて設定されるGapConfigに含まれるパラメータの少なくとも1つを含み、P-MGの設定情報は、GapConfigに含まれる。これにより、従来のMGで用いられるMG設定情報を利用しながら、P-MGの設定情報をUE100へ送信することができる。さらに、P-MGの設定情報がオプショナルであることにより、従来のMGに対してMG設定情報の互換性を維持できる。
 MG設定情報を含むRRCメッセージは、RRCReconfigurationメッセージ又はRRCResumeメッセージであってよい。
 これにより、既存のUE及び基地局間のシグナリングを利用してP-MGの設定情報を含むMG設定情報を基地局200からUE100へ送信することができる。このため、新たなシグナリングの追加を防止できる。
 なお、P-MGの設定情報を含むMG設定情報を含むRRCメッセージは、追加的に定義されるRRCメッセージであって、P-MGの設定情報を含むMG設定情報の送信のためのRRCメッセージであってもよい。この場合、既存のRRCメッセージを変更することなく、P-MGの設定情報を含むMG設定情報をUE100へ送信することができる。
 (1-2)MGを設定
 UE100は、MG設定情報に基づきMGを設定する。具体的には、UE100(制御部133)は、基地局200から受信されるRRCメッセージに含まれるMG設定情報に基づき従来のMG又はP-MGを設定する。
 より具体的には、UE100は、MG設定情報に含まれるP-MGの設定情報がP-MGが設定されることを示す場合、P-MGを設定する。また、UE100は、P-MGの設定情報がP-MGが設定されないことを示す場合は、従来のMGを設定する。
 例えば、UE100は、図8に示されるGapconfigに含まれるpreconfiguredGap-r17がsetupの場合、P-MGを設定する。即ち、アクティベーション又はディアクティベーションに設定されたpreconfiguredGapState-r17をパラメータとして含むPreconfiguredGapConfig-r17が設定される。
 また、preconfiguredGap-r17がreleaseの場合、UE100は、従来のMGを設定する。そのため、PreconfiguredGapConfig-r17は設定されない。即ち、MGにはP-MGの仕組みが適用されない。したがって、MGはアクティベーションの状態を用いて制御されない。換言すると、MGは常にアクティベートされた状態であるともいえる。このように、P-MGの設定情報がP-MGが設定されないことを示す場合は、従来のMGが設定されることにより、従来のMGとの互換性を維持することができる。
 (2)基地局200の動作
 基地局200は、従来のMG及びP-MGのいずれかを設定する。基地局200は、共通設定情報及びP-MGの設定情報を含むMG設定情報をUE100へ送信する。以下、基地局200の動作及び関係する情報について詳細に説明する。なお、UE100の動作における説明と実質的に同一である内容については詳細な説明を省略する。
 (2-1)MGを設定
 基地局200は、従来のMG及びP-MGのいずれかを設定する。具体的には、基地局200(制御部243)は、条件に基づき従来のMG又はP-MGを選択的に設定する。例えば、UE100からのMGの設定要求の有無、又はUE100のP-MGに対する適応性若しくは能力などに基づき従来のMG又はP-MGが選択的に設定される。
 基地局200は、共通設定情報及びP-MGの設定情報についての設定を行う。例えば、基地局200は、MG設定情報としてMeasGapConfigを設定し、共通設定情報としてGapConfigに含まれるパラメータの1つを設定し、P-MGの設定情報としてpreconfiguredGap-r17を設定する。
 さらに、P-MGが設定される場合は、基地局200は、preconfiguredGap-r17をsetupに設定し、アクティベーション又はディアクティベーションに設定されたpreconfiguredGapState-r17をパラメータとして含むPreconfiguredGapConfig-r17を設定する。また、P-MGが設定されない場合は、基地局200は、preconfiguredGap-r17をreleaseに設定する。
 (2-2)MG設定情報を送信
 基地局200は、MG設定情報をUE100へ送信する。具体的には、基地局200(情報取得部241)は、MG設定情報を取得する。基地局200(通信処理部245)は、取得されたMG設定情報を含むRRCメッセージをUE100へ送信する。
 例えば、基地局200は、設定されたMGについての共通設定情報及びP-MGの設定情報を含むMG設定情報を含むRRCメッセージをUE100へ送信する。例えば、当該MG設定情報を含むRRCメッセージは、RRCReconfigurationメッセージ又はRRCResumeメッセージであってよい。
 (3)処理の流れ
 図9及び図10を参照して、本開示の第1の実施形態に係る処理の例を説明する。
 まず、図9を参照して、本開示の第1の実施形態に係るシステム1の処理の概略的な流れの例を説明する。
 基地局200は、MGを設定する(S310)。例えば、基地局200は、P-MGを設定する。即ち、共通設定情報及びP-MGの設定情報について設定が行われる。
 基地局200は、MG設定情報を含むRRCメッセージをUE100へ送信する(S320)。例えば、基地局200は、共通設定情報及びP-MGの設定情報を含むMG設定情報としてのmeasGapConfigを含むRRCReconfigurationメッセージ又はRRCResumeメッセージをUE100へ送信する。
 UE100は、受信されたRRCメッセージへの応答メッセージを基地局200へ送信する(S330)。例えば、UE100は、measGapConfigを含むRRCReconfigurationメッセージ又はRRCResumeメッセージを基地局200から受信すると、RRCReconfigurationCompメッセージ又はRRCResumeCompメッセージを基地局200へ送信する。なお、このタイミングでP-MGのアクティベーションの状態が変更される場合は、当該応答メッセージにP-MGのアクティベーションの状態を示す情報(即ちアクティベーション又はディアクティベーションを示す情報)が含まれてもよい。
 UE100は、受信されたRRCメッセージからMG設定情報を取得する(S340)。例えば、UE100は、受信されたRRCReconfigurationメッセージ又はRRCResumeメッセージからMG設定情報としてmeasGapConfigを取得する。
 UE100は、取得されたMG設定情報に含まれる共通設定情報及びP-MGの設定情報に基づきMGを設定する(S350)。例えば、UE100は、取得されたmeasGapConfigに含まれるP-MGの設定情報に基づき、従来のMG又はP-MGのいずれかを設定する。MG設定の詳細については図10を参照して後述する。
 続いて、図10を参照して、本開示の第1の実施形態に係るUE100におけるMG設定の概略的な流れの例を説明する。
 UE100は、P-MGの設定情報がreleaseを示すか否かを判定する(S410)。例えば、UE100は、measGapConfigにおいてgapUE、gapFR1、又はgapFR2のいずれかのうちsetupに設定されたパラメータの値として設定されるGapConfigに含まれるpreconfiguredGap-r17がsetup又はreleaseであるかを判定する。
 P-MGの設定情報がreleaseを示さない場合、UE100は、P-MGの設定情報がactivatedを示すか否かを判定する(S420)。例えば、UE100は、preconfiguredGap-r17がsetupである場合、preconfiguredGap-r17の値として設定されているPreconfiguredGapConfig-r17に含まれるpreconfiguredGapState-r17がactivated又はdeactivatedであるかを判定する。
 P-MGの設定情報がactivatedを示す場合、UE100は、activated状態のMGを設定する(S430)。例えば、UE100は、preconfiguredGapState-r17がactivatedである場合、アクティベーションの状態がactivatedであるMGを設定する。換言すると、UE100は、P-MGがactivatedであるとして動作する。
 P-MGの設定情報がactivatedを示さない場合、UE100は、deactivated状態のMGを設定する(S440)。UE100は、preconfiguredGapState-r17がdeactivatedである場合、アクティベーションの状態がdeactivatedであるMGを設定する。換言すると、UE100は、P-MGがdeactivatedであるとして動作する。
 P-MGの設定情報がreleaseを示す場合、UE100は、従来のMGを設定する(S450)。例えば、UE100は、preconfiguredGap-r17がreleaseである場合、従来のMGを設定する。即ち、PreconfiguredGapConfig-r17は設定されない。この場合、従来と同様に、measGapConfigがリリースされるまでmeasGapConfigにおけるMGの設定が適用され続ける。
 なお、上記のP-MG設定は、TSへ反映され得る。図11の情報25は、当該P-MGの設定のTSへの反映の一例である。当然ながら、当該P-MGの設定のTSへの反映の態様は、これに限定されない。
 (4)効果
 このように、本開示の第1の実施形態によれば、MG設定情報を含むRRCメッセージが基地局からUE100へ送信され、MG設定情報は、従来のMG及びP-MGにおいて用いられる共通設定情報、及びP-MGが設定されることを示すP-MGの設定情報を含む。これにより、従来のMGとP-MGとの間で同一のMG設定情報を用いながら、当該MG設定情報が従来のMG向けであるかP-MG向けであるかを区別することができる。したがって、併存する2つのMGの設定のコンフリクトを回避することが可能になる。また、従来のMGで用いられるMG設定情報を流用することにより、同一のMG設定情報を従来のMG向け及びP-MG向けにそれぞれ使い分けることができる。換言すると、従来のMGの設定をP-MGの設定へ、又はP-MGの設定から従来のMGの設定へtransformすることができるとも言える。
 また、仮に、従来のMGとP-MGとの間で異なる独立したMG設定情報が用いられるとした場合は、当該2つのMGの設定のコンフリクトを回避するために、追加的な動作の定義が要され得る。例えば、P-MGが設定される場合は、従来のMGが設定されないように、反対に従来のMGが設定される場合は、P-MGが設定されないようにネットワーク(即ち基地局)が制御することが要される。これに対し、本開示の第1の実施形態によれば、上述のような追加的な動作なしに、併存する2つのMGの設定のコンフリクトを回避することが可能になる。
 <4-2.変形例>
 本開示の第1の実施形態に係る第1~第3の変形例を説明する。なお、これらの変形例のうちの2つ以上が組み合わせられてもよい。
 (1)第1の変形例:P-MGの設定情報の第2の例
 上述した本開示の第1の実施形態では、P-MGの設定情報は、P-MGが設定される場合、P-MGのアクティベーション又はディアクティベーションを示す。しかし、本開示の第1の実施形態に係るP-MGの設定情報は、この例に限定されない。
 本開示の第1の実施形態の第1の変形例として、P-MGの設定情報とは別の情報がP-MGのアクティベーション又はディアクティベーションを示してもよい。
 具体的には、P-MGの設定情報は、P-MGが設定されるか否かを示し、P-MGの設定情報とは別のP-MG状態情報がP-MGのアクティベーション又はディアクティベーションを示す。
 例えば、図12の情報27を参照すると、GapConfigは、P-MGの設定情報としてpreconfiguredGap-r17を、P-MG状態情報としてpreconfiguredGapState-r17をパラメータとして含む。preconfiguredGap-r17は、P-MGが設定されるか否かを示し、TRUE又はFALSEの値を取り得る。preconfiguredGapState-r17は、P-MGがアクティベートされているか又はディアクティベートされているかを示す。preconfiguredGapState-r17は、preconfiguredGap-r17がTRUEの場合、設定される。
 図10を参照して、本変形例に係る処理の流れの例を説明する。なお、上述した本開示の第1の実施形態に係る処理と実質的に同一である処理については説明を省略する。
 S410の代わりに、UE100は、P-MGの設定情報がTRUEを示すか否かを判定する。例えば、UE100は、GapConfigに含まれるpreconfiguredGap-r17がTRUE又はFALSEであるかを判定する。
 S420の代わりに、P-MGの設定情報がTRUEを示す場合、UE100は、P-MG状態情報がactivatedを示すか否かを判定する。例えば、UE100は、preconfiguredGap-r17がTRUEである場合、preconfiguredGapState-r17がactivated又はdeactivatedであるかを判定する。
 S430の代わりに、P-MG状態情報がactivatedを示す場合、UE100は、activated状態のMGを設定する。
 S440の代わりに、P-MG状態情報がactivatedを示さない場合、UE100は、deactivated状態のMGを設定する。
 S450の代わりに、P-MGの設定情報がFALSEを示す場合、UE100は、従来のMGを設定する。
 なお、上記のP-MGの設定は、TSへ反映され得る。図13の情報29は、当該P-MGの設定のTSへの反映の一例である。当然ながら、当該P-MGの設定のTSへの反映の態様は、これに限定されない。
 このように、本開示の第1の実施形態の第1の変形例によれば、P-MGの設定情報とは別の情報がP-MGのアクティベーション又はディアクティベーションを示す。これにより、P-MGの設定情報がUE100において保持され続けることなく、P-MGのアクティベーションの状態を制御することができる。また、P-MGの設定情報とP-MG状態情報が分離されることにより、P-MGの設定とは関わりなく、P-MGのアクティベーションの状態をUE100へ指示することができる。例えば、アクティベーションの状態をRRCレイヤ又はPHYレイヤで指示したり、他のトリガ(例えばタイマに基づくBWPスイッチング)で変更したりすることができる。
 (2)第2の変形例:P-MGの設定情報の第3の例
 上述した本開示の第1の実施形態では、P-MGの設定情報は、P-MGが設定されるか否かを示す。しかし、本開示の第1の実施形態に係るP-MGの設定情報は、この例に限定されない。
 本開示の第1の実施形態の第2の変形例として、P-MGの設定情報は、有無に応じてP-MGが設定されるか否かを示してもよい。
 具体的には、P-MGの設定情報は、P-MGが設定されない場合、MG設定情報に含まれなくてよい。より具体的には、P-MGの設定情報は、アクティベーションの状態を示す情報であってもよい。例えば、P-MGが設定情報は、図8に示されるようなpreconfiguredGapState-r17であってよい。preconfiguredGapState-r17は、P-MGが設定される場合、GapConfigに含まれ、P-MGが設定されない場合、GapConfigに含まれない。
 このように、本開示の第1の実施形態の第2の変形例によれば、P-MGの設定情報は、P-MGが設定されない場合、MG設定情報に含まれない。これにより、P-MGの設定有無を示しながら、シグナリングにおける通信量を抑制することができる。
 (3)第3の変形例:従来のMGとP-MGとで独立に設定
 上述した本開示の第1の実施形態では、MG設定情報は、従来のMGとP-MGとの間で共有される。しかし、本開示の第1の実施形態に係るMG設定情報は、この例に限定されない。
 本開示の第1の実施形態の第3の変形例として、MG設定情報は、従来のMG及びP-MGそれぞれについて個別に定義されてもよい。
 具体的には、従来のMGについてのMG設定情報及びP-MGについてのMG設定情報は、それぞれ独立してMeasurement設定情報に含まれ得る。例えば、MeasConfigには、従来のMGについてのmeasGapConfig及びP-MGについてのmeasGapConfigが含まれ得る。
 従来のMGについてのMG設定情報は、従来のMG設定情報である。P-MGについてのMG設定情報は、従来のMG設定情報に加えて上述したようなP-MGの設定情報を含む。
 なお、P-MGについてのMG設定情報は、上述したようなP-MGの設定情報を部分的に含んでもよい。具体的には、P-MGのアクティベーションの状態を示す情報のみがMG設定情報に含まれてよい。例えば、図8に示されるpreconfiguredGap-r17の代わりに、preconfiguredGapState-r17のみがGapConfigに含まれてよい。あるいは、P-MGのアクティベーションの状態を示す情報は、MG設定情報に含まれず、Measurement設定情報の直下に含まれてもよい。例えば、図8に示されるpreconfiguredGapState-r17は、MeasConfig直下にmeasGapConfigと並列に含まれてもよい。
 ネットワーク(即ち基地局200)は、MG設定の際に、1つのMGのみを設定する。即ち、基地局200は、従来のMGについてのMG設定情報又はP-MGについてのMG設定情報のいずれか一方のみを生成する。
 あるいは、UE100が1つのMG設定情報を選択してもよい。例えば、UE100は、従来のMGについてのMG設定情報及びP-MGについてのMG設定情報がMeasurement設定情報に含まれる場合、P-MGについてのMG設定情報を残し、従来のMG設定情報を破棄(discard)してよい。なお、従来のMGについてのMG設定情報及びP-MGについてのMG設定情報のいずれか一方のみが含まれる場合は、含まれているMG設定情報に基づきMGが設定される。
 このように、本開示の第1の実施形態の第3の変形例によれば、MG設定情報は、従来のMG及びP-MGそれぞれについて個別に定義される。これにより、従来のMGについてのMG設定情報及びP-MGについてのMG設定情報を独立的に管理することができる。そのため、従来のMGとP-MGとで異なる設定を容易に適用することができる。例えば、P-MGのみに用いられる又は従来のMGのみに用いられる設定の判別及び管理が容易となる。
 <5.第2の実施形態>
 本開示の第2の実施形態について説明する。第2の実施形態では、BWPのスイッチング発生時に、スイッチ後のBWPに応じてMGのアクティベーションの状態が設定される。なお、従来のMGとP-MGとが併存する場合は、スイッチ後のBWPに応じてP-MGのアクティベーションの状態が設定される。
 <5-1.第1の動作例>
 本開示の第2の実施形態の第1の動作例について説明する。第1の動作例では、スイッチ後のBWPにおけるMGの必要性(requirement)に応じてMGのアクティベーションの状態が設定される。
 (1)UE100の動作
 UE100は、BWPスイッチングが発生すると、MGの必要性を判定する。UE100は、MGの必要性に応じてMGのアクティベーションの状態を設定する。
 (1-1)BWPのスイッチングの判定
 UE100は、BWPのスイッチングが発生したか否かを判定する。具体的には、UE100(制御部133)は、タイマに基づくBWPスイッチングが発生したか否かを判定する。
 より具体的には、UE100は、BWPスイッチングに関するタイマの時間が満了したかを判定する。例えば、タイマは、BWP inactivity timerである。
 BWPスイッチングが発生すると、BWPが所定のBWPへスイッチする。例えば、所定のBWPは、デフォルトDL(Downlink) BWPである。デフォルトDL BWPが設定されていない場合、所定のBWPは、初期DL BWPであってもよい。なお、上記所定のBWPは、デフォルトDL BWP又は初期DL BWP以外の特定のBWPであってもよい。
 (1-2)MGの必要性の判定
 UE100(制御部133)は、スイッチ後のBWPにおけるMGの必要性を判定する。具体的には、UE100は、従来のMGの必要性の判定条件に基づきMGの必要性を判定する。例えば、UE100は、3GPP TS38.300に記載されているMeasurementにMGを要するか否か(即ちgap-assistedであるかnon-gap-assistedであるか)を決める条件に基づきMGの必要性を判定する。また、MGの必要性は、所定の制御信号に基づくMeasurementの方式について判定される。換言すると、所定の制御信号は、Measurementに用いられる信号である。
 より具体的には、MGの必要性は、スイッチ後のBWPにおけるUE100からのMGの必要性についてのレポートに基づき判定されてよい。例えば、Measurement方式がSSB(Synchronization Signal Block)ベースのinter-frequency Measurement又はSSBベースのintra-frequency Measurementの場合、UE100は、MG requirement informationを基地局200へレポートするか否かに応じてMGの必要性を判定する。UE100は、MG requirement informationをレポートする場合、MGが要されると判定する。例えば、当該レポートは、MG requirement informationを含むRRCReconfigurationComp又はRRCResumeCompといったRRCメッセージの送信である。
 また、MGの必要性は、スイッチ後のBWPについてのUE100の能力に基づき判定されてよい。例えば、Measurement方式がSSBベースのinter-frequency Measurementの場合、UE100は、スイッチ後のBWPについて自身がサポートするMGのタイプに応じてMGの必要性を判定する。UE100は、自身がper-UE MGのみをサポートする場合、MGが要されると判定する。
 また、MGの必要性は、スイッチ後のBWPにおける、サービングセルでのMeasurementのための周波数に基づき判定されてよい。例えば、Measurement方式がSSBベースのinter-frequency Measurementの場合、UE100は、自身がper-FR MGをサポートするときは、スイッチ後のBWPにおいて、複数のサービングセルにおけるMeasurementのための周波数範囲が同一であるか否かに応じてMGの必要性を判定する。UE100は、複数のサービングセルにおけるMeasurementのための周波数範囲が同一である場合、MGが要されると判定する。
 また、MGの必要性は、スイッチ後のBWPにおける所定の制御信号の周波数リソースに基づき判定されてよい。例えば、Measurement方式がSSBベースのintra-frequency Measurementの場合、UE100は、スイッチ後のBWPが初期DL BWPに関するSSBの周波数リソースを含むか否かに応じてMGの必要性を判定する。UE100は、スイッチ後のBWPが当該SSBの周波数リソースを含まない場合、MGが要されると判定する。
 なお、Measurement方式は、CSI-RS(Cannel State Information Reference Signal)ベースのinter-frequency Measurementであってもよい。
 また、上記TS38.300に記載の条件の一部のみが適用されてもよい。また、MGの必要性の判定条件は、上記TS38.300に記載の条件に限定されず、他の条件を含んでもよい。
 (1-3)MGのアクティベーションの状態の設定
 UE100は、MGの必要性に応じてMGのアクティベーションの状態を設定する。具体的には、UE100(制御部133)は、スイッチ後のBWPにおけるMGの必要性に応じて、MGのアクティベーション又はディアクティベーションを設定する。
 例えば、UE100は、スイッチ後のBWPにおいてMGが要される場合、MGをアクティベートする。即ち、状態がアクティベーションに設定される。スイッチ後のBWPにおいてMGが要されない場合、MGをディアクティベートする。即ち、状態がディアクティベーションに設定される。
 (2)基地局200の動作
 基地局200は、BWPスイッチングが発生すると、MGの必要性を判定する。基地局200は、MGの必要性に応じてMGのアクティベーションの状態を設定する。なお、UE100の動作における説明と実質的に同一である内容については詳細な説明を省略する。
 (2-1)BWPのスイッチングの判定
 基地局200は、BWPのスイッチングが発生したか否かを判定する。具体的には、基地局200(制御部243)は、タイマに基づくBWPスイッチングが発生したか否かを判定する。タイマに基づくBWPスイッチングの判定は、UE100の動作と実質的に同一であるため、説明を省略する。
 (2-2)MGの必要性の判定
 基地局200は、スイッチ後のBWPにおけるMGの必要性を判定する。具体的には、基地局200は、UE100の動作と同様に、3GPP TS38.300に記載されている条件に基づきMGの必要性を判定する。MGの必要性の判定は、UE100からのMGの必要性についてのレポートに基づくMGの必要性の判定以外はUE100の動作と実質的に同一であるため、説明を省略する。
 UE100からのMGの必要性についてのレポートに基づくMGの必要性の判定では、基地局200はUE100からレポートされる点で、UE100と動作が異なる。
 例えば、基地局200は、MG requirement informationがUE100からレポートされたか否かに応じてMGの必要性を判定する。基地局200は、MG requirement informationがレポートされた場合、MGが要されると判定する。なお、基地局200は、MG requirement informationのレポートを要求してもよい。例えば、基地局200は、MG requirement informationをUE100にレポートさせるための情報を含むRRCReconfiguration又はRRCResumeといったRRCメッセージをUE100へ送信してよい。
 (2-3)MGのアクティベーションの状態の設定
 基地局200は、MGの必要性に応じてMGのアクティベーションの状態を設定する。具体的には、基地局200(制御部243)は、スイッチ後のBWPにおけるMGの必要性に応じて、MGのアクティベーション又はディアクティベーションを設定する。アクティベーションの状態の設定は、UE100の動作と実質的に同一であるため、説明を省略する。
 (3)処理の流れ
 図14及び図15を参照して、本開示の第2の実施形態の第1の動作例に係る処理の例を説明する。
 まず、図14を参照して、本開示の第2の実施形態の第1の動作例に係るシステム1の処理の概略的な流れの例を説明する。
 UE100及び基地局200は、タイマに基づきBWPスイッチングが発生したか否かを判定する(S510)。例えば、UE100及び基地局200は、BWPスイッチングのタイマの時間が満了したか否かを判定する。
 BWPスイッチングが発生した場合、UE100及び基地局200は、スイッチ後のBWPにてMGが必要であるか否かを判定する(S520)。例えば、BWPスイッチングのタイマの時間が満了した場合、UE100及び基地局200は、TS38.300に記載されているMGが要される条件に基づき、スイッチ後のBWPにおけるMGの必要性を判定する。なお、詳細については図15を参照して後述する。
 スイッチ後のBWPにてMGが必要である場合、UE100及び基地局200は、activated状態のMGを設定する(S530)。例えば、スイッチ後のBWPにおいてMGが必要である場合、UE100及び基地局200は、アクティベーションの状態がactivatedであるMGを設定する。換言すると、UE100及び基地局200は、MGがactivatedであるとして動作する。
 スイッチ後のBWPにてMGが必要でない場合、UE100及び基地局200は、deactivated状態のMGを設定する(S540)。例えば、スイッチ後のBWPにおいてMGが必要でない場合、UE100及び基地局200は、アクティベーションの状態がdeactivatedであるMGを設定する。換言すると、UE100及び基地局200は、MGがdeactivatedであるとして動作する。
 続いて、図15を参照して、本開示の第2の実施形態の第1の動作例に係るUE100及び基地局200におけるMGの必要性の判定処理の概略的な流れの例を説明する。
 UE100及び基地局200は、スイッチ後のBWPについて、UE100からMGの必要性がレポートされるか否かを判定する(S610)。例えば、UE100は、MG requirement informationを基地局200へレポートするか否かを判定する。また、基地局200は、MG requirement informationがUE100からレポートされたか否かを判定する。
 また、UE100及び基地局200は、スイッチ後のBWPについて、UE100の能力が適応しているか否かを判定する(S620)。例えば、UE100及び基地局200は、UE100がスイッチ後のBWPについてper-UE MGのみをサポートするか否かを判定する。per-UE MGのみをサポートする場合、スイッチ後のBWPにUE100が適応していないといえる。
 また、UE100及び基地局200は、スイッチ後のBWPについて、複数のサービングセルでのMeasurement周波数が同一であるか否かを判定する(S630)。例えば、UE100及び基地局200は、スイッチ後のBWPについて、複数のサービングセルにおけるMeasurementのための周波数範囲が同一であるか否かを判定する。
 また、UE100及び基地局200は、スイッチ後のBWPが所定の制御信号の周波数リソースを含むか否かを判定する(S640)。例えば、UE100及び基地局200は、スイッチ後のBWPが初期BWPに関するSSBの周波数リソースを含むか否かを判定する。
 上記S610若しくは630にて判定がYESである場合、又はS620若しくはS640にて判定がNOである場合、処理はS530に進み、UE100及び基地局200は、MGが必要であるとしてMGをアクティベートする。
 上記S640にて判定がYESである場合、処理はS540に進み、UE100及び基地局200は、MGが必要でないとしてMGをディアクティベートする。
 なお、図14及び図15を参照して説明した第1の動作例に係る上記MG設定は、TSへ反映され得る。図16の情報35は、当該MGの設定のTSへの反映の一例である。当然ながら、当該MGの設定のTSへの反映の態様は、これに限定されない。
 (4)効果
 このように、本開示の第2の実施形態の第1の動作例によれば、UE100と基地局200との通信に用いられるBWPのスイッチングが発生した場合、スイッチ後のBWPに応じてMGのアクティベーション又はディアクティベーションが設定される。これにより、UE100及び基地局200の間のシグナリングなしで、スイッチ後のBWPに応じた同一のアクティベーションの状態がUE100及び基地局200においてそれぞれ設定され得る。したがって、ネットワークとUEとの間のMGのアクティベーションの状態を整合させながら、シグナリングの効率の低下を抑制することが可能となる。
 また、上記第1の動作例によれば、スイッチ後のBWPにおけるMGの必要性に応じて、MGのアクティベーション又はディアクティベーションが設定される。これにより、スイッチ後のBWPに適した同一のアクティベーションの状態をUE100及び基地局200においてそれぞれ設定することができる。
 また、スイッチ後のBWPにおけるMGの必要性は、第1のMG(従来のMG)の必要性の判定条件に基づいて判定される。例えば、MGの必要性は、スイッチ後のBWPにおけるUE100からのMGの必要性についてのレポートに基づいてよい。また、MGの必要性は、スイッチ後のBWPについてのUE100の能力に基づいてよい。また、MGの必要性は、スイッチ後のBWPにおける、サービングセルにおけるMeasurementのための周波数に基づいてよい。また、MGの必要性は、スイッチ後のBWPにおける所定の制御信号のためのリソースに基づいてよい。また、MGの必要性は、所定の制御信号に基づくMeasurementの方式についてであってよい。また、所定の制御信号は、SSB又はCSI-RSであってよい。これにより、MGのアクティベーションの状態の設定条件を従来のMGの必要性の判定条件に合わせることができる。
 また、BWPのスイッチングは、タイマに基づくBWPスイッチングを含む。ここで、タイマに基づくBWPスイッチングの場合、UE及び基地局は、BWPスイッチングに対してそれぞれ独立して動作する、即ちMGのアクティベーションの状態をそれぞれ独立して設定することになる。しかし、この場合、アクティベーションの状態がUE及び基地局の間で同期又は通知されないため、UEと基地局との間でアクティベーションの状態に不整合が生じる可能性がある。他方で、アクティベーションの状態をUE及び基地局で同期又は通知することは、シグナリングが追加することになるため望ましくない。これに対し、本開示の第2の実施形態によれば、BWPスイッチング時のアクティベーションの状態がMGの必要性という共通の判断基準を用いてUE100及び基地局200の間で設定される。そのため、タイマに基づくBWPスイッチングであっても、アクティベーションの状態の同期又は通知のためのシグナリングなしで、UE100及び基地局200の間でアクティベーションの状態を整合させることができる。
 また、BWPのスイッチングは、所定のBWPへのスイッチングを含み、当該所定のBWPは、デフォルトBWP又は初期BWPを含む。これにより、特定のBWPへのスイッチングについて動作を定義することにより、BWPスイッチングに応じたアクティベーションの状態の設定が複雑化することを抑制できる。
 <5-3.第2の動作例>
 続いて、本開示の第2の実施形態の第2の動作例について説明する。第2の動作例では、スイッチ後のBWPに対応するアクティベーションの状態の設定に基づき、MGのアクティベーションの状態が設定される。なお、第1の動作例における説明と実質的に同一である内容については詳細な説明を省略する。
 (1)UE100の動作
 UE100は、BWPスイッチングが発生すると、BWPスイッチングに対応するアクティベーションの状態の設定に基づきMGのアクティベーションの状態を設定する。
 (1-1)BWPのスイッチングの判定
 UE100は、BWPのスイッチングが発生したか否かを判定する。具体的には、UE100(制御部133)は、タイマに基づくBWPスイッチングが発生したか否かを判定する。タイマに基づくBWPスイッチングの判定は、第1の動作例と実質的に同一であるため、説明を省略する。
 (1-2)MGのアクティベーションの状態の設定
 UE100は、BWPスイッチングが発生すると、MGのアクティベーションの状態を設定する。具体的には、UE100(制御部133)は、スイッチ後のBWPに対応するアクティベーションの状態の設定に基づき、MGのアクティベーション又はディアクティベーションを設定する。
 より具体的には、UE100は、BWPスイッチングが発生すると、スイッチ後のBWPに対応するアクティベーションの状態のデフォルト設定に基づき、MGのアクティベーション又はディアクティベーションを設定する。当該デフォルト設定は、MGのアクティベーション又はディアクティベーションを示す。
 例えば、BWPがデフォルトDL BWP又は初期DL BWPにスイッチすると、上記デフォルト設定がアクティベーションを示す場合、UE100は、MGをアクティベートする。即ち、状態がアクティベーションに設定される。上記デフォルト設定がディアクティベーションを示す場合、UE100は、MGをディアクティベートする。即ち、状態がディアクティベーションに設定される。
 ここで、スイッチ後のBWPに対応するアクティベーションの状態の設定は、MGの設定に含まれる。図17の情報43を参照すると、MGの設定の一部としてのpreconfiguredGap-r17では、setupの場合にPreconfiguredGapConfig-r17が設定され、PreconfiguredGapConfig-r17にはdefaultBWP-PreconfigurdGapState-r17が上記デフォルト設定として含まれる。defaultBWP-PreconfigurdGapState-r17は、activated又はdeactivatedの値を取り得る。
 また、UE100(通信処理部135)は、スイッチ後のBWPに対応するアクティベーションの状態の設定を含むMGの設定を示すMG設定情報が含まれるRRCメッセージを受信する。図17の情報43を参照すると、defaultBWP-PreconfigurdGapState-r17を含むpreconfiguredGap-r17は、GapConfigに含まれる。GapConfigを含むMG設定情報としてのMeasGapConfigは、RRC Information Elementであり、RRCメッセージに含まれる。当該RRCメッセージは、例えばRRCReconfigurationメッセージ又はRRCResumeメッセージであってよい。
 なお、上記スイッチのBWPに対応するアクティベーションの状態の設定を含むMG設定情報は、第1の実施形態に係るMG設定情報であってもよく、第1の実施形態の第2の変形例に係るP-MGについてのMG設定情報であってもよい。
 (2)基地局200の動作
 基地局200は、BWPスイッチングが発生すると、BWPスイッチングに対応するアクティベーションの状態の設定に基づきMGのアクティベーションの状態を設定する。なお、UE100の動作における説明と実質的に同一である内容については詳細な説明を省略する。
 (2-1)BWPのスイッチングの判定
 基地局200は、BWPのスイッチングが発生したか否かを判定する。具体的には、基地局200(制御部243)は、タイマに基づくBWPスイッチングが発生したか否かを判定する。タイマに基づくBWPスイッチングの判定は、第1の動作例と実質的に同一であるため、説明を省略する。
 (2-2)MGのアクティベーションの状態の設定
 基地局200は、BWPスイッチングが発生すると、MGのアクティベーションの状態を設定する。具体的には、基地局200(制御部243)は、スイッチ後のBWPに対応するアクティベーションの状態の設定に基づき、MGのアクティベーション又はディアクティベーションを設定する。アクティベーションの状態の設定は、UE100の動作と実質的に同一であるため、説明を省略する。
 (3)処理の流れ
 図18を参照して、本開示の第2の実施形態の第2の動作例に係る処理の例を説明する。なお、第1の動作例に係る処理と実質的に同一である処理については詳細な説明を省略する。
 UE100及び基地局200は、タイマに基づきBWPスイッチングが発生したか否かを判定する(S710)。
 BWPスイッチングが発生した場合、UE100及び基地局200は、BWPスイッチに対応するMGの状態の設定がactivatedであるか否かを判定する(S720)。例えば、BWPスイッチングのタイマの時間が満了した場合、UE100及び基地局200は、スイッチ後のBWPに対応するアクティベーションの状態のデフォルト設定がactivatedであるか否かを判定する。
 BWPスイッチに対応するMGの状態の設定がactivatedである場合、UE100及び基地局200は、activated状態のMGを設定する(S730)。例えば、スイッチ後のBWPに対応するアクティベーションの状態のデフォルト設定がactivatedである場合、UE100及び基地局200は、アクティベーションの状態がactivatedであるMGを設定する。換言すると、UE100及び基地局200は、MGがactivatedであるとして動作する。
 BWPスイッチに対応するMGの状態の設定がactivatedでない場合、UE100及び基地局200は、deactivated状態のMGを設定する(S740)。例えば、スイッチ後のBWPに対応するアクティベーションの状態のデフォルト設定がdeactivatedである場合、UE100及び基地局200は、アクティベーションの状態がdeactivatedであるMGを設定する。換言すると、UE100及び基地局200は、MGがdeactivatedであるとして動作する。
 なお、図18を参照して説明した第2の動作例に係る上記MGの設定は、TSへ反映され得る。図19の情報45は、当該MGの設定のTSへの反映の一例である。当然ながら、当該MGの設定のTSへの反映の態様は、これに限定されない。
 (4)効果
 このように、本開示の第2の実施形態の第2の動作例によれば、第1の動作例と同様に、ネットワークとUEとの間のMGのアクティベーションの状態を整合させながら、シグナリングの効率の低下を抑制することが可能となる。
 また、上記第2の動作例によれば、スイッチ後のBWPに対応するアクティベーションの状態の設定に基づき、MGのアクティベーション又はディアクティベーションが設定される。これにより、BWPスイッチング時に同一のアクティベーションの状態をUE100及び基地局200においてそれぞれ設定することができる。また、既存のTSに依らずに、BWPスイッチング時のアクティベーションの状態を指定することができる。
 また、スイッチ後のBWPに対応するアクティベーションの状態の設定は、MGの設定に含まれる。これにより、MGの設定に関する情報をまとめることができ、シグナリングの効率を向上させることができる。
 また、スイッチ後のBWPに対応するアクティベーションの状態の設定を含むMGの設定を示すMG設定情報が含まれるRRCメッセージが基地局200からUE100へ送信される。これにより、既存のMG設定情報を利用してスイッチ後のBWPに対応するアクティベーションの状態の設定をUE100へ通知することができる。
 また、アクティベーションの状態の設定は、スイッチ後のBWPに対応するMGのアクティベーション又はディアクティベーションを示す。このように、設定値が直接的にアクティベーションの状態を示すことにより、アクティベーションの状態の設定を簡易にすることができる。
 <5-4.変形例>
 本開示の第2の実施形態の第1の動作例及び第2の動作例に係る変形例を説明する。
 (1)変形例:DL制御信号に基づくBWPスイッチング
 上述した本開示の第2の実施形態では、BWPスイッチングは、タイマに基づくBWPスイッチングである。しかし、本開示の第2の実施形態に係るBWPスイッチングは、この例に限定されない。
 本開示の第2の実施形態の変形例として、BWPスイッチングは、DL制御信号に基づくBWPスイッチングであってもよい。
 具体的には、UE100(通信処理部135)は、DL制御信号を受信する。UE100(制御部133)は、受信されたDL制御信号にBWPスイッチングを示す情報が含まれるか否かを判定する。
 例えば、図14のS510又は図18のS710に示したように、UE100は、PDCCH(Physical Downlink Control Channel)でBWPスイッチングを示すDCI(Downlink Control Information)が受信されたか否かを判定する。
 このように、本開示の第2の実施形態の変形例によれば、BWPスイッチングは、DL制御信号に基づくBWPスイッチングを含む。このため、BWPスイッチングをUE100及び基地局200で明示的に同期させることができる。したがって、アクティベーションの状態の設定のためのシグナリングなしで、アクティベーションの状態の設定タイミングをより確実に同期させることができる。
 <6.第3の実施形態>
 本開示の第3の実施形態について説明する。第3の実施形態では、MGのアクティベーションの状態に連動してMGシェアリングのアクティベーションの状態(即ち、MGシェアリングの適用性又は有効性)が判定される。
 <6-1.動作例>
 図20~図22を参照して、本開示の第3の実施形態に係るUE100及び基地局200の動作の例を説明する。
 (1)UE100の動作
 UE100は、MGシェアリング設定情報を基地局200から受信する。UE100は、MGのアクティベーションの状態に基づいて、MGにMGシェアリングを適用するか否かを判定する。以下、UE100の動作及び関係する情報について詳細に説明する。
 (1-1)MGシェアリング設定情報を受信
 UE100は、MGシェアリング設定情報を受信する。具体的には、UE100(通信処理部135)は、MGシェアリング設定情報を含むRRCメッセージを基地局200から受信する。UE100(情報取得部131)は、当該RRCメッセージに含まれるMGシェアリング設定情報を取得する。例えば、MGシェアリング設定情報は、RRC IEであるMeasGapSharingConfigである。
 また、UE100は、MGのアクティベーションの状態を示す情報を受信する。具体的には、UE100は、MGのアクティベーションの状態を示す情報を含むRRCメッセージを基地局200から受信する。MGのアクティベーションの状態を示す情報は、MG設定情報に含まれてよい。
 また、MGシェアリング設定情報及びMG設定情報を含むRRCメッセージが基地局200からUE100へ送信されてよい。例えば、MGシェアリング設定情報及びMG設定情報を含むMeasurement設定情報を含むRRCメッセージが基地局200からUE100へ送信される。当該RRCメッセージは、RRCReconfigurationメッセージ又はRRCResumeメッセージであってよい。
 (1-2)MGのアクティベーションの状態を判定
 UE100は、MGのアクティベーションの状態を判定する。具体的には、UE100(制御部133)は、MGのアクティベーションの状態を示す情報に基づいて、MGのアクティベーションの状態を判定する。
 例えば、MGのアクティベーションの状態を示す情報は、図8又は図12に示されるようなpreconfiguredGapState-r17であってよい。MGのアクティベーションの状態を示す情報は、MGがactivatedであるか又はdeactivatedであるかを示す。
 なお、MGのアクティベーションの状態は、第1の実施形態における図10に示したような処理又は第2の実施形態における図14若しくは図18に示したような処理に基づき設定され、又は判定される。
 (1-3)MGシェアリングのアクティベーションの状態を判定
 UE100は、MGシェアリングのアクティベーションの状態を判定する。MGシェアリングのアクティベーション又はディアクティベーションは、MGのアクティベーション又はディアクティベーションに対応する。
 具体的には、UE100(制御部133)は、MGのアクティベーションの状態の判定に基づいて、MGシェアリングのアクティベーション又はディアクティベーションを判定する。
 より具体的には、UE100(制御部133)は、MGのアクティベーションの状態を示す情報に基づいて、MGのアクティベーションの状態を判定する。
 例えば、UE100(制御部133)は、MGがアクティベーションに設定されている場合、MGシェアリングはアクティベートされると判定する。UE100(制御部133)は、MGがディアクティベーションに設定されている場合、MGシェアリングはディアクティベートされると判定する。
 MGシェアリングがアクティベートされると判定される場合、MGシェアリングの設定がMGに適用される。換言すると、MGシェアリングの設定が有効化される。MGシェアリングがディアクティベートされると判定される場合、MGシェアリングの設定がMGに適用されない。換言すると、MGシェアリングの設定が無効化される。なお、MGシェアリングがディアクティベートされると判定される場合であっても、MGシェアリングの設定は破棄されない。
 (2)基地局200の動作
 基地局200は、MG及びMGシェアリングを設定し、MG設定情報及びMGシェアリング設定情報をUE100へ送信する。基地局200は、MGのアクティベーションの状態に基づいて、MGにMGシェアリングを適用するか否かを判定する。以下、基地局200の動作及び関係する情報について詳細に説明する。なお、UE100の動作における説明と実質的に同一である内容については詳細な説明を省略する。
 (2-1)MGシェアリング設定情報を送信
 基地局200は、MGシェアリング設定情報をUE100へ送信する。具体的には、基地局200(情報取得部241)は、MGシェアリング設定情報を取得する。基地局200(通信処理部245)は、取得されたMGシェアリング設定情報を含むRRCメッセージをUE100へ送信する。例えば、基地局200は、MGシェアリングを設定することにより、当該MGシェアリングの設定を示すMGシェアリング設定情報を取得する。
 また、基地局200は、MGのアクティベーションの状態を示す情報をUE100へ送信する。具体的には、基地局200は、MGのアクティベーションの状態を示す情報を含むRRCメッセージをUE100へ送信する。例えば、基地局200は、MGを設定する際にMGのアクティベーションの状態も設定することにより、当該MGのアクティベーションの状態を示す情報を取得する。
 (2-2)MGのアクティベーションの状態を判定
 基地局200は、MGのアクティベーションの状態を判定する。具体的には、基地局200(制御部243)は、MGのアクティベーションの状態を示す情報に基づいて、MGのアクティベーションの状態を判定する。MGのアクティベーションの状態の判定は、UE100の動作と実質的に同一であるため、説明を省略する。
 (2-3)MGシェアリングのアクティベーションの状態を判定
 基地局200は、MGシェアリングのアクティベーションの状態を判定する。具体的には、基地局200(制御部243)は、MGのアクティベーションの状態の判定に基づいて、MGシェアリングのアクティベーション又はディアクティベーションを判定する。MGシェアリングのアクティベーションの状態の判定は、UE100の動作と実質的に同一であるため、説明を省略する。
 (3)処理の流れ
 図20及び図21を参照して、本開示の第3の実施形態に係る処理の例を説明する。
 まず、図20を参照して、本開示の第3の実施形態に係るシステム1の処理の概略的な流れの例を説明する。
 基地局200は、MG及びMGシェアリングを設定する(S810)。例えば、基地局200は、MG及びMGシェアリングを設定し、MG設定情報及びMGシェアリング設定情報を生成する。
 基地局200は、MG設定情報及びMGシェアリング設定情報を含むRRCメッセージをUE100へ送信する(S820)。例えば、基地局200は、measGapConfig及びmeasGapSharingConfigを含むRRCReconfigurationメッセージ又はRRCResumeメッセージをUE100へ送信する。measGapConfigは、MGのアクティベーションの状態を示す情報としてのpreconfiguredGapState-r17を含む。
 UE100は、受信されたRRCメッセージへの応答メッセージを基地局200へ送信する(S830)。例えば、UE100は、measGapConfig及びmeasGapSharingConfigを含むRRCReconfigurationメッセージ又はRRCResumeメッセージを基地局200から受信すると、RRCReconfigurationCompメッセージ又はRRCResumeCompメッセージを基地局200へ送信する。
 UE100は、受信されたRRCメッセージからMG設定情報及びMGシェアリング設定情報を取得する(S840)。例えば、UE100は、受信されたRRCReconfigurationメッセージ又はRRCResumeメッセージからmeasGapConfig及びmeasGapSharingConfigを取得する。
 UE100及び基地局200は、MGシェアリングのアクティベーションの状態を判定する(S850)。例えば、UE100及び基地局200は、MGのアクティベーションの状態を示す情報に基づき、MGシェアリングのアクティベーションの状態を判定する。S850の処理の詳細については図21を参照して後述する。
 続いて、図21を参照して、本開示の第3の実施形態に係るUE100及び基地局200におけるMGシェアリングのアクティベーションの状態を判定する処理の概略的な流れの例を説明する。
 UE100及び基地局200は、MGがactivatedであるか否かを判定する(S910)。例えば、UE100及び基地局200は、MGのアクティベーションの状態を示す情報に基づきMGがactivatedであるか否かを判定する。
 MGがactivatedである場合、UE100及び基地局200は、MGシェアリングが設定されているか否かを判定する(S920)。例えば、MGのアクティベーションの状態を示す情報がアクティベーションを示す場合、UE100は、基地局200からMGシェアリング設定情報が受信されたか否かを判定する。基地局200は、MGシェアリングを設定したか否かを判定する。
 MGシェアリングが設定されている場合、UE100及び基地局200は、MGシェアリングがactivatedであると判定する(S930)。例えば、MGシェアリングが設定されている場合、UE100及び基地局200は、MGシェアリングがactivatedであると判定する。換言すると、UE100及び基地局200は、MGシェアリングがactivatedであるとして動作する。
 MGがactivatedでない場合、UE100及び基地局200は、MGシェアリングが設定されているか否かを判定する(S940)。
 MGシェアリングが設定されている場合、UE100及び基地局200は、MGシェアリングがdeactivatedであると判定する(S950)。例えば、MGシェアリングが設定されている場合、UE100及び基地局200は、MGシェアリングがdeactivatedであると判定する。換言すると、UE100及び基地局200は、MGシェアリングがdeactivatedであるとして動作する。
 なお、図21を参照して説明したMGシェアリングのアクティベーションの状態判定は、TSへ反映され得る。図22の情報51及び図23の情報53は、当該MGシェアリングのアクティベーションの状態判定のTSへの反映の一例である。当然ながら、当該MGシェアリングのアクティベーションの状態判定のTSへの反映の態様は、これに限定されない。
 (4)効果
 このように、本開示の第3の実施形態によれば、MGシェアリング設定情報を含むRRCメッセージが基地局200からUE100へ送信され、MGシェアリングのアクティベーション又はディアクティベーションは、MGのアクティベーション又はディアクティベーションに対応する。これにより、MGシェアリングの適用有無をMGのアクティベーションの状態に応じて決めることができる。したがって、アクティベーション又はディアクティベーションの状態を取り得るMGに対してMGシェアリングを適用することが可能となる。
 また、MGシェアリングのアクティベーション又はディアクティベーションは、MGのアクティベーションの状態の判定に基づいて判定される。これにより、MGのアクティベーションの状態を把握し得るUE100及び基地局200それぞれにおいて、MGシェアリングのアクティベーションの状態を判定することができる。
 また、MGのアクティベーションの状態は、MGのアクティベーションの状態を示す情報に基づいて判定される。これにより、MGシェアリングのアクティベーションの状態をMGのアクティベーションの状態により確実に対応させることができる。
 また、MGのアクティベーションの状態を示す情報を含むRRCメッセージが基地局200からUE100へ送信される。これにより、UE100と基地局200との間でMGのアクティベーションの状態を同期させることができるため、MGシェアリングのアクティベーションの状態も同期させることができる。
 また、MGのアクティベーションの状態を示す情報は、MG設定情報に含まれ、MG設定情報及びMGシェアリング設定情報を含むRRCメッセージが基地局200からUE100へ送信される。これにより、MGのアクティベーションの状態を示す情報及びMGシェアリング設定情報が同一のRRCメッセージで送信されるため、MGのアクティベーションの状態とMGシェアリングのアクティベーションの状態との間で不整合が生じる可能性を抑制することができる。
 また、MGがアクティベーションに設定されている場合、MGシェアリングはアクティベートされると判定され、MGがディアクティベーションに設定されている場合、MGシェアリングはディアクティベートされると判定される。これにより、MGとMGシェアリングとの間で、アクティベーションの状態を合致させることができる。
 以上、本開示の実施形態を説明したが、本開示は当該実施形態に限定されるものではない。当該実施形態は例示にすぎないということ、及び、本開示のスコープ及び精神から逸脱することなく様々な変形が可能であるということは、当業者に理解されるであろう。
 例えば、本明細書に記載されている処理におけるステップは、必ずしもフローチャート又はシーケンス図に記載された順序に沿って時系列に実行されなくてよい。例えば、処理におけるステップは、フローチャート又はシーケンス図として記載した順序と異なる順序で実行されても、並列的に実行されてもよい。また、処理におけるステップの一部が削除されてもよく、さらなるステップが処理に追加されてもよい。
 例えば、本明細書において説明した装置の1つ以上の構成要素の動作を含む方法が提供されてもよく、上記構成要素の動作をコンピュータに実行させるためのプログラムが提供されてもよい。また、当該プログラムを記録したコンピュータに読み取り可能な非遷移的実体的記録媒体が提供されてもよい。当然ながら、このような方法、プログラム、及びコンピュータに読み取り可能な非遷移的実体的記録媒体(non-transitory tangible computer-readable storage medium)も、本開示に含まれる。
 例えば、本開示において、ユーザ機器(UE)は、移動局(mobile station)、移動端末、移動装置、移動ユニット、加入者局(subscriber station)、加入者端末、加入者装置、加入者ユニット、ワイヤレス局、ワイヤレス端末、ワイヤレス装置、ワイヤレスユニット、リモート局、リモート端末、リモート装置、又はリモートユニット等の別の名称で呼ばれてもよい。
 例えば、本開示において、「送信する(transmit)」は、送信に使用されるプロトコルスタック内の少なくとも1つのレイヤの処理を行うことを意味してもよく、又は、無線又は有線で信号を物理的に送信することを意味してもよい。あるいは、「送信する」は、上記少なくとも1つのレイヤの処理を行うことと、無線又は有線で信号を物理的に送信することとの組合せを意味してもよい。同様に、「受信する(receive)」は、受信に使用されるプロトコルスタック内の少なくとも1つのレイヤの処理を行うことを意味してもよく、又は、無線又は有線で信号を物理的に受信することを意味してもよい。あるいは、「受信する」は、上記少なくとも1つのレイヤの処理を行うことと、無線又は有線で信号を物理的に受信することとの組合せを意味してもよい。上記少なくとも1つのレイヤは、少なくとも1つのプロトコルと言い換えられてもよい。
 例えば、本開示において、「取得する(obtain/acquire)」は、記憶されている情報の中から情報を取得することを意味してもよく、他のノードから受信した情報の中から情報を取得することを意味してもよく、又は、情報を生成することにより当該情報を取得することを意味してもよい。
 例えば、本開示において、「~を含む(include)」及び「~を備える(comprise)」は、列挙する項目のみを含むことを意味せず、列挙する項目のみを含んでもよいし、列挙する項目に加えてさらなる項目を含んでもよいことを意味する。
 例えば、本開示において、「又は(or)」は、排他的論理和を意味せず、論理和を意味する。
 なお、上述した実施形態に含まれる技術的特徴は、以下のような特徴として表現されてもよい。当然ながら、本開示は以下のような特徴に限定されない。
(特徴1)
 ユーザ機器(100)であって、
 MG(Measurement Gap)シェアリング設定情報を含むRRC(Radio Resource Control)メッセージを基地局(200)から受信する通信処理部(135)と、
 前記RRCメッセージに含まれる前記MGシェアリング設定情報を取得する情報取得部(131)と、
 を備え、
 前記MGシェアリングのアクティベーション又はディアクティベーションは、MGのアクティベーション又はディアクティベーションに対応する
 ユーザ機器。
(特徴2)
 前記MGシェアリングのアクティベーション又はディアクティベーションは、前記MGのアクティベーションの状態の判定に基づいて判定される
 特徴1に記載のユーザ機器。
(特徴3)
 前記MGのアクティベーションの状態は、前記MGのアクティベーションの状態を示す情報に基づいて判定される
 特徴2に記載のユーザ機器。
(特徴4)
 前記通信処理部は、前記MGのアクティベーションの状態を示す情報を含むRRCメッセージを基地局から受信する
 特徴3に記載のユーザ機器。
(特徴5)
 前記MGのアクティベーションの状態を示す情報は、MG設定情報に含まれ、
 前記通信処理部は、前記MG設定情報及び前記MGシェアリング設定情報を含むRRCメッセージを基地局から受信する
 特徴4に記載のユーザ機器。
(特徴6)
 前記MGがアクティベーションに設定されている場合、前記MGシェアリングはアクティベートされると判定され、
 前記MGがディアクティベーションに設定されている場合、前記MGシェアリングはディアクティベートされると判定される
 特徴1~5のいずれか1項に記載のユーザ機器。
(特徴7)
 MG(Measurement Gap)シェアリング設定情報を取得する情報取得部(241)と、
 前記MGシェアリング設定情報を含むRRC(Radio Resource Control)メッセージをユーザ機器(100)へ送信する通信処理部(245)と、
 を備え、
 前記MGシェアリングのアクティベーション又はディアクティベーションは、MGのアクティベーション又はディアクティベーションに対応する
 基地局(200)。
(特徴8)
 ユーザ機器(100)により行われる方法であって、
 MG(Measurement Gap)シェアリング設定情報を含むRRC(Radio Resource Control)メッセージを基地局(200)から受信することと、
 前記RRCメッセージに含まれる前記MGシェアリング設定情報を取得することと、
 を含み、
 前記MGシェアリングのアクティベーション又はディアクティベーションは、MGのアクティベーション又はディアクティベーションに対応する
 方法。
(特徴9)
 基地局(200)により行われる方法であって、
 MG(Measurement Gap)シェアリング設定情報を取得することと、
 前記MGシェアリング設定情報を含むRRC(Radio Resource Control)メッセージをユーザ機器(100)へ送信することと、
 を含み、
 前記MGシェアリングのアクティベーション又はディアクティベーションは、MGのアクティベーション又はディアクティベーションに対応する
 方法。
(特徴10)
 MG(Measurement Gap)シェアリング設定情報を含むRRC(Radio Resource Control)メッセージを基地局(200)から受信することと、
 前記RRCメッセージに含まれる前記MGシェアリング設定情報を取得することと、
 をコンピュータに実行させるプログラムであって、
 前記MGシェアリングのアクティベーション又はディアクティベーションは、MGのアクティベーション又はディアクティベーションに対応する
 プログラム。
(特徴11)
 MG(Measurement Gap)シェアリング設定情報を取得することと、
 前記MGシェアリング設定情報を含むRRC(Radio Resource Control)メッセージをユーザ機器(100)へ送信することと、
 をコンピュータに実行させるプログラムであって、
 前記MGシェアリングのアクティベーション又はディアクティベーションは、MGのアクティベーション又はディアクティベーションに対応する
 プログラム。
(特徴12)
 MG(Measurement Gap)シェアリング設定情報を含むRRC(Radio Resource Control)メッセージを基地局(200)から受信することと、
 前記RRCメッセージに含まれる前記MGシェアリング設定情報を取得することと、
 をコンピュータに実行させるプログラムを記録したコンピュータに読み取り可能な非遷移的実体的記録媒体であって、
 前記MGシェアリングのアクティベーション又はディアクティベーションは、MGのアクティベーション又はディアクティベーションに対応する
 非遷移的実体的記録媒体。
(特徴13)
 MG(Measurement Gap)シェアリング設定情報を取得することと、
 前記MGシェアリング設定情報を含むRRC(Radio Resource Control)メッセージをユーザ機器(100)へ送信することと、
 をコンピュータに実行させるプログラムを記録したコンピュータに読み取り可能な非遷移的実体的記録媒体であって、
 前記MGシェアリングのアクティベーション又はディアクティベーションは、MGのアクティベーション又はディアクティベーションに対応する
 非遷移的実体的記録媒体。
 

Claims (8)

  1.  装置(100)であって、
     測定ギャップが事前設定された測定ギャップであることを示すための情報、前記事前設定された測定ギャップがアクティベートされるかを示すための情報、及び、前記測定ギャップのシェアリングに関する情報を含む無線リソース制御(RRC:Radio Resource Control)メッセージを受信する通信処理部(135)と、
     前記事前設定された測定ギャップがアクティベートされるかを示すための情報に基づいて、前記事前設定された測定ギャップがアクティベートされる場合には、前記測定ギャップのシェアリングに関する情報に基づく測定ギャップのシェアリングを前記事前設定された測定ギャップに適用する制御部(133)と、を備える
     装置。
  2.  前記制御部は、前記事前設定された測定ギャップがアクティベートされるかを示すための情報に基づいて、前記事前設定された測定ギャップをディアクティベートする
     請求項1に記載の装置。
  3.  基地局(200)であって、
     測定ギャップが事前設定された測定ギャップであることを示すための情報、前記事前設定された測定ギャップがアクティベートされるかを示すための情報、及び、前記測定ギャップのシェアリングに関する情報を含む無線リソース制御(RRC:Radio Resource Control)メッセージを送信する通信処理部(245)と、
     前記事前設定された測定ギャップがアクティベートされるかを示すための情報に基づいて、前記事前設定された測定ギャップがアクティベートされる場合には、前記測定ギャップのシェアリングに関する情報に基づく測定ギャップのシェアリングを前記事前設定された測定ギャップに適用する制御部(243)と、を備える
     基地局。
  4.  前記制御部は、前記事前設定された測定ギャップがアクティベートされるかを示すための情報に基づいて、前記事前設定された測定ギャップをディアクティベートする
     請求項3に記載の基地局。
  5.  装置(100)において行われる方法であって、
     測定ギャップが事前設定された測定ギャップであることを示すための情報、前記事前設定された測定ギャップがアクティベートされるかを示すための情報、及び、前記測定ギャップのシェアリングに関する情報を含む無線リソース制御(RRC:Radio Resource Control)メッセージを受信することと、
     前記事前設定された測定ギャップがアクティベートされるかを示すための情報に基づいて、前記事前設定された測定ギャップがアクティベートされる場合には、前記測定ギャップのシェアリングに関する情報に基づく測定ギャップのシェアリングを前記事前設定された測定ギャップに適用することと、を含む
     方法。
  6.  前記事前設定された測定ギャップがアクティベートされるかを示すための情報に基づいて、前記事前設定された測定ギャップをディアクティベートする
     請求項5に記載の方法。
  7.  基地局(200)において行われる方法であって、
     測定ギャップが事前設定された測定ギャップであることを示すための情報、前記事前設定された測定ギャップがアクティベートされるかを示すための情報、及び、前記測定ギャップのシェアリングに関する情報を含む無線リソース制御(RRC:Radio Resource Control)メッセージを送信することと、
     前記事前設定された測定ギャップがアクティベートされるかを示すための情報に基づいて、前記事前設定された測定ギャップがアクティベートされる場合には、前記測定ギャップのシェアリングに関する情報に基づく測定ギャップのシェアリングを前記事前設定された測定ギャップに適用することと、を含む
     方法。
  8.  前記事前設定された測定ギャップがアクティベートされるかを示すための情報に基づいて、前記事前設定された測定ギャップをディアクティベートする
     請求項7に記載の方法。
     
PCT/JP2022/038775 2021-10-20 2022-10-18 装置、基地局及び方法 WO2023068273A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023554709A JPWO2023068273A1 (ja) 2021-10-20 2022-10-18
CN202280070433.7A CN118140518A (zh) 2021-10-20 2022-10-18 装置、基站以及方法
EP22883577.3A EP4422258A1 (en) 2021-10-20 2022-10-18 Device, base station, and method
US18/639,392 US20240267929A1 (en) 2021-10-20 2024-04-18 Apparatus, base station, and communication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021171755 2021-10-20
JP2021-171755 2021-10-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/639,392 Continuation US20240267929A1 (en) 2021-10-20 2024-04-18 Apparatus, base station, and communication method

Publications (1)

Publication Number Publication Date
WO2023068273A1 true WO2023068273A1 (ja) 2023-04-27

Family

ID=86059139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/038775 WO2023068273A1 (ja) 2021-10-20 2022-10-18 装置、基地局及び方法

Country Status (5)

Country Link
US (1) US20240267929A1 (ja)
EP (1) EP4422258A1 (ja)
JP (1) JPWO2023068273A1 (ja)
CN (1) CN118140518A (ja)
WO (1) WO2023068273A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020086514A1 (en) * 2018-10-23 2020-04-30 Intel Corporation Measurement gap enhancements
JP2021507548A (ja) * 2018-02-16 2021-02-22 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 共通探索空間を使用した効率的な制御シグナリング
WO2021066154A1 (ja) * 2019-10-03 2021-04-08 シャープ株式会社 端末装置、基地局装置、および、通信方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021507548A (ja) * 2018-02-16 2021-02-22 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 共通探索空間を使用した効率的な制御シグナリング
WO2020086514A1 (en) * 2018-10-23 2020-04-30 Intel Corporation Measurement gap enhancements
WO2021066154A1 (ja) * 2019-10-03 2021-04-08 シャープ株式会社 端末装置、基地局装置、および、通信方法

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Radio Resource Control (RRC) protocol specification (Release 16", 3GPP TS 38.331, September 2021 (2021-09-01)
"Email discussion summary for [100-e][224] NR_MG_Part_2", 3GPP TSG RAN WG4 MEETING #100-E, 16 August 2021 (2021-08-16)
"LS on R17 NR MG enhancements - Pre-configured MG", 3GPP TSG-RAN WG4 MEETING #100-E, 16 August 2021 (2021-08-16)
INTEL CORPORATION, MEDIATEK INC.: "Revised WID on NR and MR-DC measurement gap enhancements", 3GPP TSG RAN MEETING #92E
INTEL CORPORATION: "WF on R17 NR MG enhancements - Pre-configured MG", 3GPP TSG RAN WG4 MEETING #100-E, 16 August 2021 (2021-08-16)
INTEL CORPORATION: "WF on R17 NR MG enhancements - Pre-configured MG", 3GPP TSG-RAN WG4 MEETING #99-E, 19 May 2021 (2021-05-19)
MEDIATEK INC., INTEL CORPORATION: "Status Report to TSG", 3GPP TSG RAN MEETING #93E
NOKIA, NOKIA SHANGHAI BELL: "Discussion on concurrent measurement gaps", 3GPP DRAFT; R4-2114023, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG4, no. E-meeting; 20210816 - 20210827, 6 August 2021 (2021-08-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052037349 *

Also Published As

Publication number Publication date
CN118140518A (zh) 2024-06-04
US20240267929A1 (en) 2024-08-08
JPWO2023068273A1 (ja) 2023-04-27
EP4422258A1 (en) 2024-08-28

Similar Documents

Publication Publication Date Title
EP3629630B1 (en) Communication method, network node, and radio access network system
CN111602442B (zh) 无线电终端及其方法
JP7254063B2 (ja) 非周期的ビーム障害回復(bfr)トリガによって拡張される無線リンク障害(rlf)手順のためのパラメータ調整
TWI742134B (zh) 用於無線通訊中的切換的方法、目標基地台、使用者裝備及電腦可讀取媒體
JP6683379B2 (ja) デュアルモード端末の性能情報報告方法及び装置
KR101889204B1 (ko) 세컨더리 기지국 디바이스에 의해 사용자 평면 연결성이 사용자 디바이스에 제공되는 동안 제어 평면 연결성을 사용자 디바이스에 제공하도록 구성된 마스터 기지국 디바이스
US11451982B2 (en) Receiver beamforming for serving and neighbor cell measurements
TW201947959A (zh) 一種使用者設備的無線通訊方法及用於無線通訊的裝置
CN116456485A (zh) 用户设备、基站及其所用的方法
US10237841B1 (en) Apparatus and method of using tracking area update (TAU) message to update UE radio capability
GB2522673A (en) Method and apparatus for implementing dual connectivity
US20220394575A1 (en) Measurement Configuration Method and Apparatus
WO2014059606A1 (zh) 传输调度请求的方法和装置、用户设备以及基站
GB2515361A (en) Apparatus and methods for device to device communications
WO2014019168A1 (zh) 协作多点测量方法、基站与用户设备
WO2020164453A1 (zh) 信息上报方法、装置及设备
JP7390149B2 (ja) 端末装置、基地局装置、方法、および、集積回路
US20200267622A1 (en) Signaling port information of user equipment ports in a wireless communication system including a radio access network
US11234278B2 (en) Flexible radio access network node identifier
WO2023068273A1 (ja) 装置、基地局及び方法
WO2022153748A1 (ja) ユーザ機器及び基地局
WO2023068272A1 (ja) 装置、基地局及び方法
WO2023068271A1 (ja) 装置、基地局及び方法
WO2023013738A1 (ja) 装置及び方法
WO2023013737A1 (ja) 装置及び方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22883577

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023554709

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280070433.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022883577

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022883577

Country of ref document: EP

Effective date: 20240521