WO2023067938A1 - ヘテロ接合バイポーラトランジスタ、半導体装置、及び通信モジュール - Google Patents

ヘテロ接合バイポーラトランジスタ、半導体装置、及び通信モジュール Download PDF

Info

Publication number
WO2023067938A1
WO2023067938A1 PCT/JP2022/033762 JP2022033762W WO2023067938A1 WO 2023067938 A1 WO2023067938 A1 WO 2023067938A1 JP 2022033762 W JP2022033762 W JP 2022033762W WO 2023067938 A1 WO2023067938 A1 WO 2023067938A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
emitter
type
compound semiconductor
bipolar transistor
Prior art date
Application number
PCT/JP2022/033762
Other languages
English (en)
French (fr)
Inventor
孝幸 筒井
将夫 近藤
少駿 馬
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to TW111137304A priority Critical patent/TWI836641B/zh
Publication of WO2023067938A1 publication Critical patent/WO2023067938A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66848Unipolar field-effect transistors with a Schottky gate, i.e. MESFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/737Hetero-junction transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate

Definitions

  • the present invention relates to heterojunction bipolar transistors, semiconductor devices, and communication modules.
  • Carrier aggregation is used to increase the transmission capacity of mobile terminals. Furthermore, handling of the sub-6 GHz frequency band of the 5th generation mobile communication system is also required. As a result, the number of frequency bands handled by a high-frequency power amplifier, which is one of the main components mounted on mobile terminals, increases. Accompanying the increased number of frequency bands to be handled, the circuitry of the high frequency front end becomes more complex.
  • HBT heterojunction bipolar transistor
  • Patent Document 1 A technique for increasing the breakdown voltage by arranging a ballast resistance layer between the emitter layer and the emitter electrode of the HBT is known (see Patent Document 1).
  • a ballast resistor layer made of n ⁇ -type GaAs is arranged between an emitter layer made of n-type AlGaAs and an emitter electrode.
  • the thickness of the ballast resistance layer must be increased in order to achieve the desired breakdown voltage. If the ballast resistor layer becomes thicker, the processing accuracy of the ballast resistor layer by etching is lowered, and as a result, there is a concern that the dimensional variation of the device is increased and problems such as a decrease in yield are caused.
  • An object of the present invention is to provide a semiconductor device including this HBT. Still another object of the present invention is to provide a communication module equipped with this HBT.
  • a collector layer made of an n-type compound semiconductor; a base layer made of a p-type compound semiconductor disposed on the collector layer; an emitter layer disposed on the base layer and made of an n-type compound semiconductor having a bandgap larger than that of the base layer; a ballast resistor layer disposed over the emitter layer;
  • a heterojunction bipolar transistor is provided in which the ballast resistor layer comprises a layer of an intrinsic or p-type compound semiconductor.
  • a substrate disposed on the substrate; the heterojunction bipolar transistor disposed on the substrate; and a high electron mobility transistor disposed on the substrate.
  • the heterojunction bipolar transistor comprising an antenna terminal connected to an antenna;
  • a communication module comprising a frequency selective element connected between the heterojunction bipolar transistor and the antenna terminal.
  • ballast resistance layer By including a layer made of an intrinsic or p-type compound semiconductor in the ballast resistance layer, it is possible to make the ballast resistance layer thinner while maintaining the resistance value of the ballast resistance layer. As a result, it is possible to increase the breakdown voltage and reduce variations in processing accuracy.
  • FIG. 1 is a plan view of the HBT according to the first embodiment.
  • FIG. 2 is a cross-sectional view taken along the dashed line 2-2 in FIG.
  • FIG. 3 is a graph showing the results obtained by simulating the relationship between the emitter current and the emitter voltage of the HBTs according to the first embodiment and the comparative example.
  • FIG. 4 is a cross-sectional view of the HBT according to the second embodiment.
  • FIG. 5 is a plan view of the HBT according to the third embodiment.
  • FIG. 6 is a cross-sectional view taken along dashed-dotted line 6-6 in FIG.
  • FIG. 7 is a plan view of an HBT according to a modification of the third embodiment.
  • FIG. 8 is a cross-sectional view taken along dashed-dotted line 8-8 in FIG.
  • FIG. 9 is a cross-sectional view of the BiHEMT according to the fourth embodiment.
  • FIG. 10 is a block diagram of a communication module according to the fifth embodiment.
  • FIG. 11 is a plan view showing an example of arrangement of various circuit elements mounted on the module board of the communication module according to the fifth embodiment.
  • FIG. 12 is an equivalent circuit diagram of part of the power stage amplifier.
  • FIG. 13 is a plan view of a portion of the power stage amplifier.
  • FIG. 14 is a block diagram of a communication module according to a modification of the fifth embodiment.
  • FIG. 1 is a plan view of the HBT 20 according to the first embodiment.
  • the collector mesa 21 is arranged in the subcollector layer 11 made of an n-type compound semiconductor.
  • Collector mesa 21 includes collector layer 21C, base layer 21B, and emitter layer 21E.
  • An emitter electrode 31E elongated in one direction and a U-shaped base electrode 31B are arranged in the collector mesa 21 in plan view.
  • the base electrode 31B is composed of a pair of finger portions 31BA arranged at positions sandwiching the emitter electrode 31E in the width direction thereof, and a contact portion 31BB connecting the pair of finger portions 31BA at their ends.
  • the collector electrodes 31C are arranged at positions sandwiching the collector mesa 21 in the width direction of the emitter electrode 31E.
  • the emitter electrode 31E, base electrode 31B, and collector electrode 31C are hatched. The same applies to FIGS. 5 and 7, which will be described later.
  • a first-layer emitter wiring 35E is arranged so as to substantially overlap the emitter electrode 31E in plan view.
  • the emitter wiring 35E is electrically connected to the emitter electrode 31E.
  • a first-layer base wiring 35B is arranged so as to overlap with the contact portion 31BB of the base electrode 31B in plan view.
  • the base wiring 35B is electrically connected to the contact portion 31BB.
  • the base wiring 35B is drawn out from the contact portion 31BB to the outside of the collector mesa 21 and the subcollector layer 11 .
  • a first-layer collector wiring 35C is arranged so as to overlap with each of the collector electrodes 31C.
  • the collector wiring 35C is electrically connected to the collector electrode 31C.
  • the collector wiring 35C is drawn out from the collector electrode 31C to the outside of the collector mesa 21 and subcollector layer 11 .
  • the drawing direction of the base wiring 35B and the drawing direction of the collector wiring 35C are opposite to each other.
  • FIG. 2 is a cross-sectional view along the dashed-dotted line 2-2 in FIG.
  • a subcollector layer 11 made of an n-type compound semiconductor is arranged in a partial region of the upper surface of a substrate 10 made of a semi-insulating compound semiconductor.
  • An insulating device isolation region 12 is arranged in another region of the upper surface of the substrate 10 .
  • a collector mesa 21 is arranged on a partial region of the subcollector layer 11 .
  • the collector mesa 21 includes a collector layer 21C made of an n-type compound semiconductor, a base layer 21B made of a p-type compound semiconductor, and an emitter layer 21E made of an n-type compound semiconductor, which are stacked in order from the substrate 10 side.
  • the emitter mesa 28 is arranged on a partial region of the emitter layer 21E.
  • the emitter mesa 28 includes a high-concentration layer 24, a ballast resistance layer 25, a high-concentration layer 26, and a contact layer 27 which are stacked in order from the emitter layer 21E side.
  • the ballast resistance layer 25 includes a p-type layer 25B made of a p-type compound semiconductor and two n-type layers 25A and 25C made of an n-type compound semiconductor vertically sandwiching the p-type layer 25B.
  • the high-concentration layers 24 and 26 and the contact layer 27 are made of an n-type compound semiconductor.
  • Two collector electrodes 31C are arranged on the upper surface of the subcollector layer 11 at positions sandwiching the collector mesa 21 .
  • the collector electrode 31C is electrically connected through the subcollector layer 11 to the collector layer 21C.
  • Finger portions 31BA of the base electrode 31B (FIG. 1) are arranged at positions sandwiching the emitter mesa 28 on the upper surface of the emitter layer 21E.
  • the base electrode 31B is electrically connected to the base layer 21B via an alloyed region 32 that penetrates the emitter layer 21E and reaches the base layer 21B.
  • An emitter electrode 31E is arranged on the contact layer 27 .
  • the emitter electrode 31E is electrically connected to the emitter layer 21E via the contact layer 27, the high concentration layer 26, the ballast resistance layer 25, and the high concentration layer 24.
  • An interlayer insulating film (not shown) is arranged to cover the HBT 20 shown in FIG. 2, and thereon the collector wiring 35C, the base wiring 35B and the emitter wiring 35E of the first layer shown in FIG. are placed.
  • the first-layer collector wiring 35C, base wiring 35B, and emitter wiring 35E are connected to the collector electrode 31C, the base electrode 31B, and the emitter electrode 31E through openings provided in the interlayer insulating film, respectively.
  • a semi-insulating GaAs substrate is used as the substrate 10 .
  • the subcollector layer 11 and the collector layer 21C are made of n-type GaAs.
  • the donor concentration of the subcollector layer 11 is higher than the donor concentration of the collector layer 21C.
  • the base layer 21B is made of p-type GaAs. Note that the base layer 21B may be formed of p-type InGaAs or the like.
  • the emitter layer 21E is made of n-type InGaP, which is a compound semiconductor having a bandgap larger than that of the base layer 21B.
  • the high-concentration layers 24, 26 are made of n-type GaAs.
  • the n-type layers 25A and 25C of the ballast resistance layer 25 are made of n-type GaAs, and the p-type layer 25B is made of p-type GaAs.
  • the n-type layers 25A and 25C have the same donor concentration and are lower than the donor concentration of any of the high concentration layers 24 and 26, the collector layer 21C and the emitter layer 21E.
  • the acceptor concentration of the p-type layer 25B is approximately equal to the donor concentration of the n-type layers 25A and 25C.
  • the contact layer 27 is made of n-type InGaAs.
  • FIG. 3 is a graph showing the results obtained by simulating the relationship between the emitter current and the emitter voltage of the HBTs according to the first embodiment and the comparative example.
  • the horizontal axis represents the emitter current in units of "mA”
  • the vertical axis represents the emitter voltage in units of "V”.
  • a solid line and a dashed line in the graph indicate simulation results for HBTs according to the first embodiment and the comparative example, respectively.
  • the emitter voltage means the voltage between the upper surface of the emitter layer 21E and the lower surface of the contact layer 27.
  • the HBT according to the comparative example replaces the ballast resistance layer 25 of the HBT 20 (FIG. 2) according to the first embodiment with a low-concentration (donor concentration 1 ⁇ 10 16 cm ⁇ 3 ) n-type GaAs layer.
  • the thickness of the ballast resistor layer 25 of the HBT 20 according to the first embodiment is made thinner than the thickness of the low-concentration n-type GaAs layer of the HBT according to the comparative example.
  • the donor concentrations of the n-type layers 25A and 25C and the acceptor concentration of the p-type layer 25B were set to 1 ⁇ 10 16 cm ⁇ 3 .
  • the emitter voltage of the HBT 20 according to the first embodiment is higher than that of the HBT according to the comparative example. That is, the ballast resistance of the HBT 20 according to the first embodiment is higher than that of the HBT according to the comparative example.
  • the ballast resistance layer 25 can be made thinner than the structure of the HBT according to the comparative example in order to achieve the target value of the ballast resistance.
  • the reason why the ballast resistance can be increased by adopting the structure of the ballast resistance layer 25 according to the first embodiment will be explained.
  • positive charges in the p-type layer 25B of the ballast resistance layer 25 raise the lower end of the conduction band of the p-type layer 25B, generating a mountain-like potential barrier against electrons.
  • This potential barrier acts in the direction of suppressing current with respect to voltage application.
  • the increase in the resistance of the ballast resistance layer 25 due to the rise in the potential of the p-type layer 25B becomes significant compared to the configuration of the comparative example using the low-concentration n-type ballast resistance layer, suppressing thermal runaway. the effect of doing is greater.
  • the high-concentration layer 24 arranged between the emitter layer 21E and the ballast resistance layer 25 serves to reduce the contact resistance between the emitter layer 21E and the ballast resistance layer 25.
  • FIG. The high-concentration layer 26 arranged between the ballast resistance layer 25 and the contact layer 27 serves to reduce the contact resistance between the ballast resistance layer 25 and the contact layer 27 .
  • the depletion layer mainly extends toward the p-type layer 25B at the pn junction interface.
  • substantially no p-type layer exists.
  • the low-concentration n-type layers 25A and 25C arranged between the high-concentration layer 24 and the p-type layer 25B and between the high-concentration layer 26 and the p-type layer 25B, respectively, are depletion layers for the p-type layer 25B.
  • has the role of suppressing the intrusion of In order to suppress penetration of the depletion layer, it is preferable to make the donor concentration of the n-type layers 25A and 25C substantially equal to the acceptor concentration of the p-type layer 25B.
  • the acceptor concentration of the p-type layer 25B is reduced and the thickness is made too thin, the depletion layers extending from the upper and lower pn junction interfaces contact each other within the p-type layer 25B when a voltage is applied, and the potential barrier substantially disappears. put away. Such a phenomenon is called punch-through. When punch-through occurs, the ballast resistance layer 25 ceases to function as a resistance element.
  • the acceptor concentration and thickness of the p-type layer 25B are preferably such values that the depletion layers extending from the upper and lower pn junction interfaces do not contact within the p-type layer 25B.
  • the thickness of p-type layer 25B is equal to or less than the thickness of base layer 21B.
  • the voltage applied to the emitter is localized at the pn junction interface, and the ballast resistance layer 25 is forward biased and applied. It will act as a reverse-biased diode.
  • the ballast resistance layer 25 it is preferable to set the donor concentration of the n-type layers 25A and 25C and the acceptor concentration of the p-type layer 25B to 1 ⁇ 10 16 cm ⁇ 3 or less.
  • ballast resistance layer 25 it is preferable to use a compound semiconductor lattice-matched to the collector layer 21C. In particular, it preferably contains the same compound semiconductor as the collector layer 21C. "The same compound semiconductor" means that the constituent elements of the compound semiconductor are the same.
  • FIG. 4 is a cross-sectional view of the HBT 20 according to the second embodiment.
  • the ballast resistance layer 25 is composed of three layers, an n-type layer 25A, a p-type layer 25B and an n-type layer 25C.
  • an intrinsic compound semiconductor is used as the ballast resistance layer 25 .
  • the ballast resistor layer 25 is made of undoped GaAs.
  • the excellent effects of the second embodiment will be described.
  • the resistance value of the ballast resistance layer 25 becomes higher than when a low-concentration n-type compound semiconductor is used. Therefore, as in the first embodiment, the thickness of the ballast resistance layer 25 for realizing a desired resistance value can be reduced. As a result, the processing accuracy of the emitter mesa 28 and the collector mesa 21 can be improved.
  • the ballast resistance layer 25 has a three-layer structure in which an intrinsic compound semiconductor layer is sandwiched between n-type layers from above and below.
  • FIG. 5 is a plan view of the HBT 20 according to the third embodiment
  • FIG. 6 is a cross-sectional view taken along dashed-dotted line 6-6 in FIG. HBT 20 (FIG. 1) according to the first embodiment includes one emitter electrode 31 E and one emitter mesa 28 .
  • the HBT 20 according to the third embodiment includes two emitter electrodes 31E (FIG. 5) and two emitter mesas 28 (FIG. 6).
  • the two emitter electrodes 31E each have a shape elongated in one direction and are spaced apart in the width direction.
  • a ballast resistor layer 25 is arranged on each of the two emitter mesas 28 . That is, when the emitter layer 21E is viewed in plan, the ballast resistance layers 25 are arranged at two locations spaced apart from each other.
  • the finger portion 31BA of the base electrode 31B is arranged between two emitter electrodes 31E. That is, the finger portion 31BA of the base electrode 31B is arranged between the two ballast resistance layers 25. As shown in FIG. A contact portion 31BB elongated in the width direction of the emitter electrode 31E is connected to one end of the finger portion 31BA.
  • the base electrode 31B has a T-shaped shape in plan view.
  • the first-layer emitter wiring 35E extends from a region overlapping one emitter electrode 31E to a region overlapping the other emitter electrode 31E by crossing the finger portions 31BA of the base electrode 31B.
  • the emitter wiring 35E is electrically connected to the two emitter electrodes 31E.
  • FIG. 7 is a plan view of the HBT 20 according to a modification of the third embodiment
  • FIG. 8 is a cross-sectional view taken along the dashed-dotted line 8-8 in FIG.
  • the HBT 20 includes three emitter electrodes 31E (FIG. 7) and three emitter mesas 28 (FIG. 8).
  • a ballast resistance layer 25 is arranged in each of the three emitter mesas 28 .
  • the three emitter electrodes 31E each have a shape elongated in one direction and are arranged side by side in the width direction.
  • Two finger portions 31BA of a U-shaped base electrode 31B similar to the first embodiment are arranged between two mutually adjacent emitter electrodes 31E. That is, the two finger portions 31BA of the base electrode 31B are arranged between two adjacent ballast resistor layers 25 among the three ballast resistor layers 25, respectively.
  • the ballast resistance layers 25 may be arranged at a plurality of locations of four or more. Also in this case, it is preferable that the plurality of finger portions 31BA of the base electrode 31B are arranged between two adjacent ballast resistance layers 25 among the plurality of ballast resistance layers 25, respectively.
  • the excellent effects of the third embodiment and its modification will be described. Even in a configuration in which a plurality of emitter electrodes 31E and emitter mesas 28 are arranged as in the third embodiment and its modifications, the thickness of the emitter mesas 28 can be reduced by arranging the ballast resistance layer 25 having the structure according to the first embodiment. becomes possible. As a result, the processing accuracy of the emitter mesa 28 can be improved. The effect of being able to improve the processing accuracy of the emitter mesa 28 is remarkable in the HBT 20 including the process of forming a plurality of emitter mesas 28 on one collector mesa 21 as in the third embodiment and its modifications.
  • FIG. 9 is a cross-sectional view of a semiconductor device according to the fourth embodiment.
  • HBT 20 and high electron mobility transistor (HEMT) 40 are formed on substrate 10 .
  • Such a semiconductor device is sometimes called a BiHEMT.
  • a HEMT structure layer 41 is formed on a semi-insulating substrate 10, and an HBT structure layer 42 is formed thereon with an isolation layer 43 interposed therebetween.
  • the isolation layer 43 and the HBT structure layer 42 in the region where the HEMT 40 is formed are removed.
  • an insulating portion 50 is arranged that penetrates the HEMT structure layer 41 in the thickness direction.
  • the HEMT structure layer 41 includes an operating layer 44 including a carrier supply layer, a spacer layer, a channel layer, etc., a Schottky layer 45 thereon, and a contact layer 46 thereon. A portion of the contact layer 46 is removed, and the gate electrode 48 is in Schottky contact with the exposed Schottky layer 45 . A source electrode 47 and a drain electrode 49 are arranged on the contact layer 46 so as to sandwich the gate electrode 48 .
  • the HBT structure layer 42 includes each layer from the subcollector layer 11 to the contact layer 27 of the HBT (FIG. 2) according to the first embodiment. These layers constitute the HBT 20 .
  • the processing accuracy of the emitter mesa 28 and the collector mesa 21 can be improved as in the first embodiment. As a result, dimensional variations between products can be reduced. Furthermore, improvement in processing accuracy leads to improvement in yield and cost reduction.
  • FIG. 10 a communication module according to a fifth embodiment will be described with reference to FIGS. 10 to 13.
  • FIG. The communication module according to the fifth embodiment is equipped with the HBT 20 according to the first, second, and third embodiments or their modifications.
  • FIG. 10 is a block diagram of the communication module 75 according to the fifth embodiment.
  • the communication module 75 includes an input switch 51, a driver stage amplifier 52, a power stage amplifier 53, a transmission band selection switch 56, a plurality of duplexers 57, an antenna switch 58, a reception band selection switch 59, a low noise amplifier 60, and a power amplifier. It includes a control circuit 54, a low noise amplifier control circuit 61, and an output terminal selection switch 62 for reception.
  • This communication module 75 has a function of performing transmission and reception of a frequency division duplex (FDD) system.
  • FDD frequency division duplex
  • the two input-side contacts of the input switch 51 are connected to the high-frequency signal input terminals IN1 and IN2, respectively.
  • a high frequency signal is input from two high frequency signal input terminals IN1 and IN2.
  • the input switch 51 selects one contact from two contacts on the input side, the high frequency signal input to the selected contact is input to the driver stage amplifier 52 .
  • a high frequency signal amplified by the driver stage amplifier 52 is input to the power stage amplifier 53 .
  • a high-frequency signal amplified by the power stage amplifier 53 is input to the contact on the input side of the band selection switch 56 .
  • the band selection switch 56 selects one contact from a plurality of contacts on the output side, the high frequency signal amplified by the power stage amplifier 53 is output from the selected contact.
  • a plurality of contacts on the output side of the band selection switch 56 are connected to transmission input ports of a plurality of duplexers 57 prepared for each band.
  • a high frequency signal is input to the duplexer 57 connected to the contact on the output side selected by the band selection switch 56 .
  • the band selection switch 56 has a function of selecting one duplexer 57 from a plurality of duplexers 57 prepared for each band.
  • Antenna switch 58 has a plurality of contacts on the circuit side and two contacts on the antenna side. A plurality of circuit-side contacts of the antenna switch 58 are connected to input/output shared ports of a plurality of duplexers 57, respectively. The two contacts on the antenna side are connected to antenna terminals ANT1 and ANT2, respectively. Antennas are connected to the antenna terminals ANT1 and ANT2, respectively.
  • the antenna switch 58 connects two antenna-side contacts to two contacts selected from a plurality of circuit-side contacts. When performing communication using one band, the antenna switch 58 connects one contact on the circuit side and one contact on the antenna side. A high-frequency signal amplified by the power stage amplifier 53 and passed through the duplexer 57 for the corresponding band is transmitted from the antenna connected to the selected antenna-side contact.
  • a reception band selection switch 59 has six contacts on the input side. Six contacts on the input side of the band selection switch 59 are connected to receiving output ports of the duplexer 57, respectively. A contact on the output side of the band selection switch 59 is connected to the low noise amplifier 60 . A received signal that has passed through the duplexer 57 connected to the input side contact selected by the band selection switch 59 is input to the low noise amplifier 60 .
  • the circuit side contact of the output terminal selection switch 62 is connected to the output port of the low noise amplifier 60 .
  • Three terminal-side contacts of the output terminal selection switch 62 are connected to the reception signal output terminals LNAOUT1, LNAOUT2, and LNAOUT3, respectively.
  • the received signal amplified by the low noise amplifier 60 is output from the received signal output terminal selected by the output terminal selection switch 62 .
  • a power supply voltage is applied to the driver stage amplifier 52 and the power stage amplifier 53 from the power supply terminals VCC1 and VCC2, respectively.
  • a power amplifier control circuit 54 is connected to the power supply terminal VIO1, the control signal terminal SDATA1, and the clock terminal SCLK1.
  • the power amplifier control circuit 54 controls the driver stage amplifier 52 and the power stage amplifier 53 based on the digital control signal applied to the control signal terminal SDATA1. More specifically, a desired bias is supplied to the driver stage amplifier 52 and the power stage amplifier 53 from the analog circuit inside the power amplifier control circuit 54 based on the digital control signal applied to the control signal terminal SDATA1.
  • a low-noise amplifier control circuit 61 is connected to the power supply terminal VIO2, the control signal terminal SDATA2, and the clock terminal SCLK2.
  • the low noise amplifier control circuit 61 controls the low noise amplifier 60 based on the digital control signal applied to the control signal terminal SDATA2. More specifically, a desired bias is supplied to the low noise amplifier 60 from the analog circuit inside the low noise amplifier control circuit 61 based on the digital control signal applied to the control signal terminal SDATA2.
  • the communication module 75 is further provided with a power supply terminal VBAT and a drain voltage terminal VDD2. Power is supplied to the driver stage amplifier 52 and the bias circuit of the power stage amplifier 53 and the power amplifier control circuit 54 from the power supply terminal VBAT. A power supply voltage is applied to the low noise amplifier control circuit 61 and the like from the drain voltage terminal VDD2.
  • FIG. 11 is a plan view showing an example of arrangement of various circuit elements mounted on the module substrate 70.
  • FIG. A monolithic microwave integrated circuit (MMIC) 65, a power amplifier control circuit 54, a band selection switch 56, a plurality of duplexers 57, a low noise amplifier 60, an antenna switch 58, and other passive elements are mounted on the module substrate 70.
  • FIG. MMIC 65 includes driver stage amplifier 52 (FIG. 10) and power stage amplifier 53 (FIG. 10). These circuit components are mounted on the module substrate 70 by solder ball mounting, Cu pillar bump (CPB) mounting, face-up mounting, or the like. When face-up mounting is adopted, each element and the pad of the module substrate 70 are connected by bonding wires.
  • CPB Cu pillar bump
  • a multi-layer board such as a printed circuit board (PCB) or a ceramic board is used.
  • PCB printed circuit board
  • a ceramic board is used for the module board 70.
  • double-sided mounting or high-density mounting such as IC mounting inside a substrate may be employed.
  • high-density mounting it is possible to reduce the size of the communication module 75 (FIG. 10).
  • FIG. 12 is an equivalent circuit diagram of part of the power stage amplifier 53.
  • FIG. Power stage amplifier 53 includes a plurality of HBTs 20 connected in parallel with each other. As the HBT 20, the first embodiment (FIGS. 1 and 2), the second embodiment (FIG. 4), the third embodiment (FIGS. 5 and 6), or the modification of the third embodiment (FIGS. 7 and 8). ) is used. Each collector of HBT 20 is connected to collector common line 36C. Each base of the HBTs 20 is connected to the base bias wiring 36B via the base ballast resistor Rbb, and is also connected to the high frequency signal input wiring 36in via the input capacitor Cin. Each emitter of the HBTs 20 is connected to the common emitter wiring 36E via an emitter ballast resistor Reb. Emitter ballast resistor Reb is realized by ballast resistor layer 25 (FIGS. 2, 4, 6, 8) in emitter mesa 28. FIG.
  • Emitter ballast resistor Reb is realized by ballast resistor layer 25 (FIGS. 2, 4, 6, 8) in
  • FIG. 13 is a plan view of part of the power stage amplifier 53.
  • Each of the HBTs 20 shown in FIG. 13 includes two emitter electrodes 31E, a T-shaped base electrode 31B, and two collector electrodes 31C, like the HBT 20 according to the second embodiment (FIG. 5).
  • a plurality of HBTs 20 are arranged side by side in the width direction of the emitter electrode 31E.
  • a second-layer common emitter wiring 36E extending in the arrangement direction of the HBTs 20 is arranged so as to overlap the first-layer emitter wirings 35E of the plurality of HBTs 20 .
  • Emitters of a plurality of HBTs 20 are connected to each other by common emitter wiring 36E.
  • a first-layer collector wiring 35C is connected to the collector electrode 31C.
  • a first-layer base wiring 35B is drawn out from a region overlapping with the contact portion 31BB of the base electrode 31B of each of the plurality of HBTs 20 .
  • a portion of the base wiring 35B is widened, and a common second-layer high-frequency signal input wiring 36in overlaps each of the widened portions.
  • An overlapping region between the first-layer base wiring 35B and the second-layer high-frequency signal input wiring 36in functions as an input capacitor Cin.
  • each of the base wirings 35B is connected to the base bias wiring 36B via a base ballast resistor Rbb.
  • the emitter electrode 31E, base electrode 31B, and collector electrode 31C are hatched darkly, and the emitter wiring 35E, collector wiring 35C, base wiring 35B, and base bias wiring 36B of the first layer are hatched lightly. ing.
  • the power stage amplifier 53 uses the HBT 20 according to the first embodiment and the like. Therefore, thermal runaway of the HBT 20 can be suppressed. As a result, it is possible to increase the output power of the communication module 75 . Furthermore, the processing accuracy in the manufacturing process of the MMIC 65 can be improved.
  • the base ballast resistor Rbb is connected to each of the plurality of HBTs 20, non-uniformity of emitter currents among the plurality of HBTs 20 can be suppressed. As a result, it is possible to improve the breakdown voltage as a whole.
  • FIG. 14 is a block diagram of a communication module 75 according to a modification of the fifth embodiment.
  • the communication module 75 according to this modification does not include the input switch 51, the band selection switches 56 and 59, and the output terminal selection switch 62 shown in FIG.
  • the communication module 75 (FIG. 10) according to the fifth embodiment has an FDD system communication function. Therefore, a duplexer 57 (FIG. 10) is used as a frequency selective element.
  • the communication module 75 according to this modified example has a communication function of the time division duplex (TDD) system. Therefore, a filter 63 is used as a frequency selective element.
  • TDD time division duplex
  • the output port of the power stage amplifier 53 is connected to the transmission contact of the transmission/reception selector switch 55 .
  • An input port of a low-noise amplifier 60 is connected to a reception contact of the transmission/reception selector switch 55 .
  • a common contact of the transmission/reception selector switch 55 is connected to a circuit-side contact of the antenna switch 58 through the filter 63 .
  • Two antenna-side contacts of the antenna switch 58 are connected to the antenna terminals ANT1 and ANT2.
  • the HBT 20 according to the first embodiment and the like can be mounted on the TDD communication module 75.
  • HBT heterojunction bipolar transistor

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Bipolar Transistors (AREA)

Abstract

ヘテロ接合バイポーラトランジスタが、n型の化合物半導体からなるコレクタ層と、コレクタ層の上に配置されたp型の化合物半導体からなるベース層と、ベース層の上に配置され、ベース層よりバンドギャップが大きいn型の化合物半導体からなるエミッタ層と、エミッタ層の上に配置されたバラスト抵抗層とを備えている。バラスト抵抗層は、真性またはp型の化合物半導体からなる層を含む。

Description

ヘテロ接合バイポーラトランジスタ、半導体装置、及び通信モジュール
 本発明は、ヘテロ接合バイポーラトランジスタ、半導体装置、及び通信モジュールに関する。
 携帯端末の伝送容量を大容量化するためにキャリアアグリゲーション(CA)が採用されている。さらに、第5世代移動通信システムのサブ6GHzの周波数バンドの取り扱いも必要となる。その結果、携帯端末に搭載される主要部品の一つである高周波電力増幅器が取り扱う周波数バンドが増加する。取り扱う周波数バンドの増加に付随して、高周波フロントエンドの回路構成がより複雑になる。
 高周波フロントエンドの回路構成が複雑になると、高周波電力増幅器の負荷損失が増大する。このため、高周波電力増幅器に、周波数バンドの増加への対応の他に、さらなる高出力化が求められている。高周波電力増幅器に用いられる増幅素子の一例として、ヘテロ接合バイポーラトランジスタ(HBT)が挙げられる。高周波電力増幅器の高出力化に伴い、HBTの破壊対策が重要視されている。そのため、HBTの回路的な保護のみならず、HBTそのものの耐圧改善が望まれている。
 HBTのエミッタ層とエミッタ電極との間にバラスト抵抗層を配置することにより高耐圧化する技術が公知である(特許文献1参照)。特許文献1に開示されたHBTにおいては、n型AlGaAsからなるエミッタ層とエミッタ電極との間に、n型GaAsからなるバラスト抵抗層が配置されている。
特開平10-335345号公報
 特許文献1に示されたHBTにおいて、所望の耐圧を実現するためには、バラスト抵抗層を厚くしなければならない。バラスト抵抗層が厚くなると、エッチングによるバラスト抵抗層の加工精度が低下し、その結果、素子の寸法のばらつきが大きくなり、歩留まり低下等の問題が生じる懸念がある。本発明の目的は、バラスト抵抗層を薄くすることが可能なHBTを提供することである。本発明の目的は、このHBTを含む半導体装置を提供することである。本発明のさらに他の目的は、このHBTを搭載した通信モジュールを提供することである。
 本発明の一観点によると、
 n型の化合物半導体からなるコレクタ層と、
 前記コレクタ層の上に配置されたp型の化合物半導体からなるベース層と、
 前記ベース層の上に配置され、前記ベース層よりバンドギャップが大きいn型の化合物半導体からなるエミッタ層と、
 前記エミッタ層の上に配置されたバラスト抵抗層と
を備え、
 前記バラスト抵抗層は、真性またはp型の化合物半導体からなる層を含むヘテロ接合バイポーラトランジスタが提供される。
 本発明の他の観点によると、
 基板と、
 前記基板の上に配置された前記ヘテロ接合バイポーラトランジスタと、
 前記基板の上に配置された高電子移動度トランジスタと
を備えた半導体装置が提供される。
 本発明のさらに他の観点によると、
 前記ヘテロ接合バイポーラトランジスタと、
 アンテナに接続されるアンテナ端子と、
 前記ヘテロ接合バイポーラトランジスタと前記アンテナ端子との間に接続される周波数選択素子と
を備えた通信モジュールが提供される。
 バラスト抵抗層が、真性またはp型の化合物半導体からなる層を含むことにより、バラスト抵抗層の抵抗値を維持しつつ、バラスト抵抗層を薄くすることが可能である。これにより、耐圧を高めるとともに、加工精度のばらつきを低減させることができる。
図1は、第1実施例によるHBTの平面図である。 図2は、図1の一点鎖線2-2における断面図である。 図3は、第1実施例及び比較例によるHBTのエミッタ電流とエミッタ電圧との関係をシミュレーションによって求めた結果を示すグラフである。 図4は、第2実施例によるHBTの断面図である。 図5は、第3実施例によるHBTの平面図である。 図6は、図5の一点鎖線6-6における断面図である。 図7は、第3実施例の変形例によるHBTの平面図である。 図8は、図7の一点鎖線8-8における断面図である。 図9は、第4実施例によるBiHEMTの断面図である。 図10は、第5実施例による通信モジュールのブロック図である。 図11は、第5実施例による通信モジュールのモジュール基板に実装された種々の回路素子の配置の一例を示す平面図である。 図12は、パワー段増幅器の一部の等価回路図である。 図13は、パワー段増幅器の一部の平面図である。 図14は、第5実施例の変形例による通信モジュールのブロック図である。
 [第1実施例]
 図1、図2、及び図3を参照して、第1実施例によるヘテロ接合バイポーラトランジスタ(HBT)について説明する。
 図1は、第1実施例によるHBT20の平面図である。平面視において、n型の化合物半導体からなるサブコレクタ層11内にコレクタメサ21が配置されている。コレクタメサ21は、コレクタ層21C、ベース層21B、及びエミッタ層21Eを含む。
 平面視においてコレクタメサ21内に、一方向に長いエミッタ電極31E、及びU字状のベース電極31Bが配置されている。ベース電極31Bは、エミッタ電極31Eを、その幅方向に挟む位置に配置された一対のフィンガ部31BAと、一対のフィンガ部31BAをその端部において接続するコンタクト部31BBとで構成される。平面視において、コレクタメサ21を、エミッタ電極31Eの幅方向に挟む位置に、それぞれコレクタ電極31Cが配置されている。図1において、エミッタ電極31E、ベース電極31B、及びコレクタ電極31Cにハッチングを付している。後述する図5、図7においても同様である。
 平面視においてエミッタ電極31Eとほぼ重なるように、1層目のエミッタ配線35Eが配置されている。エミッタ配線35Eはエミッタ電極31Eに電気的に接続されている。平面視においてベース電極31Bのコンタクト部31BBと重なるように、1層目のベース配線35Bが配置されている。ベース配線35Bはコンタクト部31BBに電気的に接続されている。ベース配線35Bは、コンタクト部31BBからコレクタメサ21及びサブコレクタ層11の外側まで引き出されている。コレクタ電極31Cのそれぞれと重なるように、1層目のコレクタ配線35Cが配置されている。コレクタ配線35Cはコレクタ電極31Cに電気的に接続されている。コレクタ配線35Cは、コレクタ電極31Cからコレクタメサ21及びサブコレクタ層11の外側まで引き出されている。ベース配線35Bの引き出し方向と、コレクタ配線35Cの引き出し方向とは、相互に反対方向である。
 図2は、図1の一点鎖線2-2における断面図である。半絶縁性の化合物半導体からなる基板10の上面の一部の領域にn型の化合物半導体からなるサブコレクタ層11が配置されている。基板10の上面の他の領域には絶縁性の素子分離領域12が配置されている。
 サブコレクタ層11の一部の領域の上にコレクタメサ21が配置されている。コレクタメサ21は、基板10側から順番に積層されたn型の化合物半導体からなるコレクタ層21C、p型の化合物半導体からなるベース層21B、及びn型の化合物半導体からなるエミッタ層21Eを含む。
 エミッタ層21Eの一部の領域の上に、エミッタメサ28が配置されている。エミッタメサ28は、エミッタ層21E側から順番に積層された高濃度層24、バラスト抵抗層25、高濃度層26、及びコンタクト層27を含む。バラスト抵抗層25は、p型の化合物半導体からなるp型層25B、及びそれを上下方向に挟むn型の化合物半導体からなる2つのn型層25A、25Cを含む。高濃度層24、26、及びコンタクト層27は、n型の化合物半導体で形成される。
 サブコレクタ層11の上面のうちコレクタメサ21を挟む位置に、2つのコレクタ電極31Cが配置されている。コレクタ電極31Cは、サブコレクタ層11を介してコレクタ層21Cに電気的に接続されている。エミッタ層21Eの上面のうちエミッタメサ28を挟む位置に、ベース電極31B(図1)のフィンガ部31BAが配置されている。ベース電極31Bは、エミッタ層21Eを貫通してベース層21Bまで達する合金化領域32を介してベース層21Bに電気的に接続されている。コンタクト層27の上にエミッタ電極31Eが配置されている。エミッタ電極31Eは、コンタクト層27、高濃度層26、バラスト抵抗層25、及び高濃度層24を介してエミッタ層21Eに電気的に接続されている。
 図2に示したHBT20を覆うように層間絶縁膜(図示せず)が配置されており、その上に、図1に示した1層目のコレクタ配線35C、ベース配線35B、及びエミッタ配線35Eが配置されている。1層目のコレクタ配線35C、ベース配線35B、及びエミッタ配線35Eは、それぞれ層間絶縁膜に設けられた開口を通ってコレクタ電極31C、ベース電極31B、及びエミッタ電極31Eに接続されている。
 次に、HBT20を構成する各層に用いられる化合物半導体の組成の一例について説明する。基板10として、半絶縁性のGaAs基板が用いられる。サブコレクタ層11及びコレクタ層21Cは、n型GaAsで形成される。サブコレクタ層11のドナー濃度はコレクタ層21Cのドナー濃度より高い。ベース層21Bは、p型GaAsで形成される。なお、ベース層21Bをp型InGaAs等で形成してもよい。エミッタ層21Eは、ベース層21Bよりバンドギャップの大きな化合物半導体であるn型のInGaPで形成される。高濃度層24、26は、n型GaAsで形成される。
 バラスト抵抗層25のn型層25A、25Cは、n型GaAsで形成され、p型層25Bはp型GaAsで形成される。n型層25A、25Cのドナー濃度は同一であり、高濃度層24、26、コレクタ層21C、エミッタ層21Eの何れのドナー濃度より低い。p型層25Bのアクセプタ濃度は、n型層25A、25Cのドナー濃度とほぼ等しい。コンタクト層27は、n型InGaAsで形成される。
 次に、図3を参照して第1実施例の優れた効果について説明する。
 図3は、第1実施例及び比較例によるHBTのエミッタ電流とエミッタ電圧との関係をシミュレーションによって求めた結果を示すグラフである。横軸はエミッタ電流を単位「mA」で表し、縦軸はエミッタ電圧を単位「V」で表す。グラフ中の実線及び破線は、それぞれ第1実施例及び比較例によるHBTにおけるシミュレーション結果を示す。ここで、エミッタ電圧は、エミッタ層21Eの上面とコンタクト層27の下面との間の電圧を意味する。
 比較例によるHBTは、第1実施例によるHBT20(図2)のバラスト抵抗層25を、低濃度(ドナー濃度1×1016cm-3)のn型GaAs層に置き換えたものである。第1実施例によるHBT20のバラスト抵抗層25の厚さは、比較例によるHBTの低濃度のn型GaAs層の厚さよりも薄くしている。n型層25A、25Cのドナー濃度およびp型層25Bのアクセプタ濃度は、1×1016cm-3とした。
 エミッタ電流が同一の時、第1実施例によるHBT20のエミッタ電圧が、比較例によるHBTのエミッタ電圧より高いことがわかる。すなわち、第1実施例によるHBT20のバラスト抵抗は、比較例によるHBTのバラスト抵抗より高い。これは、目標とするバラスト抵抗の値を実現するために、第1実施例によるHBT20の構造を採用することにより、比較例によるHBTの構造と比べてバラスト抵抗層25を薄くできることを意味する。バラスト抵抗層25(図2)が薄くなると、エミッタメサ28やコレクタメサ21の加工精度が高くなり、製品間の寸法のばらつきを小さくすることができる。さらに、加工精度の向上は、歩留まりの向上及び製造コストの低減につながる。
 次に、第1実施例によるバラスト抵抗層25の構造を採用することにより、バラスト抵抗を高くすることができる理由につい説明する。第1実施例では、バラスト抵抗層25のp型層25B内の正電荷により、p型層25Bの伝導帯の下端が上昇し、電子に対して山なりのポテンシャル障壁が発生する。このポテンシャル障壁が、電圧印加に対して電流を抑制する方向に作用する。特に、大電流動作時に、低濃度のn型バラスト抵抗層を用いた比較例の構成と比べて、p型層25Bのポテンシャル上昇によるバラスト抵抗層25の抵抗増加が顕著になり、熱暴走を抑制する効果がより大きくなる。
 次に、第1実施例によるHBT20のエミッタメサ28を構成する各層の役割について説明する。エミッタ層21Eとバラスト抵抗層25との間に配置された高濃度層24は、エミッタ層21Eとバラスト抵抗層25との接触抵抗を低減する役割を持つ。バラスト抵抗層25とコンタクト層27との間に配置された高濃度層26は、バラスト抵抗層25とコンタクト層27との接触抵抗を低減する役割を持つ。
 次に、バラスト抵抗層25の好ましい厚さ、ドーパント濃度等について説明する。
 高濃度層24、26とバラスト抵抗層25の低濃度のp型層25Bとを直接接触させると、pn接合界面において空乏層が主としてp型層25Bの方に延びる。下側の高濃度層24側から延びる空乏層と、上側の高濃度層26から延びる空乏層とが接触すると、実質的にp型を示す層が存在しなくなる。高濃度層24とp型層25Bとの間、及び高濃度層26とp型層25Bとの間にそれぞれ配置された低濃度のn型層25A、25Cは、p型層25Bへの空乏層の侵入を抑制する役割を持つ。空乏層の侵入を抑制するために、n型層25A、25Cのドナー濃度と、p型層25Bのアクセプタ濃度とをほぼ等しくすることが好ましい。
 p型層25Bのアクセプタ濃度を低くし、厚さを薄くしすぎると、電圧印加時に上下のpn接合界面から延びる空乏層がp型層25B内で接触し、ポテンシャル障壁が実質的に消失してしまう。このような現象はパンチスルーといわれる。パンチスルーが発生すると、バラスト抵抗層25が抵抗素子として機能しなくなる。動作電圧印加時に、p型層25Bのアクセプタ濃度及び厚さは、上下のpn接合界面から延びる空乏層がp型層25B内で接触しない程度の値とすることが好ましい。
 p型層25B内の電子は少数キャリアであるため、p型層25B内では電子による拡散電流が支配的となる。このため、p型層25Bを厚くしすぎると、エミッタ電流の応答特性が低下し、遮断周波数が低下してしまう。遮断周波数の低下を抑制するために、p型層25Bの厚さを、ベース層21Bの厚さ以下にすることが好ましい。
 n型層25A、25Cのドナー濃度及びp型層25Bのアクセプタ濃度を高くしすぎると、エミッタに印加される電圧がpn接合界面に局在化して印加され、バラスト抵抗層25が順方向バイアス及び逆方向バイアスのダイオードとして動作するようになる。バラスト抵抗層25を抵抗素子として動作させるために、n型層25A、25Cのドナー濃度及びp型層25Bのアクセプタ濃度を1×1016cm-3以下にすることが好ましい。
 次に、バラスト抵抗層25の好ましい材料について説明する。バラスト抵抗層25として、コレクタ層21Cに格子整合する化合物半導体を用いることが好ましい。特に、コレクタ層21Cと同一の化合物半導体を含むことが好ましい。「同一の化合物半導体」とは、化合物半導体の構成元素が同一であることを意味する。
 [第2実施例]
 次に、図4を参照して第2実施例によるHBTについて説明する。以下、図1から図3までの図面を参照して説明した第1実施例によるHBTと共通の構成については説明を省略する。
 図4は、第2実施例によるHBT20の断面図である。第1実施例(図2)では、バラスト抵抗層25がn型層25A、p型層25B、及びn型層25Cの3層で構成されている。これに対して第2実施例では、バラスト抵抗層25として、真性(イントリンシック)化合物半導体が用いられる。例えば、バラスト抵抗層25が、アンドープのGaAsで形成される。
 次に、第2実施例の優れた効果について説明する。
 バラスト抵抗層25に真性化合物半導体を用いると、低濃度のn型化合物半導体を用いる場合と比べて、バラスト抵抗層25の抵抗値が高くなる。このため、第1実施例と同様に、所望の抵抗値を実現するためのバラスト抵抗層25の厚さを薄くすることができる。その結果、エミッタメサ28やコレクタメサ21の加工精度を高めることができる。
 次に、第2実施例の変形例について説明する。第2実施例では、第1実施例(図2)のn型層25A、p型層25B、及びn型層25Cの3層を真性化合物半導体層に置き換えている。その変形例として、p型層25Bのみを真性化合物半導体層に置き換えてもよい。この場合、バラスト抵抗層25は、真性化合物半導体層を上下からn型層で挟んだ3層構造になる。
 [第3実施例]
 次に、図5及び図6を参照して第3実施例によるHBTについて説明する。以下、図1から図3までの図面を参照して説明した第1実施例によるHBTと共通の構成については説明を省略する。
 図5は、第3実施例によるHBT20の平面図であり、図6は、図5の一点鎖線6-6における断面図である。第1実施例によるHBT20(図1)は1本のエミッタ電極31E、及び1つのエミッタメサ28を含んでいる。これに対して第3実施例によるHBT20は、2本のエミッタ電極31E(図5)及び2つのエミッタメサ28(図6)を含む。2本のエミッタ電極31Eは、それぞれ一方向に長い形状を有し、その幅方向に間隔を隔てて配置されている。2つのエミッタメサ28のそれぞれにバラスト抵抗層25が配置されている。すなわち、エミッタ層21Eを平面視したとき、バラスト抵抗層25が相互に間隔を隔てて2箇所に配置されている。
 平面視において、ベース電極31Bのフィンガ部31BAが2本のエミッタ電極31Eの間に配置されている。すなわち、ベース電極31Bのフィンガ部31BAは、2つのバラスト抵抗層25の間に配置されている。フィンガ部31BAの一方の端部に、エミッタ電極31Eの幅方向に長いコンタクト部31BBが接続されている。ベース電極31Bは、平面視においてT字状の形状を有する。
 1層目のエミッタ配線35Eが、一方のエミッタ電極31Eと重なる領域からベース電極31Bのフィンガ部31BAと交差して他方のエミッタ電極31Eと重なる領域まで至る。エミッタ配線35Eは、2本のエミッタ電極31Eに電気的に接続されている。
 次に、図7及び図8を参照して第3実施例の変形例によるHBTについて説明する。図7は、第3実施例の変形例によるHBT20の平面図であり、図8は、図7の一点鎖線8-8における断面図である。
 本変形例によるHBT20は、3本のエミッタ電極31E(図7)及び3つのエミッタメサ28(図8)を含む。3つのエミッタメサ28のそれぞれにバラスト抵抗層25が配置されている。すなわち、エミッタ層21Eを平面視したとき、バラスト抵抗層25が相互に間隔を隔てて3箇所に配置されている。3本のエミッタ電極31Eは、それぞれ一方向に長い形状を有し、その幅方向に並んで配置されている。第1実施例と同様のU字状のベース電極31Bの2本のフィンガ部31BAが、相互に隣り合う2本のエミッタ電極31Eの間に配置されている。すなわち、ベース電極31Bの2本のフィンガ部31BAは、3つのバラスト抵抗層25のうち相互に隣り合う2つのバラスト抵抗層25の間にそれぞれ配置されている。
 なお、4つ以上のエミッタメサ28を配置してもよい。すなわち、バラスト抵抗層25を、4箇所以上の複数箇所に配置してもよい。この場合も、ベース電極31Bの複数のフィンガ部31BAが、複数のバラスト抵抗層25のうち相互に隣り合う2つのバラスト抵抗層25の間にそれぞれ配置された構成とするとよい。
 次に、第3実施例及びその変形例の優れた効果について説明する。第3実施例及びその変形例のように、エミッタ電極31E及びエミッタメサ28を複数個配置する構成においても、第1実施例による構造のバラスト抵抗層25を配置することにより、エミッタメサ28を薄くすることが可能になる。その結果、エミッタメサ28の加工精度を高めることができる。エミッタメサ28の加工精度を高めることができるという効果は、第3実施例及びその変形例のように、1つのコレクタメサ21の上に複数のエミッタメサ28を形成するプロセスを含むHBT20において顕著である。
 [第4実施例]
 次に、図9を参照して第4実施例による半導体装置について説明する。以下、図1から図3までの図面を参照して説明した第1実施例によるHBTと共通の構成については説明を省略する。
 図9は、第4実施例による半導体装置の断面図である。第4実施例においては、基板10に、HBT20及び高電子移動度トランジスタ(HEMT)40が形成されている。このような半導体装置は、BiHEMTといわれる場合がある。半絶縁性の基板10の上に、HEMT構造層41が形成されており、その上に分離層43を介してHBT構造層42が形成されている。HEMT40が形成される領域の分離層43及びHBT構造層42が除去されている。HBT20が配置される領域とHEMT40が配置される領域との間に、HEMT構造層41を厚さ方向に貫通する絶縁部50が配置されている。
 HEMT構造層41は、キャリア供給層、スペーサ層、チャネル層等を含む動作層44、その上のショットキー層45、及びその上のコンタクト層46を含む。コンタクト層46の一部が除去され、露出したショットキー層45にゲート電極48がショットキー接触する。ゲート電極48を挟むように、コンタクト層46の上にソース電極47及びドレイン電極49が配置されている。
 HBT構造層42は、第1実施例によるHBT(図2)のサブコレクタ層11からコンタクト層27までの各層を含む。これらの層により、HBT20が構成されている。
 次に、第4実施例の優れた効果について説明する。
 第4実施例においても第1実施例と同様に、エミッタメサ28及びコレクタメサ21の加工精度を高めることができる。その結果、製品間の寸法のばらつきを小さくすることができる。さらに、加工精度の向上は、歩留まりの向上及びコスト低減につながる。
 [第5実施例]
 次に、図10から図13までの図面を参照して第5実施例による通信モジュールについて説明する。第5実施例による通信モジュールには、第1実施例、第2実施例、第3実施例またはその変形例によるHBT20が搭載される。
 図10は、第5実施例による通信モジュール75のブロック図である。通信モジュール75は、入力スイッチ51、ドライバ段増幅器52、パワー段増幅器53、送信用のバンド選択スイッチ56、複数のデュプレクサ57、アンテナスイッチ58、受信用のバンド選択スイッチ59、ローノイズアンプ60、パワーアンプ制御回路54、ローノイズアンプ制御回路61、及び受信用の出力端子選択スイッチ62を含む。この通信モジュール75は、周波数分割複信(FDD)方式の送受信を行う機能を有する。なお、図10においては、必要に応じて挿入されるインピーダンス整合回路の記載を省略している。
 入力スイッチ51の2つの入力側の接点が、それぞれ高周波信号入力端子IN1、IN2に接続されている。2つの高周波信号入力端子IN1、IN2から高周波信号が入力される。入力スイッチ51が、入力側の2つの接点から1つの接点を選択すると、選択した接点に入力される高周波信号がドライバ段増幅器52に入力される。
 ドライバ段増幅器52で増幅された高周波信号がパワー段増幅器53に入力される。パワー段増幅器53で増幅された高周波信号が、バンド選択スイッチ56の入力側の接点に入力される。バンド選択スイッチ56が、複数の出力側の接点から1つの接点を選択すると、パワー段増幅器53で増幅された高周波信号が、選択した接点から出力される。
 バンド選択スイッチ56の出力側の複数の接点が、それぞれバンドごとに準備された複数のデュプレクサ57の送信用入力ポートに接続されている。バンド選択スイッチ56で選択された出力側の接点に接続されたデュプレクサ57に高周波信号が入力される。バンド選択スイッチ56は、バンドごとに準備された複数のデュプレクサ57から1つのデュプレクサ57を選択する機能を有する。
 アンテナスイッチ58が、回路側の複数の接点とアンテナ側の2つの接点とを有する。アンテナスイッチ58の複数の回路側の接点が、それぞれ複数のデュプレクサ57の入出力共用ポートに接続されている。アンテナ側の2つの接点は、それぞれアンテナ端子ANT1、ANT2に接続されている。アンテナ端子ANT1、ANT2に、それぞれアンテナが接続される。
 アンテナスイッチ58は、2つのアンテナ側の接点を、それぞれ回路側の複数の接点から選択した2つの接点に接続する。1つのバンドを用いて通信を行う場合には、アンテナスイッチ58は、回路側の1つの接点と、アンテナ側の1つの接点とを接続する。パワー段増幅器53で増幅され、対応するバンド用のデュプレクサ57を通過した高周波信号が、選択されたアンテナ側の接点に接続されているアンテナから送信される。
 受信用のバンド選択スイッチ59が、入力側の6個の接点を有する。バンド選択スイッチ59の入力側の6個の接点は、それぞれデュプレクサ57の受信用出力ポートに接続されている。バンド選択スイッチ59の出力側の接点がローノイズアンプ60に接続されている。バンド選択スイッチ59で選択された入力側の接点に接続されているデュプレクサ57を通過した受信信号がローノイズアンプ60に入力される。
 出力端子選択スイッチ62の回路側の接点がローノイズアンプ60の出力ポートに接続されている。出力端子選択スイッチ62の3つの端子側の接点が、それぞれ受信信号出力端子LNAOUT1、LNAOUT2、LNAOUT3に接続されている。ローノイズアンプ60で増幅された受信信号が、出力端子選択スイッチ62で選択された受信信号出力端子から出力される。
 電源端子VCC1、VCC2から、それぞれドライバ段増幅器52及びパワー段増幅器53に電源電圧が印加される。パワーアンプ制御回路54が、電源端子VIO1、制御信号端子SDATA1、及びクロック端子SCLK1に接続されている。パワーアンプ制御回路54は、制御信号端子SDATA1に与えられるデジタル制御信号に基づき、ドライバ段増幅器52及びパワー段増幅器53を制御する。より具体的には、制御信号端子SDATA1に与えられるデジタル制御信号に基づき、パワーアンプ制御回路54の内部のアナログ回路からドライバ段増幅器52及びパワー段増幅器53に所望のバイアスを供給する。
 ローノイズアンプ制御回路61が、電源端子VIO2、制御信号端子SDATA2、及びクロック端子SCLK2に接続されている。ローノイズアンプ制御回路61は、制御信号端子SDATA2に与えられるデジタル制御信号に基づき、ローノイズアンプ60を制御する。より具体的には、制御信号端子SDATA2に与えられるデジタル制御信号に基づき、ローノイズアンプ制御回路61の内部のアナログ回路からローノイズアンプ60に所望のバイアスを供給する。
 通信モジュール75に、さらに電源端子VBAT及びドレイン電圧端子VDD2が設けられている。電源端子VBATから、ドライバ段増幅器52及びパワー段増幅器53のバイアス回路及びパワーアンプ制御回路54に電源が供給される。ドレイン電圧端子VDD2からローノイズアンプ制御回路61等に電源電圧が印加される。
 図11は、モジュール基板70に実装された種々の回路素子の配置の一例を示す平面図である。モジュール基板70に、モノリシックマイクロ波集積回路(MMIC)65、パワーアンプ制御回路54、バンド選択スイッチ56、複数のデュプレクサ57、ローノイズアンプ60、アンテナスイッチ58、その他の受動素子等が実装されている。MMIC65は、ドライバ段増幅器52(図10)及びパワー段増幅器53(図10)を含む。これらの回路部品は、ハンダボール実装、Cuピラーバンプ(CPB)実装、フェイスアップ実装等により、モジュール基板70に実装される。フェイスアップ実装を採用する場合は、各素子とモジュール基板70のパッドとがボンディングワイヤで接続される。
 モジュール基板70には、例えばプリント回路基板(PCB)、セラミック基板等の多層基板が用いられる。なお、図11に示したような片面実装に代えて、両面実装や、基板内部へのIC実装等の高密度実装を採用してもよい。このような高密度実装を採用することにより、通信モジュール75(図10)の小型化を図ることができる。
 図12は、パワー段増幅器53の一部の等価回路図である。パワー段増幅器53は、相互に並列に接続された複数のHBT20を含む。HBT20として、第1実施例(図1、図2)、第2実施例(図4)、第3実施例(図5、図6)、または第3実施例の変形例(図7、図8)によるHBT20が用いられる。HBT20の各々のコレクタがコレクタ共通配線36Cに接続されている。HBT20の各々のベースが、ベースバラスト抵抗Rbbを介してベースバイアス配線36Bに接続されるとともに、入力キャパシタCinを介して高周波信号入力配線36inに接続されている。HBT20の各々のエミッタが、エミッタバラスト抵抗Rebを介してエミッタ共通配線36Eに接続されている。エミッタバラスト抵抗Rebは、エミッタメサ28内のバラスト抵抗層25(図2、図4、図6、図8)によって実現される。
 図13は、パワー段増幅器53の一部の平面図である。図13に示したHBT20の各々は、第2実施例によるHBT20(図5)と同様に、2本のエミッタ電極31E、T字状のベース電極31B、2本のコレクタ電極31Cを含む。複数のHBT20は、エミッタ電極31Eの幅方向に並んで配置されている。複数のHBT20の1層目のエミッタ配線35Eに重なるように、HBT20の配列方向に延びる2層目のエミッタ共通配線36Eが配置されている。エミッタ共通配線36Eによって、複数のHBT20のエミッタが相互に接続される。コレクタ電極31Cに1層目のコレクタ配線35Cが接続されている。
 複数のHBT20の各々のベース電極31Bのコンタクト部31BBと重なる領域から1層目のベース配線35Bが引き出されている。ベース配線35Bの一部分が拡幅されており、拡幅された部分のそれぞれに、共通の2層目の高周波信号入力配線36inが重なる。1層目のベース配線35Bと2層目の高周波信号入力配線36inとの重なり領域が、入力キャパシタCinとして機能する。さらに、ベース配線35Bの各々は、ベースバラスト抵抗Rbbを介してベースバイアス配線36Bに接続されている。
 図13において、エミッタ電極31E、ベース電極31B、及びコレクタ電極31Cに濃いハッチングを付し、1層目のエミッタ配線35E、コレクタ配線35C、ベース配線35B、ベースバイアス配線36Bに、淡いハッチングを付している。
 次に、第5実施例の優れた効果について説明する。第5実施例による通信モジュール75においては、パワー段増幅器53に第1実施例等によるHBT20が使用されている。このため、HBT20の熱暴走を抑制することができる。その結果、通信モジュール75の高出力化を図ることが可能になる。さらに、MMIC65の製造工程における加工精度を高めることができる。
 さらに、複数のHBT20のそれぞれにベースバラスト抵抗Rbbが接続されているため、複数のHBT20の間でのエミッタ電流の不均一性を抑制することができる。その結果、全体として破壊耐圧の向上を図ることが可能である。
 次に、図14を参照して第5実施例の変形例による通信モジュールについて説明する。図14は、第5実施例の変形例による通信モジュール75のブロック図である。以下、第5実施例による通信モジュール75と共通の構成については説明を省略する。本変形例による通信モジュール75には、図10に示した入力スイッチ51、バンド選択スイッチ56、59、及び出力端子選択スイッチ62が搭載されていない。
 第5実施例による通信モジュール75(図10)は、FDD方式の通信機能を有している。このため、周波数選択素子としてデュプレクサ57(図10)が用いられる。これに対して本変形例による通信モジュール75は、時分割複信(TDD)方式の通信機能を有する。このため、周波数選択素子としてフィルタ63が用いられる。
 パワー段増幅器53の出力ポートが、送受信切替スイッチ55の送信用接点に接続されている。送受信切替スイッチ55の受信用接点に、ローノイズアンプ60の入力ポートが接続されている。送受信切替スイッチ55の共通接点が、フィルタ63を介してアンテナスイッチ58の回路側接点に接続されている。アンテナスイッチ58の2つのアンテナ側接点が、アンテナ端子ANT1、ANT2に接続されている。
 図14に示した変形例のように、第1実施例等によるHBT20は、TDD方式の通信モジュール75に搭載することも可能である。
 上述の各実施例は例示であり、異なる実施例で示した構成の部分的な置換または組み合わせが可能であることは言うまでもない。複数の実施例の同様の構成による同様の作用効果については実施例ごとには逐次言及しない。さらに、本発明は上述の実施例に制限されるものではない。例えば、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。
10 基板
11 サブコレクタ層
12 素子分離領域
20 ヘテロ接合バイポーラトランジスタ(HBT)
21 コレクタメサ
21B ベース層
21C コレクタ層
21E エミッタ層
24 高濃度層
25 バラスト抵抗層
25A n型層
25B p型層
25C n型層
26 高濃度層
27 コンタクト層
28 エミッタメサ
31B ベース電極
31BA ベース電極のフィンガ部
31BB ベース電極のコンタクト部
31C コレクタ電極
31E エミッタ電極
32 合金化領域
35B ベース配線
35C コレクタ配線
35E エミッタ配線
36B ベースバイアス配線
36C コレクタ共通配線
36E エミッタ共通配線
36in 高周波信号入力配線
40 HEMT
41 HEMT構造層
42 HBT構造層
43 分離層
44 動作層
45 ショットキー層
46 コンタクト層
47 ソース電極
48 ゲート電極
49 ドレイン電極
50 絶縁部
51 入力スイッチ
52 ドライバ段増幅器
53 パワー段増幅器
54 パワーアンプ制御回路
55 送受信切替スイッチ
56 送信側のバンド選択スイッチ
57 デュプレクサ
58 アンテナスイッチ
59 受信側のバンド選択スイッチ
60 ローノイズアンプ
61 ローノイズアンプ制御回路
62 出力端子選択スイッチ
63 フィルタ
65 モノリシックマイクロ波集積回路(MMIC)
70 モジュール基板
75 通信モジュール
 

Claims (8)

  1.  n型の化合物半導体からなるコレクタ層と、
     前記コレクタ層の上に配置されたp型の化合物半導体からなるベース層と、
     前記ベース層の上に配置され、前記ベース層よりバンドギャップが大きいn型の化合物半導体からなるエミッタ層と、
     前記エミッタ層の上に配置されたバラスト抵抗層と
    を備え、
     前記バラスト抵抗層は、真性またはp型の化合物半導体からなる層を含むヘテロ接合バイポーラトランジスタ。
  2.  前記バラスト抵抗層は、前記コレクタ層と同一の化合物半導体を含んで形成されている請求項1に記載のヘテロ接合バイポーラトランジスタ。
  3.  前記バラスト抵抗層は、
     n型の化合物半導体からなる2つのn型層と、前記2つのn型層に挟まれたp型の化合物半導体からなるp型層とを含む請求項1または2に記載のヘテロ接合バイポーラトランジスタ。
  4.  前記2つのn型層のドナー濃度及び前記p型層のアクセプタ濃度は、1×1016cm-3以下である請求項3に記載のヘテロ接合バイポーラトランジスタ。
  5.  前記コレクタ層及び前記ベース層を形成する化合物半導体はGaAsである請求項1乃至4のいずれか1項に記載のヘテロ接合バイポーラトランジスタ。
  6.  前記ベース層に電気的に接続されたベース電極を、さらに備え、
     前記バラスト抵抗層は、前記エミッタ層を平面視したとき相互に間隔を隔てて複数箇所に配置されており、
     前記ベース電極の一部分は、複数箇所に配置された前記バラスト抵抗層の間に配置されている請求項1乃至5のいずれか1項に記載のヘテロ接合バイポーラトランジスタ。
  7.  基板と、
     前記基板の上に配置された請求項1乃至6のいずれか1項に記載のヘテロ接合バイポーラトランジスタと、
     前記基板の上に配置された高電子移動度トランジスタと
    を備えた半導体装置。
  8.  請求項1乃至6のいずれか1項に記載のヘテロ接合バイポーラトランジスタと、
     アンテナに接続されるアンテナ端子と、
     前記ヘテロ接合バイポーラトランジスタと前記アンテナ端子との間に接続される周波数選択素子と
    を備えた通信モジュール。
     
PCT/JP2022/033762 2021-10-19 2022-09-08 ヘテロ接合バイポーラトランジスタ、半導体装置、及び通信モジュール WO2023067938A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111137304A TWI836641B (zh) 2021-10-19 2022-09-30 異質接合雙極性電晶體、半導體裝置、及通訊模組

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-171063 2021-10-19
JP2021171063 2021-10-19

Publications (1)

Publication Number Publication Date
WO2023067938A1 true WO2023067938A1 (ja) 2023-04-27

Family

ID=86059043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/033762 WO2023067938A1 (ja) 2021-10-19 2022-09-08 ヘテロ接合バイポーラトランジスタ、半導体装置、及び通信モジュール

Country Status (1)

Country Link
WO (1) WO2023067938A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0982898A (ja) * 1995-09-18 1997-03-28 Sharp Corp 半導体装置およびその製造方法
US6465804B1 (en) * 1999-07-12 2002-10-15 Technion Research & Development Foundation Ltd. High power bipolar transistor with emitter current density limiter
JP2007027225A (ja) * 2005-07-13 2007-02-01 Nec Electronics Corp 半導体装置及び半導体装置の製造方法
US20180247933A1 (en) * 2017-02-27 2018-08-30 Qualcomm Incorporated Compound semiconductor transistor and high-q passive device single chip integration
JP2019121735A (ja) * 2018-01-10 2019-07-22 株式会社村田製作所 半導体装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0982898A (ja) * 1995-09-18 1997-03-28 Sharp Corp 半導体装置およびその製造方法
US6465804B1 (en) * 1999-07-12 2002-10-15 Technion Research & Development Foundation Ltd. High power bipolar transistor with emitter current density limiter
JP2007027225A (ja) * 2005-07-13 2007-02-01 Nec Electronics Corp 半導体装置及び半導体装置の製造方法
US20180247933A1 (en) * 2017-02-27 2018-08-30 Qualcomm Incorporated Compound semiconductor transistor and high-q passive device single chip integration
JP2019121735A (ja) * 2018-01-10 2019-07-22 株式会社村田製作所 半導体装置

Also Published As

Publication number Publication date
TW202320340A (zh) 2023-05-16

Similar Documents

Publication Publication Date Title
JP5011549B2 (ja) 半導体装置
KR100677816B1 (ko) 능동 소자 및 스위치 회로 장치
US11610883B2 (en) Semiconductor device
US6731167B2 (en) High frequency power amplifier module and wireless communication apparatus
US20060157825A1 (en) Semiconductor device and manufacturing the same
TWI752598B (zh) 放大電路之單位單元及功率放大器模組
US6636118B1 (en) High-frequency power amplification module and radio communication device
US11990873B2 (en) Radio-frequency power-amplifying element
WO2023067938A1 (ja) ヘテロ接合バイポーラトランジスタ、半導体装置、及び通信モジュール
US20230318543A1 (en) Power amplifier
TWI836641B (zh) 異質接合雙極性電晶體、半導體裝置、及通訊模組
CN110739305A (zh) 半导体装置
JP2006278544A (ja) 能動素子およびその製造方法
WO2023210163A1 (ja) 半導体装置
JP2007194412A (ja) 能動素子およびスイッチ回路装置
US20060255880A1 (en) RF amplifier
JP2012109320A (ja) 電力増幅器
KR102667344B1 (ko) 하이브리드 집적회로
JP5783241B2 (ja) 半導体装置
US20060118834A1 (en) Semiconductor device and method of manufacturing the same
JP5527313B2 (ja) 半導体装置およびそれを用いた無線通信機器
JP2007142273A (ja) バイポーラトランジスタを有する半導体装置
JP2022061757A (ja) 半導体装置
KR20230144782A (ko) 하이브리드 집적회로
JP2012190857A (ja) 半導体装置及び電力増幅器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22883249

Country of ref document: EP

Kind code of ref document: A1