WO2023068061A1 - Cultivation device - Google Patents

Cultivation device Download PDF

Info

Publication number
WO2023068061A1
WO2023068061A1 PCT/JP2022/037371 JP2022037371W WO2023068061A1 WO 2023068061 A1 WO2023068061 A1 WO 2023068061A1 JP 2022037371 W JP2022037371 W JP 2022037371W WO 2023068061 A1 WO2023068061 A1 WO 2023068061A1
Authority
WO
WIPO (PCT)
Prior art keywords
heaters
temperature
control unit
culture
ratio
Prior art date
Application number
PCT/JP2022/037371
Other languages
French (fr)
Japanese (ja)
Inventor
紘介 本田
泰貴 押本
憲一 堀内
信雄 堀本
弘樹 平井
清弘 堀川
Original Assignee
Phcホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Phcホールディングス株式会社 filed Critical Phcホールディングス株式会社
Publication of WO2023068061A1 publication Critical patent/WO2023068061A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology

Definitions

  • the present invention relates to a culture device.
  • the culture space is sterilized.
  • One method for sterilization is to use a heater to bring the temperature of the culture space to a sterilizable temperature (see Patent Document 1, for example).
  • the temperature that can be sterilized is relatively high. Therefore, the surface temperature of the heater during sterilization becomes relatively high.
  • the heat of the heater may affect the properties of the members constituting the parts other than the culture chamber.
  • An object of the present disclosure is to provide a culture apparatus capable of suppressing the influence of the heat of the heater on parts other than the culture chamber.
  • a culture apparatus includes a housing having a culture chamber, a plurality of heaters for heating the culture chamber, a temperature sensor for detecting the temperature of the culture chamber, and a plurality of heaters based on the temperature detected by the temperature sensor. a control unit for controlling, wherein the control unit controls the energization amounts of the plurality of heaters in the dry heat sterilization operation so that the ratio between the energization amounts of the plurality of heaters becomes a predetermined ratio. do.
  • the culture apparatus in the culture apparatus, it is possible to suppress the influence of the heat of the heater on parts other than the culture chamber.
  • the side facing the user when in use is the front side (front side) of the culture device 1, and the opposite side is the back side (back side) of the culture device 1.
  • the left and right sides of the culture device 1 when the user views the culture device 1 from the front are defined as the left and right sides, respectively.
  • the side away from the surface on which the culture device 1 is installed is the upper side (top side) of the culture device 1, and the opposite side is the lower side (bottom side) of the culture device 1.
  • the culture device 1 shown in FIG. 1 is a device for culturing cultures such as cells or microorganisms in a culture chamber 20 formed inside a substantially box-shaped housing 10 .
  • the temperature, humidity, O2 (oxygen) concentration, and CO2 (carbon dioxide) concentration of the culture chamber 20 are maintained within appropriate ranges so as to create an atmosphere suitable for culturing the culture.
  • the housing 10 includes an inner box 11 , an outer box 12 , an outer door 13 , an inner door 14 and a plate member 15 .
  • the inner box 11 is substantially box-shaped, has the culture chamber 20 inside, and has an opening 21 of the culture chamber 20 on the front side.
  • the outer box 12 is substantially box-shaped and covers the outer side of the inner box 11 except for the opening 21 .
  • the inner box 11 and the outer box 12 are made of metal plates.
  • a heat insulating material 16 is arranged between the inner box 11 and the outer box 12 .
  • the heat insulating material 16 is formed by bonding a plurality of plate-shaped heat insulating members to each other with an adhesive, for example.
  • the outer door 13 and inner door 14 open and close the opening 21 .
  • a packing P is arranged on the outer edge of the outer door 13 .
  • the plate member 15 connects the inner box 11 and the outer box 12 at the periphery of the opening 21 .
  • the plate member 15 is a frame-shaped member having a substantially square outer periphery, and connects the front end of the inner case 11 and the front end of the outer case 12 over the entire circumference of the opening 21 .
  • a plurality of heaters 30 for heating the incubation chamber 20 are arranged in the housing 10 .
  • the plurality of heaters 30 are formed by arranging the cord heaters H on a metal plate.
  • the first to fifth heaters 31 to 35 are arranged outside the inner box 11 on the top surface of the inner box 11, the bottom surface of the inner box 11, the back surface of the inner box 11, and the right side surface of the inner box 11. , and the left side of the inner box 11 .
  • the sixth heater 36 is arranged on the surface of the outer door 13 on the opening 21 side. Also, the amount of heat emitted from the opening 21 in the culture chamber 20 is larger than the amount of heat emitted from other parts. Therefore, the seventh and eighth heaters 37 and 38 are respectively arranged on the rear plate surface of the plate member 15 and the inner surface of the plate member 15 so that the amount of heating in the vicinity of the opening 21 in the culture chamber 20 is larger than the amount of heating in the other portions. It is arranged on the periphery of the opening 21 of the box 11 .
  • the eighth heater 38 is specifically belt-shaped and arranged outside the front end portion of the inner box 11 so as to surround the opening 21 .
  • the eighth heater 38 is divided into two.
  • the eighth heater 38 may be divided into three or more parts, or may be formed in an annular shape without being divided.
  • the cord heaters H are arranged so that the temperature distribution in the incubation chamber 20 is uniform. Note that the rated outputs of the plurality of heaters 30 may be different from each other, or may be the same as each other.
  • the plurality of heaters 30 are classified into six systems and electrically connected to the controller 40 .
  • the first to third systems G1 to G3 are composed of first to third heaters 31 to 33, respectively.
  • a fourth system G4 is composed of fourth and fifth heaters 34 and 35 .
  • the fifth system G5 is composed of the eighth heater 38 .
  • the sixth system G6 is composed of the sixth and seventh heaters 36 and 37 .
  • the number of heaters arranged in the housing 10, the number of systems, and the combination of heaters constituting each system are not limited as described above.
  • the plurality of heaters 30 may not include the seventh and eighth heaters 37,38.
  • the plurality of heaters 30 are classified into five systems, and the fifth system G5 is composed of the sixth heater 36 .
  • the control unit 40 controls the energization amounts of the plurality of heaters 30 for each system.
  • a duct 22 extending vertically is arranged on the inner rear surface of the inner box 11 in the culture chamber 20 .
  • a gas passage K is formed inside the duct 22 .
  • a circulation blower 23 is arranged in the gas passage K. As shown in FIG. By operating the circulation blower 23, the air in the culture chamber 20 is sucked from the suction port 22a formed in the upper part of the duct 22, and the air flows into the culture chamber 20 from the outlet 22b provided in the lower part of the duct 22. blown out. This provides forced air circulation as indicated by the thick arrows.
  • a temperature sensor 24 and gas supply devices 25 a and 25 b are arranged in the duct 22 .
  • the temperature sensor 24 detects the temperature of the incubation chamber 20. Specifically, the temperature sensor 24 is arranged near the suction port 22a and detects the temperature of the air sucked from the suction port 22a.
  • the gas supply devices 25 a and 25 b supply adjustment gases (O 2 gas, N 2 (nitrogen) gas and CO 2 gas) for adjusting the O 2 gas concentration and the CO 2 gas concentration of the incubation chamber 20 to the incubation chamber 20 .
  • adjustment gases O 2 gas, N 2 (nitrogen) gas and CO 2 gas
  • a humidifying tray D for storing water for humidification is installed.
  • the rear surface and bottom surface of the outer case 12 of the housing 10 are covered with a cover 17.
  • a space between the back surface of the outer casing 12 and the cover 17 forms a machine room M for arranging various devices.
  • the machine room M is provided with an electric equipment box 17a.
  • the control unit 40 and other electrical components are housed inside the electrical equipment box 17a.
  • the culture device 1 receives commands to start and stop the culture device 1, settings of the operation mode, and input of various setting values for the culture room 20 from the operation unit 50 provided on the outer door 13.
  • Various setting values for the incubation chamber 20 include a set temperature, a set humidity, a set concentration of O2 gas, a set concentration of CO2 gas, and the like.
  • the control unit 40 controls components such as the plurality of heaters 30 based on an input from the operation unit 50 .
  • the operation unit 50 has a display unit that displays the state of the culture device 1 .
  • the operation modes of the culture apparatus 1 include at least a normal operation mode and a dry heat sterilization operation mode.
  • a circulation fan 23, gas supply devices 25a and 25b, and a plurality of heaters are provided so that the inside of the housing 10 (incubation chamber 20) has an atmosphere (for example, 37° C.) suitable for culturing the culture. 30 or the like is operated.
  • the dry heat sterilization operation mode is a mode in which the circulation fan 23 and the plurality of heaters 30 are operated so as to dry heat sterilize the inside of the housing 10 (incubation chamber 20). During the dry heat sterilization, the humidifying tray D is emptied and the temperature of the culture chamber 20 is maintained at the set temperature (for example, 180° C.) of the dry heat sterilization operation mode.
  • the control of the plurality of heaters 30 executed by the controller 40 in the dry heat sterilization operation mode will be described in detail using the flowchart of FIG. 4 and the time chart of FIG.
  • the lower diagram is a time chart of the temperature detected by the temperature sensor 24 (hereinafter referred to as "detected temperature")
  • the upper diagram is a time chart of the duty ratio of each system, which will be described later.
  • the control unit 40 controls the plurality of heaters 30 so that the temperature of the incubation chamber 20 reaches the set temperature for the dry heat sterilization operation mode. Specifically, the control unit 40 controls each of the energization amounts of the plurality of heaters 30 so that the ratio between the energization amounts of the plurality of heaters 30 becomes a predetermined ratio. The ratio between the energization amounts of the plurality of heaters 30 is determined in advance based on experiments and the like so that the temperature distribution in the culture chamber 20 is uniform in the dry heat sterilization operation mode.
  • the control unit 40 controls the energization amount of the plurality of heaters 30 by adjusting the voltage applied to the plurality of heaters 30 by pulse width modulation (PWM). That is, the energization amount of the plurality of heaters 30 is adjusted by the duty ratio of the pulse width modulation. As the duty ratio increases (that is, approaches 100%), the amount of energization increases.
  • PWM pulse width modulation
  • the control unit 40 controls the plurality of heaters 30 according to the system. That is, the control unit 40 calculates the duty ratio for each system.
  • the controller 40 When the dry heat sterilization operation mode is started, the controller 40 operates as shown in FIG. First temperature increase control (S1), second temperature increase control (S2), and temperature retention control (S3) are executed in this order.
  • S1 First temperature increase control
  • S2 second temperature increase control
  • S3 temperature retention control
  • the first temperature increase control (S1) is control for increasing the temperature of the incubation chamber 20 to a predetermined temperature.
  • the predetermined temperature is a temperature lower than the temperature at which dry heat sterilization is possible.
  • the control unit 40 determines the duty ratio of each system so that the energization amount of the plurality of heaters 30 is maximized when the first temperature increase control is executed in the dry heat sterilization operation mode. Specifically, the control unit 40 keeps the duty ratio of each system constant at 100% in the first temperature increase control. Needless to say, in the first temperature increase control, the duty ratio of each system is not limited to 100%. At this time, the ratio of the energization amounts among the plurality of heaters 30 is determined by the rated output of each of the plurality of heaters 30 .
  • the dry heat sterilization operation mode is started (time tm0), and when the detected temperature rises and reaches a predetermined temperature (time tm1), the controller 40 ends the first temperature increase control. . Since the duty ratio of each system is determined so that the energization amount of the plurality of heaters 30 becomes maximum when the first temperature increase control is executed in the dry heat sterilization operation mode, the dry heat sterilization is performed. After the start of the operation mode, the temperature of the incubation chamber 20 can reach a predetermined temperature early.
  • the predetermined temperature is determined so that the amount of electricity supplied to the plurality of heaters 30 in the first temperature increase control is maximized throughout the dry heat sterilization operation mode.
  • the duty ratio of each system becomes lower than the duty ratio of each system in the first temperature increase control. Therefore, by appropriately setting the predetermined temperature, it is possible to suppress the surface temperature of the plurality of heaters 30 from becoming relatively high. can be suppressed. Specifically, the heat from the plurality of heaters 30 deforms the heat insulating material 16 to reduce the heat insulating performance, and changes the properties of the adhesive used in the heat insulating material 16 to generate an offensive odor. etc. can be suppressed.
  • the second temperature increase control (S2) is control to increase the temperature of the culture chamber 20 to a temperature at which dry heat sterilization is possible.
  • the control unit 40 controls the energization amount of the plurality of heaters 30 based on the detected temperature.
  • the control unit 40 first calculates the energization amount of the sixth system G6 (the sixth and seventh heaters 36 and 37). Specifically, the control unit 40 sets the set temperature of the dry heat sterilization operation mode (the temperature at which dry heat sterilization is possible) as the target temperature, and calculates a proportional PI (PI) based on the difference between the target temperature and the temperature detected by the temperature sensor 24. Integral) control is used to calculate the energization amount of the sixth system G6 and thus the duty ratio.
  • PI proportional proportional PI
  • control unit 40 adjusts the calculated duty ratio of the sixth system G6 so that the ratio between the energization amounts of the plurality of heaters 30 becomes a predetermined ratio. Calculate the duty ratio of each of the systems G1 to G5.
  • control unit 40 controls the ratio between the energization amounts of the plurality of heaters 30 so as to approach a predetermined value based on the detected temperature.
  • the predetermined value is determined so that the temperature distribution in the incubation chamber 20 is uniform in the dry heat sterilization operation mode.
  • the duty ratio of each system is the sixth system G6, the fourth system G4, the fifth system G5, and the second system G2. , the third system G3, and the first system G1. Furthermore, when the ratio between the energization amounts of the plurality of heaters 30 is a predetermined value, the ratio of the duty ratios among the systems is, for example, the sixth system G6, the fourth system G4, and the fifth system G5. , second system G2, third system G3, and first system G1 are approximately 100, 90, 75, 60, 55, and 30 in this order.
  • the duty ratio of the sixth system G6 is X
  • the duty ratio of the fourth system G4 is 0.9 times X
  • the duty ratio of the fifth system G5 is 0 of X.
  • the duty ratio of the second system G2 is 0.6 times X
  • the duty ratio of the third system G3 is 0.55 times X
  • the duty ratio of the first system G1 is The duty ratio is 0.3 times X.
  • the ratio of the duty ratios between the systems when the ratio between the energization amounts of the plurality of heaters 30 is a predetermined value will be referred to as a predetermined ratio.
  • the predetermined ratio corresponding to the predetermined value is not limited to the above examples.
  • the control unit 40 controls the ratio between the energization amounts of the plurality of heaters 30 so that the difference between the energization amounts of the plurality of heaters 30 gradually increases. That is, the control unit 40 performs control so that the difference in duty ratio between the systems gradually increases.
  • the duty ratio of each system is 100%, the same as at the end of the first temperature increase control. Then, the difference in duty ratio between the systems gradually increases as the detected temperature rises, and at the end of the second temperature increase control, the ratio between the duty ratios of the systems is equal to the predetermined ratio. Become.
  • the control unit 40 ends the second temperature increase control.
  • the control unit 40 ends the second temperature increase control.
  • the temperature maintenance control (S3) is a control that maintains the temperature of the incubation chamber 20 at a temperature at which dry heat sterilization is possible.
  • the control unit 40 controls the ratio between the energization amounts of the plurality of heaters 30 to be constant at the predetermined value. Specifically, the control unit 40 sets the duty ratio of the sixth system G6 to the set temperature of the dry heat sterilization operation mode as the target temperature in the same manner as the above-described second temperature increase control, and the target temperature and the temperature sensor 24 is calculated using PI control based on the difference from the detected temperature.
  • the control unit 40 adjusts the calculated duty ratio of the sixth system G6 so that the ratio of the duty ratios between the systems becomes the predetermined ratio, similarly to the above-described second temperature increase control. Based on this, the duty ratios of the first to fifth systems G1 to G5 are calculated. Then, the control unit 40 controls the ratio between the energization amounts of the plurality of heaters 30 to remain constant at a predetermined value, that is, the ratio of the duty ratios between the systems to remain at a predetermined ratio. The duty ratios of the systems G1 to G5 of 1 to 5 are calculated.
  • the control unit 40 stops energizing the plurality of heaters 30 (that is, sets the duty ratio to 0%) at a point in time (tm3) when a predetermined time has elapsed from the point at which the temperature retention control is started. This terminates the temperature holding control. This completes the dry heat sterilization operation mode.
  • the control unit 40 performs PI control with the set temperature in the dry heat sterilization operation mode as the target temperature.
  • control unit 40 controls the plurality of heaters 30 so as to maintain the temperature of the incubation chamber 20 at a temperature suitable for culturing the culture.
  • control unit 40 controls the energization amounts of the plurality of heaters 30 in the same manner as the above-described temperature retention control, with a temperature suitable for culturing the culture as the target temperature.
  • the temperature distribution of the culture chamber 20 can be made uniform while maintaining the temperature of the culture chamber 20 at a temperature suitable for culturing the culture.
  • control unit 40 may correct the energization amount of the plurality of heaters 30 according to the voltage value of the power supply connected to the culture device 1.
  • the culture device 1 further includes a voltage detector that detects the voltage value of the power supply.
  • the control unit 40 calculates the energization amounts of the plurality of heaters 30 and thus the duty ratio of each system so as to correspond to a reference voltage value (for example, 100 V), and calculates the calculated duty ratio based on the detected voltage value of the voltage detector. to correct.
  • a reference voltage value for example, 100 V
  • control unit 40 may correct the integral gain of the PI control according to the temperature outside the culture device 1 in the second temperature increase control. Specifically, the control unit 40 calculates the rate of increase of the detected temperature (hereinafter referred to as temperature rate of increase) in the first temperature increase control.
  • the temperature rise rate is the rise value of the detected temperature per unit time. As the temperature outside the culture apparatus 1 increases, the amount of heat released from the culture chamber 20 to the outside decreases and the rate of temperature rise increases.
  • the control unit 40 stores the maximum value of the temperature increase rate in the first temperature increase control.
  • the integral gain is decreased based on the maximum value of the temperature rise rate. Correct to Thereby, the overshoot of the temperature of the incubation chamber 20 can be suppressed.
  • the integral gain is increased based on the maximum value of the temperature rise rate. to correct.
  • the temperature of the culture chamber 20 can reach a temperature at which dry heat sterilization is possible at an early stage.
  • the control unit 40 controls one of the plurality of heaters 30 other than the sixth and seventh heaters 36 and 37 constituting the sixth system G6 based on the detected temperature. , the energization amount of the heater and hence the duty ratio may be calculated. Then, based on the calculated duty ratio of one heater, the duty ratios of the other heaters may be calculated.
  • control unit 40 may control the ratio between the energization amounts of the plurality of heaters 30 so that the difference between the energization amounts of the plurality of heaters 30 increases in stages. good.
  • the present disclosure is suitably used as a culture device.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

This cultivation device comprises: a housing having a cultivation chamber; a plurality of heaters for heating the cultivation chamber; a temperature sensor for detecting the temperature of the cultivation chamber; and a control unit for controlling the plurality of heaters on the basis of the temperature detected by the temperature sensor, wherein the control unit controls, in a dry-heat-sterilization operation, each of energized amounts of the plurality of heaters so that the ratios among the energized amounts of the plurality of heaters are predetermined ratios.

Description

培養装置Incubation device
 本発明は、培養装置に関する。 The present invention relates to a culture device.
 細胞や微生物等の培養物を培養する培養装置では、培養空間を滅菌することが行われる。滅菌するための方法の1つとして、ヒータを用いて培養空間の温度を滅菌可能な温度にすることが挙げられる(例えば特許文献1参照)。 In a culture apparatus that cultures cultures such as cells and microorganisms, the culture space is sterilized. One method for sterilization is to use a heater to bring the temperature of the culture space to a sterilizable temperature (see Patent Document 1, for example).
特許第4973946号公報Japanese Patent No. 4973946
 滅菌可能な温度は比較的高温である。よって、滅菌時のヒータの表面温度は比較的高温になる。ヒータの熱は、培養室以外の部位を構成する部材の性状に影響しかねない。 The temperature that can be sterilized is relatively high. Therefore, the surface temperature of the heater during sterilization becomes relatively high. The heat of the heater may affect the properties of the members constituting the parts other than the culture chamber.
 本開示は、培養室以外の部位へのヒータの熱の影響を抑制することができる培養装置を提供することを目的とする。 An object of the present disclosure is to provide a culture apparatus capable of suppressing the influence of the heat of the heater on parts other than the culture chamber.
 本開示に係る培養装置は、培養室を有する筐体と、培養室を加熱する複数のヒータと、培養室の温度を検出する温度センサと、温度センサの検出温度に基づいて、複数のヒータを制御する制御部と、を備え、制御部は、乾熱滅菌運転において、複数のヒータの通電量それぞれを、複数のヒータの通電量の間の比率が予め定められている比率になるように制御する。 A culture apparatus according to the present disclosure includes a housing having a culture chamber, a plurality of heaters for heating the culture chamber, a temperature sensor for detecting the temperature of the culture chamber, and a plurality of heaters based on the temperature detected by the temperature sensor. a control unit for controlling, wherein the control unit controls the energization amounts of the plurality of heaters in the dry heat sterilization operation so that the ratio between the energization amounts of the plurality of heaters becomes a predetermined ratio. do.
 本開示によれば、培養装置において、培養室以外の部位へのヒータの熱の影響を抑制することができる。 According to the present disclosure, in the culture apparatus, it is possible to suppress the influence of the heat of the heater on parts other than the culture chamber.
本開示の一実施形態の培養装置を右側から視た模式的な縦断面Schematic vertical cross section of the culture device according to an embodiment of the present disclosure viewed from the right side 複数のヒータの配置位置を示す分解斜視図An exploded perspective view showing arrangement positions of a plurality of heaters. 複数のヒータの制御部との接続を示す図Diagram showing connections to multiple heater controllers 乾熱滅菌運転モードで実行されるフローチャートFlowchart executed in dry heat sterilization operation mode 乾熱滅菌運転モードにおけるタイムチャートTime chart in dry heat sterilization operation mode
 以下、本開示の実施の形態に係る培養装置ついて、図面を参照しながら説明する。なお、以下では、使用時にユーザが正対する側を培養装置1の前側(正面側)とし、その反対側を培養装置1の後側(背面側)とする。また、ユーザが培養装置1を前方から見たときの左側および右側を培養装置1の左側および右側とする。また、培養装置1が設置される面から離れる側を培養装置1の上側(天面側)とし、その反対側を培養装置1の下側(底面側)とする。 A culture apparatus according to an embodiment of the present disclosure will be described below with reference to the drawings. In the following description, the side facing the user when in use is the front side (front side) of the culture device 1, and the opposite side is the back side (back side) of the culture device 1. Also, the left and right sides of the culture device 1 when the user views the culture device 1 from the front are defined as the left and right sides, respectively. The side away from the surface on which the culture device 1 is installed is the upper side (top side) of the culture device 1, and the opposite side is the lower side (bottom side) of the culture device 1.
 図1に示す培養装置1は、略箱状の筐体10の内部に形成されている培養室20において、細胞または微生物などの培養物を培養する装置である。培養室20は、培養物の培養に適切な雰囲気となるように、温度、湿度、O2(酸素)濃度及びCO2(二酸化炭素)濃度がそれぞれ適切な範囲に保持される。筐体10は、内箱11、外箱12、外扉13,内扉14、および、板部材15を備えている。 The culture device 1 shown in FIG. 1 is a device for culturing cultures such as cells or microorganisms in a culture chamber 20 formed inside a substantially box-shaped housing 10 . The temperature, humidity, O2 (oxygen) concentration, and CO2 (carbon dioxide) concentration of the culture chamber 20 are maintained within appropriate ranges so as to create an atmosphere suitable for culturing the culture. The housing 10 includes an inner box 11 , an outer box 12 , an outer door 13 , an inner door 14 and a plate member 15 .
 内箱11は、略箱状であり、培養室20を内側に有し、培養室20の開口21を前面に有している。外箱12は、略箱状であり、内箱11の外側における開口21以外の部位を覆っている。内箱11および外箱12は、金属製の板によって形成されている。内箱11と外箱12との間には、断熱材16が配置されている。断熱材16は、複数の板状の断熱部材が例えば接着剤によって互いに接着されることで形成されている。 The inner box 11 is substantially box-shaped, has the culture chamber 20 inside, and has an opening 21 of the culture chamber 20 on the front side. The outer box 12 is substantially box-shaped and covers the outer side of the inner box 11 except for the opening 21 . The inner box 11 and the outer box 12 are made of metal plates. A heat insulating material 16 is arranged between the inner box 11 and the outer box 12 . The heat insulating material 16 is formed by bonding a plurality of plate-shaped heat insulating members to each other with an adhesive, for example.
 外扉13及び内扉14は、開口21を開閉する。外扉13の外縁には、パッキンPが配置されている。 The outer door 13 and inner door 14 open and close the opening 21 . A packing P is arranged on the outer edge of the outer door 13 .
 板部材15は、開口21の周縁において内箱11と外箱12とを接続する。図2に示されるように、板部材15は、外周が略方形である枠状の部材であり、内箱11の前端と外箱12の前端とを開口21の全周に亘って接続する。 The plate member 15 connects the inner box 11 and the outer box 12 at the periphery of the opening 21 . As shown in FIG. 2 , the plate member 15 is a frame-shaped member having a substantially square outer periphery, and connects the front end of the inner case 11 and the front end of the outer case 12 over the entire circumference of the opening 21 .
 また、筐体10には、培養室20を加熱する複数のヒータ30が配置されている。複数のヒータ30は、具体的には8つあり、それぞれ板状に形成されている。複数のヒータ30は、具体的には、金属製の板にコードヒータHが配置されることで形成されている。 In addition, a plurality of heaters 30 for heating the incubation chamber 20 are arranged in the housing 10 . Specifically, there are eight heaters 30, each of which is formed in a plate shape. Specifically, the plurality of heaters 30 are formed by arranging the cord heaters H on a metal plate.
 第1~第5のヒータ31~35は、それぞれ、内箱11の外側において、内箱11の天面と、内箱11の底面と、内箱11の背面と、内箱11の右側面と、内箱11の左側面と、に配置されている。第6のヒータ36は、外扉13の開口21側の面に配置されている。また、培養室20において開口21から放出する熱量は他の部位から放出する熱量に比べて大きい。よって、培養室20において開口21付近における加熱量が他の部位における加熱量より大きくなるように、第7、8のヒータ37、38が、それぞれ、板部材15の後側の板面と、内箱11の開口21の周縁部に配置されている。 The first to fifth heaters 31 to 35 are arranged outside the inner box 11 on the top surface of the inner box 11, the bottom surface of the inner box 11, the back surface of the inner box 11, and the right side surface of the inner box 11. , and the left side of the inner box 11 . The sixth heater 36 is arranged on the surface of the outer door 13 on the opening 21 side. Also, the amount of heat emitted from the opening 21 in the culture chamber 20 is larger than the amount of heat emitted from other parts. Therefore, the seventh and eighth heaters 37 and 38 are respectively arranged on the rear plate surface of the plate member 15 and the inner surface of the plate member 15 so that the amount of heating in the vicinity of the opening 21 in the culture chamber 20 is larger than the amount of heating in the other portions. It is arranged on the periphery of the opening 21 of the box 11 .
 第8のヒータ38は、具体的には、帯状であり、内箱11の前端部外側において、開口21を取り巻くように配置されている。第8のヒータ38は、2つに分割されて形成されている。なお、第8のヒータ38は、3つ以上に分割されて形成されてもよいし、分割されずに環状に形成されてもよい。 The eighth heater 38 is specifically belt-shaped and arranged outside the front end portion of the inner box 11 so as to surround the opening 21 . The eighth heater 38 is divided into two. The eighth heater 38 may be divided into three or more parts, or may be formed in an annular shape without being divided.
 また、複数のヒータ30において、コードヒータHは、培養室20の温度分布が一様になるように配置されている。なお、複数のヒータ30の定格出力は、互いに異なってもよいし、互いに同じでもよい。 In addition, among the plurality of heaters 30, the cord heaters H are arranged so that the temperature distribution in the incubation chamber 20 is uniform. Note that the rated outputs of the plurality of heaters 30 may be different from each other, or may be the same as each other.
 図3に示されるように、複数のヒータ30は、6つの系統に分類されて、制御部40に電気的に接続されている。第1~3の系統G1~G3は、それぞれ、第1~3のヒータ31~33で構成されている。第4の系統G4は、第4、5のヒータ34、35で構成されている。第5の系統G5は、第8のヒータ38で構成されている。第6の系統G6は、第6、7のヒータ36、37で構成されている。 As shown in FIG. 3, the plurality of heaters 30 are classified into six systems and electrically connected to the controller 40 . The first to third systems G1 to G3 are composed of first to third heaters 31 to 33, respectively. A fourth system G4 is composed of fourth and fifth heaters 34 and 35 . The fifth system G5 is composed of the eighth heater 38 . The sixth system G6 is composed of the sixth and seventh heaters 36 and 37 .
 なお、筐体10に配置されているヒータの個数、系統の数、および、各系統を構成するヒータの組み合わせが上記のように限定されないことは言うまでも無い。例えば、複数のヒータ30は、第7、8のヒータ37、38を備えなくてもよい。この場合、複数のヒータ30は、5つの系統に分類され、第5の系統G5は、第6のヒータ36によって構成される。制御部40は、後述するように、複数のヒータ30の通電量を系統別に制御する。 Needless to say, the number of heaters arranged in the housing 10, the number of systems, and the combination of heaters constituting each system are not limited as described above. For example, the plurality of heaters 30 may not include the seventh and eighth heaters 37,38. In this case, the plurality of heaters 30 are classified into five systems, and the fifth system G5 is composed of the sixth heater 36 . As will be described later, the control unit 40 controls the energization amounts of the plurality of heaters 30 for each system.
 また、図1に示されるように、培養室20には、内箱11の内側の後面に上下に延在するダクト22が配置されている。ダクト22の内部には、気体通路Kが形成されている。この気体通路Kには循環用送風機23が配置されている。循環用送風機23を作動させることで、ダクト22の上部に形成された吸込口22aから培養室20の空気が吸い込まれ、この空気がダクト22の下部に設けられた吹出口22bから培養室20に吹き出される。これにより、太矢印で示されるような空気の強制循環が行われる。ダクト22内には、温度センサ24およびガス供給装置25a、25bが配置されている。 In addition, as shown in FIG. 1, a duct 22 extending vertically is arranged on the inner rear surface of the inner box 11 in the culture chamber 20 . A gas passage K is formed inside the duct 22 . A circulation blower 23 is arranged in the gas passage K. As shown in FIG. By operating the circulation blower 23, the air in the culture chamber 20 is sucked from the suction port 22a formed in the upper part of the duct 22, and the air flows into the culture chamber 20 from the outlet 22b provided in the lower part of the duct 22. blown out. This provides forced air circulation as indicated by the thick arrows. A temperature sensor 24 and gas supply devices 25 a and 25 b are arranged in the duct 22 .
 温度センサ24は、培養室20の温度を検出する。温度センサ24は、具体的には、吸込口22aの付近に配置され、吸込口22aから吸い込まれた空気の温度を検出する。 The temperature sensor 24 detects the temperature of the incubation chamber 20. Specifically, the temperature sensor 24 is arranged near the suction port 22a and detects the temperature of the air sucked from the suction port 22a.
 ガス供給装置25a、25bは、培養室20のO2ガス濃度及びCO2ガス濃度を調整する調整用ガス(O2ガス,N2(窒素)ガス及びCO2ガス)を、培養室20に供給する。 The gas supply devices 25 a and 25 b supply adjustment gases (O 2 gas, N 2 (nitrogen) gas and CO 2 gas) for adjusting the O 2 gas concentration and the CO 2 gas concentration of the incubation chamber 20 to the incubation chamber 20 .
 ダクト22の下部と内箱11の底面と間には、加湿用の水を貯溜する加湿皿Dが設置される。 Between the bottom of the duct 22 and the bottom surface of the inner box 11, a humidifying tray D for storing water for humidification is installed.
 また、筐体10の外箱12の背面及び底面は、カバー17で覆われている。外箱12の背面とカバー17との間の空間は、各種機器を配置するための機械室Mを形成している。機械室Mには電装ボックス17aが設けられている。電装ボックス17aの内部には、制御部40とその他の図示しない電装品とが収容される。 In addition, the rear surface and bottom surface of the outer case 12 of the housing 10 are covered with a cover 17. A space between the back surface of the outer casing 12 and the cover 17 forms a machine room M for arranging various devices. The machine room M is provided with an electric equipment box 17a. The control unit 40 and other electrical components (not shown) are housed inside the electrical equipment box 17a.
 培養装置1は、外扉13に設けられている操作部50から、培養装置1の起動及び停止の指示、運転モードの設定、および、培養室20の各種設定値の入力を受け付ける。培養室20の各種設定値は、設定温度、設定湿度、O2ガスの設定濃度及びCO2ガスの設定濃度等である。制御部40は、操作部50からの入力に基づいて、複数のヒータ30等の構成要素を制御する。操作部50は、培養装置1の状態を表示する表示部を有している。 The culture device 1 receives commands to start and stop the culture device 1, settings of the operation mode, and input of various setting values for the culture room 20 from the operation unit 50 provided on the outer door 13. Various setting values for the incubation chamber 20 include a set temperature, a set humidity, a set concentration of O2 gas, a set concentration of CO2 gas, and the like. The control unit 40 controls components such as the plurality of heaters 30 based on an input from the operation unit 50 . The operation unit 50 has a display unit that displays the state of the culture device 1 .
 培養装置1の運転モードには少なくとも、通常運転モードと乾熱滅菌運転モードがある。通常運転モードは、筐体10の内部(培養室20)が、培養物の培養に適した雰囲気(例えば37℃)になるように、循環用送風機23、ガス供給装置25a、25bおよび複数のヒータ30などを作動させるモードである。 The operation modes of the culture apparatus 1 include at least a normal operation mode and a dry heat sterilization operation mode. In the normal operation mode, a circulation fan 23, gas supply devices 25a and 25b, and a plurality of heaters are provided so that the inside of the housing 10 (incubation chamber 20) has an atmosphere (for example, 37° C.) suitable for culturing the culture. 30 or the like is operated.
 乾熱滅菌運転モードは、筐体10の内部(培養室20)を乾熱滅菌するように循環用送風機23および複数のヒータ30などを作動させるモードである。乾熱滅菌される際、加湿皿Dは空にされており、培養室20の温度は、乾熱滅菌運転モードの設定温度(例えば180℃)に維持される。 The dry heat sterilization operation mode is a mode in which the circulation fan 23 and the plurality of heaters 30 are operated so as to dry heat sterilize the inside of the housing 10 (incubation chamber 20). During the dry heat sterilization, the humidifying tray D is emptied and the temperature of the culture chamber 20 is maintained at the set temperature (for example, 180° C.) of the dry heat sterilization operation mode.
 次に、乾熱滅菌運転モードにおいて、制御部40が実行する複数のヒータ30の制御を、図4のフローチャートおよび図5のタイムチャートを用いて詳細に説明する。図5において、下側の図は、温度センサ24の検出温度(以下、検出温度という。)のタイムチャートであり、上側の図は、各系統の後述するデューティ比のタイムチャートである。 Next, the control of the plurality of heaters 30 executed by the controller 40 in the dry heat sterilization operation mode will be described in detail using the flowchart of FIG. 4 and the time chart of FIG. In FIG. 5, the lower diagram is a time chart of the temperature detected by the temperature sensor 24 (hereinafter referred to as "detected temperature"), and the upper diagram is a time chart of the duty ratio of each system, which will be described later.
 制御部40は、検出温度に基づいて、培養室20の温度が乾熱滅菌運転モードの設定温度となるように複数のヒータ30を制御する。制御部40は、具体的には、複数のヒータ30の通電量それぞれを、複数のヒータ30の通電量の間の比率が予め定められている比率になるように制御する。複数のヒータ30の通電量の間の比率は、乾熱滅菌運転モードにおいて培養室20の温度分布が一様になるように、実験等に基づいて予め定められている。 Based on the detected temperature, the control unit 40 controls the plurality of heaters 30 so that the temperature of the incubation chamber 20 reaches the set temperature for the dry heat sterilization operation mode. Specifically, the control unit 40 controls each of the energization amounts of the plurality of heaters 30 so that the ratio between the energization amounts of the plurality of heaters 30 becomes a predetermined ratio. The ratio between the energization amounts of the plurality of heaters 30 is determined in advance based on experiments and the like so that the temperature distribution in the culture chamber 20 is uniform in the dry heat sterilization operation mode.
 制御部40は、複数のヒータ30に印加される電圧をパルス幅変調(PWM:Pulse Width Modulation)によって調整することで、複数のヒータ30の通電量を制御する。つまり、複数のヒータ30の通電量は、パルス幅変調のデューティ比によって調整される。デューティ比が大きくなる(すなわち100%に近づく)ほど、通電量は大きくなる。制御部40は、複数のヒータ30を上記の系統別に制御する。つまり、制御部40は、デューティ比を上記の系統別に算出する。 The control unit 40 controls the energization amount of the plurality of heaters 30 by adjusting the voltage applied to the plurality of heaters 30 by pulse width modulation (PWM). That is, the energization amount of the plurality of heaters 30 is adjusted by the duty ratio of the pulse width modulation. As the duty ratio increases (that is, approaches 100%), the amount of energization increases. The control unit 40 controls the plurality of heaters 30 according to the system. That is, the control unit 40 calculates the duty ratio for each system.
 乾熱滅菌運転モードが開始されると、制御部40は、図4に示されるように。第1昇温制御(S1)、第2昇温制御(S2)、および、温度保持制御(S3)をこの順に実行する。 When the dry heat sterilization operation mode is started, the controller 40 operates as shown in FIG. First temperature increase control (S1), second temperature increase control (S2), and temperature retention control (S3) are executed in this order.
 第1昇温制御(S1)は、培養室20の温度を予め定められている所定の温度まで上昇させる制御である。所定の温度は、乾熱滅菌可能な温度より低い温度である。 The first temperature increase control (S1) is control for increasing the temperature of the incubation chamber 20 to a predetermined temperature. The predetermined temperature is a temperature lower than the temperature at which dry heat sterilization is possible.
 制御部40は、複数のヒータ30の通電量が、乾熱滅菌運転モードの中で第1昇温制御を実行しているときに最大となるように、各系統のデューティ比を定める。具体的には、制御部40は、第1昇温制御において、各系統のデューティ比を100%で一定にする。なお、第1昇温制御において、各系統のデューティ比が100%に限定されないことは言うまでもない。このとき、複数のヒータ30の間の通電量の比率は、複数のヒータ30それぞれの定格出力によって定まる。 The control unit 40 determines the duty ratio of each system so that the energization amount of the plurality of heaters 30 is maximized when the first temperature increase control is executed in the dry heat sterilization operation mode. Specifically, the control unit 40 keeps the duty ratio of each system constant at 100% in the first temperature increase control. Needless to say, in the first temperature increase control, the duty ratio of each system is not limited to 100%. At this time, the ratio of the energization amounts among the plurality of heaters 30 is determined by the rated output of each of the plurality of heaters 30 .
 図5に示されるように、乾熱滅菌運転モードが開始され(時刻tm0)、検出温度が上昇して所定の温度に到達すると(時刻tm1)、制御部40は第1昇温制御を終了する。複数のヒータ30の通電量が、乾熱滅菌運転モードの中で第1昇温制御を実行しているときに最大となるように、各系統のデューティ比が定められているので、乾熱滅菌運転モード開始後、早期に、培養室20の温度を所定の温度まで到達させることができる。 As shown in FIG. 5, the dry heat sterilization operation mode is started (time tm0), and when the detected temperature rises and reaches a predetermined temperature (time tm1), the controller 40 ends the first temperature increase control. . Since the duty ratio of each system is determined so that the energization amount of the plurality of heaters 30 becomes maximum when the first temperature increase control is executed in the dry heat sterilization operation mode, the dry heat sterilization is performed. After the start of the operation mode, the temperature of the incubation chamber 20 can reach a predetermined temperature early.
 また、第1昇温制御における複数のヒータ30の通電量が乾熱滅菌運転モードを通して最大となるように、所定の温度が定められている。これにより、後述する第2昇温制御(S2)および温度保持制御(S3)において、各系統のデューティ比は、第1昇温制御での各系統のデューティ比より低くなる。よって、所定の温度を適切に定めることにより、複数のヒータ30の表面温度が比較的高くなることを抑制することができ、ひいては、培養室20以外の部位への複数のヒータ30の熱の影響を抑制することができる。具体的には、複数のヒータ30の熱によって、断熱材16が変形して断熱性能が低減すること、および、断熱材16に使用されている接着剤の性状が変化して異臭が発生すること等を抑制することができる。 Also, the predetermined temperature is determined so that the amount of electricity supplied to the plurality of heaters 30 in the first temperature increase control is maximized throughout the dry heat sterilization operation mode. As a result, in the second temperature increase control (S2) and the temperature retention control (S3), which will be described later, the duty ratio of each system becomes lower than the duty ratio of each system in the first temperature increase control. Therefore, by appropriately setting the predetermined temperature, it is possible to suppress the surface temperature of the plurality of heaters 30 from becoming relatively high. can be suppressed. Specifically, the heat from the plurality of heaters 30 deforms the heat insulating material 16 to reduce the heat insulating performance, and changes the properties of the adhesive used in the heat insulating material 16 to generate an offensive odor. etc. can be suppressed.
 第2昇温制御(S2)は、培養室20の温度を乾熱滅菌可能な温度まで上昇させる制御である。制御部40は、第2昇温制御において、検出温度に基づいて、複数のヒータ30の通電量を制御する。 The second temperature increase control (S2) is control to increase the temperature of the culture chamber 20 to a temperature at which dry heat sterilization is possible. In the second temperature increase control, the control unit 40 controls the energization amount of the plurality of heaters 30 based on the detected temperature.
 制御部40は、はじめに、第6の系統G6(第6、7のヒータ36、37)の通電量を算出する。制御部40は、具体的には、乾熱滅菌運転モードの設定温度(乾熱滅菌可能な温度)を目標温度とし、目標温度と温度センサ24の検出温度との差分に基づいて、PI(Proportional Integral)制御を用いて、第6の系統G6の通電量ひいてはデューティ比を算出する。 The control unit 40 first calculates the energization amount of the sixth system G6 (the sixth and seventh heaters 36 and 37). Specifically, the control unit 40 sets the set temperature of the dry heat sterilization operation mode (the temperature at which dry heat sterilization is possible) as the target temperature, and calculates a proportional PI (PI) based on the difference between the target temperature and the temperature detected by the temperature sensor 24. Integral) control is used to calculate the energization amount of the sixth system G6 and thus the duty ratio.
 続けて、制御部40は、複数のヒータ30の通電量の間の比率が予め定められている比率になるように、算出された第6の系統G6のデューティ比に対して第1~5の系統G1~G5のデューティ比それぞれを算出する。 Subsequently, the control unit 40 adjusts the calculated duty ratio of the sixth system G6 so that the ratio between the energization amounts of the plurality of heaters 30 becomes a predetermined ratio. Calculate the duty ratio of each of the systems G1 to G5.
 制御部40は、第2昇温制御において、複数のヒータ30の通電量の間の比率を、検出温度に基づいて、所定値に近づけるように制御する。所定値は、乾熱滅菌運転モードにおいて培養室20の温度分布が一様となるように定められている。 In the second temperature increase control, the control unit 40 controls the ratio between the energization amounts of the plurality of heaters 30 so as to approach a predetermined value based on the detected temperature. The predetermined value is determined so that the temperature distribution in the incubation chamber 20 is uniform in the dry heat sterilization operation mode.
 また、複数のヒータ30の通電量の間の比率が所定値であるとき、各系統のデューティ比は、第6の系統G6、第4の系統G4、第5の系統G5、第2の系統G2、第3の系統G3、および、第1の系統G1の順に小さくなる。さらに、複数のヒータ30の通電量の間の比率が所定値であるとき、各系統の間のデューティ比の比率は、例えば、第6の系統G6、第4の系統G4、第5の系統G5、第2の系統G2、第3の系統G3、および、第1の系統G1の順に、およそ、100、90、75、60、55、30となる。換言すれば、第6の系統G6のデューティ比がXである場合、第4の系統G4のデューティ比は、Xの0.9倍であり、第5の系統G5のデューティ比は、Xの0.75倍であり、第2の系統G2のデューティ比は、Xの0.6倍であり、第3の系統G3のデューティ比は、Xの0.55倍であり、第1の系統G1のデューティ比は、Xの0.3倍となる。以下、複数のヒータ30の通電量の間の比率が所定値であるときにおける各系統の間のデューティ比の比率を、所定比率とする。なお、所定値に対応する所定比率が、上記の例に限定されないことは言うまでもない。 Further, when the ratio between the energization amounts of the plurality of heaters 30 is a predetermined value, the duty ratio of each system is the sixth system G6, the fourth system G4, the fifth system G5, and the second system G2. , the third system G3, and the first system G1. Furthermore, when the ratio between the energization amounts of the plurality of heaters 30 is a predetermined value, the ratio of the duty ratios among the systems is, for example, the sixth system G6, the fourth system G4, and the fifth system G5. , second system G2, third system G3, and first system G1 are approximately 100, 90, 75, 60, 55, and 30 in this order. In other words, when the duty ratio of the sixth system G6 is X, the duty ratio of the fourth system G4 is 0.9 times X, and the duty ratio of the fifth system G5 is 0 of X. 75 times, the duty ratio of the second system G2 is 0.6 times X, the duty ratio of the third system G3 is 0.55 times X, and the duty ratio of the first system G1 is The duty ratio is 0.3 times X. Hereinafter, the ratio of the duty ratios between the systems when the ratio between the energization amounts of the plurality of heaters 30 is a predetermined value will be referred to as a predetermined ratio. Needless to say, the predetermined ratio corresponding to the predetermined value is not limited to the above examples.
 また、制御部40は、第2昇温制御において、複数のヒータ30の通電量の間の比率を、複数のヒータ30の通電量の間の差が徐々に大きくなるように制御する。つまり、制御部40は、各系統の間のデューティ比の差が徐々に大きくなるように制御する。 Also, in the second temperature increase control, the control unit 40 controls the ratio between the energization amounts of the plurality of heaters 30 so that the difference between the energization amounts of the plurality of heaters 30 gradually increases. That is, the control unit 40 performs control so that the difference in duty ratio between the systems gradually increases.
 具体的には、図5に示されるように、第2昇温制御の開始時において、各系統のデューティ比は、それぞれ、第1昇温制御の終了時と同じく100%である。そして、各系統の間のデューティ比の差は、検出温度の上昇に応じて徐々に大きくなり、第2昇温制御の終了時に、各系統のデューティ比の間の比率は、上記の所定比率となる。 Specifically, as shown in FIG. 5, at the start of the second temperature increase control, the duty ratio of each system is 100%, the same as at the end of the first temperature increase control. Then, the difference in duty ratio between the systems gradually increases as the detected temperature rises, and at the end of the second temperature increase control, the ratio between the duty ratios of the systems is equal to the predetermined ratio. Become.
 検出温度が上昇して、乾熱滅菌可能な温度に到達すると(時刻tm2)、制御部40は第2昇温制御を終了する。このように複数のヒータ30の通電量が制御されることで、検出温度が乾熱滅菌可能な温度に到達したときに、培養室20の温度のオーバーシュートを抑制することができる。また、培養室20の温度を乾熱滅菌可能な温度まで確実に上昇させ、培養室20の温度分布を一様にすることができる。 When the detected temperature rises and reaches a temperature at which dry heat sterilization is possible (time tm2), the control unit 40 ends the second temperature increase control. By controlling the energization amounts of the plurality of heaters 30 in this way, it is possible to suppress the overshoot of the temperature of the culture chamber 20 when the detected temperature reaches the temperature at which dry heat sterilization is possible. Moreover, the temperature of the culture chamber 20 can be reliably increased to a temperature at which dry heat sterilization is possible, and the temperature distribution of the culture chamber 20 can be made uniform.
 温度保持制御(S3)は、培養室20の温度を乾熱滅菌可能な温度に保持する制御である。制御部40は、温度保持制御において、複数のヒータ30の通電量の間の比率を、上記の所定値で一定にするように制御する。制御部40は、具体的には、第6の系統G6のデューティ比を、上記の第2昇温制御と同様に、乾熱滅菌運転モードの設定温度を目標温度とし、目標温度と温度センサ24の検出温度との差分に基づいて、PI制御を用いて算出する。 The temperature maintenance control (S3) is a control that maintains the temperature of the incubation chamber 20 at a temperature at which dry heat sterilization is possible. In the temperature retention control, the control unit 40 controls the ratio between the energization amounts of the plurality of heaters 30 to be constant at the predetermined value. Specifically, the control unit 40 sets the duty ratio of the sixth system G6 to the set temperature of the dry heat sterilization operation mode as the target temperature in the same manner as the above-described second temperature increase control, and the target temperature and the temperature sensor 24 is calculated using PI control based on the difference from the detected temperature.
 続けて、制御部40は、上記の第2昇温制御と同様に、各系統の間のデューティ比の比率が上記の所定比率となるように、算出された第6の系統G6のデューティ比に基づいて第1~5の系統G1~G5のデューティ比を算出する。そして、制御部40は、複数のヒータ30の通電量の間の比率が所定値で一定で推移するように、すなわち、各系統の間のデューティ比の比率が所定比率で推移するように、第1~5の系統G1~G5のデューティ比を算出する。 Subsequently, the control unit 40 adjusts the calculated duty ratio of the sixth system G6 so that the ratio of the duty ratios between the systems becomes the predetermined ratio, similarly to the above-described second temperature increase control. Based on this, the duty ratios of the first to fifth systems G1 to G5 are calculated. Then, the control unit 40 controls the ratio between the energization amounts of the plurality of heaters 30 to remain constant at a predetermined value, that is, the ratio of the duty ratios between the systems to remain at a predetermined ratio. The duty ratios of the systems G1 to G5 of 1 to 5 are calculated.
 制御部40は、温度保持制御が開始された時点から予め定められている所定時間が経過した時点(tm3)で、複数のヒータ30の通電を停止する(すなわち、デューティ比を0%にする)ことによって温度保持制御を終了する。これにより、乾熱滅菌運転モードは終了する。このように複数のヒータ30の通電量が制御されることで、培養室20の温度を乾熱滅菌可能な温度に維持しつつ、培養室20の温度分布を一様にすることができる。さらに、制御部40は、乾熱滅菌運転モードの設定温度を目標温度としてPI制御を実行している。よって、培養室20の温度ひいては培養室20以外の部位の温度が乾熱滅菌運転モードの設定温度を局所的に大きく超えることを抑制することができる。したがって、断熱材16に使用されている接着剤の温度が接着剤の性状を変化させる温度以上になることで、接着剤から異臭が発生することを抑制することができる。 The control unit 40 stops energizing the plurality of heaters 30 (that is, sets the duty ratio to 0%) at a point in time (tm3) when a predetermined time has elapsed from the point at which the temperature retention control is started. This terminates the temperature holding control. This completes the dry heat sterilization operation mode. By controlling the energization amounts of the plurality of heaters 30 in this manner, the temperature distribution of the culture chamber 20 can be made uniform while maintaining the temperature of the culture chamber 20 at a temperature at which dry heat sterilization is possible. Furthermore, the control unit 40 performs PI control with the set temperature in the dry heat sterilization operation mode as the target temperature. Therefore, it is possible to prevent the temperature of the incubation chamber 20, and thus the temperature of the portion other than the incubation chamber 20, from locally greatly exceeding the set temperature of the dry heat sterilization operation mode. Therefore, when the temperature of the adhesive used for the heat insulating material 16 becomes equal to or higher than the temperature at which the properties of the adhesive are changed, it is possible to suppress the generation of odor from the adhesive.
 なお、通常運転モードにおいて、制御部40は、培養室20の温度を培養物の培養に適した温度に保持するように複数のヒータ30を制御する。具体的には、制御部40は、培養物の培養に適した温度を目標温度として、上記の温度保持制御と同様に複数のヒータ30の通電量を制御する。これにより、培養室20の温度を培養物の培養に適した温度に維持しつつ、培養室20の温度分布を一様にすることができる。 In addition, in the normal operation mode, the control unit 40 controls the plurality of heaters 30 so as to maintain the temperature of the incubation chamber 20 at a temperature suitable for culturing the culture. Specifically, the control unit 40 controls the energization amounts of the plurality of heaters 30 in the same manner as the above-described temperature retention control, with a temperature suitable for culturing the culture as the target temperature. Thereby, the temperature distribution of the culture chamber 20 can be made uniform while maintaining the temperature of the culture chamber 20 at a temperature suitable for culturing the culture.
 本開示は、これまでに説明した実施の形態に限定されるものではない。本開示の主旨を逸脱しない限り、各種変形を本実施の形態に施したものも、本開示の範囲内に含まれる。 The present disclosure is not limited to the embodiments described so far. Various modifications to the present embodiment are also included within the scope of the present disclosure as long as they do not depart from the gist of the present disclosure.
 例えば、制御部40は、培養装置1に接続されている電源の電圧値に応じて、複数のヒータ30の通電量を補正してもよい。この場合、培養装置1は、電源の電圧値を検出する電圧検出器をさらに備える。制御部40は、複数のヒータ30の通電量ひいては各系統のデューティ比を基準電圧値(例えば100V)に対応するように算出し、算出されたデューティ比を電圧検出器の検出電圧値に基づいて補正する。 For example, the control unit 40 may correct the energization amount of the plurality of heaters 30 according to the voltage value of the power supply connected to the culture device 1. In this case, the culture device 1 further includes a voltage detector that detects the voltage value of the power supply. The control unit 40 calculates the energization amounts of the plurality of heaters 30 and thus the duty ratio of each system so as to correspond to a reference voltage value (for example, 100 V), and calculates the calculated duty ratio based on the detected voltage value of the voltage detector. to correct.
 制御部40は、具体的には、基準電圧値の二乗を検出電圧値の二乗で除した値を補正値として、算出されたデューティ比に乗ずる。例えば、基準電圧値が100Vであり、検出電圧値が130Vである場合、補正値は0.59(=100/130)となる。これにより、制御部40は、電源の電圧値に応じて、複数のヒータ30の通電量を適切に制御することができる。 Specifically, the control unit 40 multiplies the calculated duty ratio with a correction value obtained by dividing the square of the reference voltage value by the square of the detected voltage value. For example, when the reference voltage value is 100 V and the detected voltage value is 130 V, the correction value is 0.59 (=100 2 /130 2 ). Thereby, the control unit 40 can appropriately control the energization amount of the plurality of heaters 30 according to the voltage value of the power supply.
 また、制御部40は、第2昇温制御において、培養装置1の外部の温度に応じて、PI制御の積分ゲインを補正してもよい。具体的には、制御部40は、第1昇温制御において、検出温度の上昇速度(以下、温度上昇速度とする。)を算出する。温度上昇速度は、単位時間あたりの検出温度の上昇値である。培養装置1の外部の温度が高くなるほど、培養室20から外部への放熱量は小さくなり、温度上昇速度は大きくなる。制御部40は、第1昇温制御が終了した時点で、第1昇温制御における温度上昇速度の最大値を記憶する。 In addition, the control unit 40 may correct the integral gain of the PI control according to the temperature outside the culture device 1 in the second temperature increase control. Specifically, the control unit 40 calculates the rate of increase of the detected temperature (hereinafter referred to as temperature rate of increase) in the first temperature increase control. The temperature rise rate is the rise value of the detected temperature per unit time. As the temperature outside the culture apparatus 1 increases, the amount of heat released from the culture chamber 20 to the outside decreases and the rate of temperature rise increases. When the first temperature increase control ends, the control unit 40 stores the maximum value of the temperature increase rate in the first temperature increase control.
 培養装置1の外部の温度が比較的高いことで、温度上昇速度の最大値が予め定められている所定の温度上昇速度以上である場合、温度上昇速度の最大値に基づいて、積分ゲインを小さくするように補正する。これにより、培養室20の温度のオーバーシュートを抑制することができる。 When the temperature outside the culture apparatus 1 is relatively high and the maximum value of the temperature rise rate is equal to or higher than a predetermined temperature rise rate, the integral gain is decreased based on the maximum value of the temperature rise rate. Correct to Thereby, the overshoot of the temperature of the incubation chamber 20 can be suppressed.
 一方、培養装置1の外部の温度が比較的低いことで、温度上昇速度の最大値が所定の温度上昇速度未満である場合、温度上昇速度の最大値に基づいて、積分ゲインを大きくするように補正する。これにより、培養室20の温度を乾熱滅菌可能な温度に早期に到達させることができる。 On the other hand, when the maximum value of the temperature rise rate is less than the predetermined temperature rise rate due to the relatively low temperature outside the culture apparatus 1, the integral gain is increased based on the maximum value of the temperature rise rate. to correct. As a result, the temperature of the culture chamber 20 can reach a temperature at which dry heat sterilization is possible at an early stage.
 また、制御部40は、第2昇温制御および温度保持制御において、検出温度に基づいて、複数のヒータ30のうち第6の系統G6を構成する第6、7のヒータ36、37以外の一のヒータの通電量ひいてはデューティ比を算出してもよい。そして、算出された一のヒータのデューティ比に基づいて、他のヒータのデューティ比を算出してもよい。 Further, in the second temperature increase control and the temperature maintenance control, the control unit 40 controls one of the plurality of heaters 30 other than the sixth and seventh heaters 36 and 37 constituting the sixth system G6 based on the detected temperature. , the energization amount of the heater and hence the duty ratio may be calculated. Then, based on the calculated duty ratio of one heater, the duty ratios of the other heaters may be calculated.
 また、制御部40は、第2昇温制御において、複数のヒータ30の通電量の間の比率を、複数のヒータ30の通電量の間の差が段階的に大きくなるように制御してもよい。 In addition, in the second temperature increase control, the control unit 40 may control the ratio between the energization amounts of the plurality of heaters 30 so that the difference between the energization amounts of the plurality of heaters 30 increases in stages. good.
 2021年10月22日出願の特願2021-173372の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。 The disclosure contents of the specification, drawings and abstract contained in the Japanese application of Japanese Patent Application No. 2021-173372 filed on October 22, 2021 are all incorporated herein.
 本開示は、培養装置として好適に利用される。 The present disclosure is suitably used as a culture device.
 1 培養装置
 10 筐体
 11 内箱
 12 外箱
 15 板部材
 20 培養室
 21 開口
 31 第1のヒータ
 32 第2のヒータ
 33 第3のヒータ
 34 第4のヒータ
 35 第5のヒータ
 36 第6のヒータ
 37 第7のヒータ
 38 第8のヒータ
 40 制御部
1 culture device 10 housing 11 inner box 12 outer box 15 plate member 20 culture chamber 21 opening 31 first heater 32 second heater 33 third heater 34 fourth heater 35 fifth heater 36 sixth heater 37 7th heater 38 8th heater 40 control unit

Claims (8)

  1.  培養室を有する筐体と、
     前記培養室を加熱する複数のヒータと、
     前記培養室の温度を検出する温度センサと、
     前記温度センサの検出温度に基づいて、前記複数のヒータを制御する制御部と、を備え、
     前記制御部は、乾熱滅菌運転において、前記複数のヒータの通電量それぞれを、前記複数のヒータの通電量の間の比率が予め定められている比率になるように制御する、
     培養装置。
    a housing having a culture chamber;
    a plurality of heaters for heating the incubation chamber;
    a temperature sensor that detects the temperature of the culture chamber;
    a control unit that controls the plurality of heaters based on the temperature detected by the temperature sensor;
    In the dry heat sterilization operation, the control unit controls the energization amounts of the plurality of heaters so that the ratio between the energization amounts of the plurality of heaters becomes a predetermined ratio.
    culture equipment.
  2.  前記制御部は、前記複数のヒータのうち少なくとも1つのヒータの通電量を前記検出温度に基づいて制御し、他のヒータの通電量を前記少なくとも1つのヒータの通電量に対して予め定められている比率になるように制御する、
     請求項1に記載の培養装置。
    The control unit controls an amount of power supplied to at least one of the plurality of heaters based on the detected temperature, and an amount of power supplied to the other heaters is predetermined with respect to the amount of power supplied to the at least one heater. control so that the ratio is
    The culture device according to claim 1.
  3.  前記制御部は、前記検出温度が前記培養室において乾熱滅菌可能な温度以上であるときに、前記複数のヒータの通電量の間の比率を、予め定められている所定値で一定にするように制御する、
     請求項1または2に記載の培養装置。
    When the detected temperature is equal to or higher than the temperature at which dry heat sterilization is possible in the culture chamber, the control unit keeps the ratio between the energization amounts of the plurality of heaters constant at a predetermined value. control to
    The culture device according to claim 1 or 2.
  4.  前記制御部は、前記検出温度が前記乾熱滅菌可能な温度未満であるときに、前記複数のヒータの通電量の間の比率を、前記検出温度に基づいて前記所定値に近づけるように制御する、
     請求項3に記載の培養装置。
    When the detected temperature is lower than the dry heat sterilizable temperature, the control unit controls a ratio between energization amounts of the plurality of heaters so as to approach the predetermined value based on the detected temperature. ,
    The culture device according to claim 3.
  5.  前記制御部は、前記複数のヒータの通電量の間の比率を、前記複数のヒータの通電量の間の差が徐々に大きくなるように制御する、
     請求項4に記載の培養装置。
    The control unit controls the ratio between the energization amounts of the plurality of heaters so that the difference between the energization amounts of the plurality of heaters gradually increases.
    The culture device according to claim 4.
  6.  前記制御部は、前記培養装置に接続されている電源の電圧値に基づいて、前記複数のヒータの通電量を補正する、
     請求項1から5の何れか1項に記載の培養装置。
    The control unit corrects the energization amount of the plurality of heaters based on the voltage value of the power supply connected to the culture device.
    The culture device according to any one of claims 1 to 5.
  7.  前記筐体は、前記培養室を内側に有し、かつ、前記培養室の開口を正面に有する内箱と、前記内箱における前記開口以外の部位を覆う外箱と、前記開口の周縁において前記内箱と前記外箱とを接続する板部材と、前記開口を開閉する扉と、を備え、
     前記複数のヒータは、それぞれ、前記内箱の天面と、前記内箱の底面と、前記内箱の背面と、前記内箱の両側面と、前記内箱の前記開口の周縁部と、前記板部材の板面と、前記扉の前記開口側の面と、に配置されている、
     請求項1から6の何れか1項に記載の培養装置。
    The housing includes an inner box having the culture chamber inside and an opening of the culture chamber on the front side, an outer box covering a portion of the inner box other than the opening, and the A plate member that connects the inner box and the outer box, and a door that opens and closes the opening,
    Each of the plurality of heaters includes a top surface of the inner box, a bottom surface of the inner box, a back surface of the inner box, both side surfaces of the inner box, a peripheral edge portion of the opening of the inner box, and the arranged on the plate surface of the plate member and the surface of the door on the opening side,
    The culture device according to any one of claims 1 to 6.
  8.  前記制御部は、前記扉の前記開口側の面に配置されているヒータの通電量を、前記検出温度に基づいて制御する、
     請求項7に記載の培養装置。
    The control unit controls an energization amount of a heater arranged on a surface of the door on the opening side based on the detected temperature.
    The culture device according to claim 7.
PCT/JP2022/037371 2021-10-22 2022-10-06 Cultivation device WO2023068061A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021173372 2021-10-22
JP2021-173372 2021-10-22

Publications (1)

Publication Number Publication Date
WO2023068061A1 true WO2023068061A1 (en) 2023-04-27

Family

ID=86058169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037371 WO2023068061A1 (en) 2021-10-22 2022-10-06 Cultivation device

Country Status (1)

Country Link
WO (1) WO2023068061A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016158337A1 (en) * 2015-03-30 2016-10-06 パナソニックヘルスケアホールディングス株式会社 Incubator
WO2017169850A1 (en) * 2016-03-28 2017-10-05 パナソニックヘルスケアホールディングス株式会社 Culture apparatus, and method for controlling culture apparatus
JP2017175944A (en) * 2016-03-28 2017-10-05 パナソニックヘルスケアホールディングス株式会社 Culture apparatus
JP2017175945A (en) * 2016-03-28 2017-10-05 パナソニックヘルスケアホールディングス株式会社 Culture apparatus
WO2019017094A1 (en) * 2017-07-19 2019-01-24 シャープ株式会社 Sensor and sensor array

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016158337A1 (en) * 2015-03-30 2016-10-06 パナソニックヘルスケアホールディングス株式会社 Incubator
WO2017169850A1 (en) * 2016-03-28 2017-10-05 パナソニックヘルスケアホールディングス株式会社 Culture apparatus, and method for controlling culture apparatus
JP2017175944A (en) * 2016-03-28 2017-10-05 パナソニックヘルスケアホールディングス株式会社 Culture apparatus
JP2017175945A (en) * 2016-03-28 2017-10-05 パナソニックヘルスケアホールディングス株式会社 Culture apparatus
WO2019017094A1 (en) * 2017-07-19 2019-01-24 シャープ株式会社 Sensor and sensor array

Similar Documents

Publication Publication Date Title
US9719683B2 (en) Modulated power burner system and method
US20070154344A1 (en) Sterilizer and method for controlling the same
US20080092754A1 (en) Conveyor oven
US11098277B2 (en) Culture apparatus and method of controlling culture apparatus
CN110612346A (en) Constant temperature box
JPH0731463A (en) Incubator
US8227239B2 (en) Culture apparatus
JPH0674518A (en) Humidity control device of air conditioner
JP6245243B2 (en) Ventilation system
WO2023068061A1 (en) Cultivation device
US20210284949A1 (en) Culture device
JP2017150713A (en) Dry processing device
KR101452161B1 (en) Drying method for agricultural products using drier of agricultural products
JP3202443U (en) Laboratory animal breeding equipment
JP5341434B2 (en) Incubator
KR20170083442A (en) Device for controlling the brightness of mood lamp
CN213852222U (en) But device for sterilizer of automatically regulated and control ozone concentration
JPH0861848A (en) Wood dryer
KR200293287Y1 (en) A fermentation system
JP6795756B2 (en) Isolator system and isolator system aeration method
JP4657530B2 (en) Air conditioning system for high temperature and high humidity
JP2021078437A (en) Culture apparatus
JP2019203828A (en) Weather-resistant testing apparatus
US20210238531A1 (en) Culturing apparatus
WO2023176216A1 (en) Incubation device and incubation system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22883366

Country of ref document: EP

Kind code of ref document: A1