WO2023067978A1 - Leveling angle control system - Google Patents

Leveling angle control system Download PDF

Info

Publication number
WO2023067978A1
WO2023067978A1 PCT/JP2022/035228 JP2022035228W WO2023067978A1 WO 2023067978 A1 WO2023067978 A1 WO 2023067978A1 JP 2022035228 W JP2022035228 W JP 2022035228W WO 2023067978 A1 WO2023067978 A1 WO 2023067978A1
Authority
WO
WIPO (PCT)
Prior art keywords
point
angle
leveling angle
leveling
vehicle
Prior art date
Application number
PCT/JP2022/035228
Other languages
French (fr)
Japanese (ja)
Inventor
佳典 柴田
Original Assignee
株式会社小糸製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小糸製作所 filed Critical 株式会社小糸製作所
Publication of WO2023067978A1 publication Critical patent/WO2023067978A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
    • B60Q1/06Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle
    • B60Q1/08Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle automatically
    • B60Q1/10Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle automatically due to vehicle inclination, e.g. due to load distribution
    • B60Q1/115Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle automatically due to vehicle inclination, e.g. due to load distribution by electric means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • G01C9/02Details
    • G01C9/06Electric or photoelectric indication or reading means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • G01C9/02Details
    • G01C9/08Means for compensating acceleration forces due to movement of instrument

Definitions

  • the present disclosure relates to a leveling angle control system.
  • Patent Literature 1 discloses that the tilt angle of the vehicle is calculated by a gravity sensor and the optical axis of the headlight is controlled based on the tilt angle.
  • Patent Document 1 calculates the current tilt angle of the vehicle and adjusts the optical axis according to the current tilt angle. In such a place where the tilt angle changes abruptly, it is difficult to make the optical axis follow the abrupt change.
  • An object of the present disclosure is to appropriately change the optical axis of a vehicle headlamp in response to a sudden change in the inclination angle of a road even in a place where the inclination angle changes abruptly.
  • a leveling angle control system includes: A target leveling angle ⁇ of a vehicle headlamp at a predetermined first point is obtained from point information of a predetermined second point reached by a vehicle traveling a predetermined number of seconds or a predetermined distance from the predetermined first point. a target leveling angle calculator that calculates based on a leveling angle control unit that controls the actual leveling angle at the first point so that the actual leveling angle of the vehicle headlamp approaches the target leveling angle ⁇ .
  • FIG. 1 is a block diagram showing an example configuration of a leveling angle control system according to an embodiment of the present disclosure
  • FIG. FIG. 4 is a schematic diagram for explaining a measured angle of a vehicle
  • FIG. 4 is a schematic diagram showing an example of a method of acquiring information on a road surface angle using LiDAR
  • FIG. 4 is a schematic diagram showing an example of a method of acquiring information on a road surface angle using LiDAR
  • FIG. 4 is a schematic diagram showing an example of an image captured by a camera when the vehicle is heading uphill.
  • FIG. 4 is a schematic diagram showing an example of an image captured by a camera when the vehicle is heading downhill
  • It is a schematic diagram for demonstrating an example of reinforcement learning.
  • 4 is a flowchart showing an example of processing related to leveling angle control; It is an example of point data. 6 is a flowchart showing an example of processing related to reinforcement learning; 4 is a flowchart showing an example of processing related to calculation of a virtual leveling angle; 7 is a flowchart showing an example of processing related to leveling angle control during reinforcement learning;
  • FIG. 1 is a block diagram showing an example of the configuration of a leveling angle control system 100 (hereinafter also simply referred to as "system 100") according to this embodiment.
  • the system 100 is a system that controls the leveling angle of the vehicle headlights 30 .
  • System 100 includes, for example, vehicle 10 and headlights 30 .
  • the vehicle 10 includes, for example, a sensor section 11 and a vehicle control section 16 . Note that the sensor unit 11 may be provided in the headlamp 30 .
  • the sensor unit 11 includes, for example, a camera 12, a LiDAR (Light Detection And Ranging) 13, an acceleration sensor 14, and a position sensor 15.
  • the camera 12 is provided so as to be able to image at least the front of the vehicle 10 .
  • the LiDAR 13 is provided so as to acquire at least an image in front of the vehicle 10 . Data obtained by the camera 12 and the LiDAR 13 are output to the image processing unit 17, for example.
  • the acceleration sensor 14 is, for example, a three-axis acceleration sensor that detects acceleration in each direction of the mutually orthogonal x-axis, y-axis, and z-axis.
  • the acceleration sensor 14 is attached to the vehicle 10 such that the x-axis is aligned with the longitudinal axis of the vehicle 10, the y-axis is aligned with the lateral axis of the vehicle 10, and the z-axis is aligned with the vertical axis of the vehicle 10. .
  • the measured angle ⁇ which is the inclination angle of the vehicle 10 with respect to the horizontal plane.
  • the measured angle ⁇ is used, for example, for reinforcement learning of the learning model 52 described later.
  • the measured angle ⁇ may be stored in the storage unit 50 in association with the position information, for example, and used for calculation of the target leveling angle ⁇ by the target leveling angle calculation unit 41, which will be described later.
  • FIG. 2 is a schematic diagram for explaining the measured angle ⁇ of the vehicle.
  • the measured angle ⁇ is the sum of the road surface angle ⁇ r, which is the inclination angle of the road surface with respect to the horizontal plane, and the vehicle angle ⁇ v, which is the inclination angle of the vehicle 10 with respect to the road surface.
  • the acceleration sensor 14 detects, for example, a vector Gx, which is a detected value of the gravitational acceleration vector G in the x-axis direction, and a vector Gz, which is a detected value of the gravitational acceleration vector G in the z-axis direction. is used to calculate the measurement angle ⁇ .
  • the calculation of the measurement angle ⁇ is not limited to the above example, and other known methods may be used. Further, the calculation of the measured angle ⁇ may be performed by the vehicle control unit 16 or the lamp control unit 40 described later based on the data detected by the acceleration sensor 14 .
  • the position sensor 15 is a sensor that acquires position information of the vehicle 10, and is, for example, a GPS (Global Positioning System) sensor or a GNSS (Global Navigation Satellite System) sensor.
  • the position information of the vehicle 10 is stored as part of the location data 51 in the storage unit 50, for example.
  • the vehicle control unit 16 controls various operations such as traveling of the vehicle 10 .
  • the vehicle control unit 16 includes, for example, a processor such as an ASIC (Application Specific Integrated Circuit), an FPGA (Field programmable Gate Array), or a general-purpose CPU (Central Processing Unit).
  • the vehicle 10 includes, for example, a ROM (Read Only Memory) storing various vehicle control programs and a RAM (Random Access Memory) temporarily storing various vehicle control data.
  • the processor of the vehicle control unit 16 can load data designated from various vehicle control programs stored in the ROM onto the RAM and control various operations of the vehicle 10 in cooperation with the RAM.
  • the vehicle control unit 16 functions as an image processing unit 17.
  • the headlamp 30 is a lamp that is mounted on the vehicle 10 and illuminates the front of the vehicle 10 .
  • the headlamp 30 includes, for example, a lamp control section 40, a storage section 50, and a leveling actuator 60.
  • the lamp control unit 40 includes, for example, a processor such as ASIC, FPGA, or general-purpose CPU.
  • the storage unit 50 is configured by, for example, a ROM, a RAM, or the like.
  • the processor of the lamp control unit 40 can load data designated by the program stored in the ROM onto the RAM and control various operations of the headlamp 30 in cooperation with the RAM.
  • the storage unit 50 may be provided in the vehicle 10, or may be configured to be provided outside the vehicle 10 (for example, in a data center capable of communicating with the vehicle 10).
  • the lamp control unit 40 reads the program stored in the storage unit 50 to perform, for example, a target leveling angle calculation unit 41, a leveling angle control unit 42, a road surface angle information acquisition unit 43, and a learning processing unit. 44.
  • the target leveling angle calculation unit 41 calculates the target leveling angle ⁇ of the headlight 30 at a predetermined first point from the first point by a predetermined number of seconds (eg, 1 second) or a predetermined distance (eg, 10 m) from the vehicle. It is calculated based on point information of a predetermined second point that 10 travels and reaches. Further, the target leveling angle calculator 41 may calculate the target leveling angle ⁇ based on a learning model 52 described later obtained by reinforcement learning based on point information.
  • the "point information" includes geographical information of the point and various types of information stored in association with the position information of the point (for example, point data 51 to be described later). The "point information" may include, for example, the measured angle ⁇ , "information about the road surface angle ⁇ r" described later, the reference leveling angle, and the like.
  • the leveling angle control unit 42 controls the actual leveling angle at the first point so that the actual leveling angle of the headlamp 30 at the first point approaches the target leveling angle ⁇ .
  • the leveling angle control section 42 controls the actual leveling angle via the leveling actuator 60 .
  • the road surface angle information acquisition unit 43 acquires information regarding the road surface angle ⁇ r at the second point.
  • the "information about the road surface angle ⁇ r" is not particularly limited, but is preferably, for example, information indicating whether the road surface is uphill or downhill or information indicating the road surface angle ⁇ r. These pieces of information can be acquired using the camera 12 or the LiDAR 13, for example.
  • FIG. FIG. 3 and FIG. 4 are schematic diagrams showing an example of a method of obtaining information on the road surface angle ⁇ r using the LiDAR 13.
  • FIG. 3 the vehicle 10 is heading uphill.
  • light emitted downward from the horizontal axis H of the LiDAR 13 (for example, light L3) always hits the ground E and is reflected. That is, when the front of the vehicle 10 slopes upward, the LiDAR 13 can detect the reflected light of all the light emitted downward from the horizontal axis H.
  • the road surface angle information acquisition unit 43 may be configured to determine that the second point is an upward slope. good.
  • the horizontal axis H is an axis parallel to the horizontal plane.
  • part of the light emitted upward from the horizontal axis H of the LiDAR 13 hits the ground E and is reflected, but the other part (for example, light L1) , does not hit the ground E. That is, when the front of the vehicle 10 slopes upward, the LiDAR 13 detects only part of the light emitted upward from the horizontal axis H and reflected. Therefore, when the LiDAR 13 detects only part of the reflected light of the light emitted upward from the horizontal axis H, the road surface angle information acquisition unit 43 determines that the second point is an upward slope. may be configured.
  • the vehicle 10 is heading downhill.
  • the light emitted upward from the horizontal axis H (for example, the light L4) does not hit the ground E. That is, when the front of the vehicle 10 slopes down, the LiDAR 13 does not detect the reflected light of the light emitted upward from the horizontal axis H. Therefore, when the LiDAR 13 does not detect the reflected light of the light emitted upward from the horizontal axis H, the road surface angle information acquisition unit 43 may be configured to determine that the second point is a downward slope. good.
  • part of the light emitted downward from the horizontal axis H hits the ground E and is reflected, but the other part (for example, light L5) is reflected by the ground. Does not hit E. That is, when the front of the vehicle 10 slopes downward, the LiDAR 13 detects only a part of the light emitted downward from the horizontal axis H as reflected light. Therefore, when the LiDAR 13 detects only part of the reflected light of the light emitted downward from the horizontal axis H, the road surface angle information acquisition unit 43 determines that the second point is downhill. may be configured.
  • the road surface angle information acquisition unit 43 may calculate the road surface angle ⁇ r at the second point based on the three-dimensional image obtained by the LiDAR 13.
  • a conventionally known image analysis method can be used without particular limitation for calculating the road surface angle ⁇ r.
  • FIG. 5 is a schematic diagram showing an example of an image captured by the camera 12 when the vehicle 10 is heading uphill.
  • the image acquired by the camera 12 includes a white or orange left line LL extending in the front-rear direction on the left side of the vehicle 10 and a front-rear line LL on the right side of the vehicle 10 as road markings that define the driving lane of the vehicle 10 .
  • the road surface angle information acquisition unit 43 uses image processing such as Hough transform to identify the left line LL and the right line RL. Next, the road surface angle information acquisition unit 43 determines whether or not at least one of the left line LL and the right line RL is curved. If at least one of the road surfaces is curved, the road surface angle information acquisition unit 43 determines the first vanishing point where the extension of one line closer to the vehicle 10 than the curve and the extension of the other line intersect, and from the curve. A second vanishing point at which an extension of one line far from the vehicle 10 intersects with an extension of the other line is identified.
  • image processing such as Hough transform
  • the acquisition unit 43 determines that the second point is an upward slope.
  • both the left line LL and the right line RL are bent with the line segment X as a boundary.
  • an intersection point P1 between an extension of the left line LL closer to the vehicle 10 than the line segment X and an extension of the right line RL closer to the vehicle 10 than the line segment X is the first vanishing point.
  • an intersection point P2 between an extension of the left line LL farther from the vehicle 10 than the line segment X and an extension of the right line RL farther from the vehicle 10 than the line segment X is the second vanishing point.
  • the road surface angle information acquiring unit 43 determines that the second point is an upward slope.
  • FIG. 6 is a schematic diagram showing an example of an image captured by the camera 12 when the vehicle 10 is heading downhill.
  • neither the left line LL nor the right line RL are curved, and the only specified vanishing point is the intersection point P3.
  • the road surface angle information acquiring unit 43 specifies the horizontal direction (horizontal direction ) is detected.
  • the line segment C is detected in the above range.
  • the road surface angle information acquisition unit 43 determines that the second point is downward slope.
  • the road surface angle information acquisition unit 43 may calculate the road surface angle ⁇ r at the second point based on the image captured by the camera 12. For example, in the example of FIG. 5, the greater the slope of the uphill slope (the greater the road surface angle ⁇ r), the greater the distance between the first vanishing point and the second vanishing point in the image in the vertical direction.
  • the road surface angle ⁇ r at the second point may be calculated from the separation distance in the vertical direction. Note that the method of calculating the road surface angle ⁇ r from the image captured by the camera 12 is not limited to the above example, and conventionally known methods can be used without particular limitations.
  • the image processing unit 17 may execute each process described as being executed by the road surface angle information acquisition unit 43 .
  • the road surface angle information acquisition unit 43 may acquire information that has been determined, calculated, or the like by the image processing unit 17 .
  • the information on the road surface angle ⁇ r may be configured to be calculated based on a machine-learned learning model.
  • a machine-learned learning model For example, an image captured by the camera 12 or a three-dimensional image acquired by the LiDAR 13 is input, and the second calculated based on the data detected by the acceleration sensor 14 when the vehicle 10 travels at the second point
  • a learning model obtained by machine learning (for example, deep learning) using teacher data whose output is the measured angle ⁇ or the road surface angle ⁇ r at two points can be used.
  • the learning processing unit 44 executes reinforcement learning for the learning model 52 .
  • Reinforcement learning is repeatedly performed each time the vehicle 10 travels on a predetermined travel route including, for example, the first point and the second point.
  • the learning processing unit 44 gives a larger reward as the absolute value of the difference between the target leveling angle ⁇ at the first point and the measured angle ⁇ of the vehicle 10 at the second point measured by the acceleration sensor 14 is smaller.
  • the learning processing unit 44 performs, for example, Q-learning as reinforcement learning so that the Q-value increases at each point on the predetermined travel route. A specific example of the Q value will be explained in a later paragraph.
  • FIG. 7 is a schematic diagram for explaining an example of reinforcement learning.
  • points N ⁇ 1, N, and N+1 are points on the travel route U.
  • a point N is a point reached by the vehicle 10 traveling a predetermined number of seconds or a predetermined distance from the point N ⁇ 1.
  • the point N+1 is a point reached by the vehicle 10 traveling from the point N for a predetermined number of seconds or a predetermined distance.
  • the measured angles ⁇ (N ⁇ 1), ⁇ (N), and ⁇ (N+1) are the measured angles ⁇ at the points N ⁇ 1, N, and N+1, respectively.
  • Reinforcement learning is, for example, a system in which the smaller the absolute value of the difference between the target leveling angle ⁇ at each point and the measured angle ⁇ at the point next to each point, the larger the reward. is executed.
  • the closer the target leveling angle ⁇ (N ⁇ 1) of the point N ⁇ 1 is to the measured angle ( ⁇ ) of the point N the greater the reward for the point N ⁇ 1.
  • the closer the target leveling angle ⁇ (N) of the point N is to the measured angle ( ⁇ +1) of the point N+1 the greater the reward of the point N becomes.
  • the learning processing unit 44 sets a Q value comparison reference value and a reference leveling angle at each of a plurality of points on a predetermined travel route, and when the vehicle 10 travels on the predetermined travel route, the predetermined travel distance is set.
  • the reinforcement learning may be executed by updating the target leveling angle ⁇ used in calculating the Q value as the reference leveling angle at the point.
  • the comparison reference value and the reference leveling angle are stored in the storage unit 50 as point data 51 in association with the position information of each point, for example.
  • the initial value of the comparison reference value may be the same value at each point.
  • the initial value of the reference leveling angle may be the same value at each point, or the initial value may not be set.
  • the comparison reference value indicates the maximum value of the Q value at each point
  • the reference leveling angle is the target leveling angle ⁇ when the Q value indicates the maximum value at each point.
  • the learning processing unit 44 may, for example, calculate the next target leveling angle ⁇ based on the reference leveling angle. With such a configuration, it can be expected that the number of times of learning until the Q value converges at each point is reduced.
  • the learning processing unit 44 calculates a virtual leveling angle ⁇ at each of a plurality of points on the predetermined travel route, and converts the virtual leveling angle ⁇ to the target leveling angle.
  • may be used to calculate the Q value, update the comparison reference value, and update the reference leveling angle.
  • the leveling angle control unit 42 preferably does not control the actual leveling angle based on the target leveling angle ⁇ at points where the comparison reference value does not exceed the predetermined threshold value.
  • the reference leveling angle ⁇ can be calculated in the same manner as the target leveling angle ⁇ .
  • Points with low comparison reference values are points where it is still difficult to control the appropriate leveling angle. Therefore, at such a point, the virtual leveling angle ⁇ is calculated instead of the target leveling angle ⁇ , and reinforcement learning is performed using the virtual leveling angle ⁇ , while the actual leveling angle based on the point information of the previous point (For example, by configuring to perform control based on the measured angle ⁇ of the current point as in the conventional method), for example, the leveling angle is randomly selected to an inappropriate value prevent it from being changed.
  • the virtual leveling angle ⁇ is calculated instead of the target leveling angle ⁇ , and reinforcement learning is performed using the virtual leveling angle ⁇ , thereby searching for the optimum leveling angle.
  • FIG. 8 is a flowchart showing an example of processing related to leveling angle control.
  • the system 100 executes leveling angle control until a predetermined end condition is satisfied.
  • the predetermined start condition and end condition are not particularly limited, for example, the start condition is that the vehicle 10 has started traveling on a predetermined travel route, and the end condition is that the vehicle 10 has finished traveling on the predetermined travel route.
  • the processes from step S2 to step S4, which will be described later, are repeatedly executed on a predetermined travel route.
  • the predetermined travel route may be set by the operation of the user of the vehicle 10, or may be set by the lamp control unit 40 by referring to the travel history of the vehicle 10 and setting a route that has been traveled frequently as the predetermined travel route. good. With such a configuration, it is possible to appropriately control the leveling angle on a route desired by the user or on a route frequently traveled by the user. It should be noted that the start and end of travel on the predetermined travel route may be determined, for example, based on the position information acquired by the position sensor 15, or may be determined based on the start operation and end operation of the vehicle 10 by the user. may
  • the predetermined start condition is that the absolute value of the difference between the road surface angle ⁇ r at the first point and the road surface angle ⁇ r at the second point is greater than or equal to a predetermined value
  • the predetermined end condition is The absolute value of the difference between the road surface angle ⁇ r at the predetermined point and the road surface angle ⁇ r at the second point with respect to the predetermined point may be less than a predetermined value. According to such a configuration, in places where there is a large change in the inclination angle of the road, the leveling angle of the headlamp 30 can be appropriately changed in response to the change, and the change in the inclination angle of the road is small.
  • step S2 to step S4 may be repeatedly executed while the vehicle 10 is running without setting the predetermined start condition and end condition.
  • step S1 if the start condition is not satisfied (No in step S1), it waits until the start condition is satisfied. If the start condition is satisfied (Yes in step S1), steps S2 to S4 are repeatedly executed until the end condition is satisfied.
  • step S2 the lighting control unit 40 calculates the target leveling angle ⁇ at the first point (current point of the vehicle 10).
  • the target leveling angle ⁇ at the first point is calculated based on the point information of the second point reached by the vehicle 10 traveling a predetermined number of seconds or a predetermined distance from the first point.
  • the target leveling angle ⁇ can be calculated based on the information regarding the road surface angle ⁇ r at the second point. Specifically, when the information about the road surface angle ⁇ r is information indicating that the second point is an upward slope, the lighting control unit 40 calculates the target leveling angle ⁇ so as to be larger than the measured angle ⁇ at the first point. You may Conversely, if the information on the road surface angle ⁇ r indicates that the second point is on a downward slope, the lighting control unit 40 calculates the target leveling angle ⁇ so as to be smaller than the measured angle ⁇ at the first point. good too.
  • the lighting control section 40 may calculate the target leveling angle ⁇ based on the road surface angle ⁇ r at the second point. .
  • a value obtained by correcting the road surface angle ⁇ r at the second point using the vehicle angle ⁇ v at the first point may be used as the target leveling angle ⁇ at the first point.
  • the lamp control unit 40 may adopt the measured angle ⁇ at the second point as the target leveling angle ⁇ .
  • the lamp control section 40 may calculate the target leveling angle ⁇ of the first point based on the learning model 52 obtained by reinforcement learning based on the point information.
  • step S3 the lamp control unit 40 controls the leveling angle of the headlamp 30 so that the actual leveling angle at the first point approaches the target leveling angle ⁇ .
  • control is performed to realize a leveling angle suitable for the inclination of the second point prior to arrival at the second point.
  • step S4 If the vehicle 10 has not traveled the predetermined distance from the first point or has not passed the predetermined time after passing the first point (No in step S4), it waits until it travels the predetermined distance or the predetermined time elapses. do. If a predetermined time has passed since the vehicle 10 traveled a predetermined distance from the first point or passed the first point (Yes in step S4), the position where the vehicle 10 is at that time is regarded as the first point, and the process proceeds to step S2. return. A series of processes from step S2 to step S4 are repeatedly executed until the end condition is satisfied, and the process related to the leveling angle control ends when the end condition is satisfied.
  • Reinforcement learning can be executed using, for example, an action-value function Q ⁇ (s, a) represented by the following formula (2) and a state-value function V ⁇ (s) represented by the following formula (3). can.
  • t is the time
  • s is the current state
  • s' is the next state
  • a is the action
  • P and R are the probability that state s transitions to s' and the reward obtained at that time, respectively.
  • indicates the discount rate of future rewards.
  • the action-value function Q ⁇ (s, a) is the discount represents the reward sum.
  • E is the expected value.
  • FIG. 9 is an example of the spot data 51.
  • the point data 51 stores the measured angle ⁇ , the comparison reference value, the reference leveling angle, and the virtual leveling angle ⁇ in association with the position information of each point on the predetermined travel route.
  • state s(N) at point N can be defined as follows, for example.
  • state s(N) virtual leveling angle ⁇ (N)
  • the virtual leveling angle ⁇ is a value that can be randomly set within a range of -3° to 2° with respect to the horizontal plane, and the resolution is 0.1°.
  • the initial value of the virtual leveling angle ⁇ is preferably ⁇ 0.6°. Note that the above range, resolution, and initial value of the virtual leveling angle ⁇ are examples, and other numerical values may be adopted.
  • Action a is defined by changing the virtual leveling angle ⁇ (N) in the range of ⁇ 3° to 2°.
  • the policy ⁇ for example, the following can be adopted.
  • Point N+1 has a higher gradient than point N: The virtual leveling angle ⁇ (N) is randomly raised from the virtual leveling angle ⁇ (N ⁇ 1) by 1° as the upper limit.
  • Point N+1 has a lower gradient than point N: The virtual leveling angle ⁇ (N) is randomly lowered from the virtual leveling angle ⁇ (N ⁇ 1) by 1° as an upper limit.
  • Q-learning for example, can be used for reinforcement learning.
  • Q ⁇ (s, a) is also referred to as a Q value.
  • the system 100 attempts to optimize the leveling angle so that the further Q-value is always maximized.
  • the search for the optimal action based on past experience and the new action aiming at reward acquisition is carried out according to the policy ⁇ as described above.
  • learning model 52 learns the states and actions that maximize the Q value.
  • the target leveling angle ⁇ is optimized.
  • FIG. 10 is a flowchart illustrating an example of processing related to reinforcement learning.
  • the reinforcement learning shown in FIG. 9 is repeatedly executed when the vehicle 10 travels on a predetermined travel route.
  • a learning model 52 capable of appropriate leveling angle control on a predetermined travel route is obtained.
  • step S11 the lamp control unit 40 sets the upper limit number of times of reinforcement learning. For the upper limit number of times, for example, the number of times that the Q value exceeds a predetermined threshold value may be set.
  • step S12 the lamp control unit 40 detects the start of travel on a predetermined travel route.
  • the predetermined travel route is a specific route set in advance as a target of reinforcement learning. Detection of the predetermined travel route may be performed, for example, based on the position information acquired from the position sensor 15, or may be performed based on the user's start operation of the vehicle 10, or the like.
  • step S13 the lamp control section 40 starts timing. Timing is performed to determine when to perform reinforcement learning. After that, a series of processes from step S14 to step S21 are repeated until the lamp control unit 40 detects the end of traveling on the predetermined travel route.
  • step S14 the lamp control unit 40 determines whether or not it is time for reinforcement learning.
  • it is determined that it is time for reinforcement learning each time a predetermined number of seconds (for example, one second) elapses from the start of timing in step S13.
  • the timing of reinforcement learning may be set every time the vehicle 10 travels a predetermined distance. In this case, in step S13, measurement of traveled distance is started instead of timing.
  • step S14 If it is not the timing for reinforcement learning (No in step S14), wait until the timing for reinforcement learning. If it is the timing of reinforcement learning (Yes in step S14), in step S15, the lamp control unit 40 determines whether or not the traveling speed of the vehicle 10 is equal to or higher than a predetermined speed (eg, 30 km/h). If the running speed of the vehicle 10 is less than the predetermined speed (No in step S15), the process returns to step S14.
  • a predetermined speed eg, 30 km/h
  • the system 100 is particularly useful when the vehicle 10 travels at a high speed.
  • a learning model 52 that is particularly useful when the vehicle 10 travels at a high speed by constructing the learning model 52 so that reinforcement learning is not executed with data when the vehicle 10 travels at a speed less than a predetermined speed. can be done.
  • step S16 the lamp control unit 40 adjusts the virtual leveling angle ⁇ at the first point (current point) based on a predetermined measure. calculate.
  • the first point is point N
  • the second point reached by the vehicle 10 traveling a predetermined number of seconds from the first point is point N+1
  • the vehicle 10 is traveling a predetermined number of seconds before the first point.
  • the point at which it was located is also referred to as point N-1.
  • FIG. 11 is a flowchart showing an example of processing related to calculation of the virtual leveling angle ⁇ , and shows a specific example of the processing in step S16.
  • the lamp control unit 40 acquires information about the road surface angle ⁇ r at the point N+1.
  • Information about the road surface angle ⁇ r can be obtained based on the image captured by the camera 12, the three-dimensional image obtained by the LiDAR 13, or the like, as described above.
  • step S33 the lamp control unit 40 sets the virtual leveling angle ⁇ (N ) is randomly increased from the initial value or the virtual leveling angle ⁇ (N ⁇ 1) with an upper limit of 1°. Further, when it is determined from the information acquired in step S31 that the point N+1 has a lower gradient than the point N (No in step S32), in step S34, the lamp control unit 40 sets the virtual leveling angle ⁇ (N) is randomly lowered from the initial value or the hypothetical leveling angle ⁇ (N ⁇ 1) at the point N ⁇ 1 with an upper limit of 1° down. With such a configuration, it can be expected that the number of times of learning until the Q value exceeds a predetermined threshold is reduced.
  • the measured angle ⁇ (N+1) at the point N+1 is calculated in step S31.
  • the virtual leveling angle ⁇ (N) may be calculated based on the value of the road surface angle ⁇ r and the value of the measured angle ⁇ (N+1).
  • step S17 the lamp control section 40 acquires the measured angle ⁇ (N+1) at the point N+1 that was measured upon arrival at the point N+1.
  • step S18 the lamp control section 40 calculates the Q value at the point N based on the virtual leveling angle ⁇ (N) and the measured angle ⁇ (N+1).
  • step S18 determines the value of point N in the point data 51 in step S20.
  • the comparison reference value is updated to the Q value calculated in step S18.
  • step S21 the lamp control unit 40 updates the reference leveling angle of the point N in the point data 51 to the value of the virtual leveling angle ⁇ (N) calculated in step S16.
  • the Q value calculated in step S18 is equal to or less than the comparison reference value of point N included in the point data 51 (No in step S19)
  • the process returns to step S14.
  • a series of processes from step S14 to step S21 are repeatedly executed on a predetermined travel route.
  • the lamp control unit 40 updates the number of times of learning in step S22.
  • the process related to reinforcement learning ends. If the number of times of learning has not reached the upper limit number of times set in step S11 (No in step S23), the process returns to step S12 to continue the process related to reinforcement learning.
  • the processing related to reinforcement learning ends, it becomes possible to calculate the target leveling angle ⁇ based on the obtained learning model 52, and it becomes possible to control the leveling angle based on the target leveling angle ⁇ . . Further, even when the processing related to reinforcement learning is continued, for example, when a predetermined condition is satisfied, the target leveling angle ⁇ calculated based on the learning model 52 at that time is used to determine the leveling angle. It is preferably arranged to control.
  • FIG. 12 is a flowchart showing an example of processing related to leveling angle control during reinforcement learning. Each process shown in the flowchart shown in FIG. 12 is performed in parallel with a series of processes from step S14 to step S20 in FIG. 10, for example.
  • step S41 the lamp control unit 40 detects that the vehicle 10 has arrived at the point N.
  • step S42 the lamp control section 40 reads the comparison reference value at the point N from the point data 51, and determines whether or not the comparison reference value is equal to or greater than a predetermined threshold.
  • step S43 the lamp control unit 40 reads the reference leveling angle at the point N from the point data 51, and converts it to the read reference leveling angle. Based on this, the target leveling angle ⁇ (N) is calculated. In step S43, for example, the value of the read reference leveling angle is set as the target leveling angle ⁇ (N).
  • step S44 the lamp control unit 40 controls the actual leveling angle at the point N based on the target leveling angle ⁇ (N) calculated in step S43, and ends the process.
  • the comparison reference value of the point N is less than the predetermined threshold value (No in step S42)
  • the processing of steps S43 and S44 is not executed and the process ends.
  • the learning model 52 is preferably used for leveling angle control.
  • the accuracy of the target leveling angle ⁇ calculated by the learning model 52 is not sufficient.
  • no actual leveling angle control is performed.
  • the present invention is not limited to the above-described embodiments, and can be modified, improved, etc. as appropriate.
  • the material, shape, size, numerical value, form, number, location, etc. of each component in the above-described embodiment are arbitrary and not limited as long as the present invention can be achieved.
  • each data stored in the storage unit 50 may be stored in the storage unit of the vehicle 10 .
  • the processing related to reinforcement learning may be executed in a server device that can communicate with the vehicle 10 .
  • a server device that can communicate with the vehicle 10 .
  • position information of a plurality of positions on a predetermined travel route and the measured angles ⁇ of each of the plurality of positions are transmitted from the vehicle 10 to the server device.
  • the server device executes reinforcement learning for the learning model 52 , and the obtained learning model 52 is transmitted to the vehicle 10 and stored in the storage unit 50 .
  • Vehicle 11 Sensor Unit 12: Camera 13: LiDAR 14: Acceleration sensor 15: Position sensor 16: Vehicle control unit 17: Image processing unit 30: Headlight (for vehicle) 40: Lamp control unit 41: Target leveling angle calculation unit 42: Leveling angle control unit 43: Road surface angle information Acquisition unit 44: Learning processing unit 50: Storage unit 51: Point data 52: Learning model 60: Leveling actuator 100: Leveling angle control system

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mechanical Engineering (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)

Abstract

A leveling angle control system (100) for a vehicle headlight (30), comprising: a target leveling angle calculation unit (41) for calculating a target leveling angle θ for a vehicle headlight (30) at prescribed first point on the basis of point information pertaining to a prescribed second point that a vehicle (10) will reach upon travelling for a prescribed number of seconds or a prescribed distance from the prescribed first point; and a leveling angle control unit (42) for controlling the actual leveling angle at the first point such that the actual leveling angle of the vehicle headlight (30) approaches the target leveling angle θ.

Description

レベリング角度制御システムLeveling angle control system
 本開示は、レベリング角度制御システムに関する。 The present disclosure relates to a leveling angle control system.
 近年、車両の前後傾斜に応じて、垂直方向の照射範囲を自動で調整するオートレベリング機能を備えた前照灯が普及している。例えば、特許文献1には、重力センサによって車両の傾斜角度を算出し、その傾斜角度に基づいて前照灯の光軸を制御することが開示されている。 In recent years, headlights equipped with an auto-leveling function that automatically adjusts the vertical illumination range according to the vehicle's longitudinal tilt have become popular. For example, Patent Literature 1 discloses that the tilt angle of the vehicle is calculated by a gravity sensor and the optical axis of the headlight is controlled based on the tilt angle.
日本国特開2000-85459号公報Japanese Patent Application Laid-Open No. 2000-85459
 特許文献1に開示された技術は、車両の現在の傾斜角度を算出し、その現在の傾斜角度に応じて光軸を調整するものであるが、例えば、急な道路勾配の変化がある場所のように傾斜角度が急激に変化する場所では、その急激な変化に対して光軸を追随させることが難しかった。 The technology disclosed in Patent Document 1 calculates the current tilt angle of the vehicle and adjusts the optical axis according to the current tilt angle. In such a place where the tilt angle changes abruptly, it is difficult to make the optical axis follow the abrupt change.
 本開示は、道路の傾斜角度が急激に変化するような場所においても、その急激な変化に対して車両用前照灯の光軸を適切に変化させることを目的とする。 An object of the present disclosure is to appropriately change the optical axis of a vehicle headlamp in response to a sudden change in the inclination angle of a road even in a place where the inclination angle changes abruptly.
 本開示の一態様に係るレベリング角度制御システムは、
 所定の第一地点における車両用前照灯の目標レベリング角度θを、前記所定の第一地点から所定の秒数または所定の距離を車両が走行して到達する所定の第二地点の地点情報に基づいて算出する目標レベリング角度算出部と、
 前記車両用前照灯の実際のレベリング角度が前記目標レベリング角度θに近づくように、前記第一地点における前記実際のレベリング角度を制御するレベリング角度制御部と、を備える。
A leveling angle control system according to one aspect of the present disclosure includes:
A target leveling angle θ of a vehicle headlamp at a predetermined first point is obtained from point information of a predetermined second point reached by a vehicle traveling a predetermined number of seconds or a predetermined distance from the predetermined first point. a target leveling angle calculator that calculates based on
a leveling angle control unit that controls the actual leveling angle at the first point so that the actual leveling angle of the vehicle headlamp approaches the target leveling angle θ.
 本開示によれば、道路の傾斜角度が急激に変化するような場所においても、その急激な変化に対して車両用前照灯の光軸を適切に変化させることが可能になる。 According to the present disclosure, it is possible to appropriately change the optical axis of the vehicle headlamp even in a place where the inclination angle of the road changes suddenly.
本開示の一実施形態に係るレベリング角度制御システムの構成の一例を示すブロック図である。1 is a block diagram showing an example configuration of a leveling angle control system according to an embodiment of the present disclosure; FIG. 車両の計測角度を説明するための模式図である。FIG. 4 is a schematic diagram for explaining a measured angle of a vehicle; LiDARを用いた路面角度に関する情報の取得方法の一例を示す模式図である。FIG. 4 is a schematic diagram showing an example of a method of acquiring information on a road surface angle using LiDAR; LiDARを用いた路面角度に関する情報の取得方法の一例を示す模式図である。FIG. 4 is a schematic diagram showing an example of a method of acquiring information on a road surface angle using LiDAR; 車両が上り坂に向かう際にカメラによって撮像された画像の一例を示す模式図である。FIG. 4 is a schematic diagram showing an example of an image captured by a camera when the vehicle is heading uphill. 車両が下り坂に向かう際にカメラによって撮像された画像の一例を示す模式図である。FIG. 4 is a schematic diagram showing an example of an image captured by a camera when the vehicle is heading downhill; 強化学習の一例を説明するための模式図である。It is a schematic diagram for demonstrating an example of reinforcement learning. レベリング角度制御に係る処理の一例を示すフローチャートである。4 is a flowchart showing an example of processing related to leveling angle control; 地点データの一例である。It is an example of point data. 強化学習に係る処理の一例を示すフローチャートである。6 is a flowchart showing an example of processing related to reinforcement learning; 仮想レベリング角度の算出に係る処理の一例を示すフローチャートである。4 is a flowchart showing an example of processing related to calculation of a virtual leveling angle; 強化学習中のレベリング角度制御に係る処理の一例を示すフローチャートである。7 is a flowchart showing an example of processing related to leveling angle control during reinforcement learning;
 以下、本発明を実施の形態をもとに図面を参照しながら説明する。各図面に示される同一または同等の構成要素や部材には、同一の符号を付するものとし、適宜重複した説明は省略する。また、図面に示された各部材の寸法は、説明の便宜上、実際の各部材の寸法とは異なる場合がある。 Hereinafter, the present invention will be described based on the embodiments with reference to the drawings. The same or equivalent constituent elements and members shown in each drawing are denoted by the same reference numerals, and duplication of description will be omitted as appropriate. Also, the dimensions of each member shown in the drawings may differ from the actual dimensions of each member for convenience of explanation.
(レベリング角度制御システムの構成)
 まず、本開示の一実施の形態に係るレベリング角度制御システムについて説明する。本実施形態に係るレベリング角度制御システムは、車両の現在の走行地点より先の地点の地点情報に基づいて、現在の走行地点におけるレベリング角度を制御するシステムである。図1は、本実施形態に係るレベリング角度制御システム100(以下、単に「システム100」とも称する。)の構成の一例を示すブロック図である。
(Configuration of leveling angle control system)
First, a leveling angle control system according to an embodiment of the present disclosure will be described. The leveling angle control system according to the present embodiment is a system that controls the leveling angle at the current travel point based on point information of points ahead of the current travel point of the vehicle. FIG. 1 is a block diagram showing an example of the configuration of a leveling angle control system 100 (hereinafter also simply referred to as "system 100") according to this embodiment.
 システム100は、車両用の前照灯30のレベリング角度を制御するシステムである。システム100は、例えば、車両10と、前照灯30と、を含む。車両10は、例えば、センサ部11と、車両制御部16と、を含む。なお、センサ部11は、前照灯30が備えていてもよい。 The system 100 is a system that controls the leveling angle of the vehicle headlights 30 . System 100 includes, for example, vehicle 10 and headlights 30 . The vehicle 10 includes, for example, a sensor section 11 and a vehicle control section 16 . Note that the sensor unit 11 may be provided in the headlamp 30 .
 センサ部11は、例えば、カメラ12と、LiDAR(Light Detection And Ranging)13と、加速度センサ14と、位置センサ15と、を含む。カメラ12は、少なくとも車両10の前方を撮像可能なように設けられている。LiDAR13は、少なくとも車両10の前方の画像を取得可能なように設けられている。カメラ12およびLiDAR13によって得られたデータは、例えば、画像処理部17へと出力される。 The sensor unit 11 includes, for example, a camera 12, a LiDAR (Light Detection And Ranging) 13, an acceleration sensor 14, and a position sensor 15. The camera 12 is provided so as to be able to image at least the front of the vehicle 10 . The LiDAR 13 is provided so as to acquire at least an image in front of the vehicle 10 . Data obtained by the camera 12 and the LiDAR 13 are output to the image processing unit 17, for example.
 加速度センサ14は、例えば、互いに直交するx軸、y軸、およびz軸の各方向の加速度を検出する3軸加速度センサである。加速度センサ14は、例えば、x軸が車両10の前後方向の軸に、y軸が車両10の左右方向の軸に、z軸が車両10の上下方向の軸に沿うように車両10に取り付けられる。 The acceleration sensor 14 is, for example, a three-axis acceleration sensor that detects acceleration in each direction of the mutually orthogonal x-axis, y-axis, and z-axis. The acceleration sensor 14 is attached to the vehicle 10 such that the x-axis is aligned with the longitudinal axis of the vehicle 10, the y-axis is aligned with the lateral axis of the vehicle 10, and the z-axis is aligned with the vertical axis of the vehicle 10. .
 加速度センサ14によって計測される値に基づいて、水平面に対する車両10の傾斜角度である計測角度φを算出することができる。計測角度φは、例えば、後述の学習モデル52の強化学習に用いられる。また、計測角度φは、例えば、位置情報と関連付けて記憶部50に記憶され、後述の目標レベリング角度算出部41による目標レベリング角度θの算出に用いられてもよい。 Based on the value measured by the acceleration sensor 14, it is possible to calculate the measured angle φ, which is the inclination angle of the vehicle 10 with respect to the horizontal plane. The measured angle φ is used, for example, for reinforcement learning of the learning model 52 described later. Further, the measured angle φ may be stored in the storage unit 50 in association with the position information, for example, and used for calculation of the target leveling angle θ by the target leveling angle calculation unit 41, which will be described later.
 図2は、車両の計測角度φを説明するための模式図である。計測角度φは、水平面に対する路面の傾斜角度である路面角度θrと、路面に対する車両10の傾斜角度である車両角度θvとを合計した角度である。加速度センサ14は、例えば、重力加速度ベクトルGのx軸方向の検出値であるベクトルGxと、重力加速度ベクトルGのz軸方向の検出値であるベクトルGzとを検出し、下記式(1)を用いて計測角度φを算出する。なお、計測角度φの算出は、上記の例に限定されるわけではなく、他の公知の方法を用いてもよい。また、計測角度φの算出は、加速度センサ14によって検出されたデータに基づいて、車両制御部16または後述の灯具制御部40において実行してもよい。
Figure JPOXMLDOC01-appb-M000001
FIG. 2 is a schematic diagram for explaining the measured angle φ of the vehicle. The measured angle φ is the sum of the road surface angle θr, which is the inclination angle of the road surface with respect to the horizontal plane, and the vehicle angle θv, which is the inclination angle of the vehicle 10 with respect to the road surface. The acceleration sensor 14 detects, for example, a vector Gx, which is a detected value of the gravitational acceleration vector G in the x-axis direction, and a vector Gz, which is a detected value of the gravitational acceleration vector G in the z-axis direction. is used to calculate the measurement angle φ. Note that the calculation of the measurement angle φ is not limited to the above example, and other known methods may be used. Further, the calculation of the measured angle φ may be performed by the vehicle control unit 16 or the lamp control unit 40 described later based on the data detected by the acceleration sensor 14 .
Figure JPOXMLDOC01-appb-M000001
 図1の説明に戻る。位置センサ15は、車両10の位置情報を取得するセンサであり、例えば、GPS(Global Positioning System)センサやGNSS(Global Navigation Satellite System)センサである。車両10の位置情報は、例えば、記憶部50において地点データ51の一部として記憶される。 Return to the description of Figure 1. The position sensor 15 is a sensor that acquires position information of the vehicle 10, and is, for example, a GPS (Global Positioning System) sensor or a GNSS (Global Navigation Satellite System) sensor. The position information of the vehicle 10 is stored as part of the location data 51 in the storage unit 50, for example.
 車両制御部16は、車両10の走行等の各種動作を制御する。車両制御部16は、例えば、ASIC(Application Specific Integrated Circuit)、FPGA(Field programmable Gate Array)、又は汎用CPU(Central Processing Unit)等のプロセッサを含む。また、図示はしないが、車両10は、例えば、各種の車両制御プログラムが記憶されたROM(Read Only Memory)と、各種車両制御データが一時的に記憶されるRAM(Random Access Memory)などを含む。車両制御部16のプロセッサは、ROMに記憶された各種車両制御プログラムから指定されるデータをRAM上に展開し、RAMとの協働で車両10の各種動作を制御しうる。 The vehicle control unit 16 controls various operations such as traveling of the vehicle 10 . The vehicle control unit 16 includes, for example, a processor such as an ASIC (Application Specific Integrated Circuit), an FPGA (Field programmable Gate Array), or a general-purpose CPU (Central Processing Unit). Although not shown, the vehicle 10 includes, for example, a ROM (Read Only Memory) storing various vehicle control programs and a RAM (Random Access Memory) temporarily storing various vehicle control data. . The processor of the vehicle control unit 16 can load data designated from various vehicle control programs stored in the ROM onto the RAM and control various operations of the vehicle 10 in cooperation with the RAM.
 本実施形態において、車両制御部16は、画像処理部17として機能する。詳しくは後述するが、画像処理部17は、カメラ12またはLiDAR13から出力されるデータに基づいて、車両10の現在の走行地点から所定の秒数または所定の距離を走行して到達する地点の地点情報を特定しうる。 In this embodiment, the vehicle control unit 16 functions as an image processing unit 17. Although details will be described later, the image processing unit 17, based on the data output from the camera 12 or the LiDAR 13, determines the point to which the vehicle 10 travels for a predetermined number of seconds or a predetermined distance from the current travel point. information can be identified.
 前照灯30は、車両10に搭載され、車両10の前方を照射する灯具である。前照灯30は、例えば、灯具制御部40と、記憶部50と、レベリングアクチュエータ60と、を含む。灯具制御部40は、例えば、ASIC、FPGA、又は汎用CPU等のプロセッサを含む。記憶部50は、例えば、ROMやRAM等によって構成される。灯具制御部40のプロセッサは、ROMに記憶されたプログラムから指定されるデータをRAM上に展開し、RAMとの協働で前照灯30の各種動作を制御しうる。なお、記憶部50は、車両10が備えていてもよいし、車両10の外部(例えば、車両10と通信接続可能なデータセンタ内)に備えるよう構成してもよい。 The headlamp 30 is a lamp that is mounted on the vehicle 10 and illuminates the front of the vehicle 10 . The headlamp 30 includes, for example, a lamp control section 40, a storage section 50, and a leveling actuator 60. The lamp control unit 40 includes, for example, a processor such as ASIC, FPGA, or general-purpose CPU. The storage unit 50 is configured by, for example, a ROM, a RAM, or the like. The processor of the lamp control unit 40 can load data designated by the program stored in the ROM onto the RAM and control various operations of the headlamp 30 in cooperation with the RAM. Note that the storage unit 50 may be provided in the vehicle 10, or may be configured to be provided outside the vehicle 10 (for example, in a data center capable of communicating with the vehicle 10).
 本実施形態において、灯具制御部40は、記憶部50に記憶されたプログラムを読み込むことにより、例えば、目標レベリング角度算出部41、レベリング角度制御部42、路面角度情報取得部43、および学習処理部44として機能する。 In the present embodiment, the lamp control unit 40 reads the program stored in the storage unit 50 to perform, for example, a target leveling angle calculation unit 41, a leveling angle control unit 42, a road surface angle information acquisition unit 43, and a learning processing unit. 44.
 目標レベリング角度算出部41は、所定の第一地点における前照灯30の目標レベリング角度θを、第一地点から所定の秒数(例えば、1秒)または所定の距離(例えば、10m)を車両10が走行して到達する所定の第二地点の地点情報に基づいて算出する。また、目標レベリング角度算出部41は、地点情報に基づく強化学習によって得られる後述の学習モデル52に基づいて、目標レベリング角度θを算出してもよい。なお、「地点情報」とは、その地点の地形情報や、その地点の位置情報と対応付けられて記憶されている各種の情報(例えば、後述の地点データ51)を含む。「地点情報」には、例えば、計測角度φや、後述する「路面角度θrに関する情報」、基準レベリング角度等が含まれうる。 The target leveling angle calculation unit 41 calculates the target leveling angle θ of the headlight 30 at a predetermined first point from the first point by a predetermined number of seconds (eg, 1 second) or a predetermined distance (eg, 10 m) from the vehicle. It is calculated based on point information of a predetermined second point that 10 travels and reaches. Further, the target leveling angle calculator 41 may calculate the target leveling angle θ based on a learning model 52 described later obtained by reinforcement learning based on point information. The "point information" includes geographical information of the point and various types of information stored in association with the position information of the point (for example, point data 51 to be described later). The "point information" may include, for example, the measured angle φ, "information about the road surface angle θr" described later, the reference leveling angle, and the like.
 レベリング角度制御部42は、第一地点における前照灯30の実際のレベリング角度が目標レベリング角度θに近づくように、第一地点における実際のレベリング角度を制御する。レベリング角度制御部42は、レベリングアクチュエータ60を介して、実際のレベリング角度の制御を実行する。 The leveling angle control unit 42 controls the actual leveling angle at the first point so that the actual leveling angle of the headlamp 30 at the first point approaches the target leveling angle θ. The leveling angle control section 42 controls the actual leveling angle via the leveling actuator 60 .
 路面角度情報取得部43は、第二地点における路面角度θrに関する情報を取得する。「路面角度θrに関する情報」は、特に制限はされないが、例えば、路面が上り勾配であるか下り勾配であるかを示す情報または路面角度θrを示す情報であることが好ましい。これらの情報は、例えば、カメラ12やLiDAR13を用いて取得することができる。 The road surface angle information acquisition unit 43 acquires information regarding the road surface angle θr at the second point. The "information about the road surface angle θr" is not particularly limited, but is preferably, for example, information indicating whether the road surface is uphill or downhill or information indicating the road surface angle θr. These pieces of information can be acquired using the camera 12 or the LiDAR 13, for example.
 ここで、図3から図6を用いて、路面角度θrに関する情報の取得方法について説明をする。図3および図4は、LiDAR13を用いた路面角度θrに関する情報の取得方法の一例を示す模式図である。図3の例において、車両10は、上り勾配へと向かっている。この場合、LiDAR13の水平軸Hより下方に向けて照射された光(例えば、光L3)は、必ず地面Eに当たって反射する。すなわち、車両10の前方が上り勾配である場合、LiDAR13は、水平軸Hより下方に向けて照射されたすべての光の反射光を検出することが可能である。よって、水平軸Hより下方に向けて照射されたすべての光の反射光をLiDAR13が検出した場合、路面角度情報取得部43は、第二地点は上り勾配であると判定するよう構成してもよい。なお、水平軸Hは、水平面に対して平行な軸である。 Here, a method of obtaining information on the road surface angle θr will be described using FIGS. 3 to 6. FIG. FIG. 3 and FIG. 4 are schematic diagrams showing an example of a method of obtaining information on the road surface angle θr using the LiDAR 13. FIG. In the example of FIG. 3, the vehicle 10 is heading uphill. In this case, light emitted downward from the horizontal axis H of the LiDAR 13 (for example, light L3) always hits the ground E and is reflected. That is, when the front of the vehicle 10 slopes upward, the LiDAR 13 can detect the reflected light of all the light emitted downward from the horizontal axis H. Therefore, when the LiDAR 13 detects the reflected light of all the light emitted downward from the horizontal axis H, the road surface angle information acquisition unit 43 may be configured to determine that the second point is an upward slope. good. Note that the horizontal axis H is an axis parallel to the horizontal plane.
 また、図3の例において、LiDAR13の水平軸Hより上方に向けて照射された光の一部(例えば、光L2)は地面Eに当たって反射するが、他の一部(例えば、光L1)は、地面Eには当たらない。すなわち、車両10の前方が上り勾配である場合、LiDAR13は、水平軸Hより上方に向けて照射された光について、その一部のみの反射光を検出する。よって、水平軸Hより上方に向けて照射された光について、その一部のみの反射光をLiDAR13が検出した場合、路面角度情報取得部43は、第二地点は上り勾配であると判定するよう構成してもよい。 In the example of FIG. 3, part of the light emitted upward from the horizontal axis H of the LiDAR 13 (for example, light L2) hits the ground E and is reflected, but the other part (for example, light L1) , does not hit the ground E. That is, when the front of the vehicle 10 slopes upward, the LiDAR 13 detects only part of the light emitted upward from the horizontal axis H and reflected. Therefore, when the LiDAR 13 detects only part of the reflected light of the light emitted upward from the horizontal axis H, the road surface angle information acquisition unit 43 determines that the second point is an upward slope. may be configured.
 図4の例では、車両10は、下り勾配へと向かっている。この場合、水平軸Hより上方に向けて照射された光(例えば、光L4)は、地面Eには当たらない。すなわち、車両10の前方が下り勾配である場合、LiDAR13は、水平軸Hより上方に向けて照射された光の反射光は検出されない。よって、水平軸Hより上方に向けて照射された光の反射光をLiDAR13が検出しなかった場合、路面角度情報取得部43は、第二地点は下り勾配であると判定するよう構成してもよい。 In the example of FIG. 4, the vehicle 10 is heading downhill. In this case, the light emitted upward from the horizontal axis H (for example, the light L4) does not hit the ground E. That is, when the front of the vehicle 10 slopes down, the LiDAR 13 does not detect the reflected light of the light emitted upward from the horizontal axis H. Therefore, when the LiDAR 13 does not detect the reflected light of the light emitted upward from the horizontal axis H, the road surface angle information acquisition unit 43 may be configured to determine that the second point is a downward slope. good.
 また、図4の例において、水平軸Hより下方に向けて照射された光の一部(例えば、光L6)は地面Eに当たって反射するが、他の一部(例えば、光L5)は、地面Eには当たらない。すなわち、車両10の前方が下り勾配である場合、LiDAR13は、水平軸Hより下方に向けて照射された光について、その一部のみの反射光を検出する。よって、水平軸Hより下方に向けて照射された光について、その一部のみの反射光をLiDAR13が検出した場合、路面角度情報取得部43は、第二地点は下り勾配であると判定するよう構成してもよい。 In the example of FIG. 4, part of the light emitted downward from the horizontal axis H (for example, light L6) hits the ground E and is reflected, but the other part (for example, light L5) is reflected by the ground. Does not hit E. That is, when the front of the vehicle 10 slopes downward, the LiDAR 13 detects only a part of the light emitted downward from the horizontal axis H as reflected light. Therefore, when the LiDAR 13 detects only part of the reflected light of the light emitted downward from the horizontal axis H, the road surface angle information acquisition unit 43 determines that the second point is downhill. may be configured.
 図3及び図4の例において、路面角度情報取得部43は、LiDAR13によって得られる三次元画像に基づいて、第二地点の路面角度θrを算出してもよい。路面角度θrの算出には、従来公知の画像解析手法を特に制限なく用いることができる。 In the examples of FIGS. 3 and 4, the road surface angle information acquisition unit 43 may calculate the road surface angle θr at the second point based on the three-dimensional image obtained by the LiDAR 13. A conventionally known image analysis method can be used without particular limitation for calculating the road surface angle θr.
 次に、カメラ12を用いた路面角度θrに関する情報の取得方法について説明をする。図5は、車両10が上り坂に向かう際にカメラ12によって撮像された画像の一例を示す模式図である。図5の例において、カメラ12が取得した画像には、車両10の走行レーンを定める道路標示として、車両10の左側に前後方向に延びる白色又は橙色の左線LLと、車両10の右側に前後方向に延びる白色又は橙色の右線RLが存在している。 Next, a method of obtaining information on the road surface angle θr using the camera 12 will be described. FIG. 5 is a schematic diagram showing an example of an image captured by the camera 12 when the vehicle 10 is heading uphill. In the example of FIG. 5 , the image acquired by the camera 12 includes a white or orange left line LL extending in the front-rear direction on the left side of the vehicle 10 and a front-rear line LL on the right side of the vehicle 10 as road markings that define the driving lane of the vehicle 10 . There is a white or orange right line RL extending in the direction.
 カメラ12が撮像した画像から路面角度θrに関する情報を取得する場合、例えば、路面角度情報取得部43は、ハフ変換等の画像処理を用いて、左線LLおよび右線RLを特定する。次に、路面角度情報取得部43は、この左線LLと右線RLの少なくとも一方が屈曲しているか否かを判定する。少なくとも一方が屈曲している場合、路面角度情報取得部43は、屈曲点より車両10に近い一方の線の延長線と他方の線の延長線との交わる第一消失点、および、屈曲点より車両10から遠い一方の線の延長線と他方の線の延長線との交わる第二消失点を特定する。そして、第一消失点を頂点とする左線LLと右線RLとのなす角度が、第二消失点を頂点とする左線LLと右線RLとのなす角度よりも大きい場合、路面角度情報取得部43は、第二地点が上り勾配であると判定する。 When acquiring information about the road surface angle θr from the image captured by the camera 12, for example, the road surface angle information acquisition unit 43 uses image processing such as Hough transform to identify the left line LL and the right line RL. Next, the road surface angle information acquisition unit 43 determines whether or not at least one of the left line LL and the right line RL is curved. If at least one of the road surfaces is curved, the road surface angle information acquisition unit 43 determines the first vanishing point where the extension of one line closer to the vehicle 10 than the curve and the extension of the other line intersect, and from the curve. A second vanishing point at which an extension of one line far from the vehicle 10 intersects with an extension of the other line is identified. Then, when the angle formed by the left line LL and the right line RL having the first vanishing point as vertices is larger than the angle formed by the left line LL and the right line RL having the second vanishing point as vertices, road surface angle information The acquisition unit 43 determines that the second point is an upward slope.
 図5の例では、線分Xを境にして、左線LLと右線RLの両方が屈曲している。この場合、左線LLにおいて線分Xより車両10に近い部分の延長線と、右線RLにおいて線分Xより車両10に近い部分の延長線と、の交点P1が第一消失点となる。同様に、左線LLにおいて線分Xより車両10から遠い部分の延長線と、右線RLにおいて線分Xより車両10から遠い部分の延長線と、の交点P2が第二消失点となる。そして、交点P1を頂点とする左線LLと右線RLとのなす角度Aと、交点P2を頂点とする左線LLと右線RLとのなす角度Bとを比較し、「角度A>角度B」であれば、路面角度情報取得部43は、第二地点が上り勾配であると判定することになる。 In the example of FIG. 5, both the left line LL and the right line RL are bent with the line segment X as a boundary. In this case, an intersection point P1 between an extension of the left line LL closer to the vehicle 10 than the line segment X and an extension of the right line RL closer to the vehicle 10 than the line segment X is the first vanishing point. Similarly, an intersection point P2 between an extension of the left line LL farther from the vehicle 10 than the line segment X and an extension of the right line RL farther from the vehicle 10 than the line segment X is the second vanishing point. Then, the angle A formed between the left line LL and the right line RL having the vertex at the intersection point P1 and the angle B formed between the left line LL and the right line RL having the vertex at the intersection point P2 are compared, and "angle A > angle B", the road surface angle information acquiring unit 43 determines that the second point is an upward slope.
 図6は、車両10が下り坂に向かう際にカメラ12によって撮像された画像の一例を示す模式図である。図6の例では、左線LLと右線RLの両方とも屈曲しておらず、特定される消失点は交点P3のみである。このように、消失点が一つしか特定できない場合、路面角度情報取得部43は、消失点を頂点とする左線LLと右線RLとのなす角度の範囲に、画像における水平方向(左右方向)に平行な線分が検出されるか否かを判定する。図6の例では、上記範囲に線分Cが検出されている、この場合、路面角度情報取得部43は、第二地点が下り勾配であると判定することになる。 FIG. 6 is a schematic diagram showing an example of an image captured by the camera 12 when the vehicle 10 is heading downhill. In the example of FIG. 6, neither the left line LL nor the right line RL are curved, and the only specified vanishing point is the intersection point P3. In this way, when only one vanishing point can be specified, the road surface angle information acquiring unit 43 specifies the horizontal direction (horizontal direction ) is detected. In the example of FIG. 6, the line segment C is detected in the above range. In this case, the road surface angle information acquisition unit 43 determines that the second point is downward slope.
 図5及び図6の例において、路面角度情報取得部43は、カメラ12によって撮像された画像に基づいて、第二地点の路面角度θrを算出してもよい。路面角度θrの算出は、例えば、図5の例では、上り勾配の傾斜が大きい(路面角度θrが大きい)ほど、第一消失点と第二消失点の画像中の上下方向の離間距離が大きくなることを利用して、上下方向の離間距離から第二地点の路面角度θrを算出してもよい。なお、カメラ12によって撮像された画像から路面角度θrを算出する方法は、上記の例に限定されず、従来公知の手法を特に制限なく用いることができる。  In the examples of FIGS. 5 and 6, the road surface angle information acquisition unit 43 may calculate the road surface angle θr at the second point based on the image captured by the camera 12. For example, in the example of FIG. 5, the greater the slope of the uphill slope (the greater the road surface angle θr), the greater the distance between the first vanishing point and the second vanishing point in the image in the vertical direction. The road surface angle θr at the second point may be calculated from the separation distance in the vertical direction. Note that the method of calculating the road surface angle θr from the image captured by the camera 12 is not limited to the above example, and conventionally known methods can be used without particular limitations.
 なお、上述した路面角度θrに関する情報の取得方法について、取得する情報の精度を向上させるという観点から、2以上の判定基準や算出方法を適宜組み合わせて実行することが好ましい。また、上述した路面角度θrに関する情報の取得方法について、路面角度情報取得部43が実行すると説明した各処理は、画像処理部17が実行してもよい。その場合、路面角度情報取得部43は、画像処理部17によって判定や算出等がされた情報を取得すればよい。 It should be noted that, with respect to the above-described method of acquiring information related to the road surface angle θr, it is preferable to combine two or more determination criteria and calculation methods as appropriate from the viewpoint of improving the accuracy of information to be acquired. Further, with respect to the method of acquiring information on the road surface angle θr described above, the image processing unit 17 may execute each process described as being executed by the road surface angle information acquisition unit 43 . In that case, the road surface angle information acquisition unit 43 may acquire information that has been determined, calculated, or the like by the image processing unit 17 .
 また、路面角度θrに関する情報は、機械学習された学習モデルに基づいて算出するように構成してもよい。この場合、例えば、カメラ12によって撮像された画像またはLiDAR13によって取得された三次元画像を入力、車両10が第二地点を走行する際に加速度センサ14によって検出されるデータに基づいて算出される第二地点の計測角度φまたは路面角度θrを出力とする教師データによって機械学習(例えば、深層学習)させた学習モデルを用いることができる。 Also, the information on the road surface angle θr may be configured to be calculated based on a machine-learned learning model. In this case, for example, an image captured by the camera 12 or a three-dimensional image acquired by the LiDAR 13 is input, and the second calculated based on the data detected by the acceleration sensor 14 when the vehicle 10 travels at the second point A learning model obtained by machine learning (for example, deep learning) using teacher data whose output is the measured angle φ or the road surface angle θr at two points can be used.
 図1の説明に戻る。学習処理部44は、学習モデル52に対する強化学習を実行する。強化学習は、例えば、第一地点および第二地点を含む所定の走行ルート上を車両10が走行する毎に繰り返し実行される。学習処理部44は、例えば、第一地点における目標レベリング角度θと、加速度センサ14によって計測される第二地点における車両10の計測角度φと、の差の絶対値が小さいほど大きな報酬を与えるように設定された強化学習を学習モデル52に対して実行する。学習処理部44は、例えば、強化学習としてQ学習を実行し、所定の走行ルート上の各地点のそれぞれにおいてQ値が大きくなるように強化学習を行う。Q値の具体例については、後の段落で説明をする。 Return to the description of Figure 1. The learning processing unit 44 executes reinforcement learning for the learning model 52 . Reinforcement learning is repeatedly performed each time the vehicle 10 travels on a predetermined travel route including, for example, the first point and the second point. For example, the learning processing unit 44 gives a larger reward as the absolute value of the difference between the target leveling angle θ at the first point and the measured angle φ of the vehicle 10 at the second point measured by the acceleration sensor 14 is smaller. , is performed on the learning model 52 . The learning processing unit 44 performs, for example, Q-learning as reinforcement learning so that the Q-value increases at each point on the predetermined travel route. A specific example of the Q value will be explained in a later paragraph.
 図7は、強化学習の一例を説明するための模式図である。図7の例において、地点N-1、N、およびN+1は、走行ルートU上に存在する地点である。地点Nは、地点N-1から所定の秒数または所定の距離を車両10が走行して到達する地点である。同様に、地点N+1は、地点Nから所定の秒数または所定の距離を車両10が走行して到達する地点である。計測角度φ(N-1)、φ(N)、およびφ(N+1)は、それぞれ、地点N-1、地点N、および地点N+1における計測角度φである。 FIG. 7 is a schematic diagram for explaining an example of reinforcement learning. In the example of FIG. 7, points N−1, N, and N+1 are points on the travel route U. In the example of FIG. A point N is a point reached by the vehicle 10 traveling a predetermined number of seconds or a predetermined distance from the point N−1. Similarly, the point N+1 is a point reached by the vehicle 10 traveling from the point N for a predetermined number of seconds or a predetermined distance. The measured angles φ(N−1), φ(N), and φ(N+1) are the measured angles φ at the points N−1, N, and N+1, respectively.
 強化学習は、例えば、各地点における目標レベリング角度θと、各地点の次の地点における計測角度φとの差の絶対値が小さいほど大きな報酬を与える系において、各地点のQ値が大きくなるように実行される。この強化学習では、地点N-1の目標レベリング角度θ(N-1)が地点Nの計測角度(φ)に近づくほど、地点N-1の報酬が大きくなる。同様に、地点Nの目標レベリング角度θ(N)が地点N+1の計測角度(φ+1)に近づくほど、地点Nの報酬が大きくなる。 Reinforcement learning is, for example, a system in which the smaller the absolute value of the difference between the target leveling angle θ at each point and the measured angle φ at the point next to each point, the larger the reward. is executed. In this reinforcement learning, the closer the target leveling angle θ(N−1) of the point N−1 is to the measured angle (φ) of the point N, the greater the reward for the point N−1. Similarly, the closer the target leveling angle θ(N) of the point N is to the measured angle (φ+1) of the point N+1, the greater the reward of the point N becomes.
 このような強化学習が進むにつれ、現在の走行地点において、現在の走行地点より先の地点の計測角度φに基づくレベリング角度の制御が可能になる。よって、先の地点において傾斜角度が急激に変化している場合であっても、傾斜角度の急激な変化に対して光軸を適切に変化させることができるようになる。その結果、傾斜角度が急激に変化している場合であっても、前方視認性の低下を抑制できる。 As this type of reinforcement learning progresses, it becomes possible to control the leveling angle at the current travel point based on the measured angle φ at points ahead of the current travel point. Therefore, even if the tilt angle changes abruptly at the previous point, the optical axis can be appropriately changed in response to the sudden change in the tilt angle. As a result, even when the tilt angle changes abruptly, it is possible to suppress deterioration of forward visibility.
 図1の説明に戻る。学習処理部44は、例えば、所定の走行ルート上の複数の地点の各々においてQ値の比較基準値および基準レベリング角度を設定し、車両10が所定の走行ルートを走行する場合に、所定の走行ルート上の複数の地点の各々におけるQ値を算出し、算出されたQ値が比較基準値よりも大きい地点があった場合に、該地点における比較基準値を算出されたQ値の値に更新し、そのQ値の値を算出する際に用いた目標レベリング角度θを該地点における基準レベリング角度として更新するようにして強化学習を実行してもよい。比較基準値および基準レベリング角度は、例えば、各地点の位置情報と対応付けられて、地点データ51として記憶部50に記憶される。なお、比較基準値の初期値は、各地点において同一の値であってもよい。また、基準レベリング角度の初期値は、各地点において同一の値であってもよいし、初期値は設定しなくてもよい。 Return to the description of Figure 1. For example, the learning processing unit 44 sets a Q value comparison reference value and a reference leveling angle at each of a plurality of points on a predetermined travel route, and when the vehicle 10 travels on the predetermined travel route, the predetermined travel distance is set. Calculate the Q value at each of multiple points on the route, and if there is a point where the calculated Q value is greater than the comparison reference value, update the comparison reference value at that point to the calculated Q value Then, the reinforcement learning may be executed by updating the target leveling angle θ used in calculating the Q value as the reference leveling angle at the point. The comparison reference value and the reference leveling angle are stored in the storage unit 50 as point data 51 in association with the position information of each point, for example. Note that the initial value of the comparison reference value may be the same value at each point. Also, the initial value of the reference leveling angle may be the same value at each point, or the initial value may not be set.
 比較基準値は各地点におけるQ値の最高値を示し、基準レベリング角度は各地点においてQ値が最高値を示した際の目標レベリング角度θである。学習処理部44は、例えば、基準レベリング角度を基準にして次回の目標レベリング角度θを算出してもよい。このような構成により、各地点においてQ値が収束するまでの学習回数を少なくすることが期待できる。 The comparison reference value indicates the maximum value of the Q value at each point, and the reference leveling angle is the target leveling angle θ when the Q value indicates the maximum value at each point. The learning processing unit 44 may, for example, calculate the next target leveling angle θ based on the reference leveling angle. With such a configuration, it can be expected that the number of times of learning until the Q value converges at each point is reduced.
 また、学習処理部44は、車両10が所定の走行ルートを走行する場合に、所定の走行ルート上の複数の地点の各々において仮想レベリング角度ηを算出し、該仮想レベリング角度ηを目標レベリング角度θとして用いてQ値の算出、比較基準値の更新、及び基準レベリング角度の更新に関する処理を実行してもよい。この場合、レベリング角度制御部42は、比較基準値が所定の閾値を超えていない地点において、目標レベリング角度θに基づく実際のレベリング角度の制御を実行しないことが好ましい。一方で、比較基準値が所定の閾値を超える地点においては、基準レベリング角度を目標レベリング角度θとして用いて実際のレベリング角度の制御を実行することが好ましい。仮想レベリング角度ηは、目標レベリング角度θと同様の手法で算出されうる。 Further, when the vehicle 10 travels along a predetermined travel route, the learning processing unit 44 calculates a virtual leveling angle η at each of a plurality of points on the predetermined travel route, and converts the virtual leveling angle η to the target leveling angle. θ may be used to calculate the Q value, update the comparison reference value, and update the reference leveling angle. In this case, the leveling angle control unit 42 preferably does not control the actual leveling angle based on the target leveling angle θ at points where the comparison reference value does not exceed the predetermined threshold value. On the other hand, at points where the comparison reference value exceeds the predetermined threshold, it is preferable to use the reference leveling angle as the target leveling angle θ to actually control the leveling angle. The virtual leveling angle η can be calculated in the same manner as the target leveling angle θ.
 比較基準値が低い地点は、まだ適切なレベリング角度の制御が難しい地点である。よって、そのような地点においては、目標レベリング角度θの代わりに仮想レベリング角度ηを算出し、仮想レベリング角度ηを用いて強化学習をする一方で、先の地点の地点情報に基づく実際のレベリング角度の制御を実行しないように構成する(例えば、従来のように現在地点の計測角度φに基づく制御を行うように構成する)ことで、例えば、レベリング角度がランダムに選択された不適切な値に変更されることを防止できる。 Points with low comparison reference values are points where it is still difficult to control the appropriate leveling angle. Therefore, at such a point, the virtual leveling angle η is calculated instead of the target leveling angle θ, and reinforcement learning is performed using the virtual leveling angle η, while the actual leveling angle based on the point information of the previous point (For example, by configuring to perform control based on the measured angle φ of the current point as in the conventional method), for example, the leveling angle is randomly selected to an inappropriate value prevent it from being changed.
 一方で、比較基準値が高い地点においては、目標レベリング角度θの代わりに仮想レベリング角度ηを算出し、仮想レベリング角度ηを用いて強化学習をすることでさらに最適なレベリング角度を探索しつつも、基準レベリング角度を目標レベリング角度θとして用いることで、先の地点で傾斜角度が急激に変化するような場合でも、従来の構成よりも適切にレベリング角度の制御を実行することが可能になる。 On the other hand, at points where the comparison reference value is high, the virtual leveling angle η is calculated instead of the target leveling angle θ, and reinforcement learning is performed using the virtual leveling angle η, thereby searching for the optimum leveling angle. By using the reference leveling angle as the target leveling angle θ, it is possible to control the leveling angle more appropriately than in the conventional configuration, even when the tilt angle changes abruptly at the previous point.
(レベリング角度制御システムの動作例)
 次に、図8から図12を参照して、本実施形態に係るシステム100の動作例について説明する。なお、以下で説明する各フローチャートを構成する各処理の順序は、処理内容に矛盾や不整合が生じない範囲で順不同であり、並列的に実行されてもよい。
(Operation example of the leveling angle control system)
Next, an operation example of the system 100 according to this embodiment will be described with reference to FIGS. 8 to 12. FIG. It should be noted that the order of each process constituting each flowchart described below may be random as long as there is no contradiction or inconsistency in the contents of the process, and the processes may be executed in parallel.
 図8は、レベリング角度制御に係る処理の一例を示すフローチャートである。本実施形態に係るシステム100は、所定の開始条件が満たされた場合に、所定の終了条件を満たすまでレベリング角度の制御を実行する。 FIG. 8 is a flowchart showing an example of processing related to leveling angle control. When a predetermined start condition is satisfied, the system 100 according to the present embodiment executes leveling angle control until a predetermined end condition is satisfied.
 所定の開始条件および終了条件は、特に制限されないが、例えば、車両10が所定の走行ルート上を走行し始めたことを開始条件とし、該所定の走行ルート上を走行し終わったことを終了条件としてもよい。この場合、後述のステップS2からステップS4の処理が所定の走行ルート上において繰り返し実行されることになる。 Although the predetermined start condition and end condition are not particularly limited, for example, the start condition is that the vehicle 10 has started traveling on a predetermined travel route, and the end condition is that the vehicle 10 has finished traveling on the predetermined travel route. may be In this case, the processes from step S2 to step S4, which will be described later, are repeatedly executed on a predetermined travel route.
 所定の走行ルートは、車両10のユーザの操作によって設定されてもよいし、車両10の走行履歴を参照して、走行回数の多いルートを所定の走行ルートとして灯具制御部40が設定してもよい。このような構成により、ユーザの望むルートや頻繁に通るルート上で適切なレベリング角度の制御を実行することが可能になる。なお、所定の走行ルートの走行開始と走行終了は、例えば、位置センサ15によって取得される位置情報に基づいて判断してもよいし、車両10のユーザによる開始操作や終了操作に基づいて判断してもよい。 The predetermined travel route may be set by the operation of the user of the vehicle 10, or may be set by the lamp control unit 40 by referring to the travel history of the vehicle 10 and setting a route that has been traveled frequently as the predetermined travel route. good. With such a configuration, it is possible to appropriately control the leveling angle on a route desired by the user or on a route frequently traveled by the user. It should be noted that the start and end of travel on the predetermined travel route may be determined, for example, based on the position information acquired by the position sensor 15, or may be determined based on the start operation and end operation of the vehicle 10 by the user. may
 また、所定の開始条件は、第一地点の路面角度θrと第二地点の路面角度θrとの差の絶対値が所定の値以上であることとし、所定の終了条件は、第一地点以降の所定の地点の路面角度θrと該所定の地点に対する第二地点の路面角度θrとの差の絶対値が所定の値未満であることとしてもよい。このような構成によれば、道路の傾斜角度の変化が大きい場所では、その変化に対して前照灯30のレベリング角度を適切に変化させることができ、また、道路の傾斜角度の変化が小さい場所では、従来のようにレベリング角度を制御することによって灯具制御部40等への負荷を軽減することができる。なお、所定の開始条件および終了条件を設けずに、車両10の走行中はステップS2からステップS4の各処理を繰り返し実行するように構成してもよい。 The predetermined start condition is that the absolute value of the difference between the road surface angle θr at the first point and the road surface angle θr at the second point is greater than or equal to a predetermined value, and the predetermined end condition is The absolute value of the difference between the road surface angle θr at the predetermined point and the road surface angle θr at the second point with respect to the predetermined point may be less than a predetermined value. According to such a configuration, in places where there is a large change in the inclination angle of the road, the leveling angle of the headlamp 30 can be appropriately changed in response to the change, and the change in the inclination angle of the road is small. In places, the load on the lamp control section 40 and the like can be reduced by controlling the leveling angle as in the conventional art. It should be noted that the processes from step S2 to step S4 may be repeatedly executed while the vehicle 10 is running without setting the predetermined start condition and end condition.
 図8の例では、開始条件が満たされない場合(ステップS1においてNo)、開始条件が満たされるまで待機する。開始条件が満たされた場合(ステップS1においてYes)、終了条件が満たされるまで、ステップS2からステップS4が繰り返し実行される。 In the example of FIG. 8, if the start condition is not satisfied (No in step S1), it waits until the start condition is satisfied. If the start condition is satisfied (Yes in step S1), steps S2 to S4 are repeatedly executed until the end condition is satisfied.
 ステップS2において、灯具制御部40は、第一地点(車両10の現在地点)の目標レベリング角度θを算出する。第一地点における目標レベリング角度θは、第一地点から所定の秒数または所定の距離を車両10が走行して到達する第二地点の地点情報に基づいて算出される。 In step S2, the lighting control unit 40 calculates the target leveling angle θ at the first point (current point of the vehicle 10). The target leveling angle θ at the first point is calculated based on the point information of the second point reached by the vehicle 10 traveling a predetermined number of seconds or a predetermined distance from the first point.
 ステップS2では、例えば、第二地点の路面角度θrに関する情報に基づいて、目標レベリング角度θを算出することができる。具体的には、路面角度θrに関する情報が第二地点が上り勾配であることを示す情報である場合、灯具制御部40は、第一地点における計測角度φより大きくなるよう目標レベリング角度θを算出してもよい。反対に、路面角度θrに関する情報が第二地点が下り勾配であることを示す情報である場合、灯具制御部40は、第一地点における計測角度φより小さくなるよう目標レベリング角度θを算出してもよい。 At step S2, for example, the target leveling angle θ can be calculated based on the information regarding the road surface angle θr at the second point. Specifically, when the information about the road surface angle θr is information indicating that the second point is an upward slope, the lighting control unit 40 calculates the target leveling angle θ so as to be larger than the measured angle φ at the first point. You may Conversely, if the information on the road surface angle θr indicates that the second point is on a downward slope, the lighting control unit 40 calculates the target leveling angle θ so as to be smaller than the measured angle φ at the first point. good too.
 また、路面角度θrに関する情報が第二地点の路面角度θrの値を示すものである場合、灯具制御部40は、第二地点の路面角度θrに基づいて目標レベリング角度θを算出してもよい。この場合、例えば、第二地点の路面角度θrを第一地点の車両角度θvを用いて補正した値を第一地点の目標レベリング角度θとしてもよい。また、第二地点の計測角度φが地点データ51として記憶部50に記憶されている場合、灯具制御部40は、第二地点の計測角度φを目標レベリング角度θとして採用してもよい。 Further, when the information regarding the road surface angle θr indicates the value of the road surface angle θr at the second point, the lighting control section 40 may calculate the target leveling angle θ based on the road surface angle θr at the second point. . In this case, for example, a value obtained by correcting the road surface angle θr at the second point using the vehicle angle θv at the first point may be used as the target leveling angle θ at the first point. Further, when the measured angle φ at the second point is stored in the storage unit 50 as the point data 51, the lamp control unit 40 may adopt the measured angle φ at the second point as the target leveling angle θ.
 また、ステップS2において、灯具制御部40は、地点情報に基づく強化学習によって得られた学習モデル52に基づいて、第一地点の目標レベリング角度θを算出してもよい。 Further, in step S2, the lamp control section 40 may calculate the target leveling angle θ of the first point based on the learning model 52 obtained by reinforcement learning based on the point information.
 次に、ステップS3において、灯具制御部40は、第一地点における実際のレベリング角度が目標レベリング角度θに近づくよう、前照灯30のレベリング角度を制御する。ステップS2およびステップS3の処理によって、第二地点に到着するよりも先行して、第二地点の傾斜に適切なレベリング角度を実現するための制御がされることになる。 Next, in step S3, the lamp control unit 40 controls the leveling angle of the headlamp 30 so that the actual leveling angle at the first point approaches the target leveling angle θ. Through the processing in steps S2 and S3, control is performed to realize a leveling angle suitable for the inclination of the second point prior to arrival at the second point.
 車両10が第一地点から所定距離を走行していない又は第一地点を通過してから所定時間が経過していない場合(ステップS4においてNo)、所定距離を走行または所定時間を経過するまで待機する。車両10が第一地点から所定距離を走行または第一地点を通過してから所定時間が経過した場合(ステップS4においてYes)、その際に車両10がいる位置を第一地点として、ステップS2へ戻る。ステップS2からステップS4の一連の処理は、終了条件を満たすまで繰り返し実行され、終了条件を満たしたことに応じて、レベリング角度制御に係る処理が終了する。 If the vehicle 10 has not traveled the predetermined distance from the first point or has not passed the predetermined time after passing the first point (No in step S4), it waits until it travels the predetermined distance or the predetermined time elapses. do. If a predetermined time has passed since the vehicle 10 traveled a predetermined distance from the first point or passed the first point (Yes in step S4), the position where the vehicle 10 is at that time is regarded as the first point, and the process proceeds to step S2. return. A series of processes from step S2 to step S4 are repeatedly executed until the end condition is satisfied, and the process related to the leveling angle control ends when the end condition is satisfied.
 次に、システム100による学習モデル52に対する強化学習の手法について説明をする。まず、本実施形態に係る強化学習の概要について説明をする。強化学習は、例えば、下記式(2)で表される行動価値関数Qπ(s,a)および下記式(3)で表される状態価値関数Vπ(s)を用いて実行することができる。
Figure JPOXMLDOC01-appb-M000002
Next, a method of reinforcement learning for the learning model 52 by the system 100 will be described. First, an outline of reinforcement learning according to the present embodiment will be described. Reinforcement learning can be executed using, for example, an action-value function Q π (s, a) represented by the following formula (2) and a state-value function V π (s) represented by the following formula (3). can.
Figure JPOXMLDOC01-appb-M000002
 上記式(2)および式(3)において、tは時刻、sは現在の状態、s′は次の状態、aは行動、πはどのような行動をとるかを示す方策である。PおよびRは、それぞれ、状態sがs′に遷移する確率およびその際に得られる報酬である。γは将来の報酬の割引率を示す。行動価値関数Qπ(s,a)は、状態sのとき、一旦方策とは無関係に行動aを取った後、方策πに従って行動する事で、その後将来に渡って得る事が期待される割引報酬和を表す。Eは期待値である。 In the above equations (2) and (3), t is the time, s is the current state, s' is the next state, a is the action, and .pi. P and R are the probability that state s transitions to s' and the reward obtained at that time, respectively. γ indicates the discount rate of future rewards. The action-value function Q π (s, a) is the discount represents the reward sum. E is the expected value.
 ここで、強化学習に用いられる地点情報について説明をする。図9は、地点データ51の一例である。地点データ51には、所定の走行ルート上の各地点の位置情報と関連付けて、計測角度φ、比較基準値、基準レベリング角度、および仮想レベリング角度ηが記憶されている。 Here, we will explain the point information used for reinforcement learning. FIG. 9 is an example of the spot data 51. As shown in FIG. The point data 51 stores the measured angle φ, the comparison reference value, the reference leveling angle, and the virtual leveling angle η in association with the position information of each point on the predetermined travel route.
 この場合、地点Nにおける状態s(N)は、例えば、以下のように定義することができる。
 状態s(N)=仮想レベリング角度η(N)
 ここで、仮想レベリング角度ηは、水平面に対して-3°~2°の範囲でランダムに設定されうる値であり、分解能は0.1°である。また、仮想レベリング角度ηは、初期値は-0.6°とすることが好ましい。なお、仮想レベリング角度ηの上記範囲や分解能、初期値は一例であり、他の数値を採用してもよい。
In this case, state s(N) at point N can be defined as follows, for example.
state s(N)=virtual leveling angle η(N)
Here, the virtual leveling angle η is a value that can be randomly set within a range of -3° to 2° with respect to the horizontal plane, and the resolution is 0.1°. Also, the initial value of the virtual leveling angle η is preferably −0.6°. Note that the above range, resolution, and initial value of the virtual leveling angle η are examples, and other numerical values may be adopted.
 行動aは、仮想レベリング角度η(N)を-3°~2°の範囲で変化させることで定義する。方策πは、例えば、以下のようなものを採用できる。
 地点Nよりも地点N+1の方が上り勾配:仮想レベリング角度η(N)を仮想レベリング角度η(N-1)から1°アップを上限としてランダムに上げる。
 地点Nよりも地点N+1の方が下り勾配:仮想レベリング角度η(N)を仮想レベリング角度η(N-1)から1°ダウンを上限としてランダムに下げる。
Action a is defined by changing the virtual leveling angle η(N) in the range of −3° to 2°. For the policy π, for example, the following can be adopted.
Point N+1 has a higher gradient than point N: The virtual leveling angle η(N) is randomly raised from the virtual leveling angle η(N−1) by 1° as the upper limit.
Point N+1 has a lower gradient than point N: The virtual leveling angle η(N) is randomly lowered from the virtual leveling angle η(N−1) by 1° as an upper limit.
 この方策のものとでの行動aは、以下の式で表される。
 行動a(N)=Δη(N-1)=仮想レベリング角度η(N)-仮想レベリング角度η(N-1)
The behavior a of this policy is represented by the following equation.
Action a(N)=Δη(N−1)=virtual leveling angle η(N)−virtual leveling angle η(N−1)
 報酬R(N)は、例えば、以下のように定義することができる。
 報酬R(N)=5°-|計測角度φ(N)-仮想レベリング角度η(N-1)|
 目標値通りに制御すると報酬は5°で最大となる。目標値から最も外れると報酬はゼロとなる。
 また、次の状態sに至るまでの遷移確率は同様に確からしいとしてもよいし、初期状態である「水平面に対し-0.6°」を中心とした重みづけを行ってもよい。
Reward R(N) can be defined, for example, as follows.
Reward R(N)=5°-|measured angle φ(N)-virtual leveling angle η(N-1)|
If the target value is controlled, the reward becomes maximum at 5°. If you deviate from the target value, the reward will be zero.
Also, the transition probabilities up to the next state s may similarly be assumed to be probable, or weighting may be performed centering on "-0.6° to the horizontal plane" which is the initial state.
 上記のような前提のもとで、強化学習には、例えば、Q学習を用いることができる。以下、Qπ(s,a)のことをQ値とも称する。Q学習を用いる場合、システム100は、さらなるQ値が常に最大となるようにレベリング角度の最適化を図る。その際、過去の経験上の最適行動と、報酬獲得を目指した新規行動の探索を、上述のような方策πに従って実施する。その結果として、学習モデル52は、Q値を最大化する状態と行動を学習する。そしてQ値を最大化する仮想レベリング角度η(N)を目標レベリング角度θ(N)に置き換えることで、目標レベリング角度θの最適化を図る。 Under the above premise, Q-learning, for example, can be used for reinforcement learning. Hereinafter, Q π (s, a) is also referred to as a Q value. With Q-learning, the system 100 attempts to optimize the leveling angle so that the further Q-value is always maximized. At that time, the search for the optimal action based on past experience and the new action aiming at reward acquisition is carried out according to the policy π as described above. As a result, learning model 52 learns the states and actions that maximize the Q value. By replacing the virtual leveling angle η(N) that maximizes the Q value with the target leveling angle θ(N), the target leveling angle θ is optimized.
 以下、強化学習についてより具体的に説明をする。図10は、強化学習に係る処理の一例を示すフローチャートである。図9に示す強化学習は、車両10が所定の走行ルート上を走行する場合に繰り返し実行される。その結果、所定の走行ルート上で適切なレベリング角度制御が可能な学習モデル52が得られることになる。 The following is a more specific explanation of reinforcement learning. FIG. 10 is a flowchart illustrating an example of processing related to reinforcement learning. The reinforcement learning shown in FIG. 9 is repeatedly executed when the vehicle 10 travels on a predetermined travel route. As a result, a learning model 52 capable of appropriate leveling angle control on a predetermined travel route is obtained.
 まず、ステップS11において、灯具制御部40は、強化学習の上限回数を設定する。上限回数は、例えば、Q値が所定の閾値を超えるような回数を設定すればよい。次に、ステップS12において、灯具制御部40は、所定の走行ルートの走行開始を検知する。所定の走行ルートは、予め強化学習の対象として設定された特定のルートである。所定の走行ルートの検知は、例えば、位置センサ15から取得した位置情報に基づいて行ってもよいし、車両10のユーザの開始操作等に基づいて行ってもよい。 First, in step S11, the lamp control unit 40 sets the upper limit number of times of reinforcement learning. For the upper limit number of times, for example, the number of times that the Q value exceeds a predetermined threshold value may be set. Next, in step S12, the lamp control unit 40 detects the start of travel on a predetermined travel route. The predetermined travel route is a specific route set in advance as a target of reinforcement learning. Detection of the predetermined travel route may be performed, for example, based on the position information acquired from the position sensor 15, or may be performed based on the user's start operation of the vehicle 10, or the like.
 次に、ステップS13において、灯具制御部40は、計時を開始する。計時は、強化学習を実行するタイミングを判定するために行われる。その後、灯具制御部40が所定の走行ルートの走行終了を検知するまで、ステップS14からステップS21の一連の処理が繰り返される。 Next, in step S13, the lamp control section 40 starts timing. Timing is performed to determine when to perform reinforcement learning. After that, a series of processes from step S14 to step S21 are repeated until the lamp control unit 40 detects the end of traveling on the predetermined travel route.
 ステップS14において、灯具制御部40は、強化学習のタイミングであるか否かを判定する。図10の例では、例えば、ステップS13における計時開始から所定の秒数(例えば、1秒)が経過する毎に強化学習のタイミングであると判定される。なお、強化学習のタイミングは、車両10が所定の走行距離を走行する毎としてもよい。この場合、ステップS13では、計時に代えて走行距離の計測が開始されることになる。 In step S14, the lamp control unit 40 determines whether or not it is time for reinforcement learning. In the example of FIG. 10, for example, it is determined that it is time for reinforcement learning each time a predetermined number of seconds (for example, one second) elapses from the start of timing in step S13. The timing of reinforcement learning may be set every time the vehicle 10 travels a predetermined distance. In this case, in step S13, measurement of traveled distance is started instead of timing.
 強化学習のタイミングではない場合(ステップS14においてNo)、強化学習のタイミングになるまで待機する。強化学習のタイミングである場合(ステップS14においてYes)、ステップS15において、灯具制御部40は、車両10の走行速度が所定の速度(例えば、30km/時)以上であるか否かを判定する。車両10の走行速度が所定の速度未満である場合(ステップS15においてNo)、ステップS14に戻る。 If it is not the timing for reinforcement learning (No in step S14), wait until the timing for reinforcement learning. If it is the timing of reinforcement learning (Yes in step S14), in step S15, the lamp control unit 40 determines whether or not the traveling speed of the vehicle 10 is equal to or higher than a predetermined speed (eg, 30 km/h). If the running speed of the vehicle 10 is less than the predetermined speed (No in step S15), the process returns to step S14.
 道路の傾斜角度が急激に変化するような場所であっても、車両10の走行速度が遅ければ、従来の構成でもその急激な変化に対して前照灯30の光軸を追随させることは難しくない。よって、本実施形態に係るシステム100は、車両10の走行速度が速い場合に特に有用なものである。車両10の走行速度が所定の速度未満である場合のデータでは強化学習を実行しないように構成することで、学習モデル52を車両10の走行速度が速い場合に特に有用な学習モデル52を得ることができる。 Even in a place where the inclination angle of the road suddenly changes, if the traveling speed of the vehicle 10 is slow, it is difficult to make the optical axis of the headlight 30 follow the sudden change even with the conventional configuration. do not have. Therefore, the system 100 according to this embodiment is particularly useful when the vehicle 10 travels at a high speed. To obtain a learning model 52 that is particularly useful when the vehicle 10 travels at a high speed by constructing the learning model 52 so that reinforcement learning is not executed with data when the vehicle 10 travels at a speed less than a predetermined speed. can be done.
 車両10の走行速度が所定の速度以上である場合(ステップS15においてYes)、ステップS16において、灯具制御部40は、第一地点(現在地点)において、所定の方策に基づいて仮想レベリング角度ηを算出する。なお、以下では、第一地点を地点N、第一地点から所定の秒数を車両10が走行して到達する第二地点を地点N+1、第一地点から所定の秒数前に車両10が走行していた地点を地点N-1とも称する。 When the running speed of the vehicle 10 is equal to or higher than the predetermined speed (Yes in step S15), in step S16, the lamp control unit 40 adjusts the virtual leveling angle η at the first point (current point) based on a predetermined measure. calculate. In the following description, the first point is point N, the second point reached by the vehicle 10 traveling a predetermined number of seconds from the first point is point N+1, and the vehicle 10 is traveling a predetermined number of seconds before the first point. The point at which it was located is also referred to as point N-1.
 ここで、図11を用いて、ステップS16の処理について詳述をする。図11は、仮想レベリング角度ηの算出に係る処理の一例を示すフローチャートであり、ステップS16の処理の具体例を示すものである。まず、ステップS31において、灯具制御部40は、地点N+1の路面角度θrに関する情報を取得する。路面角度θrに関する情報は、既に説明したように、カメラ12が撮像した画像や、LiDAR13が取得した三次元画像等に基づいて取得することができる。 Here, the processing of step S16 will be described in detail using FIG. FIG. 11 is a flowchart showing an example of processing related to calculation of the virtual leveling angle η, and shows a specific example of the processing in step S16. First, in step S31, the lamp control unit 40 acquires information about the road surface angle θr at the point N+1. Information about the road surface angle θr can be obtained based on the image captured by the camera 12, the three-dimensional image obtained by the LiDAR 13, or the like, as described above.
 ステップS31において取得した情報により、地点Nよりも地点N+1の方が上り勾配であると判定した場合(ステップS32においてYes)、ステップS33において、灯具制御部40は、例えば、仮想レベリング角度η(N)を初期値または仮想レベリング角度η(N-1)から1°アップを上限としてランダムに上げる。また、ステップS31において取得した情報により、地点Nよりも地点N+1の方が下り勾配であると判定した場合(ステップS32においてNo)、ステップS34において、灯具制御部40は、例えば、仮想レベリング角度η(N)を初期値または地点N-1の仮想レベリング角度η(N-1)から1°ダウンを上限としてランダムに下げる。このような構成により、Q値が所定の閾値を超えるまでの学習回数を少なくすることが期待できる。 If it is determined from the information acquired in step S31 that the point N+1 has a higher slope than the point N (Yes in step S32), in step S33 the lamp control unit 40 sets the virtual leveling angle η(N ) is randomly increased from the initial value or the virtual leveling angle η(N−1) with an upper limit of 1°. Further, when it is determined from the information acquired in step S31 that the point N+1 has a lower gradient than the point N (No in step S32), in step S34, the lamp control unit 40 sets the virtual leveling angle η (N) is randomly lowered from the initial value or the hypothetical leveling angle η(N−1) at the point N−1 with an upper limit of 1° down. With such a configuration, it can be expected that the number of times of learning until the Q value exceeds a predetermined threshold is reduced.
 なお、ステップS31において地点N+1の路面角度θrの値を取得するように構成した場合や、所定の走行ルートの走行回数が2回以上のときにステップS31において地点N+1の計測角度φ(N+1)の値を取得するように構成した場合、路面角度θrの値や計測角度φ(N+1)の値に基づいて、仮想レベリング角度η(N)を算出してもよい。 Note that when the value of the road surface angle θr at the point N+1 is acquired in step S31, or when the number of times the predetermined travel route has been traveled is two or more times, the measured angle φ(N+1) at the point N+1 is calculated in step S31. When the value is acquired, the virtual leveling angle η(N) may be calculated based on the value of the road surface angle θr and the value of the measured angle φ(N+1).
 ステップS33およびS34の後は、図10のステップS17へ進む。ステップS17において、灯具制御部40は、地点N+1に到着した際に計測された地点N+1の計測角度φ(N+1)を取得する。次に、ステップS18において、灯具制御部40は、仮想レベリング角度η(N)および計測角度φ(N+1)に基づいて、地点NにおけるQ値を算出する。 After steps S33 and S34, proceed to step S17 in FIG. In step S17, the lamp control section 40 acquires the measured angle φ(N+1) at the point N+1 that was measured upon arrival at the point N+1. Next, in step S18, the lamp control section 40 calculates the Q value at the point N based on the virtual leveling angle η(N) and the measured angle φ(N+1).
 ステップS18において算出されたQ値が、地点データ51に含まれる地点Nの比較基準値よりも大きい場合(ステップS19においてYes)、ステップS20において、灯具制御部40は、地点データ51における地点Nの比較基準値を、ステップS18で算出されたQ値に更新する。また、ステップS21において、灯具制御部40は、地点データ51における地点Nの基準レベリング角度を、ステップS16で算出された仮想レベリング角度η(N)の値に更新する。一方で、ステップS18において算出されたQ値が、地点データ51に含まれる地点Nの比較基準値以下の場合(ステップS19においてNo)、ステップS14へ戻る。 If the Q value calculated in step S18 is greater than the comparison reference value of point N included in the point data 51 (Yes in step S19), the lamp control unit 40 determines the value of point N in the point data 51 in step S20. The comparison reference value is updated to the Q value calculated in step S18. Also, in step S21, the lamp control unit 40 updates the reference leveling angle of the point N in the point data 51 to the value of the virtual leveling angle η(N) calculated in step S16. On the other hand, when the Q value calculated in step S18 is equal to or less than the comparison reference value of point N included in the point data 51 (No in step S19), the process returns to step S14.
 ステップS14からステップS21の一連の処理は、所定の走行ルート上で繰り返し実行される。所定の走行ルートの走行終了を検知すると、ステップS22において、灯具制御部40は、学習回数を更新する。学習回数がステップS11で設定した上限回数に達した場合(ステップS23においてYes)、強化学習に係る処理を終了する。学習回数がステップS11で設定した上限回数に達していない場合(ステップS23においてNo)、ステップS12に戻り、強化学習に係る処理が継続される。 A series of processes from step S14 to step S21 are repeatedly executed on a predetermined travel route. Upon detecting the end of travel on the predetermined travel route, the lamp control unit 40 updates the number of times of learning in step S22. When the number of times of learning reaches the upper limit number of times set in step S11 (Yes in step S23), the process related to reinforcement learning ends. If the number of times of learning has not reached the upper limit number of times set in step S11 (No in step S23), the process returns to step S12 to continue the process related to reinforcement learning.
 強化学習に係る処理が終了した場合、得られた学習モデル52に基づいて、目標レベリング角度θを算出することが可能になり、目標レベリング角度θに基づくレベリング角度の制御をすることが可能になる。また、強化学習に係る処理が継続されている場合においても、例えば、所定の条件を満たした場合には、その時点の学習モデル52に基づいて算出された目標レベリング角度θを用いてレベリング角度の制御をするように構成することが好ましい。 When the processing related to reinforcement learning ends, it becomes possible to calculate the target leveling angle θ based on the obtained learning model 52, and it becomes possible to control the leveling angle based on the target leveling angle θ. . Further, even when the processing related to reinforcement learning is continued, for example, when a predetermined condition is satisfied, the target leveling angle θ calculated based on the learning model 52 at that time is used to determine the leveling angle. It is preferably arranged to control.
 図12は、強化学習中のレベリング角度制御に係る処理の一例を示すフローチャートである。図12に示すフローチャートに示す各処理は、例えば、図10のステップS14からステップS20の一連の処理と並行して実施される。 FIG. 12 is a flowchart showing an example of processing related to leveling angle control during reinforcement learning. Each process shown in the flowchart shown in FIG. 12 is performed in parallel with a series of processes from step S14 to step S20 in FIG. 10, for example.
 まず、ステップS41において、灯具制御部40は、車両10が地点Nに到着したことを検知する。次に、ステップS42において、灯具制御部40は、地点データ51から地点Nにおける比較基準値を読み出し、比較基準値が所定の閾値以上であるか否かを判定する。 First, in step S41, the lamp control unit 40 detects that the vehicle 10 has arrived at the point N. Next, in step S42, the lamp control section 40 reads the comparison reference value at the point N from the point data 51, and determines whether or not the comparison reference value is equal to or greater than a predetermined threshold.
 地点Nの比較基準値が所定の閾値以上である場合(ステップS42においてYes)、ステップS43において、灯具制御部40は、地点データ51から地点Nにおける基準レベリング角度を読み出し、読み出した基準レベリング角度に基づいて目標レベリング角度θ(N)を算出する。ステップS43では、例えば、読み出した基準レベリング角度の値が目標レベリング角度θ(N)とされる。 If the comparison reference value for the point N is equal to or greater than the predetermined threshold (Yes in step S42), in step S43, the lamp control unit 40 reads the reference leveling angle at the point N from the point data 51, and converts it to the read reference leveling angle. Based on this, the target leveling angle θ(N) is calculated. In step S43, for example, the value of the read reference leveling angle is set as the target leveling angle θ(N).
 次に、ステップS44において、灯具制御部40は、ステップS43で算出された目標レベリング角度θ(N)に基づいて、地点Nでの実際のレベリング角度の制御を行い、終了する。一方で、地点Nの比較基準値が所定の閾値未満である場合(ステップS42においてNo)、ステップS43およびステップS44の処理は実行されず、終了する。 Next, in step S44, the lamp control unit 40 controls the actual leveling angle at the point N based on the target leveling angle θ(N) calculated in step S43, and ends the process. On the other hand, if the comparison reference value of the point N is less than the predetermined threshold value (No in step S42), the processing of steps S43 and S44 is not executed and the process ends.
 強化学習中であっても、強化学習がある程度進んだ地点においては、道路の急激な勾配変化に対して前照灯30の光軸を従来の構成よりも適切に変化させることが可能であるため、学習モデル52を用いたレベリング角度制御をすることが好ましい。一方で、強化学習が進んでいない地点においては、学習モデル52によって算出された目標レベリング角度θは精度が十分でないため、仮想レベリング角度ηを用いた機械学習だけに留め、学習モデル52を用いた実際のレベリング角度制御は実行しないことが好ましい。 Even during reinforcement learning, at points where reinforcement learning has progressed to some extent, it is possible to change the optical axis of the headlight 30 more appropriately than in the conventional configuration in response to a sudden change in road gradient. , the learning model 52 is preferably used for leveling angle control. On the other hand, at points where reinforcement learning has not progressed, the accuracy of the target leveling angle θ calculated by the learning model 52 is not sufficient. Preferably, no actual leveling angle control is performed.
 なお、本発明は、上述した実施形態に限定されず、適宜、変形、改良等が自在である。その他、上述した実施形態における各構成要素の材質、形状、寸法、数値、形態、数、配置場所等は、本発明を達成できるものであれば任意であり、限定されない。 It should be noted that the present invention is not limited to the above-described embodiments, and can be modified, improved, etc. as appropriate. In addition, the material, shape, size, numerical value, form, number, location, etc. of each component in the above-described embodiment are arbitrary and not limited as long as the present invention can be achieved.
 例えば、各フローチャートの説明において灯具制御部40が実行すると説明した処理は、矛盾の生じない範囲において、車両制御部16が実行してもよい。また、記憶部50に記憶されている各データは、車両10の記憶部に記憶されていてもよい。 For example, the processing explained to be executed by the lamp control unit 40 in the description of each flowchart may be executed by the vehicle control unit 16 as long as there is no contradiction. Moreover, each data stored in the storage unit 50 may be stored in the storage unit of the vehicle 10 .
 また、強化学習に係る処理は、車両10と通信接続が可能なサーバ装置において実行してもよい。この場合、例えば、所定の走行ルート上の複数の位置の位置情報と、複数の位置の各々の計測角度φを車両10からサーバ装置へと送信する。そして、サーバ装置において学習モデル52に対する強化学習を実行し、得られた学習モデル52を車両10に送信する等して、記憶部50に記憶させればよい。 Also, the processing related to reinforcement learning may be executed in a server device that can communicate with the vehicle 10 . In this case, for example, position information of a plurality of positions on a predetermined travel route and the measured angles φ of each of the plurality of positions are transmitted from the vehicle 10 to the server device. Then, the server device executes reinforcement learning for the learning model 52 , and the obtained learning model 52 is transmitted to the vehicle 10 and stored in the storage unit 50 .
 本出願は、2021年10月20日出願の日本特許出願(特願2021-171946)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application (Japanese Patent Application No. 2021-171946) filed on October 20, 2021, the contents of which are incorporated herein by reference.
 本開示によれば、道路の傾斜角度が急激に変化するような場所においても、その急激な変化に対して車両用前照灯の光軸を適切に変化させることが可能になる。 According to the present disclosure, it is possible to appropriately change the optical axis of the vehicle headlamp even in a place where the inclination angle of the road changes suddenly.
  10:車両
  11:センサ部
  12:カメラ
  13:LiDAR
  14:加速度センサ
  15:位置センサ
  16:車両制御部
  17:画像処理部
  30:(車両用)前照灯
  40:灯具制御部
  41:目標レベリング角度算出部
  42:レベリング角度制御部
  43:路面角度情報取得部
  44:学習処理部
  50:記憶部
  51:地点データ
  52:学習モデル
  60:レベリングアクチュエータ
 100:レベリング角度制御システム
10: Vehicle 11: Sensor Unit 12: Camera 13: LiDAR
14: Acceleration sensor 15: Position sensor 16: Vehicle control unit 17: Image processing unit 30: Headlight (for vehicle) 40: Lamp control unit 41: Target leveling angle calculation unit 42: Leveling angle control unit 43: Road surface angle information Acquisition unit 44: Learning processing unit 50: Storage unit 51: Point data 52: Learning model 60: Leveling actuator 100: Leveling angle control system

Claims (9)

  1.  所定の第一地点における車両用前照灯の目標レベリング角度θを、前記所定の第一地点から所定の秒数または所定の距離を車両が走行して到達する所定の第二地点の地点情報に基づいて算出する目標レベリング角度算出部と、
     前記車両用前照灯の実際のレベリング角度が前記目標レベリング角度θに近づくように、前記第一地点における前記実際のレベリング角度を制御するレベリング角度制御部と、を備える、
     車両用前照灯のレベリング角度制御システム。
    A target leveling angle θ of a vehicle headlamp at a predetermined first point is obtained from point information of a predetermined second point reached by a vehicle traveling a predetermined number of seconds or a predetermined distance from the predetermined first point. a target leveling angle calculator that calculates based on
    a leveling angle control unit that controls the actual leveling angle at the first point so that the actual leveling angle of the vehicle headlight approaches the target leveling angle θ;
    Leveling angle control system for vehicle headlights.
  2.  前記目標レベリング角度θの算出および前記実際のレベリング角度の制御は、所定の走行ルート上において繰り返し実行され、
     前記目標レベリング角度算出部は、前記第一地点における前記目標レベリング角度θと、加速度センサによって計測される前記第二地点における前記車両の計測角度φと、の差の絶対値が小さいほど大きな報酬を与えるように設定された強化学習を実行して得られる学習モデルに基づいて、前記第一地点における目標レベリング角度θを算出する、
     請求項1に記載のレベリング角度制御システム。
    The calculation of the target leveling angle θ and the control of the actual leveling angle are repeatedly executed on a predetermined travel route,
    The target leveling angle calculator provides a larger reward as the absolute value of the difference between the target leveling angle θ at the first point and the measured angle φ of the vehicle at the second point measured by an acceleration sensor is smaller. Calculate the target leveling angle θ at the first point based on a learning model obtained by executing reinforcement learning set to provide
    The leveling angle control system according to claim 1.
  3.  前記学習モデルに対する前記強化学習としてQ学習を実行する学習処理部と、
     前記所定の走行ルート上の複数の地点の各々におけるQ値の比較基準値を記憶する記憶部と、をさらに備え、
     前記学習処理部は、前記車両が前記所定の走行ルートを走行する場合に、前記所定の走行ルート上の複数の地点の各々におけるQ値を算出し、算出されたQ値が前記比較基準値よりも大きい地点があった場合に、該地点における前記比較基準値を前記算出されたQ値の値に更新し、前記算出されたQ値を算出する際に用いた目標レベリング角度θを基準レベリング角度として該地点と対応付けて記憶させることで前記強化学習を実行し、
     前記目標レベリング角度算出部は、前記基準レベリング角度に基づいて前記目標レベリング角度θを算出する、
     請求項2に記載のレベリング角度制御システム。
    a learning processing unit that executes Q-learning as the reinforcement learning for the learning model;
    a storage unit that stores comparison reference values of the Q value at each of a plurality of points on the predetermined travel route,
    The learning processing unit calculates a Q value at each of a plurality of points on the predetermined travel route when the vehicle travels on the predetermined travel route, and the calculated Q value is higher than the comparison reference value. When there is a point with a large value, the comparison reference value at that point is updated to the calculated Q value, and the target leveling angle θ used when calculating the calculated Q value is set to the reference leveling angle Execute the reinforcement learning by storing in association with the point as
    The target leveling angle calculator calculates the target leveling angle θ based on the reference leveling angle.
    3. The leveling angle control system according to claim 2.
  4.  前記学習処理部は、前記車両が前記所定の走行ルートを走行する場合に、前記所定の走行ルート上の複数の地点の各々において仮想レベリング角度ηを算出し、該仮想レベリング角度ηを前記目標レベリング角度θとして用いて前記Q値の算出、前記比較基準値の更新、及び前記基準レベリング角度の記憶に関する処理を実行するものであり、
     前記レベリング角度制御部は、前記比較基準値が所定の閾値を超えていない地点において、前記目標レベリング角度θに基づく前記実際のレベリング角度の制御を実行しない、
     請求項3に記載のレベリング角度制御システム。
    When the vehicle travels along the predetermined travel route, the learning processing unit calculates a virtual leveling angle η at each of a plurality of points on the predetermined travel route, and converts the virtual leveling angle η to the target leveling angle. Calculating the Q value, updating the comparison reference value, and storing the reference leveling angle using the angle θ,
    wherein the leveling angle control unit does not control the actual leveling angle based on the target leveling angle θ at a point where the comparison reference value does not exceed a predetermined threshold;
    4. The leveling angle control system according to claim 3.
  5.  前記強化学習は、前記車両の走行速度が所定の速度以下である場合には実行されない、
     請求項2に記載のレベリング角度制御システム。
    The reinforcement learning is not executed when the running speed of the vehicle is less than or equal to a predetermined speed.
    3. The leveling angle control system according to claim 2.
  6.  さらに、前記第二地点における路面角度に関する情報を取得する路面角度情報取得部を備え、
     前記地点情報は、前記路面角度に関する情報を含み、
     前記第一地点における前記目標レベリング角度θまたは前記仮想レベリング角度ηは、前記路面角度に関する情報に基づいて算出される、
     請求項1から請求項5のいずれか一項に記載のレベリング角度制御システム。
    Furthermore, a road surface angle information acquisition unit that acquires information about the road surface angle at the second point,
    The point information includes information about the road surface angle,
    The target leveling angle θ or the virtual leveling angle η at the first point is calculated based on information about the road surface angle,
    A leveling angle control system according to any one of claims 1 to 5.
  7.  前記車両は、LiDARを備えたものであり、
     前記路面角度情報取得部は、
      前記LiDARが、前記第一地点において前記LiDARの水平軸より下方に向けて照射されたすべての光の反射光を検出した場合、または、前記LiDARが、前記第一地点において前記水平軸より上方に向けて照射された光について、その一部のみの反射光を検出した場合、前記第二地点は上り勾配であると判定し、
      前記LiDARが、前記第一地点において前記水平軸より下方に向けて照射された光について、その一部のみの反射光を検出した場合、または、前記LiDARが、前記第一地点において前記水平軸より上方に向けて照射された光の反射光を検出しなかった場合に、前記第二地点は下り勾配であると判定する、
     請求項6に記載のレベリング角度制御システム。
    The vehicle is equipped with LiDAR,
    The road surface angle information acquisition unit,
    When the LiDAR detects the reflected light of all light emitted downward from the horizontal axis of the LiDAR at the first point, or when the LiDAR detects the reflected light at the first point above the horizontal axis When only a part of the reflected light is detected for the light irradiated toward it, it is determined that the second point is an upward slope,
    When the LiDAR detects only part of the reflected light of the light emitted downward from the horizontal axis at the first point, or when the LiDAR detects the light emitted downward from the horizontal axis at the first point Determining that the second point is a downward slope when reflected light of the light emitted upward is not detected,
    7. A leveling angle control system according to claim 6.
  8.  前記車両は、カメラを備えたものであり、
     前記路面角度情報取得部は、前記第一地点において前記カメラが取得した画像内の消失点を特定し、前記消失点に基づき前記第二地点における前記路面角度に関する情報を取得する、
     請求項6に記載のレベリング角度制御システム。
    The vehicle is equipped with a camera,
    The road surface angle information acquisition unit identifies a vanishing point in the image acquired by the camera at the first point, and acquires information about the road surface angle at the second point based on the vanishing point.
    7. A leveling angle control system according to claim 6.
  9.  前記目標レベリング角度θの算出および前記実際のレベリング角度の制御は、前記第一地点の路面角度と前記第二地点の路面角度との差の絶対値が所定の値以上であるときに実行される、
     請求項6に記載のレベリング角度制御システム。
    The calculation of the target leveling angle θ and the control of the actual leveling angle are executed when the absolute value of the difference between the road surface angle at the first point and the road surface angle at the second point is greater than or equal to a predetermined value. ,
    7. A leveling angle control system according to claim 6.
PCT/JP2022/035228 2021-10-20 2022-09-21 Leveling angle control system WO2023067978A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021171946 2021-10-20
JP2021-171946 2021-10-20

Publications (1)

Publication Number Publication Date
WO2023067978A1 true WO2023067978A1 (en) 2023-04-27

Family

ID=86059054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035228 WO2023067978A1 (en) 2021-10-20 2022-09-21 Leveling angle control system

Country Status (1)

Country Link
WO (1) WO2023067978A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012192786A (en) * 2011-03-15 2012-10-11 Koito Mfg Co Ltd Irradiation control device, and irradiation control system
JP2015107758A (en) * 2013-12-05 2015-06-11 株式会社小糸製作所 Control device of vehicular lighting fixture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012192786A (en) * 2011-03-15 2012-10-11 Koito Mfg Co Ltd Irradiation control device, and irradiation control system
JP2015107758A (en) * 2013-12-05 2015-06-11 株式会社小糸製作所 Control device of vehicular lighting fixture

Similar Documents

Publication Publication Date Title
KR101018620B1 (en) Object recognition device
JP5017392B2 (en) Position estimation apparatus and position estimation method
US11055540B2 (en) Method for determining anchor boxes for training neural network object detection models for autonomous driving
US10891747B1 (en) Sensor calibration system for autonomous driving vehicles
JP2014142235A (en) Curve shape modeling device, method and on-vehicle navigation device
JP7349561B2 (en) Map information correction method, driving support method, and map information correction device
CN102208036A (en) Vehicle position detection system
CN102207389A (en) Vehicle position recognition system
US11731649B2 (en) High precision position estimation method through road shape classification-based map matching and autonomous vehicle thereof
RU2715667C1 (en) Method of vehicle movement control and movement control device
JP4670528B2 (en) Imaging device deviation detection method, imaging device deviation correction method, and imaging device
EP4242998A1 (en) Traffic stream information determination method and apparatus, electronic device and storage medium
JP2017138660A (en) Object detection method, object detection device and program
JP2022038621A (en) Automatic operation apparatus
JP6941178B2 (en) Automatic operation control device and method
CN110316197A (en) Tilt evaluation method, inclination estimation device and the non-transitory computer-readable storage media for storing program
JP6943127B2 (en) Position correction method, vehicle control method and position correction device
JP4924270B2 (en) Road information acquisition device, road information acquisition method, and road information acquisition program
JP2021092508A (en) Travel trajectory estimation method and travel trajectory estimation device
US11685379B2 (en) Vehicle control device and storage medium storing computer program for vehicle control
WO2023067978A1 (en) Leveling angle control system
JP2010151692A (en) Road shape estimation device, road shape estimation method, and road shape estimation program
US11254326B2 (en) Automatic comfort score system based on human driving reference data
JP7276112B2 (en) Lane change decision device
JP2009014555A (en) Navigation device, navigation method, and navigation program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22883288

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023555063

Country of ref document: JP