WO2023067254A1 - Method for controlling a battery management system - Google Patents

Method for controlling a battery management system Download PDF

Info

Publication number
WO2023067254A1
WO2023067254A1 PCT/FR2022/051645 FR2022051645W WO2023067254A1 WO 2023067254 A1 WO2023067254 A1 WO 2023067254A1 FR 2022051645 W FR2022051645 W FR 2022051645W WO 2023067254 A1 WO2023067254 A1 WO 2023067254A1
Authority
WO
WIPO (PCT)
Prior art keywords
soc
battery pack
maximum
bms
controlling
Prior art date
Application number
PCT/FR2022/051645
Other languages
French (fr)
Inventor
Olivier BALENGHIEN
Alexandre Morel
Original Assignee
Psa Automobiles Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Psa Automobiles Sa filed Critical Psa Automobiles Sa
Publication of WO2023067254A1 publication Critical patent/WO2023067254A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/62Monitoring or controlling charging stations in response to charging parameters, e.g. current, voltage or electrical charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/11DC charging controlled by the charging station, e.g. mode 4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/68Off-site monitoring or control, e.g. remote control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]

Definitions

  • TITLE METHOD FOR CONTROLLING A BATTERY MANAGEMENT SYSTEM
  • the invention relates, in general, to the technical field of the management of the recharging cycles of traction battery packs by connection to a source of electrical energy.
  • traction battery packs are used in electric or hybrid vehicles, that is to say vehicles driven at least partially by electrical energy.
  • the invention relates more specifically to increasing the service life of traction battery packs by optimizing recharging cycles.
  • traction battery packs in electric vehicles, that is to say vehicles driven exclusively by electrical energy. Nevertheless, these traction battery packs can also be used in so-called hybrid vehicles, i.e. towed by a conventional combustion engine and an electric motor.
  • Motor vehicles having a heat engine generally comprise one or more batteries connected to the on-board network, also called service batteries, to supply the equipment of these vehicles, in particular a starter of a heat engine.
  • battery will therefore be understood throughout the text of this document to mean an assembly comprising at least one battery module containing at least one cell electrochemical, the service battery being considered equivalent to at least one module.
  • This battery optionally comprises electrical or electronic means for managing the electrical energy of this at least one module.
  • battery block also commonly called a “battery pack”
  • this battery block often being designated by the English expression “battery pack”
  • this housing generally containing a mounting interface, and connection terminals.
  • electrochemical cell will be understood throughout the text of this document to mean cells generating current by chemical reaction, for example of the lithium-ion (or Li-ion) type, of the Ni-Mh type, or Ni -Cd or even lead.
  • the quantity of electrical energy stored in the power modules of the battery packs during recharging cycles is limited according to a parameter representative of the aging of the power modules.
  • This parameter may be the number of kilometers traveled by the vehicle or the age of the vehicle on the basis of an average annual mileage or the number of charge/discharge cycles of the battery pack.
  • the parameter used corresponds to the number of charge/discharge cycles, it is considered that at each charge a cycle is carried out on the basis of an average mileage per cycle. Therefore, most often the energy stored in the battery pack during recharging cycles is limited depending on the mileage of the vehicle directly or indirectly. This solution is not satisfactory, because the mileage is not necessarily the most relevant criterion to reflect the aging of the batteries.
  • Driver 1 will have driven 300 km in 5 working days while driver 2 will have driven 400 km in 5 working days. Nevertheless, the power modules of the battery pack which will have aged the most are those of driver 1 . Indeed, the factors that cause power modules to age include:
  • driver 1 will do fewer kilometers than driver 2, and yet he will age his battery pack power modules more quickly, which leads to the conclusion that the use of vehicle mileage does not contribute to defining the age of the battery pack power modules.
  • the invention aims to remedy all or part of the drawbacks of the state of the art by proposing in particular a solution making it possible to prevent untimely aging of the battery packs by offering the possibility of limiting the recharging capacity of the battery pack.
  • batteries, in particular traction batteries, during a recharging cycle in fast mode which is one of the main factors in the aging of power modules, and without unduly penalizing the expectations of users in terms of the range of their electric vehicles.
  • electrical energy stored in said battery pack wherein said BMS controls a charging phase of said battery pack according to a plurality of charging modes including at least one fast charging mode, said battery pack being able to be recharged up to a Maximum useful SOC less than a maximum real SOC.
  • the method is remarkable in that it comprises a step in which said BMS controls the recharging of said battery pack in said rapid recharging mode up to a maximum normal SOC or up to a selected maximum SOC, in which said BMS is defaulted in said fast charging mode to said maximum normal SOC, and a step in which the BMS can be switched remotely by a user in said fast charging mode from said maximum normal SOC to said selected maximum SOC.
  • said maximum normal SOC is less than said maximum useful SOC, preferably the maximum normal SOC is set at 80% of the maximum useful SOC.
  • the selected maximum SOC is fixed at 100% of said maximum useful SOC, and/or can be freely selected remotely by the user at a level between 100% of said maximum useful SOC and a threshold lower, preferably set at 60% of said maximum useful SOC.
  • the method comprises a step in which the BMS can be switched to said maximum SOC selected only after the start of the recharging of said battery pack; and/or said BMS can only be switched to said selected maximum SOC for the current charging process.
  • the remote switching of the BMS on said selected maximum SOC is carried out by a man-machine interface such as a mobile telephone or any other remote control medium.
  • said maximum useful SOC is set at 97% of the maximum actual SOC, and/or said battery pack cannot be discharged below a minimum useful SOC, preferably set between 1% and 2% of actual maximum SOC.
  • a computer program product comprising code instructions recorded on a computer-readable medium for the implementation of the method as defined above when said program is running. in a BMS controlling at least one battery pack for a vehicle driven at least partially by electrical energy stored in said battery pack.
  • a BMS for controlling at least one battery pack for a vehicle driven at least partially by electrical energy stored in said battery pack, said BMS being configured to controlling a recharging phase of said battery pack according to a plurality of recharging modes comprising at least one fast recharging mode.
  • Said BMS is configured to control the recharging of said battery pack in said rapid recharging mode up to the maximum normal SOC or to the maximum SOC selected according to the method defined above.
  • a battery pack comprising an electrical energy storage module characterized in that it comprises the BMS as defined above.
  • the battery pack is intended for a vehicle driven at least partially by electrical energy stored in said traction battery pack, the battery pack comprising:
  • a vehicle driven at least partially by electrical energy stored in at least one battery pack as defined above.
  • FIG. 1 a graph representing the evolution of the useful SOC according to the mileage.
  • the state of charge also called SOC (Acronym for State of charge) is one of the key parameters in the management of a traction battery pack by a battery management device, also called BMS ( Acronym in English for Battery management system).
  • SOC represents the level of charge of the power modules of a battery pack (for convenience, it will mainly refer to the battery pack instead of the power module or the traction battery pack).
  • the SOC is expressed as a percentage of the maximum charge capacity of the battery pack and this maximum charge is a function of the aging of the battery pack.
  • the SOC is 100% when the battery pack is fully charged, and it is 0% when the battery pack is fully discharged. Two other indicators of the charge level are derived from the SOC, the real SOC and the useful SOC.
  • the actual SOC is a manufacturer parameter. This is the actual charge capacity of the new battery pack as stated by the manufacturer. A 50kWh battery pack will contain 100% of its actual SOC i.e. 50kWh, and it will contain 0% of its actual SOC i.e. OkWh.
  • the useful SOC also called customer SOC, represents the quantity of electrical energy contained in the battery pack that can be used by the user of the electric vehicle in which the battery pack is installed.
  • the maximum useful SOC for a new vehicle is slightly lower than the maximum real SOC, in general the maximum useful SOC is 97% of the maximum real SOC.
  • the purpose of using the useful SOC battery pack is to preserve the durability of the battery pack when a user fills up with electrical energy at a charging station. In fact, vehicle charging stops at 100% of the useful SOC, i.e. 97% of the real SOC. In practice, after a full charge of a new vehicle, a maximum real SOC battery pack of 50kWh will contain an amount of electrical energy closer to 48kWh than to 50kWh.
  • the minimum useful SOC of a new vehicle corresponds to a small fraction of the maximum real SOC, generally between 1% and 2% of the maximum real SOC.
  • a user driving until "dry breakdown", that is to say until a useful SOC of 0%, with an electric vehicle whose minimum useful SOC corresponds to 1% of the maximum real SOC will still have a minimum amount of energy of 0.5kWh in his battery pack that cannot be used to move his vehicle. Indeed, discharging the battery pack down to 0% of the actual SOC, also called deep discharge, would put the vehicle in permanent breakdown and it would be impossible to recharge it. A replacement of the battery pack would then be essential.
  • the minimum useful SOC is generally strictly greater than the minimum real SOC.
  • SOH Acronym for State of health in English
  • a battery pack comprises several power modules.
  • the electrical energy is stored in the power modules.
  • a BMS is also integrated in the battery pack to control the power modules.
  • the BMS consists of a computer controlling the execution of the charging and discharging operations of the battery pack, according to a computer program stored in the BMS.
  • the battery pack also includes a system for cooling and heating the power modules which is also managed by the BMS.
  • the power modules as well as the other components of the BMS are held mechanically by a frame included in the battery pack and on which are fixed a lower cowling and an upper cowling. The lower cowling and the upper cowling cooperate with the frame in order to ensure insulation of the battery pack against the hazards coming from the environment in which the vehicle operates.
  • the BMS manages the vehicle's traction battery pack and which estimates the value of the SOE (Acronym for State of energy in English) designating the charge rate of the battery pack (in kWh or in %).
  • the SOE designates a state of energy of the battery. Energy status will be understood throughout the text of this document as the quantity of energy still available for the operation of current-consuming components coupled to the battery or for the operation of the vehicle. This quantity is, for example, expressed as an absolute value in Watt Hours or in joules, or as a percentage in relation to a reference quantity of energy, for example when the state of charge is at 100%.
  • This energy state is input data for determining the remaining battery life.
  • This remaining autonomy depending on the application of the battery, can be expressed in remaining operating time and/or in remaining distance covered for a motor vehicle for example.
  • This remaining range is also a function of a usage or driving profile for a vehicle, this profile defining a level of power consumed or regenerated (for example a vehicle comprising a braking energy regeneration system), or, if the voltage varies little, in an equivalent manner a current consumption profile of the battery as a function of the time.
  • This consumption profile also called use or driving profile, is for example a projection made from the data of a last use of the battery, or a predetermined standard profile, representative of a standard use of the battery, or again of a programmed route of the vehicle, but many other examples are possible.
  • the BMS determines this state of energy from maps resulting from measurements made on the bench or during the development of the battery. Certain methods propose to calculate this energy state. For example, patent document EP-A1-3245096 discloses a method determining such an energy state.
  • the SOE estimated by the BMS is then sent to a supervisor of a powertrain of the vehicle, also called eVCU (Acronym for electronic Vehicle control unit in English).
  • eVCU Auto-Vev Control unit
  • the eVCU supervises and coordinates the other computers involved in the operation of the powertrain and as such also intervenes in the control of the traction battery pack.
  • the BMS therefore controls, among other operations, the recharging cycles of the battery pack.
  • the BMS is able to support several charging modes including a first domestic charging mode on a conventional wall outlet generally delivering a current of between 8A and 13A under the standard voltage of the domestic electrical network of 220V alternating.
  • a second charging mode controlled by the BMS is charging the battery pack on a wallbox (wall box in French).
  • This wallbox is generally purchased with the vehicle and installed on the vehicle user's home meter, i.e. it is supplied with domestic electrical energy, and it therefore delivers a single-phase current of 16A or 32A or three-phase 16A on each phase.
  • the wallbox therefore plays a role comparable to that of an electrical converter.
  • the BMS also supports a third charging mode on special terminals generally delivering a direct current of 125A or more at a voltage of 450V.
  • This charging mode on a special terminal is also called fast charging mode and is independent of the network. domestic electricity. As indicated above, this fast charging mode can be detrimental to the longevity of the power modules.
  • FIG 1 shows the evolution of the useful SOC according to the mileage traveled by the vehicle, the graph presenting an abscissa the kilometers traveled expressed in kilometers, and in ordinates, the actual SOC expressed as a percentage (% ).
  • the user has at most 100% of the useful SOC, i.e. 97% of the real SOC of the battery pack, and at least 0% of the useful SOC, i.e. 1% of the real SOC of the battery pack. Therefore, the amount of energy actually available for a new vehicle, i.e. what determines its range, is between 1% and 97% of the actual SOC of the battery pack.
  • control device is programmed to implement load limitation in fast charging mode.
  • This limitation is defined with respect to the useful SOC, and preferably set at 80% of the useful SOC.
  • a limitation to 80% of the useful SOC makes sense in the fast charging mode. Indeed, in fast charging mode on a special terminal, the charging time from 0% to 100% of the useful SOC of the battery pack is 1 hour 15 minutes, while the charging time from 0% to 80% is only 30 minutes, that is to say less than half.
  • the user has the possibility of transmitting to the BMS an instruction to obtain a fast charging to 100% of the useful SOC.
  • the user can go to the manufacturer's application downloaded to his mobile phone to request a full recharge to 100% of the useful SOC of his vehicle in fast charging mode.
  • the user can easily choose a full charge at a value other than 80% of the useful SOC, for example 100% of the useful SOC from outside his vehicle. .
  • this choice can be made differently without departing from the scope of the invention, for example on the dashboard or on the control console of the vehicle.
  • the method therefore allows the user to request a charge to 100% of the useful SOC, for example after connecting the vehicle to a special charging station or preferably after having initiated the fast charging cycle.
  • the user In order not to permanently deactivate the limitation to 80% of the useful SOC, the user cannot program by default that all the next charges in fast charging mode are limited to 100% of the useful SOC or to any other value different from 80 % of permanently useful SOC.
  • the user may have the option to opt for a permanent modification of the limitation to any other value of his choice different from the value of 80% of the useful SOC pre-programmed by the manufacturer. For example, he can define as a new default limit 100% of the useful SOC.
  • the user can be given the possibility of setting on his portable the level of recharging of the battery pack to a desired level comprised between 0% and 100% of the useful SOC for example 100%, 90% or less than 80%.
  • the user can be given the possibility of adjusting by himself on his mobile phone, or in any other way, the limitation of a cycle charging in other charging modes as described above for fast charging mode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

The invention relates to a method for controlling a BMS managing a battery pack for a vehicle moved at least partially by electrical energy, in which the BMS manages a phase of charging said traction battery pack in a plurality of charging modes comprising at least one fast charging mode. The BMS manages the charging of the traction battery pack in the fast charging mode up to a maximum normal SOC or up to a selected maximum SOC. The BMS is set by default to the fast charging mode to the maximum normal SOC, and a user of the vehicle is able to remotely switch the BMS to the fast charging mode from the maximum normal SOC to the selected maximum SOC.

Description

DESCRIPTION DESCRIPTION
TITRE : PROCEDE DE CONTROLE D’UN SYSTEME DE GESTION DES BATTERIES TITLE: METHOD FOR CONTROLLING A BATTERY MANAGEMENT SYSTEM
La présente invention revendique la priorité de la demande française N°2111076 déposée le 19.10.2021 dont le contenu (texte, dessins et revendications) est ici incorporé par référence. The present invention claims the priority of French application No. 2111076 filed on 19.10.2021, the content of which (text, drawings and claims) is incorporated herein by reference.
DOMAINE TECHNIQUE DE L’INVENTION TECHNICAL FIELD OF THE INVENTION
[0001] L'invention concerne, de façon générale, le domaine technique de la gestion des cycles de recharge de packs de batteries de traction par branchement à une source d’énergie électrique. Ces packs de batteries de traction sont utilisés dans des véhicules électriques ou hybrides, c’est-à-dire mus au moins partiellement par de l’énergie électrique. The invention relates, in general, to the technical field of the management of the recharging cycles of traction battery packs by connection to a source of electrical energy. These traction battery packs are used in electric or hybrid vehicles, that is to say vehicles driven at least partially by electrical energy.
[0002] L’invention se rapporte plus spécifiquement à l’augmentation de la durée de vie des packs de batteries de traction par optimisation des cycles de recharge. [0002] The invention relates more specifically to increasing the service life of traction battery packs by optimizing recharging cycles.
[0003] Dans la suite de la description, il est fait référence à l’utilisation des packs de batteries de traction dans des véhicules électriques, c’est-à-dire mus exclusivement par de l’énergie électrique. Néanmoins, ces packs de batteries de tractions peuvent aussi être utilisés dans des véhicules dits hybrides, c’est-à-dire tractés par un moteur thermique classique et un moteur électrique. [0003] In the remainder of the description, reference is made to the use of traction battery packs in electric vehicles, that is to say vehicles driven exclusively by electrical energy. Nevertheless, these traction battery packs can also be used in so-called hybrid vehicles, i.e. towed by a conventional combustion engine and an electric motor.
ETAT DE LA TECHNIQUE ANTERIEURE STATE OF THE PRIOR ART
[0004] Les véhicules automobiles ayant un moteur thermique comportent généralement une ou des batteries reliées au réseau de bord, appelées aussi batteries de servitude, pour alimenter les équipements de ces véhicules, notamment un démarreur d’un moteur thermique. D’autres véhicules, s’ils sont à propulsion électrique ou hybride, comportent une ou des batteries de traction (ou propulsion) reliées à un réseau de puissance pour alimenter les moteurs électriques de traction (ou de propulsion). [0004] Motor vehicles having a heat engine generally comprise one or more batteries connected to the on-board network, also called service batteries, to supply the equipment of these vehicles, in particular a starter of a heat engine. Other vehicles, if they have electric or hybrid propulsion, include one or more traction (or propulsion) batteries connected to a power network to supply the electric traction (or propulsion) motors.
[0005] On comprendra donc par batterie, dans tout le texte de ce document, un ensemble comprenant au moins un module de batterie contenant au moins une cellule électrochimique, la batterie de servitude étant considérée équivalente à au moins un module. Cette batterie comprend éventuellement des moyens électriques ou électroniques pour la gestion d’énergie électrique de ce au moins un module. Lorsqu’il y a plusieurs modules, ils sont regroupés dans un carter et forment alors un bloc batterie aussi appelé communément « pack de batteries », ce bloc batterie étant souvent désigné par l’expression anglaise « pack batteries », ce carter contenant généralement une interface de montage, et des bornes de raccordement. [0005] The term battery will therefore be understood throughout the text of this document to mean an assembly comprising at least one battery module containing at least one cell electrochemical, the service battery being considered equivalent to at least one module. This battery optionally comprises electrical or electronic means for managing the electrical energy of this at least one module. When there are several modules, they are grouped together in a housing and then form a battery block also commonly called a "battery pack", this battery block often being designated by the English expression "battery pack", this housing generally containing a mounting interface, and connection terminals.
[0006] Par ailleurs, on comprendra par cellule électrochimique dans tout le texte de ce document, des cellules générant du courant par réaction chimique, par exemple de type lithium-ion (ou Li-ion), de type Ni-Mh, ou Ni-Cd ou encore plomb. Furthermore, the term electrochemical cell will be understood throughout the text of this document to mean cells generating current by chemical reaction, for example of the lithium-ion (or Li-ion) type, of the Ni-Mh type, or Ni -Cd or even lead.
[0007] Un des problèmes rencontrés avec les packs de batteries alimentant les véhicules électriques concerne leur longévité. C’est-à-dire la capacité dans le temps des modules de puissance à conserver une capacité de stockage en énergie électrique suffisante pour procurer une autonomie à long terme satisfaisant les attentes des utilisateurs de ces véhicules, étant entendu par module de puissance, l’élément qui contient l’énergie électrique du pack de batteries. La solution généralement retenue pour rallonger la durée de vie des modules de puissance consiste à limiter l’énergie stockée dans les modules de puissance. [0007] One of the problems encountered with battery packs supplying electric vehicles relates to their longevity. That is to say the ability over time of the power modules to retain sufficient electrical energy storage capacity to provide long-term autonomy satisfying the expectations of the users of these vehicles, it being understood by power module, the element that contains the electrical energy from the battery pack. The solution generally adopted to extend the service life of power modules consists in limiting the energy stored in the power modules.
[0008] En pratique, la quantité d’énergie électrique emmagasinée dans les modules de puissance des packs de batteries lors des cycles de recharge est limitée en fonction d’un paramètre représentatif du vieillissement des modules de puissance. Ce paramètre peut-être le nombre de kilomètres parcourus par le véhicule ou l’âge du véhicule sur la base d’un kilométrage moyen annuel ou le nombre de cycles de charge/décharge du pack batterie. Lorsque le paramètre utilisé correspond au nombre de cycles de charge/décharge, on considère qu’à chaque charge un cycle est effectué sur la base d’un kilométrage moyen par cycle. Donc, le plus souvent l’énergie emmagasinée dans le pack de batteries lors des cycles de recharge est limitée en fonction du kilométrage du véhicule directement ou indirectement. Cette solution n’est pas satisfaisante, car le kilométrage n’est pas forcément le critère le plus pertinent pour refléter le vieillissement des batteries. [0008] In practice, the quantity of electrical energy stored in the power modules of the battery packs during recharging cycles is limited according to a parameter representative of the aging of the power modules. This parameter may be the number of kilometers traveled by the vehicle or the age of the vehicle on the basis of an average annual mileage or the number of charge/discharge cycles of the battery pack. When the parameter used corresponds to the number of charge/discharge cycles, it is considered that at each charge a cycle is carried out on the basis of an average mileage per cycle. Therefore, most often the energy stored in the battery pack during recharging cycles is limited depending on the mileage of the vehicle directly or indirectly. This solution is not satisfactory, because the mileage is not necessarily the most relevant criterion to reflect the aging of the batteries.
[0009] Par exemple, prenons deux conducteurs différents : - un conducteur 1 habitant à 30Kms de son travail par l’autoroute et rechargeant son véhicule sur son lieu de travail avec une borne à mode de recharge rapide tous les 2 jours (soit au bout de 120Kms) ; et For example, let's take two different conductors: - a driver 1 living 30 km from his work by motorway and recharging his vehicle at his place of work with a terminal with fast charging mode every 2 days (i.e. after 120 km); And
- un conducteur 2 habitant à 40Kms de son travail n’utilisant que des routes limitées à 50 ou 90 km/h et ne rechargeant son véhicule que chez lui avec un boîtier de recharge domestique quand l’autonomie restante du véhicule est autour de 30 à 50 km. - a driver 2 living 40 km from his work, only using roads limited to 50 or 90 km/h and recharging his vehicle only at home with a domestic charging box when the remaining autonomy of the vehicle is around 30 to 50km.
Le conducteur 1 aura roulé 300 km en 5 jours de travail alors que le conducteur 2 aura roulé 400Kms en 5 jours de travail. Néanmoins, les modules de puissance du pack batterie qui auront vieillis le plus sont ceux du conducteur 1 . En effet, les facteurs qui font vieillir les modules de puissances sont notamment : Driver 1 will have driven 300 km in 5 working days while driver 2 will have driven 400 km in 5 working days. Nevertheless, the power modules of the battery pack which will have aged the most are those of driver 1 . Indeed, the factors that cause power modules to age include:
- le mode de recharge rapide sur une borne de recharge adaptée : car les modules reçoivent une énergie électrique importante en moins d’une heure, - the fast charging mode on a suitable charging station: because the modules receive significant electrical energy in less than an hour,
- les décharges pendant un roulage rapide du véhicule, par exemple à 130 km/h : car les modules de puissance doivent se décharger rapidement pour fournir l’énergie au moteur électrique pour tracter le véhicule à 130 km/h, - discharges during rapid vehicle travel, for example at 130 km/h: because the power modules must discharge quickly to supply the energy to the electric motor to tow the vehicle at 130 km/h,
- le fait de recharger souvent les modules de puissance conduit ceux-ci à toujours avoir une quantité d’énergie stockée importante, et - the fact that the power modules are often recharged leads them to always have a large amount of stored energy, and
- le nombre d’opérations de recharges mêmes partielles influence le vieillissement des modules de puissance du pack de batteries. - the number of recharging operations, even partial, influences the aging of the battery pack power modules.
[0010] Donc le conducteur 1 fera moins de kilomètres que le conducteur 2, et pourtant il fera vieillir ses modules de puissance du pack de batteries plus rapidement, ce qui permet de conclure que l’utilisation du kilométrage du véhicule ne contribue pas à définir la vétusté des modules de puissance du pack batterie. [0010] Therefore driver 1 will do fewer kilometers than driver 2, and yet he will age his battery pack power modules more quickly, which leads to the conclusion that the use of vehicle mileage does not contribute to defining the age of the battery pack power modules.
[0011] Il existe donc un besoin pour une méthode de gestion du cycle de vie des modules de puissance des packs de batteries des véhicules permettant d’optimiser leur durée de vie sans pénaliser les utilisateurs précautionneux. [0011]There is therefore a need for a method for managing the life cycle of the power modules of the battery packs of vehicles making it possible to optimize their lifespan without penalizing cautious users.
EXPOSE DE L’INVENTION [0012] L’invention vise à remédier à tout ou partie des inconvénients de l’état de la technique en proposant notamment une solution permettant de prévenir un vieillissement intempestif des packs de batteries en offrant la possibilité de limiter la capacité de recharge du pack de batteries, notamment de traction, lors d’un cycle de recharge en mode rapide qui est un des facteurs principaux de vieillissement des modules de puissances, et sans pénaliser indûment les attentes des utilisateurs en termes d’autonomie de leurs véhicules électriques. DISCLOSURE OF THE INVENTION [0012] The invention aims to remedy all or part of the drawbacks of the state of the art by proposing in particular a solution making it possible to prevent untimely aging of the battery packs by offering the possibility of limiting the recharging capacity of the battery pack. batteries, in particular traction batteries, during a recharging cycle in fast mode which is one of the main factors in the aging of power modules, and without unduly penalizing the expectations of users in terms of the range of their electric vehicles.
[0013] Pour ce faire, il est proposé, selon un premier aspect de l'invention, un procédé de contrôle d’un BMS pilotant au moins un pack de batteries, notamment de traction, pour un véhicule mû au moins partiellement par de l’énergie électrique stockée dans ledit pack de batteries, selon lequel ledit BMS pilote une phase de recharge dudit pack de batteries selon une pluralité de modes de recharges comprenant au moins un mode de recharge rapide, ledit pack de batteries pouvant être rechargé jusqu’à un SOC utile maximum inférieur à un SOC réel maximum. Le procédé est remarquable en ce qu’il coprend une étape dans laquelle ledit BMS pilote la recharge dudit pack de batteries dans ledit mode de recharge rapide jusqu’à un SOC normal maximum ou jusqu’à un SOC maximum sélectionné, dans lequel ledit BMS est réglé par défaut dans ledit mode de recharge rapide sur ledit SOC normal maximum, et une étape dans laquelle le BMS peut être commuté à distance par un utilisateur dans ledit mode de recharge rapide dudit SOC normal maximum sur ledit SOC maximum sélectionné. To do this, it is proposed, according to a first aspect of the invention, a method for controlling a BMS controlling at least one battery pack, in particular traction, for a vehicle driven at least partially by electricity. electrical energy stored in said battery pack, wherein said BMS controls a charging phase of said battery pack according to a plurality of charging modes including at least one fast charging mode, said battery pack being able to be recharged up to a Maximum useful SOC less than a maximum real SOC. The method is remarkable in that it comprises a step in which said BMS controls the recharging of said battery pack in said rapid recharging mode up to a maximum normal SOC or up to a selected maximum SOC, in which said BMS is defaulted in said fast charging mode to said maximum normal SOC, and a step in which the BMS can be switched remotely by a user in said fast charging mode from said maximum normal SOC to said selected maximum SOC.
[0014] Selon un mode de réalisation, ledit SOC normal maximum est inférieur audit SOC utile maximum, préférablement le SOC normal maximum est fixé à 80% du SOC utile maximum. According to one embodiment, said maximum normal SOC is less than said maximum useful SOC, preferably the maximum normal SOC is set at 80% of the maximum useful SOC.
[0015] Selon un mode de réalisation, le SOC maximum sélectionné est fixé à 100% dudit SOC utile maximum, et/ou peut être librement sélectionné à distance par l’utilisateur à un niveau compris entre 100% dudit SOC utile maximum et un seuil inférieur, préférablement fixé à 60% dudit SOC utile maximum. According to one embodiment, the selected maximum SOC is fixed at 100% of said maximum useful SOC, and/or can be freely selected remotely by the user at a level between 100% of said maximum useful SOC and a threshold lower, preferably set at 60% of said maximum useful SOC.
[0016] Selon un mode de réalisation préférentiel, le procédé comprend une étape dans laquelle le BMS peut être commuté sur ledit SOC maximum sélectionné uniquement après le démarrage de la recharge dudit pack de batteries; et/ou ledit BMS ne peut être commuté sur ledit SOC maximum sélectionné que pour le processus de recharge en cours. [0016] According to a preferred embodiment, the method comprises a step in which the BMS can be switched to said maximum SOC selected only after the start of the recharging of said battery pack; and/or said BMS can only be switched to said selected maximum SOC for the current charging process.
[0017] Selon un mode de réalisation, la commutation à distance du BMS sur ledit SOC maximum sélectionné est effectuée par une interface homme-machine telle qu’un téléphone portable ou tout autre support de commande à distance. [0017] According to one embodiment, the remote switching of the BMS on said selected maximum SOC is carried out by a man-machine interface such as a mobile telephone or any other remote control medium.
[0018] Selon un mode de réalisation, ledit SOC utile maximum est fixé à 97% du SOC réel maximum, et/ou ledit pack de batteries ne peut être déchargé au-dessous d’un SOC utile minimum, préférablement fixé entre 1 % et 2% du SOC réel maximum. According to one embodiment, said maximum useful SOC is set at 97% of the maximum actual SOC, and/or said battery pack cannot be discharged below a minimum useful SOC, preferably set between 1% and 2% of actual maximum SOC.
[0019] Il est proposé selon un deuxième aspect de l’invention, un produit programme d’ordinateur comprenant des instructions de code enregistrées sur un support lisible par ordinateur pour la mise en œuvre du procédé tel que défini ci-dessus lorsque ledit programme fonctionne dans un BMS pilotant au moins un pack de batteries pour un véhicule mû au moins partiellement par de l’énergie électrique stockée dans ledit pack de batteries. [0019] It is proposed according to a second aspect of the invention, a computer program product comprising code instructions recorded on a computer-readable medium for the implementation of the method as defined above when said program is running. in a BMS controlling at least one battery pack for a vehicle driven at least partially by electrical energy stored in said battery pack.
[0020] Il est proposé selon un troisième aspect de l’invention, un BMS pour piloter au moins un pack de batteries pour un véhicule mû au moins partiellement par de l’énergie électrique stockée dans ledit pack de batteries, ledit BMS étant configuré pour piloter une phase de recharge dudit pack de batteries selon une pluralité de modes de recharges comprenant au moins un mode de recharge rapide. Ledit BMS est configuré pour piloter la recharge dudit pack de batteries dans ledit mode de recharge rapide jusqu’au SOC normal maximum ou au SOC maximum sélectionné selon le procédé défini ci-dessus. [0020] According to a third aspect of the invention, a BMS is proposed for controlling at least one battery pack for a vehicle driven at least partially by electrical energy stored in said battery pack, said BMS being configured to controlling a recharging phase of said battery pack according to a plurality of recharging modes comprising at least one fast recharging mode. Said BMS is configured to control the recharging of said battery pack in said rapid recharging mode up to the maximum normal SOC or to the maximum SOC selected according to the method defined above.
[0021] Il est proposé selon un quatrième aspect de l’invention, un pack de batteries comprenant un module de stockage d’énergie électrique caractérisé en ce qu’il comprend le BMS tel que défini ci-dessus. [0021] It is proposed according to a fourth aspect of the invention, a battery pack comprising an electrical energy storage module characterized in that it comprises the BMS as defined above.
[0022] Selon un mode de réalisation, le pack de batterie est destiné à un véhicule mû au moins partiellement par de l’énergie électrique stockée dans ledit pack de batteries de traction, le pack de batteries comprenant : According to one embodiment, the battery pack is intended for a vehicle driven at least partially by electrical energy stored in said traction battery pack, the battery pack comprising:
- une pluralité de modules de puissance dans lesquels est stockée l’énergie électrique du pack de batteries de traction, - un système de refroidissement et/ou de réchauffage desdits modules de puissance, - a plurality of power modules in which the electrical energy of the traction battery pack is stored, - a cooling and/or heating system for said power modules,
- une armature apte à maintenir les modules de puissance, - a frame capable of holding the power modules,
- un capotage inférieur et un capotage supérieur reliés à l’armature et aptes à assurer l’isolation du pack de batteries de traction, et - a lower cowling and an upper cowling connected to the frame and capable of ensuring the insulation of the traction battery pack, and
- un BMS apte à piloter le pack de batteries de traction qui est tel que défini ci-dessus. - a BMS capable of controlling the traction battery pack which is as defined above.
[0023] Il est proposé selon un cinquième aspect de l’invention, un véhicule mû au moins partiellement par de l’énergie électrique stockée dans au moins un pack de batteries tel que défini ci-dessus. [0023] It is proposed according to a fifth aspect of the invention, a vehicle driven at least partially by electrical energy stored in at least one battery pack as defined above.
[0024] D’autres caractéristiques et avantages de l’invention sont mis en évidence par la description ci-après d’exemples non limitatifs de réalisation des différents aspects de l’invention. Other characteristics and advantages of the invention are highlighted by the following description of non-limiting examples of embodiments of the various aspects of the invention.
BREVE DESCRIPTION DES FIGURES BRIEF DESCRIPTION OF FIGURES
[0025] D’autres caractéristiques et avantages de l’invention ressortiront à la lecture de la description qui suit, en référence à la figure annexée, qui illustre : Other characteristics and advantages of the invention will become apparent on reading the following description, with reference to the appended figure, which illustrates:
[Fig. 1] : un graphique représentant l’évolution du SOC utile en fonction du kilométrage. [Fig. 1]: a graph representing the evolution of the useful SOC according to the mileage.
DESCRIPTION DETAILLEE D’UN MODE DE REALISATION DETAILED DESCRIPTION OF AN EMBODIMENT
[0026] L’état de charge, aussi appelé SOC (Acronyme en anglais de Sate of charge), est un des paramètres clés dans la gestion d’un pack de batteries de traction par un dispositif de gestion des batteries, aussi appelé BMS (Acronyme en anglais de Battery management system). Le SOC représente le niveau de charge des modules de puissances d’un pack de batteries (par commodité, il sera principalement fait référence au pack de batteries au lieu de module de puissance ou de pack de batteries de traction). Le SOC est exprimé en pourcentage de la capacité de charge maximale du pack de batteries et cette charge maximale est fonction du vieillissement du pack de batterie. Le SOC est de 100% lorsque le pack de batteries est complètement chargé, et il est de 0% lorsque celui-ci est complètement déchargé. Deux autres indicateurs du niveau de charge sont dérivés du SOC, le SOC réel et le SOC utile. [0027] Le SOC réel est un paramètre constructeur. C’est la capacité de charge réelle du pack de batteries neuf comme indiqué par le constructeur. Un pack de batteries de 50kWh contiendra à 100% de son SOC réel soit 50kWh, et elle contiendra à 0% de son SOC réel soit OkWh. The state of charge, also called SOC (Acronym for State of charge), is one of the key parameters in the management of a traction battery pack by a battery management device, also called BMS ( Acronym in English for Battery management system). The SOC represents the level of charge of the power modules of a battery pack (for convenience, it will mainly refer to the battery pack instead of the power module or the traction battery pack). The SOC is expressed as a percentage of the maximum charge capacity of the battery pack and this maximum charge is a function of the aging of the battery pack. The SOC is 100% when the battery pack is fully charged, and it is 0% when the battery pack is fully discharged. Two other indicators of the charge level are derived from the SOC, the real SOC and the useful SOC. [0027] The actual SOC is a manufacturer parameter. This is the actual charge capacity of the new battery pack as stated by the manufacturer. A 50kWh battery pack will contain 100% of its actual SOC i.e. 50kWh, and it will contain 0% of its actual SOC i.e. OkWh.
[0028] Le SOC utile, aussi appelé SOC client, représente la quantité d’énergie électrique contenue dans le pack de batteries utilisable par l’utilisateur du véhicule électrique dans lequel le pack de batteries est installé. Le SOC utile maximum pour un véhicule neuf est légèrement inférieur au SOC réel maximum, en général le SOC utile maximum est à 97% du SOC réel maximum. L’utilisation du pack de batteries au SOC utile a pour but de préserver la durabilité du pack de batteries quand un utilisateur fait le plein d’énergie électrique à une borne de recharge. En effet, la recharge du véhicule s’arrête à 100% du SOC utile soit 97% du SOC réel. En pratique, après une recharge complète d’un véhicule neuf, un pack de batteries de SOC réel maximum de 50kWh contiendra une quantité d’énergie électrique plus proche de 48kWh que de 50kWh. The useful SOC, also called customer SOC, represents the quantity of electrical energy contained in the battery pack that can be used by the user of the electric vehicle in which the battery pack is installed. The maximum useful SOC for a new vehicle is slightly lower than the maximum real SOC, in general the maximum useful SOC is 97% of the maximum real SOC. The purpose of using the useful SOC battery pack is to preserve the durability of the battery pack when a user fills up with electrical energy at a charging station. In fact, vehicle charging stops at 100% of the useful SOC, i.e. 97% of the real SOC. In practice, after a full charge of a new vehicle, a maximum real SOC battery pack of 50kWh will contain an amount of electrical energy closer to 48kWh than to 50kWh.
[0029] Néanmoins, si ce véhicule après avoir subi une recharge complète (c’est-à- dire à 100% du SOC utile) parcourt une route en descente en faisant du freinage récupératif, il pourra atteindre 100% du SOC réel maximum. [0029] Nevertheless, if this vehicle after having undergone a full recharge (that is to say at 100% of the useful SOC) travels a downhill road while performing regenerative braking, it will be able to reach 100% of the maximum real SOC.
[0030] Le SOC utile minimum d’un véhicule neuf correspond à une petite fraction du SOC réel maximum, en général comprise entre 1 % et 2% du SOC réel maximum. En pratique, un utilisateur roulant jusqu’à « la panne sèche », c’est-à-dire jusqu’à un SOC utile de 0%, avec un véhicule électrique dont le SOC utile minimum correspond à 1 % du SOC réel maximum, aura encore une quantité d’énergie minimum de 0,5kWh dans son pack de batteries qui ne peut pas utilisée pour déplacer son véhicule. En effet, une décharge du pack de batteries jusqu’à 0% du SOC réel, aussi appelé décharge profonde, mettrait le véhicule définitivement en panne et il serait dans l’impossibilité d’être rechargé. Un remplacement du pack de batteries serait alors indispensable. Dans ce contexte, on comprend que le SOC utile minimum est généralement strictement supérieur au SOC réél minimum. De même, on comprend également le SOC utile maximum est généralement strictement inférieur au SOC réél maximum. [0031] Un indice indiquant l’état de vieillissement des batteries, aussi appelé SOH (Acronyme de State of health en anglais) est aussi utilisé. Le SOH est calculé de la façon suivante : [0030] The minimum useful SOC of a new vehicle corresponds to a small fraction of the maximum real SOC, generally between 1% and 2% of the maximum real SOC. In practice, a user driving until "dry breakdown", that is to say until a useful SOC of 0%, with an electric vehicle whose minimum useful SOC corresponds to 1% of the maximum real SOC, will still have a minimum amount of energy of 0.5kWh in his battery pack that cannot be used to move his vehicle. Indeed, discharging the battery pack down to 0% of the actual SOC, also called deep discharge, would put the vehicle in permanent breakdown and it would be impossible to recharge it. A replacement of the battery pack would then be essential. In this context, it is understood that the minimum useful SOC is generally strictly greater than the minimum real SOC. Similarly, it is also understood that the maximum useful SOC is generally strictly lower than the maximum real SOC. An index indicating the state of aging of the batteries, also called SOH (Acronym for State of health in English) is also used. The SOH is calculated as follows:
SOH [°/ 1 > Capacité maximale dans l'état de vieillissement actuel [Ah] *100 SOH [°/ 1 > Maximum capacity in current aging state [Ah] *100
[Math 1] [Math 1]
L J Capacité maximale à neuf [Ah] LJ Maximum capacity at nine [Ah]
[0032] En règle générale, un pack de batteries comprend plusieurs modules de puissance. En fait, l’énergie électrique est stockée dans les modules de puissance. Un BMS est aussi intégré dans le pack de batteries pour assurer le pilotage des modules de puissance. En pratique le BMS est constitué d’un calculateur contrôlant l’exécution des opérations de charge et décharge du pack de batteries, selon un programme informatique stocké dans le BMS. Le pack de batteries comprend en outre un système de refroidissement et de réchauffement des modules de puissances qui est également géré par le BMS. Les modules de puissance ainsi que les autres composants du BMS sont maintenus mécaniquement par une armature comprise dans le pack de batteries et sur laquelle viennent se fixer un capotage inférieur et un capotage supérieur. Le capotage inférieur et le capotage supérieur coopèrent avec l’armature afin d’assurer une isolation du pack de batteries contre les aléas provenant de l’environnement dans lequel évolue le véhicule. [0032]As a general rule, a battery pack comprises several power modules. In fact, the electrical energy is stored in the power modules. A BMS is also integrated in the battery pack to control the power modules. In practice, the BMS consists of a computer controlling the execution of the charging and discharging operations of the battery pack, according to a computer program stored in the BMS. The battery pack also includes a system for cooling and heating the power modules which is also managed by the BMS. The power modules as well as the other components of the BMS are held mechanically by a frame included in the battery pack and on which are fixed a lower cowling and an upper cowling. The lower cowling and the upper cowling cooperate with the frame in order to ensure insulation of the battery pack against the hazards coming from the environment in which the vehicle operates.
[0033] Comme indiqué ci-dessus, le BMS gère le pack de batteries de traction du véhicule et qui estime la valeur du SOE (Acronyme pour State of energy en anglais) désignant le taux de charge du pack de batteries (en kWh ou en %). Le SOE désigne un état d’énergie de la batterie. On comprendra par état d’énergie, dans tout le texte de ce document, la quantité d’énergie encore disponible pour le fonctionnement d’organes consommateurs de courant couplés à la batterie ou pour le fonctionnement du véhicule. Cette quantité est par exemple exprimée en valeur absolue en Watt Heure ou en joules, ou en pourcentage par rapport à une quantité d’énergie de référence par exemple lorsque l’état de charge est à 100%. As indicated above, the BMS manages the vehicle's traction battery pack and which estimates the value of the SOE (Acronym for State of energy in English) designating the charge rate of the battery pack (in kWh or in %). The SOE designates a state of energy of the battery. Energy status will be understood throughout the text of this document as the quantity of energy still available for the operation of current-consuming components coupled to the battery or for the operation of the vehicle. This quantity is, for example, expressed as an absolute value in Watt Hours or in joules, or as a percentage in relation to a reference quantity of energy, for example when the state of charge is at 100%.
[0034] Cet état d’énergie est une donnée d’entrée pour la détermination de l’autonomie restante de la batterie. Cette autonomie restante, selon l’application de la batterie, peut s’exprimer en temps restant de fonctionnement et/ou en distance restante parcourable pour un véhicule automobile par exemple. Cette autonomie restante est également fonction d’un profil d’utilisation ou de roulage pour un véhicule, ce profil définissant un niveau de puissance consommée ou régénérée (par exemple un véhicule comprenant un système de régénération d’énergie au freinage), ou, si la tension varie peu, de façon équivalente un profil de consommation de courant de la batterie en fonction du temps. Ce profil de consommation, dit également d’utilisation ou de roulage, est par exemple une projection faite à partir des données d’une dernière utilisation de la batterie, ou un profil type prédéterminé, représentatif d’une utilisation standard de la batterie, ou encore d’un itinéraire programmé du véhicule, mais bien d’autres exemples sont possibles. Le plus souvent, le BMS détermine cet état d’énergie à partir de cartographies issues de mesures faites sur banc ou lors du développement de la batterie. Certains procédés proposent de calculer cet état d’énergie. Par exemple on connaît du document de brevet EP-A1 -3245096 un procédé déterminant un tel état d’énergie. This energy state is input data for determining the remaining battery life. This remaining autonomy, depending on the application of the battery, can be expressed in remaining operating time and/or in remaining distance covered for a motor vehicle for example. This remaining range is also a function of a usage or driving profile for a vehicle, this profile defining a level of power consumed or regenerated (for example a vehicle comprising a braking energy regeneration system), or, if the voltage varies little, in an equivalent manner a current consumption profile of the battery as a function of the time. This consumption profile, also called use or driving profile, is for example a projection made from the data of a last use of the battery, or a predetermined standard profile, representative of a standard use of the battery, or again of a programmed route of the vehicle, but many other examples are possible. Most often, the BMS determines this state of energy from maps resulting from measurements made on the bench or during the development of the battery. Certain methods propose to calculate this energy state. For example, patent document EP-A1-3245096 discloses a method determining such an energy state.
[0035] Le SOE estimé par le BMS est ensuite envoyé à un superviseur d’un groupe moto-propulseur du véhicule, aussi appelé eVCU (Acronyme pour electronic Véhiculé control unit en anglais). L’eVCU supervise et coordonne les autres calculateurs intervenant dans le fonctionnement du groupe moto-propulseur et à ce titre intervient ainsi également dans le contrôle du pack de batteries de traction. The SOE estimated by the BMS is then sent to a supervisor of a powertrain of the vehicle, also called eVCU (Acronym for electronic Vehicle control unit in English). The eVCU supervises and coordinates the other computers involved in the operation of the powertrain and as such also intervenes in the control of the traction battery pack.
[0036] Le BMS contrôle donc, entre autres opérations, les cycles de recharge du pack de batteries. À ce titre, le BMS est apte à prendre en charge plusieurs modes de recharge dont un premier mode de recharge domestique sur une prise murale classique délivrant généralement un courant compris entre 8A et 13A sous la tension standard du réseau électrique domestique de 220V alternatif. Un deuxième mode de recharge piloté par le BMS est la recharge du pack de batteries sur une wallbox (boîte murale en français). Cette wallbox est en général achetée avec le véhicule et installée sur le compteur du domicile de l’utilisateur du véhicule, c’est-à-dire qu’elle est alimentée en énergie électrique domestique, et elle délivre donc un courant en monophasé de 16A ou de 32A ou en triphasé de 16A sur chaque phase. La wallbox joue donc un rôle comparable à celui d’un convertisseur électrique. Dans ce cas on peut parler de deuxième mode de recharge ajusté. Le BMS prend aussi en charge, un troisième mode de recharge sur des bornes spéciales délivrant généralement un courant continu de 125A ou plus sous une tension de 450V. Ce mode de recharge sur borne spéciale est aussi appelé mode de recharge rapide et est indépendant du reseau électrique domestique. Comme indiqué ci-dessus, ce mode de recharge rapide peut être dommageable pour la longévité des modules de puissance. The BMS therefore controls, among other operations, the recharging cycles of the battery pack. As such, the BMS is able to support several charging modes including a first domestic charging mode on a conventional wall outlet generally delivering a current of between 8A and 13A under the standard voltage of the domestic electrical network of 220V alternating. A second charging mode controlled by the BMS is charging the battery pack on a wallbox (wall box in French). This wallbox is generally purchased with the vehicle and installed on the vehicle user's home meter, i.e. it is supplied with domestic electrical energy, and it therefore delivers a single-phase current of 16A or 32A or three-phase 16A on each phase. The wallbox therefore plays a role comparable to that of an electrical converter. In this case, we can speak of a second adjusted charging mode. The BMS also supports a third charging mode on special terminals generally delivering a direct current of 125A or more at a voltage of 450V. This charging mode on a special terminal is also called fast charging mode and is independent of the network. domestic electricity. As indicated above, this fast charging mode can be detrimental to the longevity of the power modules.
[0037] [Fig 1] La figure 1 montre l’évolution du SOC utile en fonction du kilométrage parcouru par le véhicule, le graphique présentant un abscisse les kilomètres parcourus exprimés en kilomètres, et en ordonnées, le SOC réel exprimé en pourcentage (%). Lorsque le véhicule est neuf, l’utilisateur dispose au maximum de 100% du SOC utile, soit 97% du SOC réel du pack de batteries, et au minimum de 0% du SOC utile soit 1 % du SOC réel du pack de batteries. Donc, la quantité d’énergie réellement disponible pour un véhicule neuf, c’est-à-dire ce qui conditionne son autonomie, est comprise entre 1 % et 97% du SOC réel du pack de batteries. [0037] [Fig 1] Figure 1 shows the evolution of the useful SOC according to the mileage traveled by the vehicle, the graph presenting an abscissa the kilometers traveled expressed in kilometers, and in ordinates, the actual SOC expressed as a percentage (% ). When the vehicle is new, the user has at most 100% of the useful SOC, i.e. 97% of the real SOC of the battery pack, and at least 0% of the useful SOC, i.e. 1% of the real SOC of the battery pack. Therefore, the amount of energy actually available for a new vehicle, i.e. what determines its range, is between 1% and 97% of the actual SOC of the battery pack.
[0038] Pour un véhicule ayant parcouru 200 000km, l’utilisateur dispose toujours de 100% du SOC utile, mais ce SOC utile maximum (courbe en trait plein) ne vaut plus que 88% du SOC réel maximum du pack de batteries. Par contre, le pack de batteries contient toujours 1 % du SOC réel maximum lorsque le SOC utile est à son minimum (0%) (SOC utile minimum représenté par la courbe en trait discontinu). Par conséquent, à 200 000km ne dispose plus que d’une quantité d’énergie électrique comprise entre 1 % et 88% du SOC réel maximum du pack de batteries. Cette limitation, ou diminution, de l’énergie disponible en fonction du kilométrage ne correspond pas nécessairement à la capacité maximale dans l’état de vieillissement réel du pack de batteries. Elle est mise en place uniquement dans le but d’augmenter la longévité du pack de batteries pouvoir garantir une durabilité contractuelle des modules de puissance du pack de batteries de traction. For a vehicle that has traveled 200,000 km, the user still has 100% of the useful SOC, but this maximum useful SOC (solid curve) is only worth 88% of the maximum real SOC of the battery pack. On the other hand, the battery pack always contains 1% of the maximum real SOC when the useful SOC is at its minimum (0%) (minimum useful SOC represented by the curve with a broken line). Therefore, at 200,000km only a quantity of electrical energy between 1% and 88% of the actual maximum SOC of the battery pack is left. This limitation, or decrease, of the energy available according to the mileage does not necessarily correspond to the maximum capacity in the actual aging condition of the battery pack. It is implemented solely with the aim of increasing the longevity of the battery pack to be able to guarantee contractual durability of the power modules of the traction battery pack.
[0039] Alternativement à une limitation du SOC utile en fonction du kilométrage, le fournisseur de batteries de traction peut imposer sur le même principe une limitation du SOC utile en fonction de l’âge du véhicule sur la base d’un kilométrage moyen parcouru chaque année. Ces différents types de limitation du SOC utile maximum, et donc de l’autonomie dont peut disposer un véhicule, ne reflétant pas la capacité de stockage réelle d’un pack de batteries de traction d’un véhicule usagé, ce type de limitation prive donc arbitrairement l’utilisateur d’une autonomie potentiellement exploitable. [0040] Néanmoins, il est avantageux de mettre en place une limitation du SOC utile maximum permettant de brider la capacité de stockage lors des cycles de recharge afin de ne pas engendrer de vieillissement prématuré du pack de batteries. Comme indiqué ci-dessus, le mode de recharge potentiellement le plus dommageable à la durabilité du pack de batteries est le mode de recharge rapide, il est donc proposé de mettre en œuvre au niveau du BMS une limitation du SOC maximum lors des cycles de recharge en mode de recharge rapide. [0039] Alternatively to a limitation of the useful SOC according to the mileage, the supplier of traction batteries can impose on the same principle a limitation of the useful SOC according to the age of the vehicle on the basis of an average mileage traveled each year. These different types of limitation of the maximum useful SOC, and therefore of the autonomy that a vehicle can have, do not reflect the real storage capacity of a pack of traction batteries of a used vehicle, this type of limitation therefore deprives arbitrarily the user of a potentially exploitable autonomy. [0040] Nevertheless, it is advantageous to set up a limitation of the maximum useful SOC making it possible to curb the storage capacity during the recharging cycles so as not to cause premature aging of the battery pack. As indicated above, the recharging mode potentially most damaging to the durability of the battery pack is the fast recharging mode, it is therefore proposed to implement at the BMS level a limitation of the maximum SOC during the recharging cycles in fast charging mode.
[0041] À cette fin, le dispositif de contrôle, ou BMS, est programmé pour mettre en œuvre une limitation des charges en mode de recharge rapide. Cette limitation est définie par rapport au SOC utile, et fixée préférablement à hauteur de 80% du SOC utile. Une limitation à 80% du SOC utile fait du sens dans le mode de recharge rapide. En effet, en mode de charge rapide sur borne spéciale, le temps de charge de 0% à 100% du SOC utile du pack de batteries est de 1 h15 alors que le temps de charge de 0% à 80% n’est que de 30 mn, c’est-à-dire moins de la moitié. To this end, the control device, or BMS, is programmed to implement load limitation in fast charging mode. This limitation is defined with respect to the useful SOC, and preferably set at 80% of the useful SOC. A limitation to 80% of the useful SOC makes sense in the fast charging mode. Indeed, in fast charging mode on a special terminal, the charging time from 0% to 100% of the useful SOC of the battery pack is 1 hour 15 minutes, while the charging time from 0% to 80% is only 30 minutes, that is to say less than half.
[0042] En parallèle de cette limitation de la charge complète à 80% du SOC utile en mode de recharge rapide, l’utilisateur a la possibilité de transmettre au BMS une consigne pour obtenir une recharge rapide à 100% du SOC utile. Dans un exemple de mise en œuvre de l’invention, l’utilisateur peut aller sur l’application du constructeur téléchargée sur son téléphone portable pour demander une recharge complète à 100% du SOC utile de son véhicule en mode de recharge rapide. Ainsi, après avoir branché son véhicule à une borne spéciale pour une recharge rapide, l’utilisateur peut choisir aisément une charge complète à une autre valeur que 80% du SOC utile, par exemple 100% du SOC utile de l’extérieur de son véhicule. Alternativement, ce choix peut être fait différemment sans sortir du cadre de l’invention, par exemple au tableau de bord ou de la console de commande du véhicule. [0042] In parallel with this limitation of the full charge to 80% of the useful SOC in fast charging mode, the user has the possibility of transmitting to the BMS an instruction to obtain a fast charging to 100% of the useful SOC. In an exemplary implementation of the invention, the user can go to the manufacturer's application downloaded to his mobile phone to request a full recharge to 100% of the useful SOC of his vehicle in fast charging mode. Thus, after having connected his vehicle to a special terminal for fast charging, the user can easily choose a full charge at a value other than 80% of the useful SOC, for example 100% of the useful SOC from outside his vehicle. . Alternatively, this choice can be made differently without departing from the scope of the invention, for example on the dashboard or on the control console of the vehicle.
[0043] Le procédé permet donc à l’utilisateur de demander une charge à 100% du SOC utile, par exemple après le branchement du véhicule à une borne de recharge spéciale ou préférentiellement après avoir initié le cycle de recharge rapide. Afin de ne pas désactiver durablement la limitation à 80% du SOC utile, l’utilisateur ne peut pas programmer par défaut que toutes les prochaines charges en mode de recharge rapide soient limitées à 100% du SOC utile ou à toute autre valeur différente de 80% du SOC utile de manière permanente. Alternativement, l’utilisateur peut avoir la possibilité d’opter pour une modification permanente de la limitation à toute autre valeur de son choix différente de la valeur de 80% du SOC utile préprogrammée par le constructeur. Par exemple, il peut définir comme nouvelle limite par défaut 100% du SOC utile. Néanmoins, il est préféré de ne pas donner à l’utilisateur la possibilité de modifier la valeur de limitation par défaut préréglée à 80% du SOC utile. Ainsi, il est possible de garantir que la plupart des charges en mode de recharge rapide soient effectuée jusqu’à un maximum de 80% du SOC utile et donc d’optimiser la longévité des batteries tout en donnant à l’utilisateur la possibilité lorsqu’il le souhaite de passer outre cette limitation par défaut. Dans cette variante préférée de mise en œuvre de l’invention, après chaque charge en mode de recharge rapide, qu’elle a été, ou non, interrompue, le choix de l’utilisateur n’est pas enregistré. Le cycle de charge suivant , comme tous les autres, en mode de recharge rapide débutera avec la limitation par défaut à 80% du SOC utile. Pour passer outre cette limitation par défaut, l’utilisateur doit donc en faire la demande à chaque fois, par exemple sur son téléphone portable dans l’application dédiée à son véhicule. The method therefore allows the user to request a charge to 100% of the useful SOC, for example after connecting the vehicle to a special charging station or preferably after having initiated the fast charging cycle. In order not to permanently deactivate the limitation to 80% of the useful SOC, the user cannot program by default that all the next charges in fast charging mode are limited to 100% of the useful SOC or to any other value different from 80 % of permanently useful SOC. Alternatively, the user may have the option to opt for a permanent modification of the limitation to any other value of his choice different from the value of 80% of the useful SOC pre-programmed by the manufacturer. For example, he can define as a new default limit 100% of the useful SOC. Nevertheless, it is preferred not to give the user the possibility of modifying the default limiting value preset at 80% of the useful SOC. Thus, it is possible to guarantee that most of the charges in fast charge mode are carried out up to a maximum of 80% of the useful SOC and therefore to optimize the longevity of the batteries while giving the user the possibility when he wishes to override this limitation by default. In this preferred implementation variant of the invention, after each charge in fast charge mode, whether or not it has been interrupted, the user's choice is not saved. The next charge cycle, like all the others, in fast charge mode will start with the default limitation at 80% of the useful SOC. To override this default limitation, the user must therefore request it each time, for example on his mobile phone in the application dedicated to his vehicle.
[0044] Alternativement à la possibilité d’opter au coup par coup pour une limitation à 100% du SOC utile en mode de recharge rapide au lieu des 80% préréglé, il peut être donné à l’utilisateur la possibilité de régler sur son portable le niveau de recharge du pack de batteries à un niveau souhaité compris entre 0% et 100% du SOC utile par exemple 100%, 90% ou moins de 80%. [0044] Alternatively to the possibility of opting on a case-by-case basis for a limitation to 100% of the useful SOC in fast charging mode instead of the preset 80%, the user can be given the possibility of setting on his portable the level of recharging of the battery pack to a desired level comprised between 0% and 100% of the useful SOC for example 100%, 90% or less than 80%.
[0045] Comme indiqué ci-dessus, le choix par l’utilisateur du niveau de charge du pack de batteries en mode de recharge rapide est laissé à l’utilisateur pour le cycle de charge en cours. Néanmoins, la limitation par défaut de la charge maximale en mode de recharge rapide à 80% du SOC utile est un bon compromis pour ménager le pack de batteries. En effet, au-delà de 80% du SOC utile le BMS bride le courant délivré par la borne spéciale pour ne pas risquer d’endommager les modules de puissance. Cette limitation du courant de charge au-delà de 80% du SOC utile augmente considérablement le temps de charge au-delà de cette valeur rendant dans la majorité des cas de recharge un réglage à une valeur supérieure à 80% du SOC utile inintéressante. [0045] As indicated above, the choice by the user of the level of charge of the battery pack in fast charging mode is left to the user for the current charging cycle. Nevertheless, the default limitation of the maximum charge in fast charging mode to 80% of the useful SOC is a good compromise to spare the battery pack. In fact, beyond 80% of the useful SOC, the BMS restricts the current delivered by the special terminal so as not to risk damaging the power modules. This limitation of the charging current beyond 80% of the useful SOC considerably increases the charging time beyond this value, making in most cases of recharging an adjustment to a value greater than 80% of the useful SOC uninteresting.
[0046] Optionnellement, il peut être donné à l’utilisateur la possibilité de régler par lui-même sur son téléphone portable, ou de toute autre manière, la limitation d’un cycle de charge dans les autres modes de recharge comme décrit ci-dessus pour le mode de recharge rapide. [0046] Optionally, the user can be given the possibility of adjusting by himself on his mobile phone, or in any other way, the limitation of a cycle charging in other charging modes as described above for fast charging mode.
[0047] Naturellement, l’invention est décrite dans ce qui précède à titre d’exemple.Naturally, the invention is described in the foregoing by way of example.
Il est entendu que l’homme du métier est à même de réaliser différentes variantes de réalisation de l’invention sans pour autant sortir du cadre de l’invention. It is understood that the person skilled in the art is able to carry out different variant embodiments of the invention without departing from the scope of the invention.
[0048] Par exemple, l’invention décrite ci-dessus pour un véhicule électrique, c’est- à-dire dont le déplacement est assuré seulement par de l’énergie électrique, peut être mise en oeuvre pour un véhicule hybride dont l’énergie motrice peut être électrique, thermique ou une combinaison des deux. [0049] Il est souligné que toutes les caractéristiques, telles qu’elles se dégagent pour un homme du métier à partir de la présente description, des dessins et des revendications attachées, même si concrètement elles n’ont été décrites qu’en relation avec d’autres caractéristiques déterminées, tant individuellement que dans des combinaisons quelconques, peuvent être combinées à d’autres caractéristiques ou groupes de caractéristiques divulguées ici, pour autant que cela n’a pas été expressément exclu ou que des circonstances techniques rendent de telles combinaisons impossibles ou dénuées de sens. [0048] For example, the invention described above for an electric vehicle, that is to say the movement of which is ensured solely by electrical energy, can be implemented for a hybrid vehicle whose motive power can be electrical, thermal or a combination of both. [0049] It is emphasized that all the characteristics, as they emerge for a person skilled in the art from the present description, the drawings and the attached claims, even if concretely they have only been described in relation to other specified features, both individually and in arbitrary combinations, can be combined with other features or groups of features disclosed here, provided this has not been expressly excluded or technical circumstances make such combinations impossible or meaningless.

Claims

REVENDICATIONS Procédé de contrôle d’un BMS pilotant au moins un pack de batteries pour un véhicule mû au moins partiellement par de l’énergie électrique stockée dans ledit pack de batteries, selon lequel ledit BMS pilote une phase de recharge dudit pack de batteries selon une pluralité de modes de recharges comprenant au moins un mode de recharge rapide, ledit pack de batteries pouvant être rechargé jusqu’à un SOC utile maximum inférieur à un SOC réel maximum ; le procédé étant caractérisé en ce qu’il comprend une étape dans laquelle le BMS pilote une recharge dudit pack de batteries dans ledit mode de recharge rapide jusqu’à un SOC normal maximum ou jusqu’à un SOC maximum sélectionné, dans lequel ledit BMS est réglé par défaut dans ledit mode de recharge rapide sur ledit SOC normal maximum, et une étape dans laquelle le BMS peut être commuté à distance par un utilisateur dans ledit mode de recharge rapide dudit SOC normal maximum audit SOC maximum sélectionné. Procédé de contrôle d’un BMS pilotant au moins un pack de batteries selon la revendication 1 , caractérisé en ce que ledit SOC normal maximum est inférieur audit SOC utile maximum, préférablement le SOC normal maximum est fixé à 80% du SOC utile maximum. Procédé de contrôle d’un BMS pilotant au moins un pack de batteries selon l’une des revendications 1 ou 2, caractérisé en ce que le SOC maximum sélectionné est fixé à 100% dudit SOC utile maximum, et/ou peut être librement sélectionné à distance par l’utilisateur à un niveau compris entre 100% dudit SOC utile maximum et un seuil inférieur, préférablement fixé à 60% dudit SOC utile maximum. Procédé de contrôle d’un BMS pilotant au moins un pack de batteries selon l’une des revendications précédentes, caractérisé en ce que le procédé comprend une étape dans laquelle le BMS peut être commuté sur ledit SOC maximum sélectionné uniquement après le démarrage de la recharge dudit pack de batteries; et/ou ledit BMS ne peut être commuté sur ledit SOC maximum sélectionné que pour le processus de recharge en cours. CLAIMS Method for controlling a BMS controlling at least one battery pack for a vehicle driven at least partially by electrical energy stored in said battery pack, according to which said BMS controls a charging phase of said battery pack according to a plurality of recharging modes comprising at least one fast recharging mode, said battery pack being able to be recharged up to a maximum useful SOC lower than a maximum real SOC; the method being characterized in that it comprises a step in which the BMS controls a recharging of said battery pack in said rapid recharging mode up to a maximum normal SOC or up to a selected maximum SOC, in which said BMS is defaulted in said fast charging mode to said maximum normal SOC, and a step in which the BMS can be switched remotely by a user to said fast charging mode from said maximum normal SOC to said selected maximum SOC. Method for controlling a BMS controlling at least one battery pack according to claim 1, characterized in that said maximum normal SOC is less than said maximum useful SOC, preferably the maximum normal SOC is set at 80% of the maximum useful SOC. Method for controlling a BMS controlling at least one battery pack according to one of Claims 1 or 2, characterized in that the maximum SOC selected is fixed at 100% of said maximum useful SOC, and/or can be freely selected at distance by the user at a level between 100% of said maximum useful SOC and a lower threshold, preferably set at 60% of said maximum useful SOC. Method for controlling a BMS controlling at least one battery pack according to one of the preceding claims, characterized in that the method comprises a step in which the BMS can be switched to said maximum SOC selected only after the start of the recharging said battery pack; and/or said BMS can only be switched to said selected maximum SOC for the current charging process.
5. Procédé de contrôle d’un BMS pilotant au moins un pack de batteries selon l’une des revendications précédentes, dans lequel la commutation à distance du BMS sur ledit SOC maximum sélectionné est effectuée par une interface homme- machine telle qu’un téléphone portable. 5. Method for controlling a BMS controlling at least one battery pack according to one of the preceding claims, in which the remote switching of the BMS to said selected maximum SOC is carried out by a man-machine interface such as a telephone portable.
6. Procédé de contrôle d’un BMS pilotant au moins un pack de batteries selon l’une quelconque des revendications précédentes dans lequel ledit SOC utile maximum est fixé à 97% du SOC réel maximum, et/ou ledit pack de batteries ne peut être déchargé au-dessous d’un SOC utile minimum, préférablement fixé entre 1 % et 2% du SOC réel maximum. 6. Method for controlling a BMS controlling at least one battery pack according to any one of the preceding claims, in which said maximum useful SOC is set at 97% of the maximum real SOC, and/or said battery pack cannot be discharged below a minimum useful SOC, preferably set between 1% and 2% of the maximum actual SOC.
7. Produit programme d’ordinateur comprenant des instructions de code enregistrées sur un support lisible par ordinateur pour la mise en œuvre du procédé d’une des revendications 1 à 6 lorsque ledit programme fonctionne dans un BMS pilotant au moins un pack de batteries pour un véhicule mû au moins partiellement par de l’énergie électrique stockée dans ledit pack de batteries. 7. Computer program product comprising code instructions recorded on a computer-readable medium for implementing the method of one of claims 1 to 6 when said program operates in a BMS controlling at least one battery pack for a vehicle driven at least partially by electrical energy stored in said battery pack.
8. BMS pour piloter au moins un pack de batteries pour un véhicule mû au moins partiellement par de l’énergie électrique stockée dans ledit pack de batteries, ledit BMS étant apte à piloter une phase de recharge dudit pack de batteries selon une pluralité de modes de recharges comprenant au moins un mode de recharge rapide, caractérisé en ce que dans ledit BMS est configuré pour piloter la recharge dudit pack de batteries dans ledit mode de recharge rapide jusqu’au SOC normal maximum ou au SOC maximum sélectionné selon le procédé défini dans l’une quelconque des revendications 1 à 6. 8. BMS for controlling at least one battery pack for a vehicle driven at least partially by electrical energy stored in said battery pack, said BMS being able to control a charging phase of said battery pack according to a plurality of modes charging stations comprising at least one fast charging mode, characterized in that in said BMS is configured to control the charging of said battery pack in said fast charging mode up to the maximum normal SOC or to the maximum SOC selected according to the method defined in any of claims 1 to 6.
9. Pack de batteries comprenant un module de stockage d’énergie électrique caractérisé en ce qu’il comprend le BMS tel que défini à la revendication 8. 9. Battery pack comprising an electrical energy storage module characterized in that it comprises the BMS as defined in claim 8.
10. Véhicule mû au moins partiellement par de l’énergie électrique stockée dans au moins un pack de batteries tel que défini à la revendication 9. 10. Vehicle driven at least partially by electrical energy stored in at least one battery pack as defined in claim 9.
PCT/FR2022/051645 2021-10-19 2022-09-01 Method for controlling a battery management system WO2023067254A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2111076 2021-10-19
FR2111076A FR3128168A1 (en) 2021-10-19 2021-10-19 METHOD FOR CONTROLLING A BATTERY MANAGEMENT SYSTEM

Publications (1)

Publication Number Publication Date
WO2023067254A1 true WO2023067254A1 (en) 2023-04-27

Family

ID=78827925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2022/051645 WO2023067254A1 (en) 2021-10-19 2022-09-01 Method for controlling a battery management system

Country Status (2)

Country Link
FR (1) FR3128168A1 (en)
WO (1) WO2023067254A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2111076A5 (en) 1970-10-07 1972-06-02 Int Harvester Co
EP3245096A1 (en) 2015-01-13 2017-11-22 Volvo Car Corporation Method and arrangement for determining a value of the state of energy of a battery in a vehicle
US20200122597A1 (en) * 2018-10-23 2020-04-23 Toyota Jidosha Kabushiki Kaisha Vehicle and control method for vehicle
US10714957B1 (en) * 2019-09-03 2020-07-14 Mazen Obeid Charge state control system and device
US20210146794A1 (en) * 2018-11-30 2021-05-20 Contemporary Amperex Technology Co., Limited Charging method, apparatus, device, medium, battery management system and charging pile
US20210276439A1 (en) * 2020-03-06 2021-09-09 Toyota Jidosha Kabushiki Kaisha Information notification device, information notification system, information notification method, and vehicle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2111076A5 (en) 1970-10-07 1972-06-02 Int Harvester Co
EP3245096A1 (en) 2015-01-13 2017-11-22 Volvo Car Corporation Method and arrangement for determining a value of the state of energy of a battery in a vehicle
EP3245096B1 (en) * 2015-01-13 2021-02-24 Volvo Car Corporation Method and arrangement for determining a value of the state of energy of a battery in a vehicle
US20200122597A1 (en) * 2018-10-23 2020-04-23 Toyota Jidosha Kabushiki Kaisha Vehicle and control method for vehicle
US20210146794A1 (en) * 2018-11-30 2021-05-20 Contemporary Amperex Technology Co., Limited Charging method, apparatus, device, medium, battery management system and charging pile
US10714957B1 (en) * 2019-09-03 2020-07-14 Mazen Obeid Charge state control system and device
US20210276439A1 (en) * 2020-03-06 2021-09-09 Toyota Jidosha Kabushiki Kaisha Information notification device, information notification system, information notification method, and vehicle

Also Published As

Publication number Publication date
FR3128168A1 (en) 2023-04-21

Similar Documents

Publication Publication Date Title
EP3237258B1 (en) Method for energy management of a rechargeable traction battery of a hybrid vehicle
US20150314690A1 (en) Method for charging a plug-in electric vehicle
EP2398670A1 (en) System and method for controlling the recharging of a battery
EP2636093A1 (en) Method for charging a battery for supplying power to a drive motor of a motor vehicle
US10677176B2 (en) Vehicle power system
WO2013064759A2 (en) Method and system for managing the electric charges of battery cells
FR3106535A1 (en) Method and device for controlling an energy storage system, for example a vehicle battery
WO2014001727A1 (en) Method and devices for maximising the service life of a traction battery of an electric vehicle, in particular a li-ion battery
WO2023067254A1 (en) Method for controlling a battery management system
WO2020144007A1 (en) Method for charging an accumulator battery through a charging terminal
FR2991257A1 (en) ON-BOARD NETWORK IN A MOTOR VEHICLE COMPRISING AN ENGINE AND AT LEAST TWO BATTERIES HAVING DIFFERENT CHARGE VOLTAGES AND A METHOD FOR MANAGING THEM
FR3010250A1 (en) SYSTEM FOR ELECTRICALLY MANAGING BLOCKS IN A BATTERY BASED ON BATTERY POWER REQUIRED AND BLOCK CHARGE
FR3129633A1 (en) Method for controlling a battery management system
FR2992487A1 (en) Method for managing electrical supply network of e.g. electric car, involves determining charge state of house battery, and modifying voltage setpoint of output of voltage converter according to charge state of battery
FR2942086A1 (en) Charge state managing device for e.g. lithium-ion battery in plug-in-hybrid vehicle, has management system for controlling socket and charger, where socket and charger connects domestic network to charge source until value of preset state
FR2938715A1 (en) ELECTRICAL POWER SUPPLY OF AN ELECTROMAGNETIC RETARDER IN A MOTOR VEHICLE
FR2958464A1 (en) METHOD FOR CONTROLLING THE CHARGE OF AN ADDITIONAL ENERGY STORER OF A MICRO-HYBRID PROPULSION VEHICLE AND SYSTEM IMPLEMENTING THE METHOD
FR3067185A1 (en) POWER GENERATION CONTROL DEVICE
FR3124314A1 (en) BATTERY SYSTEM AND METHOD OF MONITORING A BATTERY SYSTEM
FR2974951A1 (en) Method for controlling parallel charging of direct current batteries of e.g. electric car linked to recharging point, involves continuing charging of two batteries in addition to charging of third battery until all batteries are recharged
FR3099098A1 (en) Charging and discharging process of an accumulator battery
FR3134355A1 (en) METHOD FOR DETERMINING THE RANGE OF AN ELECTRICALLY PROPULSION VEHICLE
FR3128176A1 (en) BATTERY REGENERATION PROCESS
FR3132792A1 (en) CONTROL OF THE TEMPERATURE SETPOINT OF A HEAT EXCHANGE DEVICE COUPLED TO A SYSTEM BATTERY
WO2023031529A1 (en) Controlling mode 4 charging of a vehicle battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22773762

Country of ref document: EP

Kind code of ref document: A1