WO2023066347A1 - 用于随机接入的方法和装置 - Google Patents

用于随机接入的方法和装置 Download PDF

Info

Publication number
WO2023066347A1
WO2023066347A1 PCT/CN2022/126469 CN2022126469W WO2023066347A1 WO 2023066347 A1 WO2023066347 A1 WO 2023066347A1 CN 2022126469 W CN2022126469 W CN 2022126469W WO 2023066347 A1 WO2023066347 A1 WO 2023066347A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
terminal device
priority
indication information
random access
Prior art date
Application number
PCT/CN2022/126469
Other languages
English (en)
French (fr)
Inventor
李娇娇
任奎
酉春华
常俊仁
范强
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023066347A1 publication Critical patent/WO2023066347A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]

Definitions

  • the present application relates to the communication field, and more particularly, to a method and device for random access.
  • Random access is a step in the process of connecting an end device to a network.
  • the terminal device when the terminal device supports features (such as reduced capability, small packet data transmission, coverage enhancement, and network slicing enhancement, etc.), the terminal device needs to consider the priority of different features when selecting random access resources.
  • the embodiment of the present application provides a method and device for random access, the terminal device can determine the priority order of multiple characteristics based on the received first indication information, and configure the priority order of multiple characteristics through the first indication information , in order to improve the flexibility of prioritization order configuration of multiple features.
  • a method for random access is provided, and the method may be executed by a network device, or may also be executed by a component (such as a chip or a circuit) of the network device, which is not limited, for the convenience of description , the following takes the execution by the network device as an example for illustration.
  • the method for random access includes: the network device determines the priority sequence of multiple characteristics, and the priority sequence of the multiple characteristics is used for selecting random access resources; the network device sends first indication information to the terminal device, The first indication information is used to indicate the priority order of the multiple characteristics.
  • the network device can configure the priority order of multiple characteristics through the first indication information, so that the terminal device can determine the priority order of multiple characteristics based on the received first indication information.
  • the first indication Information configures the priority order of multiple features, improving the flexibility of the priority order configuration of multiple features.
  • configuring the priority order of multiple characteristics by the network device through the first indication information can also improve the control of the network device over the terminal device.
  • different characteristics among the multiple characteristics satisfy at least one of the following: the different characteristics correspond to different business requirements, the different characteristics correspond to different transmission methods, The different characteristics correspond to different device types, the different characteristics correspond to different application scenarios, or the different characteristics correspond to different functions.
  • the first indication information is included in system messages and/or dedicated signaling.
  • the dedicated signaling is a radio resource control (radio resource control, RRC) reconfiguration message or an RRC release (RRCRelease) message.
  • RRC radio resource control
  • RRCRelease RRC release
  • the above-mentioned first indication information can be sent to the terminal device through a system message, and can also be sent to the terminal device through a dedicated signaling, which means that the first indication information can be sent in different ways to improve the flexibility of the solution.
  • the method further includes: the network device sending second indication information to the terminal device, where the second indication information is used to indicate the priority order of the multiple characteristics effective duration.
  • the network device can configure the valid duration of the priority order of multiple characteristics through the second indication information, thereby improving the timeliness of the configured priority order of multiple characteristics.
  • the method before the network device sends the first indication information to the terminal device, the method further includes: the network device receives third indication information from the terminal device, the first indication information The three indication information are used to indicate the priority order of the multiple characteristics expected by the terminal device.
  • the terminal device can report the priority order of multiple characteristics expected by itself through the third indication information, so that the network device can take into account the multiple characteristics expected by the terminal device when determining the priority order of multiple characteristics Therefore, the priority order of multiple characteristics determined by the network device can better meet the requirements of the terminal device.
  • the first indication information is used to indicate the priority order of the multiple characteristics, including: the first indication information is used to indicate the order of the multiple characteristics, The order of the multiple characteristics is used to determine the priority order of the multiple characteristics; or, the first indication information indicates the priority information of the multiple characteristics, and the priority information includes the characteristics of at least one of the multiple characteristics Priority information, where the priority information is used to determine the priority order of the multiple characteristics.
  • the above first indication information may directly or indirectly indicate the priority order of multiple characteristics, improving the flexibility of the solution.
  • a method for random access is provided, and the method may be executed by a terminal device, or may also be executed by a component (such as a chip or a circuit) of the terminal device, which is not limited, for the convenience of description , the following takes execution by a terminal device as an example for illustration.
  • the method for random access includes: a terminal device receives first indication information from a network device, where the first indication information is used to indicate the priority order of multiple characteristics; the terminal device determines the multiple characteristics according to the first indication information The priority order of multiple characteristics is used for the selection of random access resources.
  • the terminal device can determine the priority order of multiple characteristics based on the received first indication information.
  • the priority order of multiple characteristics is configured through the first indication information, and the priority order of multiple characteristics is improved. Configuration flexibility.
  • different characteristics among the multiple characteristics satisfy at least one of the following: the different characteristics correspond to different business requirements, the different characteristics correspond to different transmission methods, The different characteristics correspond to different device types, the different characteristics correspond to different application scenarios, or the different characteristics correspond to different functions.
  • the first indication information is included in system messages and/or dedicated signaling.
  • the above-mentioned first indication information can be sent to the terminal device through a system message, and can also be sent to the terminal device through a dedicated signaling, indicating that the first indication information can be sent in different ways to improve the flexibility of the solution.
  • the method further includes: the terminal device receiving second indication information from the network device, where the second indication information is used to indicate the priority of the plurality of characteristics The effective duration of the sequence.
  • the network device can configure the valid duration of the priority order of multiple characteristics through the second indication information, thereby improving the timeliness of the configured priority order of multiple characteristics.
  • the method before the terminal device receives the first indication information from the network device, the method further includes: the terminal device sends third indication information to the network device, the first indication information The three indication information are used to indicate the priority order of the multiple characteristics expected by the terminal device.
  • the terminal device can report the priority order of multiple characteristics expected by itself through the third indication information, so that the network device can take into account the multiple characteristics expected by the terminal device when determining the priority order of multiple characteristics Therefore, the priority order of multiple characteristics determined by the network device can better meet the requirements of the terminal device.
  • the method further includes: the terminal device selects a random access resource according to the first indication information.
  • the first indication information indicates that the priority of the first characteristic is higher than the priority of the second characteristic
  • the terminal device selects random access according to the first indication information
  • the resource includes: the terminal device determines that it is configured with a first resource, and the first resource is a random access resource of the first characteristic, or the first resource is a random access resource of a combination of first characteristics including the first characteristic resource; the terminal device is determined to be configured with a second resource, the second resource is a random access resource including a combination of the first characteristic and the second characteristic, and the random access resource is included in the second resource .
  • the first indication information indicates that the priority of the first characteristic is higher than the priority of the second characteristic
  • the method further includes: the terminal device on the second resource Failure to perform random access, the second resource is a random access resource that includes a combination of the first characteristic and the second characteristic; the terminal device selects a random access resource according to the first indication information, including: the The terminal device determines that a first resource is configured, and the first resource is a random access resource of the first characteristic, or the first resource is a random access resource of a first characteristic combination including the first characteristic, and the random access resource The incoming resource is included in the first resource.
  • the first indication information is used to indicate the priority order of the multiple characteristics, including: the first indication information is used to indicate the order of the multiple characteristics, The order of the multiple characteristics is used to determine the priority order of the multiple characteristics; or, the first indication information indicates the priority information of the multiple characteristics, and the priority information includes the characteristics of at least one of the multiple characteristics Priority information, where the priority information is used to determine the priority order of the multiple characteristics.
  • the above first indication information may directly or indirectly indicate the priority order of multiple characteristics, improving the flexibility of the solution.
  • a device for random access is provided, and the device is used to execute the method provided in the first aspect above.
  • the random access may include a unit and/or module, such as a processing unit and/or a communication unit, for performing the first aspect or the method provided by any of the above-mentioned implementation manners of the first aspect.
  • the device for random access is a network device.
  • the communication unit may be a transceiver, or an input/output interface;
  • the processing unit may be at least one processor.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the device for random access is a chip, a chip system or a circuit in a network device.
  • the communication unit may be an input/output interface, an interface circuit, an output circuit, an input circuit, a pipe on the chip, a chip system or a circuit. feet or related circuits, etc.; the processing unit may be at least one processor, processing circuit or logic circuit, etc.
  • a device for random access is provided, and the device for random access is used to execute the method provided in the second aspect above.
  • the device for random access may include a unit and/or module for executing the second aspect or the method provided by any of the above-mentioned implementation manners of the second aspect, such as a processing unit and/or a communication unit.
  • the apparatus for random access is a terminal device.
  • the communication unit may be a transceiver, or an input/output interface;
  • the processing unit may be at least one processor.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the device for random access is a chip, a chip system or a circuit in a terminal device.
  • the communication unit may be an input/output interface, an interface circuit, an output circuit, an input circuit, a pipe on the chip, a chip system or a circuit feet or related circuits, etc.;
  • the processing unit may be at least one processor, processing circuit or logic circuit, etc.
  • a communication device includes: at least one processor, at least one processor is coupled to at least one memory, at least one memory is used to store computer programs or instructions, and at least one processor is used to obtain from at least one The computer program or instruction is invoked and executed in the memory, so that the communication device executes the method in the first aspect or any possible implementation manner thereof.
  • the apparatus is a network device.
  • the communication device is a chip, a chip system or a circuit in a network device.
  • a communication device includes: at least one processor, the at least one processor is coupled to at least one memory, the at least one memory is used to store computer programs or instructions, and the at least one processor is used to read from the at least one memory
  • the computer program or instruction is invoked and executed in the communication device, so that the communication device executes the method in the second aspect or any possible implementation manner thereof.
  • the apparatus is a terminal device.
  • the apparatus is a chip, a chip system, or a circuit in a terminal device.
  • the present application provides a processor configured to execute the methods provided in the above aspects.
  • the processor's output and reception, input and other operations can also be understood as the sending and receiving operations performed by the radio frequency circuit and the antenna, which is not limited in this application.
  • a computer-readable storage medium stores program code for execution by a device, and the program code includes the above-mentioned first aspect or any one of the above-mentioned implementation methods of the first aspect Or the second aspect or the method provided by any of the above-mentioned implementation manners of the second aspect.
  • a computer program product containing instructions.
  • the computer program product When the computer program product is run on a computer, it causes the computer to execute the above-mentioned first aspect or any one of the above-mentioned implementations of the first aspect or the second aspect or the second aspect.
  • the method provided by any one of the above-mentioned implementation manners of the aspect.
  • a chip in a tenth aspect, includes a processor and a communication interface.
  • the processor reads the instructions stored in the memory through the communication interface, and executes the first aspect or any of the above-mentioned implementation methods of the first aspect or the second aspect. Or the method provided by any one of the above-mentioned implementation manners of the second aspect.
  • the chip further includes a memory, in which computer programs or instructions are stored, and the processor is used to execute the computer programs or instructions stored in the memory, and when the computer programs or instructions are executed, the processor is used to execute The method provided by the first aspect or any one of the above implementations of the first aspect or the second aspect or any one of the above implementations of the second aspect.
  • a communication system in an eleventh aspect, includes the device for random access shown in the third aspect and the fourth aspect.
  • a communication method is provided.
  • the method can be executed by a terminal device, or can also be executed by a component (such as a chip or a circuit) of the terminal device. This is not limited. For the convenience of description, the following uses The execution by the terminal device is taken as an example for description.
  • the communication method includes: a terminal device determines the SCS group to which at least one subcarrier space (SCS) belongs; the terminal device determines the smallest SCS in the SCS group; the terminal device determines the wireless link corresponding to the smallest SCS Control (radio link control, RLC) round trip time (round trip time, RTT), this RLC RTT is used for determining layer 2 buffer size, and wherein, this at least one SCS comprises:
  • the terminal device determines the SCS group to which at least one SCS belongs, including:
  • the terminal device determines the SCS group to which at least one SCS belongs according to protocol predefined; or,
  • the terminal device receives fifth indication information from the network device, where the fifth indication information is used to indicate the SCS group to which at least one SCS belongs.
  • the terminal device can determine the SCS group to which at least one SCS belongs in different ways, thereby improving the flexibility of the solution.
  • the method further includes: the terminal device determines the mapping relationship between the SCS and the SCS group.
  • the RLC RTT and the layer 2 cache size satisfy the following relationship:
  • MaxDLDataRate(i) is the maximum downlink data rate supported by the frequency band or combination of frequency bands where the SCS belongs to the i-th SCS group.
  • MaxULDataRate(i) is the maximum uplink data rate supported by the frequency band or combination of frequency bands where the SCS belongs to the i-th SCS group.
  • the RLC RTT and the layer 2 cache size satisfy the following relationship:
  • N is the number of SCS groups.
  • MaxDLDataRate is the maximum downlink data rate supported by the terminal device
  • MaxULDataRate is the maximum uplink data rate supported by the terminal device.
  • a thirteenth aspect provides a communication method, which can be executed by a network device, or can also be executed by a component (such as a chip or a circuit) of the network device, which is not limited.
  • a component such as a chip or a circuit
  • the communication method includes: the network device determines the SCS group to which at least one SCS belongs, and the RLC RTT corresponding to the smallest SCS in the SCS group is used to determine the layer 2 cache size; the network device sends fifth indication information to the terminal device, the fifth The indication information is used to indicate the SCS group to which at least one SCS belongs, where the at least one SCS includes:
  • a fourteenth aspect provides a communication device.
  • the device may be the terminal device of the twelfth aspect, or may also be implemented by a component (such as a chip or a circuit) of the terminal device of the twelfth aspect. Not limited.
  • the communication device includes: a processing unit, configured to determine the SCS group to which at least one SCS belongs; the processing unit, configured to determine the minimum SCS in the SCS group; the processing unit, configured to determine the RLC RTT corresponding to the minimum SCS, The RLC RTT is used to determine the layer 2 cache size, wherein the at least one SCS includes:
  • the processing unit is configured to determine the SCS group to which at least one SCS belongs, including:
  • the processing unit is configured to determine the SCS group to which at least one SCS belongs according to protocol predefinition; or,
  • the apparatus further includes: a receiving unit, configured to receive fifth indication information from the network device, where the fifth indication information is used to indicate the SCS group to which at least one SCS belongs.
  • the processing unit is configured to determine a mapping relationship between SCSs and SCS groups.
  • a fifteenth aspect provides a communication device.
  • the device may be the network device of the thirteenth aspect, or may also be implemented by a component (such as a chip or a circuit) of the network device of the twelfth aspect. Not limited.
  • the communication device includes: a processing unit, configured to determine the SCS group to which at least one SCS belongs, and the RLC RTT corresponding to the smallest SCS in the SCS group is used to determine the layer 2 cache size; a sending unit, configured to send a fifth indication to the terminal device information, the fifth indication information is used to indicate the SCS group to which at least one SCS belongs, where the at least one SCS includes:
  • a computer-readable storage medium stores program code for execution by a device, and the program code includes any one of the above-mentioned twelfth aspect or the twelfth aspect.
  • a computer program product containing instructions.
  • the computer program product When the computer program product is run on a computer, it causes the computer to execute the above-mentioned twelfth aspect or any one of the above-mentioned implementations of the twelfth aspect or the thirteenth aspect. Aspect or the method provided by any one of the above implementation manners of the thirteenth aspect.
  • a chip in an eighteenth aspect, includes a processor and a communication interface.
  • the processor reads the instructions stored in the memory through the communication interface, and executes the above-mentioned twelfth aspect or any one of the above-mentioned implementation methods of the twelfth aspect or The method provided by the thirteenth aspect or any one of the above implementation manners of the thirteenth aspect.
  • the chip further includes a memory, in which computer programs or instructions are stored, and the processor is used to execute the computer programs or instructions stored in the memory, and when the computer programs or instructions are executed, the processor is used to execute The method provided by the twelfth aspect or any one of the above implementation manners of the twelfth aspect or the thirteenth aspect or any one of the above implementation manners of the thirteenth aspect.
  • a communication system in a nineteenth aspect, includes the communication devices shown in the fourteenth aspect and the fifteenth aspect.
  • FIG. 1 is a schematic diagram of a communication system 100 applicable to an embodiment of the present application.
  • FIG. 2 are schematic diagrams of a communication manner between a network device and a terminal device.
  • Fig. 3 is a schematic flowchart of a four-step random access procedure.
  • Fig. 4 is a schematic flowchart of a two-step random access process.
  • Fig. 5 is a schematic flow chart of a method for random access provided by an embodiment of the present application.
  • FIG. 6 are schematic flow charts for a terminal device to select random access resources.
  • Fig. 7 is another schematic flow chart for a terminal device to select random access resources.
  • Fig. 8 is a schematic block diagram of a communication device provided according to an embodiment of the present application.
  • Fig. 9 is another schematic block diagram of a communication device provided according to an embodiment of the present application.
  • the technical solutions of the embodiments of the present application can be applied to various communication systems, such as: the fifth generation (5th generation, 5G) system or new radio (new radio, NR), long term evolution (long term evolution, LTE) system, LTE frequency Division duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex, TDD), etc.
  • 5G fifth generation
  • NR new radio
  • long term evolution long term evolution
  • LTE frequency Division duplex frequency division duplex
  • FDD frequency division duplex
  • TDD time division duplex
  • the technical solution provided by this application can also be applied to future communication systems, such as the sixth generation mobile communication system.
  • the technical solution of the embodiment of the present application can also be applied to device to device (device to device, D2D) communication, vehicle-to-everything (V2X) communication, machine to machine (machine to machine, M2M) communication, machine Type communication (machine type communication, MTC), and Internet of things (internet of things, IoT) communication system or other communication systems.
  • D2D device to device
  • V2X vehicle-to-everything
  • M2M machine to machine
  • MTC machine Type communication
  • IoT Internet of things
  • FIG. 1 is a schematic diagram of a communication system 100 applicable to an embodiment of the present application.
  • the communication system 100 may include at least one network device, such as the network device 110 shown in FIG. 1 ; the communication system 100 may also include at least one terminal device, such as the terminal device 120 shown in FIG. 1 .
  • the network device 110 and the terminal device 120 may communicate through a wireless link.
  • Each communication device, such as the network device 110 and the terminal device 120 may be configured with multiple antennas.
  • the configured multiple antennas may include at least one transmitting antenna for sending signals and at least one receiving antenna for receiving signals. Therefore, the communication devices in the communication system 100, such as the network device 110 and the terminal device 120, may communicate through the multi-antenna technology.
  • the network device and the terminal device can communicate in various ways, such as point-to-point communication between the network device and the terminal device, and communication between the network device and the terminal device. Communication between multiple hops (or relays) transmission methods, multiple network devices and terminal devices through dual connectivity (dual connectivity, DC) or multi-connection transmission methods, etc.
  • FIG. 2 As shown in (a) to (d) in FIG. 2 , (a) to (d) in FIG. 2 are schematic diagrams of a communication manner between a network device and a terminal device.
  • FIG. 2 shows the point-to-point transmission between the network equipment and the terminal equipment.
  • FIG. 2 is only exemplary, and does not constitute any limitation on the protection scope of the present application, and the communication mode between the network device and the terminal device is not limited in any way in the embodiment of the present application.
  • the transmission between the network device and the terminal device may be an uplink, a downlink, an access link, a backhaul (backhaul) link, or a side link (Sidelink), etc.
  • the terminal equipment (terminal equipment) in the embodiment of the present application may refer to an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a relay station, a remote station, a remote terminal, a mobile device, a user terminal (user terminal), a user equipment (user equipment, UE), terminal (terminal), wireless communication device, user agent or user device.
  • the terminal device can also be a cellular phone, a cordless phone, a session initiation protocol (session initiation protocol, SIP) phone, a wireless local loop (wireless local loop, WLL) station, a personal digital assistant (personal digital assistant, PDA), a Functional handheld devices, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in future 5G networks or future evolutions of public land mobile networks (public land mobile network, PLMN)
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • Functional handheld devices computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in future 5G networks or future evolutions of public land mobile networks (public land mobile network, PLMN)
  • PLMN public land mobile network
  • wearable devices can also be referred to as wearable smart devices, which is a general term for intelligently designing daily wear and developing wearable devices by applying wearable technology, such as glasses, Gloves, watches, clothing and shoes, etc.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • the terminal device can also be the terminal device in the IoT system.
  • IoT is an important part of the development of information technology in the future. Its main technical feature is to connect items to the network through communication technology, so as to realize Interconnection, an intelligent network that interconnects things.
  • the IOT technology can achieve massive connections, deep coverage, and terminal power saving through, for example, narrow band (NB) technology.
  • NB narrow band
  • the network device in this embodiment of the present application may be any device with a wireless transceiver function for communicating with a terminal device.
  • the equipment includes but is not limited to: evolved Node B (evolved Node B, eNB), radio network controller (radio network controller, RNC), Node B (Node B, NB), base station controller (base station controller, BSC) , base transceiver station (base transceiver station, BTS), home base station (home evolved NodeB, HeNB, or home Node B, HNB), baseband unit (baseBand unit, BBU), wireless fidelity (wireless fidelity, WIFI) system Access point (access point, AP), wireless relay node, wireless backhaul node, transmission point (transmission point, TP) or transmission and reception point (transmission and reception point, TRP), etc., can also be 5G, such as NR , a gNB in the system, or, a transmission point (TRP or TP), one or a group (including multiple antenna panels) antenna
  • a gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include an active antenna unit (AAU).
  • the CU implements some functions of the gNB, and the DU implements some functions of the gNB.
  • the CU is responsible for processing non-real-time protocols and services, and realizing the functions of radio resource control (radio resource control, RRC) and packet data convergence protocol (packet data convergence protocol, PDCP) layer.
  • the DU is responsible for processing physical layer protocols and real-time services, realizing the functions of the radio link control (radio link control, RLC) layer, media access control (media access control, MAC) layer and physical (physical, PHY) layer.
  • the AAU implements some physical layer processing functions, radio frequency processing and related functions of active antennas. Since the information of the RRC layer will eventually become the information of the PHY layer, or be transformed from the information of the PHY layer, under this architecture, high-level signaling, such as RRC layer signaling, can also be considered to be sent by the DU , or, sent by DU+AAU.
  • the network device may be a device including one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network devices in an access network (radio access network, RAN), and the CU can also be divided into network devices in a core network (core network, CN), which is not limited in this application.
  • a terminal device or a network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also called main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, for example, Linux operating system, Unix operating system, Android operating system, iOS operating system, or windows operating system.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiment of the present application does not specifically limit the specific structure of the execution subject of the method provided by the embodiment of the present application, as long as the program that records the code of the method provided by the embodiment of the present application can be run to provide the method according to the embodiment of the present application.
  • the execution subject of the method provided by the embodiment of the present application may be a terminal device or a network device, or a functional module in a terminal device or a network device that can call a program and execute the program.
  • various aspects or features of the present application may be implemented as a method, apparatus, or article of manufacture using standard programming and/or engineering techniques.
  • article of manufacture covers a computer program accessible from any computer readable device, carrier or media.
  • computer-readable media may include, but are not limited to: magnetic storage devices (e.g., hard disk, floppy disk, or tape, etc.), optical disks (e.g., compact disc (compact disc, CD), digital versatile disc (digital versatile disc, DVD) etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), card, stick or key drive, etc.).
  • magnetic storage devices e.g., hard disk, floppy disk, or tape, etc.
  • optical disks e.g., compact disc (compact disc, CD), digital versatile disc (digital versatile disc, DVD) etc.
  • smart cards and flash memory devices for example, erasable programmable read-only memory (EPROM), card, stick or key drive, etc.
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable storage medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing and/or carrying instructions and/or data.
  • Fig. 1 and Fig. 2 take the communication between a network device and a terminal device as an example to briefly describe a communication scenario applicable to the present application, and do not limit other applicable scenarios of the present application.
  • FIG. 1 and FIG. 2 are only simplified schematic diagrams for ease of understanding.
  • the communication system may also include other network devices or other terminal devices, which are not shown in FIG. 1 and FIG. 2 .
  • the communication system may also include core network equipment for managing terminal equipment and network equipment configuration, for example, including access and mobility management function (access and mobility management function, AMF) network elements, session management function (session management function (SMF) network element, user plane function (user plane function, UPF) network element, policy control function (policy control function, PCF) network element, etc.
  • AMF access and mobility management function
  • SMF session management function
  • UPF user plane function
  • PCF policy control function
  • PCF policy control function
  • Figure 1 and Figure 2 are the communication systems applicable to the embodiments of the present application.
  • Figure 1 and Figure 2 are the communication systems applicable to the embodiments of the present application.
  • the random access process refers to the process from when the terminal device sends a random access preamble (preamble) to try to access the network to when a basic signaling connection is established with the network.
  • the terminal device before the terminal device selects a random access channel opportunity (RACH occasion, RO) for sending the preamble, the terminal device needs to select an uplink carrier. For example, in the case where a supplementary uplink (supplementary uplink, SUL) or a normal uplink (normal uplink) NUL is configured, the terminal device can choose to work on the SUL or the NUL.
  • RACH occasion, RO random access channel opportunity
  • the terminal device After selecting the uplink carrier, the terminal device (eg, the terminal device in the RRC connection state) may need to perform a partial bandwidth (BWP) operation. For example, when the RO is not configured on the activated uplink BWP of the terminal device, the terminal device needs to switch the activated uplink BWP to the initial uplink BWP.
  • BWP partial bandwidth
  • the terminal device After selecting the uplink carrier or BWP operation, the terminal device needs to select a random access (RA) type, which can be understood as the terminal device needs to choose to perform two-step random access (as shown in Figure 4 below Perform two-step random access) or perform four-step random access (as shown in FIG. 3 below, perform four-step random access).
  • RA random access
  • the terminal device needs to select RACH resources: the terminal device can select the RO for sending the preamble according to the selected synchronization signal block (Synchronization Signal and PBCH block, SSB) and the mapping relationship between SSB and RO ; Or, the terminal device may select the preamble to be sent according to the selected SSB and the mapping relationship between the SSB and the preamble.
  • the selected synchronization signal block Synchronization Signal and PBCH block, SSB
  • SSB Synchroms Control Signal and PBCH block
  • one SSB may correspond to multiple ROs, or multiple SSBs may be mapped to one RO; for another example, one SSB may correspond to one or more preambles, and different SSBs may use different preambles.
  • random access is mainly divided into two types: one is four-step random access, and the other is two-step random access.
  • one is four-step random access
  • the other is two-step random access.
  • a four-step random access process and a two-step random access process are respectively introduced with reference to FIG. 3 and FIG. 4 .
  • Fig. 3 is a schematic flowchart of a four-step random access procedure.
  • the four-step random access process may include the following steps:
  • the terminal device sends a random access preamble to the network device.
  • the terminal device sends a random access preamble to the network device on a physical random access channel (physical random access channel, PRACH) resource, where the PRACH resource can be understood as a random access channel opportunity (RACH occasion, RO) .
  • PRACH physical random access channel
  • RO random access channel opportunity
  • the network device After the network device receives the random access preamble sent by the terminal device, it sends a random access response (random access response, RAR) to the terminal device based on the random access preamble.
  • RAR random access response
  • the random access process shown in Figure 3 also includes :
  • the network device sends the RAR to the terminal device.
  • the RAR sent by the network device to the terminal device includes indication information indicating the uplink resource for sending the message 3 (massage 3, Msg3). It can be understood that after receiving the RAR, the terminal device can know the uplink resources used to send Msg3.
  • the terminal device After receiving the RAR, the terminal device sends Msg3 based on the RAR, and the random access process shown in Figure 3 also includes:
  • the terminal device sends Msg3 to the network device.
  • Msg3 may include layer 2 (layer 2, L2) information and/or layer 3 (layer 3, L3) information, for example, RRC connection establishment request message; also for example, beam failure recovery (beam failure recovery, BFR) MAC control unit (control element, CE).
  • layer 2 layer 2, L2 information
  • layer 3 layer 3, L3 information
  • RRC connection establishment request message for example, RRC connection establishment request message; also for example, beam failure recovery (beam failure recovery, BFR) MAC control unit (control element, CE).
  • the network device sends a contention resolution message to the terminal device, and the random access process shown in Figure 3 also includes:
  • the network device sends a contention resolution message to the terminal device.
  • the contention resolution message includes an identification (identify, ID) of the terminal device, where the contention resolution message may also be called message 4 (massage 4, Msg4).
  • message 4 mass 4, Msg4
  • Fig. 4 is a schematic flowchart of a two-step random access procedure.
  • the process of two-step random access may include the following steps:
  • the terminal device sends a message A (message A, MsgA) to the network device.
  • a message A messages A, MsgA
  • the MsgA includes a preamble part and a physical uplink shared channel (PUSCH) part.
  • the preamble part is sent on the PRACH resource (such as the RO mentioned above), and the PUSCH resource can carry L2 or L3 information, for example, BFR MAC CE or RRC connection establishment request message.
  • the network device After the network device receives the message A sent by the terminal device, it sends RAR to the terminal device based on the message A, and the random access process shown in Figure 4 also includes:
  • the network device sends a message B (message B, MsgB) to the terminal device.
  • the MsgB message can contain a successful RAR (success RAR) or a fallback RAR (fallback RAR).
  • the terminal device When the terminal device receives the fallback RAR, the terminal device needs to fall back to the four-step random access process, that is, send Msg3.
  • the network device chooses to perform a two-step random access process when triggering random access, the preamble of the two-step random access process reaches the maximum transmission rate.
  • the terminal device may also fallback to a four-step random access process to try to access, thereby increasing the access success rate of the terminal device and ensuring the access performance of the terminal device.
  • RedCap UE refers to a terminal device with reduced capabilities.
  • the reduced capability can refer to the reduction of the maximum bandwidth supported by the terminal device, or the reduction of the number of antennas of the terminal device. Since the maximum bandwidth supported by RedCap UE (for example, 20MHz) is smaller than that of traditional terminal equipment (or called non-RedCap terminal equipment), the network equipment needs to identify the RedCap UE in advance in Msg1 during the random access process, so that the network equipment can In the subsequent RACH process, the RedCap UE is specially processed:
  • the uplink resource of Msg3 scheduled in RAR does not exceed the maximum bandwidth supported by RedCap UE, and proper configuration of RedCap UE is performed in Msg4.
  • the network device can also not configure RedCap's Msg1 to identify in advance, but to identify RedCap UE through Msg3:
  • the network device can identify the RedCap UE through Msg3.
  • RedCap should be understood as a type of terminal equipment. In order to be described in a unified manner with the following three characteristics, the description below also uses “features”, that is, RedCap can be understood as the characteristics supported by terminal equipment.
  • a terminal device in the RRC_INACTIVE state can perform small packet transmission based on RACH. It can be understood that the terminal device also sends small packet data when sending Msg3, and the terminal device can perform small packet data transmission without entering the connection state, so as to save power consumption and purpose of delay.
  • the terminal device can report the terminal device's request for small packet data transmission in Msg1, so that the network device can schedule a larger Msg3 transmission resource for the terminal device in the RAR to carry the small packet data.
  • CovEnh's research includes how to improve the coverage performance of Msg3 through repeated transmission. Therefore, the terminal device can report the need for coverage enhancement in Msg1, so that the network device can schedule the repetition (repetition) of Msg3.
  • the RAN side of network slicing is enhanced. Considering that some services or users have high priority, network devices can provide dedicated RACH resources for this service or user, thereby indicating the high priority of slices to the network and realizing RACH resource isolation.
  • a slice group may include one or more slices
  • the network device may configure independent dedicated PRACH resources for each slice group
  • multiple slice groups may also share independent dedicated PRACH resources.
  • the above four characteristics require the network device to identify the characteristics of the terminal device in the Msg1 (or MsgA) process of the RACH process, so the network device needs to configure independent PRACH resources for this characteristic.
  • the independent PRACH resource may include an independent RO (for example, an independent time-frequency domain resource RO) or a dedicated preamble.
  • the network device can configure an independent RO resource for RedCap UE. After receiving the preamble on this resource, the network device can recognize that the terminal device sending the preamble is a RedCap UE, and then perform special processing on the terminal device in the subsequent process.
  • the feature combination (feature combination) among the above four features also requires the network device to be configured with a dedicated RACH resource.
  • the network device needs to identify the terminal device as a RedCap UE in Msg1, so as to perform special processing on the RedCap UE in the subsequent RACH process, and the network device also needs to identify the terminal device as a RedCap UE in Msg1. It is identified that what the terminal device requests is SDT transmission, so that when configuring the Msg3 resource, the transmission of small packet data is considered.
  • the network device needs to configure independent RACH resources for the scenario where RedCap UE triggers RACH-based small packet transmission, which can be expressed as the resource corresponding to the feature combination of RedCap+SDT (or RedCap and SDT).
  • RedCap+CovEnh (or expressed as RedCap and CovEnh);
  • CovEnh+slicing (or expressed as CovEnh and slicing);
  • RedCap+slicing (or expressed as RedCap and slicing);
  • RedCap+CovEnh+slicing (or expressed as RedCap and CovEnh and slicing);
  • the network device may not only need to configure independent RACH resources for the above four characteristics, but also need to configure independent RACH resources for the combination of the above characteristics.
  • network devices may need to configure independent two-step random access resources for RedCap UE;
  • the network device may need to configure independent two-step random access resources for the RedCap UE performing the slice group 1 service.
  • the network device can configure dedicated RACH resources for all features or feature combinations (such as the above-mentioned 4 features, a combination of 4 features, a combination of features or feature combinations and two-step random access, etc.), Dedicated RACH resources may also be configured only for some characteristics or combination of characteristics.
  • the dedicated RACH resource for each feature or feature combination may be called RACH partition (RACH partition).
  • the feature combination that triggers the RACH process is RedCap+CovEnh+slicing, but the network device is not configured with a dedicated RACH resource for the feature combination of RedCap+CovEnh+slicing, but only the features including RedCap+slicing and RedCap+CovEnh or a dedicated RACH resource for the feature combination are configured.
  • which characteristic or characteristic combination dedicated RACH resource the terminal device selects may depend on the characteristic priority (or called characteristic priority order, characteristic order, characteristic priority criterion, etc.) of the terminal device in the RACH resource selection process.
  • the feature priority here can also be understood as the feature order of the terminal device during the RACH resource selection process, and does not necessarily represent the importance of services corresponding to different features.
  • the characteristic combination that triggers the RACH process can be understood as satisfying the conditions of the relevant characteristics in the characteristic combination during the RACH start-up process.
  • the terminal device is a RedCap UE
  • the signal quality threshold measured by the terminal device satisfies the coverage enhancement condition
  • the service arriving at the terminal device is related to the slice group
  • the feature combination that triggers the RACH process can be RedCap+CovEnh+slicing.
  • the feature priority may also affect the RACH fallback (fallback) process.
  • the feature combination that triggers the RACH process is RedCap+CovEnh+slicing
  • the network device is configured with a dedicated RACH resource of the RedCap+CovEnh+slicing feature combination, but the RACH process of the terminal device based on this resource fails (one or more times), Then the terminal device can fall back to the RACH process on other resources.
  • the RACH process chooses the dedicated resource of RedCap+slicing or RedCap+CovEnh feature combination, which also depends on the feature priority in the RACH fallback mechanism.
  • a method for RACH resource selection is: specifying the priority among the characteristics through the agreement, so as to determine the RACH resource selection process and/or RACH fallback process after introducing the above-mentioned various characteristics.
  • the protocol specifies the priority among features in the resource selection process as:
  • Second priority RAN slicing
  • the network device may need to ensure the coverage of the terminal device first, that is, according to the expected terminal device of the network device Should fallback to dedicated resources for the RedCap+CovEnh feature combination. And for different terminal devices, their service priority requirements may be different, so the feature priority specified in the protocol may not meet the requirements of the terminal device.
  • the protocol stipulates the feature priority of RACH resource selection and/or RACH fallback mechanism for terminal devices, and terminal devices in different networks always perform RACH resource selection and/or RACH process according to the feature priority, without considering the deployment and strategy of the network. and the business requirements of terminal equipment.
  • the flexibility of RACH resource selection and/or RACH fallback process is low.
  • the present application provides a method for random access in order to improve the flexibility of RACH resource selection.
  • the embodiments shown below do not specifically limit the specific structure of the execution subject of the method provided by the embodiment of the present application, as long as the program that records the code of the method provided by the embodiment of the present application can be run to provide the method according to the embodiment of the present application.
  • the execution subject of the method provided in the embodiment of the present application may be a terminal device or an access network device, or a functional module in a terminal device or an access device that can call a program and execute the program.
  • for indicating can be understood as “enabling”, and “enabling” can include direct enabling and indirect enabling.
  • enabling can include direct enabling and indirect enabling.
  • information for enabling A it may include that the information directly enables A or indirectly enables A, but it does not mean that A must be carried in the information.
  • the information enabled by the information is called the information to be enabled.
  • the information to be enabled can be directly enabled.
  • the to-be-enabled information may also be indirectly enabled by enabling other information, where there is an association relationship between the other information and the to-be-enabled information.
  • specific information can also be enabled by means of a pre-agreed (for example, protocol-specified) arrangement order of each information, thereby reducing the enabling overhead to a certain extent.
  • common parts of each information can be identified and enabled uniformly, so as to reduce the enabling overhead caused by enabling the same information separately.
  • preset may include pre-definition, for example, protocol definition.
  • pre-defined can be realized by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in devices (for example, including terminal devices or network devices). limited.
  • the "storage" mentioned in the embodiment of the present application may refer to saving in one or more memories.
  • the one or more memories may be provided independently, or may be integrated in an encoder or decoder, a processor, or a communication device.
  • a part of the one or more memories may also be provided separately, and a part may be integrated in a decoder, a processor, or a communication device.
  • the type of the storage may be any form of storage medium, which is not limited in this application.
  • the "protocol” involved in the embodiment of this application may refer to a standard protocol in the communication field, for example, it may include 5G protocol, new radio (new radio, NR) protocol and related protocols applied in future communication systems. Applications are not limited to this.
  • Fig. 5 is a schematic flow chart of a method for random access provided by an embodiment of the present application. Include the following steps:
  • the network device determines priority order of multiple characteristics.
  • different characteristics satisfy at least one of the following: different characteristics correspond to different business requirements, different characteristics correspond to different transmission methods, different characteristics correspond to different types of equipment, and different characteristics correspond to application scenarios Different or different features correspond to different functions.
  • different characteristics among the multiple characteristics may be understood as any two characteristics among the multiple characteristics.
  • the different service requirements corresponding to different characteristics can be understood as: different characteristics correspond to different performance requirements, for example, different characteristics have different performance requirements for one or more performance requirements such as transmission delay, reliability, and service priority, or Different features correspond to different services (such as video, calling, and cloud games, etc.).
  • the service requirement may also be Quality of QoS (QoS).
  • different characteristics correspond to different transmission modes, which may be understood as: different characteristics correspond to different transmission modes such as multicast, broadcast, or unicast.
  • different characteristics correspond to different types of devices, which can be understood as: different characteristics correspond to different types of devices such as RedCap UEs and physical network terminals.
  • different characteristics correspond to different application scenarios, which can be understood as: different characteristics can be used in different scenarios such as industrial Internet of Things, wearable devices, smart phones, and satellite communications.
  • the functions corresponding to different characteristics can be understood as: different characteristics are for different functions such as improving the coverage of the terminal device, saving the power consumption of the terminal device, reducing the cost of the terminal device, and improving user experience.
  • the plurality of features includes a variety of reduced capability device types, small packet data transmission, coverage enhancement, or access network slicing enhancement;
  • multiple features include RedCap, SDT, CovEnh, and RAN slicing involved in the PRACH resource division introduced in the basic concepts above.
  • the plurality of characteristics may be a plurality of RedCap, SDT, CovEnh and RAN slicing.
  • multiple features are RedCap, SDT, CovEnh, and RAN slicing.
  • the properties are RedCap, SDT and CovEnh.
  • multiple features are RedCap, SDT, and RAN slicing.
  • the properties are RedCap and SDT.
  • the feature priorities of different slicing groups can also be configured differently.
  • the order of feature priority is: RedCap>RAN slicing group 2>CovEnh>RAN slicing group 1>SDT.
  • the network device may configure dedicated random access resources for characteristics, and the dedicated random access resources for different characteristics may be different, and the random access resources include time domain resources, frequency domain resources, or code domain resources.
  • the embodiment of the present application does not limit the types and numbers of the specific features included in the multiple features; in addition, the present application does not limit the specific form of the features, which can be several features currently discussed (for example, one or more characteristics of equipment types with reduced capabilities, small packet data transmission, coverage enhancement or access network slicing enhancement, etc.), may also be one or more characteristics of other characteristics introduced in future communication methods.
  • the network device can configure the priority of different characteristics according to the deployment and policy of the network device.
  • the network device supports terminal devices with reduced capabilities, small packet data transmission, coverage enhancement, and network slicing enhancement, and the priority order of the reduced capability, small packet data transmission, coverage enhancement, and network slicing enhancement is : Reduced capability > small packet data transmission > coverage enhancement > network slicing enhancement, the priority order of the network device to determine multiple features is: reduced capability > small packet data transmission > coverage enhancement > network slicing enhancement.
  • the network device may determine priorities of different characteristics according to historical communication information.
  • historical communication information indicates that the network device supports reduced capability, small packet data transmission, coverage enhancement, and network slicing enhancement
  • the order of priority of reduced capability, small packet data transmission, coverage enhancement, and network slicing enhancement is: reduced capability > small packet data transmission >Coverage Enhancement>Network Slicing Enhancement
  • the order of priority for network devices to determine multiple features is: reduced capability>small packet data transmission>coverage enhancement>network slicing enhancement.
  • the network device may determine priorities of different characteristics according to an instruction of the management device.
  • the management device instructs the network device to support reduced capability, small packet data transmission, coverage enhancement, and network slicing enhancement, and the order of priority of reduced capability, small packet data transmission, coverage enhancement, and network slicing enhancement is: reduced capability > small packet data transmission > Coverage enhancement > network slicing enhancement, the order of priority for network devices to determine multiple features is: reduced capability > small packet data transmission > coverage enhancement > network slicing enhancement.
  • the network device can also update the priority order of multiple characteristics according to the real-time policy and deployment, thereby improving the flexibility of determining the priority order of multiple characteristics, and improving the access performance of the terminal device.
  • the network device may also increase the priority of the feature.
  • feature #1 is introduced, which has a higher priority than RedCap.
  • the priority order of the current multiple features is: RedCap>RAN slicing>CovEnh>SDT, the network device does not need to update the current priority order of these four features, but indicates the newly introduced feature as the highest priority to the terminal The device is enough, so the forward compatibility of this method of configuring the priority order is better.
  • the network device may only configure the priority of some features.
  • the protocol stipulates that RedCap is the highest priority, slicing is the second priority, and the network device configures the feature priority of SDT and CovEnh as CovEnh>SDT.
  • the priority order of the multiple characteristics may be configured to the terminal device through the first indication information, and the method shown in FIG. 5 further includes:
  • the network device sends first indication information to the terminal device, or the terminal device receives the first indication information from the network device.
  • the first indication information is used to indicate the priority order of the multiple characteristics determined by the above-mentioned network device.
  • the first indication information indicates an order of the multiple characteristics, and the order of the multiple characteristics is used to determine a priority order of the multiple characteristics.
  • the order in which the first indication information indicates the multiple characteristics may be an order in which the multiple characteristics are indicated explicitly.
  • the characteristic identification information of multiple characteristics is used to indicate the order of multiple characteristics: for ease of understanding, the following description will be made by taking multiple characteristics including RedCap, RAN slicing, CovEnh and SDT as examples.
  • the first indication information includes identification information of a plurality of characteristics
  • the order of the identification information of the plurality of characteristics indicates that the order of the plurality of characteristics is RedCap, RAN slicing, CovEnh and SDT, and the priority order of the plurality of characteristics is RedCap >RAN slicing>CovEnh>SDT.
  • a certain characteristic may be indicated by an identifier indicating a certain characteristic. For example, 4 bits are used to identify each feature, the RedCap ID is 0000, the ID of RAN slicing is 0001, the ID of SDT is 0011, and the ID of CovEnh is 0010, then the first indication information contains the order indication fields of multiple features : 0000000100100011.
  • the order in which the first indication information indicates the multiple characteristics may implicitly indicate the order of the multiple characteristics.
  • the order of multiple features is indicated through the dedicated configuration information of multiple features: for ease of understanding, the following uses multiple features including RedCap, RAN slicing, CovEnh, and SDT as examples for illustration.
  • network devices are configured with dedicated resources or dedicated configurations for each feature.
  • the order of dedicated resources or dedicated configurations for each feature is RedCap, RAN slicing, CovEnh, and SDT, and the priority order of multiple features is RedCap>RAN slicing >CovEnh>SDT, where the first indication information can be understood as the order in which each feature appears.
  • the first indication information indicates priority information of the multiple characteristics, where the priority information includes priority information of at least one characteristic among the multiple characteristics, and the priority The information is used to determine an order of priority for the plurality of properties.
  • the first indication information indicates that the priority information of the multiple characteristics may indicate the absolute priority of the characteristics: for ease of understanding, the following description will be made by taking the multiple characteristics including RedCap, RAN slicing, CovEnh and SDT as an example.
  • a network device configures an absolute priority for a feature to determine the prioritization of the feature.
  • the absolute feature priority of network device configuration RedCap is 7, the absolute feature priority of SDT is 5, the absolute feature priority of RAN slicing is 6, and the absolute feature priority of CovEnh is 4.
  • the larger the value, the higher the priority, and the feature priority is RedCap>RAN slicing>SDT>CovEnh.
  • the smaller the value, the higher the priority, and the feature priority is CovEnh>SDT>RAN slicingRedCap>.
  • the network device may also configure a feature priority of a feature combination, where the feature combination includes multiple features. If feature combination #1 includes CovEnh and RAN slicing, the feature priority of feature combination #1 is 5. Feature combination #1 can be prioritized against other features or feature combinations. The features included in the feature set are also configured by the network device.
  • the network device can be configured with the same priority for different features. For example, if the feature priority of CovEnh and RAN slicing are both 5, the selection of the terminal device between the two features is a random selection or the terminal device can be based on other information ( For example, the selection of historical communication information) is not limited by this application.
  • the first indication information indicates that the priority information of the multiple characteristics may indicate the priority ranking of the characteristics: for ease of understanding, the following description will be made by taking the multiple characteristics including RedCap, RAN slicing, CovEnh and SDT as an example.
  • the network device indicates that the feature priority of RedCap is 1, the feature priority of SDT is 3, the feature priority of RAN slicing is 2, and the feature priority of CovEnh is 4, then the feature priority is RedCap> RAN slicing>SDT>CovEnh.
  • first indication information indicates the priority order of multiple characteristics by indicating the order of the characteristics
  • scheme that the first indication information indicates the priority order of multiple characteristics by indicating the priority information of the characteristics is only an example to illustrate the possible Indicating the priority order of multiple characteristics in different ways does not constitute any limitation on the protection scope of this application, and other indication information that can be used to indicate the priority order of multiple characteristics is also within the protection scope of this application, here No longer.
  • the priority order of multiple characteristics determined by the network device may be for the terminal device served by the network device, or for a certain terminal device.
  • the sending method of the above-mentioned first indication information includes the following two methods: possible:
  • the first indication information is included in the system message.
  • the above step S520 can be understood as: the network device sends a system message to the terminal device, and the system message includes the first indication information.
  • the network device may broadcast the priority order of multiple characteristics in a system message.
  • priority orders of multiple characteristics can be configured to multiple terminal devices served by broadcasting, thereby improving configuration efficiency.
  • the terminal device needs to perform RACH resource selection and/or RACH fallback according to the priority order of the multiple characteristics broadcast in SIB1.
  • the priority order of multiple features broadcast by network devices is: RedCap>CovEnh>RAN slicing>SDT.
  • the agreement stipulates the priority order of multiple default features (for example, the agreement specifies that the priority of the feature is:
  • the terminal device shall perform RACH resource selection and/or RACH fallback process according to the priority order of multiple characteristics broadcast in the system message RedCap>CovEnh>RAN slicing>SDT.
  • the priority order of the multiple characteristics configured in the system message may include the priority of the characteristics of the neighboring cell, for example, the priority order of the characteristic of the neighboring cell is configured in SIB2, SIB3 or SIB4.
  • the first indication information is included in the dedicated signaling.
  • the above step S520 can be understood as: the network device sends the dedicated signaling to the terminal device, and the dedicated signaling includes the first indication information.
  • the network device configures the priority order of multiple characteristics through dedicated signaling.
  • the priority order of multiple features can be configured for a certain terminal device.
  • the network device may configure the priority sequence of multiple characteristics through an RRC reconfiguration message.
  • the terminal device can use the priority order of the multiple characteristics configured in the dedicated signaling to perform RACH resource selection and/or RACH fallback, for example, the terminal The device may ignore the priority order of multiple characteristics broadcast in the system message and/or the default priority order of multiple characteristics specified in the protocol.
  • the network device can configure the priority sequence of multiple characteristics through the RRC release message.
  • the terminal device After the terminal device enters the non-connected state (for example, RRC IDLE state or RRC INACTIVE state), the terminal The device can use the priority order of multiple characteristics configured in the RRC release message to perform RACH resource selection and/or RACH fallback process.
  • the priority order of the multiple characteristics configured in the RRC release message may include the priority order of the characteristics of the serving cell, and/or the priority order of the characteristics of the neighboring cell, where the serving cell can be understood as the The cell that sends the RRC release message.
  • the priority order (for example, priority order #1) of the multiple characteristics indicated by the first indication information included in the system message is the same as that indicated by the first indication information included in the dedicated signaling.
  • the priority orders (for example, priority order #2) of the multiple features are different, wherein both the priority order #1 and the priority order #2 belong to the priority orders of the multiple features.
  • the network device may use the second indication information to indicate the effective duration of the configured priority order of multiple characteristics, and the method flow shown in FIG. 5 also includes:
  • the network device sends the second indication information to the terminal device, or the terminal device receives the second indication information from the network device.
  • the second indication information is used to indicate the effective duration of the priority order of the multiple characteristics.
  • the system message includes first indication information and second indication information, the first indication information indicates the priority order of multiple characteristics (for example, priority order #1), and the second indication information is used to indicate the priority order #1 effective duration.
  • first indication information indicates the priority order of multiple characteristics (for example, priority order #1)
  • second indication information is used to indicate the priority order #1 effective duration.
  • the dedicated message includes first indication information and second indication information, the first indication information indicates the priority order of multiple characteristics (for example, priority order #2), and the second indication information is used to indicate the priority order # 2 valid duration.
  • the valid duration can also be predefined by the protocol, or included in other messages, for example, the first indication information and the second indication information can be sent through two signalings, which is not limited in this application.
  • the second indication information may be timer or duration indication information.
  • the dedicated signaling includes the first indication information and the second indication information as an example for illustration:
  • the validity of the priority order (for example, priority order #2) of multiple characteristics indicated by the first indication information in the RRC release message may be controlled by a timer or a duration.
  • the terminal device initiates the RACH process based on the priority order #2 configured in the RRC release message;
  • the terminal device When the timer expires or reaches a certain duration, the terminal device initiates the RACH process based on the priority order of multiple characteristics broadcast in the system message (for example, priority order #1) or the default characteristic priority specified in the protocol.
  • the start condition of the above timer includes: the terminal device receives the timer configuration, or the terminal device receives the RRC release message; the stop condition of the timer includes: the terminal device undergoes an RRC state transition, such as the terminal device enters the RRC connection state; When the timer expires, the terminal device may discard the priority order of multiple characteristics, or the terminal device may discard the second indication information, and in this case, the terminal device may also continue to perform RACH according to the priority order of the multiple characteristics Resource selection and/or RACH fallback procedures.
  • the network device may determine the priority order of the above-mentioned multiple characteristics according to the preference of the terminal device, and the method shown in FIG. 5 further includes:
  • the terminal device sends third indication information to the network device, or the network device receives third indication information from the terminal device.
  • the third indication information is used to indicate the priority order of multiple characteristics expected by the terminal device.
  • the third indication information may be included in messages such as an RRC establishment request message, an RRC recovery request message, or an RRC reestablishment request message.
  • the terminal device can report the priority order of multiple expected features (or the priority of multiple features called preference) in dedicated signaling (such as RRC establishment request message, RRC recovery request message, or RRC reestablishment request message, etc.). priority order), the network device determines the priority order of multiple features configured in the dedicated signaling based on the feature priority reported by the terminal device.
  • dedicated signaling such as RRC establishment request message, RRC recovery request message, or RRC reestablishment request message, etc.
  • the above-mentioned priority order of multiple characteristics expected by the terminal device for example, the first priority order
  • the priority order of the multiple characteristics determined by the network device for example, the second priority order
  • may be The same may also be different.
  • the terminal device can determine the priority order of multiple characteristics according to the first indication information.
  • the method flow shown in Figure 5 also includes:
  • the terminal device determines a priority order of multiple characteristics according to the first indication information.
  • the terminal device may also select random access resources according to the priority order of multiple characteristics.
  • the random access resources include time domain, frequency domain and/or code domain resources. Selecting time-frequency domain resources can be understood as selecting RO, and selecting code domain resources can be understood as selecting preamble.
  • the terminal device involves the selection of random access resources in the following two processes:
  • Process 1 RACH resource selection.
  • the random access procedure is triggered, and the terminal device selects random access resources.
  • the first indication information indicates that the priority of the first feature is higher than the priority of the second feature
  • the terminal device supports at least the first feature and the second feature
  • the trigger condition of the random access procedure includes at least the first feature and
  • the second feature is used as an example to illustrate the process of terminal equipment selecting random access resources in process 1, including:
  • the terminal device determines that a first resource is configured, and the first resource is a random access resource of the first characteristic, or the first resource is a random access resource of a first characteristic combination including the first characteristic. input resources;
  • the terminal device determines to be configured with a second resource, where the second resource is a random access resource including a second characteristic combination of the first characteristic and the second characteristic, and the random access resource is included in the in the second resource.
  • the terminal device needs to perform the characteristic Selection of combined random access resources.
  • (a) to (d) in FIG. 6 are schematic flowcharts for the selection of random access resources by the terminal device.
  • the random access resource selection process here can be understood as an initial random access resource selection, or a resource selection process after the terminal device starts the random access process.
  • the priority order of multiple features in the scenario shown in (a) in Figure 6 is: RedCap>CovEnh>RAN slicing>SDT, the terminal device is a RedCap UE, and the terminal device supports the RAN slicing feature and CovEnh feature, the RACH process is Triggered by the combination of RedCap+RACH slicing (slicing group 1)+CovEnh feature.
  • the process of selecting random access resources includes the following steps:
  • the terminal device judges whether resource #1 is configured.
  • resource #1 is a dedicated resource of RedCap, or a dedicated resource of a feature combination related to RedCap (eg, SDT+RedCap, RedCap+slicing, or SDT+RedCap+CovEnh, etc.).
  • step S630 the terminal device determines whether resource #2 is configured. If resource #1 is not configured, step S621 is executed: the terminal device selects an RO in resource #3 to send a preamble.
  • resource #2 is the combination of characteristics related to RedCap+CovEnh included in resource #1 (such as,
  • resource #3 is a traditional PRACH resource (that is, a non-RedCap dedicated resource).
  • step S640 the terminal device determines whether resource #4 is configured. If resource #2 is not configured, step S631 is executed: the terminal device selects an RO in resource #5 to send a preamble.
  • resource #4 is a dedicated resource combined with features related to RedCap+CovEnh+slicing included in resource #2;
  • resource #5 is a dedicated resource for RedCap, or a traditional PRACH resource;
  • step S650 the terminal device selects an RO in resource #4 to send a preamble. If resource #4 is not configured, execute step S651: the terminal device selects an RO in resource #2 to send a preamble.
  • the selection flow of random access resources shown in (a) of FIG. 6 is just an example.
  • the terminal device may also perform other random access resource selection procedures according to the characteristic priority.
  • the terminal device first determines whether to configure dedicated resources for the feature combination that triggers the RACH process, and if not configured, then determines whether to configure dedicated resources for other feature combinations in sequence according to the priority of the features.
  • the flow shown in (b) in FIG. 6 , (b) in FIG. 6 is another schematic flow chart for a terminal device to select random access resources.
  • the priority order of multiple features in the scenario shown in (b) in Figure 6 is: RedCap>CovEnh>RAN slicing>SDT, the terminal device is a RedCap UE, and the terminal device supports the RAN slicing feature and CovEnh feature, the RACH process is Triggered by the combination of RedCap+RACH slicing (slicing group 1)+CovEnh feature.
  • the process of selecting random access resources includes the following steps:
  • the terminal device judges whether resource #4 is configured.
  • resource #4 is a dedicated resource combined with RedCap+CovEnh+slicing features.
  • step S613 the terminal device determines whether resource #2 is configured. If resource #4 is configured, step S614 is executed: the terminal device selects an RO in resource #4 to send a preamble.
  • resource #2 is a dedicated resource for the RedCap+CovEnh feature combination.
  • step S615 the terminal device determines whether resource #1 is configured. If resource #2 is configured, step S616 is executed: the terminal device selects an RO in resource #2 to send the preamble.
  • resource #1 is a dedicated resource of RedCap
  • step S617 the terminal device selects an RO in resource #1 to send a preamble. If resource #1 is not configured, execute step S618: the terminal device selects an RO in resource #3 to send a preamble.
  • resource #3 is a traditional PRACH resource (that is, a non-RedCap dedicated resource).
  • the terminal device may also perform other random access resource selection procedures according to the characteristic priority.
  • the terminal device first determines whether to configure dedicated resources for the feature combination that triggers the RACH process. When using the dedicated resources of the feature combination, traverse other features in the feature combination that triggers the RACH until a suitable resource is selected.
  • the flow shown in (c) in FIG. 6, (c) in FIG. 6 is another schematic flow chart for a terminal device to select random access resources.
  • the priority order of multiple features in the scenario shown in (c) in Figure 6 is: RedCap>CovEnh>RAN slicing>SDT, the terminal device is a RedCap UE, and the terminal device supports the RAN slicing feature and CovEnh feature, the RACH process is Triggered by the combination of RedCap+RACH slicing (slicing group 1)+CovEnh feature.
  • the process of selecting random access resources includes the following steps:
  • the terminal device judges whether resource #1 is configured.
  • resource #1 is a dedicated resource of RedCap, or a dedicated resource of a feature combination related to RedCap (eg, SDT+RedCap, RedCap+slicing, or SDT+RedCap+CovEnh, etc.).
  • step S603 the terminal device determines whether resource #2 is configured.
  • the resource #2 is a dedicated resource of the characteristic combination related to RedCap+CovEnh (for example, RedCap+CovEnh, or SDT+RedCap+CovEnh, etc.) included in the resource #1.
  • RedCap+CovEnh for example, RedCap+CovEnh, or SDT+RedCap+CovEnh, etc.
  • step S6041 the terminal device judges whether resource #11 is configured.
  • resource #11 is a dedicated resource of CovEnh among the dedicated resources, or a dedicated resource of a combination of characteristics related to CovEnh (eg, CovEnh+slicing, or CovEnh+SDT, etc.).
  • step S6042 the terminal device judges whether resource #12 is configured. Among them, resource #12 is a dedicated resource for slicing in dedicated resources. If resource #12 is configured, execute step S6043: the terminal device selects RO in resource #12 to send the preamble; or, if resource #12 is not configured, execute step S6044: terminal device selects in resource #3
  • the preamble resource #3 sent by the RO is a traditional PRACH resource (that is, a non-RedCap dedicated resource).
  • step S604 the terminal device judges whether resource #6 is configured.
  • resource #6 is a dedicated resource for CovEnh+slicing in the dedicated resources.
  • step S607 the terminal device selects an RO in resource #6 to send the preamble.
  • step S608 the terminal device selects an RO in resource #13 to send the preamble.
  • resource #13 is a dedicated resource of CovEnh in the dedicated resources.
  • step S605 the terminal device determines whether resource #4 is configured.
  • resource #4 is a dedicated resource for the combination of features related to RedCap+CovEnh+slicing included in resource #2.
  • step S606 the terminal device determines whether resource #7 is configured.
  • resource #7 is a dedicated resource for RedCap+slicing, or a dedicated resource for a feature combination related to RedCap+slicing (for example, RedCap+slicing+SDT, etc.).
  • step S6091 the terminal device selects an RO in resource #7 to send a preamble.
  • step S6092 the terminal device selects an RO in resource #8 to send a preamble.
  • Resource #8 is a traditional PRACH resource (that is, a resource not dedicated to RedCap), or resource #8 is a resource dedicated to RedCap.
  • step S609 the terminal device selects an RO in resource #4 to send a preamble. If resource #4 is not configured, execute step S6093: the terminal device selects an RO in resource #2 to send a preamble. Exemplarily, the terminal device may also perform other random access resource selection procedures according to the characteristic priority.
  • the terminal device needs to traverse other features included in the feature combination while sequentially excluding features with lower priority.
  • the flow shown in (d) in FIG. 6, (d) in FIG. 6 is another schematic flow chart for a terminal device to select random access resources.
  • the priority order of multiple features in the scenario shown in (d) in Figure 6 is: RedCap>CovEnh>RAN slicing>SDT, the terminal device is a RedCap UE, and the terminal device supports the RAN slicing feature and CovEnh feature, the RACH process is Triggered by the combination of RedCap+RACH slicing (slicing group 1)+CovEnh feature.
  • the process of selecting random access resources includes the following steps:
  • the terminal device judges whether resource #4 is configured.
  • resource #4 is a dedicated resource combined with RedCap+CovEnh+slicing features.
  • step S6013 the terminal device judges whether resource #2 is configured. If resource #4 is configured, step S6014 is executed: the terminal device selects an RO in resource #4 to send a preamble.
  • resource #2 is a dedicated resource for the RedCap+CovEnh feature combination.
  • step S6015 the terminal device judges whether resource #9 is configured. If resource #2 is configured, step S6016 is executed: the terminal device selects an RO in resource #2 to send a preamble.
  • resource #9 is a dedicated resource for RedCap+slicing
  • step S6017 the terminal device selects an RO in resource #9 to send a preamble. If resource #9 is not configured, execute step S6018: the terminal device judges whether resource #1 is configured.
  • resource #1 is a dedicated resource of RedCap
  • step S6019 the terminal device selects an RO in resource #1 to send a preamble. If resource #1 is not configured, execute step S6020: the terminal device determines whether resource #6 is configured.
  • resources dedicated to CovEnh+slicing are resources #6.
  • step S6021 the terminal device selects an RO in resource #6 to send a preamble.
  • step S6023 the terminal device judges whether resource #13 is configured. Among them, resource #13 is a dedicated resource of CovEnh in the dedicated resources.
  • step S6024 the terminal device judges whether resource #12 is configured. Among them, resource #12 is a dedicated resource for slicing in dedicated resources. If resource #12 is configured, execute step S6025: the terminal device selects RO in resource #12 to send the preamble; or, if resource #12 is not configured, execute step S6026: terminal device selects in resource #3
  • the preamble resource #3 sent by the RO is a traditional PRACH resource (that is, a non-RedCap dedicated resource).
  • step S6022 the terminal device selects an RO in resource #13 to send a preamble.
  • the resource selection process shown in (d) in FIG. 6 traverses a more comprehensive feature combination in the RACH resource selection process, so that The terminal device can select a dedicated resource of a characteristic combination that is closer to the characteristic combination that triggers the RACH.
  • the terminal device selects a random access resource.
  • the first indication information indicates that the priority of the first feature is higher than the priority of the second feature
  • the terminal device supports at least the first feature and the second feature
  • the trigger condition of the random access procedure includes at least the first feature
  • the second characteristic is taken as an example to illustrate the process of terminal equipment selecting random access resources in process 2, including:
  • the terminal device fails to perform random access on the second resource, where the second resource is a random access resource that includes a second characteristic combination of the first characteristic and the second characteristic;
  • the terminal device determines that a first resource is configured, and the first resource is a random access resource of the first characteristic, or the first resource is a random access resource of a first characteristic combination including the first characteristic.
  • the random access resource is included in the first resource.
  • the priority order of multiple features in the scenario shown in Figure 7 is: RedCap>CovEnh>RAN slicing>SDT, the terminal device is a RedCap UE, and the terminal device supports the RAN slicing feature and the CovEnh feature, and the RACH process is RedCap+RACH slicing( Triggered by slice group 1)+CovEnh feature combination.
  • the process of selecting random access resources includes the following steps:
  • the terminal device fails to perform random access based on resource #4.
  • Resource #4 is a dedicated resource for the combination of features related to RedCap+CovEnh+slicing.
  • step S730 the terminal device judges whether resource #2 is configured. If not, execute step S721: the terminal device selects an RO in resource #4 to send a preamble.
  • resource #2 is a dedicated resource for the combination of features related to RedCap+CovEnh.
  • step S740 the terminal device selects an RO in resource #2 to send a preamble. If resource #2 is not configured, step S731 is executed: the terminal device determines whether resource #1 is configured.
  • the resource #1 is a dedicated resource of RedCap, or a dedicated resource combined with features related to RedCap.
  • step S750 the terminal device selects an RO in resource #1 to send a preamble. If resource #1 is not configured, execute step S741: the terminal device selects an RO in resource #3 to send a preamble.
  • Resource #3 is a traditional PRACH resource (that is, a non-RedCap dedicated resource).
  • resource #1, resource #2, resource #3 and resource #4 include different ROs. If the ROs of all or some of the resources in resource #1, resource #2, resource #3, and resource #4 are the same, but the preambles are different, the corresponding behavior of the terminal device is to select the preamble to be sent in the RO.
  • the above-mentioned (a) to (d) in Figure 6 and Figure 7 are just examples to illustrate how the terminal device uses the priority order of multiple characteristics to select random access resources, and does not constitute any limitation on the scope of protection of this application. The device may also select random access resources in other ways in consideration of the priority order of multiple characteristics, which will not be repeated here.
  • process 1 and process 2 can be executed independently or in combination. For example, after the terminal device executes the process 1, if the random access resource selected in the process 1 fails to perform random access, the response shown in the process 2 can be executed. Return process.
  • RedCap can be replaced by the first feature
  • SDT can be replaced by the second feature
  • slicing can be replaced by the third feature
  • CovEnh can be replaced by the fourth feature. Part of the judgment steps in the above-mentioned process 1 and process 2 may be optional.
  • the random access resource selection process shown in the above-mentioned process 1 and process 2 can be applied to a terminal device in a non-connected state. At this time, what the terminal device needs to determine is whether the corresponding feature is configured or not configured in the initial uplink BWP. Dedicated RACH resource for feature combination.
  • the random access resource selection process shown in the above-mentioned process 1 and process 2 can also be applied to a terminal device in a connected state. If the terminal device is in the connected state (for example, RRC_CONNCET state), the currently activated BWP may not be configured with dedicated resources determined through the above resource selection manner.
  • the terminal device needs to determine whether the dedicated resources determined by the above resource selection method are configured on the activated uplink BWP, and reselect random access resources based on the priority order of multiple characteristics or switch to the initial uplink BWP.
  • the dedicated resources determined through the above resource selection method include the dedicated resources determined in each step in the process.
  • the priority order of the multiple characteristics based on the terminal equipment in process 1 and process 2 can be the same, and does not constitute the scope of protection of this application. any restrictions.
  • the priority order of multiple characteristics based on the terminal device in the above-mentioned process 1 and process 2 may also be different, that is, the priority order of multiple characteristics configured by the network device for random access resource selection and RACH fallback resource selection Can be the same (configured for the priority order of the same set of multiple features), or different (configured separately).
  • the terminal device can respectively select the priority order of multiple characteristics used for random access resource selection and the multiple priority order configurations of multiple characteristics used for RACH fallback resource selection from the two sets of priority order configurations configured by the network device.
  • the priority order of the features are provided.
  • the network device may use the indication information to indicate that one of the two sets of priority order configurations of multiple characteristics is used for random access resource selection, and the other set is used for RACH fallback resource selection.
  • the terminal device maintains fourth indication information, and the fourth indication information is used to indicate the characteristic priority order that the terminal device will use random access resource selection, or the characteristic priority order that the terminal device will use RACH fallback resource selection. For example, if the terminal device determines to perform RACH fallback, the terminal device sets the fourth indication information as the characteristic priority sequence of RACH fallback resource selection, or the terminal device determines that RACH resource selection is to be performed, then the terminal device sets the fourth indication information Sets the feature priority order for random access resource selection.
  • the priority sequence of multiple characteristics is determined by the network device, and the priority sequence of the multiple characteristics is configured through the first indication information for illustration, so that the terminal device can Random access resources are selected in the order of priority.
  • the network device may also determine the priority order of multiple feature combinations, and configure the priority order of the multiple feature combinations through indication information, so that the terminal device can Random access resource selection is performed in order of priority.
  • the network device determines the priority order of multiple feature combinations as SDT+RedCap>RedCap+CovEnh>CovEnh+slicing>SDT+slicing>SDT+CovEnh>RedCap+slicing>SDT+RedCap+CovEnh>SDT+RedCap+slicing> SDT+CovEnh+slicing>RedCap+CovEnh+slicing>SDT+REdCap+CovEnh+slicing.
  • the terminal device can determine random access resources according to the priority of the feature combination configured by the network device. For example, if the network device is not configured with a dedicated resource for the RedCap+CovEnh+slicing feature combination, or the RACH on the dedicated resource fails, due to the characteristics of the RedCap+CovEnh feature combination in the RedCap+CovEnh, CovEnh+slicing, and RedCap+slicing feature combinations The combination has the highest priority. If the network device is configured with a dedicated resource combined with RedCap+CovEnh features, the terminal device will select the dedicated resource to initiate random access.
  • the priority of the feature combination may also include feature combinations related to two-step random access, such as RedCap+SDT+2-step RACH, etc.
  • the network device may also configure feature priorities for a feature combination set, where the feature combination set includes multiple features or feature priorities.
  • feature combination set #1 includes RedCap and feature combinations related to RedCap (such as SDT+RedCap, RedCap+slicing, SDT+RedCap+CovEnh, etc.)
  • feature combination set #2 includes slicing and feature combinations related to slicing (eg SDT+slicing, CovEnh+slicing, etc.).
  • the priority of feature combination set #1 is higher than that of feature combination set #2.
  • the features or feature combinations included in the feature combination set may also be configured by the network device.
  • the terminal device selects random access resources according to the feature priority of the feature combination set. For example, according to the feature or feature combination that triggers the RACH process, the terminal device first selects random access resources in the high-priority feature combination set. Random access resources are selected from the characteristic combination set of priority.
  • the configuration of the priority of the feature combination is similar to the configuration of the feature priority, including but not limited to the following:
  • Mode 1 The network device configures the dedicated resources and/or dedicated parameters of the feature or feature combination 1 through field 1 (for example, FeatureCombinationPreamble-r17), and indicates the priority of the feature or feature combination 1.
  • field 1 for example, FeatureCombinationPreamble-r17
  • field 1 is used to configure the priority value, and the relative priority relationship of different features or feature combinations is determined through the priority values of different features or feature combinations.
  • the priority of the feature combination can be determined according to the priorities of the features included in the feature combination.
  • the priority of a feature combination is the sum of the priorities of the individual features included in the feature combination.
  • the network device indicates the priority of the feature (for example, the priority of the RedCap feature is 5, and the priority of the SDT feature is 4), and the terminal device calculates the sum of the priorities of the features included in the feature combination as the priority of the feature combination (RedCap+SDT has a feature priority of 9). It should be noted that the priority of the feature combination can be determined through other mathematical operations according to the priorities of the features included in the feature combination.
  • the priority of the feature combination is the highest among all the priorities of the features included in the feature combination
  • the priority or the priority with the lowest priority among the priorities of all features the present application does not limit the specific mathematical operation. It can be understood that, compared with the method 1, the method 2 can save signaling overhead.
  • the network device may also indicate the priority of the feature combination by configuring the sequence of the feature combination. For example, the network device can first configure the dedicated resources or parameters of feature combination 1, and then configure the dedicated resources or parameters of feature combination 2, which indicates that the priority of the feature combination of feature combination 1 is higher than that of feature combination 2.
  • the priority corresponds to the dedicated resource (or called RACH division) of the characteristic (or combination of characteristics), that is, the network device configures the priority of the RACH division.
  • the terminal device selects RACH resources from the subset of characteristic combinations that trigger RACH according to the priority of the characteristic combinations.
  • the priority of the network device configuration is: RedCap+SDT (priority is 6), RedCap+Slicing (priority is 5), Slicing+SDT (priority is 3), RedCap+CovEnh (priority is 7), RedCap (priority 5), Slicing (priority 3), SDT (priority 4).
  • the feature combination that triggers RACH is RedCap+SDT+Slicing. From the above configuration, it can be seen that the network device is not configured with corresponding dedicated resources. The terminal device can select the RedCap+SDT with the highest priority according to the priority of the feature combination (including features), and select the RACH resource or RO from the dedicated resources of the RedCap+SDT feature combination.
  • the terminal device may select randomly, select according to the number of characteristics included, or combine a single characteristic included in the characteristic combination The priority is selected, or the RACH resource is selected from the feature combination subset of the feature combination that triggers the RACH in a RedCap and/or CovEnh priority manner.
  • the priority of the network device configuration is: RedCap+SDT (priority is 6), RedCap+Slicing (priority is 5), Slicing+SDT (priority is 3), RedCap+CovEnh (priority is 6), RedCap (priority 6), Slicing (priority 5), SDT (priority 4).
  • the feature combination that triggers RACH is RedCap+SDT+Slicing. From the above configuration, it can be seen that the network device is not configured with corresponding dedicated resources.
  • the terminal device can select resources in the following ways, for example, including but not limited to any of the following ways:
  • Method 1 Random selection. When the priorities of the characteristics (or characteristic combinations) or RACH divisions are equal, the terminal device selects RACH resources from the characteristics (or characteristic combinations) or RACH divisions with equal priorities.
  • the terminal device randomly selects RedCap+SDT, RedCap+CovEnh, and RedCap with the highest priority in the subset of characteristic combinations that trigger RACH.
  • the implementation of the resource selection mode shown in the mode 1 is relatively simple.
  • Method 2 Select according to the number of included features. When the priorities of the characteristics (or characteristic combinations) or the priorities of the RACH divisions are equal, the terminal device selects the characteristic combination or RACH division that contains the largest number of characteristics from the equal priority or characteristic combinations or RACH divisions. Optionally, when the number of characteristics included in the characteristic combination or RACH division is equal, the terminal device may randomly select the characteristic combination or RACH division.
  • RedCap+SDT and RedCap+CovEnh contain more features than RedCap, so terminal devices can give priority to RedCap+SDT and RedCap+CovEnh.
  • RedCap+SDT and RedCap+CovEnh it can be selected randomly or according to the following method 3 or 4.
  • the resource selection method shown in the method 2 can select resources satisfying more characteristics as much as possible.
  • Mode 3 Select according to the priority of a single feature combination included in the feature combination.
  • the terminal device selects the feature combination with higher priority of the features contained in the features.
  • the terminal selects the characteristic combination with the largest/smallest sum of the characteristic priorities of the included characteristics.
  • a larger value of the feature priority indicates a higher priority of the feature, or a smaller value of the feature priority indicates a higher priority of the feature.
  • the conditions used in mode 3 may also include other conditions, for example, the number of features included in the feature combination is also equal.
  • the terminal device does not consider the RedCap included in both RedCap+SDT and RedCap+CovEnh. Since CovEnh has a higher priority than SDT, RedCap+CovEnh is selected. Similar to calculating the sum of the priorities of individual features, the selection is made based on the magnitude of the sum.
  • a feature combination with a relatively high priority of included features may be selected.
  • the network device may configure higher priority resources or provide better services for higher priority features, it is more likely that the terminal device will enjoy priority resources or services after accessing according to the method 3.
  • Method 4 Prioritize RedCap and/or CovEnh. When the priorities of the characteristics (or combination of characteristics) or the priorities of RACH division are equal, the terminal device selects the combination of characteristics including RedCap and/or CovEnh. If RedCap and/or CovEnh are included in multiple feature combinations, the terminal device can randomly select from them, or select according to the above method 2 or method 3.
  • the terminal device considers that the identification of RedCap will affect whether the uplink resource allocation of Msg3 is allocated reasonably, and whether CovEnh is performed will affect whether Msg3 is sent successfully, so meeting these two characteristics is a priority.
  • the terminal device selects the dedicated resources of the RedCap+CovEnh feature combination for RACH.
  • Mode 5 sequential selection based on the time domain of resource arrival.
  • the priorities of the characteristics (or combination of characteristics) or the priorities of the RACH divisions are equal, the one arriving first is selected from those with equal priorities or combination of characteristics or RACH divisions.
  • RedCap+SDT and RedCap+CovEnh have the same priority, and RedCap+SDT arrives earlier than RedCap+CovEnh in the time domain, and the terminal device selects the dedicated resource of RedCap+SDT feature combination for RACH.
  • RACH Radio Access Control
  • the terminal device can perform RACH requesting coverage enhancement (CovEnh) in the connected state, or when the terminal device is a RedCap UE, the terminal device can perform the RACH process in the connected state (that is, the RedCap feature and/or the CovEnh feature can be applied in the connected state).
  • the network device can thus configure the priority of properties or combinations of properties for connected terminal devices.
  • RedCap and CovEnh are taken as examples to illustrate the priority of the characteristics or combination of characteristics configured by the network device for the connected state.
  • the terminal device should follow the connected state feature or feature combination Priority, select the dedicated RACH resource of the RedCap feature.
  • the present application also provides a communication method for determining the size of a Layer 2 buffer (Layer 2buffer).
  • the method of this communication is described below:
  • the size of the Layer 2 buffer (Layer 2 buffer) of the terminal device is determined. Specifically, the total layer 2 buffer size is defined as the sum of bytes of data in the radio link control (radio link control, RLC) transmission window, RLC reception window, RLC reassembly window, and PDCP reordering window that the terminal device can store.
  • RLC radio link control
  • the total size of the layer 2 cache required in the scenarios of multi-radio dual connectivity (MR-DC) and NR-to-NR dual connectivity (new radio dual connectivity, NR-DC) is based on the following formula
  • the maximum value of the calculated value is determined by:
  • MaxULDataRate_MN and MaxDLDataRate_MN are respectively the maximum uplink data rate and the maximum downlink data rate of the master node (MN);
  • MaxULDataRate_SN and MaxDLDataRate_SN are respectively the maximum uplink data rate and the maximum downlink data rate of the secondary node (SN);
  • RLCRTT_MN and RLCRTT_SN are the RLC round trip time (Round Trip Time, RTT) of MN and SN respectively.
  • X2/Xn delay refers to the transmission time at the X2 or Xn interface. Queuing in SN indicates the execution time of data queue processing within SN.
  • MaxULDataRate_MN and MaxDLDataRate_MN are the maximum uplink data rate and maximum downlink data rate of the master node (MN); MaxULDataRate_SN and MaxDLDataRate_SN are the maximum uplink data rate and maximum downlink data rate of the slave node (SN); RLC round-trip time (Round Trip Time, RTT) with SN.
  • X2/Xn delay refers to the transmission time at the X2 or Xn interface.
  • Queuing in SN indicates the execution time of data queue processing within SN.
  • the total size of the layer 2 cache required in non-MR-DC and NR-DC scenarios is determined based on the maximum value calculated by the following formula:
  • MaxDLDataRate and MaxULDataRate are the maximum downlink data rate and maximum uplink data rate respectively;
  • RLC RTT is the RLC round trip time.
  • the secondary cell group is an NR cell group
  • X2/Xn delay+Queuing in SN 25ms
  • X2/Xn delay+Queuing in SN 55ms
  • MCG is an NR cell group
  • X2/Xn delay+Queuing in MN 25ms
  • X2/Xn delay+Queuing in MN 55ms.
  • the RLC RTT is 75ms.
  • the final total layer 2 buffer size required by the terminal device is the maximum value of the total layer 2 buffer size calculated by the above-mentioned various combinations.
  • the RLC RTT of the corresponding NR cell group is determined according to the RLC RTT corresponding to the minimum subcarrier spacing (subcarrier spacing, SCS) supported in the frequency band combination of the cell group and the applicable feature set combination.
  • SCS subcarrier spacing
  • the approximate maximum data rate is calculated as follows:
  • J is the number of carriers aggregated in a certain frequency band or frequency band combination
  • f (j) represents the scaling factor, f (j) can be 1, 0.8, 0.75 or 0.4, etc.;
  • represents the system parameter (numerology) corresponding to different subcarrier spacing
  • OH (j) The value of OH (j) is different based on the corresponding uplink and downlink frequency bands, and may be 0.14, 0.18, 0.08 or 0.10, etc.
  • the buffer size is determined by the maximum data rate supported by DL/UL and the RLC RTT. Furthermore, the maximum data rate supported by DL/UL is determined by the maximum bandwidth supported by the UE in a given frequency band or combination of frequency bands.
  • the RLC RTT corresponds to the minimum SCS supported by the carriers in the band combination.
  • the terminal device determines the required maximum layer 2 cache, it will correspond to the SCS of 15KHz
  • the RLC RTT is calculated. That is, use 50ms in the above formula for calculation.
  • a terminal device uses a high-frequency carrier (eg, the FR2-2 high-frequency carrier mentioned above), since the available bandwidth supported on these carriers is larger, the maximum data rate supported will be higher. Different from the previous carrier aggregation between low-frequency bands, when carrying out carrier aggregation between low-frequency carriers and high-band carriers, since the maximum data transmission rates supported by the two carriers are more different, the above-mentioned method of determining the buffer size of layer 2 is adopted. The layer 2 cache size of the end device determined by the method will be very large, which will eventually increase the cost of the end device.
  • a high-frequency carrier eg, the FR2-2 high-frequency carrier mentioned above
  • a terminal device supports a combination of frequency band 3 and frequency band 4 on a certain NR cell group.
  • frequency band 3 is a low frequency carrier (such as 700MHz carrier)
  • the SCS corresponding to frequency band 3 is 15KHz
  • frequency band 4 is a high frequency carrier (such as 71GHz carrier)
  • the SCS corresponding to frequency band 4 is 960KHz.
  • the maximum data rate supported by the 700MHz carrier is 300Mbps
  • the maximum number supported by the 71GHz carrier is 20Gbps
  • the terminal device determines the layer 2 buffer size according to the above method, it needs to use the RLC RTT corresponding to 15KHz, that is, 50ms for the layer 2 buffer size calculate.
  • the final layer 2 buffer size will be very large.
  • the RLC RTT corresponding to 960KHz SCS can be reduced to, for example, 4ms or 5ms. Therefore, the layer 2 buffer size determined using an RLC RTT of 50 ms and an RLC RTT of 5 ms will differ by nearly 10 times, resulting in a very large layer 2 buffer overhead, which greatly increases the cost of the terminal device.
  • a method of grouping the SCSs may be used to reduce the size of the layer 2 cache.
  • the sub-carrier spacing (Sub-Carrier Spacing, SCS) can be divided into 2 or more groups, and then when determining the layer 2 buffer size, the terminal device will combine multiple frequency bands or multiple frequency bands corresponding to the cell group.
  • SCS specifies the SCS group to which each SCS belongs.
  • the UE selects the RLC RTT corresponding to the smallest SCS of the frequency band or frequency band combination in each SCS group for the calculation of the layer 2 buffer size.
  • mapping relationship between the SCS and the SCS group may be fixed in the protocol, or the network device may send the mapping relationship between the SCS and the SCS group to the terminal device after being determined.
  • SCSs of 15KHz, 30KHz, 60KHz, and 120KHz constitute one SCS group.
  • the SCSs of 240KHz, 480KHz and 960KHz form another SCS group.
  • the above Table 4 is taken as an example, assuming that the terminal device supports the combination of frequency band 1 and frequency band 2, and the combination of frequency band 3 and frequency band 4. Assuming that the SCSs of frequency band 1 and 2 are 30KHz and 60KHz, and the SCSs corresponding to frequency bands 3 and 4 are 240KHz and 960KHz, the terminal device determines that the SCSs of frequency bands 1 and 2 belong to SCS group 1, and the SCSs of frequency bands 3 and 4 belong to SCS group 2. Further, the terminal device determines that SCS group 1 uses the smallest SCS in the group at this time, that is, 30KHz, and the corresponding RLC RTT is used for layer 2 cache size calculation. And, the terminal device determines that the SCS group 2 uses the smallest SCS in the group, that is, 240KHz, and the corresponding RLC RTT is used for the calculation of the layer 2 buffer size.
  • the RLC RTT of the corresponding NR cell group is determined according to the RLC RTT corresponding to the minimum SCS in a certain SCS group to which the supported SCS belongs to some or all frequency band combinations of the cell group and the applicable feature set combination. Or, the RLC RTT of the corresponding NR cell group is determined according to the RLC RTT corresponding to the minimum SCS in a certain SCS group to which the SCS supported in part or all frequency band combinations of the cell group belongs.
  • the terminal device may calculate and determine the layer 2 cache size based on the following formula.
  • N is the number of SCS groups supported by the UE.
  • MaxDLDataRate(i) is the maximum downlink data rate supported by the frequency band or combination of frequency bands in which the SCS belongs to the i-th SCS group. The calculation of the specific maximum rate can be obtained according to the calculation formula of the aforementioned maximum rate.
  • MaxULDataRate(i) is the maximum uplink data rate supported by the frequency band or frequency point combination in which the SCS belongs to the i-th SCS group. The calculation of the specific maximum rate can be obtained according to the calculation formula of the aforementioned maximum rate.
  • the layer 2 cache size may also be calculated and determined by the following formula.
  • MaxDLDataRate is the maximum downlink data rate supported by the UE.
  • the calculation of the specific maximum rate can be obtained according to the calculation formula of the aforementioned maximum rate.
  • MaxULDataRate is the maximum uplink data rate supported by the UE.
  • the calculation of the specific maximum rate can be based on the calculation formula of the aforementioned maximum rate. get.
  • RLCRTT(i) is the RLC RTT corresponding to the frequency band or frequency combination in which the SCS belongs to the i-th SCS group.
  • sequence numbers of the above processes do not mean the order of execution, and the execution order of each process should be determined by its functions and internal logic, and should not constitute any limitation on the implementation process of the embodiment of the present application.
  • the equipment in the existing network architecture is used as an example for illustration (such as network equipment, terminal equipment, etc.). Not limited. For example, devices that can implement the same function in the future are applicable to this embodiment of the application.
  • the methods and operations implemented by the network equipment may also be implemented by components applicable to the network equipment; the methods and operations implemented by the terminal equipment may also be implemented by components applicable to the terminal equipment accomplish.
  • the method for random access provided by the embodiment of the present application is described in detail with reference to FIG. 5 .
  • the above method for random access is mainly introduced from the perspective of interaction between network equipment and terminal equipment. It can be understood that, in order to realize the above-mentioned functions, the network device and the terminal device include corresponding hardware structures and/or software modules for performing each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software drives hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art may use different methods to implement the described functions for each specific application, but such implementation should not be regarded as exceeding the scope of the present application.
  • the embodiment of the present application can divide the functional modules of the transmitting end device or the receiving end device according to the above method example, for example, each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module middle.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic, and is only a logical function division, and there may be other division methods in actual implementation. In the following, description will be made by taking the division of each functional module corresponding to each function as an example.
  • FIG. 8 is a schematic block diagram of an apparatus 800 provided by an embodiment of the present application.
  • the apparatus 800 includes a sending unit 810 , a processing unit 820 and a receiving unit 830 .
  • the sending unit 810 and the receiving unit 830 can implement corresponding communication functions, and the processing unit 820 is used for data processing.
  • the sending unit 810 and the receiving unit 830 may also be referred to as communication interfaces or communication units.
  • the device 800 may further include a storage unit, which may be used to store instructions and/or data, and the processing unit 820 may read the instructions and/or data in the storage unit, so that the device implements the aforementioned method embodiments .
  • a storage unit which may be used to store instructions and/or data
  • the processing unit 820 may read the instructions and/or data in the storage unit, so that the device implements the aforementioned method embodiments .
  • the device 800 can be used to execute the actions performed by the devices (such as the above-mentioned network devices, terminal devices, etc.) in the above method embodiments.
  • the receiving unit 830 is configured to perform operations related to device sending and receiving in the above method embodiments
  • the processing unit 820 is configured to perform operations related to device processing in the above method embodiments.
  • the apparatus 800 is configured to perform the actions performed by the network device in the above method embodiments.
  • the processing unit 820 is configured to determine a priority order of multiple characteristics, and the priority order of the multiple characteristics is used for selecting random access resources;
  • the sending unit 810 is configured to send first indication information to the terminal device, where the first indication information is used to indicate the priority order of the multiple characteristics.
  • the sending unit 810 is further configured to send second indication information to the terminal device, where the second indication information is used to indicate a valid duration of the priority order of the multiple characteristics.
  • the receiving unit 830 is further configured to receive third indication information from the terminal device, where the third indication information is used to indicate a priority sequence of multiple characteristics expected by the terminal device.
  • the sending unit 810 is further configured to send a third message to the first network device, where the third message is used to request to obtain an Internet Protocol IP address, where the IP address is an IP address of the second terminal device in the first communication group. the IP address in;
  • the apparatus 800 may implement the steps or processes corresponding to the execution of the network device in the method embodiment according to the embodiment of the present application, and the apparatus 800 may include a unit for executing the method executed by the network device in the method embodiment.
  • each unit in the apparatus 800 and other operations and/or functions described above are respectively for realizing the corresponding process of the method embodiment in the network device in the method embodiment.
  • the sending unit 810 can be used to execute the steps of sending information in the method, such as steps S520 and S521; the receiving unit 830 can be used to execute the steps of receiving information in the method, Such as step S511; the processing unit 820 may be used to execute the processing steps in the method, such as step S510.
  • the apparatus 800 is configured to perform the actions performed by the terminal device in the above method embodiments.
  • the receiving unit 830 is configured to receive first indication information from the network device, where the first indication information is used to indicate the priority order of multiple characteristics;
  • the processing unit 820 is configured to determine a priority sequence of the multiple characteristics according to the first indication information, and the priority sequence of the multiple characteristics is used for selecting random access resources.
  • the receiving unit 830 is further configured to receive second indication information from the network device, where the second indication information is used to indicate a valid duration of the priority order of the multiple characteristics.
  • the sending unit 810 is further configured to send third indication information to the network device, where the third indication information is used to indicate a priority order of multiple characteristics expected by the terminal device.
  • the processing unit 820 is further configured to select random access resources according to the first indication information.
  • the apparatus 800 may implement the steps or procedures corresponding to the execution of the terminal device in the method embodiment according to the embodiment of the present application, and the apparatus 800 may include a unit for executing the method executed by the terminal device in the method embodiment. Moreover, each unit in the apparatus 800 and other operations and/or functions described above are respectively for realizing the corresponding process of the method embodiment in the terminal device in the method embodiment.
  • the receiving unit 830 can be used to perform the steps of receiving information in the method, such as steps S520 and S521; the sending unit 810 can be used to perform the steps of sending information in the method, Such as step S511; the processing unit 820 may be used to execute the processing steps in the method, such as step S530.
  • the processing unit 820 in the above embodiments may be implemented by at least one processor or processor-related circuits.
  • the sending unit 810 and the receiving unit 830 may be implemented by transceivers or transceiver-related circuits.
  • the storage unit can be realized by at least one memory.
  • the embodiment of the present application further provides an apparatus 700 .
  • the apparatus 700 includes a processor 710 and may further include one or more memories 720 .
  • the processor 710 is coupled with the memory 720, and the memory 720 is used to store computer programs or instructions and/or data, and the processor 710 is used to execute the computer programs or instructions and/or data stored in the memory 720, so that the methods in the above method embodiments be executed.
  • the apparatus 700 includes one or more processors 710 .
  • the memory 720 may be integrated with the processor 710, or set separately.
  • the apparatus 700 may further include a transceiver 730, and the transceiver 730 is used for receiving and/or sending signals.
  • the processor 710 is configured to control the transceiver 730 to receive and/or send signals.
  • the apparatus 700 is used to implement the operations performed by the device (such as the above-mentioned network device, terminal device, etc.) in the above method embodiments.
  • the device such as the above-mentioned network device, terminal device, etc.
  • the embodiment of the present application also provides a computer-readable storage medium, on which computer instructions for implementing the method executed by the device (such as the above-mentioned network device, terminal device, etc.) in the above method embodiment are stored.
  • the computer program when executed by a computer, the computer can implement the method performed by the network device in the foregoing method embodiments.
  • the embodiments of the present application also provide a computer program product including instructions, which when executed by a computer enable the computer to implement the method performed by the device (such as the above-mentioned network device, terminal device, etc.) in the above method embodiment.
  • An embodiment of the present application further provides a communication system, where the communication system includes the devices in the foregoing embodiments (such as the foregoing network device, terminal device, etc.).
  • processors mentioned in the embodiment of the present application may be a central processing unit (central processing unit, CPU), and may also be other general processors, digital signal processors (digital signal processor, DSP), application specific integrated circuits ( application specific integrated circuit (ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory and/or a nonvolatile memory.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM).
  • RAM random access memory
  • RAM can be used as an external cache.
  • RAM may include the following forms: static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), synchronous dynamic random access memory (synchronous DRAM, SDRAM) , double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection dynamic random access memory (synchlink DRAM, SLDRAM) and Direct memory bus random access memory (direct rambus RAM, DR RAM).
  • static random access memory static random access memory
  • dynamic RAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM synchronous DRAM
  • double data rate SDRAM double data rate SDRAM
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection dynamic random access memory
  • Direct memory bus random access memory direct rambus RAM, DR RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic devices, discrete gate or transistor logic devices, or discrete hardware components
  • the memory storage module may be integrated in the processor.
  • memories described herein are intended to include, but are not limited to, these and any other suitable types of memories.
  • the disclosed devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to implement the solutions provided in this application.
  • each functional unit in each embodiment of the present application may be integrated into one unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer may be a personal computer, a server, or a network device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server, or data center by wired (eg, coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, DVD), or a semiconductor medium (for example, a solid state disk (solid state disk, SSD) etc.
  • the aforementioned available medium may include But not limited to: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program codes.

Abstract

本申请实施例提供了一种用于随机接入的方法和装置,该方法包括:网络设备确定多个特性的优先级顺序,该多个特性的优先级顺序用于随机接入资源的选择;向终端设备发送用于指示该多个特性的优先级顺序的第一指示信息。通过第一指示信息配置多个特性的优先级顺序,提高多个特性的优先级顺序配置的灵活性。

Description

用于随机接入的方法和装置
本申请要求于2021年10月22日提交中国专利局、申请号为202111235600.2、申请名称为“用于随机接入的方法和装置”和于2022年02月14日提交中国专利局、申请号为202210135342.9、申请名称为“用于随机接入的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种用于随机接入的方法和装置。
背景技术
随机接入是终端设备连接到网络过程中的一个步骤。目前随机接入过程中在终端设备支持特性(如,降低能力、小包数据传输、覆盖增强和网络切片增强等)的情况下,终端设备选择随机接入资源的时候需要考虑不同特性的优先级。
如何使得终端设备能够基于不同特性的优先级选择随机接入资源成为亟待解决的问题。
发明内容
本申请实施例提供一种用于随机接入的方法和装置,终端设备能够基于接收到的第一指示信息确定多个特性的优先级顺序,通过第一指示信息配置多个特性的优先级顺序,以期提高多个特性的优先级顺序配置的灵活性。
第一方面,提供了一种用于随机接入的方法,该方法可以由网络设备执行,或者,也可以由网络设备的组成部件(例如芯片或者电路)执行,对此不作限定,为了便于描述,下面以由网络设备执行为例进行说明。
该用于随机接入的方法包括:网络设备确定多个特性的优先级顺序,该多个特性的优先级顺序用于随机接入资源的选择;该网络设备向终端设备发送第一指示信息,该第一指示信息用于指示该多个特性的优先级顺序。
基于上述技术方案,网络设备能够通过第一指示信息配置多个特性的优先级顺序,使得终端设备能够基于接收到的第一指示信息确定多个特性的优先级顺序,本申请中通过第一指示信息配置多个特性的优先级顺序,提高多个特性的优先级顺序配置的灵活性。
另外,网络设备通过第一指示信息配置多个特性的优先级顺序还能够提高网络设备对终端设备的控制。
结合第一方面,在第一方面的某些实现方式中,该多个特性中不同的特性满足以下至少一种:该不同的特性对应的业务需求不同、该不同的特性对应的传输方式不同、该不同的特性对应的设备类型不同、该不同的特性对应的应用场景不同或该不同的特性对应的功能不同。
结合第一方面,在第一方面的某些实现方式中,该第一指示信息包括在系统消息和/ 或专用信令中。
一种可能的设计中,专用信令为无线资源控制(radio resource control,RRC)重配置消息或RRC释放(RRCRelease)消息。
上述的第一指示信息能够通过系统消息发送给终端设备,还可以通过专用信令发送给终端设备,说明可以通过不同的方式发送第一指示信息,提高方案的灵活性。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:该网络设备向该终端设备发送第二指示信息,该第二指示信息用于指示该多个特性的优先级顺序的有效时长。
基于上述技术方案,网络设备可以通过第二指示信息配置多个特性的优先级顺序的有效时长,从而提高配置的多个特性的优先级顺序的时效性。
结合第一方面,在第一方面的某些实现方式中,该网络设备向终端设备发送第一指示信息之前,该方法还包括:该网络设备接收来自该终端设备的第三指示信息,该第三指示信息用于指示该终端设备期望的多个特性的优先级顺序。
基于上述技术方案,终端设备可以通过第三指示信息上报自身期望的多个特性的优先级顺序,从而网络设备在确定多个特性的优先级顺序的时候,可以考虑到终端设备期望的多个特性的优先级顺序,从而网络设备确定的多个特性的优先级顺序可以更满足终端设备的需求。
结合第一方面,在第一方面的某些实现方式中,该第一指示信息用于指示该多个特性的优先级顺序,包括:该第一指示信息用于指示该多个特性的顺序,该多个特性的顺序用于确定该多个特性的优先级顺序;或者,该第一指示信息指示该多个特性的优先级信息,该优先级信息包括该多个特性中至少一个的特性的优先级信息,该优先级信息用于确定该多个特性的优先级顺序。
基于上述技术方案,上述的第一指示信息可以直接或者间接指示多个特性的优先级顺序,提高方案的灵活性。
第二方面,提供了一种用于随机接入的方法,该方法可以由终端设备执行,或者,也可以由终端设备的组成部件(例如芯片或者电路)执行,对此不作限定,为了便于描述,下面以由终端设备执行为例进行说明。
该用于随机接入的方法包括:终端设备接收来自网络设备的第一指示信息,该第一指示信息用于指示多个特性的优先级顺序;该终端设备根据该第一指示信息确定该多个特性的优先级顺序,该多个特性的优先级顺序用于随机接入资源的选择。
基于上述技术方案,终端设备能够基于接收到的第一指示信息确定多个特性的优先级顺序,本申请中通过第一指示信息配置多个特性的优先级顺序,提高多个特性的优先级顺序配置的灵活性。
结合第二方面,在第二方面的某些实现方式中,该多个特性中不同的特性满足以下至少一种:该不同的特性对应的业务需求不同、该不同的特性对应的传输方式不同、该不同的特性对应的设备类型不同、该不同的特性对应的应用场景不同或该不同的特性对应的功能不同。
结合第二方面,在第二方面的某些实现方式中,该第一指示信息包括在系统消息和/或专用信令中。
上述的第一指示信息能够通过系统消息发送给终端设备,还可以通过专用信令发送给 终端设备,说明可以通过不同的方式发送第一指示信息,提高方案的灵活性。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:该终端设备接收来自该网络设备的第二指示信息,该第二指示信息用于指示该多个特性的优先级顺序的有效时长。
基于上述技术方案,网络设备可以通过第二指示信息配置多个特性的优先级顺序的有效时长,从而提高配置的多个特性的优先级顺序的时效性。
结合第二方面,在第二方面的某些实现方式中,该终端设备接收来自网络设备的第一指示信息之前,该方法还包括:该终端设备向该网络设备发送第三指示信息,该第三指示信息用于指示该终端设备期望的多个特性的优先级顺序。
基于上述技术方案,终端设备可以通过第三指示信息上报自身期望的多个特性的优先级顺序,从而网络设备在确定多个特性的优先级顺序的时候,可以考虑到终端设备期望的多个特性的优先级顺序,从而网络设备确定的多个特性的优先级顺序可以更满足终端设备的需求。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:该终端设备根据该第一指示信息选择随机接入资源。
结合第二方面,在第二方面的某些实现方式中,该第一指示信息指示第一特性的优先级高于第二特性的优先级,该终端设备根据该第一指示信息选择随机接入资源,包括:该终端设备确定配置有第一资源,该第一资源为该第一特性的随机接入资源,或者,该第一资源为包括该第一特性的第一特性组合的随机接入资源;该终端设备确定配置有第二资源,该第二资源为包括该第一特性和该第二特性的第二特性组合的随机接入资源,该随机接入资源包括在该第二资源中。
结合第二方面,在第二方面的某些实现方式中,该第一指示信息指示第一特性的优先级高于第二特性的优先级,该方法还包括:该终端设备在第二资源上执行随机接入失败,该第二资源为包括该第一特性和该第二特性的第二特性组合的随机接入资源;该终端设备根据该第一指示信息选择随机接入资源,包括:该终端设备确定配置有第一资源,该第一资源为该第一特性的随机接入资源,或者,该第一资源为包括该第一特性的第一特性组合的随机接入资源,该随机接入资源包括在该第一资源中。
结合第二方面,在第二方面的某些实现方式中,该第一指示信息用于指示该多个特性的优先级顺序,包括:该第一指示信息用于指示该多个特性的顺序,该多个特性的顺序用于确定该多个特性的优先级顺序;或者,该第一指示信息指示该多个特性的优先级信息,该优先级信息包括该多个特性中至少一个的特性的优先级信息,该优先级信息用于确定该多个特性的优先级顺序。
基于上述技术方案,上述的第一指示信息可以直接或者间接指示多个特性的优先级顺序,提高方案的灵活性。
第三方面,提供一种用于随机接入的装置,该装置用于执行上述第一方面提供的方法。具体地,该用于随机接入的可以包括用于执行第一方面或第一方面的上述任意一种实现方式提供的方法的单元和/或模块,如处理单元和/或通信单元。
在一种实现方式中,该用于随机接入的装置为网络设备。当该用于随机接入的装置为网络设备时,通信单元可以是收发器,或,输入/输出接口;处理单元可以是至少一个处 理器。可选地,收发器可以为收发电路。可选地,输入/输出接口可以为输入/输出电路。
在另一种实现方式中,该用于随机接入的装置为网络设备中的芯片、芯片系统或电路。当该用于随机接入的装置为网络设备中的芯片、芯片系统或电路时,通信单元可以是该芯片、芯片系统或电路上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等;处理单元可以是至少一个处理器、处理电路或逻辑电路等。
以上第三方面及其可能的设计所示方法的有益效果可参照第一方面及其可能的设计中的有益效果。
第四方面,提供一种用于随机接入的装置,该用于随机接入的用于执行上述第二方面提供的方法。具体地,该用于随机接入的装置可以包括用于执行第二方面或第二方面的上述任意一种实现方式提供的方法的单元和/或模块,如处理单元和/或通信单元。
在一种实现方式中,该用于随机接入的装置为终端设备。当该用于随机接入的装置为终端设备时,通信单元可以是收发器,或,输入/输出接口;处理单元可以是至少一个处理器。可选地,收发器可以为收发电路。可选地,输入/输出接口可以为输入/输出电路。
在另一种实现方式中,该用于随机接入的装置为终端设备中的芯片、芯片系统或电路。当该用于随机接入的装置为终端设备中的芯片、芯片系统或电路时,通信单元可以是该芯片、芯片系统或电路上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等;处理单元可以是至少一个处理器、处理电路或逻辑电路等。
以上第四方面及其可能的设计所示方法的有益效果可参照第二方面及其可能的设计中的有益效果。
第五方面,提供一种通信装置,该通信装装置包括:至少一个处理器,至少一个处理器与至少一个存储器耦合,至少一个存储器用于存储计算机程序或指令,至少一个处理器用于从至少一个存储器中调用并运行该计算机程序或指令,使得通信装置执行第一方面或其任意可能的实现方式中的方法。
在一种实现方式中,该装置为网络设备。
在另一种实现方式中,该通信装装置为网络设备中的芯片、芯片系统或电路。
以上第五方面及其可能的设计所示方法的有益效果可参照第一方面及其可能的设计中的有益效果。
第六方面,提供一种通信装置,该通信装置包括:至少一个处理器,至少一个处理器与至少一个存储器耦合,至少一个存储器用于存储计算机程序或指令,至少一个处理器用于从至少一个存储器中调用并运行该计算机程序或指令,使得通信装置执行第二方面或其任意可能的实现方式中的方法。
在一种实现方式中,该装置为终端设备。
在另一种实现方式中,该装置为终端设备中的芯片、芯片系统或电路。
以上第六方面及其可能的设计所示方法的有益效果可参照第二方面及其可能的设计中的有益效果。
第七方面,本申请提供一种处理器,用于执行上述各方面提供的方法。
对于处理器所涉及的发送和获取/接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则可以理解为处理器输出和接收、输入等操作,也可以理解为由射频电路和天线所进行的发送和接收操作,本申请对此不做限定。
第八方面,提供一种计算机可读存储介质,该计算机可读存储介质存储用于设备执行的程序代码,该程序代码包括用于执行上述第一方面或第一方面的上述任意一种实现方式或第二方面或第二方面的上述任意一种实现方式提供的方法。
第九方面,提供一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述第一方面或第一方面的上述任意一种实现方式或第二方面或第二方面的上述任意一种实现方式提供的方法。
第十方面,提供一种芯片,芯片包括处理器与通信接口,处理器通过通信接口读取存储器上存储的指令,执行上述第一方面或第一方面的上述任意一种实现方式或第二方面或第二方面的上述任意一种实现方式提供的方法。
可选地,作为一种实现方式,芯片还包括存储器,存储器中存储有计算机程序或指令,处理器用于执行存储器上存储的计算机程序或指令,当计算机程序或指令被执行时,处理器用于执行上述第一方面或第一方面的上述任意一种实现方式或第二方面或第二方面的上述任意一种实现方式提供的方法。
第十一方面,提供一种通信系统,该通信系统包括第三方面和第四方面所示的用于随机接入的装置。
第十二方面,提供了一种通信的方法,该方法可以由终端设备执行,或者,也可以由终端设备的组成部件(例如芯片或者电路)执行,对此不作限定,为了便于描述,下面以由终端设备执行为例进行说明。
该通信的方法包括:终端设备确定至少一个子载波间隔(subcarrier space,SCS)所属的SCS组;该终端设备确定该SCS组中最小的SCS;该终端设备确定该最小的SCS对应的无线链路控制(radio link control,RLC)往返时间(round trip time,RTT),该RLC RTT用于确定层2缓存大小,其中,该至少一个SCS包括:
部分或全部频段组合和适用的特性集组合中支持的一个或多个SCS,或者,部分或全部频段组合中支持的一个或多个SCS。
基于上述技术方案,通过对SCS进行分组的方式,可以避免在终端设备聚合高频或超高频载波时,由于使用不合适的RLC RTT而导致的层2缓存过大的问题。
结合第十二方面,在第十二方面的某些实现方式中,该终端设备确定至少一个SCS所属的SCS组,包括:
该终端设备根据协议预定义确定至少一个SCS所属的SCS组;或者,
该终端设备接收来自网络设备的第五指示信息,该第五指示信息用于指示至少一个SCS所属的SCS组。
基于上述技术方案,终端设备可以通过不同的方式确定至少一个SCS所属的SCS组,提高方案的灵活性。
结合第十二方面,在第十二方面的某些实现方式中,该方法还包括:该终端设备确定SCS与SCS组的映射关系。
结合第十二方面,在第十二方面的某些实现方式中,该RLC RTT与层2缓存大小满足以下关系:
Figure PCTCN2022126469-appb-000001
其中,N为SCS组的个数。MaxDLDataRate(i)为SCS属于第i个SCS组的频段或频段组合上支持的最大的下行数据速率。MaxULDataRate(i)为SCS属于第i个SCS组的频段或频段组合上支持的最大的上行数据速率。
结合第十二方面,在第十二方面的某些实现方式中,该RLC RTT与层2缓存大小满足以下关系:
Figure PCTCN2022126469-appb-000002
其中,N为SCS组的个数。MaxDLDataRate为该终端设备支持的最大下行数据速率,MaxULDataRate为该终端设备支持的最大上行数据速率。
第十三方面,提供了一种通信的方法,该方法可以由网络设备执行,或者,也可以由网络设备的组成部件(例如芯片或者电路)执行,对此不作限定,为了便于描述,下面以由网络设备执行为例进行说明。
该通信的方法包括:网络设备确定至少一个SCS所属的SCS组,该SCS组中最小SCS对应的RLC RTT用于确定层2缓存大小;该网络设备向终端设备发送第五指示信息,该第五指示信息用于指示至少一个SCS所属的SCS组,其中,该至少一个SCS包括:
部分或全部频段组合和适用的特性集组合中支持的一个或多个SCS,或者,部分或全部频段组合中支持的一个或多个SCS。
基于上述技术方案,通过对SCS进行分组的方式,可以避免在终端设备聚合高频或超高频载波时,由于使用不合适的RLC RTT而导致的层2缓存过大的问题。
第十四方面,提供了一种通信的装置,该装置可以是第十二方面的终端设备,或者,也可以是第十二方面的终端设备的组成部件(例如芯片或者电路)执行,对此不作限定。
该通信的装置包括:处理单元,用于确定至少一个SCS所属的SCS组;该处理单元,用于确定该SCS组中最小SCS;该处理单元,用于确定该最小的SCS对应的RLC RTT,该RLC RTT用于确定层2缓存大小,其中,该至少一个SCS包括:
部分或全部频段组合和适用的特性集组合中支持的一个或多个SCS,或者,部分或全部频段组合中支持的一个或多个SCS。
结合第十四方面,在第十四方面的某些实现方式中,该处理单元,用于确定至少一个SCS所属的SCS组,包括:
该处理单元,用于根据协议预定义确定至少一个SCS所属的SCS组;或者,
该装置还包括:接收单元,用于接收来自网络设备的第五指示信息,该第五指示信息用于指示至少一个SCS所属的SCS组。
结合第十四方面,在第十四方面的某些实现方式中,该处理单元,用于确定SCS与SCS组的映射关系。
第十五方面,提供了一种通信的装置,该装置可以是第十三方面的网络设备,或者,也可以是第十二方面的网络设备的组成部件(例如芯片或者电路)执行,对此不作限定。
该通信的装置包括:处理单元,用于确定至少一个SCS所属的SCS组,该SCS组中最小SCS对应的RLC RTT用于确定层2缓存大小;发送单元,用于向终端设备发送第五指示信息,该第五指示信息用于指示至少一个SCS所属的SCS组,其中,该至少一个SCS包括:
部分或全部频段组合和适用的特性集组合中支持的一个或多个SCS,或者,部分或全部频段组合中支持的一个或多个SCS。
第十六方面,提供一种计算机可读存储介质,该计算机可读存储介质存储用于设备执行的程序代码,该程序代码包括用于执行上述第十二方面或第十二方面的上述任意一种实现方式或第十三方面或第十三方面的上述任意一种实现方式提供的方法。
第十七方面,提供一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述第十二方面或第十二方面的上述任意一种实现方式或第十三方面或第十三方面的上述任意一种实现方式提供的方法。
第十八方面,提供一种芯片,芯片包括处理器与通信接口,处理器通过通信接口读取存储器上存储的指令,执行上述第十二方面或第十二方面的上述任意一种实现方式或第十三方面或第十三方面的上述任意一种实现方式提供的方法。
可选地,作为一种实现方式,芯片还包括存储器,存储器中存储有计算机程序或指令,处理器用于执行存储器上存储的计算机程序或指令,当计算机程序或指令被执行时,处理器用于执行上述第十二方面或第十二方面的上述任意一种实现方式或第十三方面或第十三方面的上述任意一种实现方式提供的方法。
第十九方面,提供一种通信系统,该通信系统包括第十四方面和第十五方面所示的通信的装置。
附图说明
图1是本申请实施例适用的通信系统100的示意图。
图2中的(a)至(d)是网络设备和终端设备之间通信方式的示意图。
图3是一种四步随机接入过程的示意性流程图。
图4是一种两步随机接入过程的示意性流程图。
图5是本申请实施例提供的一种用于随机接入的方法的示意性流程图。
图6中的(a)至(d)是终端设备选择随机接入资源的示意性流程图。
图7是另一种终端设备选择随机接入资源的示意性流程图。
图8是根据本申请实施例提供的通信装置的示意性框图。
图9是根据本申请实施例提供的通信装置的另一示意性框图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:第五代(5th generation,5G)系统或新无线(new radio,NR)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)等。本申请提供的技术方案还可以应用于未来的通信系统,如第六代移动通信系统。本申请实施例的技术方案还可以应用于设备到设备(device to device,D2D)通信,车辆外联(vehicle-to-everything,V2X)通信,机器到机器(machine to machine,M2M)通信,机器类型通信(machine type communication,MTC),以及物联网(internet of things,IoT)通信系统或者其他通信系统。
为便于理解本申请实施例,首先以图1中示出的通信系统为例详细说明本申请实施例适用的通信系统。图1是本申请实施例适用的通信系统100的示意图。如图1所示,该通信系统100可以包括至少一个网络设备,例如图1所示的网络设备110;该通信系统100还可以包括至少一个终端设备,例如图1所示的终端设备120。网络设备110与终端设备120可通过无线链路通信。各通信设备,如网络设备110和终端设备120,均可以配置多个天线。对于该通信系统100中的每一个通信设备而言,所配置的多个天线可以包括至少一个用于发送信号的发射天线和至少一个用于接收信号的接收天线。因此,该通信系统100中的各通信设备之间,如网络设备110与终端设备120之间,可通过多天线技术通信。
作为示例而非限定,针对图1所示的场景中的网络设备和终端设备之间可以通过多种方式进行通信,如网络设备与终端设备之间通过点对点传输方式通信、网络设备与终端设备之间通过多跳(或者说中继(relay))传输方式通、多个网络设备和终端设备之间通过双连接(dual connectivity,DC)或多连接传输方式通等。如图2中的(a)至(d)所示,图2中的(a)至(d)是网络设备和终端设备之间通信方式的示意图。
其中,图2中的(a)所示的为网络设备与终端设备之间点对点传输;图2中的(b)所示的为网络设备与终端设备之间多跳单连接传输;图2中的(c)所示的为网络设备与终端设备之间双连接传输;图2中的(d)所示的为网络设备与终端设备之间多跳多连接传输。
需要说明的是,图2只是示例性的,对本申请的保护范围不构成任何的限定,本申请实施例中对于网络设备和终端设备之间的通信方式不进行任何的限定。例如,网络设备和终端设备之间的传输可以是上行、下行、接入链路、回传(backhaul)链路或侧链路(Sidelink)等。
本申请实施例中的终端设备(terminal equipment)可以指接入终端、用户单元、用户站、移动站、移动台、中继站、远方站、远程终端、移动设备、用户终端(user terminal)、用户设备(user equipment,UE)、终端(terminal)、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
作为示例而非限定,在本申请实施例中,可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,在本申请实施例中,终端设备还可以是IoT系统中的终端设备,IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实 现人机互连,物物互连的智能化网络。在本申请实施例中,IOT技术可以通过例如窄带(narrow band,NB)技术,做到海量连接,深度覆盖,终端省电。
本申请实施例中的网络设备可以是用于与终端设备通信的任意一种具有无线收发功能的设备。该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(home evolved NodeB,HeNB,或home Node B,HNB)、基带单元(baseBand unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable  read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读存储介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
应理解,图1和图2是以网络设备与终端设备通信为例,简单说明本申请能够应用的一个通信场景,不对本申请可以应用的其他场景产生限制。
还应理解,图1和图2仅为便于理解而示例的简化示意图,该通信系统中还可以包括其他网络设备或者还可以包括其他终端设备,图1和图2中未予以画出。
例如,通信系统中还可以包括用于管理终端设备以及网络设备配置的核心网设备,如,包括接入和移动性管理功能(access and mobility management function,AMF)网元、会话管理功能(session management function,SMF)网元、用户面功能(user plane function,UPF)网元、策略控制功能(policy control function,PCF)网元等。
图1和图2为本申请实施例适用的通信系统,为了便于理解本申请实施例的技术方案,在以5G架构为基础介绍本申请实施例的方案之前,首先对本申请实施例可能涉及到的5G中的一些术语或概念进行简单描述。
1、随机接入过程。
随机接入过程是指从终端设备发送随机接入前导码(preamble)开始尝试接入网络到与网络间建立起基本的信令连接之前的过程。
需要说明的是,终端设备在选择发送preamble的随机接入信道时机(RACH occasion,RO)之前,终端设备需要选择上行载波。例如,在配置了补充上行链路(supplementary uplink,SUL)或正常上行链路(normal uplink)NUL的情况下,终端设备可以选择工作在SUL还是NUL上。
在选择完上行载波之后,终端设备(如,处于RRC连接态的终端设备)可能需要进行部分带宽(BWP)操作。例如,当终端设备的激活上行BWP上没有配置RO,则终端设备需要将该激活上行BWP切换至初始上行BWP。
在选择完上行载波或BWP操作之后,终端设备需要进行随机接入(random access,RA)类型的选择,可以理解为终端设备需要选择是执行两步随机接入(下述图4所示的为执行两步随机接入)还是执行四步随机接入(下述图3所示的为执行四步随机接入)。
进一步地,在确定了RA类型之后,终端设备需要进行RACH资源选择:终端设备可以根据选择的同步信号块(Synchronization Signal and PBCH block,SSB)以及SSB与RO之间的映射关系选择发送preamble的RO;或者,终端设备可以根据选择的SSB以及SSB与preamble之间的映射关系选择发送的preamble。
例如,一个SSB可以与多个RO对应,或多个SSB映射到一个RO上;还例如,一个SSB与一个或多个preamble对应,不同的SSB使用的preamble可以不同。
目前随机接入主要分为两类:一类是四步随机接入,一类是两步随机接入。为了便于理解,结合图3和图4分别介绍四步随机接入过程和两步随机接入过程。
图3是一种四步随机接入过程的示意性流程图。
从图3中可以看出,四步随机接入的过程可以包括以下步骤:
S310,终端设备向网络设备发送随机接入前导码。
示例性地,终端设备在物理随机接入信道(physical random access channel,PRACH) 资源上向网络设备发送随机接入前导码,其中,PRACH资源可以理解为随机接入信道时机(RACH occasion,RO)。
网络设备接收到终端设备发送的随机接入前导码之后,基于该随机接入前导码向终端设备发送随机接入响应(random access response,RAR),图3所示的随机接入的过程还包括:
S320,网络设备向终端设备发送RAR。
示例性地,网络设备向终端设备发送的RAR中包括指示发送消息3(massage 3,Msg3)的上行资源的指示信息。可以理解为终端设备接收到该RAR之后,能够获知用于发送Msg3的上行资源。
终端设备接收到RAR之后,基于该RAR发送Msg3,图3所示的随机接入的过程还包括:
S330,终端设备向网络设备发送Msg3。
示例性地,Msg3可以包括层2(layer 2,L2)信息和/或层3(layer 3,L3)信息,例如,RRC连接建立请求消息;还例如,波束失败恢复(beam failure recovery,BFR)MAC控制单元(control element,CE)。
在终端设备竞争解决成功的情况下,网络设备向终端设备发送竞争解决消息,图3所示的随机接入的过程还包括:
S340,网络设备向终端设备发送竞争解决消息。
示例性地,竞争解决消息中包括终端设备的标识(identify,ID),其中,竞争解决消息也可以称为消息4(massage 4,Msg4)。当从Msg3中判断随机接入为基于竞争的随机接入时,则保存需要竞争的终端设备的信息,在通过Msg4解决竞争时,会对这些竞争的终端设备进行竞争解决。
需要说明的是,本申请中上述的图3只是为了便于说明四步随机接入过程而提供的一种示意图,对本申请的保护范围不构成任何的限定,四步随机接入过程的具体描述可以参考目前相关技术中的介绍。
图4是一种两步随机接入过程的示意性流程图。
从图4中可以看出,两步随机接入的过程可以包括以下步骤:
S410,终端设备向网络设备发送消息A(message A,MsgA)。
该MsgA中包括preamble部分和物理上行共享信道(physical uplink shared channel,PUSCH)部分。其中,preamble部分在PRACH资源(如上文所述的RO)上发送,PUSCH资源上可以承载L2或L3信息,例如,BFR MAC CE或RRC连接建立请求消息。
网络设备接收到终端设备发送的消息A之后,基于该消息A向终端设备发送RAR,图4所示的随机接入的过程还包括:
S420,网络设备向终端设备发送消息B(message B,MsgB)。
MsgB消息可以包含成功的RAR(success RAR)或回退的RAR(fallback RAR)。
在终端设备接收到fallback RAR的情况下,终端设备需要回退到四步随机接入过程,即发送Msg3。
除上述的两步随机接入到四步随机接入的回退过程外,如果网络设备在触发随机接入时选择进行两步随机接入过程,在两步随机接入过程的preamble达到最大发送次数之后, 终端设备还可以回退(fallback)到四步随机接入过程尝试接入,从而增大终端设备的接入成功率,保证终端设备的接入性能。
2、PRACH资源划分。
由上述对于随机接入过程的描述可知,随机接入需要基于PRACH资源发送随机接入前导码。目前协议中规定具有以下特性的终端设备需要划分PRACH资源,以四步随机接入为例:
(1)降低能力(Reduced Capability,RedCap)。
RedCap UE指的是降低能力的终端设备,降低能力可以指终端设备支持的最大带宽降低,或终端设备的天线数降低等。由于RedCap UE支持的最大带宽(例如,20MHz)比传统终端设备(或者称为非RedCap终端设备)小,因此在进行随机接入过程时,网络设备需要在Msg1提前识别RedCap UE,从而网络设备可以在后续RACH过程中对RedCap UE进行特殊处理:
例如,在RAR中调度的Msg3上行资源不超过RedCap UE支持的最大带宽,以及在Msg4中对RedCap UE进行合适的配置等。
网络设备也可以不配置RedCap的Msg1提前识别,而是通过Msg3识别RedCap UE:
例如,在网络设备配置的初始上行BWP带宽不超过20MHz的情况下,网络设备可以通过Msg3识别RedCap UE。
需要说明的是,RedCap应理解为一种终端设备类型,为了与下述的3种特性统一描述,下文中也使用“特性”描述,即RedCap可以理解为终端设备支持的特性。
(2)小包数据传输(small data transmission,SDT)。
RRC非激活(RRC_INACTIVE)状态的终端设备可以进行基于RACH的小包传输,可以理解为终端设备在发送Msg3时也发送小包数据,终端设备无需进入连接态即可进行小包数据传输,达到节省功耗和时延的目的。
因此终端设备可以在Msg1上报终端设备请求小包数据传输,使得网络设备可以在RAR中为终端设备调度较大的Msg3传输资源以承载小包数据。
(3)覆盖增强(coverage enhancement,CovEnh)。
CovEnh研究的内容包括如何通过重复传输提高Msg3的覆盖性能。因此终端设备可以在Msg1中上报需要进行覆盖增强,从而网络设备可以调度Msg3的重复(repetition)。
(4)网络切片的RAN侧增强(RAN slicing)。
网络切片的RAN侧增强,考虑到一些业务或者用户的优先级较高,网络设备可以为该业务或用户提供专用的RACH资源,从而向网络指示切片的高优先级,实现RACH资源隔离。
另外,一个切片组可以包括一个或多个切片,网络设备可以为每个切片组配置独立的专用PRACH资源,多个切片组也可以共享独立的专用PRACH资源。
以上4个特性需要网络设备在RACH过程的Msg1(或MsgA)过程识别终端设备的特性,因此网络设备需要为该特性配置独立的PRACH资源。独立的PRACH资源可以包括独立的RO(如,独立的时频域资源RO)或专用的preamble。
例如,网络设备可以为RedCap UE配置独立的RO资源,网络设备在该资源上接收到preamble,可以识别出发送该preamble的终端设备为RedCap UE,从而在后续过程中对该 终端设备进行特殊处理。
以上4个特性之间的特性组合(feature combination)也需要网络设备配置专用的RACH资源。
例如,若RedCap UE触发了基于RACH的小包传输,则网络设备既需要在Msg1中识别该终端设备为RedCap UE,从而在后续RACH过程中对RedCap UE进行特殊处理,且网络设备还需要在Msg1中识别终端设备请求的是SDT传输,从而在配置Msg3资源时,考虑到小包数据的传输。此时网络设备需要为RedCap UE触发基于RACH的小包传输的场景配置独立的RACH资源,可以表示为RedCap+SDT(或表示为RedCap and SDT)的特性组合对应的资源。
以上4个特性之间的特性组合包括以下几种:
SDT+RedCap(或者表示为RedCap and SDT);
RedCap+CovEnh(或者表示为RedCap and CovEnh);
CovEnh+slicing(或者表示为CovEnh and slicing);
SDT+slicing(或者表示为SDT and slicing);
SDT+CovEnh(或者表示为SDT and CovEnh);
RedCap+slicing(或者表示为RedCap and slicing);
SDT+RedCap+CovEnh(或者表示为SDT and RedCap and CovEnh);
SDT+RedCap+slicing(或者表示为SDT and RedCap and slicing);
SDT+CovEnh+slicing(或者表示为SDT and CovEnh and slicing);
RedCap+CovEnh+slicing(或者表示为RedCap and CovEnh and slicing);
SDT+REdCap+CovEnh+slicing(或者表示为SDT and RedCap and CovEnh and slicing)。
需要说明的是,本申请中对于特性组合的具体名称不做限定,包括多种特性即可,至于以特性组中的特性之间用“+”表示,还是用“and”表示,还是用其他连接符表示,还是没有连接符号不做限定。如,上述的SDT+RedCap可以直接表示为SDT,RedCap。
因此网络设备不仅可能需要为以上4个特性配置独立的RACH资源,还需要为以上特性组合配置独立的RACH资源。
除此以外,还需要考虑两步随机接入与以上特性或特性组合的结合。
例如,网络设备可能需要为RedCap UE配置独立的两步随机接入资源;
还例如,网络设备可能需要为进行切片组1业务的RedCap UE配置独立的两步随机接入资源。
3、RACH资源选择。
在网络设备配置中,网络设备可以为所有特性或特性组合(如上述的4个特性、4个特性的组合特性、特性或特性组合与两步随机接入的结合等)配置专用的RACH资源,也可以仅为部分特性或特性组合配置专用的RACH资源。每个特性或特性组合的专用RACH资源可以称为RACH划分(RACH partition)。
例如,触发RACH过程的特性组合为RedCap+CovEnh+slicing,但是网络设备没有配置RedCap+CovEnh+slicing特性组合的专用RACH资源,仅配置了包括RedCap+slicing和RedCap+CovEnh的特性或特性组合的专用RACH资源。在该情况下终端设备选择哪个特 性或特性组合的专用RACH资源,可能取决终端设备在RACH资源选择过程中的特性优先级(或称为特性优先级顺序、特性排序、特性优先级准则等)。此处的特性优先级还可以理解为终端设备在执行RACH资源选择过程中的特性顺序,并不一定代表不同特性对应的业务的重要性。
其中,触发RACH过程的特性组合可以理解为在RACH启动过程中满足了特性组合中相关特性的条件。例如,终端设备为RedCap UE,且终端设备测量的信号质量阈值满足了覆盖增强的条件,到达终端设备的业务是切片组相关的,触发RACH过程的特性组合可以为RedCap+CovEnh+slicing。
在RACH资源选择过程以外,特性优先级还可能影响RACH回退(fallback)过程。
例如,触发RACH过程的特性组合为RedCap+CovEnh+slicing,且网络设备配置了RedCap+CovEnh+slicing特性组合的专用RACH资源,但是终端设备基于该资源的RACH过程失败了(一次或多次),则终端设备可以回退到其他资源上的RACH过程,此时RACH过程选择RedCap+slicing还是RedCap+CovEnh特性组合的专用资源,也取决于RACH回退机制中的特性优先级。
上述结合图1和图2简单介绍了本申请能够适用的场景,并介绍了本申请中涉及的基本概念,由上述可知,RACH资源选择需要考虑到特性优先级。
一种RACH资源选择的方法是:通过协议规定特性之间的优先级,从而确定引入上述的各个特性后的RACH资源选择的过程和/或RACH回退过程。
例如,协议规定在资源选择过程中特性之间的优先级为:
第一优先级:RedCap
第二优先级:RAN slicing
第三优先级:覆盖增强或SDT
以回退过程为例,当RACH是由RedCap+CovEnh+slicing特性组合触发的,但是基于此特性组合的专用资源的RACH过程失败了,则按照以上特性优先级,UE应回退到RedCap+slicing特性组合的专用资源(如果配置了的话),而不能回退到RedCap+CovEnh特性组合的专用资源上。
但是考虑到有些网络设备的部署和策略不同,或网络设备在特定时间阶段的部署和策略变更,在以上示例中网络设备可能需要以保证终端设备的覆盖为先,即按照网络设备的期望终端设备应回退到RedCap+CovEnh特性组合的专用资源上。且对于不同的终端设备,其业务优先级需求可能不同,因此协议规定的特性优先级可能并不符合终端设备的需求。
协议规定终端设备进行RACH资源选择和/或RACH回退机制的特性优先级,则不同网络下终端设备总是按照特性优先级进行RACH资源选择和/或RACH过程,没有考虑网络的部署和策略,以及终端设备的业务需求。RACH资源选择和/或RACH回退过程的灵活性较低。
为了避免目前协议规定的特性优先级导致RACH资源选择不符合需求的问题,本申请提供一种用于随机接入的方法,以期提高RACH资源选择的灵活性。
下文示出的实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或 接入网设备,或者,是终端设备或接入设备中能够调用程序并执行程序的功能模块。
为了便于理解本申请实施例,做出以下几点说明。
第一,在本申请中,“用于指示”可以理解为“使能”,“使能”可以包括直接使能和间接使能。当描述某一信息用于使能A时,可以包括该信息直接使能A或间接使能A,而并不代表该信息中一定携带有A。
将信息所使能的信息称为待使能信息,则具体实现过程中,对待使能信息进行使能的方式有很多种,例如但不限于,可以直接使能待使能信息,如待使能信息本身或者该待使能信息的索引等。也可以通过使能其他信息来间接使能待使能信息,其中该其他信息与待使能信息之间存在关联关系。还可以仅仅使能待使能信息的一部分,而待使能信息的其他部分则是已知的或者提前约定的。例如,还可以借助预先约定(例如协议规定)的各个信息的排列顺序来实现对特定信息的使能,从而在一定程度上降低使能开销。同时,还可以识别各个信息的通用部分并统一使能,以降低单独使能同样的信息而带来的使能开销。
第二,在本申请中示出的第一、第二以及各种数字编号(例如,“#1”、“#2”等)仅为描述方便,用于区分的对象,并不用来限制本申请实施例的范围。例如,区分不同的指示信息等。而不是用于描述特定的顺序或先后次序。应该理解这样描述的对象在适当情况下可以互换,以便能够描述本申请的实施例以外的方案。
第三,在本申请中,“预设”可包括预先定义,例如,协议定义。其中,“预先定义”可以通过在设备(例如,包括终端设备或网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。
第四,本申请实施例中涉及的“保存”,可以是指的保存在一个或者多个存储器中。所述一个或者多个存储器,可以是单独的设置,也可以是集成在编码器或者译码器,处理器、或通信装置中。所述一个或者多个存储器,也可以是一部分单独设置,一部分集成在译码器、处理器、或通信装置中。存储器的类型可以是任意形式的存储介质,本申请并不对此限定。
第五,本申请实施例中涉及的“协议”可以是指通信领域的标准协议,例如可以包括5G协议、新空口(new radio,NR)协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
以下,不失一般性,以网络设备和终端设备之间的交互为例详细说明本申请实施例提供的用于随机接入的方法。
图5是本申请实施例提供的一种用于随机接入的方法的示意性流程图。包括以下步骤:
S510,网络设备确定多个特性的优先级顺序。
其中,该多个特性中不同的特性满足以下至少一种:不同的特性对应的业务需求不同、不同的特性对应的传输方式不同、不同的特性对应的设备类型不同、不同的特性对应的应用场景不同或不同的特性对应的功能不同。
示例性地,多个特性中不同的特性可以理解为该多个特性中任意的两个特性。
示例性地,不同的特性对应的业务需求不同可以理解为:不同特性对应的性能需求不同,例如,不同特性对传输时延、可靠性、业务优先级等一种或多种性能需求不同,或者不同特性对应的业务(例如视频、通话和云游戏等)不同。可选地,业务需求也可以是服务质量(Quality of QoS,QoS)。
示例性地,不同的特性对应的传输方式不同可以理解为:不同特性对应组播、广播或单播等不同传输方式。
示例性地,不同的特性对应的设备类型不同可以理解为:不同特性对应RedCap UE、物理网终端等不同设备类型。
示例性地,不同的特性对应的应用场景不同可以理解为:不同特性可以用于工业物联网、可穿戴设备、智能手机和卫星通信等不同场景。
示例性地,不同的特性对应的功能可以理解为:不同特性是为了提高终端设备的覆盖、节省终端设备的功耗、降低终端设备的成本,提升用户体验等不同功能。
或者说,多个特性包括降低能力的设备类型、小包数据传输、覆盖增强或接入网切片增强中的多种;
具体地,多个特性包括前文基本概念中介绍的PRACH资源划分中涉及的RedCap、SDT、CovEnh和RAN slicing等。
其中,多个特性可以是RedCap、SDT、CovEnh和RAN slicing中的多个。
例如,多个特性为RedCap、SDT、CovEnh和RAN slicing。
还例如,多个特性为RedCap、SDT和CovEnh。
又例如,多个特性为RedCap、SDT和RAN slicing。
又例如,多个特性为RedCap和SDT。
另外,不同的slicing group的特性优先级也可以配置地不同。
例如,特性优先级的排序为:RedCap>RAN slicing group 2>CovEnh>RAN slicing group 1>SDT。
或者说,网络设备可以为特性配置专用的随机接入资源,不同的特性的专用的随机接入资源可以不同,随机接入资源包括时域资源、频域资源或码域资源。
需要说明的是,本申请实施例中对于多个特性包括的具体特性的种类和个数不做限定;另外,本申请中对于特性的具体形式不做限制,可以是目前讨论的几种特性(如,降低能力的设备类型、小包数据传输、覆盖增强或接入网切片增强等)中的一种或多种特性,还可以是未来通信方法中引入的其他特性中的一种或多种。
作为一种可能的实现方式,网络设备可以根据网络设备的部署和策略配置不同特性的优先级。
例如,根据网络设备的部署和策略,网络设备支持降低能力的终端设备、小包数据传输、覆盖增强和网络切片增强,并且降低能力、小包数据传输、覆盖增强和网络切片增强的优先级高低排序为:降低能力>小包数据传输>覆盖增强>网络切片增强,网络设备确定多个特性的优先级顺序为:降低能力>小包数据传输>覆盖增强>网络切片增强。
作为另一种可能的实现方式,网络设备可以根据历史通信信息确定不同特性的优先级。
例如,历史通信信息指示网络设备支持降低能力、小包数据传输、覆盖增强和网络切片增强,并且降低能力、小包数据传输、覆盖增强和网络切片增强的优先级高低排序为:降低能力>小包数据传输>覆盖增强>网络切片增强,网络设备确定多个特性的优先级顺序为:降低能力>小包数据传输>覆盖增强>网络切片增强。
作为又一种可能的实现方式,网络设备可以根据管理设备的指示确定不同特性的优先级。
例如,管理设备指示网络设备支持降低能力、小包数据传输、覆盖增强和网络切片增强,并且降低能力、小包数据传输、覆盖增强和网络切片增强的优先级高低排序为:降低能力>小包数据传输>覆盖增强>网络切片增强,网络设备确定多个特性的优先级顺序为:降低能力>小包数据传输>覆盖增强>网络切片增强。
需要说明的是,本申请实施例中对于网络设备确定多个特性的优先级顺序的具体实现方式不做限定。
进一步地,网络设备还可以根据实时的策略和部署更新多个特性的优先级顺序,提高确定多个特性的优先级顺序的灵活性,提升了终端设备的接入性能。
示例性的,在后续引入其他特性时(如,除上述的4种特性之外的特性),网络设备也可以增加特性的优先级。
例如,引入了特性#1,该特性#1的优先级高于RedCap。当前的多个特性的优先级顺序为:RedCap>RAN slicing>CovEnh>SDT,网络设备可以不用更新当前的这4种特性的优先级顺序,而是将新引入的特性作为最高优先级指示给终端设备即可,从而这种配置优先级顺序的方法的向前兼容性更好。
示例性的,网络设备可以仅配置部分特性的优先级,例如协议规定RedCap为最高优先级,slicing为第二优先级,网络设备配置SDT和CovEnh的特性优先级为CovEnh>SDT。
具体地,网络设备确定多个特性的优先级顺序之后,可以通过第一指示信息向终端设备配置该多个特性的优先级顺序,图5所示的方法还包括:
S520,网络设备向终端设备发送第一指示信息,或者说终端设备接收来自网络设备的第一指示信息。
该第一指示信息用于指示上述的网络设备确定的多个特性的优先级顺序。
作为一种可能的实现方式,所述第一指示信息指示所述多个特性的顺序,所述多个特性的顺序用于确定所述多个特性的优先级顺序。
示例性地,第一指示信息指示所述多个特性的顺序可以是显示地指示该多个特性的顺序。例如使用多个特性的特性标识信息指示多个特性的顺序:为了便于理解,下面以多个特性包括RedCap、RAN slicing、CovEnh和SDT为例进行说明。
例如,第一指示信息中包括多个特性的标识信息,该多个特性的标识信息的顺序指示多个特性的顺序为RedCap、RAN slicing、CovEnh和SDT,则多个特性的优先级顺序为RedCap>RAN slicing>CovEnh>SDT。
具体地,可以通过指示某个特性的标识指示某个特性。如,用4个比特标识每个特性,RedCap标识为0000,RAN slicing的标识为0001,SDT的特识为0011,CovEnh的标识为0010,则第一指示信息中包含多个特性的顺序指示字段:0000000100100011。
示例性地,第一指示信息指示所述多个特性的顺序可以是隐式地指示该多个特性的顺序。如通过多个特性的专用配置信息指示多个特性的顺序:为了便于理解,下面以多个特性包括RedCap、RAN slicing、CovEnh和SDT为例进行说明。
例如,网络设备分别为各个特性配置专用资源或专用配置,此时各个特性的专用资源或专用配置的顺序为RedCap、RAN slicing、CovEnh和SDT,则多个特性的优先级顺序为RedCap>RAN slicing>CovEnh>SDT,其中,第一指示信息可以理解为各个特性出现的顺序。
作为另一种可能的实现方式,所述第一指示信息指示所述多个特性的优先级信息,所 述优先级信息包括所述多个特性中至少一个特性的优先级信息,所述优先级信息用于确定所述多个特性的优先级顺序。
示例性地,第一指示信息指示所述多个特性的优先级信息可以是指示特性的绝对优先级:为了便于理解,下面以多个特性包括RedCap、RAN slicing、CovEnh和SDT为例进行说明。
例如,网络设备为特性配置绝对优先级,以此来确定特性的优先级排序。网络设备配置RedCap的特性绝对优先级为7,SDT的绝对特性优先级为5,RAN slicing的特性绝对优先级为6,CovEnh的绝对特性优先级为4。
可选地,数值越大,表示优先级越高,则特性优先级排序为RedCap>RAN slicing>SDT>CovEnh。
可选地,数值越小,表示优先级越高,则特性优先级排序为CovEnh>SDT>RAN slicingRedCap>。
还例如,网络设备还可以配置特性组合的特性优先级,特性组合包括多个特性。如特性组合#1包括CovEnh和RAN slicing,该特性组合#1的特性优先级为5。特性组合#1可以与其他特性或特性组合进行优先级的比较。特性组合包括的特性也是网络设备配置的。
又例如,网络设备可以为不同特性配置相同的优先级,如CovEnh和RAN slicing的特性优先级均为5,则终端设备在两个特性之间的选择为随机选择或终端设备可以基于其他信息(如,历史通信信息)选择,本申请不限制。
示例性地,第一指示信息指示所述多个特性的优先级信息可以是指示特性的优先级排名:为了便于理解,下面以多个特性包括RedCap、RAN slicing、CovEnh和SDT为例进行说明。
例如,网络设备指示RedCap的特性优先级排序为1,SDT的特性优先级排序为3,RAN slicing的特性优先级排序为2,CovEnh的特性优先级排序为4,则特性优先级排序为RedCap>RAN slicing>SDT>CovEnh。
需要说明的是,上述第一指示信息通过指示特性的顺序指示多个特性的优先级顺序,以及第一指示信息通过指示特性的优先级信息指示多个特性的优先级顺序的方案只是举例说明可以通过不同的方式指示多个特性的优先级顺序,对本申请的保护范围不构成任何的限定,其他能够用于指示多个特性的优先级顺序的指示信息也在本申请的保护范围之内,这里不再赘述。
本申请实施例中网络设备确定的多个特性的优先级顺序可以是针对该网络设备所服务的终端设备,还可以是针对某个终端设备,上述的第一指示信息的发送方式包括以下两种可能:
可能一:
第一指示信息包括在系统消息中,上述的步骤S520可以理解为:网络设备向终端设备发送系统消息,系统消息中包括第一指示信息。
在可能一中,网络设备可以在系统消息中广播多个特性的优先级顺序。对于网络设备来说能够通过广播的方式向服务的多个终端设备配置多个特性的优先级顺序,提高了配置效率。
如网络设备在系统消息(例如,SIB1)中广播多个特性的优先级顺序,则终端设备需 要按照SIB1中广播的多个特性的优先级顺序进行RACH资源选择和/或RACH回退。
例如,网络设备广播的多个特性的优先级顺序为:RedCap>CovEnh>RAN slicing>SDT。此时如果协议中规定了默认多个特性的优先级顺序(如,协议中规定特性优先级为:
RedCap>RAN slicing>CovEnh>SDT),终端设备应按照系统消息中广播的多个特性的优先级顺序RedCap>CovEnh>RAN slicing>SDT进行RACH资源选择和/或RACH回退过程。
示例性地,系统消息中配置的多个特性的优先级顺序可以包括邻区的特性的优先级,例如,在SIB2、SIB3或SIB4中配置邻区的特性的优先级顺序。
可能二:
第一指示信息包括在专用信令中,上述的步骤S520可以理解为:网络设备向终端设备发送专用信令,专用信令中包括第一指示信息。
在可能二中,网络设备通过专用信令配置多个特性的优先级顺序。对于网络设备来说能够通过针对某个终端设备配置多个特性的优先级顺序。
示例性地,在终端设备进入连接态,网络设备可以通过RRC重配消息配置多个特性的优先级顺序。
当网络设备在专用信令中配置了多个特性的优先级顺序时,终端设备可以使用专用信令中配置的多个特性的优先级顺序进行RACH资源选择和/或RACH回退,如,终端设备可以忽略系统消息中广播的多个特性的优先级顺序和/或协议中规定的默认多个特性的优先级顺序。
示例性地,在终端设备即将离开连接态时,网络设备可以通过RRC释放消息配置多个特性的优先级顺序,在终端设备进入非连接态(例如,RRC IDLE状态或RRC INACTIVE状态)后,终端设备可以使用RRC释放消息中配置的多个特性的优先级顺序进行RACH资源选择和/或RACH回退过程。
示例性地,RRC释放消息中配置的多个特性的优先级顺序可以包括服务小区的特性的优先级,和/或,邻区的特性的优先级顺序,其中,服务小区可以理解为给终端设备发送RRC释放消息的小区。
作为一种可能的实现方式,系统消息中包括的第一指示信息所指示的多个特性的优先级顺序(如,优先级顺序#1),与专用信令中包括的第一指示信息所指示的多个特性的优先级顺序(如,优先级顺序#2)不同,其中,优先级顺序#1和优先级顺序#2都属于多个特性的优先级顺序。
进一步地,网络设备可以通过第二指示信息,指示配置的多个特性的优先级顺序的有效时长,图5所示的方法流程还包括:
S521,网络设备向终端设备发送第二指示信息,或者说终端设备接收来自网络设备的第二指示信息。
该第二指示信息用于指示多个特性的优先级顺序的有效时长。
例如,系统消息中包括第一指示信息和第二指示信息,第一指示信息指示多个特性的优先级顺序(如,优先级顺序#1),第二指示信息用于指示优先级顺序#1的有效时长。
还例如,专用消息中包括第一指示信息和第二指示信息,第一指示信息指示多个特性的优先级顺序(如,优先级顺序#2),第二指示信息用于指示优先级顺序#2的有效时长。
可选地,该有效时长还可以是协议预定义的,或者包括在其他消息中,如,第一指示 信息和第二指示信息可以通过两条信令发送,本申请对此不做限定。
示例性地,第二指示信息可以是定时器或时长指示信息。
为了便于理解,以专用信令中包括第一指示信息和第二指示信息为例进行说明:
例如,RRC释放消息中的第一指示信息指示的多个特性的优先级顺序(如,优先级顺序#2)的有效性可以受定时器或时长的控制。
在定时器未超时或未到一定时长的情况下,终端设备基于RRC释放消息中配置的优先级顺序#2发起RACH过程;
在定时器超时或达到一定时长的情况下,终端设备基于系统消息中广播的多个特性的优先级顺序(如,优先级顺序#1)或协议规定的默认特性优先级发起RACH过程。
上述的定时器的启动条件包括:终端设备接收到该定时器配置,或终端设备接收到RRC释放消息;定时器的停止条件是包括:终端设备发生RRC状态转换,如终端设备进入RRC连接态;定时器超时的情况下,终端设备可以丢弃多个特性的优先级顺序,或者说终端设备可以丢弃第二指示信息,在该情况下终端设备也可以继续按照该多个特性的优先级顺序进行RACH资源选择和/或RACH回退过程。
作为一种可能的实现方式,网络设备可以根据终端设备的偏好确定上述的多个特性的优先级顺序,图5所示的方法还包括:
S511,终端设备向网络设备发送第三指示信息,或者说网络设备接收来自终端设备的第三指示信息。
该第三指示信息用于指示终端设备期望的多个特性的优先级顺序。其中,第三指示信息可以包括在RRC建立请求消息、RRC恢复请求消息或RRC重建请求消息等消息中。
例如,终端设备可以在专用信令(如,RRC建立请求消息、RRC恢复请求消息或RRC重建请求消息等)中上报期望的多个特性的优先级顺序(或者称为偏好的多个特性的优先级顺序),网络设备基于终端设备上报的特性优先级确定专用信令中配置的多个特性的优先级顺序。
需要说明的是,上述的终端设备期望的多个特性的优先级顺序(如,第一优先级顺序)和网络设备确定得到的多个特性的优先级顺序(如,第二优先级顺序)可以相同也可以不同。
进一步地,终端设备接收到上述的第一指示信息之后,能够根据第一指示信息确定多个特性的优先级顺序。图5所示的方法流程还包括:
S530,终端设备根据第一指示信息确定多个特性的优先级顺序。
另外,终端设备还可以根据多个特性的优先级顺序选择随机接入资源。其中,随机接入资源包括时域、频域和/或码域资源。选择时频域资源可以理解为选择RO,选择码域资源可以理解为选择preamble。
本申请实施例中终端设备在以下两种流程中涉及随机接入资源的选择:
流程一:RACH资源选择。
随机接入流程被触发,终端设备选择随机接入资源。
示例性地,以第一指示信息指示第一特性的优先级高于第二特性的优先级、终端设备至少支持第一特性和第二特性以及随机接入流程的触发条件至少包括第一特性和第二特性为例说明流程一中终端设备选择随机接入资源的过程,包括:
所述终端设备确定配置有第一资源,所述第一资源为所述第一特性的随机接入资源,或者,所述第一资源为包括所述第一特性的第一特性组合的随机接入资源;
所述终端设备确定配置有第二资源,所述第二资源为包括所述第一特性和所述第二特性的第二特性组合的随机接入资源,所述随机接入资源包括在所述第二资源中。
需要说明的是,在第一指示信息指示除第一特性和第二特性之外的其他的特性(如,第三特性)的优先级的情况下,终端设备需要进行包括该第三特性的特性组合的随机接入资源的选择。
下面以一个具体的例子,说明流程一中终端设备选择随机接入资源,图6中的(a)至(d)是终端设备选择随机接入资源的示意性流程图。此处的随机接入资源选择过程可以理解为初始随机接入资源选择,或终端设备启动随机接入过程后的资源选择过程。
图6中的(a)所示的场景下多个特性的优先级顺序为:RedCap>CovEnh>RAN slicing>SDT,终端设备为RedCap UE,且终端设备支持RAN slicing特性和CovEnh特性,RACH过程为RedCap+RACH slicing(切片组1)+CovEnh特性组合触发的。
该选择随机接入资源的流程包括以下步骤:
S610,RACH资源选择过程启动。
S620,终端设备判断是否配置有资源#1。
其中,资源#1为RedCap的专用资源,或者,RedCap相关的特性组合(如,SDT+RedCap、RedCap+slicing、或者SDT+RedCap+CovEnh等)的专用资源。
若配置有资源#1,执行步骤S630:终端设备判断是否配置有资源#2。如果没有配置资源#1,执行步骤S621:终端设备在资源#3中选择RO发送preamble。
其中,资源#2为资源#1中包括的RedCap+CovEnh相关的特性组合(如,
RedCap+CovEnh、或者SDT+RedCap+CovEnh等)的专用资源;资源#3为传统的PRACH资源(即非RedCap专用资源)。
若配置有资源#2,执行步骤S640:终端设备判断是否配置有资源#4。如果没有配置资源#2,执行步骤S631:终端设备在资源#5中选择RO发送preamble。
其中,资源#4为资源#2中包括的RedCap+CovEnh+slicing相关的特性组合的专用资源;资源#5为RedCap专用资源,或传统PRACH资源;
若配置有资源#4,执行步骤S650:终端设备在资源#4中选择RO发送preamble。如果没有配置资源#4,执行步骤S651:终端设备在资源#2中选择RO发送preamble。
图6中的(a)所示的随机接入资源的选择流程仅为示例。终端设备也可以根据特性优先级执行其他的随机接入资源选择的流程。
例如,终端设备首先确定是否配置触发RACH过程的特性组合配置专用资源,没有配置的情况下再按照特性优先级依次确定是否配置其他特性组合的专用资源。如图6中的(b)所示的流程,图6中的(b)是另一种终端设备选择随机接入资源的示意性流程图。
图6中的(b)所示的场景下多个特性的优先级顺序为:RedCap>CovEnh>RAN slicing>SDT,终端设备为RedCap UE,且终端设备支持RAN slicing特性和CovEnh特性,RACH过程为RedCap+RACH slicing(切片组1)+CovEnh特性组合触发的。
该选择随机接入资源的流程包括以下步骤:
S611,RACH资源选择过程启动。
S612,终端设备判断是否配置有资源#4。
其中,资源#4为RedCap+CovEnh+slicing特性组合的专用资源。
若没有配置有资源#4,执行步骤S613:终端设备判断是否配置有资源#2。如果配置资源#4,执行步骤S614:终端设备在资源#4中选择RO发送preamble。
其中,资源#2为RedCap+CovEnh特性组合的专用资源。
若没有配置有资源#2,执行步骤S615:终端设备判断是否配置有资源#1。如果配置资源#2,执行步骤S616:终端设备在资源#2中选择RO发送preamble。
其中,资源#1为RedCap的专用资源;
若配置有资源#1,执行步骤S617:终端设备在资源#1中选择RO发送preamble。如果没有配置资源#1,执行步骤S618:终端设备在资源#3中选择RO发送preamble。
其中,资源#3为传统的PRACH资源(即非RedCap专用资源)。
示例性地,终端设备还可以根据特性优先级执行其他的随机接入资源选择的流程。
例如,终端设备首先确定是否配置触发RACH过程的特性组合配置专用资源,没有配置的情况下再按照特性优先级依次确定是否配置其他特性组合的专用资源,并且在按照特性优先级依次确定是否配置其他特性组合的专用资源时,遍历触发RACH的特性组合中的其他特性,直至选择到合适的资源。如图6中的(c)所示的流程,图6中的(c)是又一种终端设备选择随机接入资源的示意性流程图。
图6中的(c)所示的场景下多个特性的优先级顺序为:RedCap>CovEnh>RAN slicing>SDT,终端设备为RedCap UE,且终端设备支持RAN slicing特性和CovEnh特性,RACH过程为RedCap+RACH slicing(切片组1)+CovEnh特性组合触发的。
该选择随机接入资源的流程包括以下步骤:
S601,RACH资源选择过程启动。
S602,终端设备判断是否配置有资源#1。
其中,资源#1为RedCap的专用资源,或者,RedCap相关的特性组合(如,SDT+RedCap、RedCap+slicing、或者SDT+RedCap+CovEnh等)的专用资源。
若配置有资源#1,执行步骤S603:终端设备判断是否配置有资源#2。
其中,资源#2为资源#1中包括的RedCap+CovEnh相关的特性组合(如,RedCap+CovEnh、或者SDT+RedCap+CovEnh等)的专用资源。
若没有配置资源#1,执行步骤S6041:终端设备判断是否配置有资源#11。其中,资源#11为专用资源中CovEnh的专用资源,或者,CovEnh相关的特性组合(如,CovEnh+slicing、或者CovEnh+SDT等)的专用资源。
若没有配置资源#11,执行步骤S6042:终端设备判断是否配置有资源#12。其中,资源#12为专用资源中slicing的专用资源。在配置有资源#12的情况下,执行步骤S6043:终端设备在资源#12中选择RO发送preamble;或者,在没有配置资源#12的情况下,执行步骤S6044:终端设备在资源#3中选择RO发送preamble资源#3为传统的PRACH资源(即非RedCap专用资源)。
若配置有资源#11,执行步骤S604:终端设备判断是否配置有资源#6。
其中,资源#6为专用资源中CovEnh+slicing专用资源。
在配置有资源#6的情况下,执行步骤S607:终端设备在资源#6中选择RO发送 preamble。
在没有配置资源#6的情况下,执行步骤S608:终端设备在资源#13中选择RO发送preamble。其中,资源#13为专用资源中CovEnh的专用资源。
若配置有资源#2,执行步骤S605:终端设备判断是否配置有资源#4。
其中,资源#4为资源#2中包括的RedCap+CovEnh+slicing相关的特性组合的专用资源。
若没有配置资源#2,执行步骤S606:终端设备判断是否配置有资源#7。
其中,资源#7为RedCap+slicing专用资源,或者,RedCap+slicing相关的特性组合(如,RedCap+slicing+SDT等)的专用资源。
在配置有资源#7的情况下,执行步骤S6091:终端设备在资源#7中选择RO发送preamble。
在没有配置资源#7的情况下,执行步骤S6092:终端设备在资源#8中选择RO发送preamble。资源#8为传统的PRACH资源(即非RedCap专用资源),或者资源#8为RedCap专用资源。
若配置有资源#4,执行步骤S609:终端设备在资源#4中选择RO发送preamble。如果没有配置资源#4,执行步骤S6093:终端设备在资源#2中选择RO发送preamble。示例性地,终端设备还可以根据特性优先级执行其他的随机接入资源选择的流程。
例如,当网络没有配置触发RACH的特性组合的专用资源时,终端设备在依次排除较低优先级的特性的同时,需要将特性组合中包括的其他特性遍历。如图6中的(d)所示的流程,图6中的(d)是又一种终端设备选择随机接入资源的示意性流程图。
图6中的(d)所示的场景下多个特性的优先级顺序为:RedCap>CovEnh>RAN slicing>SDT,终端设备为RedCap UE,且终端设备支持RAN slicing特性和CovEnh特性,RACH过程为RedCap+RACH slicing(切片组1)+CovEnh特性组合触发的。
该选择随机接入资源的流程包括以下步骤:
S6011,RACH资源选择过程启动。
S6012,终端设备判断是否配置有资源#4。
其中,资源#4为RedCap+CovEnh+slicing特性组合的专用资源。
若没有配置有资源#4,执行步骤S6013:终端设备判断是否配置有资源#2。如果配置资源#4,执行步骤S6014:终端设备在资源#4中选择RO发送preamble。
其中,资源#2为RedCap+CovEnh特性组合的专用资源。
若没有配置有资源#2,执行步骤S6015:终端设备判断是否配置有资源#9。如果配置资源#2,执行步骤S6016:终端设备在资源#2中选择RO发送preamble。
其中,资源#9为RedCap+slicing的专用资源;
若配置有资源#9,执行步骤S6017:终端设备在资源#9中选择RO发送preamble。如果没有配置资源#9,执行步骤S6018:终端设备判断是否配置有资源#1。
其中,资源#1为RedCap的专用资源;
如果配置资源#1,执行步骤S6019:终端设备在资源#1中选择RO发送preamble。如果没有配置资源#1,执行步骤S6020:终端设备判断是否配置有资源#6。
其中,资源#6专用资源中CovEnh+slicing专用资源。
在配置有资源#6的情况下,执行步骤S6021:终端设备在资源#6中选择RO发送preamble。
在没有配置资源#6的情况下,执行步骤S6023:终端设备判断是否配置有资源#13。其中,资源#13为专用资源中CovEnh的专用资源。
若没有配置资源#13,执行步骤S6024:终端设备判断是否配置有资源#12。其中,资源#12为专用资源中slicing的专用资源。在配置有资源#12的情况下,执行步骤S6025:终端设备在资源#12中选择RO发送preamble;或者,在没有配置资源#12的情况下,执行步骤S6026:终端设备在资源#3中选择RO发送preamble资源#3为传统的PRACH资源(即非RedCap专用资源)。
若配置有资源#13,执行步骤S6022:终端设备在资源#13中选择RO发送preamble。
可以理解,相比于上述的图6中的(b)所示的资源选择流程,该图6中的(d)所示的资源选择流程在RACH资源选择过程中遍历更加全面的特性组合,使得终端设备能够选择更加接近触发RACH的特性组合的特性组合的专用资源。
流程二:RACH回退。
随机接入失败(如,随机接入前导码发送失败或竞争解决失败),终端设备选择随机接入资源。
示例性地,以第一指示信息指示第一特性的优先级高于第二特性的优先级、终端设备至少支持第一特性和第二特性以及随机接入流程的触发条件至少包括第一特性和第二特性为例说明流程二中终端设备选择随机接入资源的过程,包括:
所述终端设备在第二资源上执行随机接入失败,所述第二资源为包括所述第一特性和所述第二特性的第二特性组合的随机接入资源;
所述终端设备确定配置有第一资源,所述第一资源为所述第一特性的随机接入资源,或者,所述第一资源为包括所述第一特性的第一特性组合的随机接入资源,所述随机接入资源包括在所述第一资源中。下面以一个具体的例子,说明流程二中终端设备选择随机接入资源,图7是另一种终端设备选择随机接入资源的示意性流程图。
图7所示的场景下多个特性的优先级顺序为:RedCap>CovEnh>RAN slicing>SDT,终端设备为RedCap UE,且终端设备支持RAN slicing特性和CovEnh特性,RACH过程为RedCap+RACH slicing(切片组1)+CovEnh特性组合触发的。
该选择随机接入资源的流程包括以下步骤:
S710,终端设备基于资源#4执行随机接入失败。
例如,终端设备在资源#4中选择RO发送preamble失败。资源#4为RedCap+CovEnh+slicing相关的特性组合的专用资源。
S720,终端设备判断是否回退。
若回退,执行步骤S730:终端设备判断是否配置有资源#2。若不回退,执行步骤S721:终端设备在资源#4中选择RO发送preamble。
其中,资源#2为RedCap+CovEnh相关的特性组合的专用资源。
若配置有资源#2,执行步骤S740:终端设备在资源#2中选择RO发送preamble。如果没有配置资源#2,执行步骤S731:终端设备判断是否配置有资源#1。
其中,资源#1为RedCap的专用资源,或者,RedCap相关的特性组合的专用资源。
若配置有资源#1,执行步骤S750:终端设备在资源#1中选择RO发送preamble。如果没有配置资源#1,执行步骤S741:终端设备在资源#3中选择RO发送preamble。资源#3为传统的PRACH资源(即非RedCap专用资源)。
以上示例中,资源#1、资源#2、资源#3和资源#4包括不同的RO。如果资源#1、资源#2、资源#3和资源#4中全部资源或部分资源的RO相同,preamble不同,则终端设备对应的行为是在RO中选择要发送的preamble。上述的图6中的(a)至(d)以及图7只是举例说明终端设备如何使用多个特性的优先级顺序进行随机接入资源的选择,对本申请的保护范围不构成任何的限定,终端设备还可以在考虑多个特性的优先级顺序的情况下,通过其他的方式进行随机接入资源的选择,这里不再赘述。
另外,上述的流程一和流程二可以单独执行,还可以结合执行,例如,终端设备执行流程一之后,在流程一选择的随机接入资源上执行随机接入失败可以执行流程二所示的回退流程。
可以理解的是,在上述举例中以某些特性为例,对特性的名称不做任何的限定。例如RedCap可以替换为第一特性,SDT可以替换为第二特性,slicing可以替换为第三特性,CovEnh可以替换为第四特性。上述流程一和流程二中的判断步骤可以为部分可选。
需要说明的是,上述的流程一和流程二所示的随机接入资源的选择过程,可以适用于非连接态的终端设备,此时终端设备需要确定的是初始上行BWP中是否配置对应特性或特性组合的专用RACH资源。上述的流程一和流程二所示的随机接入资源的选择过程还可以适用于连接态的终端设备。如果终端设备处于连接态(如,RRC_CONNCET状态),在当前激活的BWP上可能未配置有通过上述资源选择方式确定的专用资源。在该情况下终端设备需要确定激活上行BWP上是否配置有通过上述资源选择方式确定的专用资源,并基于多个特性的优先级顺序重新选择随机接入资源或者切换至初始上行BWP。其中,通过上述资源选择方式确定的专用资源包括流程中各个步骤确定的专用资源。
另外需要说明的是,图6和图7所示的资源选择流程中,只是举例说明流程一和流程二中终端设备所基于的多个特性的优先级顺序可以相同,对本申请的保护范围不构成任何的限定。上述的流程一和流程二中终端设备所基于的多个特性的优先级顺序也可以不同,即网络设备配置的用于随机接入资源选择和RACH回退资源选择的多个特性的优先级顺序可以相同(为同一套多个特性的优先级顺序配置),也可以不同(分别配置)。
示例性地,终端设备可以从网络设备配置的两套多个特性的优先级顺序配置分别选择用于随机接入资源选择的多个特性的优先级顺序和用于RACH回退资源选择的多个特性的优先级顺序。
示例性地,网络设备可以通过指示信息指示两套多个特性的优先级顺序配置中的一套用于随机接入资源选择,另一套用于RACH回退资源选择。
示例性地,终端设备维护第四指示信息,第四指示信息用于指示终端设备要使用随机接入资源选择的特性优先级顺序,或终端设备要使用RACH回退资源选择的特性优先级顺序。例如,终端设备确定要进行RACH回退,则终端设备将第四指示信息设置为RACH回退资源选择的特性优先级顺序,或终端设备确定要进行RACH资源选择,则终端设备将第四指示信息设置为随机接入资源选择的特性优先级顺序。
应理解,上述实施例中主要以网络设备确定多个特性的优先级顺序,并通过第一指示信息配置该多个特性的优先级顺序为例进行说明,以使得终端设备能够根据该多个特性的优先级顺序进行随机接入资源的选择。作为另一种可能的实现方式,网络设备还可以确定多个特性组合的优先级顺序,并通过指示信息配置该多个特性组合的优先级顺序,以使得终端设备能够根据该多个特性组合的优先级顺序进行随机接入资源的选择。
例如,网络设备确定多个特性组合的优先级顺序为SDT+RedCap>RedCap+CovEnh>CovEnh+slicing>SDT+slicing>SDT+CovEnh>RedCap+slicing>SDT+RedCap+CovEnh>SDT+RedCap+slicing>SDT+CovEnh+slicing>RedCap+CovEnh+slicing>SDT+REdCap+CovEnh+slicing。
当RedCap+CovEnh+slicing特性组合触发的RACH进行资源选择或RACH回退时,终端设备可以按照网络设备配置的特性组合的优先级确定随机接入资源。例如,如果网络设备没有配置RedCap+CovEnh+slicing特性组合的专用资源,或在该专用资源上的RACH失败,由于RedCap+CovEnh、CovEnh+slicing和RedCap+slicing特性组合中RedCap+CovEnh特性组合的特性组合优先级最高,如果网络设备配置了RedCap+CovEnh特性组合的专用资源,则终端设备选择该专用资源发起随机接入。
特性组合的优先级还可以包括两步随机接入相关的特性组合,例如RedCap+SDT+2-step RACH等。
考虑到网络设备为所有特性组合配置特性组合优先级的信令开销可能比较大,因此网络设备还可以配置特性组合集合的特性优先级,特性组合集合包括多个特性或特性优先级。
又例如,如特性组合集合#1包括RedCap和与RedCap相关的特性组合(例如SDT+RedCap、RedCap+slicing、SDT+RedCap+CovEnh等),特性组合集合#2包括slicing和与slicing相关的特性组合(例如SDT+slicing、CovEnh+slicing等)。特性组合集合#1的优先级高于特性组合集合#2的优先级。特性组合集合包括的特性或特性组合也可以是网络设备配置的。终端设备根据特性组合集合的特性优先级选择随机接入资源。例如,终端设备根据触发RACH流程的特性或特性组合,首先在高优先级的特性组合集合中选择随机接入资源,在高优先级的特性组合集合中选不到随机接入资源后,才在次优先级的特性组合集合中选择随机接入资源。
示例性地,特性组合的优先级的配置与特性优先级的配置方式类似,包括但不限于以下方式:
方式1:网络设备通过字段1(例如,FeatureCombinationPreamble-r17)配置特性或特性组合1的专用资源和/或专用参数,并指示特性或特性组合1的优先级。
例如,字段1用于配置优先级的值,通过不同特性或特性组合的优先级的值确定不同特性或特性组合的优先级相对关系。
方式2:特性组合的优先级可以根据特性组合中包括的特性的优先级确定。例如,特性组合的优先级为特性组合中包括的单个特性的优先级之和。网络设备指示特性的优先级(例如,RedCap特性优先级为5,SDT特性优先级为4),终端设备计算特性组合中包括的特性的优先级的和,作为特性组合的优先级(RedCap+SDT的特性优先级为9)。需要说明的是,特性组合的优先级可以根据特性组合中包括的特性的优先级经过其他数学运算确定,例如,特性组合的优先级为特性组合中包括的所有特性的优先级中优先级最高的优 先级或所有特性的优先级中优先级最低的优先级,本申请对具体的数学运算不做限制。可以理解,方式2相对于方式1的能够节省信令开销。
方式3:网络设备还可以通过配置特性组合的顺序指示特性组合的优先级。例如,网络设备可以先配置特性组合1的专用资源或专用参数,再配置特性组合2的专用资源或专用参数,则表明特性组合1的特性组合优先级高于特性组合2。
示例性地,还可以认为优先级是与特性(或特性组合)的专用资源(或者称为RACH划分)对应的,即网络设备配置RACH划分的优先级。
当网络设备没有配置触发RACH的特性组合的专用资源时,终端设备按照特性组合的优先级在触发RACH的特性组合的子集中选择RACH资源。
例如,网络设备配置为优先级为:RedCap+SDT(优先级为6),RedCap+Slicing(优先级为5),Slicing+SDT(优先级为3),RedCap+CovEnh(优先级为7),RedCap(优先级为5),Slicing(优先级为3),SDT(优先级为4)。
触发RACH的特性组合为RedCap+SDT+Slicing,由上述的配置可知网络设备没有配置对应的专用资源。终端设备可以按照特性组合(包括特性)的优先级,选择优先级最高的RedCap+SDT,并从RedCap+SDT特性组合的专用资源中选择RACH资源或RO。
示例性地,当特性(或特性组合)的优先级,或RACH划分的优先级相等时,终端设备可以通过随机选择、根据包含的特性的数量进行选择、或按照特性组合中包括的单个特性组合优先级进行选择、或以RedCap和/或CovEnh优先的方式从触发RACH的特性组合的特性组合子集中进行RACH资源选择。
例如,网络设备配置为优先级为:RedCap+SDT(优先级为6),RedCap+Slicing(优先级为5),Slicing+SDT(优先级为3),RedCap+CovEnh(优先级为6),RedCap(优先级为6),Slicing(优先级为5),SDT(优先级为4)。触发RACH的特性组合为RedCap+SDT+Slicing,由上述的配置可知网络设备没有配置对应的专用资源。
终端设备可以通过下述的方式进行资源选择,例如,包括但不限于以下方式中的任一种:
方式1:随机选择。当特性(或特性组合)的优先级,或RACH划分的优先级相等时,终端设备从优先级相等的特性(或特性组合)或RACH划分中选择RACH资源。
终端设备从触发RACH的特性组合的子集中优先级最高的RedCap+SDT、RedCap+CovEnh和RedCap中随机选择。该方式1所示的资源选择方式实现比较简单。
方式2:根据包含的特性的数量进行选择。当特性(或特性组合)的优先级,或RACH划分的优先级相等时,终端设备从优先级相等的或特性组合或RACH划分中选择包含特性数量最多的特性组合或RACH划分。可选的,当特性组合或RACH划分中包含的特性数量相等时,终端设备可以从中随机选择特性组合或RACH划分。
RedCap+SDT和RedCap+CovEnh包含的特性数量比RedCap多,因此终端设备可以优先选择RedCap+SDT和RedCap+CovEnh。至于RedCap+SDT和RedCap+CovEnh中选择哪一个,可以随机选择或根据下述的方式3或4方式选择。该方式2所示的资源选择方式可以尽量选择满足更多特性的资源。
方式3:按照特性组合中包括的单个特性组合优先级进行选择。特性(或特性组合)的优先级,或RACH划分的优先级相等时,终端设备从中选择包含的特性的特性优先级 较大的特性组合。或者特性(或特性组合)的优先级,或RACH划分的优先级相等时,终端从中选择包含的特性的特性优先级之和最大/最小的特性组合。特性优先级的值越大,表明特性的优先级越高,或特性优先级的值越小,表明特性的优先级越高。
可选的,方式3使用的条件还可以包括其他条件,例如特性组合中包含的特性的数量也相等。
终端设备不考虑RedCap+SDT和RedCap+CovEnh中均包括的RedCap,由于CovEnh的优先级比SDT高,因此选择RedCap+CovEnh。类似于计算单个特性的优先级之和,根据和的大小进行选择。
该方式3所示的资源选择方式可以选择包括的特性的优先级比较高的特性组合。考虑到网络设备可能为较高优先级的特性配置较为优先的资源或提供较好的服务,因此终端设备按照该方式3接入后享受到优先资源或服务的可能性较大。
方式4:以RedCap和/或CovEnh优先。特性(或特性组合)的优先级,或RACH划分的优先级相等时,终端设备从中选择包含RedCap和/或CovEnh的特性组合。若多个特性组合中均包括RedCap和/或CovEnh,终端设备可以从中随机选择,或按照上述方式2或方式3进行选择。
终端设备考虑到RedCap的识别会影响Msg3的上行资源配置是否分配合理,是否进行CovEnh会影响Msg3是否发送成功,因此以满足这两个特性为优先。终端设备选择RedCap+CovEnh特性组合的专用资源进行RACH。
方式5:基于资源到达的时域先后选择。当特性(或特性组合)的优先级,或RACH划分的优先级相等时,从优先级相等的或特性组合或RACH划分中选择最先到达的。
例如,终端设备在选择资源进行RACH时,RedCap+SDT和RedCap+CovEnh优先级相等,且RedCap+SDT在时域上要早于RedCap+CovEnh到达,终端设备选择RedCap+SDT特性组合的专用资源进行RACH。需要说明的是,上述实施例中涉及的slicing可以特指一个或多个切片或切片组。
进一步地,考虑到终端设备可以在连接态执行请求覆盖增强(CovEnh)的RACH,或当终端设备为RedCap UE时,终端设备可以在连接态执行RACH过程(即RedCap特性和/或CovEnh特性可以适用于连接态)。因此网络设备可以配置用于连接态终端设备的特性或特性组合的优先级。具体配置方式可以参考前述实施例。
为了便于理解,以RedCap和CovEnh为例说明网络设备配置用于连接态的特性或特性组合的优先级。
例如,网络设备配置RedCap优先级>CovEnh特性优先级,则当连接态终端设备由RedCap+CovEnh特性组合触发RACH且网络没有配置RedCap+CovEnh专用资源时,终端设备应该按照连接态的特性或特性组合优先级,选择RedCap特性的专用RACH资源。
本申请还提供一种通信的方法,用于确定层2缓存(Layer 2buffer)大小。下面对该通信的方法进行说明:
终端设备在接入网络设备后,终端设备与网络设备之间可以进行数据传输。为了保证数据的正确接收和/或发送,对终端设备的层2缓存(Layer 2buffer)大小进行确定。具体地,层2缓存总大小定义为终端设备能够存储的无线链路控制(radio link control,RLC)传输窗口、RLC接收窗口、RLC重组窗口,以及PDCP重排序窗口的数据的字节数总和。
示例性地,多模双连接(multi-radio dual connectivity,MR-DC)和新空口对新空口双连接(new radio dual connectivity,NR-DC)场景下所需的层2缓存总大小基于以下公式计算值的最大值确定:
MaxULDataRate_MN*RLCRTT_MN+MaxULDataRate_SN*RLCRTT_SN+MaxDLDataRate_SN*RLCRTT_SN+MaxDLDataRate_MN*(RLCRTT_SN+X2/Xn delay+Queuing in SN)                    (式1-1)
其中,MaxULDataRate_MN和MaxDLDataRate_MN分别为主节点(master node,MN)的最大上行数据速率和最大下行数据速率;MaxULDataRate_SN和MaxDLDataRate_SN分别为辅节点(secondary node,SN)的最大上行数据速率和最大下行数据速率;RLCRTT_MN和RLCRTT_SN分别为MN和SN的RLC往返时间(Round Trip Time,RTT)。X2/Xn delay指在X2或Xn接口的传输时间。Queuing in SN表示在SN内执行数据队列处理时间。
MaxULDataRate_MN*RLCRTT_MN+MaxULDataRate_SN*RLCRTT_SN+MaxDLDataRate_MN*RLCRTT_MN+MaxDLDataRate_SN*(RLCRTT_MN+X2/Xn delay+Queuing in MN)               (式1-2)
其中,MaxULDataRate_MN和MaxDLDataRate_MN分别为主节点(MN)的最大上行数据速率和最大下行数据速率;MaxULDataRate_SN和MaxDLDataRate_SN分别为辅节点(SN)的最大上行数据速率和最大下行数据速率;RLCRTT_MN和RLCRTT_SN分别为MN和SN的RLC往返时间(Round Trip Time,RTT)。X2/Xn delay指在X2或Xn接口的传输时间。Queuing in SN表示在SN内执行数据队列处理时间。示例性地,非MR-DC和NR-DC场景下所需的层2缓存总大小基于以下公式计算值的最大值确定:
MaxDLDataRate*RLC RTT+MaxULDataRate*RLC RTT         (式1-3)
其中,MaxDLDataRate和MaxULDataRate分别为最大下行数据速率和最大上行数据速率;RLC RTT为RLC往返时间。
如果辅小区组(secondary cell group,SCG)为NR小区组,则X2/Xn delay+Queuing in SN=25ms,如果SCG为LTE小区组,则X2/Xn delay+Queuing in SN=55ms。如果MCG为NR小区组,则X2/Xn delay+Queuing in MN=25ms,如果MCG为LTE小区组,则X2/Xn delay+Queuing in MN=55ms。另外,对于LTE小区组,RLC RTT为75ms。
对于终端设备所支持的MR-DC或NR频段组合中每个频段组合和适用的功能集组合,都可以计算得到对应的所需的层2缓存总大小。终端设备最终需要的总的层2缓存总大小为上述各种组合计算得到的层2缓存区总大小的最大值。
对应的NR小区组的RLC RTT根据该小区组的频段组合和适用的特性集组合中支持的最小子载波间隔(subcarrier spacing,SCS)对应的RLC RTT确定。具体如下表1所示:
表1
Figure PCTCN2022126469-appb-000003
关于上面最大速率的计算,具体计算方式如下:
对某个频段或某个频段组合内给定数量的载波进行聚合载波的情况,近似的最大数据速率的计算如下:
Figure PCTCN2022126469-appb-000004
其中,J是某个频段或频段组合内聚合的载波数目;
Figure PCTCN2022126469-appb-000005
表示最大编码速率;
对于第j个载波,
Figure PCTCN2022126469-appb-000006
表示该载波上终端设备的最大支持的层数;
Figure PCTCN2022126469-appb-000007
表示最大支持调制阶数;
f (j)表示缩放因子,f (j)可以取1,0.8,0.75或0.4等;
μ表示对应于不同的子载波间隔的系统参数(numerology);
Figure PCTCN2022126469-appb-000008
表示μ下子帧的平均OFDM符号持续时间,如
Figure PCTCN2022126469-appb-000009
假设为常规循环前缀;
Figure PCTCN2022126469-appb-000010
表示μ下带宽BW(j)内的最大分配RB,其中BW(j)是在给定band或BC中终端设备支持的最大带宽。具体如下表2和表3所示。
表2
Figure PCTCN2022126469-appb-000011
表3
Figure PCTCN2022126469-appb-000012
OH (j)的取值基于对应的上下行频段不同,可以取值0.14,0.18,0.08或0.10等。
对于单个载波的情况,终端设备应支持不小于使用上述公式计算的数据速率,其中J=1,且
Figure PCTCN2022126469-appb-000013
不小于4。
对于运行SUL的小区,只计算UL或SUL载波中的一个(取具有更高数据速率的载波)。
但是,针对高频载波(如,大于71GHz的FR2-2高频载波),引入了更大的子载波 间隔,即480KHz SCS和960KHz SCS。
根据上述定义的计算所需的层2缓存区总大小的公式,缓存区大小由DL/UL支持的最大数据速率和RLC RTT确定。此外,DL/UL支持的最大数据速率由UE在给定频段或频段组合中支持的最大带宽决定。RLC RTT对应于频段组合中的载波所支持的最小SCS。
示例性地,假设终端设备支持频段1和频段2的组合,假设频段1的SCS为15KHz,频段2的SCS为120KHz,则终端设备在确定需要的最大层2缓存时,将根据15KHz的SCS对应的RLC RTT进行计算。即在上述公式中使用50ms进行计算。
当终端设备使用高频载波(如,上述提到的FR2-2高频载波),由于这些载波上支持的可用带宽更大,因此支持的最大数据速率将更高。不同于之前的低频段间的载波聚合,在进行低频载波和高频段载波的载波聚合时,由于两个载波上支持的最大的数据传输速率差别更大,这样采用上述的确定层2缓存大小的方式确定的终端设备的层2缓存大小将会非常大,最终会提高端设备的成本。
例如,假设终端设备在某个NR小区组上支持频段3和频段4的组合。假设频段3为低频载波(如700MHz载波),频段3对应的SCS为15KHz,而频段4为高频载波(如71GHz载波),频段4对应的SCS为960KHz。假设700MHz载波支持的最大数据速率为300Mbps,71GHz载波支持的最大数量为20Gbps,则终端设备如果按照上述的确定层2缓存大小的方式需要使用15KHz对应的RLC RTT,即50ms进行层2缓存大小的计算。这种情况下,由于使用频段4的高频载波能够达到的最大峰值速率非常高,再加上使用了较大的50ms的RLC RTT,则会导致最终确定的层2缓存大小非常大。而一定程度上,960KHz的SCS对应的RLC RTT可以降低到例如4ms或5ms。因此,在使用50ms的RLC RTT和5ms的RLC RTT确定的层2缓存大小将相差近10倍,从而导致非常大层2缓存开销,极大增加了终端设备的成本。
为了解决上述的确定层2缓存大小的方式导致的层2缓存过大的问题,可以采用将SCS进行分组的方法来降低层2缓存大小。可以将子载波间隔(Sub-Carrier Spacing,SCS)划分为2个或2个以上的组,然后在确定层2缓存大小时,终端设备根据该小区组中多个频段或多个频段组合对应的各自的SCS,确定各个SCS所属的SCS组。在确定多个频段或多个频段组合所属的SCS组后,UE在每个SCS组内,选择所述频段或频段组合的最小的SCS所对应的RLC RTT用于层2缓存大小的计算。
具体地,SCS和SCS组的映射关系,可以在协议中进行固定,或者也可以网络设备确定后,将SCS和SCS组的映射关系下发给终端设备。
例如,下表4中,15KHz,30KHz,60KHz,和120KHz的SCS构成一个SCS组。240KHz,480KHz和960KHz的SCS构成另一个SCS组。
表4
Figure PCTCN2022126469-appb-000014
以上表4为例,假设终端设备支持频段1和频段2组合,以及频段3和频段4组合。假设频段1和频段2的SCS为30KHz和60KHz,频段3和频段4对应的SCS为240KHz和960KHz,则终端设备确定频段1和2的SCS属于SCS组1,频段3和4的SCS属于SCS组2。进一步,终端设备确定此时SCS组1使用该组内最小的SCS,即30KHz,对应的RLC RTT用于层2缓存大小计算。以及,终端设备确定SCS组2使用该组内最小的SCS,即240KHz,对应的RLC RTT用于层2缓存大小的计算。
对应的NR小区组的RLC RTT根据该小区组的部分或全部频段组合和适用的特性集组合中支持的SCS所属的某个SCS组内的最小SCS对应的RLC RTT确定。或者,对应的NR小区组的RLC RTT根据该小区组的部分或全部频段组合中支持的SCS所属的某个SCS组内的最小SCS对应的RLC RTT确定。
作为一种可能的实现方式,对于NR的某个小区组,终端设备可以基于下面的公式计算和确定层2缓存大小。
Figure PCTCN2022126469-appb-000015
其中,N为UE支持的SCS组的个数。MaxDLDataRate(i)为SCS属于第i个SCS组的频段或频段组合上支持的最大的下行数据速率,具体最大速率的计算可以根据前述最大速率的计算公式获得。MaxULDataRate(i)为SCS属于第i个SCS组的频段或频点组合上支持的最大的上行数据速率,具体最大速率的计算可以根据前述最大速率的计算公式获得。RLCRTT(i)为SCS属于第i个SCS组的频段或频点组合对应的RLC RTT。i为大于或等于0的整数,0=<i<=N-1,或者1=<i<=N。
作为另一种可能的实现方式,也可以通过下面的公式计算和确定层2缓存大小。
Figure PCTCN2022126469-appb-000016
其中,MaxDLDataRate为UE支持的最大下行数据速率,具体最大速率的计算可以根据前述最大速率的计算公式获得,MaxULDataRate为UE支持的最大上行数据速率,具体最大速率的计算可以根据前述最大速率的计算公式获得。RLCRTT(i)为SCS属于第i个SCS组的频段或频点组合对应的RLC RTT。
上述两种实现方式采用哪一种可以在标准中进行约定,或者也可以通过网络设备指示终端设备使用哪种方式。
通过上述对SCS进行分组的方式,可以避免在终端设备聚合高频或超高频载波时,由于使用不合适的RLC RTT而导致的层2缓存过大的问题。
还应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
还应理解,在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
还应理解,在上述一些实施例中,主要以现有的网络架构中的设备为例进行了示例性说明(如网络设备,终端设备等),应理解,对于设备的具体形式本申请实施例不作限定。例如,在未来可以实现同样功能的设备都适用于本申请实施例。
可以理解的是,上述各个方法实施例中,由网络设备实现的方法和操作,也可以由可用于网络设备的部件实现;由终端设备实现的方法和操作,也可以由可用于终端设备的部件实现。
以上,结合图5详细说明了本申请实施例提供的用于随机接入的方法。上述用于随机接入的方法主要从网络设备和终端设备之间交互的角度进行了介绍。可以理解的是,网络设备和终端设备,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。
本领域技术人员应该可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
以下,结合图8和图9详细说明本申请实施例提供的通信的装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,部分内容不再赘述。
本申请实施例可以根据上述方法示例对发射端设备或者接收端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明。
图8是本申请实施例提供的装置800的示意性框图。该装置800包括发送单元810、处理单元820和接收单元830。发送单元810和接收单元830可以实现相应的通信功能,处理单元820用于进行数据处理。发送单元810和接收单元830还可以称为通信接口或通信单元。
可选地,该装置800还可以包括存储单元,该存储单元可以用于存储指令和/或数据,处理单元820可以读取存储单元中的指令和/或数据,以使得装置实现前述方法实施例。
该装置800可以用于执行上文方法实施例中设备(如上述网络设备、终端设备等)所执行的动作,这时,该装置800可以为设备或者可配置于设备的部件,发送单元810和接收单元830用于执行上文方法实施例中设备的收发相关的操作,处理单元820用于执行上文方法实施例中设备处理相关的操作。
作为一种设计,该装置800用于执行上文方法实施例中网络设备所执行的动作。
处理单元820,用于确定多个特性的优先级顺序,该多个特性的优先级顺序用于随机接入资源的选择;
发送单元810,用于向终端设备发送第一指示信息,该第一指示信息用于指示该多个特性的优先级顺序。
可选地,发送单元810,还用于向该终端设备发送第二指示信息,该第二指示信息用于指示该多个特性的优先级顺序的有效时长。
可选地,接收单元830,还用于接收来自该终端设备的第三指示信息,该第三指示信息用于指示该终端设备期望的多个特性的优先级顺序。
可选地,发送单元810,还用于向该第一网络设备发送第三消息,该第三消息用于请求获取互联网协议IP地址,该IP地址为该第二终端设备在该第一通信组中的IP地址;
该装置800可实现对应于根据本申请实施例的方法实施例中的网络设备执行的步骤或者流程,该装置800可以包括用于执行方法实施例中的网络设备执行的方法的单元。并且,该装置800中的各单元和上述其他操作和/或功能分别为了实现方法实施例中的网络设备中的方法实施例的相应流程。
其中,当该装置800用于执行图5中的方法时,发送单元810可用于执行方法中的发送信息的步骤,如步骤S520和S521;接收单元830可用于执行方法中的接收信息的步骤,如步骤S511;处理单元820可用于执行方法中的处理步骤,如步骤S510。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
作为另一种设计,该装置800用于执行上文方法实施例中终端设备所执行的动作。
接收单元830,用于接收来自网络设备的第一指示信息,该第一指示信息用于指示多个特性的优先级顺序;
处理单元820,用于根据该第一指示信息确定该多个特性的优先级顺序,该多个特性的优先级顺序用于随机接入资源的选择。
可选地,接收单元830,还用于接收来自该网络设备的第二指示信息,该第二指示信息用于指示该多个特性的优先级顺序的有效时长。
可选地,发送单元810,还用于向该网络设备发送第三指示信息,该第三指示信息用于指示该终端设备期望的多个特性的优先级顺序。
可选地,处理单元820还用于根据该第一指示信息选择随机接入资源。
该装置800可实现对应于根据本申请实施例的方法实施例中的终端设备执行的步骤或者流程,该装置800可以包括用于执行方法实施例中的终端设备执行的方法的单元。并且,该装置800中的各单元和上述其他操作和/或功能分别为了实现方法实施例中的终端设备中的方法实施例的相应流程。
其中,当该装置800用于执行图5中的方法时,接收单元830可用于执行方法中的接收信息的步骤,如步骤S520和S521;发送单元810可用于执行方法中的发送信息的步骤,如步骤S511;处理单元820可用于执行方法中的处理步骤,如步骤S530。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
上文实施例中的处理单元820可以由至少一个处理器或处理器相关电路实现。发送单元810和接收单元830可以由收发器或收发器相关电路实现。存储单元可以通过至少一个存储器实现。
如图7所示,本申请实施例还提供一种装置700。该装置700包括处理器710,还可以包括一个或多个存储器720。处理器710与存储器720耦合,存储器720用于存储计算机程序或指令和/或数据,处理器710用于执行存储器720存储的计算机程序或指令和/或数据,使得上文方法实施例中的方法被执行。可选地,该装置700包括的处理器710为一个或多个。
可选地,该存储器720可以与该处理器710集成在一起,或者分离设置。
可选地,如图7所示,该装置700还可以包括收发器730,收发器730用于信号的接收和/或发送。例如,处理器710用于控制收发器730进行信号的接收和/或发送。
作为一种方案,该装置700用于实现上文方法实施例中由设备(如上述网络设备、终端设备等)执行的操作。
本申请实施例还提供一种计算机可读存储介质,其上存储有用于实现上述方法实施例中由设备(如上述网络设备、终端设备等)执行的方法的计算机指令。
例如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法实施例中由网络设备执行的方法。
本申请实施例还提供一种包含指令的计算机程序产品,该指令被计算机执行时使得该计算机实现上述方法实施例中由设备(如上述网络设备、终端设备等)执行的方法。
本申请实施例还提供一种通信系统,该通信系统包括上文实施例中的设备(如上述网络设备、终端设备等)。
上述提供的任一种装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
应理解,本申请实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器和/或非易失性存储器。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。例如,RAM可以用作外部高速缓存。作为示例而非限定,RAM可以包括如下多种形式:静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)可以集成在处理器中。
还需要说明的是,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的保护范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。此外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元实现本申请提供的方案。
另外,在本申请各个实施例中的各功能单元可以集成在一个单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。例如,所述计算机可以是个人计算机,服务器,或者网络设备等。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD)等。例如,前述的可用介质可以包括但不限于:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (40)

  1. 一种用于随机接入的方法,其特征在于,包括:
    终端设备接收来自网络设备的第一指示信息,所述第一指示信息用于指示多个特性的优先级顺序;
    所述终端设备根据所述第一指示信息确定所述多个特性的优先级顺序,所述多个特性的优先级顺序用于随机接入资源的选择。
  2. 根据权利要求1所述的方法,其特征在于,所述多个特性中不同的特性满足以下至少一种:
    所述不同的特性对应的业务需求不同、所述不同的特性对应的传输方式不同、所述不同的特性对应的设备类型不同、所述不同的特性对应的应用场景不同或所述不同的特性对应的功能不同。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一指示信息包括在系统消息和/或专用信令中。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收来自所述网络设备的第二指示信息,所述第二指示信息用于指示所述多个特性的优先级顺序的有效时长。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述终端设备接收来自网络设备的第一指示信息之前,所述方法还包括:
    所述终端设备向所述网络设备发送第三指示信息,所述第三指示信息用于指示所述终端设备期望的多个特性的优先级顺序。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据所述多个特性的优先级顺序选择随机接入资源。
  7. 根据权利要求6所述的方法,其特征在于,所述第一指示信息指示第一特性的优先级高于第二特性的优先级,
    所述终端设备根据所述第一指示信息选择随机接入资源,包括:
    所述终端设备确定配置有第一资源,所述第一资源为所述第一特性的随机接入资源,或者,所述第一资源为包括所述第一特性的第一特性组合的随机接入资源;
    所述终端设备确定在所述第一资源中配置有第二资源,所述第二资源为包括所述第一特性和所述第二特性的第二特性组合的随机接入资源,所述随机接入资源包括在所述第二资源中。
  8. 根据权利要求6或7所述的方法,其特征在于,所述第一指示信息指示第一特性的优先级高于第二特性的优先级,所述方法还包括:
    所述终端设备在第二资源上执行随机接入失败,所述第二资源为包括所述第一特性和所述第二特性的第二特性组合的随机接入资源;
    所述终端设备根据所述多个特性的优先级顺序选择随机接入资源,包括:
    所述终端设备确定配置有第一资源,所述第一资源为所述第一特性的随机接入资源,或者,所述第一资源为包括所述第一特性的第一特性组合的随机接入资源,所述随机接入 资源包括在所述第一资源中。
  9. 根据权利要求6至8中任一项所述的方法,其特征在于,所述终端设备根据所述多个特性的优先级顺序选择随机接入资源之前,所述方法还包括:
    所述终端设备确定没有被配置触发随机接入过程的特性组合的专用资源。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述第一指示信息用于指示所述多个特性的优先级顺序,包括:
    所述第一指示信息用于指示所述多个特性的顺序,所述多个特性的顺序用于确定所述多个特性的优先级顺序;或者,
    所述第一指示信息指示所述多个特性的优先级信息,所述优先级信息包括所述多个特性中至少一个的特性的优先级信息,所述优先级信息用于确定所述多个特性的优先级顺序。
  11. 一种用于随机接入的方法,其特征在于,包括:
    网络设备确定多个特性的优先级顺序,所述多个特性的优先级顺序用于随机接入资源的选择;
    所述网络设备向终端设备发送第一指示信息,所述第一指示信息用于指示所述多个特性的优先级顺序。
  12. 根据权利要求11所述的方法,其特征在于,所述多个特性中不同的特性满足以下至少一种:
    所述不同的特性对应的业务需求不同、所述不同的特性对应的传输方式不同、所述不同的特性对应的设备类型不同、所述不同的特性对应的应用场景不同或所述不同的特性对应的功能不同。
  13. 根据权利要求11或12所述的方法,其特征在于,所述第一指示信息包括在系统消息和/或专用信令中。
  14. 根据权利要求11至13中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第二指示信息,所述第二指示信息用于指示所述多个特性的优先级顺序的有效时长。
  15. 根据权利要求11至14中任一项所述的方法,其特征在于,所述网络设备向终端设备发送第一指示信息之前,所述方法还包括:
    所述网络设备接收来自所述终端设备的第三指示信息,所述第三指示信息用于指示所述终端设备期望的多个特性的优先级顺序。
  16. 根据权利要求11至15中任一项所述的方法,其特征在于,所述第一指示信息用于指示所述多个特性的优先级顺序,包括:
    所述第一指示信息用于指示所述多个特性的顺序,所述多个特性的顺序用于确定所述多个特性的优先级顺序;或者,
    所述第一指示信息指示所述多个特性的优先级信息,所述优先级信息包括所述多个特性中至少一个的特性的优先级信息,所述优先级信息用于确定所述多个特性的优先级顺序。
  17. 一种用于随机接入的装置,其特征在于,包括:
    接收单元,用于接收来自网络设备的第一指示信息,所述第一指示信息用于指示多个特性的优先级顺序;
    处理单元,用于根据所述第一指示信息确定所述多个特性的优先级顺序,所述多个特 性的优先级顺序用于随机接入资源的选择。
  18. 根据权利要求17所述的装置,其特征在于,所述多个特性中不同的特性满足以下至少一种:
    所述不同的特性对应的业务需求不同、所述不同的特性对应的传输方式不同、所述不同的特性对应的设备类型不同、所述不同的特性对应的应用场景不同或所述不同的特性对应的功能不同。
  19. 根据权利要求17或18所述的装置,其特征在于,所述第一指示信息包括在系统消息和/或专用信令中。
  20. 根据权利要求17至19中任一项所述的装置,其特征在于,所述接收单元还用于接收来自所述网络设备的第二指示信息,所述第二指示信息用于指示所述多个特性的优先级顺序的有效时长。
  21. 根据权利要求17至20中任一项所述的装置,其特征在于,所述装置还包括:
    发送单元,用于向所述网络设备发送第三指示信息,所述第三指示信息用于指示所述终端设备期望的多个特性的优先级顺序。
  22. 根据权利要求17至21中任一项所述的装置,其特征在于,所述处理单元还用于根据所述多个特性的优先级顺序选择随机接入资源。
  23. 根据权利要求22所述的装置,其特征在于,所述第一指示信息指示第一特性的优先级高于第二特性的优先级,
    所述处理单元根据所述多个特性的优先级顺序选择随机接入资源,包括:
    所述处理单元确定配置有第一资源,所述第一资源为所述第一特性的随机接入资源,或者,所述第一资源为包括所述第一特性的第一特性组合的随机接入资源;
    所述处理单元确定在所述第一资源中配置有第二资源,所述第二资源为包括所述第一特性和所述第二特性的第二特性组合的随机接入资源,所述随机接入资源包括在所述第二资源中。
  24. 根据权利要求22或23所述的装置,其特征在于,所述第一指示信息指示第一特性的优先级高于第二特性的优先级,所述装置在第二资源上执行随机接入失败,所述第二资源为包括所述第一特性和所述第二特性的第二特性组合的随机接入资源;
    所述处理单元根据所述多个特性的优先级顺序选择随机接入资源,包括:
    所述处理单元确定配置有第一资源,所述第一资源为所述第一特性的随机接入资源,或者,所述第一资源为包括所述第一特性的第一特性组合的随机接入资源,所述随机接入资源包括在所述第一资源中。
  25. 根据权利要求22至24中任一项所述的装置,其特征在于,所述装置根据所述多个特性的优先级顺序选择随机接入资源之前,所述处理单元还用于确定没有被配置触发随机接入过程的特性组合的专用资源。
  26. 根据权利要求17至25中任一项所述的装置,其特征在于,所述第一指示信息用于指示所述多个特性的优先级顺序,包括:
    所述第一指示信息用于指示所述多个特性的顺序,所述多个特性的顺序用于确定所述多个特性的优先级顺序;或者,
    所述第一指示信息指示所述多个特性的优先级信息所述优先级信息包括所述多个特 性中至少一个的特性的优先级信息,所述优先级信息用于确定所述多个特性的优先级顺序。
  27. 一种用于随机接入的装置,其特征在于,包括:
    处理单元,用于确定多个特性的优先级顺序,所述多个特性的优先级顺序用于随机接入资源的选择;
    发送单元,用于向终端设备发送第一指示信息,所述第一指示信息用于指示所述多个特性的优先级顺序。
  28. 根据权利要求27所述的装置,其特征在于,所述多个特性中不同的特性满足以下至少一种:
    所述不同的特性对应的业务需求不同、所述不同的特性对应的传输方式不同、所述不同的特性对应的设备类型不同、所述不同的特性对应的应用场景不同或所述不同的特性对应的功能不同。
  29. 根据权利要求27或28所述的装置,其特征在于,所述第一指示信息包括在系统消息和/或专用信令中。
  30. 根据权利要求27至29中任一项所述的装置,其特征在于,所述发送单元还用于向所述终端设备发送第二指示信息,所述第二指示信息用于指示所述多个特性的优先级顺序的有效时长。
  31. 根据权利要求27至30中任一项所述的装置,其特征在于,所述装置还包括:
    接收单元,用于接收来自所述终端设备的第三指示信息,所述第三指示信息用于指示所述终端设备期望的多个特性的优先级顺序。
  32. 根据权利要求27至31中任一项所述的装置,其特征在于,所述第一指示信息用于指示所述多个特性的优先级顺序,包括:
    所述第一指示信息用于指示所述多个特性的顺序,所述多个特性的顺序用于确定所述多个特性的优先级顺序;或者,
    所述第一指示信息指示所述多个特性的优先级信息,所述优先级信息包括所述多个特性中至少一个的特性的优先级信息,所述优先级信息用于确定所述多个特性的优先级顺序。
  33. 一种通信装置,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于执行所述存储器中存储的计算机程序,以使得所述通信装置执行权利要求1至10中任一项所述的方法。
  34. 一种通信装置,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于执行所述存储器中存储的计算机程序,以使得所述通信装置执行权利要求11至16中任一项所述的方法。
  35. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机指令,当所述计算机指令在计算机上运行时,如权利要求1至10中任一项所述的方法被执行。
  36. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机指令,当所述计算机指令在计算机上运行时,如权利要求11至16中任一项所述的方法被执行。
  37. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的终端设备执行如权利要求1至10中任一项所述的方法。
  38. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的网络设备执行如权利要求11至16中任一项所述的方法。
  39. 一种计算机程序,其特征在于,所述计算机程序被终端设备执行时,实现如权利要求1至10中任一项所述的方法。
  40. 一种计算机程序,其特征在于,所述计算机程序被网络设备执行时,实现如权利要求11至16中任一项所述的方法。
PCT/CN2022/126469 2021-10-22 2022-10-20 用于随机接入的方法和装置 WO2023066347A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111235600 2021-10-22
CN202111235600.2 2021-10-22
CN202210135342.9 2022-02-14
CN202210135342.9A CN116017750A (zh) 2021-10-22 2022-02-14 用于随机接入的方法和装置

Publications (1)

Publication Number Publication Date
WO2023066347A1 true WO2023066347A1 (zh) 2023-04-27

Family

ID=86025419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/126469 WO2023066347A1 (zh) 2021-10-22 2022-10-20 用于随机接入的方法和装置

Country Status (2)

Country Link
CN (1) CN116017750A (zh)
WO (1) WO2023066347A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190215864A1 (en) * 2016-05-13 2019-07-11 Zte Corporation Random access method and device, user equipment, and storage medium
US20200068602A1 (en) * 2017-05-05 2020-02-27 Huawei Technologies Co., Ltd. Data packet transmission method and device
CN112913319A (zh) * 2021-02-05 2021-06-04 北京小米移动软件有限公司 随机接入方法及装置、存储介质
CN113132970A (zh) * 2019-12-31 2021-07-16 大唐移动通信设备有限公司 组合业务优先级通知方法及设备
CN113519189A (zh) * 2019-08-01 2021-10-19 Oppo广东移动通信有限公司 无线通信方法和终端设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190215864A1 (en) * 2016-05-13 2019-07-11 Zte Corporation Random access method and device, user equipment, and storage medium
US20200068602A1 (en) * 2017-05-05 2020-02-27 Huawei Technologies Co., Ltd. Data packet transmission method and device
CN113519189A (zh) * 2019-08-01 2021-10-19 Oppo广东移动通信有限公司 无线通信方法和终端设备
CN113132970A (zh) * 2019-12-31 2021-07-16 大唐移动通信设备有限公司 组合业务优先级通知方法及设备
CN112913319A (zh) * 2021-02-05 2021-06-04 北京小米移动软件有限公司 随机接入方法及装置、存储介质

Also Published As

Publication number Publication date
CN116017750A (zh) 2023-04-25

Similar Documents

Publication Publication Date Title
RU2767040C2 (ru) Способ отправки данных и устройство для этого
US10904904B2 (en) Methods and devices for controlling override of configured grant
WO2020147115A1 (zh) 用于非授权频谱的无线通信方法和设备
JP6856300B2 (ja) ランダムアクセス方法、ネットワークデバイス、及びユーザ機器
US20210212104A1 (en) Methods and apparatuses for transmitting and configuring sidelink data
US11452069B2 (en) Communication method and communications device
US10623981B2 (en) Information transmission method, apparatus, and system
WO2019214424A1 (zh) 通信方法和通信装置
WO2018112918A1 (zh) 上行传输控制方法及其装置、通信系统
US20230015587A1 (en) Data sending method, terminal device, and non-transitory computer-readable storage medium
WO2020024280A1 (zh) 数据发送和接收方法以及装置
WO2021227983A1 (zh) 一种信息传输的方法、装置及系统
EP3911104A1 (en) Random access method and apparatus
WO2018107457A1 (zh) 数据复用装置、方法以及通信系统
WO2018120014A1 (zh) 传输业务数据的方法、网络设备及终端设备
WO2020248143A1 (zh) 监听控制信道的方法、终端设备和网络设备
WO2021056581A1 (zh) 上行信号的发送和接收方法以及装置
WO2023066347A1 (zh) 用于随机接入的方法和装置
WO2023082356A1 (zh) 无线通信的方法和终端设备
WO2023197847A1 (zh) 通信方法和装置
WO2021022423A1 (zh) 一种传输数据的方法和装置
CN114651496A (zh) 一种通信方法及装置
WO2023131156A1 (zh) 随机接入的方法和通信装置
WO2023133706A1 (zh) 一种数据传输方法及装置、终端设备、网络设备
WO2023097622A1 (zh) 上行信号传输方法、设备、芯片、介质、产品及程序

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22882952

Country of ref document: EP

Kind code of ref document: A1