WO2023067990A1 - Laser radar - Google Patents

Laser radar Download PDF

Info

Publication number
WO2023067990A1
WO2023067990A1 PCT/JP2022/035788 JP2022035788W WO2023067990A1 WO 2023067990 A1 WO2023067990 A1 WO 2023067990A1 JP 2022035788 W JP2022035788 W JP 2022035788W WO 2023067990 A1 WO2023067990 A1 WO 2023067990A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
laser radar
laser
aperture
optical system
Prior art date
Application number
PCT/JP2022/035788
Other languages
French (fr)
Japanese (ja)
Inventor
康行 加納
哲央 細川
遼 福田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023067990A1 publication Critical patent/WO2023067990A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements

Definitions

  • the present invention relates to a laser radar that detects objects using laser light.
  • a laser radar irradiates a target area with laser light and detects the presence or absence of an object in the target area based on the reflected light. Also, the laser radar measures the distance to an object based on the time difference between the irradiation timing of the laser beam and the reception timing of the reflected light.
  • Patent Document 1 describes a projection optical system that projects laser light emitted from a laser light source onto a target area, and a light detector that collects the reflected light of the laser light reflected by an object existing in the target area.
  • a laser radar with receiving optics is described.
  • the optical axes of the projection optical system and the light receiving optical system are separated from each other.
  • the photodetector is provided with a plurality of sensor sections divided vertically in the separation direction of these optical axes. Each of the plurality of sensor units has a shape elongated in the separation direction of the optical axis.
  • each sensor section has a shape elongated in the separation direction of these optical axes. Therefore, even if the focused spot of the reflected light moves according to the change in the distance to the object, the reflected light can be properly received by each sensor unit. Therefore, the object can be properly detected by the output from the sensor section.
  • the sensor section has sharp edge portions or thin portions, charges tend to accumulate in these portions. For this reason, for example, when the shape of the sensor section is a triangle or a T-shape that is long in the separation direction of the optical axis, in order to ensure the detection accuracy of the reflected light, the shape of the vertices of the triangle is sharpened or T-shaped. There are certain restrictions on thinning character shapes. In addition, when the specifications of the laser radar, the detection distance range, etc. are changed, it is necessary to change the shape of the sensor part itself accordingly, and the photodetector must be newly manufactured.
  • a laser radar includes a projection optical system that projects laser light emitted from a laser light source, and a light receiving optical system that collects the reflected light of the laser light reflected by an object onto a photodetector. , provided.
  • the optical axes of the projection optical system and the light receiving optical system are separated from each other.
  • the laser radar has means for limiting the range of the reflected light on the light receiving surface of the photodetector. The means for limiting the range are arranged along the separation direction of the optical axis.
  • the means for limiting the range is arranged along the separation direction of the optical axis, even if the focused spot of the reflected light moves according to the change in the distance to the object , the photodetector can properly receive the reflected light through the reflection limiting means. Therefore, the object can be detected properly by the output from the photodetector.
  • the light receiving surface of the photodetector does not need to have sharp edge portions or thin portions, charges can be output smoothly and appropriately from the photodetector in response to light reception. Therefore, it is possible to maintain a high detection accuracy of the reflected light.
  • FIG. 1 is a perspective view for explaining assembly of a laser radar according to Embodiment 1.
  • FIG. 2 is a perspective view for explaining assembly of the laser radar according to Embodiment 1.
  • FIG. 3A and 3B are a perspective view and a side view, respectively, showing the configuration of the optical system of the optical unit according to Embodiment 1.
  • FIG. 4A is a diagram schematically showing the traveling direction of reflected light reflected by an object according to Embodiment 1, and FIG. It is a figure which shows typically the condensing state of reflected light.
  • 5 is a perspective view showing a configuration of an aperture and a holder according to Embodiment 1.
  • FIG. 6 is a perspective view showing a process of installing the structure including the aperture and the holder on the circuit board according to the first embodiment.
  • 7A is a plan view showing a state in which the structure is installed on the substrate according to the first embodiment;
  • FIG. 7(b) is a cross-sectional view along A1-A1 in FIG. 7(a).
  • FIGS. 8A to 8C are plan views schematically showing incident states of condensed light spots on the light guide section when the distance to the object changes according to Embodiment 1.
  • FIG. 9(a) to 9(h) are plan views showing the shape of the light guide portion according to the first embodiment.
  • 10A is a graph showing verification results (simulation) of the relationship between the distance to the object and the amount of reflected light received by the photodetector when the shape of the light guide portion is changed according to the first embodiment; is. 10(b) to 10(d) are diagrams showing the shape of the light guide portion used for verification according to the first embodiment.
  • 11(a) and 11(b) are an exploded perspective view and a perspective view, respectively, showing configurations of an aperture and a holder according to Modification 1.
  • FIGS. 12(a) and 12(b) are an exploded perspective view and a perspective view, respectively, showing configurations of an aperture and a holder according to Modification 2.
  • FIG. 13A and 13B are an exploded perspective view and a perspective view, respectively, showing configurations of an aperture and a holder according to Modification 3.
  • FIG. 13(c) is a perspective view of the structure when the structure is viewed from the back side according to Modification 3.
  • FIG. 14(a) is a perspective view showing the configuration of an aperture according to Modification 4.
  • FIG. 14B is a perspective view showing the configuration of the aperture when viewed from the back side according to Modification 4.
  • FIG. 15A is a perspective view showing the configuration of an aperture according to Modification 5.
  • FIG. 15(b) is a perspective view showing the configuration of the aperture when viewed from the back side according to Modification 5.
  • FIG. 16(a) is an exploded perspective view showing the configuration of the light receiving portion according to Embodiment 2
  • FIG. 16(b) is a perspective view showing the configuration of the rear surface of the cover according to Embodiment 2
  • FIG. 16(c) ) is a perspective view showing the configuration of a light receiving unit according to Embodiment 2.
  • FIG. FIG. 17A is a plan view of a light receiving section according to Embodiment 2.
  • FIG. 17(b) is a cross-sectional view along B1-B1 in FIG. 17(a).
  • 18(a) to 18(d) are diagrams schematically showing a method of setting a light receiving region according to the second embodiment.
  • 19 is a block diagram showing a configuration of a circuit unit according to the second embodiment;
  • the Z-axis positive direction is the height direction of the laser radar 1 .
  • Embodiment 1 the light guide portion of the aperture is used as means for limiting the range of reflected light on the light receiving surface of the photodetector.
  • FIG. 1 and 2 are perspective views for explaining the assembly process of the laser radar 1.
  • FIG. 1 and 2 are perspective views for explaining the assembly process of the laser radar 1.
  • the laser radar 1 includes a cylindrical fixed portion 10, a base member 20 rotatably arranged on the fixed portion 10, a disk member 30 installed on the upper surface of the base member 20, a base and an optical unit 40 installed on the member 20 and the disk member 30 .
  • the base member 20 is installed on the drive shaft M1 of the motor provided on the fixed part 10 .
  • the base member 20 rotates about a rotation axis R0 parallel to the Z-axis direction in response to driving of the motor.
  • the base member 20 has a cylindrical shape.
  • the base member 20 has six installation surfaces 21 formed at equal intervals (at intervals of 60°) along the circumferential direction of the rotation axis R0.
  • the installation surface 21 is inclined with respect to a plane (XY plane) perpendicular to the rotation axis R0.
  • the side of the installation surface 21 (the direction away from the rotation axis R0) and the upper side of the installation surface 21 (the Z-axis positive direction) are open.
  • the inclination angles of the six installation surfaces 21 are different from each other.
  • the disk member 30 has a disk-like shape.
  • Six circular holes 31 are formed in the disk member 30 at equal intervals (at intervals of 60°) along the circumferential direction of the rotation axis R0.
  • the hole 31 penetrates the disk member 30 in the direction of the rotation axis R0 (Z-axis direction).
  • the disk member 30 is installed on the upper surface of the base member 20 so that the six holes 31 are positioned above the six installation surfaces 21 of the base member 20, respectively.
  • the optical unit 40 includes a structure 41 and a mirror 42.
  • the structure 41 holds a projection optical system for projecting projection light and a light receiving optical system for receiving reflected light of the projection light reflected by an object.
  • the structure 41 emits laser light downward (negative Z-axis direction) and receives laser light from below.
  • the optical system included in the structure 41 will be described later with reference to FIGS. 3(a) and 3(b).
  • the structure 41 of the optical unit 40 is installed on the surface 31a surrounding the hole 31 from the upper side of the hole 31, as shown in FIG. be.
  • the six optical units 40 are arranged at equal intervals (at intervals of 60°) along the circumferential direction of the rotation axis R0. Note that the optical units 40 do not necessarily have to be arranged at equal intervals in the circumferential direction.
  • a mirror 42 of the optical unit 40 is installed on the installation surface 21 of the base member 20 .
  • the mirror 42 is a plate member in which the reflecting surface 42a and the opposite surface are parallel.
  • a substrate 50 is installed on the upper surfaces of the six optical units 40 installed in this way.
  • the rotating portion 60 rotates around the rotation axis R0 by driving the motor of the fixed portion 10 .
  • a transparent cover is installed to cover the top and sides of the rotating part 60 .
  • assembly of the laser radar 1 is completed.
  • laser light is emitted from the laser light source 110 (see FIGS. 3A and 3B) of the structure 41 in the negative direction of the Z axis.
  • the projection light is reflected by the mirror 42 in a direction away from the rotation axis R0.
  • the projection light reflected by the mirror 42 is transmitted through the cover and emitted to the outside of the laser radar 1 .
  • the projected light (reflected light) reflected by the object is taken into the laser radar 1 via the cover.
  • the reflected light is reflected by the mirror 42 and received by the light receiving section 150 of the structure 41 (see FIGS. 3A and 3B).
  • the rotating part 60 shown in FIG. 2 rotates around the rotation axis R0.
  • the optical axis of the projection light projected from the laser radar 1 rotates around the rotation axis R0.
  • the projection direction of the projection light rotates around the rotation axis R0.
  • the laser radar 1 determines whether an object exists in each projection direction based on whether reflected light is received or not. Also, the laser radar 1 measures the distance to the object based on the time difference (time of flight) between the timing of projecting the projection light and the timing of receiving the reflected light from the object. By rotating the rotating part 60 around the rotation axis R0, the laser radar 1 can detect an object existing in almost the entire range of 360 degrees.
  • the inclination angles of the six installation surfaces 21 with respect to the XY plane are different from each other, the inclination angles of the six reflecting surfaces 42a with respect to the XY plane are also different from each other. Therefore, the projection directions of the projection light reflected by the six reflecting surfaces 42a also have different tilt angles with respect to the XY plane. Therefore, six projection lights can be scanned in directions with different tilt angles with respect to the XY plane. Therefore, the presence or absence of an object and the distance to the object can be detected over a wide range in the Z-axis direction.
  • 3(a) and 3(b) are a perspective view and a side view showing the configuration of the optical system of the optical unit 40, respectively.
  • FIGS. 3(a) and 3(b) show an optical system and a mirror 42 held by the structure 41 located on the positive side of the X-axis of the rotation axis R0 in FIG.
  • the optical systems held by other structures 41 have the same configuration.
  • the structure 41 holds a laser light source 110, a collimator lens 120, a condenser lens 130, a filter 140, and a light receiving section 150.
  • Laser light source 110, collimator lens 120, and mirror 42 constitute projection optical system LS1 for projecting projection light.
  • Condensing lens 130, filter 140, light receiving unit 150, and mirror 42 constitute a light receiving optical system LS2 for receiving reflected light of projected light reflected by an object.
  • the optical axis A1 of the projection optical system LS1 and the optical axis A2 of the light receiving optical system LS2 are both parallel to the Z-axis direction and separated by a predetermined distance in the circumferential direction of the rotation axis R0.
  • the optical axis A1 of the projection optical system LS1 and the optical axis A2 of the light receiving optical system LS2 are separated from each other in the Y-axis direction.
  • the laser light source 110 includes three laser elements 111 arranged at a constant pitch in a direction (X-axis direction) perpendicular to the separation direction (Y-axis direction) of the optical axes A1 and A2.
  • Each of the three laser elements 111 is composed of a semiconductor laser and emits laser light of the same wavelength.
  • the three laser elements 111 emit laser light in the infrared wavelength band.
  • the emission optical axes of the three laser elements 111 are parallel to the Z-axis.
  • the collimator lens 120 converges the laser beams emitted from the three laser elements 111 so that they are slightly spread from parallel beams.
  • the optical axis of collimator lens 120 coincides with optical axis A1 of projection optical system LS1.
  • the emission optical axis of the center laser element 111 among the three laser elements 111 is aligned with the optical axis of the collimator lens 120 .
  • the laser light emitted from the central laser element 111 travels along the optical axis of the projection optical system LS1 after passing through the collimator lens 120.
  • the laser beams emitted from the other two laser elements 111 pass through the collimator lens 120, respectively, and then separate from the optical axis of the projection optical system LS1 in the positive X-axis direction and the negative X-axis direction. After being reflected, it further separates in the Z-axis positive direction and the Z-axis negative direction.
  • FIGS. 3A and 3B show laser light (projection light) emitted from the central laser element 111 and its reflected light.
  • each projection light is reflected by the object.
  • the projection light (reflected light) reflected by the object travels backward along the optical path during projection and is guided to the mirror 42 . After that, the reflected light is reflected in the Z-axis positive direction by the mirror 42 .
  • the condenser lens 130 converges the reflected light reflected by the mirror 42 .
  • the reflected light is then incident on filter 140 .
  • the filter 140 transmits light in the wavelength band of projection light emitted from the laser light source 110 and blocks light in other wavelength bands. Reflected light transmitted through the filter 140 is guided to the light receiving section 150 .
  • the light receiving unit 150 includes a photodetector 310 (see FIG. 6) that receives reflected light of laser light (projection light) emitted from the three laser elements 111 respectively.
  • the photodetector 310 outputs a detection signal corresponding to the received light amount of the reflected light.
  • Photodetector 310 is, for example, an avalanche photodiode.
  • FIGS. 3(a) and 3(b) an object is detected for each projection direction of the laser light emitted from the three laser elements 111.
  • FIG. also, as mentioned above, the angles of the mirrors 42 with respect to the XY plane are different among the six optical units 40 . Therefore, in this embodiment, objects around the laser radar 1 can be detected in 18 different angular directions with respect to the XY plane.
  • the condenser lens 130 since the optical axis A1 of the projection optical system LS1 is included in the effective diameter of the condenser lens 130, the condenser lens 130 has an opening 131 for passing the optical axis A1 of the projection optical system LS1. is formed.
  • the opening 131 is formed outside the center of the condenser lens 130 and is a notch penetrating the condenser lens 130 in the Z-axis direction.
  • the optical axis A1 of the projection optical system LS1 and the optical axis A2 of the light receiving optical system LS2 can be brought closer, and the laser light emitted from the laser light source 110 can be can be made incident on the mirror 42 almost without covering the condenser lens 130 .
  • the optical axis A1 of the projection optical system LS1 and the optical axis A2 of the light receiving optical system LS2 are separated from each other. move according to the change in distance.
  • FIG. 4(a) is a diagram showing the traveling direction of reflected light reflected by an object as seen from the positive side of the X axis, and FIG. It is the figure seen from the negative side.
  • the condenser lens 130 is shown in a state in which a portion corresponding to the opening 131 on the Y-axis positive side of the condenser lens 130 is cut.
  • the condenser lens 130 is configured to collect reflected light (parallel light) incident from infinity along the optical axis onto the light receiving surface of the light receiving section 150. there is At this time, when the reflected light enters the condenser lens 130 with the width of the effective diameter of the condenser lens 130 , the reflected light is collected by the photodetector 310 in the light receiving section 150 .
  • the condensing position of the reflected light R1 on the light receiving unit 150 shifts in the negative direction of the Y-axis with respect to the condensing position when the reflected light from infinity is incident.
  • the amount of shift in the Y-axis negative direction of the condensing position of the reflected light R2 is further increased.
  • the condensing position F1 of the reflected light R1 in the light receiving unit 150 shifts in the Z-axis positive direction from the condensing position F0 when the reflected light from infinity enters as parallel light.
  • the amount of shift in the Z-axis positive direction of the condensing position F2 of the reflected light R2 is further increased.
  • the focal position of the reflected light shifts according to the distance to the object, so the size of the focal spot on the light receiving unit 150 changes according to the distance to the object. More specifically, the smaller the distance to the object, the larger the size of the focused spot on the light receiving section 150 .
  • the position and size of the focused spot on the light receiving unit 150 change according to the distance to the object. do.
  • the intensity of the reflected light is inversely proportional to the square of the distance to the object. Therefore, the light receiving section 150 needs to have a configuration for appropriately receiving the reflected light by the corresponding photodetector 310 even if the position and size of the condensed light spot and the intensity of the reflected light change. Become.
  • an aperture is arranged in the light receiving section 150 to limit the range of reflected light incident on the light receiving surface of the photodetector 310 .
  • FIG. 5 is a perspective view showing the configuration of the aperture 210 and the holder 220 that holds the aperture 210.
  • the aperture 210 consists of a flat substrate 210a.
  • the substrate 210a is made of a material that has a light shielding property or a high absorption rate with respect to the laser light emitted from the laser light source 110 .
  • the substrate 210a is made of metal such as SUS or resin such as black polyethylene.
  • the substrate 210a has a rectangular shape with rounded corners in plan view.
  • the thickness of the substrate 210a is constant.
  • the substrate 210a is integrally formed by press working, resin molding, or the like.
  • the substrate 210a has three light guide portions 211 and two long holes 212 formed therein.
  • the three light guide portions 211 have a triangular shape with rounded corners in plan view. The base of each triangle is parallel to the X-axis.
  • Each light guide portion 211 has a shape elongated in the Y-axis direction.
  • the width of the portion on the Y-axis negative side is the same as the width of the portion on the Y-axis positive side (portion close to the optical axis A1 of the projection optical system LS1). narrower than the width of
  • the three light guides 211 are configured by forming openings penetrating the substrate 210a. The distance between the center light guide portion 211 and the light guide portions 211 at both ends is the same.
  • the two elongated holes 212 are provided between the central light guide portion 211 and the light guide portions 211 at both ends.
  • the long hole 212 has a rectangular shape with rounded corners in plan view. The long side of each rectangle is parallel to the Y-axis.
  • the two long holes 212 vertically penetrate the substrate 210a.
  • the holder 220 is made of a material that has a light shielding property or a high absorption rate with respect to the laser light emitted from the laser light source 110 .
  • the holder 220 is made of metal such as SUS or resin such as black polyethylene.
  • the holder 220 is a frame-like member having a rectangular shape with rounded corners in plan view. The long side of holder 220 is parallel to the X-axis.
  • the holder 220 is integrally formed by press working, resin molding, or the like.
  • the holder 220 has three openings 221.
  • the opening 221 has a rectangular shape with rounded corners in plan view. The short sides of each rectangle are parallel to the X-axis. The shape and size of the three openings 221 are the same as each other.
  • the three openings 221 are arranged side by side in the X-axis direction. Each opening 221 penetrates the holder 220 in the Z-axis direction.
  • a beam portion 222 is formed between adjacent openings 221 .
  • the width of the beam portion 222 in the X-axis direction is constant.
  • a wall 223 is formed on the upper surface of the beam portion 222 at the central position in the Y-axis direction.
  • the height of wall 223 is constant.
  • the shape of the wall 223 in plan view is a rectangular shape with rounded corners and is slightly smaller than the long hole 212 .
  • edges 224 are formed along the periphery of the upper surface of the holder 220 .
  • the width of edge 224 is constant.
  • the two edge portions 224 are arranged over the entire range of the two long sides of the holder 220 and part of the range of the two short sides.
  • the distance between the two edges 224 in the X and Y directions is slightly wider than the distance between the apertures 210 in the X and Y directions.
  • two protrusions 225 are formed on the lower surface of the holder 220 .
  • the two protrusions 225 are arranged in the middle position of the two short sides of the holder 220 in the Y-axis direction in plan view.
  • the shape of the protrusion 225 in plan view is a square with rounded corners.
  • the thickness of holder 220 excluding wall 223, edge 224 and protrusion 225 is constant.
  • the aperture 210 is fitted inside the two edges 224 and placed on the upper surface of the holder 220 . At this time, the two walls 223 of the holder 220 pass through the two elongated holes 212 of the aperture 210, respectively. This positions the aperture 210 with respect to the holder 220 . In this state, an adhesive is applied between aperture 210 and holder 220 . Aperture 210 is thus fixed to holder 220 .
  • FIG. 6 is a perspective view showing a process of installing the structure 200 composed of the aperture 210 and the holder 220 on the circuit board 300.
  • the circuit board 300 is included in the structure 41 of FIG.
  • the circuit board 300 is mounted with three photodetectors 310 that respectively receive laser light emitted from the three laser elements 111 and reflected from an object.
  • Each of the three photodetectors 310 has a circular light receiving surface 311 .
  • the three photodetectors 310 have the same configuration as each other.
  • the circuit board 300 is formed with two receiving holes 301 into which the two protrusions 225 of the holder 220 are fitted.
  • the two protrusions 225 of the holder 220 are fitted into the two receiving holes 301 respectively.
  • an adhesive is applied between holder 220 and circuit board 300 .
  • the structure 200 is installed on the circuit board 300 .
  • the light receiving section 150 including the structure 200 and the three photodetectors 310 is configured.
  • FIG. 6 shows how the structure 200 composed of the aperture 210 and the holder 220 is installed on the circuit board 300 . may be placed on top of the
  • FIG. 7(a) is a plan view showing the structure 200 installed on the circuit board 300
  • FIG. 7(b) is a cross-sectional view taken along line A1-A1 in FIG. 7(a).
  • the photodetector 310 and its light receiving surface 311 behind the aperture 210 are indicated by broken lines.
  • the light receiving section 150 is arranged such that the optical axis A2 of the light receiving optical system LS2 is positioned at the center of the light receiving surface 311 of the central light guide section 211 and the central photodetector 310 .
  • the optical axis A2 of the light receiving optical system LS2 is perpendicular to the light receiving surface 311 of the central photodetector 310 .
  • the laser light emitted from the center laser element 111 of the three laser elements 111 is reflected from the object without being inclined in the X-axis direction.
  • the reflected light from the object enters the light guide section 211 while being inclined in the X-axis direction.
  • the three light guide portions 211 are arranged such that the range where the light receiving surface 311 of the photodetector 310 is irradiated with the reflected light through the three light guide portions 211 is substantially the center 311 of the light receiving surface.
  • a shape and pitch P12 are set. More specifically, when the central axes CA1 of the three reflected lights respectively pass through the central positions of the three light guide portions 211 in the X-axis direction and the Y-axis direction, these three central axes CA1 The shape and pitch P12 of the three light guide portions 211 are set so as to pass through the center CP1 of the surface 311 .
  • the pitch P12 between the adjacent light guides 211 is set smaller than the pitch P11 between the adjacent photodetectors 310.
  • the pitch P12 is set based on the interval H1 between the light receiving surface 311 and the light guide section 211 and the inclination angle of the central axis CA1 of each reflected light.
  • the width W2 of the light guide portions 211 at both ends is set smaller than the width W1 of the light guide portion 211 at the center.
  • These widths W1 and W2 are such that when the regions of the light guide portions 211 are projected onto the light receiving surfaces 311 in the direction of the central axis CA1, the projected regions (projection regions) have substantially the same size and shape. , and the center of each projection area is adjusted to substantially coincide with the center of each light receiving surface.
  • These widths W1 and W2 are set based on the interval H1 and the tilt angle of the central axis CA1 of each reflected light.
  • each projection area approximately coincides with the center CP1 of each light receiving surface, so that the size of the light receiving surface 311 of the photodetector 310 can be limited to a range that includes the projection area.
  • the light receiving surface 311 can be made smaller, and the reflected light can be received efficiently.
  • the light receiving surface 311 can be made small, it is possible to prevent stray light other than the reflected light from entering the light receiving surface 311 and improve the detection accuracy of the reflected light.
  • FIGS. 8(a) to 8(c) are plan views schematically showing incident states of the condensed spot SP1 with respect to the light guide section 211 when the distance to the object changes.
  • FIG. 8(a) shows the state of the focused spot SP1 of the reflected light when an object exists at the farthest distance (for example, 20 m) in the distance range of the detection target.
  • FIG. 8(c) shows the state of the focused spot SP1 of the reflected light when an object exists at the closest distance (for example, 0.3 m) in the distance range of the detection target.
  • FIG. 8(c) shows the state of the focused spot SP1 of the reflected light when an object exists at a distance (for example, 2 m) between the earliest distance and the shortest distance in the distance range of the detection target.
  • the focused spot SP1 of the reflected light incident on the aperture 210 is shown in FIG.
  • the shorter the distance to the object the more it shifts in the negative Y-axis direction (the direction from the optical axis A1 to the optical axis A2) and the larger the size.
  • the intensity of the reflected light is inversely proportional to the square of the distance to the object, the closer the distance to the object, the higher the intensity of the reflected light.
  • the light guide portion 211 is formed to be elongated along the Y-axis direction. SP1 can be positioned in the light guide section 211 . Therefore, regardless of the position of the object in the distance range of the detection target, the reflected light from the object can be guided to the light receiving surface 311 of the corresponding photodetector 310 via the light guide section 211. .
  • the width of the light guide section 211 is such that the width of the Y-axis negative side portion (portion away from the optical axis A1 of the projection optical system LS1) is the Y-axis positive side portion (portion close to the optical axis A1 of the projection optical system LS1). It has a shape narrower than the width of Therefore, most of the light reflected from a distant object with low intensity is guided from the light guide section 211 to the photodetector 310 . In addition, most of the reflected light from an object at a short distance with high intensity is shielded by the range of the aperture 210 other than the light guide section 211, and the reflected light guided from the light guide section 211 to the photodetector 310 is limited. be done. As a result, it is possible to suppress an excessive increase in the amount of received reflected light when the object is at a short distance, and it is possible to stably perform object detection processing in the detection target distance range.
  • the shape of the light guide portion 211 in plan view is not limited to a triangle, and may be another shape.
  • the light guide portion 211 may have a T-order shape, a rectangle, and a trapezoid.
  • FIG. 9C when the light guide portion 211 is a rectangle elongated in the Y-axis direction, compared to the case where the light guide portion 211 is triangular as shown in FIG. More of the reflected light reflected from the near object is received by the light receiving surface 311 of the photodetector 310 . Therefore, in order to more reliably avoid an excessive increase in the received light amount of the reflected light, the shape of the light guide portion 211 should be changed as shown in FIGS. , triangular, T-shaped or trapezoidal.
  • the area of the light guide portion 211 is smaller than in the configuration of FIG. 9A.
  • the stray light component that passes through the optical section 211 and is guided to the photodetector 310 is further suppressed. Thereby, the detection accuracy of reflected light can be improved.
  • the position where the two straight line portions of the T-shape intersect may not necessarily be perpendicular, and may be in the shape of a rounded arc.
  • the light guide portions 211 may be separated in the Y-axis direction.
  • the light guide section 211 is separated into two in the Y-axis direction, and the light guide sections 211a and 211b after separation are circular or elliptical. Further, the light guide portion 211b on the Y-axis positive side is formed larger than the light guide portion 211a on the Y-axis negative side, and the width in the Y-axis direction is increased along with the width in the X-axis direction.
  • the light guide section 211 is separated into two in the Y-axis direction, and the separated light guide sections 211c and 211d are rectangles elongated in the X-axis direction. Further, the light guide portion 211d on the Y-axis positive side is formed larger than the light guide portion 211c on the Y-axis negative side, and the width in the Y-axis direction is increased along with the width in the X-axis direction.
  • the light guide section 211 is divided into three in the Y-axis direction, and the light guide sections 211e, 211f, and 211g after separation are circular or elliptical.
  • the light guide portion after separation is formed larger toward the positive direction of the Y-axis, and the width in the Y-axis direction is increased along with the width in the X-axis direction.
  • the light guide section 211 is separated into three in the Y-axis direction, and the separated light guide sections 211h, 211i, and 211j are rectangles elongated in the X-axis direction.
  • the light guide portion after separation is formed larger toward the positive direction of the Y-axis, and the width in the Y-axis direction is increased along with the width in the X-axis direction.
  • the light guide part 211 since the light guide part 211 is arranged along the Y-axis direction, the focused spot of the reflected light changes in the Y-axis direction according to the distance to the object. , the reflected light can be guided to the light receiving surface 311 of the photodetector 310 via the light guide section 211 . Further, the widths of the light guide portions 211a, 211c, 211e, and 211h away from the optical axis A1 of the projection optical system LS1 are greater than the widths of the light guide portions 211b, 211d, 211g, and 211j near the optical axis A1 of the projection optical system LS1.
  • the shape of the light guide portion after separation is not limited to the shapes shown in FIGS. 9(e) to 9(h), and may be trapezoidal, triangular, or other shapes. Also, when the light guide portions 211 have the shapes shown in FIGS. 9A to 9H, as described with reference to FIGS. 8A and 8B, each light guide portion 211 It is preferable that the shape of the central light guide portion 211 and the shape of the light guide portions 211 on both sides are adjusted to be different from each other so that the projection area on the surface 311 is positioned at the center of the light receiving surface 311 .
  • FIG. 10(a) is a graph showing verification results (simulation) of the relationship between the distance to the object and the amount of reflected light received by the photodetector 310 when the shape of the light guide section 211 is changed.
  • FIGS. 10(b) to 10(d) as the shape of the light guide portion 211, three shapes were set: rectangular, T-shaped, and separated. Also, the three types of light guide portions 211 are set to have sizes shown in FIGS. 10(b) to 10(d).
  • the horizontal and vertical axes in FIGS. 10(b) to 10(d) are sizes in the Y-axis direction and the X-axis direction, respectively.
  • FIG. 10(d) in the separated type it is assumed that the light guide section is divided into two in the Y-axis direction, and the light guide section after separation is set in a rectangular shape that is long in the X-axis direction. .
  • these three types of light guide portions were set in the center light guide portion 211 of the aperture 210, and the light amount of the reflected light incident on this light guide portion was calculated as the received light amount of the photodetector 310.
  • the received light amount of the reflected light was calculated while changing the distance to the object.
  • the horizontal axis is the distance to the object
  • the vertical axis is the received light amount ratio.
  • the vertical axis of the graph represents the ratio of the received light amount at each distance to the received light amount when the distance to the object is 6 m.
  • the vertical axis is a logarithmic axis.
  • the amount of received light is high when the object is at a short distance.
  • the shape of the light guide is T-shaped (T-shaped)
  • the amount of light received when the object is at a short distance is more effective than when the shape of the light guide is rectangular. is constrained to
  • the shape of the light guide is a separate type
  • the amount of light received when an object is at a short distance is further suppressed compared to when the shape of the light guide is rectangular. Even compared to the T-shaped (T-shaped) case, it is remarkably suppressed.
  • the shape of the light guide part is preferably a T-shape rather than a rectangle, and a separate type is even more preferable.
  • the area of the light guide section can be suppressed as shown in FIG. 10(d).
  • the light guide portion 211 of the aperture 210 is arranged along the separation direction (Y-axis direction) of the optical axes A1 and A2. Therefore, as shown in FIGS. 8A to 8C, even if the focused spot SP1 of the reflected light moves according to the change in the distance to the object, the light receiving surface 311 can properly guide the reflected light to the Therefore, the object can be properly detected by the output from the photodetector 310 .
  • the aperture 210 limits the range of the reflected light, the light receiving surface 311 of the photodetector 310 does not need to have a sharp edge portion or a thin portion.
  • the light guide section 211 has a shape elongated in the separation direction of the optical axes A1 and A2. With these configurations, the light guide section 211 can be easily formed in the aperture 210 .
  • the light guide section 211 has a width of It has a shape narrower than the width of the portion of the projection optical system LS1 near the optical axis A1 (the portion on the Y-axis positive side).
  • the light guide section 211 has a portion whose width becomes narrower with distance from the optical axis A1 of the projection optical system LS1 (in the negative Y-axis direction).
  • the light guide portion 211 has a triangular shape
  • the light guide portion 211 has a trapezoidal shape.
  • the light guide section 211 is T-shaped. According to this configuration, as shown in FIG. 10A, when an object exists at a short distance, it is possible to effectively prevent the photodetector 310 from receiving an excessive amount of reflected light. Therefore, object detection processing can be stably performed. In addition, since the area of the light guide portion 211 is small, it is possible to suppress unnecessary stray light other than the reflected light from entering the light receiving surface 311 of the photodetector 310 . Therefore, the accuracy of object detection can be improved.
  • the light guide portions 211 are arranged separately in the separation direction (Y-axis direction) of the optical axes A1 and A2. According to this configuration, by adjusting the shape and spacing of the separated light guide portions 211a to 211j, an appropriate amount of reflected light can be guided to the light receiving surface 311 of the photodetector 310.
  • FIG. 9
  • the widths of the light guide portions 211a, 211c, 211e, and 211h away from the optical axis A1 of the projection optical system LS1 are closer to the optical axis A1 of the projection optical system LS1. It is narrower than the width of the portions 211b, 211d, 211g and 211j.
  • FIG. 10A when an object exists at a short distance, it is possible to more effectively prevent the photodetector 310 from receiving an excessive amount of reflected light. Therefore, object detection processing can be stably performed.
  • the area of the light guide portion 211 is even smaller, it is possible to significantly suppress the incidence of unnecessary stray light other than the reflected light onto the light receiving surface 311 of the photodetector 310 . Therefore, the accuracy of object detection can be improved.
  • the aperture 210 has a plurality of light guides 211 arranged in a direction (X-axis direction) perpendicular to the separation direction (Y-axis direction) of the optical axes A1 and A2.
  • a plurality of photodetectors 310 are arranged at positions for receiving reflected light that has passed through the plurality of light guide portions 211 . Thereby, object detection can be performed individually in a plurality of directions.
  • beams 222 and walls 223 are provided between adjacent photodetectors 310 . Accordingly, it is possible to suppress the scattered light of the reflected light scattered by the light guide section 211 from entering the light receiving surface 311 of the adjacent photodetector 310 . Therefore, the accuracy of object detection can be improved.
  • the wall 223 is provided on the upper surface of the beam 222 , scattered light is received by the adjacent photodetector 310 from the gap between the upper surface of the beam 222 and the lower surface of the aperture 210 . Incident on the surface 311 can be suppressed. Therefore, the accuracy of object detection can be significantly improved. From this point of view, it is preferable that the width of the wall 223 in the Y-axis direction be as large as possible.
  • the beams 222 and the walls 223 that constitute the light shielding wall are provided on the holder 220 .
  • the aperture 210 is positioned by fitting the wall 223 forming the light shielding wall into the long hole 212 of the aperture 210 . That is, the wall 223 is shared for positioning the aperture 210 .
  • the positioning of the aperture 210 can be easily performed, and the configuration of the structure 200 including the aperture 210 and the holder 220 can be simplified.
  • the range where the light-receiving surface 311 of the photodetector 310 is irradiated with the reflected light via the plurality of light guide portions 211 is each the light-receiving surface 311.
  • the shape and pitch P12 of the plurality of light guide portions 211 are set so as to be substantially in the center of the .
  • the size of the light receiving surface 311 can be minimized, and the reflected light can be efficiently received.
  • the light receiving surface 311 can be made small, it is possible to prevent stray light other than the reflected light from entering the light receiving surface 311 and improve the detection accuracy of the reflected light.
  • the aperture 210 is configured by forming an opening, which serves as the light guide section 211, in a substrate 210a that blocks laser light. With this configuration, the aperture 210 can be easily formed.
  • 11A and 11B are an exploded perspective view and a perspective view, respectively, showing configurations of an aperture 410 and a holder 420 according to Modification 1.
  • FIG. 11A and 11B are an exploded perspective view and a perspective view, respectively, showing configurations of an aperture 410 and a holder 420 according to Modification 1.
  • the aperture 410 is composed of a substrate 410a and a light shielding film 410b.
  • the substrate 410 a is made of a material having high translucency to the laser light emitted from the laser light source 110 .
  • the substrate 410a is made of resin (transparent polycarbonate, transparent acrylic, etc.).
  • a long hole 412 is formed in the substrate 410a like the aperture 210 in FIG.
  • the shape and thickness of the substrate 410a in plan view are the same as those of the substrate 210a in FIG.
  • the light-shielding film 410b is made of a material that has a high light-shielding property against the laser light emitted from the laser light source 110 .
  • the light shielding film 410b is composed of, for example, a metal thin film such as chromium or gold, or a dielectric multilayer film.
  • the light shielding film 410b is formed on the upper surface of the substrate 410a by resin plating or the like.
  • the light shielding film 410b is not formed in the region corresponding to the light guide portion 211 in FIG. As a result, a light guide portion 411 that transmits laser light is formed.
  • the configuration of the holder 420 is similar to that of the holder 220 in FIG.
  • the holder 420 has three openings 421 , two beams 422 , two walls 423 , two edges 424 and two protrusions 425 .
  • Aperture 410 is installed on the top surface of holder 420 in a similar manner as in FIG. Thereby, as shown in FIG. 11(b), a structure 400 including an aperture 410 and a holder 420 is formed.
  • the structure 400 is installed on the circuit board 300 in the same manner as in FIG.
  • the shape and pitch P12 of the three light guide portions 411 may be adjusted in the same manner as in FIGS. 7(a) and 7(b).
  • a light-shielding film may also be formed on the back surface of the substrate 410a (the surface on the Z-axis positive side). In this case, the light shielding film is not formed in the region of the back surface of the substrate 410a corresponding to the light guide portion 411.
  • FIG. Accordingly, three light guide portions are also formed on the back surface of the substrate 410a.
  • the shape and pitch P12 of these three light guide portions may be adjusted in the same manner as in FIGS.
  • the aperture 410 can be easily formed from a resin material.
  • the shape of the light guide portion 411 may be changed as in FIGS. 9(a) to (h).
  • the shape of the light guide part 411 is designed to prevent unnecessary stray light other than the reflected light from entering the photodetector 310 as much as possible while suppressing excessive reception of reflected light from an object at a short distance.
  • the portion of the light guide portion 411 on the negative side of the Y axis is preferably smaller than the portion on the positive side of the Y axis. preferably separate.
  • FIGS. 12A and 12B are an exploded perspective view and a perspective view, respectively, showing configurations of an aperture 510 and a holder 520 according to Modification 2.
  • FIG. 12A and 12B are an exploded perspective view and a perspective view, respectively, showing configurations of an aperture 510 and a holder 520 according to Modification 2.
  • Modification 2 the configuration corresponding to the long hole 412 and wall 423 in Modification 1 shown in FIGS. 11(a) and 11(b) is omitted. Further, as a material for forming the substrate 510a, a transmissive material such as glass is used in which it is difficult to form long holes. Other configurations are the same as those of Modification 1 described above.
  • the aperture 510 consists of a substrate 510a and a light shielding film 510b. By omitting the formation of the light shielding film 510b, three light guide portions 511 are formed.
  • the holder 520 has three openings 521 , two beams 522 , two edges 523 and two projections 524 .
  • the aperture 510 is fitted inside the rim 523 and placed on the upper surface of the holder 520 and fixed to the holder 520 with an adhesive.
  • FIG. 12(b) is constructed.
  • the structure 500 is installed on the circuit board 300 in the same form as in FIG.
  • the shape of the light guide portion 511 may be changed as in FIGS. 9A to 9H.
  • a light-shielding film and a light guide portion may be formed on the rear surface (surface on the Z-axis positive side) of substrate 510a.
  • FIGS. 13A and 13B are an exploded perspective view and a perspective view, respectively, showing configurations of an aperture 610 and a holder 620 according to Modification 3.
  • FIG. 13(c) is a perspective view of the structure 600 when the structure 600 is viewed from the back side according to Modification 3.
  • FIG. 13A and 13B are an exploded perspective view and a perspective view, respectively, showing configurations of an aperture 610 and a holder 620 according to Modification 3.
  • FIG. 13(c) is a perspective view of the structure 600 when the structure 600 is viewed from the back side according to Modification 3.
  • a wall 612 is formed on the aperture 610 side, and the beam and wall are omitted from the holder 620, compared to the configuration of FIG. Also, the aperture 610 does not have a configuration corresponding to the elongated hole 212 of FIG. Other configurations of aperture 610 and holder 620 are similar to those of FIG.
  • a substrate 610a that constitutes the aperture 610 is made of a material that has a light shielding property or a high absorption rate with respect to the laser light emitted from the laser light source 110 .
  • a wall 612 extending in the Y-axis direction is formed on the bottom surface of the substrate 610a.
  • the aperture 610 is formed with an opening penetrating vertically in the same area as the light guide section 211 in FIG. 5 , thereby forming three light guide sections 611 .
  • the holder 620 is made of a material that has a light shielding property or a high absorption rate with respect to the laser light emitted from the laser light source 110 .
  • the holder 620 is formed with an opening 621 having a rectangular shape with rounded corners in plan view. Further, the holder 620 is formed with an edge portion 622 and a protrusion 623 corresponding to the edge portion 224 and the protrusion 225 of FIG. Aperture 610 fits inside rim 622 and rests on the top surface of holder 620 and is fixed to holder 620 with an adhesive. Thus, the structure 600 of FIG. 13(b) is constructed.
  • the width of the wall 612 in the Y-axis direction is slightly smaller than the width of the opening 621 in the Y-axis direction.
  • the Z-axis positive side surface of the wall 612 is flush with the Z-axis positive side surface of the holder 620 .
  • the location of wall 612 in structure 600 corresponds to the location of beam 222 in FIG.
  • the width of the wall 612 in the X-axis direction is the same as the width of the beam 222 in FIG. 5 in the X-axis direction.
  • the structure 600 is installed on the circuit board 300 in the same manner as in FIG.
  • the shape of the light guide portion 611 may be changed as in FIGS. 9A to 9H.
  • the wall 612 formed in the aperture 610 constitutes a light shielding wall that suppresses scattered light from leaking into the adjacent photodetector 310 . That is, the scattered light of the reflected light scattered at the edge of the light guide section 611 is blocked by the wall 612 . Thereby, the precision of the detection signal output from the photodetector 310 can be improved, and as a result, the detection precision of the object can be improved.
  • FIG. 14A is a perspective view showing the configuration of an aperture 700 according to Modification 4.
  • FIG. 14(b) is a perspective view showing the configuration of the aperture 700 when viewed from the back side according to Modification 4.
  • FIG. 14A is a perspective view showing the configuration of an aperture 700 according to Modification 4.
  • FIG. 14(b) is a perspective view showing the configuration of the aperture 700 when viewed from the back side according to Modification 4.
  • FIG. 14A is a perspective view showing the configuration of an aperture 700 according to Modification 4.
  • FIG. 14(b) is a perspective view showing the configuration of the aperture 700 when viewed from the back side according to Modification 4.
  • the holder is omitted and the aperture 700 is installed directly on the circuit board 300 as compared with the first embodiment.
  • the aperture 700 consists of a substrate 700a.
  • the substrate 700a is made of a material that has a light shielding property or a high absorption rate with respect to the laser light emitted from the laser light source 110 .
  • the substrate 700a is made of metal such as SUS or resin such as black polyethylene.
  • the substrate 700a has a rectangular shape with rounded corners in plan view.
  • Three light guide portions 701 are formed in the substrate 700a by three openings penetrating vertically.
  • Three recesses 702 are formed in the lower surface of the substrate 700a. The depths of the three recesses 702 are constant and the same as each other.
  • Three light guide portions 701 are arranged in the regions of these recesses 702 .
  • Beams 703 are formed between adjacent recesses 702 .
  • Two protrusions 704 are formed at both ends in the X-axis direction on the lower surface of the substrate 700a. The two protrusions 704 are arranged in the middle position of the substrate 700a in the Y-axis direction.
  • the thickness of the aperture 700 (substrate 700a) is constant except for the recess 702 and the protrusion 704.
  • the aperture 700 is integrally formed by press working, resin molding, or the like.
  • the two projections 704 of the aperture 700 are fitted into the two receiving holes 301 of FIG. 6 respectively.
  • aperture 700 is adhesively fixed to circuit board 300 .
  • the three light guides 701 are adjusted in shape and pitch P12 so that the three photodetectors 310 and their light receiving surfaces 311 have the positional relationships shown in FIGS. be.
  • Modification 4 can also achieve the same effects as in Embodiment 1 above. Further, in Modification 4, since the holder is omitted, the simplification of the configuration and the simplification of the installation work of the aperture 700 can be achieved. Also in Modification 4, the shape of the light guide portion 701 may be changed as in FIGS. 9A to 9H.
  • the beam portion 703 formed on the lower surface of the aperture 700 constitutes a light shielding wall that suppresses scattered light from leaking into the adjacent photodetector 310 . That is, the scattered light of the reflected light scattered by the edge of the light guide section 701 is blocked by the beam section 703 . Thereby, the precision of the detection signal output from the photodetector 310 can be improved, and as a result, the detection precision of the object can be improved.
  • FIG. 15A is a perspective view showing the configuration of an aperture 800 according to Modification 5.
  • FIG. 15(b) is a perspective view showing the configuration of the aperture 800 when viewed from the back side according to Modification 5.
  • FIG. 15A is a perspective view showing the configuration of an aperture 800 according to Modification 5.
  • FIG. 15(b) is a perspective view showing the configuration of the aperture 800 when viewed from the back side according to Modification 5.
  • FIG. 15A is a perspective view showing the configuration of an aperture 800 according to Modification 5.
  • FIG. 15(b) is a perspective view showing the configuration of the aperture 800 when viewed from the back side according to Modification 5.
  • the aperture 800 consists of a substrate 800a and a light shielding film 800b.
  • the substrate 800 a is made of a material having high translucency to the laser light emitted from the laser light source 110 .
  • the substrate 800a is made of resin such as transparent polycarbonate or transparent acrylic.
  • the substrate 800a has a rectangular shape with rounded corners in plan view.
  • the substrate 800a is integrally formed by resin molding or the like.
  • the light shielding film 800b is made of a material that has a high light shielding property against the laser light emitted from the laser light source 110 .
  • the light shielding film 800b is composed of, for example, a metal thin film such as chromium or gold, or a dielectric multilayer film.
  • the light shielding film 800b is formed on the upper surface of the substrate 800a by resin plating or the like.
  • the light shielding film 800b is not formed in the region corresponding to the light guide portion 211 in FIG. As a result, a light guide portion 801 that transmits laser light is formed.
  • a concave portion 802 with a constant depth is formed on the lower surface of the aperture 800 .
  • the shape of the concave portion 802 in plan view is a rectangular shape with rounded corners.
  • Two protrusions 803 are formed on the lower surface of the aperture 800 at both ends in the X-axis direction. The two protrusions 803 are arranged in the middle position of the aperture 800 in the Y-axis direction.
  • the thickness of aperture 800 is constant except for recess 802 and protrusion 803 .
  • aperture 800 is adhesively fixed to circuit board 300 .
  • the three light guides 801 are adjusted in shape and pitch P12 so that the three photodetectors 310 and their light receiving surfaces 311 have the positional relationships shown in FIGS. be.
  • the shape of the light guide part 801 may be changed, as in FIGS. 9(a) to (h). Further, in Modification 5, similarly to Modifications 1 and 2, a light shielding film and a light guide portion may be formed on the rear surface (the surface on the Z-axis positive side) of substrate 800a.
  • a light receiving area defined on the light receiving surface of the matrix image sensor by the control circuit is used as means for limiting the range of reflected light on the light receiving surface of the photodetector.
  • FIG. 16(a) and 16(c) are an exploded perspective view and a perspective view, respectively, showing the configuration of the light receiving unit 150 according to the second embodiment, and FIG. 16(b) is a perspective view showing the configuration of the rear surface of the cover 910. is.
  • the image sensor 920 is a matrix image sensor in which pixels are arranged in a matrix in the X-axis direction and the Y-axis direction.
  • Image sensor 920 is configured by, for example, a CMOS image sensor or a CCD.
  • the shape of the image sensor 920 in plan view is a rectangle.
  • the image sensor 920 includes a rectangular light receiving surface 921 in which pixels are arranged in a matrix, and an edge portion 922 with a constant height arranged around the light receiving surface 921 .
  • An inclined surface 923 is formed between the inner circumference of the edge portion 922 and the outer circumference of the light receiving surface 921 . The inclined surface 923 becomes lower toward the light receiving surface 921 .
  • a cover 910 is overlaid on the upper surface of the image sensor 920 .
  • the cover 910 is a plate-like member.
  • the cover 910 is made of a material that blocks laser light emitted from the laser light source 110 .
  • Three openings 911 are formed in the cover 910 side by side in the X-axis direction.
  • the shape of the opening 911 in plan view is a rectangular shape elongated in the Y-axis direction with rounded corners.
  • the opening 911 vertically penetrates the cover 910 .
  • a beam portion 912 is formed between adjacent openings 911 .
  • An inclined surface 913 is formed between the upper end of the opening 911 and the upper surface of the cover 910 .
  • the inclined surface 913 becomes lower toward the opening 911 .
  • a pedestal portion 914 is formed on the lower surface of the cover 910 and is raised at a constant height.
  • An inclined surface 915 is formed between the outer circumference of the pedestal portion 914 and the lower surface of the cover 910 . Inclined surface 915 becomes lower toward the outer periphery of cover 910 .
  • the cover 910 is placed on the upper surface of the image sensor 920 so that the pedestal part 914 fits inside the edge part 922 on the image sensor 920 side. In this state, the cover 910 is adhesively fixed to the image sensor 920 .
  • the light receiving section 150 is configured as shown in FIG. 16(c).
  • FIG. 17(a) is a plan view of the light receiving section 150
  • FIG. 17(b) is a cross-sectional view along B1-B1 in FIG. 17(a).
  • reflected light from an object of laser light emitted from the three laser elements 111 is focused on the light receiving surface 921 of the image sensor 920 via the opening 911 of the cover 910 .
  • a light receiving region R11 for detecting reflected light is defined in advance.
  • the light receiving region R11 corresponds to the region where the reflected light is guided by the three light guides 211 shown in FIGS. 7(a) and 7(b).
  • the range of reflected light to be received is limited by the light guide portion of the aperture.
  • the range of reflected light to be received is limited by defining the light receiving area R11 on the light receiving surface 921 of the image sensor 920 .
  • FIGS. 18(a) to 18(d) are diagrams schematically showing the setting method of the light receiving region R11.
  • an ideal light receiving area R10 is set on the light receiving surface 921 of the image sensor 920, as shown in FIG. 18(a).
  • the ideal light receiving region R10 is, for example, three leads when the aperture 210 shown in Embodiment 1 is arranged with respect to the light receiving surface 921 of the image sensor 920 at the interval H1 shown in FIG.
  • the area of the light part 211 corresponds to the area projected onto the light receiving surface 921 of the image sensor 920 along the central axis CA1 of the three reflected lights.
  • the pixels that overlap the boundary of the outer peripheral portion of the ideal light receiving region R10 are specified, and the specified pixel group is , is set at the boundary of the outer periphery of the light receiving region R11 used for detecting the reflected light.
  • the relationship between the boundary of the ideal light receiving region R10 and the boundary of the light receiving region R11 used for detection in the range A10 of FIG. 18(b) is as shown in FIG. 18(c).
  • a light receiving region R11 used for detecting reflected light is set.
  • the pixels included inside the light receiving region R11 are used for detecting reflected light.
  • the total pixel value of the pixels included inside the light receiving region R11 is used as the reflected light detection result.
  • FIGS. 16(a), (c) and 17(a) show three light receiving regions R11 respectively defined for the reflected light from the object of the laser light emitted from the three laser elements 111, indicated by dashed lines. is indicated.
  • FIG. 19 is a block diagram showing the configuration of the circuit section 70 according to the second embodiment.
  • the circuit section 70 in FIG. 19 is arranged, for example, in the rotating section 60 in FIG.
  • FIG. 19 shows the circuit section 70 for one optical unit 40 .
  • the object detection results (presence or absence of the object and the distance to the object) acquired by the circuit section 70 of each optical unit 40 are sent to the circuit on the rotating section 60 side at any time via a communication section (for example, a non-contact communication section).
  • the signal is communicated from the unit 70 to the circuit unit on the fixed unit 10 side, and further transmitted from the circuit unit on the fixed unit 10 side to the external device.
  • the circuit section 70 includes a control circuit 71 , a drive circuit 72 and a processing circuit 73 .
  • the control circuit 71 includes an arithmetic processing unit such as a CPU and a memory, and controls each section according to a program stored in the memory.
  • the drive circuit 72 causes the laser light source 110 (three laser elements 111 ) to emit pulse light under the control of the control circuit 71 .
  • the processing circuit 73 drives the image sensor 920 according to the control from the control circuit 71 and outputs the pixel value of each pixel of the image sensor 920 to the control circuit 71 .
  • the control circuit 71 selects only the pixel values of the pixels included in the light-receiving region R11 shown in FIGS. A total pixel value obtained by summing the extracted pixel values is acquired as a detection result of each reflected light.
  • the control circuit 71 predefines a light receiving region R11 shown in FIG. 18(d) in the pixel group of the image sensor 920 for each reflected light.
  • the control circuit 71 obtains a pixel value obtained by summing the pixel values of the pixel groups included in each light receiving region R11 as the detection result of each reflected light.
  • the control circuit 71 detects reflected light in any of the light-receiving regions R11 within a certain period of time after the laser light source 110 emits pulse light (for example, when the total pixel value of the light-receiving region R1 reaches a predetermined threshold value). ), it is determined that an object exists in the projection direction of the laser light corresponding to the light receiving region R11, and further, based on the time difference between the timing of pulse emission and the detection timing of reflected light, the distance to the object is determined. Calculate the distance. Thus, based on the pixel values of the light receiving region R1, detection of the presence or absence of an object in the projection direction and calculation of the distance to the object are performed for each predetermined rotation angle (for example, 1°) of the rotating section 60.
  • the light-receiving region R11 is arranged along the separation direction (Y-axis direction) of the optical axis, so that the focused spot of the reflected light changes according to the change in the distance to the object. Even if it moves, the light-receiving region R11 is irradiated with the reflected light. Therefore, the object can be properly detected by the output signal from the light receiving region R11. Further, since the light receiving region R11 is defined only on the light receiving surface 921 of the image sensor 920, an output signal can be smoothly and properly obtained from the light receiving region R11. Therefore, it is possible to maintain a high detection accuracy of the reflected light.
  • the shape of the light receiving region R11 may be changed as shown in FIGS. 9(b) to 9(h).
  • the portion of the light receiving region R11 on the negative side of the Y axis is set smaller than the portion on the positive side of the Y axis, thereby preventing the light receiving region R11 from excessively receiving reflected light from an object at a short distance.
  • the shape of the light receiving region R11 is set to a T-shaped shape as shown in FIG. 9B, or set to a shape separated in the Y-axis direction as shown in FIGS.
  • the control circuit 71 extracts the pixel values of the pixels corresponding to the light receiving region R11 from the pixel values of all the pixels output from the processing circuit 73, and the reception of the reflected light in the light receiving region R11 is detected.
  • the control circuit 71 may control the processing circuit 73 in advance so that only the pixel values of the pixels corresponding to the light receiving region R11 are output to the control circuit 71.
  • the configuration of the laser radar 1 can be modified in various ways other than the configurations shown in the first and second embodiments and modifications 1-5.
  • the shape of the light guide portion and the light receiving region R11 may be shapes other than those shown in FIGS.
  • the sizes of the light guide portions after separation are different in both the X-axis direction and the Y-axis direction, but only in either the X-axis direction or the Y-axis direction. They may be different, or the sizes of the light guides after separation may be the same.
  • the number, arrangement, shape, and size of the light guide sections after separation may be adjusted so that the waveform of the graph shown in FIG. 10A becomes a desired waveform.
  • the shapes of the light guide portions after separation may not be of the same type, and may be, for example, a mixture of round (circular, elliptical) and triangular shapes.
  • the light guide portions may be further separated in the X-axis direction. The above point is the same when separating the light receiving region R11 in the Y-axis direction in the second embodiment.
  • the materials of the aperture and the holder are not limited to the materials shown in the first embodiment and modifications 1 to 5 above.
  • ceramic may be used as the material for the aperture and holder.
  • the number of laser elements 111 and photodetectors 310 is not limited to three, and may be other numbers.
  • the laser element 111 is arranged for each photodetector 310, but only one laser beam is emitted from the laser light source 110 and reflected by the mirror 42.
  • the projection optical system LS1 may be configured such that the laser light (projection light) spreads in the Z-axis direction.
  • the three photodetectors 310 respectively receive the reflected light from the object for three parts obtained by dividing the laser light (projection light) spread in the Z-axis direction into three angular ranges in the Z-axis direction. do.
  • the plurality of optical units 40 are arranged at equal intervals (60° intervals) along the circumferential direction of the rotation axis R0, but they do not necessarily have to be arranged at equal intervals.
  • the mirrors 42 may be omitted from the six optical units 40, and the six structures 41 may be arranged radially so as to have different tilt angles with respect to a plane perpendicular to the rotation axis R0.
  • the three photodetectors 311 are arranged to correspond to the three reflected lights, respectively.
  • One image sensor having a light-receiving surface wide enough to cover the area may be arranged.
  • the light-receiving surface of the image sensor is divided into, for example, three areas in the X-axis direction, and the image sensor is arranged so that three reflected lights are incident on each of these three areas. Then, the total pixel value of the pixel group in each area is acquired as the detection result of each reflected light.
  • the holder is composed of one member, but may be composed of a plurality of members. Also, a set of an aperture and a holder may be installed on the circuit board 300 for each photodetector.
  • the laser radar 1 does not necessarily have a distance measurement function, and only has a function of detecting whether or not an object exists in the projection direction based on a signal from the photodetector 310 or the image sensor 920. may be
  • the configuration of the optical system of the optical unit 40 is not limited to the configurations shown in the first and second embodiments and modifications 1 to 5 above.
  • the opening 131 may be omitted from the condensing lens 130, and the projection optical system LS1 and the light receiving optical system LS2 may be separated so that the optical axis A1 of the projection optical system LS1 does not overlap the condensing lens 130.
  • a plurality of optical units 40 are installed in the laser radar 1. It may be a configuration provided.
  • the laser radar 1 does not necessarily have a configuration in which the set of the projection optical system LS1 and the light receiving optical system LS2 rotates about the rotation axis, and projects the projection light onto a fixed target area and receives the reflected light. Then, the object detection for the target area may be performed.
  • 1 laser radar 110 laser light source 210, 410, 510, 610, 700, 800 aperture 210a, 410a, 510a, 610a, 700a, 800a substrate 410b, 510b, 800b light shielding film 211, 411, 511, 611, 701, 801 light guide Part 220, 420, 520, 620 Holder 222, 422, 522, 703 Beam (light shielding wall) 223, 423, 612 walls (light shielding walls) 310 photodetector 311 light receiving surface 920 image sensor 921 light receiving surface LS1 projection optical system LS2 light receiving optical system A1, A2 optical axis R1 light receiving area

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

This laser radar includes a projection optical system that projects a laser beam emitted from a laser light source, and a light-receiving optical system that condenses the reflected light of the laser beam reflected by an object onto a photodetector. Here, the projection optical system and the light-receiving optical system are arranged so that the optical axes thereof are separated from each other. The laser radar has a means (a light guiding portion (211) of an aperture (210)) for limiting the range of reflected light on a light-receiving surface (311) of the photodetector (310). The means (the light guide portion (211) of the aperture (210)) for limiting the range of reflected light is arranged along the separation direction (Y-axis direction) of the optical axis.

Description

レーザレーダlaser radar
 本発明は、レーザ光を用いて物体を検出するレーザレーダに関する。 The present invention relates to a laser radar that detects objects using laser light.
 近年、建物への侵入を検知するセキュリティ用途などに、レーザレーダが用いられている。一般に、レーザレーダは、目標領域にレーザ光を照射し、その反射光に基づいて、目標領域における物体の有無を検出する。また、レーザレーダは、レーザ光の照射タイミングと反射光の受光タイミングとの時間差に基づいて、物体までの距離を測定する。 In recent years, laser radars have been used for security applications such as detecting intrusions into buildings. In general, a laser radar irradiates a target area with laser light and detects the presence or absence of an object in the target area based on the reflected light. Also, the laser radar measures the distance to an object based on the time difference between the irradiation timing of the laser beam and the reception timing of the reflected light.
 以下の特許文献1には、レーザ光源から出射されたレーザ光を目標領域に投射する投射光学系と、目標領域に存在する物体によってレーザ光が反射された反射光を光検出器に集光させる受光光学系と、を備えたレーザレーダが記載されている。投射光学系と受光光学系は、それぞれの光軸が互いに離間して配置されている。光検出器は、これら光軸の離間方向に垂直に分割された複数のセンサ部を備える。複数のセンサ部は、それぞれ、光軸の離間方向に長い形状を有する。 Patent Document 1 below describes a projection optical system that projects laser light emitted from a laser light source onto a target area, and a light detector that collects the reflected light of the laser light reflected by an object existing in the target area. A laser radar with receiving optics is described. The optical axes of the projection optical system and the light receiving optical system are separated from each other. The photodetector is provided with a plurality of sensor sections divided vertically in the separation direction of these optical axes. Each of the plurality of sensor units has a shape elongated in the separation direction of the optical axis.
国際公開第2021/019903号WO2021/019903
 上記特許文献1の構成では、投射光学系の光軸と受光光学系の光軸が互いに離間するため、光検出器における反射光の集光スポットは、物体までの距離に応じて、これら光軸の離間方向に移動する。他方、各センサ部はこれら光軸の離間方向に長い形状を有する。このため、物体までの距離の変化に応じて反射光の集光スポットが移動しても、各センサ部で反射光を適正に受光できる。よって、センサ部からの出力により適正に、物体を検出できる。 In the configuration of Patent Document 1, the optical axis of the projection optical system and the optical axis of the light receiving optical system are separated from each other. move away from On the other hand, each sensor section has a shape elongated in the separation direction of these optical axes. Therefore, even if the focused spot of the reflected light moves according to the change in the distance to the object, the reflected light can be properly received by each sensor unit. Therefore, the object can be properly detected by the output from the sensor section.
 しかしながら、この構成では、センサ部に鋭角なエッジ部分や細い部分があると、これらの部分に電荷が溜まりやすい。このため、たとえば、センサ部の形状が光軸の離間方向に長い三角形やT字形状である場合、反射光の検出精度を確保するために、三角形の頂点部分の形状を鋭角し、あるいは、T字形状を細くすることに、一定の制約が生じる。また、レーザレーダの仕様や検出距離レンジ等に変更が生じた場合、それに応じて、センサ部自体の形状を逐次変更する必要があり、光検出器を新たに作成し直さなければならない。 However, in this configuration, if the sensor section has sharp edge portions or thin portions, charges tend to accumulate in these portions. For this reason, for example, when the shape of the sensor section is a triangle or a T-shape that is long in the separation direction of the optical axis, in order to ensure the detection accuracy of the reflected light, the shape of the vertices of the triangle is sharpened or T-shaped. There are certain restrictions on thinning character shapes. In addition, when the specifications of the laser radar, the detection distance range, etc. are changed, it is necessary to change the shape of the sensor part itself accordingly, and the photodetector must be newly manufactured.
 かかる課題に鑑み、本発明は、反射光の検出精度を高く維持しつつ、仕様や検出距離レンジ等の変更に円滑に対応することが可能なレーザレーダを提供することを目的とする。 In view of such problems, it is an object of the present invention to provide a laser radar that can smoothly respond to changes in specifications, detection distance range, etc. while maintaining high detection accuracy of reflected light.
 本発明の主たる態様に係るレーザレーダは、レーザ光源から出射されたレーザ光を投射する投射光学系と、物体によって前記レーザ光が反射された反射光を光検出器に集光させる受光光学系と、を備える。ここで、前記投射光学系と前記受光光学系は、それぞれの光軸が互いに離間して配置される。また、レーザレーダは、前記光検出器の受光面上における前記反射光の範囲を制限する手段を有する。前記範囲を制限する手段は、前記光軸の離間方向に沿って配置されている。 A laser radar according to a main aspect of the present invention includes a projection optical system that projects laser light emitted from a laser light source, and a light receiving optical system that collects the reflected light of the laser light reflected by an object onto a photodetector. , provided. Here, the optical axes of the projection optical system and the light receiving optical system are separated from each other. Also, the laser radar has means for limiting the range of the reflected light on the light receiving surface of the photodetector. The means for limiting the range are arranged along the separation direction of the optical axis.
 本態様に係るレーザレーダによれば、範囲を制限する手段が光軸の離間方向に沿って配置されているため、物体までの距離の変化に応じて反射光の集光スポットが移動しても、光検出器は、反射を制限する手段を介して反射光を適正に受光することができる。よって、光検出器からの出力により適正に、物体を検出できる。また、光検出器の受光面には、鋭角なエッジ部分や細い部分を設ける必要がないため、受光に応じて電荷を光検出器から円滑かつ適正に出力させることができる。よって、反射光の検出精度を高く維持できる。さらに、レーザレーダの仕様や検出距離レンジ等に変更が生じた場合には、その変更に応じて範囲を制限する手段を構成し直すだけでよい。このため、レーザレーダの仕様や検出距離レンジ等の変更に円滑に対応することができる。 According to the laser radar according to this aspect, since the means for limiting the range is arranged along the separation direction of the optical axis, even if the focused spot of the reflected light moves according to the change in the distance to the object , the photodetector can properly receive the reflected light through the reflection limiting means. Therefore, the object can be detected properly by the output from the photodetector. In addition, since the light receiving surface of the photodetector does not need to have sharp edge portions or thin portions, charges can be output smoothly and appropriately from the photodetector in response to light reception. Therefore, it is possible to maintain a high detection accuracy of the reflected light. Furthermore, when there is a change in the specifications of the laser radar, the detection distance range, or the like, it is only necessary to reconfigure the means for limiting the range in accordance with the change. Therefore, it is possible to smoothly cope with changes in the specifications of the laser radar, the detection distance range, and the like.
 以上のとおり、本発明によれば、反射光の検出精度を高く維持しつつ、仕様や検出距離レンジ等の変更に円滑に対応することが可能なレーザレーダを提供できる。 As described above, according to the present invention, it is possible to provide a laser radar that can smoothly respond to changes in specifications, detection distance range, etc. while maintaining high detection accuracy of reflected light.
 本発明の効果ないし意義は、以下に示す実施形態の説明により更に明らかとなろう。ただし、以下に示す実施形態は、あくまでも、本発明を実施化する際の一つの例示であって、本発明は、以下の実施形態に記載されたものに何ら制限されるものではない。 The effects and significance of the present invention will become clearer from the description of the embodiments shown below. However, the embodiment shown below is merely one example of the implementation of the present invention, and the present invention is not limited to the embodiments described below.
図1は、実施形態1に係る、レーザレーダの組み立てを説明するための斜視図である。FIG. 1 is a perspective view for explaining assembly of a laser radar according to Embodiment 1. FIG. 図2は、実施形態1に係る、レーザレーダの組み立てを説明するための斜視図である。FIG. 2 is a perspective view for explaining assembly of the laser radar according to Embodiment 1. FIG. 図3(a)および図3(b)は、それぞれ、実施形態1に係る、光学ユニットの光学系の構成を示す斜視図および側面図である。3A and 3B are a perspective view and a side view, respectively, showing the configuration of the optical system of the optical unit according to Embodiment 1. FIG. 図4(a)は、実施形態1に係る、物体によって反射された反射光の進行方向を模式的に示す図であり、図4(b)は、実施形態1に係る、物体によって反射された反射光の集光状態を模式的に示す図である。4A is a diagram schematically showing the traveling direction of reflected light reflected by an object according to Embodiment 1, and FIG. It is a figure which shows typically the condensing state of reflected light. 図5は、実施形態1に係る、アパーチャおよびホルダの構成を示す斜視図である。5 is a perspective view showing a configuration of an aperture and a holder according to Embodiment 1. FIG. 図6は、実施形態1に係る、アパーチャとホルダからなる構造体を、回路基板に設置する工程を示す斜視図である。FIG. 6 is a perspective view showing a process of installing the structure including the aperture and the holder on the circuit board according to the first embodiment. 図7(a)は、実施形態1に係る、構造体が基板に設置された状態を示す平面図である。図7(b)は、図7(a)のA1-A1断面図である。7A is a plan view showing a state in which the structure is installed on the substrate according to the first embodiment; FIG. FIG. 7(b) is a cross-sectional view along A1-A1 in FIG. 7(a). 図8(a)~図8(c)は、実施形態1に係る、物体までの距離が変化した場合の、導光部に対する集光スポットの入射状態を模式的に示す平面図である。FIGS. 8A to 8C are plan views schematically showing incident states of condensed light spots on the light guide section when the distance to the object changes according to Embodiment 1. FIG. 図9(a)~図9(h)は、それぞれ、実施形態1に係る、導光部の形状を示す平面図である。9(a) to 9(h) are plan views showing the shape of the light guide portion according to the first embodiment. 図10(a)は、実施形態1に係る、導光部の形状を変更した場合の、物体までの距離と光検出器における反射光の受光光量との関係の検証結果(シミュレーション)を示すグラフである。図10(b)~図10(d)は、それぞれ、実施形態1に係る、検証に用いた導光部の形状を示す図である。FIG. 10A is a graph showing verification results (simulation) of the relationship between the distance to the object and the amount of reflected light received by the photodetector when the shape of the light guide portion is changed according to the first embodiment; is. 10(b) to 10(d) are diagrams showing the shape of the light guide portion used for verification according to the first embodiment. 図11(a)および図11(b)は、それぞれ、変更例1に係る、アパーチャおよびホルダの構成を示す分解斜視図および斜視図である。11(a) and 11(b) are an exploded perspective view and a perspective view, respectively, showing configurations of an aperture and a holder according to Modification 1. FIG. 図12(a)および図12(b)は、それぞれ、変更例2に係る、アパーチャおよびホルダの構成を示す分解斜視図および斜視図である。FIGS. 12(a) and 12(b) are an exploded perspective view and a perspective view, respectively, showing configurations of an aperture and a holder according to Modification 2. FIG. 図13(a)、(b)は、それぞれ、変更例3に係る、アパーチャおよびホルダの構成を示す分解斜視図および斜視図である。図13(c)は、変更例3に係る、構造体を裏側から見たときの構造体の斜視図である。FIGS. 13A and 13B are an exploded perspective view and a perspective view, respectively, showing configurations of an aperture and a holder according to Modification 3. FIG. FIG. 13(c) is a perspective view of the structure when the structure is viewed from the back side according to Modification 3. FIG. 図14(a)は、変更例4に係る、アパーチャの構成を示す斜視図である。図14(b)は、変更例4に係る、裏側から見たときのアパーチャの構成を示す斜視図である。FIG. 14(a) is a perspective view showing the configuration of an aperture according to Modification 4. FIG. FIG. 14B is a perspective view showing the configuration of the aperture when viewed from the back side according to Modification 4. FIG. 図15(a)は、変更例5に係る、アパーチャの構成を示す斜視図である。図15(b)は、変更例5に係る、裏側から見たときのアパーチャの構成を示す斜視図である。FIG. 15A is a perspective view showing the configuration of an aperture according to Modification 5. FIG. FIG. 15(b) is a perspective view showing the configuration of the aperture when viewed from the back side according to Modification 5. FIG. 図16(a)は、実施形態2に係る、受光部の構成を示す分解斜視図、図16(b)は、実施形態2に係る、カバーの裏面の構成を示す斜視図、図16(c)は、実施形態2に係る、受光部の構成を示す斜視図である。16(a) is an exploded perspective view showing the configuration of the light receiving portion according to Embodiment 2, FIG. 16(b) is a perspective view showing the configuration of the rear surface of the cover according to Embodiment 2, and FIG. 16(c) ) is a perspective view showing the configuration of a light receiving unit according to Embodiment 2. FIG. 図17(a)は、実施形態2に係る、受光部の平面図である。図17(b)は、図17(a)のB1-B1断面図である。FIG. 17A is a plan view of a light receiving section according to Embodiment 2. FIG. FIG. 17(b) is a cross-sectional view along B1-B1 in FIG. 17(a). 図18(a)~図18(d)は、それぞれ、実施形態2に係る、受光領域の設定方法を模式的に示す図である。18(a) to 18(d) are diagrams schematically showing a method of setting a light receiving region according to the second embodiment. 図19は、実施形態2に係る、回路部の構成を示すブロック図である。19 is a block diagram showing a configuration of a circuit unit according to the second embodiment; FIG.
 ただし、図面はもっぱら説明のためのものであって、この発明の範囲を限定するものではない。 However, the drawings are for illustration only and do not limit the scope of the present invention.
 以下、本発明の実施形態について、図を参照して説明する。便宜上、各図には互いに直交するX、Y、Z軸が付記されている。Z軸正方向は、レーザレーダ1の高さ方向である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. For convenience, each figure is labeled with mutually orthogonal X, Y, and Z axes. The Z-axis positive direction is the height direction of the laser radar 1 .
 <実施形態1>
 実施形態1では、光検出器の受光面上における反射光の範囲を制限する手段として、アパーチャの導光部が用いられる。
<Embodiment 1>
In Embodiment 1, the light guide portion of the aperture is used as means for limiting the range of reflected light on the light receiving surface of the photodetector.
 図1および図2は、レーザレーダ1の組み立て工程を説明するための斜視図である。 1 and 2 are perspective views for explaining the assembly process of the laser radar 1. FIG.
 図1に示すように、レーザレーダ1は、円柱形状の固定部10と、固定部10に回転可能に配置されたベース部材20と、ベース部材20の上面に設置された円盤部材30と、ベース部材20および円盤部材30に設置された光学ユニット40と、を備える。 As shown in FIG. 1, the laser radar 1 includes a cylindrical fixed portion 10, a base member 20 rotatably arranged on the fixed portion 10, a disk member 30 installed on the upper surface of the base member 20, a base and an optical unit 40 installed on the member 20 and the disk member 30 .
 ベース部材20は、固定部10に設けられたモータの駆動軸M1に設置されている。ベース部材20は、モータの駆動に応じて、Z軸方向に平行な回転軸R0を中心として回転する。 The base member 20 is installed on the drive shaft M1 of the motor provided on the fixed part 10 . The base member 20 rotates about a rotation axis R0 parallel to the Z-axis direction in response to driving of the motor.
 ベース部材20は、円柱状の形状を有する。ベース部材20には、回転軸R0の周方向に沿って6つの設置面21が等間隔(60°間隔)で形成されている。設置面21は、回転軸R0に垂直な平面(X-Y平面)に対して傾いている。設置面21の側方(回転軸R0から離れる方向)および設置面21の上方(Z軸正方向)は、開放されている。6つの設置面21の傾き角は、互いに異なっている。 The base member 20 has a cylindrical shape. The base member 20 has six installation surfaces 21 formed at equal intervals (at intervals of 60°) along the circumferential direction of the rotation axis R0. The installation surface 21 is inclined with respect to a plane (XY plane) perpendicular to the rotation axis R0. The side of the installation surface 21 (the direction away from the rotation axis R0) and the upper side of the installation surface 21 (the Z-axis positive direction) are open. The inclination angles of the six installation surfaces 21 are different from each other.
 円盤部材30は、円盤状の形状を有する。円盤部材30には、円形の6つの孔31が、回転軸R0の周方向に沿って、等間隔(60°間隔)で形成されている。孔31は、回転軸R0の方向(Z軸方向)に円盤部材30を貫通している。6つの孔31が、それぞれベース部材20の6つの設置面21の上方に位置付けられるよう、円盤部材30がベース部材20の上面に設置される。 The disk member 30 has a disk-like shape. Six circular holes 31 are formed in the disk member 30 at equal intervals (at intervals of 60°) along the circumferential direction of the rotation axis R0. The hole 31 penetrates the disk member 30 in the direction of the rotation axis R0 (Z-axis direction). The disk member 30 is installed on the upper surface of the base member 20 so that the six holes 31 are positioned above the six installation surfaces 21 of the base member 20, respectively.
 光学ユニット40は、構造体41とミラー42を備える。構造体41は、投射光を投射するための投射光学系と、物体により反射された投射光の反射光を受光するための受光光学系とを保持している。構造体41は、下方向(Z軸負方向)にレーザ光を出射するとともに、下側からレーザ光を受光する。構造体41が備える光学系については、追って、図3(a)、(b)を参照して説明する。 The optical unit 40 includes a structure 41 and a mirror 42. The structure 41 holds a projection optical system for projecting projection light and a light receiving optical system for receiving reflected light of the projection light reflected by an object. The structure 41 emits laser light downward (negative Z-axis direction) and receives laser light from below. The optical system included in the structure 41 will be described later with reference to FIGS. 3(a) and 3(b).
 固定部10、ベース部材20および円盤部材30からなる構造体に対して、図1に示すように、孔31の上側から、孔31の周囲の面31aに光学ユニット40の構造体41が設置される。これにより、6つの光学ユニット40は、回転軸R0の周方向に沿って等間隔(60°間隔)で並ぶことになる。なお、光学ユニット40は、必ずしも周方向に等間隔に並ばなくてもよい。 As shown in FIG. 1, the structure 41 of the optical unit 40 is installed on the surface 31a surrounding the hole 31 from the upper side of the hole 31, as shown in FIG. be. As a result, the six optical units 40 are arranged at equal intervals (at intervals of 60°) along the circumferential direction of the rotation axis R0. Note that the optical units 40 do not necessarily have to be arranged at equal intervals in the circumferential direction.
 ベース部材20の設置面21に光学ユニット40のミラー42が設置される。ミラー42は、反射面42aと、その反対側の面とが平行な板部材である。こうして設置された6つの光学ユニット40の上面に、図2に示すように基板50が設置される。これにより、ベース部材20、円盤部材30、6つの光学ユニット40、および基板50からなる回転部60の組み立てが完了する。回転部60は、固定部10のモータが駆動されることにより、回転軸R0を中心として回転する。その後、回転部60の上方および側方を覆う透明なカバーが設置される。これにより、レーザレーダ1の組み立てが完了する。 A mirror 42 of the optical unit 40 is installed on the installation surface 21 of the base member 20 . The mirror 42 is a plate member in which the reflecting surface 42a and the opposite surface are parallel. As shown in FIG. 2, a substrate 50 is installed on the upper surfaces of the six optical units 40 installed in this way. As a result, the assembly of the rotating part 60 consisting of the base member 20, the disk member 30, the six optical units 40, and the substrate 50 is completed. The rotating portion 60 rotates around the rotation axis R0 by driving the motor of the fixed portion 10 . After that, a transparent cover is installed to cover the top and sides of the rotating part 60 . Thus, assembly of the laser radar 1 is completed.
 レーザレーダ1による物体の検出時には、構造体41のレーザ光源110(図3(a)、(b)参照)からレーザ光(投射光)がZ軸負方向に出射される。投射光は、ミラー42により回転軸R0から遠ざかる方向に反射される。ミラー42により反射された投射光は、カバーを透過し、レーザレーダ1の外部に出射される。 When an object is detected by the laser radar 1, laser light (projection light) is emitted from the laser light source 110 (see FIGS. 3A and 3B) of the structure 41 in the negative direction of the Z axis. The projection light is reflected by the mirror 42 in a direction away from the rotation axis R0. The projection light reflected by the mirror 42 is transmitted through the cover and emitted to the outside of the laser radar 1 .
 投射光の投射方向に物体が存在する場合、物体によって反射された投射光(反射光)は、カバーを介して、レーザレーダ1の内部に取り込まれる。反射光は、ミラー42によって反射され、構造体41の受光部150(図3(a)、(b)参照)によって受光される。 When an object exists in the projection direction of the projected light, the projected light (reflected light) reflected by the object is taken into the laser radar 1 via the cover. The reflected light is reflected by the mirror 42 and received by the light receiving section 150 of the structure 41 (see FIGS. 3A and 3B).
 図2に示した回転部60は、回転軸R0を中心に回転する。回転部60の回転に伴い、レーザレーダ1から投射された投射光の光軸が回転軸R0を中心に回転する。これにより、投射光の投射方向が、回転軸R0を中心に回転する。 The rotating part 60 shown in FIG. 2 rotates around the rotation axis R0. As the rotating portion 60 rotates, the optical axis of the projection light projected from the laser radar 1 rotates around the rotation axis R0. As a result, the projection direction of the projection light rotates around the rotation axis R0.
 レーザレーダ1は、反射光の受光の有無に基づいて、各投射方向に物体が存在するか否かを判定する。また、レーザレーダ1は、投射光を投射したタイミングと、物体から反射光を受光したタイミングとの間の時間差(タイムオブフライト)に基づいて、当該物体までの距離を計測する。回転部60が回転軸R0を中心に回転することにより、レーザレーダ1は、周囲360°のほぼ全範囲に存在する物体を検出できる。 The laser radar 1 determines whether an object exists in each projection direction based on whether reflected light is received or not. Also, the laser radar 1 measures the distance to the object based on the time difference (time of flight) between the timing of projecting the projection light and the timing of receiving the reflected light from the object. By rotating the rotating part 60 around the rotation axis R0, the laser radar 1 can detect an object existing in almost the entire range of 360 degrees.
 また、上記のように、X-Y平面に対する6つの設置面21の傾き角が互いに異なっているため、X-Y平面に対する6つの反射面42aの傾き角も互いに異なっている。このため、6つの反射面42aによってそれぞれ反射された投射光の投射方向も、X-Y平面に対する傾き角が互いに異なっている。したがって、6つの投射光により、X-Y平面に対して互いに異なる傾き角の方向を走査できる。よって、Z軸方向に広い範囲で、物体の有無および物体までの距離を検出できる。 Also, as described above, since the inclination angles of the six installation surfaces 21 with respect to the XY plane are different from each other, the inclination angles of the six reflecting surfaces 42a with respect to the XY plane are also different from each other. Therefore, the projection directions of the projection light reflected by the six reflecting surfaces 42a also have different tilt angles with respect to the XY plane. Therefore, six projection lights can be scanned in directions with different tilt angles with respect to the XY plane. Therefore, the presence or absence of an object and the distance to the object can be detected over a wide range in the Z-axis direction.
 図3(a)および図3(b)は、それぞれ、光学ユニット40の光学系の構成を示す斜視図および側面図である。 3(a) and 3(b) are a perspective view and a side view showing the configuration of the optical system of the optical unit 40, respectively.
 図3(a)および図3(b)には、図2において、回転軸R0のX軸正側に位置する構造体41に保持された光学系およびミラー42が示されている。その他の構造体41に保持された光学系も同様の構成である。 FIGS. 3(a) and 3(b) show an optical system and a mirror 42 held by the structure 41 located on the positive side of the X-axis of the rotation axis R0 in FIG. The optical systems held by other structures 41 have the same configuration.
 図3(a)、(b)に示すように、構造体41には、レーザ光源110と、コリメータレンズ120と、集光レンズ130と、フィルタ140と、受光部150と、が保持されている。レーザ光源110、コリメータレンズ120およびミラー42によって、投射光を投射するための投射光学系LS1が構成される。また、集光レンズ130、フィルタ140、受光部150およびミラー42によって、物体により反射された投射光の反射光を受光する受光光学系LS2が構成される。 As shown in FIGS. 3A and 3B, the structure 41 holds a laser light source 110, a collimator lens 120, a condenser lens 130, a filter 140, and a light receiving section 150. . Laser light source 110, collimator lens 120, and mirror 42 constitute projection optical system LS1 for projecting projection light. Condensing lens 130, filter 140, light receiving unit 150, and mirror 42 constitute a light receiving optical system LS2 for receiving reflected light of projected light reflected by an object.
 投射光学系LS1の光軸A1と、受光光学系LS2の光軸A2は、いずれもZ軸方向に平行であり、且つ、回転軸R0の周方向に所定の距離だけ離れている。ここでは、投射光学系LS1の光軸A1と、受光光学系LS2の光軸A2とは、Y軸方向に互いに離間している。 The optical axis A1 of the projection optical system LS1 and the optical axis A2 of the light receiving optical system LS2 are both parallel to the Z-axis direction and separated by a predetermined distance in the circumferential direction of the rotation axis R0. Here, the optical axis A1 of the projection optical system LS1 and the optical axis A2 of the light receiving optical system LS2 are separated from each other in the Y-axis direction.
 レーザ光源110は、光軸A1、A2の離間方向(Y軸方向)に垂直な方向(X軸方向)に一定ピッチで並ぶ3つのレーザ素子111を備える。3つのレーザ素子111は、それぞれ、半導体レーザにより構成され、互いに同じ波長のレーザ光を出射する。たとえば、3つのレーザ素子111は、赤外波長帯のレーザ光を出射する。3つのレーザ素子111の出射光軸は、Z軸に平行である。 The laser light source 110 includes three laser elements 111 arranged at a constant pitch in a direction (X-axis direction) perpendicular to the separation direction (Y-axis direction) of the optical axes A1 and A2. Each of the three laser elements 111 is composed of a semiconductor laser and emits laser light of the same wavelength. For example, the three laser elements 111 emit laser light in the infrared wavelength band. The emission optical axes of the three laser elements 111 are parallel to the Z-axis.
 コリメータレンズ120は、3つのレーザ素子111から出射されたレーザ光を、平行光から僅かに広がった状態に収束させる。コリメータレンズ120の光軸は、投射光学系LS1の光軸A1に一致する。3つのレーザ素子111のうち、中央のレーザ素子111の出射光軸が、コリメータレンズ120の光軸に整合する。 The collimator lens 120 converges the laser beams emitted from the three laser elements 111 so that they are slightly spread from parallel beams. The optical axis of collimator lens 120 coincides with optical axis A1 of projection optical system LS1. The emission optical axis of the center laser element 111 among the three laser elements 111 is aligned with the optical axis of the collimator lens 120 .
 したがって、中央のレーザ素子111から出射されたレーザ光は、コリメータレンズ120を透過した後、投射光学系LS1の光軸に沿って進む。その他の2つのレーザ素子111から出射されたレーザ光は、それぞれ、コリメータレンズ120を透過した後、投射光学系LS1の光軸からX軸正方向およびX軸負方向に離れていき、ミラー42で反射された後は、Z軸正方向およびZ軸負方向にさらに離れていく。便宜上、図3(a)、(b)には、中央のレーザ素子111から出射されたレーザ光(投射光)およびその反射光が図示されている。 Therefore, the laser light emitted from the central laser element 111 travels along the optical axis of the projection optical system LS1 after passing through the collimator lens 120. The laser beams emitted from the other two laser elements 111 pass through the collimator lens 120, respectively, and then separate from the optical axis of the projection optical system LS1 in the positive X-axis direction and the negative X-axis direction. After being reflected, it further separates in the Z-axis positive direction and the Z-axis negative direction. For convenience, FIGS. 3A and 3B show laser light (projection light) emitted from the central laser element 111 and its reflected light.
 各レーザ光(投射光)の投射方向に物体が存在する場合、各投射光は、物体で反射される。物体によって反射された投射光(反射光)は、投射時の光路を逆行して、ミラー42に導かれる。その後、反射光は、ミラー42によってZ軸正方向に反射される。 When an object exists in the projection direction of each laser beam (projection light), each projection light is reflected by the object. The projection light (reflected light) reflected by the object travels backward along the optical path during projection and is guided to the mirror 42 . After that, the reflected light is reflected in the Z-axis positive direction by the mirror 42 .
 集光レンズ130は、ミラー42で反射された反射光を収束させる。その後、反射光は、フィルタ140に入射する。フィルタ140は、レーザ光源110から出射される投射光の波長帯の光を透過し、その他の波長帯の光を遮光する。フィルタ140を透過した反射光は、受光部150に導かれる。受光部150は、3つのレーザ素子111から出射されたレーザ光(投射光)の反射光をそれぞれ受光する光検出器310(図6参照)を備える。光検出器310は、反射光の受光光量に応じた検出信号を出力する。光検出器310は、たとえば、アバランシェフォトダイオードである。 The condenser lens 130 converges the reflected light reflected by the mirror 42 . The reflected light is then incident on filter 140 . The filter 140 transmits light in the wavelength band of projection light emitted from the laser light source 110 and blocks light in other wavelength bands. Reflected light transmitted through the filter 140 is guided to the light receiving section 150 . The light receiving unit 150 includes a photodetector 310 (see FIG. 6) that receives reflected light of laser light (projection light) emitted from the three laser elements 111 respectively. The photodetector 310 outputs a detection signal corresponding to the received light amount of the reflected light. Photodetector 310 is, for example, an avalanche photodiode.
 図3(a)、(b)の構成により、3つのレーザ素子111から出射されるレーザ光のそれぞれの投射方向について、物体が検出される。また、上記のように、X-Y平面に対するミラー42の角度は、6つの光学ユニット40間で異なっている。したがって、本実施形態では、X-Y平面に対して18種類の角度の方向において、レーザレーダ1の周囲の物体を検出できる。X軸方向に並ぶレーザ素子111の数を増やすことにより、検出可能な角度方向をさらに増やすことができる。 With the configuration of FIGS. 3(a) and 3(b), an object is detected for each projection direction of the laser light emitted from the three laser elements 111. FIG. Also, as mentioned above, the angles of the mirrors 42 with respect to the XY plane are different among the six optical units 40 . Therefore, in this embodiment, objects around the laser radar 1 can be detected in 18 different angular directions with respect to the XY plane. By increasing the number of laser elements 111 arranged in the X-axis direction, it is possible to further increase the number of detectable angular directions.
 なお、本実施形態では、投射光学系LS1の光軸A1が集光レンズ130の有効径に含まれるため、集光レンズ130には、投射光学系LS1の光軸A1を通すための開口部131が形成されている。開口部131は、集光レンズ130の中心よりも外側に形成されており、Z軸方向に集光レンズ130を貫通する切欠きである。このように集光レンズ130に開口部131が設けられることにより、投射光学系LS1の光軸A1と受光光学系LS2の光軸A2とを近付けることができ、レーザ光源110から出射されたレーザ光を、集光レンズ130にほぼ掛かることなくミラー42に入射させることができる。 In this embodiment, since the optical axis A1 of the projection optical system LS1 is included in the effective diameter of the condenser lens 130, the condenser lens 130 has an opening 131 for passing the optical axis A1 of the projection optical system LS1. is formed. The opening 131 is formed outside the center of the condenser lens 130 and is a notch penetrating the condenser lens 130 in the Z-axis direction. By providing the opening 131 in the condenser lens 130 in this manner, the optical axis A1 of the projection optical system LS1 and the optical axis A2 of the light receiving optical system LS2 can be brought closer, and the laser light emitted from the laser light source 110 can be can be made incident on the mirror 42 almost without covering the condenser lens 130 .
 ところで、上記構成では、投射光学系LS1の光軸A1と受光光学系LS2の光軸A2とが互いに離間しているため、受光部150に集光される反射光の集光スポットが、物体までの距離の変化に応じて移動する。 By the way, in the above configuration, the optical axis A1 of the projection optical system LS1 and the optical axis A2 of the light receiving optical system LS2 are separated from each other. move according to the change in distance.
 図4(a)は、物体によって反射された反射光の進行方向をX軸正側から見た図であり、図4(b)は、物体によって反射された反射光の集光状態をY軸負側から見た図である。便宜上、図4(a)では、集光レンズ130のY軸正側の開口部131に対応する部分が切りかかれた状態で、集光レンズ130が図示されている。 FIG. 4(a) is a diagram showing the traveling direction of reflected light reflected by an object as seen from the positive side of the X axis, and FIG. It is the figure seen from the negative side. For the sake of convenience, in FIG. 4A, the condenser lens 130 is shown in a state in which a portion corresponding to the opening 131 on the Y-axis positive side of the condenser lens 130 is cut.
 図4(a)、(b)に示すように、集光レンズ130は、光軸に沿って無限遠から入射する反射光(平行光)を受光部150の受光面に集光するよう構成されている。このとき、集光レンズ130の有効径の広さで反射光が集光レンズ130に入射すると、反射光は、受光部150内の光検出器310に集光される。 As shown in FIGS. 4A and 4B, the condenser lens 130 is configured to collect reflected light (parallel light) incident from infinity along the optical axis onto the light receiving surface of the light receiving section 150. there is At this time, when the reflected light enters the condenser lens 130 with the width of the effective diameter of the condenser lens 130 , the reflected light is collected by the photodetector 310 in the light receiving section 150 .
 ここで、図4(a)に示すように、物体T0が位置P1にある場合、物体T0で反射された反射光R1は、集光レンズ130の光軸に対して傾いた方向から集光レンズ130に入射する。このため、受光部150における反射光R1の集光位置は、無限遠からの反射光が入射する場合の集光位置に対してY軸負方向にシフトする。位置P1より近い位置P2に物体T0が存在する場合、反射光R2の集光位置のY軸負方向のシフト量はさらに大きくなる。 Here, as shown in FIG. 4A, when the object T0 is at the position P1, the reflected light R1 reflected by the object T0 is directed toward the condenser lens 130 from a direction inclined with respect to the optical axis. Incident at 130 . Therefore, the condensing position of the reflected light R1 on the light receiving unit 150 shifts in the negative direction of the Y-axis with respect to the condensing position when the reflected light from infinity is incident. When the object T0 exists at the position P2 closer than the position P1, the amount of shift in the Y-axis negative direction of the condensing position of the reflected light R2 is further increased.
 また、図4(b)に示すように、物体T0が位置P1にある場合、物体T0で反射された反射光R1は、平行光から広がった状態で集光レンズ130に入射する。このため、受光部150における反射光R1の集光位置F1は、無限遠からの反射光が平行光で入射する場合の集光位置F0からZ軸正方向にシフトする。位置P1より近い位置P2に物体T0が存在する場合、反射光R2の集光位置F2のZ軸正方向のシフト量はさらに大きくなる。 Also, as shown in FIG. 4(b), when the object T0 is at the position P1, the reflected light R1 reflected by the object T0 enters the condenser lens 130 in a state of diverging from parallel light. Therefore, the condensing position F1 of the reflected light R1 in the light receiving unit 150 shifts in the Z-axis positive direction from the condensing position F0 when the reflected light from infinity enters as parallel light. When the object T0 exists at a position P2 closer than the position P1, the amount of shift in the Z-axis positive direction of the condensing position F2 of the reflected light R2 is further increased.
 このように、物体までの距離に応じて、反射光の集光位置がシフトするため、受光部150における集光スポットのサイズは、物体までの距離に応じて変化する。より詳細には、物体までの距離が短くなるほど、受光部150における集光スポットのサイズが大きくなる。 In this way, the focal position of the reflected light shifts according to the distance to the object, so the size of the focal spot on the light receiving unit 150 changes according to the distance to the object. More specifically, the smaller the distance to the object, the larger the size of the focused spot on the light receiving section 150 .
 以上のように、投射光学系LS1の光軸A1と受光光学系LS2の光軸A2とが互いに離間する場合、受光部150における集光スポットの位置およびサイズが、物体までの距離に応じて変化する。また、反射光の強度は、物体までの距離の2乗に反比例する。このため、受光部150には、このように集光スポットの位置およびサイズと反射光の強度が変化しても、対応する光検出器310によって適正に反射光を受光するための構成が必要となる。 As described above, when the optical axis A1 of the projection optical system LS1 and the optical axis A2 of the light receiving optical system LS2 are separated from each other, the position and size of the focused spot on the light receiving unit 150 change according to the distance to the object. do. Also, the intensity of the reflected light is inversely proportional to the square of the distance to the object. Therefore, the light receiving section 150 needs to have a configuration for appropriately receiving the reflected light by the corresponding photodetector 310 even if the position and size of the condensed light spot and the intensity of the reflected light change. Become.
 本実施形態では、そのための構成として、受光部150に、光検出器310の受光面に入射する反射光の範囲を制限するアパーチャが配置されている。 In this embodiment, as a configuration for that purpose, an aperture is arranged in the light receiving section 150 to limit the range of reflected light incident on the light receiving surface of the photodetector 310 .
 図5は、アパーチャ210およびアパーチャ210を保持するホルダ220の構成を示す斜視図である。 FIG. 5 is a perspective view showing the configuration of the aperture 210 and the holder 220 that holds the aperture 210. FIG.
 アパーチャ210は、平板状の基板210aからなっている。基板210aは、レーザ光源110から出射されるレーザ光に対して遮光性または吸収率が高い材料からなっている。たとえば、基板210aは、SUS等の金属または黒色ポリエチレン等の樹脂からなっている。基板210aは、平面視において長方形の角が丸められた形状を有する。基板210aの厚みは一定である。基板210aは、プレス加工や樹脂成型等により一体形成される。 The aperture 210 consists of a flat substrate 210a. The substrate 210a is made of a material that has a light shielding property or a high absorption rate with respect to the laser light emitted from the laser light source 110 . For example, the substrate 210a is made of metal such as SUS or resin such as black polyethylene. The substrate 210a has a rectangular shape with rounded corners in plan view. The thickness of the substrate 210a is constant. The substrate 210a is integrally formed by press working, resin molding, or the like.
 基板210aには、3つの導光部211と、2つの長孔212とが形成されている。3つの導光部211は、平面視において、三角形の角が丸められた形状を有する。各三角形の底辺は、X軸に平行である。各導光部211は、Y軸方向に長い形状である。各導光部211は、Y軸負側の部分(投射光学系LS1の光軸A1から離れた部分)の幅が、Y軸正側の部分(投射光学系LS1の光軸A1に近い部分)の幅よりも狭い。3つの導光部211は、基板210aを貫通する開口を形成することによって構成される。中央の導光部211と両端の導光部211との間隔は、同じである。 The substrate 210a has three light guide portions 211 and two long holes 212 formed therein. The three light guide portions 211 have a triangular shape with rounded corners in plan view. The base of each triangle is parallel to the X-axis. Each light guide portion 211 has a shape elongated in the Y-axis direction. In each light guide section 211, the width of the portion on the Y-axis negative side (portion away from the optical axis A1 of the projection optical system LS1) is the same as the width of the portion on the Y-axis positive side (portion close to the optical axis A1 of the projection optical system LS1). narrower than the width of The three light guides 211 are configured by forming openings penetrating the substrate 210a. The distance between the center light guide portion 211 and the light guide portions 211 at both ends is the same.
 2つの長孔212は、中央の導光部211と両端の導光部211との間にそれぞれ設けられている。長孔212は、平面視において、長方形の角が丸められた形状を有する。各長方形の長辺はY軸に平行である。2つの長孔212は、基板210aを上下方向に貫通している。 The two elongated holes 212 are provided between the central light guide portion 211 and the light guide portions 211 at both ends. The long hole 212 has a rectangular shape with rounded corners in plan view. The long side of each rectangle is parallel to the Y-axis. The two long holes 212 vertically penetrate the substrate 210a.
 ホルダ220は、レーザ光源110から出射されるレーザ光に対して遮光性または吸収率が高い材料からなっている。たとえば、ホルダ220は、SUS等の金属または黒色ポリエチレン等の樹脂からなっている。ホルダ220は、平面視において長方形の角が丸められた形状の、枠状の部材である。ホルダ220の長辺は、X軸に平行である。ホルダ220は、プレス加工や樹脂成型等により一体形成される。 The holder 220 is made of a material that has a light shielding property or a high absorption rate with respect to the laser light emitted from the laser light source 110 . For example, the holder 220 is made of metal such as SUS or resin such as black polyethylene. The holder 220 is a frame-like member having a rectangular shape with rounded corners in plan view. The long side of holder 220 is parallel to the X-axis. The holder 220 is integrally formed by press working, resin molding, or the like.
 ホルダ220は、3つの開口221を有する。開口221は、平面視において、長方形の角が丸められた形状を有する。各長方形の短辺はX軸に平行である。3つの開口221の形状およびサイズは、互いに同じである。3つの開口221は、X軸方向に並んで配置されている。各々の開口221は、ホルダ220をZ軸方向に貫通している。 The holder 220 has three openings 221. The opening 221 has a rectangular shape with rounded corners in plan view. The short sides of each rectangle are parallel to the X-axis. The shape and size of the three openings 221 are the same as each other. The three openings 221 are arranged side by side in the X-axis direction. Each opening 221 penetrates the holder 220 in the Z-axis direction.
 隣り合う開口221との間に、梁部222が形成されている。X軸方向における梁部222の幅は一定である。梁部222の上面には、Y軸方向の中央位置に、壁223が形成されている。壁223の高さは一定である。平面視における壁223の形状は、長方形の角を丸めた形状あり、長孔212よりも僅かに小さい。 A beam portion 222 is formed between adjacent openings 221 . The width of the beam portion 222 in the X-axis direction is constant. A wall 223 is formed on the upper surface of the beam portion 222 at the central position in the Y-axis direction. The height of wall 223 is constant. The shape of the wall 223 in plan view is a rectangular shape with rounded corners and is slightly smaller than the long hole 212 .
 また、ホルダ220の上面には、周縁にそって、2つの縁部224が形成されている。縁部224の幅は一定である。平面視において、2つの縁部224は、ホルダ220の2つの長辺の全範囲と、2つの短辺の一部の範囲に配置されている。2つの縁部224のX軸方向およびY軸方向の間隔は、アパーチャ210のX軸方向およびY軸方向の間隔よりもやや広い。 In addition, two edges 224 are formed along the periphery of the upper surface of the holder 220 . The width of edge 224 is constant. In plan view, the two edge portions 224 are arranged over the entire range of the two long sides of the holder 220 and part of the range of the two short sides. The distance between the two edges 224 in the X and Y directions is slightly wider than the distance between the apertures 210 in the X and Y directions.
 さらに、ホルダ220の下面には、2つの突部225が形成されている。2つの突部225は、平面視において、ホルダ220の2つの短辺の、Y軸方向の中間位置に配置されている。平面視における突部225の形状は、正方形の角を丸めた形状である。壁223、縁部224および突部225を除いたホルダ220の厚みは一定である。 Furthermore, two protrusions 225 are formed on the lower surface of the holder 220 . The two protrusions 225 are arranged in the middle position of the two short sides of the holder 220 in the Y-axis direction in plan view. The shape of the protrusion 225 in plan view is a square with rounded corners. The thickness of holder 220 excluding wall 223, edge 224 and protrusion 225 is constant.
 アパーチャ210は、2つの縁部224の内側に嵌められて、ホルダ220の上面に載置される。このとき、アパーチャ210の2つの長孔212に、ホルダ220の2つの壁223が、それぞれ通される。これにより、アパーチャ210がホルダ220に対して位置決めされる。この状態で、アパーチャ210とホルダ220との間に接着剤が付与される。こうして、アパーチャ210がホルダ220に固定される。 The aperture 210 is fitted inside the two edges 224 and placed on the upper surface of the holder 220 . At this time, the two walls 223 of the holder 220 pass through the two elongated holes 212 of the aperture 210, respectively. This positions the aperture 210 with respect to the holder 220 . In this state, an adhesive is applied between aperture 210 and holder 220 . Aperture 210 is thus fixed to holder 220 .
 図6は、アパーチャ210とホルダ220からなる構造体200を、回路基板300に設置する工程を示す斜視図である。 FIG. 6 is a perspective view showing a process of installing the structure 200 composed of the aperture 210 and the holder 220 on the circuit board 300. FIG.
 回路基板300は、図1の構造体41に含まれている。回路基板300には、3つのレーザ素子111から出射されたレーザ光の、物体からの反射光をそれぞれ受光する3つの光検出器310が実装されている。3つの光検出器310は、それぞれ、円形の受光面311を有する。3つの光検出器310は、互いに同じ構成である。 The circuit board 300 is included in the structure 41 of FIG. The circuit board 300 is mounted with three photodetectors 310 that respectively receive laser light emitted from the three laser elements 111 and reflected from an object. Each of the three photodetectors 310 has a circular light receiving surface 311 . The three photodetectors 310 have the same configuration as each other.
 回路基板300には、ホルダ220の2つの突部225が嵌まり込む2つの受け孔301が形成されている。ホルダ220の2つの突部225が、2つの受け孔301にそれぞれ嵌め込まれる。その状態で、ホルダ220と回路基板300との間に接着剤が付与される。これにより、構造体200が回路基板300に設置される。こうして、構造体200と3つの光検出器310とからなる受光部150が構成される。 The circuit board 300 is formed with two receiving holes 301 into which the two protrusions 225 of the holder 220 are fitted. The two protrusions 225 of the holder 220 are fitted into the two receiving holes 301 respectively. In this state, an adhesive is applied between holder 220 and circuit board 300 . Thereby, the structure 200 is installed on the circuit board 300 . Thus, the light receiving section 150 including the structure 200 and the three photodetectors 310 is configured.
 なお、図6には、アパーチャ210とホルダ220からなる構造体200が回路基板300に設置される様子が示されたが、先にホルダ220を回路基板300に設置した後、アパーチャ210をホルダ220の上面に設置してもよい。 FIG. 6 shows how the structure 200 composed of the aperture 210 and the holder 220 is installed on the circuit board 300 . may be placed on top of the
 図7(a)は、構造体200が回路基板300に設置された状態を示す平面図であり、図7(b)は、図7(a)のA1-A1断面図である。図7(a)では、アパーチャ210の奥にある光検出器310およびその受光面311が、破線で示されている。 7(a) is a plan view showing the structure 200 installed on the circuit board 300, and FIG. 7(b) is a cross-sectional view taken along line A1-A1 in FIG. 7(a). In FIG. 7A, the photodetector 310 and its light receiving surface 311 behind the aperture 210 are indicated by broken lines.
 本実施形態では、受光光学系LS2の光軸A2が、中央の導光部211および中央の光検出器310の受光面311の中心に位置付けられるように、受光部150が配置される。受光光学系LS2の光軸A2は、中央の光検出器310の受光面311に対して垂直である。 In this embodiment, the light receiving section 150 is arranged such that the optical axis A2 of the light receiving optical system LS2 is positioned at the center of the light receiving surface 311 of the central light guide section 211 and the central photodetector 310 . The optical axis A2 of the light receiving optical system LS2 is perpendicular to the light receiving surface 311 of the central photodetector 310 .
 このため、図7(b)に示すように、3つのレーザ素子111のうち中央のレーザ素子111から出射されたレーザ光の物体からの反射光は、X軸方向に傾くことなく導光部211に入射し、両端のレーザ素子111から出射されたレーザ光の物体からの反射光は、X軸方向に傾いた状態で導光部211に入射する。 For this reason, as shown in FIG. 7B, the laser light emitted from the center laser element 111 of the three laser elements 111 is reflected from the object without being inclined in the X-axis direction. , and emitted from the laser elements 111 at both ends, the reflected light from the object enters the light guide section 211 while being inclined in the X-axis direction.
 ここで、3つの導光部211を介して光検出器310の受光面311に反射光が照射される範囲が、それぞれ、受光面の311略中央となるように、3つの導光部211の形状およびピッチP12が設定されている。より詳細には、3つの反射光の中心軸CA1が、それぞれ、3つの導光部211のX軸方向およびY軸方向の中心位置を通る場合に、これら3つの中心軸CA1が、3つの受光面311の中心CP1を通るように、3つの導光部211の形状およびピッチP12が設定されている。 Here, the three light guide portions 211 are arranged such that the range where the light receiving surface 311 of the photodetector 310 is irradiated with the reflected light through the three light guide portions 211 is substantially the center 311 of the light receiving surface. A shape and pitch P12 are set. More specifically, when the central axes CA1 of the three reflected lights respectively pass through the central positions of the three light guide portions 211 in the X-axis direction and the Y-axis direction, these three central axes CA1 The shape and pitch P12 of the three light guide portions 211 are set so as to pass through the center CP1 of the surface 311 .
 この場合、図7(a)に示すように、隣り合う導光部211間のピッチP12は、隣り合う光検出器310間のピッチP11よりも小さく設定される。ピッチP12は、受光面311と導光部211との間の間隔H1と、各反射光の上記中心軸CA1の傾き角とに基づいて設定される。 In this case, as shown in FIG. 7(a), the pitch P12 between the adjacent light guides 211 is set smaller than the pitch P11 between the adjacent photodetectors 310. The pitch P12 is set based on the interval H1 between the light receiving surface 311 and the light guide section 211 and the inclination angle of the central axis CA1 of each reflected light.
 また、図7(a)に示すように、中央の導光部211の幅W1に比べて、両端の導光部211の幅W2は、小さく設定される。これらの幅W1、W2は、上記各中心軸CA1の方向に各導光部211の領域を各受光面311投影した場合に、投影された各領域(投影領域)のサイズおよび形状が互いに略同じとなり、且つ、各投影領域の中心が各受光面の中心に略一致するように調整される。これらの幅W1、W2は、間隔H1と、各反射光の上記中心軸CA1の傾き角とに基づいて設定される。 Also, as shown in FIG. 7A, the width W2 of the light guide portions 211 at both ends is set smaller than the width W1 of the light guide portion 211 at the center. These widths W1 and W2 are such that when the regions of the light guide portions 211 are projected onto the light receiving surfaces 311 in the direction of the central axis CA1, the projected regions (projection regions) have substantially the same size and shape. , and the center of each projection area is adjusted to substantially coincide with the center of each light receiving surface. These widths W1 and W2 are set based on the interval H1 and the tilt angle of the central axis CA1 of each reflected light.
 このように、各投影領域が各受光面の中心CP1に略一致することにより、光検出器310の受光面311の大きさを、投影領域を内包する範囲に制限できる。これにより、受光面311を小さくでき、反射光を効率よく受光できる。また、受光面311を小さくできるため、反射光以外の迷光が受光面311に入射することを抑制でき、反射光の検出精度を高めることができる。 In this way, each projection area approximately coincides with the center CP1 of each light receiving surface, so that the size of the light receiving surface 311 of the photodetector 310 can be limited to a range that includes the projection area. As a result, the light receiving surface 311 can be made smaller, and the reflected light can be received efficiently. In addition, since the light receiving surface 311 can be made small, it is possible to prevent stray light other than the reflected light from entering the light receiving surface 311 and improve the detection accuracy of the reflected light.
 図8(a)~図8(c)は、物体までの距離が変化した場合の、導光部211に対する集光スポットSP1の入射状態を模式的に示す平面図である。 FIGS. 8(a) to 8(c) are plan views schematically showing incident states of the condensed spot SP1 with respect to the light guide section 211 when the distance to the object changes.
 図8(a)は、検出対象の距離レンジにおける最遠距離(たとえば20m)の位置に物体が存在する場合の反射光の集光スポットSP1の状態を示している。また、図8(c)は、検出対象の距離レンジにおける最近距離(たとえば0.3m)の位置に物体が存在する場合の反射光の集光スポットSP1の状態を示している。さらに、図8(c)は、検出対象の距離レンジにおける最先距離と最近距離の間の距離(たとえば2m)の位置に物体が存在する場合の反射光の集光スポットSP1の状態を示している。 FIG. 8(a) shows the state of the focused spot SP1 of the reflected light when an object exists at the farthest distance (for example, 20 m) in the distance range of the detection target. FIG. 8(c) shows the state of the focused spot SP1 of the reflected light when an object exists at the closest distance (for example, 0.3 m) in the distance range of the detection target. Furthermore, FIG. 8(c) shows the state of the focused spot SP1 of the reflected light when an object exists at a distance (for example, 2 m) between the earliest distance and the shortest distance in the distance range of the detection target. there is
 上記のように、投射光学系LS1の光軸A1と受光光学系LS2の光軸A2とがY軸方向に離間しているため、アパーチャ210に入射する反射光の集光スポットSP1は、図8(a)~図8(c)に示すように、物体までの距離が短くなるほど、Y軸負方向(光軸A1から光軸A2に向かう方向)にシフトし、且つ、サイズが大きくなる。また、反射光の強度は、物体までの距離の2乗に反比例するため、物体までの距離が近いほど高くなる。 As described above, since the optical axis A1 of the projection optical system LS1 and the optical axis A2 of the light receiving optical system LS2 are separated in the Y-axis direction, the focused spot SP1 of the reflected light incident on the aperture 210 is shown in FIG. As shown in FIGS. 8(a) to 8(c), the shorter the distance to the object, the more it shifts in the negative Y-axis direction (the direction from the optical axis A1 to the optical axis A2) and the larger the size. In addition, since the intensity of the reflected light is inversely proportional to the square of the distance to the object, the closer the distance to the object, the higher the intensity of the reflected light.
 本実施形態では、導光部211はY軸方向に沿って長くなるように形成されているため、物体までの距離に応じて集光スポットSP1がY軸方向にシフトしても、集光スポットSP1を導光部211に位置づけることができる。よって、検出対象の距離レンジの何れの距離の位置に物体が存在しても、物体からの反射光を、導光部211を介して対応する光検出器310の受光面311に導くことができる。 In this embodiment, the light guide portion 211 is formed to be elongated along the Y-axis direction. SP1 can be positioned in the light guide section 211 . Therefore, regardless of the position of the object in the distance range of the detection target, the reflected light from the object can be guided to the light receiving surface 311 of the corresponding photodetector 310 via the light guide section 211. .
 また、導光部211は、Y軸負側の部分(投射光学系LS1の光軸A1から離れた部分)の幅がY軸正側の部分(投射光学系LS1の光軸A1に近い部分)の幅よりも狭い形状となっている。このため、強度の低い遠距離の物体からの反射光は、多くの部分が導光部211から光検出器310に導かれる。また、強度の高い近距離の物体からの反射光は、多くの部分が導光部211以外のアパーチャ210の範囲により遮光されて、導光部211から光検出器310に導かれる反射光が制限される。これにより、物体が近距離にあるときに反射光の受光量が過剰に増加することを抑制でき、検出対象の距離レンジにおいて安定的に、物体検出の処理を行うことができる。 In addition, the width of the light guide section 211 is such that the width of the Y-axis negative side portion (portion away from the optical axis A1 of the projection optical system LS1) is the Y-axis positive side portion (portion close to the optical axis A1 of the projection optical system LS1). It has a shape narrower than the width of Therefore, most of the light reflected from a distant object with low intensity is guided from the light guide section 211 to the photodetector 310 . In addition, most of the reflected light from an object at a short distance with high intensity is shielded by the range of the aperture 210 other than the light guide section 211, and the reflected light guided from the light guide section 211 to the photodetector 310 is limited. be done. As a result, it is possible to suppress an excessive increase in the amount of received reflected light when the object is at a short distance, and it is possible to stably perform object detection processing in the detection target distance range.
 なお、平面視における導光部211の形状は、三角形に限らず、他の形状であってもよい。 Note that the shape of the light guide portion 211 in plan view is not limited to a triangle, and may be another shape.
 たとえば、図9(b)~図9(d)にそれぞれ示すように、導光部211が、T次状の形状、長方形および台形であってもよい。但し、図9(c)に示すように、導光部211がY軸方向に長い長方形である場合、図9(a)に示すように、導光部211が三角形である場合に比べて、近距離の物体から反射された反射光がより多く、光検出器310の受光面311に受光される。よって、反射光の受光光量が過剰に増加することをより確実に回避するためには、図9(a)、(b)または図9(d)に示すように、導光部211の形状は、三角形、T次状の形状または台形であることが好ましい。 For example, as shown in FIGS. 9(b) to 9(d), the light guide portion 211 may have a T-order shape, a rectangle, and a trapezoid. However, as shown in FIG. 9C, when the light guide portion 211 is a rectangle elongated in the Y-axis direction, compared to the case where the light guide portion 211 is triangular as shown in FIG. More of the reflected light reflected from the near object is received by the light receiving surface 311 of the photodetector 310 . Therefore, in order to more reliably avoid an excessive increase in the received light amount of the reflected light, the shape of the light guide portion 211 should be changed as shown in FIGS. , triangular, T-shaped or trapezoidal.
 なお、図9(b)に示すように、導光部211がT字状の形状である場合は、図9(a)の構成に比べて、導光部211の面積が小さくなるため、導光部211を通過して光検出器310に導かれる迷光成分がより抑制される。これにより、反射光の検出精度を高めることができる。この場合、T字形状の2つの直線部分が交わる位置は、必ずしも、垂直でなくてもよく、丸みを帯びた円弧状の形状であってもよい。 As shown in FIG. 9B, when the light guide portion 211 is T-shaped, the area of the light guide portion 211 is smaller than in the configuration of FIG. 9A. The stray light component that passes through the optical section 211 and is guided to the photodetector 310 is further suppressed. Thereby, the detection accuracy of reflected light can be improved. In this case, the position where the two straight line portions of the T-shape intersect may not necessarily be perpendicular, and may be in the shape of a rounded arc.
 また、図9(e)~図9(h)に示すように、導光部211がY軸方向に分離していてもよい。 Further, as shown in FIGS. 9(e) to 9(h), the light guide portions 211 may be separated in the Y-axis direction.
 図9(e)の構成では、導光部211がY軸方向に2つに分離され、分離後の導光部211a、211bは、円形または楕円形となっている。また、Y軸正側の導光部211bは、Y軸負側の導光部211aよりも大きく形成され、X軸方向の幅とともにY軸方向の幅も大きくなっている。 In the configuration of FIG. 9(e), the light guide section 211 is separated into two in the Y-axis direction, and the light guide sections 211a and 211b after separation are circular or elliptical. Further, the light guide portion 211b on the Y-axis positive side is formed larger than the light guide portion 211a on the Y-axis negative side, and the width in the Y-axis direction is increased along with the width in the X-axis direction.
 図9(f)の構成では、導光部211がY軸方向に2つに分離され、分離後の導光部211c、211dは、X軸方向に長い長方形となっている。また、Y軸正側の導光部211dは、Y軸負側の導光部211cよりも大きく形成され、X軸方向の幅とともにY軸方向の幅も大きくなっている。 In the configuration of FIG. 9(f), the light guide section 211 is separated into two in the Y-axis direction, and the separated light guide sections 211c and 211d are rectangles elongated in the X-axis direction. Further, the light guide portion 211d on the Y-axis positive side is formed larger than the light guide portion 211c on the Y-axis negative side, and the width in the Y-axis direction is increased along with the width in the X-axis direction.
 図9(g)の構成では、導光部211がY軸方向に3つに分離され、分離後の導光部211e、211f、211gは、円形または楕円形となっている。また、Y軸正方向に向かうほど分離後の導光部が大きく形成され、X軸方向の幅とともにY軸方向の幅も大きくなっている。 In the configuration of FIG. 9(g), the light guide section 211 is divided into three in the Y-axis direction, and the light guide sections 211e, 211f, and 211g after separation are circular or elliptical. In addition, the light guide portion after separation is formed larger toward the positive direction of the Y-axis, and the width in the Y-axis direction is increased along with the width in the X-axis direction.
 図9(h)の構成では、導光部211がY軸方向に3つに分離され、分離後の導光部211h、211i、211jは、X軸方向に長い長方形となっている。また、Y軸正方向に向かうほど分離後の導光部が大きく形成され、X軸方向の幅とともにY軸方向の幅も大きくなっている。 In the configuration of FIG. 9(h), the light guide section 211 is separated into three in the Y-axis direction, and the separated light guide sections 211h, 211i, and 211j are rectangles elongated in the X-axis direction. In addition, the light guide portion after separation is formed larger toward the positive direction of the Y-axis, and the width in the Y-axis direction is increased along with the width in the X-axis direction.
 図9(e)~図9(h)の構成においても、導光部211は、Y軸方向に沿って配置されるため、物体までの距離に応じて反射光の集光スポットがY軸方向にシフトしても、導光部211を介して反射光を光検出器310の受光面311に導くことができる。また、投射光学系LS1の光軸A1から離れた導光部211a、211c、211e、211hの幅が、投射光学系LS1の光軸A1に近い導光部211b、211d、211g、211jの幅よりも狭いため、近距離の物体からの強い反射光が、過剰に、光検出器310の受光面311に導かれることが回避され得る。これにより、検出対象の距離レンジにおいて安定的に、物体検出の処理を行うことができる。 9(e) to 9(h), since the light guide part 211 is arranged along the Y-axis direction, the focused spot of the reflected light changes in the Y-axis direction according to the distance to the object. , the reflected light can be guided to the light receiving surface 311 of the photodetector 310 via the light guide section 211 . Further, the widths of the light guide portions 211a, 211c, 211e, and 211h away from the optical axis A1 of the projection optical system LS1 are greater than the widths of the light guide portions 211b, 211d, 211g, and 211j near the optical axis A1 of the projection optical system LS1. is narrow, it can be avoided that strong reflected light from an object at a short distance is excessively guided to the light receiving surface 311 of the photodetector 310 . As a result, object detection processing can be stably performed in the distance range of the detection target.
 なお、分離後の導光部の形状は、図9(e)~図9(h)に示した形状に限られるものではなく、台形や三角形等、他の形状であってもよい。また、導光部211が図9(a)~図9(h)の形状にある場合も、図8(a)、(b)を参照して説明したように、各導光部211の受光面311上の投影領域が受光面311の中央に位置付けられるよう、中央の導光部211の形状と両側の導光部211の形状が互いに異なるように調整されることが好ましい。 The shape of the light guide portion after separation is not limited to the shapes shown in FIGS. 9(e) to 9(h), and may be trapezoidal, triangular, or other shapes. Also, when the light guide portions 211 have the shapes shown in FIGS. 9A to 9H, as described with reference to FIGS. 8A and 8B, each light guide portion 211 It is preferable that the shape of the central light guide portion 211 and the shape of the light guide portions 211 on both sides are adjusted to be different from each other so that the projection area on the surface 311 is positioned at the center of the light receiving surface 311 .
 図10(a)は、導光部211の形状を変更した場合の、物体までの距離と光検出器310における反射光の受光光量との関係の検証結果(シミュレーション)を示すグラフである。 FIG. 10(a) is a graph showing verification results (simulation) of the relationship between the distance to the object and the amount of reflected light received by the photodetector 310 when the shape of the light guide section 211 is changed.
 この検証では、図10(b)~図10(d)に示すように、導光部211の形状として、長方形、T字状の形状および分離型の3種類の形状を設定した。また、3種類の導光部211は、それぞれ、図10(b)~図10(d)に示すサイズに設定した。図10(b)~図10(d)の横軸および縦軸は、それぞれ、Y軸方向およびX軸方向のサイズである。図10(d)に示すように、分離型では、Y軸方向に2つに分離された導光部を想定し、分離後の導光部は、X軸方向に長い長方形の形状に設定した。 In this verification, as shown in FIGS. 10(b) to 10(d), as the shape of the light guide portion 211, three shapes were set: rectangular, T-shaped, and separated. Also, the three types of light guide portions 211 are set to have sizes shown in FIGS. 10(b) to 10(d). The horizontal and vertical axes in FIGS. 10(b) to 10(d) are sizes in the Y-axis direction and the X-axis direction, respectively. As shown in FIG. 10(d), in the separated type, it is assumed that the light guide section is divided into two in the Y-axis direction, and the light guide section after separation is set in a rectangular shape that is long in the X-axis direction. .
 検証では、これら3種の導光部をアパーチャ210の中央の導光部211に設定し、この導光部に入射する反射光の光量を、光検出器310の受光光量として算出した。検証では、物体までの距離を変化させつつ、反射光の受光光量を算出した。 In the verification, these three types of light guide portions were set in the center light guide portion 211 of the aperture 210, and the light amount of the reflected light incident on this light guide portion was calculated as the received light amount of the photodetector 310. In the verification, the received light amount of the reflected light was calculated while changing the distance to the object.
 図10(a)のグラフにおいて、横軸は、物体までの距離であり、縦軸は、受光光量比である。ここでは、物体までの距離が6mである場合の受光光量に対する各距離の受光光量の比が、グラフの縦軸とされている。縦軸は、対数軸となっている。 In the graph of FIG. 10(a), the horizontal axis is the distance to the object, and the vertical axis is the received light amount ratio. Here, the vertical axis of the graph represents the ratio of the received light amount at each distance to the received light amount when the distance to the object is 6 m. The vertical axis is a logarithmic axis.
 図10(a)に示すように、導光部の形状が長方形である場合、物体が近距離にあるときの受光光量が高くなっている。これに対し、導光部の形状がT字状(T字型)である場合は、導光部の形状が長方形である場合に比べて、物体が近距離にあるときの受光光量が効果的に抑制されている。また、導光部の形状が分離型である場合、物体が近距離にあるときの受光光量は、導光部の形状が長方形である場合に比べてより一層抑制され、導光部の形状がT字状(T字型)である場合に比べても顕著に抑制されている。 As shown in FIG. 10(a), when the shape of the light guide section is rectangular, the amount of received light is high when the object is at a short distance. On the other hand, when the shape of the light guide is T-shaped (T-shaped), the amount of light received when the object is at a short distance is more effective than when the shape of the light guide is rectangular. is constrained to In addition, when the shape of the light guide is a separate type, the amount of light received when an object is at a short distance is further suppressed compared to when the shape of the light guide is rectangular. Even compared to the T-shaped (T-shaped) case, it is remarkably suppressed.
 この検証結果から、導光部の形状は、長方形よりT字状の形状が好ましく、分離型がより一層好ましいと言える。導光部を分離型に設定することにより、物体が近距離である場合の反射光の受光光量を効果的に抑制でき、受光光量のダイナミックレンジを効果的に抑制できる。これにより、物体検出の処理をより安定的に行うことができる。 From this verification result, it can be said that the shape of the light guide part is preferably a T-shape rather than a rectangle, and a separate type is even more preferable. By setting the light guide section to a separate type, it is possible to effectively suppress the received light amount of the reflected light when the object is at a short distance, and to effectively suppress the dynamic range of the received light amount. As a result, object detection processing can be performed more stably.
 加えて、導光部が分離型である場合、図10(d)に示すように、導光部の面積を抑制できる。図10(b)~図10(d)の構成では、導光部の総面積は、概ね、長方形:T字形状:分離型=3:1.5:1となる。よって、導光部を分離型に設定した場合は、導光部を通過して光検出器310に導かれる迷光成分を、T字状の場合よりもさらに抑制でき、反射光の検出精度をより一層高めることができる。 In addition, when the light guide section is a separate type, the area of the light guide section can be suppressed as shown in FIG. 10(d). In the configurations of FIGS. 10(b) to 10(d), the total area of the light guide portion is approximately rectangular:T-shaped:separable=3:1.5:1. Therefore, when the light guide section is set as a separate type, the stray light component that passes through the light guide section and is guided to the photodetector 310 can be further suppressed than in the case of the T-shape, and the detection accuracy of the reflected light can be further improved. can be further enhanced.
 <実施形態1の効果>
 本実施形態によれば、以下の効果が奏される。
<Effect of Embodiment 1>
According to this embodiment, the following effects are obtained.
 図9(a)~(h)に示したように、アパーチャ210の導光部211は、光軸A1、A2の離間方向(Y軸方向)に沿って導光部211が配置されている。このため、図8(a)~図8(c)のように、物体までの距離の変化に応じて反射光の集光スポットSP1が移動しても、導光部211を介して受光面311に反射光を適正に導くことができる。よって、光検出器310からの出力により適正に、物体を検出できる。また、アパーチャ210によって反射光の範囲を制限する構成であるため、光検出器310の受光面311には、鋭角なエッジ部分や細い部分を設ける必要がない。このため、受光に応じて電荷を光検出器310から円滑かつ適正に出力させることができる。よって、反射光の検出精度を高く維持できる。さらに、レーザレーダの仕様(たとえば、レーザ素子111間のピッチ、集光レンズ130の焦点距離、等)や検出距離レンジ等に変更が生じた場合には、その変更に応じてアパーチャ210を作り直すだけでよい。このため、レーザレーダ1の仕様や検出距離レンジ等の変更に円滑に対応することができる。 As shown in FIGS. 9(a) to (h), the light guide portion 211 of the aperture 210 is arranged along the separation direction (Y-axis direction) of the optical axes A1 and A2. Therefore, as shown in FIGS. 8A to 8C, even if the focused spot SP1 of the reflected light moves according to the change in the distance to the object, the light receiving surface 311 can properly guide the reflected light to the Therefore, the object can be properly detected by the output from the photodetector 310 . In addition, since the aperture 210 limits the range of the reflected light, the light receiving surface 311 of the photodetector 310 does not need to have a sharp edge portion or a thin portion. Therefore, charges can be output smoothly and appropriately from the photodetector 310 in accordance with the received light. Therefore, it is possible to maintain a high detection accuracy of the reflected light. Furthermore, if there is a change in the specifications of the laser radar (for example, the pitch between the laser elements 111, the focal length of the condenser lens 130, etc.) or the detection distance range, the aperture 210 can be remade according to the change. OK. For this reason, it is possible to smoothly cope with changes in the specifications of the laser radar 1, the detection distance range, and the like.
 図9(a)~(d)の構成において、導光部211は、光軸A1、A2の離間方向に長い形状を有する。これらの構成では、アパーチャ210に導光部211を容易に形成できる。 In the configurations of FIGS. 9(a) to (d), the light guide section 211 has a shape elongated in the separation direction of the optical axes A1 and A2. With these configurations, the light guide section 211 can be easily formed in the aperture 210 .
 図9(a)、(b)および図9(d)に示した構成において、導光部211は、投射光学系LS1の光軸A1から離れた部分(Y軸負側の部分)の幅が投射光学系LS1の光軸A1に近い部分(Y軸正側の部分)の幅よりも狭い形状を有する。これにより、近距離の物体からの強度の高い反射光が光検出器310の受光面311に到達する光量を効果的に制限できる。よって、物体が近距離に存在する場合に、光検出器310が過度な光量の反射光を受光することを抑制でき、物体検出の処理を安定的に行うことができる。 In the configurations shown in FIGS. 9A, 9B, and 9D, the light guide section 211 has a width of It has a shape narrower than the width of the portion of the projection optical system LS1 near the optical axis A1 (the portion on the Y-axis positive side). As a result, it is possible to effectively limit the amount of light that reaches the light-receiving surface 311 of the photodetector 310 from a high-intensity reflected light from an object at a short distance. Therefore, when an object exists at a short distance, it is possible to prevent the photodetector 310 from receiving an excessive amount of reflected light, and it is possible to stably perform object detection processing.
 図9(a)、(d)の構成において、導光部211は、投射光学系LS1の光軸A1から離れるに従って(Y軸負方向に向かうに従って)幅が狭くなる部分を有する。図9(a)では、導光部211は、三角形の形状であり、図9(d)では、導光部211は、台形の形状である。これにより、図8(a)~図8(c)のように、物体までの距離の変化に応じて反射光の集光スポットSP1が移動した際に、物体までの距離が短くなるにつれて、反射光を制限する範囲を大きくできる。よって、物体までの距離が短くなるにつれて強度が高くなる反射光を適切に制限でき、物体検出の処理を安定的に行うことができる。 In the configurations of FIGS. 9(a) and (d), the light guide section 211 has a portion whose width becomes narrower with distance from the optical axis A1 of the projection optical system LS1 (in the negative Y-axis direction). In FIG. 9A, the light guide portion 211 has a triangular shape, and in FIG. 9D, the light guide portion 211 has a trapezoidal shape. As a result, as shown in FIGS. 8A to 8C, when the condensed spot SP1 of the reflected light moves according to the change in the distance to the object, the distance to the object becomes shorter and the reflected light becomes smaller. The range that limits light can be increased. Therefore, reflected light whose intensity increases as the distance to the object becomes shorter can be appropriately restricted, and object detection processing can be stably performed.
 図9(b)の構成において、導光部211は、T字状の形状である。この構成によれば、図10(a)に示したように、物体が近距離に存在する場合に、光検出器310が過度な光量の反射光を受光することを効果的に抑制できる。よって、物体検出の処理を安定的に行うことができる。また、導光部211の面積が小さいため、反射光以外の不要な迷光が光検出器310の受光面311に入射することを抑制できる。よって、物体検出の精度を高めることができる。 In the configuration of FIG. 9(b), the light guide section 211 is T-shaped. According to this configuration, as shown in FIG. 10A, when an object exists at a short distance, it is possible to effectively prevent the photodetector 310 from receiving an excessive amount of reflected light. Therefore, object detection processing can be stably performed. In addition, since the area of the light guide portion 211 is small, it is possible to suppress unnecessary stray light other than the reflected light from entering the light receiving surface 311 of the photodetector 310 . Therefore, the accuracy of object detection can be improved.
 図9(e)~(h)の構成において、導光部211は、光軸A1、A2の離間方向(Y軸方向)に分離して配置されている。この構成によれば、分離された導光部211a~211jの形状や間隔を調整することにより、適正な光量の反射光を光検出器310の受光面311に導くことができる。 In the configurations of FIGS. 9(e) to (h), the light guide portions 211 are arranged separately in the separation direction (Y-axis direction) of the optical axes A1 and A2. According to this configuration, by adjusting the shape and spacing of the separated light guide portions 211a to 211j, an appropriate amount of reflected light can be guided to the light receiving surface 311 of the photodetector 310. FIG.
 図9(a)~(h)の構成では、投射光学系LS1の光軸A1から離れた導光部211a、211c、211e、211hの幅が、投射光学系LS1の光軸A1に近い導光部211b、211d、211g、211jの幅よりも狭い。これにより、図10(a)に示したように、物体が近距離に存在する場合に、光検出器310が過度な光量の反射光を受光することをより一層効果的に抑制できる。よって、物体検出の処理を安定的に行うことができる。また、導光部211の面積がさらに小さいため、反射光以外の不要な迷光が光検出器310の受光面311に入射することを顕著に抑制できる。よって、物体検出の精度を高めることができる。 9A to 9H, the widths of the light guide portions 211a, 211c, 211e, and 211h away from the optical axis A1 of the projection optical system LS1 are closer to the optical axis A1 of the projection optical system LS1. It is narrower than the width of the portions 211b, 211d, 211g and 211j. As a result, as shown in FIG. 10A, when an object exists at a short distance, it is possible to more effectively prevent the photodetector 310 from receiving an excessive amount of reflected light. Therefore, object detection processing can be stably performed. Moreover, since the area of the light guide portion 211 is even smaller, it is possible to significantly suppress the incidence of unnecessary stray light other than the reflected light onto the light receiving surface 311 of the photodetector 310 . Therefore, the accuracy of object detection can be improved.
 図7(a)、(b)に示したように、アパーチャ210は、光軸A1、A2の離間方向(Y軸方向)に垂直な方向(X軸方向)に並ぶ複数の導光部211を備え、複数の導光部211を通過した反射光をそれぞれ受光する位置に、複数の光検出器310が配置されている。これにより、複数の方向において物体検出を個別に行うことができる。 As shown in FIGS. 7A and 7B, the aperture 210 has a plurality of light guides 211 arranged in a direction (X-axis direction) perpendicular to the separation direction (Y-axis direction) of the optical axes A1 and A2. A plurality of photodetectors 310 are arranged at positions for receiving reflected light that has passed through the plurality of light guide portions 211 . Thereby, object detection can be performed individually in a plurality of directions.
 図5および図7(a)、(b)に示したように、隣り合う光検出器310の間に、梁部222および壁223(遮光壁)が設けられている。これにより、導光部211で散乱した反射光の散乱光が隣の光検出器310の受光面311に入射することを抑制できる。よって、物体検出の精度を高めることができる。特に、本実施形態では、梁部222の上面に壁223が設けられているため、梁部222の上面とアパーチャ210の下面との間の隙間から、散乱光が隣の光検出器310の受光面311に入射することを抑制できる。よって、物体検出の精度を顕著に高めることができる。この意味から、壁223のY軸方向の幅は、なるべく広い方が好ましい。 As shown in FIGS. 5 and 7 (a) and (b), beams 222 and walls 223 (light shielding walls) are provided between adjacent photodetectors 310 . Accordingly, it is possible to suppress the scattered light of the reflected light scattered by the light guide section 211 from entering the light receiving surface 311 of the adjacent photodetector 310 . Therefore, the accuracy of object detection can be improved. In particular, in this embodiment, since the wall 223 is provided on the upper surface of the beam 222 , scattered light is received by the adjacent photodetector 310 from the gap between the upper surface of the beam 222 and the lower surface of the aperture 210 . Incident on the surface 311 can be suppressed. Therefore, the accuracy of object detection can be significantly improved. From this point of view, it is preferable that the width of the wall 223 in the Y-axis direction be as large as possible.
 図5に示したように、遮光壁を構成する梁部222および壁223は、ホルダ220に設けられている。これにより、アパーチャ210の構成を簡素化しつつ、隣の光検出器310への散乱光の漏れ込みを適正に抑制できる。なお、図5の構成では、遮光壁を構成する壁223がアパーチャ210の長孔212に嵌ることで、アパーチャ210が位置決めされる。すなわち、壁223は、アパーチャ210の位置決めに共用されている。これにより、アパーチャ210の位置決めを簡易に行うことができ、且つ、アパーチャ210とホルダ220とからなる構造体200の構成を簡素にできる。 As shown in FIG. 5, the beams 222 and the walls 223 that constitute the light shielding wall are provided on the holder 220 . As a result, while simplifying the configuration of the aperture 210 , it is possible to appropriately suppress the scattered light from leaking into the adjacent photodetector 310 . In the configuration of FIG. 5 , the aperture 210 is positioned by fitting the wall 223 forming the light shielding wall into the long hole 212 of the aperture 210 . That is, the wall 223 is shared for positioning the aperture 210 . Thereby, the positioning of the aperture 210 can be easily performed, and the configuration of the structure 200 including the aperture 210 and the holder 220 can be simplified.
 図7(a)、(b)を参照して説明したように、複数の導光部211を介して光検出器310の受光面311に反射光が照射される範囲が、それぞれ、受光面311の略中央となるように、複数の導光部211の形状およびピッチP12が設定されている。これにより、受光面311の大きさを極力小さく制限することができ、反射光を効率よく受光できる。また、受光面311を小さくできるため、反射光以外の迷光が受光面311に入射することを抑制でき、反射光の検出精度を高めることができる。 As described with reference to FIGS. 7(a) and 7(b), the range where the light-receiving surface 311 of the photodetector 310 is irradiated with the reflected light via the plurality of light guide portions 211 is each the light-receiving surface 311. The shape and pitch P12 of the plurality of light guide portions 211 are set so as to be substantially in the center of the . As a result, the size of the light receiving surface 311 can be minimized, and the reflected light can be efficiently received. In addition, since the light receiving surface 311 can be made small, it is possible to prevent stray light other than the reflected light from entering the light receiving surface 311 and improve the detection accuracy of the reflected light.
 図5に示すように、アパーチャ210は、レーザ光に遮光性を有する基板210aに、導光部211となる開口を形成して構成される。この構成によれば、アパーチャ210を簡易に形成できる。 As shown in FIG. 5, the aperture 210 is configured by forming an opening, which serves as the light guide section 211, in a substrate 210a that blocks laser light. With this configuration, the aperture 210 can be easily formed.
 <変更例1>
 図11(a)、(b)は、それぞれ、変更例1に係る、アパーチャ410およびホルダ420の構成を示す分解斜視図および斜視図である。
<Modification 1>
11A and 11B are an exploded perspective view and a perspective view, respectively, showing configurations of an aperture 410 and a holder 420 according to Modification 1. FIG.
 変更例1では、アパーチャ410が、基板410aと、遮光膜410bとからなっている。基板410aは、レーザ光源110から出射されるレーザ光に対して透光性が高い材料からなっている。たとえば、基板410aは、樹脂(透明ポリカーボネイト、透明アクリル等)からなっている。基板410aには、図5のアパーチャ210と同様、長孔412が形成されている。平面視における基板410aの形状および基板410aの厚みは、図5の基板210aと同様である。 In Modification 1, the aperture 410 is composed of a substrate 410a and a light shielding film 410b. The substrate 410 a is made of a material having high translucency to the laser light emitted from the laser light source 110 . For example, the substrate 410a is made of resin (transparent polycarbonate, transparent acrylic, etc.). A long hole 412 is formed in the substrate 410a like the aperture 210 in FIG. The shape and thickness of the substrate 410a in plan view are the same as those of the substrate 210a in FIG.
 遮光膜410bは、レーザ光源110から出射されるレーザ光に対して遮光性が高い材料からなっている。遮光膜410bは、たとえば、クロムや金等の金属薄膜や、誘電体多層膜により構成される。遮光膜410bは、樹脂メッキ等によって基板410aの上面に形成される。図5の導光部211に対応する領域には、遮光膜410bは形成されない。これにより、レーザ光を透過させる導光部411が形成される。 The light-shielding film 410b is made of a material that has a high light-shielding property against the laser light emitted from the laser light source 110 . The light shielding film 410b is composed of, for example, a metal thin film such as chromium or gold, or a dielectric multilayer film. The light shielding film 410b is formed on the upper surface of the substrate 410a by resin plating or the like. The light shielding film 410b is not formed in the region corresponding to the light guide portion 211 in FIG. As a result, a light guide portion 411 that transmits laser light is formed.
 ホルダ420の構成は、図5のホルダ220と同様である。ホルダ420は、3つの開口421と、2つの梁部422と、2つの壁423と、2つの縁部424と、2つの突部425と、を備える。 The configuration of the holder 420 is similar to that of the holder 220 in FIG. The holder 420 has three openings 421 , two beams 422 , two walls 423 , two edges 424 and two protrusions 425 .
 アパーチャ410は、図5の場合と同様の方法で、ホルダ420の上面に設置される。これにより、図11(b)に示すように、アパーチャ410とホルダ420とからなる構造体400が構成される。構造体400は、図6と同様の形態で、回路基板300に設置される。 Aperture 410 is installed on the top surface of holder 420 in a similar manner as in FIG. Thereby, as shown in FIG. 11(b), a structure 400 including an aperture 410 and a holder 420 is formed. The structure 400 is installed on the circuit board 300 in the same manner as in FIG.
 3つの導光部411は、図7(a)、(b)と同様、形状およびピッチP12が調整されればよい。また、基板410aの裏面(Z軸正側の面)にも、遮光膜が形成されてもよい。この場合、導光部411に対応する基板410aの裏面の領域には、遮光膜が形成されない。これにより、基板410aの裏面にも3つの導光部が形成される。これら3つの導光部も、図7(a)、(b)と同様、形状およびピッチP12が調整されればよい。 The shape and pitch P12 of the three light guide portions 411 may be adjusted in the same manner as in FIGS. 7(a) and 7(b). A light-shielding film may also be formed on the back surface of the substrate 410a (the surface on the Z-axis positive side). In this case, the light shielding film is not formed in the region of the back surface of the substrate 410a corresponding to the light guide portion 411. FIG. Accordingly, three light guide portions are also formed on the back surface of the substrate 410a. The shape and pitch P12 of these three light guide portions may be adjusted in the same manner as in FIGS.
 変更例1においても、上記実施形態1と同様の効果が奏され得る。また、変更例1では、アパーチャ410を樹脂材料により簡易に形成できる。 The same effects as in the first embodiment can be obtained in the first modification. Further, in Modification 1, the aperture 410 can be easily formed from a resin material.
 なお、変更例1においても、図9(a)~(h)と同様、導光部411の形状が変更されてもよい。この場合も、導光部411の形状は、近距離の物体からの反射光が過度に受光されることを抑制しつつ、反射光以外の不要な迷光がなるべく光検出器310に入射しないように、導光部411のY軸負側の部分がY軸正側の部分より小さい方が好ましく、さらには、図9(e)~(h)のように、導光部411がY軸方向に分離していることが好ましい。 It should be noted that also in Modification 1, the shape of the light guide portion 411 may be changed as in FIGS. 9(a) to (h). In this case as well, the shape of the light guide part 411 is designed to prevent unnecessary stray light other than the reflected light from entering the photodetector 310 as much as possible while suppressing excessive reception of reflected light from an object at a short distance. , the portion of the light guide portion 411 on the negative side of the Y axis is preferably smaller than the portion on the positive side of the Y axis. preferably separate.
 <変更例2>
 図12(a)、(b)は、それぞれ、変更例2に係る、アパーチャ510およびホルダ520の構成を示す分解斜視図および斜視図である。
<Modification 2>
FIGS. 12A and 12B are an exploded perspective view and a perspective view, respectively, showing configurations of an aperture 510 and a holder 520 according to Modification 2. FIG.
 変更例2では、図11(a)、(b)に示した変更例1における長孔412および壁423に対応する構成が省略されている。また、基板510aを構成する材料として、ガラス等、長孔を形成することが困難な透過性の材料が用いられる。その他の構成は、上記変更例1と同様である。 In Modification 2, the configuration corresponding to the long hole 412 and wall 423 in Modification 1 shown in FIGS. 11(a) and 11(b) is omitted. Further, as a material for forming the substrate 510a, a transmissive material such as glass is used in which it is difficult to form long holes. Other configurations are the same as those of Modification 1 described above.
 アパーチャ510は、基板510aと、遮光膜510bとからなっている。遮光膜510bの形成を省略することにより、3つの導光部511が形成されている。ホルダ520は、3つの開口521と、2つの梁部522と、2つの縁部523と、2つの突部524と、を備える。アパーチャ510は、縁部523の内側に嵌められて、ホルダ520の上面に載置され、接着剤でホルダ520に固定される。これにより、図12(b)の構造体500が構成される。構造体500は、図6と同様の形態で、回路基板300に設置される。 The aperture 510 consists of a substrate 510a and a light shielding film 510b. By omitting the formation of the light shielding film 510b, three light guide portions 511 are formed. The holder 520 has three openings 521 , two beams 522 , two edges 523 and two projections 524 . The aperture 510 is fitted inside the rim 523 and placed on the upper surface of the holder 520 and fixed to the holder 520 with an adhesive. Thus, the structure 500 of FIG. 12(b) is constructed. The structure 500 is installed on the circuit board 300 in the same form as in FIG.
 変更例2においても、上記実施形態1と同様の効果が奏され得る。変更例2においても、図9(a)~(h)と同様、導光部511の形状が変更されてもよい。また、変更例2においても、変更例1と同様、基板510aの裏面(Z軸正側の面)に、遮光膜と導光部が形成されてもよい。 The same effects as in the first embodiment can be obtained in the second modification. Also in Modification 2, the shape of the light guide portion 511 may be changed as in FIGS. 9A to 9H. Also in Modification 2, as in Modification 1, a light-shielding film and a light guide portion may be formed on the rear surface (surface on the Z-axis positive side) of substrate 510a.
 <変更例3>
 図13(a)、(b)は、それぞれ、変更例3に係る、アパーチャ610およびホルダ620の構成を示す分解斜視図および斜視図である。図13(c)は、変更例3に係る、構造体600を裏側から見たときの構造体600の斜視図である。
<Modification 3>
FIGS. 13A and 13B are an exploded perspective view and a perspective view, respectively, showing configurations of an aperture 610 and a holder 620 according to Modification 3. FIG. FIG. 13(c) is a perspective view of the structure 600 when the structure 600 is viewed from the back side according to Modification 3. FIG.
 変更例3の構成では、図5の構成に比べて、アパーチャ610側に壁612が形成され、ホルダ620から梁部と壁が省略されている。また、アパーチャ610は、図5の長孔212に対応する構成を有していない。アパーチャ610およびホルダ620のその他の構成は、図5の構成と同様である。 In the configuration of Modification 3, a wall 612 is formed on the aperture 610 side, and the beam and wall are omitted from the holder 620, compared to the configuration of FIG. Also, the aperture 610 does not have a configuration corresponding to the elongated hole 212 of FIG. Other configurations of aperture 610 and holder 620 are similar to those of FIG.
 アパーチャ610を構成する基板610aは、レーザ光源110から出射されるレーザ光に対して遮光性または吸収率が高い材料からなっている。基板610aの下面に、Y軸方向に延びる壁612が形成されている。アパーチャ610には、図5の導光部211と同様の領域に、上下に貫通する開口が形成され、これにより、3つの導光部611が形成されている。 A substrate 610a that constitutes the aperture 610 is made of a material that has a light shielding property or a high absorption rate with respect to the laser light emitted from the laser light source 110 . A wall 612 extending in the Y-axis direction is formed on the bottom surface of the substrate 610a. The aperture 610 is formed with an opening penetrating vertically in the same area as the light guide section 211 in FIG. 5 , thereby forming three light guide sections 611 .
 ホルダ620は、レーザ光源110から出射されるレーザ光に対して遮光性または吸収率が高い材料からなっている。ホルダ620には、平面視において長方形の角が丸められた形状の開口621が形成されている。また、ホルダ620には、図5の縁部224および突部225に対応する縁部622と突部623が形成されている。アパーチャ610は、縁部622の内側に嵌められて、ホルダ620の上面に載置され、接着剤でホルダ620に固定される。これにより、図13(b)の構造体600が構成される。 The holder 620 is made of a material that has a light shielding property or a high absorption rate with respect to the laser light emitted from the laser light source 110 . The holder 620 is formed with an opening 621 having a rectangular shape with rounded corners in plan view. Further, the holder 620 is formed with an edge portion 622 and a protrusion 623 corresponding to the edge portion 224 and the protrusion 225 of FIG. Aperture 610 fits inside rim 622 and rests on the top surface of holder 620 and is fixed to holder 620 with an adhesive. Thus, the structure 600 of FIG. 13(b) is constructed.
 図13(c)に示すように、壁612のY軸方向の幅は、開口621のY軸方向の幅より僅かに小さい。また、アパーチャ610がホルダ620に設置された状態において、壁612のZ軸正側の面は、ホルダ620のZ軸正側の面と面一になる。構造体600における壁612の位置は、図5の梁部222の位置に一致する。また、壁612のX軸方向の幅は、図5の梁部222のX軸方向の幅と同じである。構造体600は、図6と同様の形態で、回路基板300に設置される。 As shown in FIG. 13(c), the width of the wall 612 in the Y-axis direction is slightly smaller than the width of the opening 621 in the Y-axis direction. In addition, when the aperture 610 is installed in the holder 620 , the Z-axis positive side surface of the wall 612 is flush with the Z-axis positive side surface of the holder 620 . The location of wall 612 in structure 600 corresponds to the location of beam 222 in FIG. The width of the wall 612 in the X-axis direction is the same as the width of the beam 222 in FIG. 5 in the X-axis direction. The structure 600 is installed on the circuit board 300 in the same manner as in FIG.
 変更例3においても、上記実施形態1と同様の効果が奏され得る。変更例3においても、図9(a)~(h)と同様、導光部611の形状が変更されてもよい。 The same effects as those of the first embodiment can be obtained in the third modification. Also in Modification 3, the shape of the light guide portion 611 may be changed as in FIGS. 9A to 9H.
 なお、変更例3では、アパーチャ610に形成された壁612が、隣の光検出器310への散乱光の漏れ込みを抑制する遮光壁を構成する。すなわち、導光部611のエッジで散乱した反射光の散乱光は、壁612によって遮光される。これにより、光検出器310から出力される検出信号の精度を高めることができ、結果、物体の検出精度を高めることができる。 Note that in Modification 3, the wall 612 formed in the aperture 610 constitutes a light shielding wall that suppresses scattered light from leaking into the adjacent photodetector 310 . That is, the scattered light of the reflected light scattered at the edge of the light guide section 611 is blocked by the wall 612 . Thereby, the precision of the detection signal output from the photodetector 310 can be improved, and as a result, the detection precision of the object can be improved.
 <変更例4>
 図14(a)は、変更例4に係る、アパーチャ700の構成を示す斜視図である。図14(b)は、変更例4に係る、裏側から見たときのアパーチャ700の構成を示す斜視図である。
<Modification 4>
FIG. 14A is a perspective view showing the configuration of an aperture 700 according to Modification 4. FIG. FIG. 14(b) is a perspective view showing the configuration of the aperture 700 when viewed from the back side according to Modification 4. FIG.
 変更例4では、実施形態1に比べて、ホルダが省略され、アパーチャ700が直接回路基板300に設置される。 In Modification 4, the holder is omitted and the aperture 700 is installed directly on the circuit board 300 as compared with the first embodiment.
 アパーチャ700は、基板700aからなっている。基板700aは、レーザ光源110から出射されるレーザ光に対して遮光性または吸収率が高い材料からなっている。たとえば、基板700aは、SUS等の金属または黒色ポリエチレン等の樹脂からなっている。基板700aは、平面視において長方形の角が丸められた形状を有する。 The aperture 700 consists of a substrate 700a. The substrate 700a is made of a material that has a light shielding property or a high absorption rate with respect to the laser light emitted from the laser light source 110 . For example, the substrate 700a is made of metal such as SUS or resin such as black polyethylene. The substrate 700a has a rectangular shape with rounded corners in plan view.
 基板700aには、上下に貫通する3つの開口により、3つの導光部701が形成されている。基板700aの下面には、3つの凹部702が形成されている。3つの凹部702の深さは、一定であり、互いに同じである。これら凹部702の領域に、3つの導光部701が配置されている。隣り合う凹部702の間に、梁部703が形成されている。また、基板700aの下面には、X軸方向の両端に、2つの突部704が形成されている。2つの突部704は、基板700aのY軸方向の中間位置に配置されている。 Three light guide portions 701 are formed in the substrate 700a by three openings penetrating vertically. Three recesses 702 are formed in the lower surface of the substrate 700a. The depths of the three recesses 702 are constant and the same as each other. Three light guide portions 701 are arranged in the regions of these recesses 702 . Beams 703 are formed between adjacent recesses 702 . Two protrusions 704 are formed at both ends in the X-axis direction on the lower surface of the substrate 700a. The two protrusions 704 are arranged in the middle position of the substrate 700a in the Y-axis direction.
 凹部702および突部704を除いて、アパーチャ700(基板700a)の厚みは一定である。アパーチャ700は、プレス加工や樹脂成型等により一体形成される。 The thickness of the aperture 700 (substrate 700a) is constant except for the recess 702 and the protrusion 704. The aperture 700 is integrally formed by press working, resin molding, or the like.
 アパーチャ700の2つの突部704が、図6の2つの受け孔301にそれぞれ嵌められる。この状態で、アパーチャ700が、回路基板300に接着固定される。この場合も、3つの導光部701は、3つの光検出器310およびその受光面311に対して、図7(a)、(b)の位置関係となるよう、形状およびピッチP12が調整される。 The two projections 704 of the aperture 700 are fitted into the two receiving holes 301 of FIG. 6 respectively. In this state, aperture 700 is adhesively fixed to circuit board 300 . In this case as well, the three light guides 701 are adjusted in shape and pitch P12 so that the three photodetectors 310 and their light receiving surfaces 311 have the positional relationships shown in FIGS. be.
 変更例4においても、上記実施形態1と同様の効果が奏され得る。また、変更例4では、ホルダが省略されるため、構成の簡素化と、アパーチャ700の設置作業の簡略化を図ることができる。変更例4においても、図9(a)~(h)と同様、導光部701の形状が変更されてもよい。 Modification 4 can also achieve the same effects as in Embodiment 1 above. Further, in Modification 4, since the holder is omitted, the simplification of the configuration and the simplification of the installation work of the aperture 700 can be achieved. Also in Modification 4, the shape of the light guide portion 701 may be changed as in FIGS. 9A to 9H.
 なお、変更例4では、アパーチャ700の下面に形成された梁部703が、隣の光検出器310への散乱光の漏れ込みを抑制する遮光壁を構成する。すなわち、導光部701のエッジで散乱した反射光の散乱光は、梁部703によって遮光される。これにより、光検出器310から出力される検出信号の精度を高めることができ、結果、物体の検出精度を高めることができる。 Note that, in Modification 4, the beam portion 703 formed on the lower surface of the aperture 700 constitutes a light shielding wall that suppresses scattered light from leaking into the adjacent photodetector 310 . That is, the scattered light of the reflected light scattered by the edge of the light guide section 701 is blocked by the beam section 703 . Thereby, the precision of the detection signal output from the photodetector 310 can be improved, and as a result, the detection precision of the object can be improved.
 <変更例5>
 図15(a)は、変更例5に係る、アパーチャ800の構成を示す斜視図である。図15(b)は、変更例5に係る、裏側から見たときのアパーチャ800の構成を示す斜視図である。
<Modification 5>
FIG. 15A is a perspective view showing the configuration of an aperture 800 according to Modification 5. FIG. FIG. 15(b) is a perspective view showing the configuration of the aperture 800 when viewed from the back side according to Modification 5. FIG.
 変更例5では、変更例4と同様、ホルダが省略され、アパーチャ800が直接回路基板300に設置される。 In Modification 5, as in Modification 4, the holder is omitted and the aperture 800 is installed directly on the circuit board 300 .
 アパーチャ800は、基板800aと、遮光膜800bとからなっている。基板800aは、レーザ光源110から出射されるレーザ光に対して透光性が高い材料からなっている。たとえば、基板800aは、透明ポリカーボネイトまたは透明アクリル等の樹脂からなっている。基板800aは、平面視において長方形の角が丸められた形状を有する。基板800aは、樹脂成型等により一体形成される。 The aperture 800 consists of a substrate 800a and a light shielding film 800b. The substrate 800 a is made of a material having high translucency to the laser light emitted from the laser light source 110 . For example, the substrate 800a is made of resin such as transparent polycarbonate or transparent acrylic. The substrate 800a has a rectangular shape with rounded corners in plan view. The substrate 800a is integrally formed by resin molding or the like.
 遮光膜800bは、レーザ光源110から出射されるレーザ光に対して遮光性が高い材料からなっている。遮光膜800bは、たとえば、クロムや金等の金属薄膜や、誘電体多層膜により構成される。遮光膜800bは、樹脂メッキ等によって基板800aの上面に形成される。図5の導光部211に対応する領域には、遮光膜800bは形成されない。これにより、レーザ光を透過させる導光部801が形成される。 The light shielding film 800b is made of a material that has a high light shielding property against the laser light emitted from the laser light source 110 . The light shielding film 800b is composed of, for example, a metal thin film such as chromium or gold, or a dielectric multilayer film. The light shielding film 800b is formed on the upper surface of the substrate 800a by resin plating or the like. The light shielding film 800b is not formed in the region corresponding to the light guide portion 211 in FIG. As a result, a light guide portion 801 that transmits laser light is formed.
 アパーチャ800の下面には、一定深さの凹部802が形成されている。平面視における凹部802の形状は、長方形の角を丸めた形状である。また、アパーチャ800の下面には、X軸方向の両端に、2つの突部803が形成されている。2つの突部803は、アパーチャ800のY軸方向の中間位置に配置されている。凹部802および突部803を除いて、アパーチャ800の厚みは一定である。 A concave portion 802 with a constant depth is formed on the lower surface of the aperture 800 . The shape of the concave portion 802 in plan view is a rectangular shape with rounded corners. Two protrusions 803 are formed on the lower surface of the aperture 800 at both ends in the X-axis direction. The two protrusions 803 are arranged in the middle position of the aperture 800 in the Y-axis direction. The thickness of aperture 800 is constant except for recess 802 and protrusion 803 .
 アパーチャ800の2つの突部803が、図6の2つの受け孔301にそれぞれ嵌められる。この状態で、アパーチャ800が、回路基板300に接着固定される。この場合も、3つの導光部801は、3つの光検出器310およびその受光面311に対して、図7(a)、(b)の位置関係となるよう、形状およびピッチP12が調整される。 The two protrusions 803 of the aperture 800 are fitted into the two receiving holes 301 of FIG. 6, respectively. In this state, aperture 800 is adhesively fixed to circuit board 300 . In this case as well, the three light guides 801 are adjusted in shape and pitch P12 so that the three photodetectors 310 and their light receiving surfaces 311 have the positional relationships shown in FIGS. be.
 変更例5においても、上記実施形態1と同様の効果が奏され得る。また、変更例5では、ホルダが省略されるため、構成の簡素化と、アパーチャ800の設置作業の簡略化を図ることができる。変更例5においても、図9(a)~(h)と同様、導光部801の形状が変更されてもよい。 The same effects as in the first embodiment can be obtained in the fifth modification. Further, in Modification 5, since the holder is omitted, the simplification of the configuration and the simplification of the installation work of the aperture 800 can be achieved. Also in Modification 5, the shape of the light guide portion 801 may be changed as in FIGS. 9A to 9H.
 なお、変更例5では、アパーチャ800を回路基板300に設置した状態において、隣り合う光検出器310の間に遮光壁が配置されない。したがって、導光部701のエッジで散乱した反射光の散乱光が、隣の光検出器310の受光面311に漏れ込むことを防ぐためには、たとえば、凹部802または回路基板300に別途、この散乱光を遮光するための遮光壁を設置する構成を用い得る。これにより、光検出器310から出力される検出信号の精度を高めることができ、結果、物体の検出精度を高めることができる。 Note that in Modification 5, no light shielding wall is arranged between the adjacent photodetectors 310 when the aperture 800 is installed on the circuit board 300 . Therefore, in order to prevent the scattered light of the reflected light scattered at the edge of the light guide section 701 from leaking into the light receiving surface 311 of the adjacent photodetector 310, for example, the concave section 802 or the circuit board 300 should be provided separately for this scattered light. A configuration in which a light shielding wall is installed for shielding light may be used. Thereby, the precision of the detection signal output from the photodetector 310 can be improved, and as a result, the detection precision of the object can be improved.
 変更例5においても、図9(a)~(h)と同様、導光部801の形状が変更されてもよい。また、変更例5においても、変更例1、2と同様、基板800aの裏面(Z軸正側の面)に、遮光膜と導光部が形成されてもよい。 Also in modification example 5, the shape of the light guide part 801 may be changed, as in FIGS. 9(a) to (h). Further, in Modification 5, similarly to Modifications 1 and 2, a light shielding film and a light guide portion may be formed on the rear surface (the surface on the Z-axis positive side) of substrate 800a.
 <実施形態2>
 実施形態2では、光検出器の受光面上における反射光の範囲を制限する手段として、制御回路によってマトリクスイメージセンサの受光面上に規定された受光領域が用いられる。
<Embodiment 2>
In the second embodiment, a light receiving area defined on the light receiving surface of the matrix image sensor by the control circuit is used as means for limiting the range of reflected light on the light receiving surface of the photodetector.
 図16(a)、(c)は、それぞれ、実施形態2に係る、受光部150の構成を示す分解斜視図および斜視図、図16(b)は、カバー910の裏面の構成を示す斜視図である。 16(a) and 16(c) are an exploded perspective view and a perspective view, respectively, showing the configuration of the light receiving unit 150 according to the second embodiment, and FIG. 16(b) is a perspective view showing the configuration of the rear surface of the cover 910. is.
 実施形態2では、物体からの反射光が、イメージセンサ920によって受光される。イメージセンサ920は、X軸方向およびY軸方向にマトリクス状に画素が並ぶマトリクスイメージセンサである。イメージセンサ920は、たとえば、CMOSイメージセンサや、CCDによって構成される。平面視におけるイメージセンサ920の形状は長方形である。 In the second embodiment, reflected light from an object is received by the image sensor 920 . The image sensor 920 is a matrix image sensor in which pixels are arranged in a matrix in the X-axis direction and the Y-axis direction. Image sensor 920 is configured by, for example, a CMOS image sensor or a CCD. The shape of the image sensor 920 in plan view is a rectangle.
 イメージセンサ920は、画素がマトリクス状に並ぶ方形状の受光面921と、受光面921の周囲に配置された一定高さの縁部922とを備える。縁部922の内周と、受光面921の外周との間に、傾斜面923が形成されている。傾斜面923は、受光面921に向かうにつれて低くなっている。 The image sensor 920 includes a rectangular light receiving surface 921 in which pixels are arranged in a matrix, and an edge portion 922 with a constant height arranged around the light receiving surface 921 . An inclined surface 923 is formed between the inner circumference of the edge portion 922 and the outer circumference of the light receiving surface 921 . The inclined surface 923 becomes lower toward the light receiving surface 921 .
 イメージセンサ920の上面に、カバー910が重ねられる。カバー910は、板状の部材である。カバー910は、レーザ光源110から出射されるレーザ光に対して遮光性を有する材料からなっている。カバー910には、3つの開口911が、X軸方向に並んで形成されている。平面視における開口911の形状は、Y軸方向に長い長方形の角を丸めた形状である。開口911は、カバー910を上下に貫通している。 A cover 910 is overlaid on the upper surface of the image sensor 920 . The cover 910 is a plate-like member. The cover 910 is made of a material that blocks laser light emitted from the laser light source 110 . Three openings 911 are formed in the cover 910 side by side in the X-axis direction. The shape of the opening 911 in plan view is a rectangular shape elongated in the Y-axis direction with rounded corners. The opening 911 vertically penetrates the cover 910 .
 隣り合う開口911の間に梁部912が形成されている。また、開口911の上端とカバー910の上面との間に傾斜面913が形成されている。傾斜面913は、開口911に向かうにつれて低くなっている。さらに、図16(b)に示すように、カバー910の下面には、一定高さで隆起した台座部914が形成されている。台座部914の外周とカバー910の下面との間に傾斜面915が形成されている。傾斜面915は、カバー910の外周に向かうにつれて低くなっている。 A beam portion 912 is formed between adjacent openings 911 . An inclined surface 913 is formed between the upper end of the opening 911 and the upper surface of the cover 910 . The inclined surface 913 becomes lower toward the opening 911 . Furthermore, as shown in FIG. 16(b), a pedestal portion 914 is formed on the lower surface of the cover 910 and is raised at a constant height. An inclined surface 915 is formed between the outer circumference of the pedestal portion 914 and the lower surface of the cover 910 . Inclined surface 915 becomes lower toward the outer periphery of cover 910 .
 台座部914が、イメージセンサ920側の縁部922の内側に嵌るように、カバー910がイメージセンサ920の上面に載置される。この状態で、カバー910がイメージセンサ920に接着固定される。これにより、図16(c)のように、受光部150が構成される。 The cover 910 is placed on the upper surface of the image sensor 920 so that the pedestal part 914 fits inside the edge part 922 on the image sensor 920 side. In this state, the cover 910 is adhesively fixed to the image sensor 920 . Thus, the light receiving section 150 is configured as shown in FIG. 16(c).
 図17(a)は、受光部150の平面図、図17(b)は、図17(a)のB1-B1断面図である。 17(a) is a plan view of the light receiving section 150, and FIG. 17(b) is a cross-sectional view along B1-B1 in FIG. 17(a).
 実施形態2では、3つのレーザ素子111から出射されたレーザ光の物体からの反射光が、カバー910の開口911を介して、イメージセンサ920の受光面921に集光される。ここで、イメージセンサ920の受光面921には、予め、反射光を検出するための受光領域R11が規定される。受光領域R11は、図7(a)、(b)に示した3つの導光部211により反射光が導かれる領域に対応する。 In the second embodiment, reflected light from an object of laser light emitted from the three laser elements 111 is focused on the light receiving surface 921 of the image sensor 920 via the opening 911 of the cover 910 . Here, on the light receiving surface 921 of the image sensor 920, a light receiving region R11 for detecting reflected light is defined in advance. The light receiving region R11 corresponds to the region where the reflected light is guided by the three light guides 211 shown in FIGS. 7(a) and 7(b).
 すなわち、上記実施形態1および変更例1~5では、アパーチャの導光部によって受光すべき反射光の範囲が制限された。これに対し、実施形態2では、イメージセンサ920の受光面921に受光領域R11を規定することによって、受光すべき反射光の範囲が制限される。 That is, in Embodiment 1 and Modifications 1 to 5, the range of reflected light to be received is limited by the light guide portion of the aperture. In contrast, in the second embodiment, the range of reflected light to be received is limited by defining the light receiving area R11 on the light receiving surface 921 of the image sensor 920 .
 図18(a)~(d)は、受光領域R11の設定方法を模式的に示す図である。 FIGS. 18(a) to 18(d) are diagrams schematically showing the setting method of the light receiving region R11.
 まず、図18(a)のように、理想的な受光領域R10が、イメージセンサ920の受光面921に設定される。理想的な受光領域R10は、たとえば、実施形態1に示したアパーチャ210を、イメージセンサ920の受光面921に対して、図7(b)に示した間隔H1で配置した場合に、3つの導光部211の領域が、3つの反射光の中心軸CA1に沿ってイメージセンサ920の受光面921上に投影される領域に対応する。 First, an ideal light receiving area R10 is set on the light receiving surface 921 of the image sensor 920, as shown in FIG. 18(a). The ideal light receiving region R10 is, for example, three leads when the aperture 210 shown in Embodiment 1 is arranged with respect to the light receiving surface 921 of the image sensor 920 at the interval H1 shown in FIG. The area of the light part 211 corresponds to the area projected onto the light receiving surface 921 of the image sensor 920 along the central axis CA1 of the three reflected lights.
 次に、図18(b)のように、イメージセンサ920の受光面921上に分布する画素のうち、理想的な受光領域R10の外周部の境界に掛かる画素を特定し、特定した画素群を、反射光の検出に用いる受光領域R11の外周部の境界に設定する。たとえば、図18(b)の範囲A10における理想的な受光領域R10の境界と検出に用いる受光領域R11の境界との関係は、図18(c)のようになる。 Next, as shown in FIG. 18B, among the pixels distributed on the light receiving surface 921 of the image sensor 920, the pixels that overlap the boundary of the outer peripheral portion of the ideal light receiving region R10 are specified, and the specified pixel group is , is set at the boundary of the outer periphery of the light receiving region R11 used for detecting the reflected light. For example, the relationship between the boundary of the ideal light receiving region R10 and the boundary of the light receiving region R11 used for detection in the range A10 of FIG. 18(b) is as shown in FIG. 18(c).
 こうして、図18(d)に示すように、反射光の検出に用いる受光領域R11が設定される。イメージセンサ920の受光面921にマトリクス状に分布する画素のうち、受光領域R11の内部に含まれる画素が、反射光の検出に用いられる。たとえば、受光領域R11の内部に含まれる画素のトータルの画素値が、反射光の検出結果として用いられる。便宜上、図16(a)、(c)および図17(a)には、3つのレーザ素子111から出射されたレーザ光の物体からの反射光についてそれぞれ規定された3つの受光領域R11が、破線で示されている。 Thus, as shown in FIG. 18(d), a light receiving region R11 used for detecting reflected light is set. Of the pixels distributed in a matrix on the light receiving surface 921 of the image sensor 920, the pixels included inside the light receiving region R11 are used for detecting reflected light. For example, the total pixel value of the pixels included inside the light receiving region R11 is used as the reflected light detection result. For convenience, FIGS. 16(a), (c) and 17(a) show three light receiving regions R11 respectively defined for the reflected light from the object of the laser light emitted from the three laser elements 111, indicated by dashed lines. is indicated.
 図19は、実施形態2に係る、回路部70の構成を示すブロック図である。 FIG. 19 is a block diagram showing the configuration of the circuit section 70 according to the second embodiment.
 図19の回路部70は、たとえば、図2の回転部60に配置されている。便宜上、図19には、1つの光学ユニット40に対する回路部70が示されている。各光学ユニット40の回路部70で取得された物体の検出結果(物体の有無および物体までの距離)は、随時、通信部(たとえば、非接触通信部)を介して、回転部60側の回路部70から固定部10側の回路部に通信され、さらに、固定部10側の回路部から外部装置に送信される。 The circuit section 70 in FIG. 19 is arranged, for example, in the rotating section 60 in FIG. For convenience, FIG. 19 shows the circuit section 70 for one optical unit 40 . The object detection results (presence or absence of the object and the distance to the object) acquired by the circuit section 70 of each optical unit 40 are sent to the circuit on the rotating section 60 side at any time via a communication section (for example, a non-contact communication section). The signal is communicated from the unit 70 to the circuit unit on the fixed unit 10 side, and further transmitted from the circuit unit on the fixed unit 10 side to the external device.
 回路部70は、制御回路71と、駆動回路72と、処理回路73とを備える。制御回路71は、CPU等の演算処理ユニットやメモリを備え、メモリに記憶されたプログラムに従って各部を制御する。駆動回路72は、制御回路71からの制御に応じて、レーザ光源110(3つのレーザ素子111)をパルス発光させる。処理回路73は、制御回路71からの制御に応じて、イメージセンサ920を駆動し、イメージセンサ920の各画素の画素値を制御回路71に出力する。 The circuit section 70 includes a control circuit 71 , a drive circuit 72 and a processing circuit 73 . The control circuit 71 includes an arithmetic processing unit such as a CPU and a memory, and controls each section according to a program stored in the memory. The drive circuit 72 causes the laser light source 110 (three laser elements 111 ) to emit pulse light under the control of the control circuit 71 . The processing circuit 73 drives the image sensor 920 according to the control from the control circuit 71 and outputs the pixel value of each pixel of the image sensor 920 to the control circuit 71 .
 制御回路71は、処理回路73から入力される各画素の画素値のうち、図16(a)、(c)および図17(a)に示した受光領域R11に含まれる画素の画素値のみを抽出し、抽出した画素値を合算したトータルの画素値を、各反射光の検出結果として取得する。制御回路71は、図18(d)に示す受光領域R11を、反射光ごとに、イメージセンサ920の画素群に予め規定する。制御回路71は、各受光領域R11に含まれる画素群の画素値を合算した画素値を、各反射光の検出結果として取得する。 The control circuit 71 selects only the pixel values of the pixels included in the light-receiving region R11 shown in FIGS. A total pixel value obtained by summing the extracted pixel values is acquired as a detection result of each reflected light. The control circuit 71 predefines a light receiving region R11 shown in FIG. 18(d) in the pixel group of the image sensor 920 for each reflected light. The control circuit 71 obtains a pixel value obtained by summing the pixel values of the pixel groups included in each light receiving region R11 as the detection result of each reflected light.
 そして、制御回路71は、レーザ光源110をパルス発光させてから一定期間内に、何れかの受光領域R11において反射光の検出がなされた(たとえば、受光領域R1のトータルの画素値が所定の閾値を超えた)場合に、当該受光領域R11に対応するレーザ光の投射方向に物体が存在すると判定し、さらに、パルス発光のタイミングと反射光の検出タイミングとの時間差に基づいて、当該物体までの距離を算出する。こうして、受光領域R1の画素値に基づいて、投射方向における物体の有無の検出および当該物体までの距離の算出が、回転部60の所定の回転角(たとえば1°)ごとに行われる。 Then, the control circuit 71 detects reflected light in any of the light-receiving regions R11 within a certain period of time after the laser light source 110 emits pulse light (for example, when the total pixel value of the light-receiving region R1 reaches a predetermined threshold value). ), it is determined that an object exists in the projection direction of the laser light corresponding to the light receiving region R11, and further, based on the time difference between the timing of pulse emission and the detection timing of reflected light, the distance to the object is determined. Calculate the distance. Thus, based on the pixel values of the light receiving region R1, detection of the presence or absence of an object in the projection direction and calculation of the distance to the object are performed for each predetermined rotation angle (for example, 1°) of the rotating section 60. FIG.
 <実施形態2の効果>
 図17(a)に示すように、受光領域R11が、光軸の離間方向(Y軸方向)に沿って配置されているため、物体までの距離の変化に応じて反射光の集光スポットが移動しても、受光領域R11に反射光が照射される。よって、受光領域R11からの出力信号により適正に、物体を検出できる。また、受光領域R11は、イメージセンサ920の受光面921上に規定されるだけであるため、受光領域R11から円滑かつ適正に出力信号を得ることができる。よって、反射光の検出精度を高く維持できる。さらに、レーザレーダ1の仕様や検出距離レンジ等に変更が生じた場合には、その変更に応じて、受光領域R11を規定し直すだけでよい。このため、レーザレーダ1の仕様や検出距離レンジ等の変更に円滑に対応することができる。
<Effect of Embodiment 2>
As shown in FIG. 17A, the light-receiving region R11 is arranged along the separation direction (Y-axis direction) of the optical axis, so that the focused spot of the reflected light changes according to the change in the distance to the object. Even if it moves, the light-receiving region R11 is irradiated with the reflected light. Therefore, the object can be properly detected by the output signal from the light receiving region R11. Further, since the light receiving region R11 is defined only on the light receiving surface 921 of the image sensor 920, an output signal can be smoothly and properly obtained from the light receiving region R11. Therefore, it is possible to maintain a high detection accuracy of the reflected light. Furthermore, when the specifications of the laser radar 1, the detection distance range, etc. are changed, it is only necessary to re-define the light-receiving region R11 according to the change. For this reason, it is possible to smoothly cope with changes in the specifications of the laser radar 1, the detection distance range, and the like.
 なお、実施形態2においても、受光領域R11の形状が、図9(b)~(h)のように変更されてもよい。この場合も、受光領域R11のY軸負側の部分がY軸正側の部分より小さく設定されることにより、近距離の物体から反射光を受光領域R11が過度に受光することを抑止できる。また、受光領域R11の形状を、図9(b)のようにT字状の形状に設定し、あるいは、図9(e)~(h)のようにY軸方向に分離した形状に設定することにより、近距離の物体から反射光を受光領域R11が過度に受光することをより一層抑制でき、且つ、反射光以外の不要な迷光が受光領域R11に入射することを抑制できる。これにより、物体の検出精度を高めることができる。 Also in Embodiment 2, the shape of the light receiving region R11 may be changed as shown in FIGS. 9(b) to 9(h). In this case as well, the portion of the light receiving region R11 on the negative side of the Y axis is set smaller than the portion on the positive side of the Y axis, thereby preventing the light receiving region R11 from excessively receiving reflected light from an object at a short distance. Further, the shape of the light receiving region R11 is set to a T-shaped shape as shown in FIG. 9B, or set to a shape separated in the Y-axis direction as shown in FIGS. As a result, it is possible to further prevent the light receiving region R11 from excessively receiving reflected light from an object at a short distance, and to prevent unnecessary stray light other than the reflected light from entering the light receiving region R11. Thereby, the object detection accuracy can be improved.
 なお、上記の処理では、処理回路73から出力される全ての画素の画素値から受光領域R11に対応する画素の画素値を制御回路71が抽出して、受光領域R11における反射光の受光が検出されたが、受光領域R11に対応する画素の画素値のみが制御回路71に出力されるよう、予め、制御回路71が、処理回路73を制御してもよい。 In the above process, the control circuit 71 extracts the pixel values of the pixels corresponding to the light receiving region R11 from the pixel values of all the pixels output from the processing circuit 73, and the reception of the reflected light in the light receiving region R11 is detected. However, the control circuit 71 may control the processing circuit 73 in advance so that only the pixel values of the pixels corresponding to the light receiving region R11 are output to the control circuit 71. FIG.
 <その他の変更例>
 レーザレーダ1の構成は、上記実施形態1、2および変更例1~5に示した構成以外に、種々の変更が可能である。
<Other modification examples>
The configuration of the laser radar 1 can be modified in various ways other than the configurations shown in the first and second embodiments and modifications 1-5.
 たとえば、導光部および受光領域R11の形状は、光軸A1、A2の離間方向に沿った形状である限りにおいて、図9(a)~(h)以外の形状であってもよい。 For example, the shape of the light guide portion and the light receiving region R11 may be shapes other than those shown in FIGS.
 また、図9(e)~(h)では、分離後の導光部のサイズが、X軸方向およびY軸方向の両方において相違したが、X軸方向およびY軸方向の何れか一方のみにおいて相違してもよく、あるいは、分離後の導光部のサイズが同じであってもよい。 In addition, in FIGS. 9E to 9H, the sizes of the light guide portions after separation are different in both the X-axis direction and the Y-axis direction, but only in either the X-axis direction or the Y-axis direction. They may be different, or the sizes of the light guides after separation may be the same.
 なお、図9(e)~(h)のように導光部がY軸方向に分離される場合は、分離後の導光部の数、配置、形状およびサイズを調整することにより、図10(a)に示したグラフの波形をより細かく制御できる。よって、この構成では、図10(a)に示したグラフの波形が所望の波形となるように、分離後の導光部の数、配置、形状およびサイズが調整されればよい。分離後の導光部の形状は、互いに同じ種類の形状でなくてもよく、たとえば、丸型(円形、楕円)と三角型とが混在していてもよい。また、導光部がX軸方向にもさらに分離していてもよい。以上の点は、実施形態2において受光領域R11をY軸方向に分離させる場合も同様である。 When the light guide portions are separated in the Y-axis direction as shown in FIGS. 9(e) to (h), by adjusting the number, arrangement, shape and size of the light guide portions after separation, the The waveform of the graph shown in (a) can be controlled more finely. Therefore, in this configuration, the number, arrangement, shape, and size of the light guide sections after separation may be adjusted so that the waveform of the graph shown in FIG. 10A becomes a desired waveform. The shapes of the light guide portions after separation may not be of the same type, and may be, for example, a mixture of round (circular, elliptical) and triangular shapes. Also, the light guide portions may be further separated in the X-axis direction. The above point is the same when separating the light receiving region R11 in the Y-axis direction in the second embodiment.
 また、アパーチャおよびホルダの材料は、上記実施形態1および変更例1~5に示した材料に限られるものではない。たとえば、アパーチャおよびホルダの材料としてセラミックが用いられてもよい。 Also, the materials of the aperture and the holder are not limited to the materials shown in the first embodiment and modifications 1 to 5 above. For example, ceramic may be used as the material for the aperture and holder.
 また、レーザ素子111および光検出器310の数は3つに限られるものではなく、その他の数であってもよい。 Also, the number of laser elements 111 and photodetectors 310 is not limited to three, and may be other numbers.
 また、上記実施形態1、2および変更例1~5では、光検出器310ごとにレーザ素子111が配置されたが、レーザ光源110から1つのレーザ光のみが出射され、ミラー42で反射されたレーザ光(投射光)がZ軸方向に広がるように、投射光学系LS1が構成されてもよい。この場合、3つの光検出器310は、たとえば、Z軸方向に広がったレーザ光(投射光)をZ軸方向に3つの角度範囲に分割した3つの部分について、物体からの反射光をそれぞれ受光する。 Further, in Embodiments 1 and 2 and Modifications 1 to 5, the laser element 111 is arranged for each photodetector 310, but only one laser beam is emitted from the laser light source 110 and reflected by the mirror 42. The projection optical system LS1 may be configured such that the laser light (projection light) spreads in the Z-axis direction. In this case, the three photodetectors 310 respectively receive the reflected light from the object for three parts obtained by dividing the laser light (projection light) spread in the Z-axis direction into three angular ranges in the Z-axis direction. do.
 また、上記実施形態では、複数の光学ユニット40が、回転軸R0の周方向に沿って等間隔(60°間隔)で配置されたが、必ずしも等間隔に設置されなくてもよい。 Also, in the above embodiment, the plurality of optical units 40 are arranged at equal intervals (60° intervals) along the circumferential direction of the rotation axis R0, but they do not necessarily have to be arranged at equal intervals.
 また、6つの光学ユニット40からそれぞれミラー42が省略され、6つの構造体41が、回転軸R0に垂直な平面に対して互いに異なる傾き角となるように、放射状に設置されてもよい。 Alternatively, the mirrors 42 may be omitted from the six optical units 40, and the six structures 41 may be arranged radially so as to have different tilt angles with respect to a plane perpendicular to the rotation axis R0.
 また、上記実施形態1および変更例1~5では、3つの反射光にそれぞれ対応する3つの光検出器311が配置されたが、3つの光検出器311に代えて、3つの反射光の照射領域をカバーする広さの受光面を有する1つのイメージセンサが配置されてもよい。この場合、イメージセンサの受光面は、たとえば、X軸方向に3つの領域に区分され、これら3つの領域にそれぞれ3つの反射光が入射するよう、イメージセンサが配置される。そして、各領域の画素群のトータルの画素値が、各反射光の検出結果として取得される。 Further, in Embodiment 1 and Modifications 1 to 5, the three photodetectors 311 are arranged to correspond to the three reflected lights, respectively. One image sensor having a light-receiving surface wide enough to cover the area may be arranged. In this case, the light-receiving surface of the image sensor is divided into, for example, three areas in the X-axis direction, and the image sensor is arranged so that three reflected lights are incident on each of these three areas. Then, the total pixel value of the pixel group in each area is acquired as the detection result of each reflected light.
 また、上記実施形態1および変更例1~3では、ホルダが1つの部材で構成されたが、複数の部材からなる構成であってもよい。また、光検出器ごとに、アパーチャとホルダとの組が回路基板300に設置されてもよい。 Further, in the first embodiment and modifications 1 to 3, the holder is composed of one member, but may be composed of a plurality of members. Also, a set of an aperture and a holder may be installed on the circuit board 300 for each photodetector.
 また、レーザレーダ1は、必ずしも、距離測定機能を有していなくてもよく、光検出器310またはイメージセンサ920からの信号により投射方向に物体が存在するか否かを検出する機能のみを備えていてもよい。 Also, the laser radar 1 does not necessarily have a distance measurement function, and only has a function of detecting whether or not an object exists in the projection direction based on a signal from the photodetector 310 or the image sensor 920. may be
 また、光学ユニット40の光学系の構成は、上記実施形態1、2および変更例1~5に示された構成に限られるものではない。たとえば、集光レンズ130から開口部131が省略され、投射光学系LS1の光軸A1が集光レンズ130に掛からないように、投射光学系LS1と受光光学系LS2とが離されてもよい。 Also, the configuration of the optical system of the optical unit 40 is not limited to the configurations shown in the first and second embodiments and modifications 1 to 5 above. For example, the opening 131 may be omitted from the condensing lens 130, and the projection optical system LS1 and the light receiving optical system LS2 may be separated so that the optical axis A1 of the projection optical system LS1 does not overlap the condensing lens 130.
 また、上記実施形態1、2および変更例1~5では、レーザレーダ1に複数の光学ユニット40が設置されたが、レーザレーダ1が投射光学系LS1と受光光学系LS2の組を1つだけ備える構成であってもよい。また、レーザレーダ1は、必ずしも、投射光学系LS1と受光光学系LS2の組を回転軸について回転させる構成でなくてもよく、固定された目標領域に投射光を投射し、その反射光を受光して、当該目標領域に対する物体検出を行う構成であってもよい。 In the first and second embodiments and modification examples 1 to 5, a plurality of optical units 40 are installed in the laser radar 1. It may be a configuration provided. In addition, the laser radar 1 does not necessarily have a configuration in which the set of the projection optical system LS1 and the light receiving optical system LS2 rotates about the rotation axis, and projects the projection light onto a fixed target area and receives the reflected light. Then, the object detection for the target area may be performed.
 この他、本発明の実施形態は、特許請求の範囲に示された技術的思想の範囲内において、適宜、種々の変更が可能である。 In addition, the embodiments of the present invention can be appropriately modified in various ways within the scope of the technical ideas indicated in the claims.
 1 レーザレーダ
 110 レーザ光源
 210、410、510、610、700、800 アパーチャ
 210a、410a、510a、610a、700a、800a 基板
 410b、510b、800b 遮光膜
 211、411、511、611、701、801 導光部
 220、420、520、620 ホルダ
 222、422、522、703 梁部(遮光壁)
 223、423、612 壁(遮光壁)
 310 光検出器
 311 受光面
 920 イメージセンサ
 921 受光面
 LS1 投射光学系
 LS2 受光光学系
 A1、A2 光軸
 R1 受光領域
1 laser radar 110 laser light source 210, 410, 510, 610, 700, 800 aperture 210a, 410a, 510a, 610a, 700a, 800a substrate 410b, 510b, 800b light shielding film 211, 411, 511, 611, 701, 801 light guide Part 220, 420, 520, 620 Holder 222, 422, 522, 703 Beam (light shielding wall)
223, 423, 612 walls (light shielding walls)
310 photodetector 311 light receiving surface 920 image sensor 921 light receiving surface LS1 projection optical system LS2 light receiving optical system A1, A2 optical axis R1 light receiving area

Claims (17)

  1.  レーザ光源から出射されたレーザ光を投射する投射光学系と、
     物体によって前記レーザ光が反射された反射光を光検出器に集光させる受光光学系と、を備え、
     前記投射光学系と前記受光光学系は、それぞれの光軸が互いに離間して配置され、
     前記光検出器の受光面上における前記反射光の範囲を制限する手段を有し、
     前記範囲を制限する手段は、前記光軸の離間方向に沿って配置されている、
    ことを特徴とするレーザレーダ。
     
    a projection optical system for projecting laser light emitted from a laser light source;
    a light-receiving optical system that collects the reflected light of the laser light reflected by an object on a photodetector;
    the optical axes of the projection optical system and the light receiving optical system are spaced apart from each other;
    having means for limiting the range of the reflected light on the light receiving surface of the photodetector;
    The means for limiting the range are arranged along the separation direction of the optical axis,
    A laser radar characterized by:
  2.  請求項1に記載のレーザレーダにおいて、
     前記範囲を制限する手段は、前記光検出器の前に配置されたアパーチャの導光部である、
    ことを特徴とするレーザレーダ。
     
    In the laser radar according to claim 1,
    The means for limiting the range is a light guide portion of an aperture placed in front of the photodetector.
    A laser radar characterized by:
  3.  請求項1に記載のレーザレーダにおいて、
     前記光検出器は、マトリクスイメージセンサであり、
     前記マトリクスイメージセンサを制御する制御回路を備え、
     前記範囲を制限する手段は、前記制御回路によって前記マトリクスイメージセンサの受光面上に規定された受光領域であり、
     前記制御回路は、前記受光領域からの出力信号を検出信号として用いる、
    ことを特徴とするレーザレーダ。
     
    In the laser radar according to claim 1,
    the photodetector is a matrix image sensor;
    A control circuit for controlling the matrix image sensor,
    the means for limiting the range is a light-receiving area defined on the light-receiving surface of the matrix image sensor by the control circuit;
    The control circuit uses an output signal from the light receiving region as a detection signal,
    A laser radar characterized by:
  4.  請求項1ないし3の何れか一項に記載のレーザレーダにおいて、
     前記範囲を制限する手段は、前記光軸の離間方向に長い形状を有する、
    ことを特徴とするレーザレーダ。
     
    In the laser radar according to any one of claims 1 to 3,
    The means for limiting the range has a shape elongated in the separation direction of the optical axis,
    A laser radar characterized by:
  5.  請求項4に記載のレーザレーダにおいて、
     前記範囲を制限する手段は、前記投射光学系の前記光軸から離れた部分の幅が前記投射光学系の前記光軸に近い部分の幅よりも狭い形状を有する、
    ことを特徴とするレーザレーダ。
     
    In the laser radar according to claim 4,
    The means for limiting the range has a shape in which the width of a portion of the projection optical system away from the optical axis is narrower than the width of a portion of the projection optical system close to the optical axis.
    A laser radar characterized by:
  6.  請求項5に記載のレーザレーダにおいて、
     前記範囲を制限する手段は、前記投射光学系の前記光軸から離れるに従って幅が狭くなる部分を有する、
    ことを特徴とするレーザレーダ。
     
    In the laser radar according to claim 5,
    The means for limiting the range has a portion whose width narrows as the distance from the optical axis of the projection optical system increases.
    A laser radar characterized by:
  7.  請求項6に記載のレーザレーダにおいて、
     前記範囲を制限する手段は、三角形の形状である、
    ことを特徴とするレーザレーダ。
     
    In the laser radar according to claim 6,
    wherein said range limiting means is triangular in shape;
    A laser radar characterized by:
  8.  請求項5に記載のレーザレーダにおいて、
     前記範囲を制限する手段は、T字状の形状である、
    ことを特徴とするレーザレーダ。
     
    In the laser radar according to claim 5,
    wherein said range limiting means is a T-shaped shape;
    A laser radar characterized by:
  9.  請求項1ないし3の何れか一項に記載のレーザレーダにおいて、
     前記範囲を制限する手段は、前記光軸の離間方向に分離して配置されている、
    ことを特徴とするレーザレーダ。
     
    In the laser radar according to any one of claims 1 to 3,
    The means for limiting the range are arranged separately in the separation direction of the optical axis,
    A laser radar characterized by:
  10.  請求項9に記載のレーザレーダにおいて、
     前記投射光学系の前記光軸から離れた前記範囲を制限する手段の幅が、前記投射光学系の前記光軸に近い前記範囲を制限する手段の幅よりも狭い、
    ことを特徴とするレーザレーダ。
     
    In the laser radar according to claim 9,
    the width of the means for limiting the range away from the optical axis of the projection optical system is narrower than the width of the means for limiting the range near the optical axis of the projection optical system;
    A laser radar characterized by:
  11.  請求項2に記載のレーザレーダにおいて、
     前記アパーチャは、前記光軸の離間方向に垂直な方向に並ぶ複数の前記導光部を備え、
     前記複数の導光部を通過した前記反射光をそれぞれ受光する位置に、複数の前記光検出器が配置されている、
    ことを特徴とするレーザレーダ。
     
    In the laser radar according to claim 2,
    the aperture includes a plurality of the light guides arranged in a direction perpendicular to the separation direction of the optical axis,
    A plurality of the photodetectors are arranged at positions for respectively receiving the reflected light that has passed through the plurality of light guides,
    A laser radar characterized by:
  12.  請求項11に記載のレーザレーダにおいて、
     隣り合う前記光検出器の間に、遮光壁が設けられている、
    ことを特徴とするレーザレーダ。
     
    12. The laser radar of claim 11,
    A light shielding wall is provided between the adjacent photodetectors,
    A laser radar characterized by:
  13.  請求項12に記載のレーザレーダにおいて、
     前記アパーチャを保持するホルダを備え、
     前記遮光壁は、前記ホルダに設けられている、
    ことを特徴とするレーザレーダ。
     
    13. The laser radar of claim 12,
    A holder that holds the aperture,
    The light shielding wall is provided in the holder,
    A laser radar characterized by:
  14.  請求項12に記載のレーザレーダにおいて、
     前記遮光壁は、前記アパーチャに設けられている、
    ことを特徴とするレーザレーダ。
     
    13. The laser radar of claim 12,
    The light shielding wall is provided in the aperture,
    A laser radar characterized by:
  15.  請求項11ないし14の何れか一項に記載のレーザレーダにおいて、
     前記複数の導光部を介して前記光検出器の受光面に前記反射光が照射される範囲が、それぞれ、前記受光面の略中央となるように、前記複数の導光部の形状およびピッチが設定されている、
    ことを特徴とするレーザレーダ。
     
    In the laser radar according to any one of claims 11 to 14,
    The shape and pitch of the plurality of light guide portions are such that the range of the reflected light irradiated onto the light receiving surface of the photodetector via the plurality of light guide portions is substantially at the center of the light receiving surface. is set,
    A laser radar characterized by:
  16.  請求項2および請求項11ないし15の何れか一項に記載のレーザレーダにおいて、
     前記アパーチャは、前記レーザ光に遮光性を有する基板に、前記導光部となる開口を形成して構成される、
    ことを特徴とするレーザレーダ。
     
    In the laser radar according to any one of claims 2 and 11 to 15,
    The aperture is configured by forming an opening that serves as the light guide section in a substrate that blocks the laser light.
    A laser radar characterized by:
  17.  請求項2および請求項11ないし16の何れか一項に記載のレーザレーダにおいて、
     前記アパーチャは、前記レーザ光に透光性を有する基板と、前記導光部以外の領域に入射する前記反射光を遮光する遮光膜とを備える、
    ことを特徴とするレーザレーダ。
    In the laser radar according to any one of claims 2 and 11 to 16,
    The aperture includes a substrate that is transparent to the laser beam, and a light shielding film that shields the reflected light that is incident on a region other than the light guide section.
    A laser radar characterized by:
PCT/JP2022/035788 2021-10-20 2022-09-26 Laser radar WO2023067990A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021171790 2021-10-20
JP2021-171790 2021-10-20

Publications (1)

Publication Number Publication Date
WO2023067990A1 true WO2023067990A1 (en) 2023-04-27

Family

ID=86059095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035788 WO2023067990A1 (en) 2021-10-20 2022-09-26 Laser radar

Country Status (1)

Country Link
WO (1) WO2023067990A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019215324A (en) * 2018-04-20 2019-12-19 ジック アーゲー Photoelectric sensor and distance measurement method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019215324A (en) * 2018-04-20 2019-12-19 ジック アーゲー Photoelectric sensor and distance measurement method

Similar Documents

Publication Publication Date Title
EP2701209B1 (en) Reflective photoelectric sensor
JP2003287412A (en) Edge section flaw-detecting apparatus
TWI551952B (en) Euv lithography system
US7616300B2 (en) Edge flaw detection device
JP2016065745A (en) Laser radar device
JP2004093492A (en) X-ray small angle scattering optical system
WO2023067990A1 (en) Laser radar
JP2004170965A (en) Condensing optical system
JP2019211295A (en) Distance measurement device
JP3285309B2 (en) Photo detector
EP3805788B1 (en) Distance measuring device
JP7432872B2 (en) laser radar
JP2020190495A (en) Distance measurement device
WO2023007694A1 (en) Ranging device
JP3593030B2 (en) Light emitting unit and photoelectric sensor
JP7369937B2 (en) distance measuring device
JP2018103868A (en) Illumination device
JPS59152626A (en) Device for detecting foreign matter
JPS61272676A (en) Radiant energy distribution detector
JP2014228351A (en) Object recognition device
JP2023128023A (en) Range finder
JPH0666518A (en) Position detector
JP2021110660A (en) Distance measuring device
CN115066628A (en) Laser radar
JPH0668755A (en) Light sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22883299

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE