WO2023066520A1 - Medical system - Google Patents

Medical system Download PDF

Info

Publication number
WO2023066520A1
WO2023066520A1 PCT/EP2022/025474 EP2022025474W WO2023066520A1 WO 2023066520 A1 WO2023066520 A1 WO 2023066520A1 EP 2022025474 W EP2022025474 W EP 2022025474W WO 2023066520 A1 WO2023066520 A1 WO 2023066520A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
examination tube
mrt
medical system
control system
Prior art date
Application number
PCT/EP2022/025474
Other languages
German (de)
French (fr)
Inventor
Roland Croner
Maciej Pech
Georg Rose
Original Assignee
Otto-Von-Guericke-Universität Magdeburg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otto-Von-Guericke-Universität Magdeburg filed Critical Otto-Von-Guericke-Universität Magdeburg
Publication of WO2023066520A1 publication Critical patent/WO2023066520A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/32Surgical robots operating autonomously
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/37Master-slave robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00535Surgical instruments, devices or methods, e.g. tourniquets pneumatically or hydraulically operated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00902Material properties transparent or translucent
    • A61B2017/00911Material properties transparent or translucent for fields applied by a magnetic resonance imaging system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/301Surgical robots for introducing or steering flexible instruments inserted into the body, e.g. catheters or endoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/374NMR or MRI
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/71Manipulators operated by drive cable mechanisms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field

Definitions

  • the invention relates to a medical system for performing autonomous and/or remote-controlled operations on patients using robot technology.
  • Medical operations and interventions using robots are becoming increasingly important in surgery or in general in image-guided interventional procedures.
  • partially automated systems have been most widespread, ie telemanipulators in terms of function, which are remotely controlled by a doctor from a neighboring room.
  • a major weakness of these systems is the restriction of visualization to the surgical field using endoscopes.
  • These systems do not allow risk structures to be made visible below the operational level.
  • Better imaging e.g. by means of magnetic resonance imaging (MRI), would therefore be desirable.
  • MRI magnetic resonance imaging
  • due to the design of conventional robots such imaging systems cannot be integrated into the system.
  • WO 2021/150902 A1 describes an MRT system that is coupled to a robot, the robot arm of which can be guided into the interior of the examination tunnel via a front access opening.
  • the access opening is made in a front panel that covers the front of the magnet system.
  • US 2017/0371001 A1 describes an MRI system in which the main magnet has a slot through which a circumferential gap is provided for access for a surgical robotic device.
  • US 2021/0068701 A1 discloses an MRT system with a surgical robot coupled thereto.
  • the MRI system is operated with a weak-field magnet.
  • the coupling between the robot and the MRI system includes a rail arrangement for transversal displacement of the robot at the patient's bed.
  • the invention is therefore based on the object of specifying an improved medical system for operations on patients using robot technology.
  • a medical system having at least the following features: a) a magnetic resonance imaging (MRI) system with an examination tube in which a patient can be placed completely or at least with a significant or the majority of his body, b) with the MRT imaging compatible robot, through which the MRT imaging is at least essentially not disturbed, c) an automated control system for controlling the robot, which is set up to carry out autonomous and/or remote-controlled operations on the patient, the control system images of the MRT imaging are supplied intraoperatively in real time, the control system being set up to control the robot when carrying out the autonomous and/or remote-controlled operations as a function of the images of the MRT imaging.
  • MRI magnetic resonance imaging
  • the medical system according to the invention thus allows an embodiment to carry out operations on the patient autonomously, ie without permanent remote control by the doctor.
  • an advantageous robot that is compatible with MRT imaging is proposed, through which the MRT imaging is at least essentially not disturbed.
  • the robot is also designed in such a way that it is also compatible with regard to possible interference from the magnetic fields of the MRT system, ie the robot itself is not impaired in its function by the MRT either.
  • the robot can be non-magnetic and/or non-metallic, at least in the areas that are arranged on and in the MRI system.
  • the robot can also be designed without an electric drive in this area, e.g. instead be equipped with a hydraulically and/or pneumatically operated drive system.
  • the medical system according to the invention also allows remote-controlled operations using robot technology, eg in the sense of telemanipulation.
  • a combination is also possible, for example the autonomous execution of certain surgical steps and the remote-controlled execution of other surgical steps.
  • the automated control system for controlling the robot can work in a fully automated or partially automated manner, depending on the application. stay here receive the previously explained advantages of the system, such as the operation with MRT visualization with visibility of risk structures.
  • the examination tube of the MRT system is designed as an examination tube that is essentially closed on the peripheral side in order to ensure a uniform magnetic field.
  • the examination tube can be designed as a cylindrical tube, in particular with regard to its inside, in which the patient is to be placed.
  • the automated control system is used to control the robot depending on the images of the MRI imaging.
  • the function of the control system can be controlled, for example, by means of intraoperative real-time imaging based on the MRT images.
  • the images can be evaluated by artificial intelligence functions (KI) and target structures on the patient that are to be the subject of the operation can be identified. Even after such structures have been relocated, for example as a result of operational manipulation, the structures can be automatically identified again.
  • KI artificial intelligence functions
  • the examination tube which is otherwise closed on the peripheral side, has one or preferably several peripheral through openings, in particular through bores running radially from the outside into the interior of the MRI system, through which a robot arm of the robot can be passed, wherein the control system is set up to automatically perform manipulations on the patient through one or more passage openings when performing the autonomous and/or remote-controlled operations on the patient by means of one or preferably multiple robot arms of the robot.
  • the peripheral through-openings mentioned are present in the otherwise closed jacket of the examination tube.
  • the coils and magnets of the MRT system are designed and arranged in such a way that the high degree of homogeneity of the magnetic field required for good imaging is nevertheless present within the examination tube where the patient is to be placed.
  • the through-openings that are not in the form of slits each have a thickness over the circumference of the examination tube limited width. Its opening angle, measured from the center of the examination tube, is preferably less than 10°.
  • the robot's drive system that are located in the examination tube are non-electrical and non-magnetic components, such as hydraulic and/or pneumatic components and/or cable pulls.
  • the robot can have a hydraulically and/or pneumatically operated drive system and/or a cable-operated drive system for actuating one or more robotic arms of the robot.
  • the robot can be designed to be MRI-compatible.
  • the control system is set up to evaluate images of the MRT imaging using at least one artificial intelligence function and thereby to recognize specific target structures on the patient.
  • the artificial intelligence function may include one or more of the following algorithms: Random Forest, Support Vector Machine, Multi-Layer Perceptron, Convolutional Neural Network, Recurrent Neural Network, Deep Learning.
  • the robot is designed as a multi-armed robot or as an arrangement of several robots with at least two robot arms that can be controlled by the control system.
  • simultaneous access from different angles to one or more surgical sites can be made possible by using a plurality of through-openings in the jacket of the examination tube, preferably radial through-bores.
  • FIG. 1 shows a medical system with an MRT system in a sectional view from the side
  • FIG. 2 shows the medical system according to FIG. 1 in a view in the longitudinal direction of the examination tube.
  • FIG. 1 shows a medical system 1 which has an MRT system 2 .
  • the MRT system 2 has an examination tube 3 which is designed in the form of a tunnel with an interior 4 .
  • a patient 5 can be placed in the interior 4 with at least a substantial part or the majority of his body, e.g. on a bed 6 .
  • the examination tube 3 is connected to an MRT control unit 8 via lines 7 .
  • the MRT control unit 8 controls the examination tube 3 to generate the necessary magnetic fields and receives detected signals via the lines 7, which are processed in the MRT control unit 8 to form images of the MRT imaging.
  • the images can be displayed on a screen 9, for example.
  • the MRT control unit 8 is also connected to an automated control system 10 for controlling a robot 11 .
  • the MRT control unit 8 supplies the control system 10 with the images of the MRT imaging in real time. These images are evaluated in the control system 10 and as a result specific target structures on the patient 5 are identified, on which an operation is to be carried out autonomously and/or remotely by means of the robot 11 .
  • the control system 10 controls the robot arm 12 of the robot 11 .
  • the examination tube 3 is essentially constructed in a similar way to a conventional examination tube of a magnetic resonance tomograph, eg with a gradient coil near the inner circumference of the examination tube, several magnets surrounding the gradient coil and a radio frequency antenna or radio frequency coil arranged eg within the gradient coil.
  • the gradient coil ensures a homogeneous magnetic field.
  • radio frequency antenna or radio frequency coil radio waves are emitted, which excite the cause hydrogen atoms in the patient.
  • an additional coil in the form of a scanner coil can be present, which picks up an induced signal from the patient, which can then be processed by the MRT control unit 8 to form the MRT image data.
  • the MRI system 2 shown in Figure 1 has an examination tube 3 in which there are one or more peripheral through openings 13 which lead from the outside to the inside of the examination tube 3, i.e. completely penetrate the jacket .
  • a robot arm 12 can be guided through such passage openings 13 so that a robot 11 placed with its drive mechanism outside the examination tube can reach through such a passage opening 13 with the robot arm 12 and carry out manipulations on the patient 5 .
  • FIG. 2 shows an example of how an autonomous and/or remote-controlled operation is carried out on the patient 5 who is inside the examination tube 3 .
  • two robots 11 are used, each of which reaches through openings 13 in the casing of the examination tube 3 with their robotic arms 12 and, for example, performs an intestinal operation.
  • the robots 11 can be permanently mounted together with the examination tube 3 on a common platform 14, so that the positions of these elements relative to one another do not change while an operation is being carried out.

Abstract

The invention relates to a medical system for carrying autonomous and/or remote-controlled surgical interventions on patients using robotics.

Description

Medizinisches System medical system
Die Erfindung betrifft ein medizinisches System für die Durchführung von autonomen und/oder ferngesteuerten Operationen am Patienten mittels Robotertechnik. Medizinische Operationen und Interventionen mittels Roboter gewinnen zunehmend an Bedeutung in der Chirurgie oder allgemein in bildgeführten interventionellen Prozeduren. Am meisten verbreitet sind bisher teilautomatisierte Systeme, das heißt von der Funktion her Telemanipulatoren, welche von einem Arzt aus einem Nachbarraum ferngesteuert werden. Eine große Schwäche dieser Systeme ist die Einschränkung der Visualisierung ausschließlich auf das Operationsfeld unter Einsatz von Endoskopen. Diese Systeme erlauben es nicht, Risikostrukturen unterhalb der Operationsebene sichtbar zu machen. Wünschenswert wäre daher eine bessere Bildgebung z.B. mittels Magnetresonanztomographie (MRT). Solche bildgebenden Systeme können aber aufgrund der Bauart herkömmlicher Roboter nicht in das System integriert werden. The invention relates to a medical system for performing autonomous and/or remote-controlled operations on patients using robot technology. Medical operations and interventions using robots are becoming increasingly important in surgery or in general in image-guided interventional procedures. So far, partially automated systems have been most widespread, ie telemanipulators in terms of function, which are remotely controlled by a doctor from a neighboring room. A major weakness of these systems is the restriction of visualization to the surgical field using endoscopes. These systems do not allow risk structures to be made visible below the operational level. Better imaging, e.g. by means of magnetic resonance imaging (MRI), would therefore be desirable. However, due to the design of conventional robots, such imaging systems cannot be integrated into the system.
WO 2021/150902 A1 beschreibt ein MRT-System, das mit einem Roboter gekoppelt ist, dessen Roboterarm über eine frontale Zugangsöffnung in den Innenraum des Untersuchungstunnels hineingeführt werden kann. Die Zugangsöffnung ist in einer Frontplatte eingebracht, mit der die Stirnseite des Magnetsystems abgedeckt wird. WO 2021/150902 A1 describes an MRT system that is coupled to a robot, the robot arm of which can be guided into the interior of the examination tunnel via a front access opening. The access opening is made in a front panel that covers the front of the magnet system.
US 2017/0371001 A1 beschreibt ein MRT-System, bei dem der Hauptmagnet einen Schlitz hat, durch den ein um den Umfang um laufenden Spalt für den Zugang für einen Operationsrobotergerät bereitgestellt wird. US 2017/0371001 A1 describes an MRI system in which the main magnet has a slot through which a circumferential gap is provided for access for a surgical robotic device.
US 2021/0068701 A1 offenbart ein MRT-System mit einem daran angekoppelten Operationsroboter. Zur Reduktion des notwendigen Strahlungsabstandes wird das MRT-System mit einem Schwachfeldmagneten betrieben. Die Koppelung zwischen Roboter und MRT-System beinhaltet eine Schienenanordnung zur transversalen Verschiebung des Roboters am Patientenbett. US 2021/0068701 A1 discloses an MRT system with a surgical robot coupled thereto. To reduce the necessary radiation distance, the MRI system is operated with a weak-field magnet. The coupling between the robot and the MRI system includes a rail arrangement for transversal displacement of the robot at the patient's bed.
Der Erfindung liegt daher die Aufgabe zugrunde, ein verbessertes medizinisches System für Operationen am Patienten mittels Robotertechnik anzugeben. Diese Aufgabe wird gelöst durch ein medizinisches System mit zumindest den folgenden Merkmalen: a) ein Magnetresonanztomografie (MRT)-System mit einer Untersuchungsröhre, in der ein Patient vollständig oder zumindest mit einem wesentlichen oder dem überwiegenden Teil seines Körpers platzierbar ist, b) ein mit der MRT-Bildgebung kompatibler Roboter, durch den die MRT-Bildge- bung zumindest im Wesentlichen nicht gestört wird, c) ein automatisiertes Steuersystem zur Steuerung des Roboters, das zum Durchführen von autonomen und/oder ferngesteuerten Operationen am Patienten eingerichtet ist, wobei dem Steuersystem intraoperativ in Echtzeit Bilder der MRT- Bildgebung zugeführt sind, wobei das Steuersystem dazu eingerichtet ist, den Roboter bei der Durchführung der autonomen und/oder ferngesteuerten Operationen in Abhängigkeit der Bilder der MRT-Bildgebung zu steuern. The invention is therefore based on the object of specifying an improved medical system for operations on patients using robot technology. This object is achieved by a medical system having at least the following features: a) a magnetic resonance imaging (MRI) system with an examination tube in which a patient can be placed completely or at least with a significant or the majority of his body, b) with the MRT imaging compatible robot, through which the MRT imaging is at least essentially not disturbed, c) an automated control system for controlling the robot, which is set up to carry out autonomous and/or remote-controlled operations on the patient, the control system images of the MRT imaging are supplied intraoperatively in real time, the control system being set up to control the robot when carrying out the autonomous and/or remote-controlled operations as a function of the images of the MRT imaging.
Im Unterschied zu den erwähnten Telemanipulatoren erlaubt das erfindungsgemäße medizinische System somit einer Ausgestaltung die autonome Durchführung von Operationen am Patienten, das heißt ohne permanente Fernsteuerung durch den Arzt. Hierfür wird ein vorteilhafter mit der MRT-Bildgebung kompatibler Roboter vorgeschlagen, durch den die MRT-Bildgebung zumindest im Wesentlichen nicht gestört wird. In einer vorteilhaften Ausgestaltung ist der Roboter zudem derart ausgestaltet, dass er auch hinsichtlich möglicher Störeinflüsse durch die Magnetfelder des MRT- Systems kompatibel ist, das heißt, dass der Roboter selbst auch nicht durch das MRT in seiner Funktion beeinträchtigt wird. Beispielsweise kann der Roboter zumindest in den Bereichen, die am und im MRT-System angeordnet sind, nicht magnetisch und/oder nicht metallisch sein. Insbesondere kann der Roboter auch ohne Elektroantrieb in diesem Bereich ausgebildet sein, z.B. stattdessen mit einem hydraulisch und/oder pneumatisch betriebenen Antriebssystem ausgestaltet sein. In contrast to the telemanipulators mentioned, the medical system according to the invention thus allows an embodiment to carry out operations on the patient autonomously, ie without permanent remote control by the doctor. For this purpose, an advantageous robot that is compatible with MRT imaging is proposed, through which the MRT imaging is at least essentially not disturbed. In an advantageous embodiment, the robot is also designed in such a way that it is also compatible with regard to possible interference from the magnetic fields of the MRT system, ie the robot itself is not impaired in its function by the MRT either. For example, the robot can be non-magnetic and/or non-metallic, at least in the areas that are arranged on and in the MRI system. In particular, the robot can also be designed without an electric drive in this area, e.g. instead be equipped with a hydraulically and/or pneumatically operated drive system.
Das erfindungsgemäße medizinische System erlaubt auch ferngesteuerte Operationen unter Nutzung der Robotertechnik, z.B. im Sinne einer Telemanipulation. Auch eine Kombination ist möglich, z.B. die autonome Durchführung bestimmter Operationsschritte und die ferngesteuerte Durchführung anderer Operationsschritte. In diesem Sinne kann das automatisierte Steuersystem zur Steuerung des Roboters je nach Anwendungsfall vollautomatisiert oder teilautomatisiert arbeiten. Hierbei bleiben die zuvor erläuterten Vorteile des Systems erhalten, wie z.B. die Operation mit MRT- Visualisierung mit Sichtbarkeit von Risikostrukturen. The medical system according to the invention also allows remote-controlled operations using robot technology, eg in the sense of telemanipulation. A combination is also possible, for example the autonomous execution of certain surgical steps and the remote-controlled execution of other surgical steps. In this sense, the automated control system for controlling the robot can work in a fully automated or partially automated manner, depending on the application. stay here receive the previously explained advantages of the system, such as the operation with MRT visualization with visibility of risk structures.
Die Untersuchungsröhre des MRT-Systems ist aufgrund der MRT-Technologie als eine umfangsseitig im Wesentlichen geschlossen ausgebildete Untersuchungsröhre ausgebildet, um ein gleichmäßiges Magnetfeld zu gewährleisten. Die Untersuchungsröhre kann insbesondere hinsichtlich ihrer Innenseite, in der der Patient zu platzieren ist, als zylindrische Röhre ausgebildet sein. Due to MRT technology, the examination tube of the MRT system is designed as an examination tube that is essentially closed on the peripheral side in order to ensure a uniform magnetic field. The examination tube can be designed as a cylindrical tube, in particular with regard to its inside, in which the patient is to be placed.
Das automatisierte Steuersystem dient zur Steuerung des Roboters abhängig von den Bildern der MRT-Bildgebung. Die Funktion des Steuersystems kann z.B. mittels eines intraoperativen Realtime Imaging auf Basis der MRT-Bilder gesteuert werden. Dabei können z.B. durch Künstliche-Intelligenz-Funktionen (Kl) die Bilder ausgewertet werden und Zielstrukturen am Patienten erkannt werden, die Gegenstand der Operation sein sollen. Auch nach einer Verlagerung solcher Strukturen beispielsweise durch operative Manipulation können die Strukturen wieder automatisch identifiziert werden. The automated control system is used to control the robot depending on the images of the MRI imaging. The function of the control system can be controlled, for example, by means of intraoperative real-time imaging based on the MRT images. For example, the images can be evaluated by artificial intelligence functions (KI) and target structures on the patient that are to be the subject of the operation can be identified. Even after such structures have been relocated, for example as a result of operational manipulation, the structures can be automatically identified again.
Gemäß einer vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, dass die im Übrigen umfangseitig geschlossen ausgebildete Untersuchungsröhre eine oder bevorzugt mehrere umfangseitige Durchgangsöffnungen, insbesondere radial von Außen in den Innenraum des MRT-Systems verlaufende Durchgangsbohrungen, hat, durch die jeweils ein Roboterarm des Roboters durchführbar ist, wobei das Steuersystem dazu eingerichtet ist, bei der Durchführung der autonomen und/oder ferngesteuerten Operationen am Patienten mittels eines oder bevorzugt mehrerer Roboterarme des Roboters durch eine oder mehrere Durchgangsöffnungen hindurch automatisiert Manipulationen am Patienten durchzuführen. Vorteilhafterweise wird somit eine besondere Gestaltung des MRT-Systems vorgeschlagen, bei dem die erwähnten umfangsseitigen Durchgangsöffnungen im ansonsten geschlossenen Mantel der Untersuchungsröhre vorhanden sind. Dabei sind die Spulen und Magnete des MRT- Systems derart gestaltet und angeordnet, dass innerhalb der Untersuchungsröhre, wo der Patient zu platzieren ist, dennoch die für eine gute Bildgebung erforderliche hohe Homogenität des Magnetfeldes vorhanden ist. Die nicht schlitzförmigen Durchgangsöffnungen haben jeweils eine über den Umfang der Untersuchungsröhre stark begrenzte Breite. Ihr vom Zentrum der Untersuchungsröhre gemessener Öffnunge- winkel beträgt bevorzugt weniger als 10°. Durch die Bereitstellung mehrerer radialer Durchgangsbohrungen, die über den Umfang und ggf. über die Länge der Untersuchungsröhre verteilt angeordnet sind, kann bei reduzierter Beeinträchtigung der Homogenität des Magnetfeldes eine verbesserte Erreichbarkeit der Operationsstellen sichergestellt werden. Vorteilhaft ist es, wenn mindestens zwei Durchgangsöffnungen beidseits einander gegenüberliegend am Mantel der Untersuchungsröhre vorgesehen sind. Zumindest die in die Durchgangsbohrungen eingebrachten Bereiche des Roboters sollten dann nicht magnetisch und/oder nicht metallisch sein. According to an advantageous embodiment of the invention, it is provided that the examination tube, which is otherwise closed on the peripheral side, has one or preferably several peripheral through openings, in particular through bores running radially from the outside into the interior of the MRI system, through which a robot arm of the robot can be passed, wherein the control system is set up to automatically perform manipulations on the patient through one or more passage openings when performing the autonomous and/or remote-controlled operations on the patient by means of one or preferably multiple robot arms of the robot. Advantageously, a special design of the MRT system is thus proposed, in which the peripheral through-openings mentioned are present in the otherwise closed jacket of the examination tube. The coils and magnets of the MRT system are designed and arranged in such a way that the high degree of homogeneity of the magnetic field required for good imaging is nevertheless present within the examination tube where the patient is to be placed. The through-openings that are not in the form of slits each have a thickness over the circumference of the examination tube limited width. Its opening angle, measured from the center of the examination tube, is preferably less than 10°. By providing a plurality of radial through bores, which are arranged distributed over the circumference and possibly over the length of the examination tube, improved accessibility of the surgical sites can be ensured with reduced impairment of the homogeneity of the magnetic field. It is advantageous if at least two passage openings are provided on both sides opposite one another on the casing of the examination tube. At least the areas of the robot introduced into the through-holes should then not be magnetic and/or not metallic.
Gemäß einer vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, dass zumindest diejenigen Teile des Antriebssystems des Roboters, die sich in der Untersuchungsröhre befinden, nichtelektrische und nichtmagnetische Komponenten sind, wie z.B. hydraulische und/oder pneumatische Komponenten und/oder Seilzüge. So kann der Roboter z.B. ein hydraulisch und/oder pneumatisch betriebenes Antriebssystem und/oder ein mit Seilzügen betriebenes Antriebssystem zur Betätigung eines oder mehrerer Roboterarme des Roboters haben. Hierdurch kann der Roboter MRTkompatibel gestaltet werden. According to an advantageous embodiment of the invention, it is provided that at least those parts of the robot's drive system that are located in the examination tube are non-electrical and non-magnetic components, such as hydraulic and/or pneumatic components and/or cable pulls. For example, the robot can have a hydraulically and/or pneumatically operated drive system and/or a cable-operated drive system for actuating one or more robotic arms of the robot. As a result, the robot can be designed to be MRI-compatible.
Gemäß einer vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, dass das Steuersystem dazu eingerichtet ist, Bilder der MRT-Bildgebung mittels wenigstens einer Künstliche-Intelligenz-Funktion auszuwerten und hierdurch bestimmte Zielstrukturen am Patienten zu erkennen. Die Künstliche-Intelligenz-Funktion kann z.B. einen oder mehrere der folgenden Algorithmen enthalten: Random Forest, Support Vector Machine, Multi-Layer Perceptron, Convolutional Neural Network, Recurrent Neural Network, Deep Learning. According to an advantageous embodiment of the invention, it is provided that the control system is set up to evaluate images of the MRT imaging using at least one artificial intelligence function and thereby to recognize specific target structures on the patient. For example, the artificial intelligence function may include one or more of the following algorithms: Random Forest, Support Vector Machine, Multi-Layer Perceptron, Convolutional Neural Network, Recurrent Neural Network, Deep Learning.
Gemäß einer vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, dass der Roboter als mehrarmiger Roboter oder als Anordnung mehrerer Roboter mit wenigstens zwei vom Steuersystem steuerbaren Roboterarmen ausgebildet ist. Damit kann unter Nutzung von mehreren Durchgangsöffnungen im Mantel der Untersuchungsröhre, bevorzugt radiale Durchgangsbohrungen, ein gleichzeitiger Zugang aus unterschiedlichen Angriffswinkeln auf eine ödere mehrere Operationsstellen ermöglicht werden. Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen unter Verwendungen von Zeichnungen näher erläutert. According to an advantageous embodiment of the invention, it is provided that the robot is designed as a multi-armed robot or as an arrangement of several robots with at least two robot arms that can be controlled by the control system. In this way, simultaneous access from different angles to one or more surgical sites can be made possible by using a plurality of through-openings in the jacket of the examination tube, preferably radial through-bores. The invention is explained in more detail below on the basis of exemplary embodiments using drawings.
Es zeigen Show it
Figur 1 ein medizinisches System mit einem MRT-System in seitlicher Schnittdarstellung, FIG. 1 shows a medical system with an MRT system in a sectional view from the side,
Figur 2 das medizinische System gemäß Figur 1 in einer Ansicht in Längsrichtung der Untersuchungsröhre. FIG. 2 shows the medical system according to FIG. 1 in a view in the longitudinal direction of the examination tube.
Die Figur 1 zeigt ein medizinisches System 1 , das ein MRT-System 2 aufweist. Das MRT-System 2 weist eine Untersuchungsröhre 3 auf, die tunnelförmig mit einem Innenraum 4 gestaltet ist. Im Innenraum 4 kann ein Patient 5 zumindest mit einem wesentlichen oder dem überwiegenden Teil seines Körpers platziert werden, z.B. auf einer Liege 6. Die Untersuchungsröhre 3 ist über Leitungen 7 mit einer MRT-Steuer- einheit 8 verbunden. Die MRT-Steuereinheit 8 steuert die Untersuchungsröhre 3 zur Erzeugung der notwendigen Magnetfelder an und empfängt über die Leitungen 7 erfasste Signale, die in der MRT-Steuereinheit 8 zu Bildern der MRT-Bildgebung verarbeitet werden. Die Bilder können z.B. auf einem Bildschirm 9 angezeigt werden. FIG. 1 shows a medical system 1 which has an MRT system 2 . The MRT system 2 has an examination tube 3 which is designed in the form of a tunnel with an interior 4 . A patient 5 can be placed in the interior 4 with at least a substantial part or the majority of his body, e.g. on a bed 6 . The examination tube 3 is connected to an MRT control unit 8 via lines 7 . The MRT control unit 8 controls the examination tube 3 to generate the necessary magnetic fields and receives detected signals via the lines 7, which are processed in the MRT control unit 8 to form images of the MRT imaging. The images can be displayed on a screen 9, for example.
Die MRT-Steuereinheit 8 ist zudem mit einem automatisierten Steuersystem 10 zur Steuerung eines Roboters 11 verbunden. Dem Steuersystem 10 werden von der MRT-Steuereinheit 8 in Echtzeit die Bilder der MRT-Bildgebung zugeführt. Diese Bilder werden in dem Steuersystem 10 ausgewertet und hierdurch werden bestimmte Zielstrukturen am Patienten 5 erkannt, an denen eine Operation mittels des Roboters 11 autonom und/oder ferngesteuert durchgeführt werden soll. Hierfür steuert das Steuersystem 10 den Roboterarm 12 des Roboters 11 an. The MRT control unit 8 is also connected to an automated control system 10 for controlling a robot 11 . The MRT control unit 8 supplies the control system 10 with the images of the MRT imaging in real time. These images are evaluated in the control system 10 and as a result specific target structures on the patient 5 are identified, on which an operation is to be carried out autonomously and/or remotely by means of the robot 11 . For this purpose, the control system 10 controls the robot arm 12 of the robot 11 .
Die Untersuchungsröhre 3 ist im Wesentlichen vergleichbar aufgebaut wie eine konventionelle Untersuchungsröhre eines Magnetresonanztomographen, z.B. mit einer Gradientenspule in der Nähe des Innenumfangs der Untersuchungsröhre, mehreren die Gradientenspule umgebenden Magneten sowie eine z.B. innerhalb der Gradientenspule angeordnete Radiofrequenzantenne oder Radiofrequenzspule. Die Gradientenspule sorgt dabei für homogenes Magnetfeld. Mittels der Radiofrequenzantenne oder Radiofrequenzspule werden Radiowellen ausgestrahlt, die eine Anregung der Wasserstoffatome im Patienten verursachen. Zudem kann eine zusätzliche Spule in Form einer Scannerspule vorhanden sein, die ein induziertes Signal vom Patienten aufnimmt, das dann von der MRT-Steuereinheit 8 zu den MRT-Bilddaten verarbeitet werden kann. The examination tube 3 is essentially constructed in a similar way to a conventional examination tube of a magnetic resonance tomograph, eg with a gradient coil near the inner circumference of the examination tube, several magnets surrounding the gradient coil and a radio frequency antenna or radio frequency coil arranged eg within the gradient coil. The gradient coil ensures a homogeneous magnetic field. By means of the radio frequency antenna or radio frequency coil, radio waves are emitted, which excite the cause hydrogen atoms in the patient. In addition, an additional coil in the form of a scanner coil can be present, which picks up an induced signal from the patient, which can then be processed by the MRT control unit 8 to form the MRT image data.
Im Unterschied zu einem konventionellen MRT-System hat das in Figur 1 dargestellte MRT-System 2 eine Untersuchungsröhre 3, bei der eine oder mehrere umfangseitige Durchgangsöffnungen 13 vorhanden sind, die von der Außenseite zur Innenseite der Untersuchungsröhre 3 führen, das heißt den Mantel vollständig durchdringen. Durch solche Durchgangsöffnungen 13 kann jeweils ein Roboterarm 12 geführt werden, so dass ein mit seinem Antriebsmechanismus außerhalb der Untersuchungsröhre platzierter Roboter 11 mit dem Roboterarm 12 durch eine solche Durchgangsöffnung 13 hindurchgreifen kann und Manipulationen am Patienten 5 durchführen kann. In contrast to a conventional MRI system, the MRI system 2 shown in Figure 1 has an examination tube 3 in which there are one or more peripheral through openings 13 which lead from the outside to the inside of the examination tube 3, i.e. completely penetrate the jacket . A robot arm 12 can be guided through such passage openings 13 so that a robot 11 placed with its drive mechanism outside the examination tube can reach through such a passage opening 13 with the robot arm 12 and carry out manipulations on the patient 5 .
Die Figur 2 zeigt beispielhaft die Durchführung einer autonomen und/oder ferngesteuerten Operation am Patienten 5, der sich innerhalb der Untersuchungsröhre 3 befindet. Es sind in diesem Fall zwei Roboter 11 im Einsatz, die jeweils mit ihren Roboterarmen 12 durch Durchgangsöffnungen 13 im Mantel der Untersuchungsröhre 3 hindurchgreifen und beispielsweise eine Darmoperation durchführen. Um für das Steuersystem 10 fest definierte, unveränderliche Betriebsparameter der Roboter 11 zu garantieren, können die Roboter 11 zusammen mit der Untersuchungsröhre 3 auf einer gemeinsamen Plattform 14 fest montiert sein, so dass sich die Positionen dieser Elemente zueinander während der Durchführung einer Operation nicht verändern. FIG. 2 shows an example of how an autonomous and/or remote-controlled operation is carried out on the patient 5 who is inside the examination tube 3 . In this case, two robots 11 are used, each of which reaches through openings 13 in the casing of the examination tube 3 with their robotic arms 12 and, for example, performs an intestinal operation. In order to guarantee firmly defined, unchangeable operating parameters of the robots 11 for the control system 10, the robots 11 can be permanently mounted together with the examination tube 3 on a common platform 14, so that the positions of these elements relative to one another do not change while an operation is being carried out.

Claims

7 Patentansprüche: 7 patent claims:
1 . Medizinisches System (1 ) mit zumindest den folgenden Merkmalen: a) ein Magnetresonanztomografie (MRT)-System (2) mit einer Untersuchungsröhre (3), in der ein Patient (5) vollständig oder zumindest mit einem wesentlichen oder dem überwiegenden Teil seines Körpers platzierbar ist, b) ein mit der MRT-Bildgebung kompatibler Roboter (11 ), durch den die MRT- Bildgebung zumindest im Wesentlichen nicht gestört wird, c) ein automatisiertes Steuersystem (10) zur Steuerung des Roboters (11 ), das zum Durchführen von autonomen und/oder ferngesteuerten Operationen am Patienten (5) eingerichtet ist, wobei dem Steuersystem (10) intraoperativ in Echtzeit Bilder der MRT-Bildgebung zugeführt sind, wobei das Steuersystem (10) dazu eingerichtet ist, den Roboter (11 ) bei der Durchführung der autonomen und/oder ferngesteuerten Operationen in Abhängigkeit der Bilder der MRT-Bildgebung zu steuern. 1 . Medical system (1) having at least the following features: a) a magnetic resonance imaging (MRT) system (2) with an examination tube (3) in which a patient (5) can be placed completely or at least with a substantial or the majority of his body b) a robot (11) that is compatible with MRT imaging and by which the MRT imaging is at least essentially not disturbed, c) an automated control system (10) for controlling the robot (11) that is used to carry out autonomous and/or remote-controlled operations on the patient (5), the control system (10) being supplied with images of the MRI imaging intraoperatively in real time, the control system (10) being set up to guide the robot (11) when carrying out the autonomous and/or to control remote-controlled operations depending on the images of the MRI imaging.
2. Medizinisches System nach Anspruch 1 , dadurch gekennzeichnet, dass die im Übrigen umfangseitig geschlossen ausgebildete Untersuchungsröhre (3) eine oder mehrere umfangseitige Durchgangsöffnungen (13) hat, durch die jeweils ein Roboterarm (12) des Roboters (11 ) durchführbar ist, wobei das Steuersystem (10) dazu eingerichtet ist, bei der Durchführung der autonomen und/oder ferngesteuerten Operationen am Patienten (5) mittels eines oder mehrerer Roboterarme (12) des Roboters (11 ) durch eine oder mehrere Durchgangsöffnungen (13) hindurch automatisiert Manipulationen am Patienten (5) durchzuführen. 2. Medical system according to claim 1, characterized in that the examination tube (3), which is otherwise closed on the peripheral side, has one or more peripheral through-openings (13), through which a robot arm (12) of the robot (11) can be passed, wherein the Control system (10) is set up to automatically perform manipulations on the patient ( 5) to perform.
3. Medizinisches System nach Anspruch 2, dadurch gekennzeichnet, dass mindestens zwei Durchgangsöffnungen (13) beidseits einander gegenüberliegend am Mantel der Untersuchungsröhre (3) vorgesehen sind. 3. Medical system according to claim 2, characterized in that at least two passage openings (13) are provided on both sides opposite one another on the casing of the examination tube (3).
4. Medizinisches System nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass mehrere Durchgangsöffnungen (13) in Form von radial von außen durch den Mantel der Untersuchungsröhre (3) in den Innenraum der Untersuchungsröhre 8 4. Medical system according to claim 2 or 3, characterized in that several through openings (13) in the form of radially from the outside through the casing of the examination tube (3) into the interior of the examination tube 8th
(3) verlaufenden Durchgangsbohrungen über den Umfang und/oder die Länge der Untersuchungsröhre (3) verteilt am Mantel der Untersuchungsröhre (3) angeordnet sind. Medizinisches System nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, dass der durch die mindestens eine Durchgangsöffnungen (13) hindurchführbare Roboterarm (12) nicht magnetisch und/oder nicht metallisch ist. Medizinisches System nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zumindest diejenigen Teile des Antriebssystems des Roboters (11 ), die sich in der Untersuchungsröhre (3) befinden, nichtelektrische und nichtmagnetische Komponenten sind, wie z.B. hydraulische und/oder pneumatisch Komponenten und/oder Seilzüge. Medizinisches System nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Steuersystem (10) dazu eingerichtet ist, Bilder der MRT-Bildgebung mittels wenigstens einer Künstliche-Intelligenz-Funktion auszuwerten und hierdurch bestimmte Zielstrukturen am Patienten (5) zu erkennen. Medizinisches System nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Roboter (11 ) als mehrarmiger Roboter oder als Anordnung mehrerer Roboter mit wenigstens zwei vom Steuersystem (10) steuerbaren Roboterarmen (12) ausgebildet ist. (3) running through bores distributed over the circumference and/or the length of the examination tube (3) on the jacket of the examination tube (3). Medical system according to one of Claims 2 to 5, characterized in that the robot arm (12) which can be guided through the at least one passage opening (13) is non-magnetic and/or non-metallic. Medical system according to one of the preceding claims, characterized in that at least those parts of the drive system of the robot (11) that are located in the examination tube (3) are non-electrical and non-magnetic components, such as hydraulic and/or pneumatic components and/or cables. Medical system according to one of the preceding claims, characterized in that the control system (10) is set up to evaluate images of the MRT imaging using at least one artificial intelligence function and thereby recognize specific target structures on the patient (5). Medical system according to one of the preceding claims, characterized in that the robot (11) is designed as a multi-armed robot or as an arrangement of several robots with at least two of the control system (10) controllable robot arms (12).
PCT/EP2022/025474 2021-10-19 2022-10-18 Medical system WO2023066520A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102021127102.9A DE102021127102A1 (en) 2021-10-19 2021-10-19 medical system
DEDE102021127102.9 2021-10-19

Publications (1)

Publication Number Publication Date
WO2023066520A1 true WO2023066520A1 (en) 2023-04-27

Family

ID=84360207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/025474 WO2023066520A1 (en) 2021-10-19 2022-10-18 Medical system

Country Status (2)

Country Link
DE (1) DE102021127102A1 (en)
WO (1) WO2023066520A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06319714A (en) * 1993-05-13 1994-11-22 Hitachi Medical Corp Magnetic resonance imaging apparatus
EP2070487A2 (en) * 2002-08-13 2009-06-17 Microbotics Corporation Microsurgical robot system
WO2014058833A1 (en) * 2012-10-08 2014-04-17 The Johns Hopkins University Mri-safe robot for transrectal prostate biopsy
US20170371001A1 (en) 2016-06-22 2017-12-28 Viewray Technologies, Inc. Magnetic resonance imaging
EP3266381A1 (en) * 2010-12-22 2018-01-10 ViewRay Technologies, Inc. System and method for image guidance during medical procedures
US20200281670A1 (en) * 2019-03-08 2020-09-10 Moskowitz Family Llc Systems and methods for autonomous robotic surgery
US20210068701A1 (en) 2019-09-06 2021-03-11 Synaptive Medical Inc. Magnetic resonance imaging system and methods for use with a medical robotic system
WO2021150902A1 (en) 2020-01-23 2021-07-29 Promaxo, Inc. Mri-guided robotic systems and methods for biopsy

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06319714A (en) * 1993-05-13 1994-11-22 Hitachi Medical Corp Magnetic resonance imaging apparatus
EP2070487A2 (en) * 2002-08-13 2009-06-17 Microbotics Corporation Microsurgical robot system
EP3266381A1 (en) * 2010-12-22 2018-01-10 ViewRay Technologies, Inc. System and method for image guidance during medical procedures
WO2014058833A1 (en) * 2012-10-08 2014-04-17 The Johns Hopkins University Mri-safe robot for transrectal prostate biopsy
US20170371001A1 (en) 2016-06-22 2017-12-28 Viewray Technologies, Inc. Magnetic resonance imaging
US20200281670A1 (en) * 2019-03-08 2020-09-10 Moskowitz Family Llc Systems and methods for autonomous robotic surgery
US20210068701A1 (en) 2019-09-06 2021-03-11 Synaptive Medical Inc. Magnetic resonance imaging system and methods for use with a medical robotic system
WO2021150902A1 (en) 2020-01-23 2021-07-29 Promaxo, Inc. Mri-guided robotic systems and methods for biopsy

Also Published As

Publication number Publication date
DE102021127102A1 (en) 2023-04-20

Similar Documents

Publication Publication Date Title
EP3103410B1 (en) Device and method for robot-assisted surgery
DE10343494B4 (en) Magnetically navigable device for use in the field of medical endoscopy
DE60317861T2 (en) Distal aiming device for locking screws in intramedullary nails
DE69732362T2 (en) Method for calibrating a probe
DE19732784C1 (en) Positioning system and method for exact position determination of a manually operated manipulator in an MR tomograph
DE102006058329B4 (en) Magnetic resonance system with a high frequency shield
DE10341092B4 (en) Installation for non-contact movement and / or fixation of a magnetic body in a working space using a magnetic coil system
DE10346276B4 (en) System for the automated localization of lesions in the gastrointestinal tract for therapy with laser light of an endorobot
EP3103409A1 (en) Device and method for robot-assisted surgery and positioning assistance unit
DE102007052446B4 (en) Head coil for a magnetic resonance apparatus and use of a head coil in magnetic resonance tomography
DE10353110B4 (en) Actuator platform for guiding medical instruments in minimally invasive interventions
DE19653535C1 (en) Position determination method for local antenna in medical MRI system
DE202013011370U1 (en) RF shielding connection in an MRI locking device
DE19629890A1 (en) Magnetic resonance system suitable for both tracking and imaging
DE112011100190T5 (en) Surface receiving coils for use in thermal ablation procedures
DE10003269A1 (en) Device and method for positioning treatment devices or treatment support devices
DE10359981A1 (en) System and method for in vivo positioning and orientation determination of an endoscopy capsule or an endo-robot in the context of a wireless endoscopy
DE102013208610A1 (en) Patient Transport System
WO2007048515A1 (en) Apparatus and method for finding an appliance
DE102010064096A1 (en) Magnetic coil device
DE10030507C2 (en) Manipulator for interventional and operative interventions under CT / MRI control
DE102009013352B4 (en) Coil arrangements for guiding a magnetic object in a working space
WO2023066520A1 (en) Medical system
DE102021214562B3 (en) Magnetic resonance local coil for percutaneous MRI-guided needle intervention
DE102005012698A1 (en) Automatic navigation of a medical instrument within a blood vessel structure by using an imaging system and current instrument positional data which are then used with a determined vessel map and previously defined target points

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22808589

Country of ref document: EP

Kind code of ref document: A1