WO2023066128A1 - 电力线载波通信方法、主路由设备及装置 - Google Patents

电力线载波通信方法、主路由设备及装置 Download PDF

Info

Publication number
WO2023066128A1
WO2023066128A1 PCT/CN2022/125120 CN2022125120W WO2023066128A1 WO 2023066128 A1 WO2023066128 A1 WO 2023066128A1 CN 2022125120 W CN2022125120 W CN 2022125120W WO 2023066128 A1 WO2023066128 A1 WO 2023066128A1
Authority
WO
WIPO (PCT)
Prior art keywords
routing device
sub
time period
sending
state
Prior art date
Application number
PCT/CN2022/125120
Other languages
English (en)
French (fr)
Inventor
陶双明
胡卫卫
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023066128A1 publication Critical patent/WO2023066128A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/04Control of transmission; Equalising
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communication control, in particular to a power line carrier communication method, main routing equipment and device.
  • Power Line Communication is a communication technology that uses power lines as a transmission medium to realize data transmission and information exchange.
  • the domain master node In the existing PLC technology, the domain master node usually adopts a shared transmission scheme to equally allocate transmission opportunities for each node in the power line network.
  • the domain master node will allocate sending opportunities for the idle nodes, resulting in wasted time slots corresponding to these sending opportunities and low bandwidth utilization.
  • the embodiment of the present application provides a power line carrier communication method, a main routing device and a device, which can solve the problems of many time slots wasted and low bandwidth utilization in the existing power line carrier communication technology.
  • the embodiment of the present application provides a power line carrier communication method, which is applied to the main routing device, including:
  • the sending opportunity of the first time period of the transmission management cycle is not allocated to the first sub-routing device, and the first sub-routing device is allocated Sending opportunities in the second time period of the transmission management cycle;
  • the main routing device and the first sub-routing device are connected to the same power line network
  • the first state is used to indicate that no user equipment is connected to the first sub-routing device
  • the first time period and the second time period are disjoint time periods.
  • the main routing device is an electronic device with routing functions and management functions.
  • the sub-routing device is an electronic device that has a routing function but does not have a management function.
  • the first sub-routing device can be understood as a sub-routing device connected to the same power line network as the main routing device.
  • the device access state of the first sub-routing device may be obtained.
  • the device access status may be requested by the main routing device from the first sub-routing device, or the device access status may also be actively sent to the main routing device by the first sub-routing device.
  • the device access state may include a first state and a second state.
  • the first state is used to indicate that there is user equipment accessing the first sub-routing device
  • the second state is used to indicate that no user equipment is accessing the first sub-routing device.
  • User equipment refers to electronic equipment other than main routing equipment and sub-routing equipment.
  • the device state of the first sub-routing device is the first state, it means that no user equipment accesses the first sub-routing device, and the first sub-routing device has no service data to transmit.
  • the main routing device may determine the first sub-routing device as an idle device, not assign the first sub-routing device a sending opportunity in the first time period of the transmission management cycle, and assign the first sub-routing device a transmission management The sending opportunity for the second time period of the cycle.
  • the main routing device does not equally allocate sending opportunities for the entire transmission management period to the first sub-routing device, but only allocates sending opportunities for a part of the transmission management period to the first sub-routing device .
  • the main routing device can reduce the sending opportunities of idle devices and reduce the time slots wasted by idle devices, thereby improving the bandwidth utilization rate of the power line network, which has strong usability and practicability.
  • the method further includes:
  • the device access state of the first sub-routing device is the second state, assign sending opportunities for the first time period and the second time period to the first sub-routing device, and the second state It is used to indicate that there is user equipment accessing the first sub-routing device.
  • the device state of the first sub-routing device is the second state, it means that there is user equipment accessing the first sub-routing device, and the first sub-routing device may have service data to be transmitted.
  • the main routing device may determine the first sub-routing device as an active device, and allocate sending opportunities for the active device in the first time period and the second time period, so as to ensure the transmission efficiency of the active device.
  • the first sub-routing device if the device access state of the first sub-routing device is the first state, the first sub-routing device is not assigned the first transmission management period.
  • the sending opportunity of a time period, after allocating the sending opportunity of the second time period of the transmission management cycle to the first sub-routing device further includes:
  • the user equipment may access the sub-routing device or disconnect from the sub-routing device at any time.
  • the device access state of the sub-routing device may be affected by the user equipment, changing from the first state to the second state, or changing from the second state to the first state.
  • the sub-routing device may send a status change notification to the main routing device, where the status change notification is used to indicate that the device status of the sub-routing device has changed.
  • the main routing device when the main routing device receives the first state change notification sent by the first sub-routing device, it indicates that the device access state of the first sub-routing device is changed from the first state to the second state.
  • the main routing device may allocate sending opportunities of the first time period and the second time period to the first sub-routing device.
  • the method further includes:
  • the main routing device receives the second state change notification sent by the first sub-routing device, it indicates that the device access state of the first sub-routing device is changed from the second state to the first state.
  • the first sub-routing device has no business data to transmit, and if the main routing device continues to allocate sending opportunities in the first time period and the second time period for the first sub-routing device, more time slots may be wasted.
  • the main routing device may stop allocating sending opportunities for the first sub-routing device for the first time period, allocate sending opportunities for the first sub-routing device for the second time period, and reduce the sending opportunities of the first sub-routing device, Thereby reducing wasted time slots and improving the bandwidth utilization rate of the power line network.
  • the method further includes:
  • the second sub-routing device When it is detected that the second sub-routing device is connected to the power line network, the second sub-routing device is not allocated the sending opportunity of the first time period, and the second sub-routing device is allocated a sending opportunity of the second time period send opportunity.
  • the sub-routing device may also be connected to the power line network or disconnected from the power line network.
  • the second sub-routing device refers to a sub-routing device newly connected to the power line network.
  • the main routing device detects that the second sub-routing device is connected to the power line network, since the newly connected sub-routing device usually has no user equipment access, the main routing device can default the second sub-routing device as an idle device instead of the second sub-routing device.
  • the second sub-routing device allocates sending opportunities in the first time period, and allocates sending opportunities in the second time period to the second sub-routing device, thereby reducing wasted time slots and improving bandwidth utilization of the power line network.
  • the sending opportunity of the first time period when the sending opportunity of the first time period is not allocated to the second sub-routing device, the sending opportunity of the second time period is allocated to the second sub-routing device.
  • the sending opportunity of the second time period After sending the opportunity, also include:
  • the second sub-routing device may send a third change notification to the main routing device.
  • the main routing device may determine that there is user equipment accessing the second sub-routing device, and the second sub-routing device is an active device.
  • the main routing device may allocate sending opportunities in the first time period and the second time period to the second sub-routing device, so as to ensure the transmission efficiency of the second sub-routing device.
  • the method further includes:
  • the device access state of the second sub-routing device is not obtained within the preset time period, or the device access state of the second sub-routing device is the third state, stop for the second sub-routing
  • the device allocates a sending opportunity in the first time period, allocates a sending opportunity in the second time period to the second sub-routing device, and the third state is used to indicate that no user equipment accesses the second sub-routing equipment.
  • the main routing device when the main routing device detects that the second sub-routing device is connected to the power line network, the main routing device may first allocate the first time period and the second time period to the second sub-routing device. The sending opportunity ensures the transmission efficiency of the second sub-routing device.
  • the main routing device waits for a preset period of time. If the main routing device does not receive the device access status of the second sub-routing device within the preset time period, or if the device access status received by the main routing device is the third state, the main routing device can send the second sub-routing device
  • the device is determined to be an idle device, stop allocating sending opportunities for the second sub-routing device in the first time period, and allocate sending opportunities for the second sub-routing device in the second time period, reducing the sending opportunities of the second sub-routing device and reducing waste time slots, improving the bandwidth utilization of the power line network.
  • the main routing device can maintain the previous configuration scheme without making changes.
  • the third state is used to indicate that there is no user equipment accessing the second sub-routing device
  • the fourth state is used to indicate that there is user equipment accessing the second sub-routing device.
  • the method further includes:
  • the main routing device finds that the first sub-routing device is disconnected from the power line network, it means that the first sub-routing device no longer performs data transmission through the power line network.
  • the main routing device can stop allocating the sending opportunities of the first time period and the second time period to the first sub-routing device, reducing invalid sending opportunities, reducing wasted time slots, and improving the bandwidth utilization rate of the power line network.
  • the acquiring the device access status of the first sub-routing device includes:
  • the device access state of the first sub-routing device through a state transmission channel, the state transmission channel including one or more of the power line network, Bluetooth connection, Wi-Fi connection, universal serial bus connection, and network cable connection .
  • the main routing device can obtain the device access status of each sub-routing device through the status transmission channel.
  • the state transmission channel may include one or more of a power line network, a Bluetooth connection, a Wi-Fi connection, a Universal Serial Bus connection, and a network cable connection.
  • the embodiment of the present application provides a power line carrier communication device, which is applied to the main routing device, including:
  • a status acquisition module configured to acquire the device access status of the first sub-routing device
  • An idle setting module configured to, if the device access state of the first sub-routing device is the first state, not assign a sending opportunity for the first time period of the transmission management cycle to the first sub-routing device, for the The first sub-routing device allocates sending opportunities in the second time period of the transmission management cycle;
  • the main routing device and the first sub-routing device are connected to the same power line network
  • the first state is used to indicate that no user equipment is connected to the first sub-routing device
  • the first time period and the second time period are disjoint time periods.
  • the device further includes:
  • An active setting module configured to assign sending opportunities for the first time period and the second time period to the first sub-routing device if the device access state of the first sub-routing device is the second state , the second state is used to indicate that there is user equipment accessing the first sub-routing device.
  • the device further includes:
  • a first change module configured to assign the sending of the first time period and the second time period to the first sub-routing device when receiving the first state change notification sent by the first sub-routing device Chance.
  • the device further includes:
  • the second change module is configured to, when receiving the second state change notification sent by the first sub-routing device, stop allocating the first sub-routing device with a sending opportunity in the first time period, and provide the first sub-routing device with a sending opportunity for the first time period A sub-routing device allocates sending opportunities in the second time period.
  • the device further includes:
  • the first access module is configured to, when it is detected that the second sub-routing device is connected to the power line network, not allocate the sending opportunity of the first time period to the second sub-routing device, and provide the second sub-routing device
  • the routing device allocates sending opportunities in the second time period.
  • the device further includes:
  • a third change module configured to allocate the sending of the first time period and the second time period to the second sub-routing device when receiving the third state change notification sent by the second sub-routing device Chance.
  • the device further includes:
  • a second access module configured to assign sending opportunities for the first time period and the second time period to the second sub-routing device when it is detected that the second sub-routing device is connected to the power line network;
  • the fourth changing module is configured to stop if the device access state of the second sub-routing device is not obtained within a preset time period, or if the device access state of the second sub-routing device is the third state Allocating the sending opportunity of the first time period to the second sub-routing device, allocating the sending opportunity of the second time period to the second sub-routing device, and the third state is used to indicate that no user equipment receives into the second sub-routing device.
  • the device further includes:
  • a device disconnection module configured to stop allocating the first time period and the second time period to the first sub-routing device when the first sub-routing device is disconnected from the power line network send opportunity.
  • the status acquisition module is specifically configured to acquire the device access status of the first sub-routing device through a status transmission channel, where the status transmission channel includes the power line network, Bluetooth connection, One or more of Wi-Fi connection, Universal Serial Bus connection, and network cable connection.
  • an embodiment of the present application provides a master routing device, including a memory, a processor, and a computer program stored in the memory and operable on the processor, and the processor is configured to execute the The computer program implements the method described in any one of the first aspect and the possible implementation manners of the first aspect.
  • an embodiment of the present application provides a computer-readable storage medium configured to store a computer program, wherein when the computer program is executed by a processor, the first The method described in any one of the aspects and possible implementations of the first aspect.
  • the embodiment of the present application provides a computer program product, the computer program product is configured to make the main routing device execute the first aspect and the possible implementation manners of the first aspect when running on the main routing device. any of the methods described.
  • an embodiment of the present application provides a chip system, the chip system includes a memory and a processor, the processor is configured to execute the computer program stored in the memory, so as to implement the first aspect and the second In one aspect, the method described in any one of the possible implementation manners.
  • the main routing device may acquire the device access status of the first sub-routing device.
  • the device access state of the first sub-routing device is the first state, it means that the first sub-routing device has no user equipment access and no service data needs to be transmitted.
  • the main routing device may not allocate a sending opportunity in the first time period of the transmission management cycle to the first sub-routing device, and allocate a sending opportunity in the second time period of the transmission management cycle to the first sub-routing device.
  • the time period and the second time period are disjoint time periods.
  • the main routing device does not equally allocate sending opportunities for the entire transmission management period to the first sub-routing device, but only allocates sending opportunities for a part of the transmission management period to the first sub-routing device .
  • the main routing device can reduce the sending opportunities allocated to the first sub-routing device, reduce wasted time slots, thereby improving the bandwidth utilization rate of the power line network, and has strong usability and practicability.
  • FIG. 1 is a system architecture diagram of a power line carrier communication system provided by an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of an electronic device provided in an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of an index frame provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a window division provided in an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a scene provided by an embodiment of the present application.
  • FIG. 6 is a time slot distribution diagram provided by an embodiment of the present application.
  • FIG. 7 is another time slot distribution diagram provided by the embodiment of the present application.
  • FIG. 8 is another time slot distribution diagram provided by the embodiment of the present application.
  • FIG. 9 is a schematic diagram of another scenario provided by the embodiment of the present application.
  • FIG. 10 is another time slot distribution diagram provided by the embodiment of the present application.
  • FIG. 11 is another time slot distribution diagram provided by the embodiment of the present application.
  • FIG. 12 is a schematic diagram of another scenario provided by the embodiment of the present application.
  • FIG. 13 is another time slot distribution diagram provided by the embodiment of the present application.
  • FIG. 14 is another time slot distribution diagram provided by the embodiment of the present application.
  • FIG. 15 is a schematic diagram of another scenario provided by the embodiment of the present application.
  • FIG. 16 is a schematic diagram of another scenario provided by the embodiment of the present application.
  • FIG. 17 is a schematic diagram of another scenario provided by the embodiment of the present application.
  • FIG. 18 is a schematic diagram of another scenario provided by the embodiment of the present application.
  • FIG. 19 is a schematic diagram of another scenario provided by the embodiment of the present application.
  • FIG. 20 is a schematic diagram of another scenario provided by the embodiment of the present application.
  • FIG. 21 is a schematic diagram of another scenario provided by the embodiment of the present application.
  • FIG. 22 is another time slot distribution diagram provided by the embodiment of the present application.
  • FIG. 23 is another time slot distribution diagram provided by the embodiment of the present application.
  • FIG. 24 is a schematic diagram of another scenario provided by the embodiment of the present application.
  • FIG. 25 is another time slot distribution diagram provided by the embodiment of the present application.
  • FIG. 26 is a schematic diagram of another scenario provided by the embodiment of the present application.
  • FIG. 27 is another time slot distribution diagram provided by the embodiment of the present application.
  • FIG. 28 is another time slot distribution diagram provided by the embodiment of the present application.
  • FIG. 29 is a schematic flowchart of a power line carrier communication method provided by an embodiment of the present application.
  • FIG. 30 is a schematic structural diagram of a power line carrier communication device provided by an embodiment of the present application.
  • the term “if” may be construed, depending on the context, as “when” or “once” or “in response to determining” or “in response to detecting “.
  • the phrase “if determined” or “if [the described condition or event] is detected” may be construed, depending on the context, to mean “once determined” or “in response to the determination” or “once detected [the described condition or event] ]” or “in response to detection of [described condition or event]”.
  • references to "one embodiment” or “some embodiments” or the like in the specification of the present application means that a particular feature, structure, or characteristic described in connection with the embodiment is included in one or more embodiments of the present application.
  • appearances of the phrases “in one embodiment,” “in some embodiments,” “in other embodiments,” “in other embodiments,” etc. in various places in this specification are not necessarily All refer to the same embodiment, but mean “one or more but not all embodiments” unless specifically stated otherwise.
  • the terms “including”, “comprising”, “having” and variations thereof mean “including but not limited to”, unless specifically stated otherwise.
  • Power Line Communication is a communication technology that uses power lines as a transmission medium to realize data transmission and information exchange.
  • the electronic device When an electronic device is connected to a power line network, if the electronic device has a PLC function, the electronic device can broadcast data and receive data through the power line network.
  • the status of each node (that is, the electronic equipment connected to the power line network) is equal, and the influence exerted by any node on the power line can be perceived by other nodes in the power line network.
  • the data sent by multiple nodes may interfere with each other, affecting the transmission effect.
  • device A and device B are connected to the power line network, and both device A and device B have PLC functions.
  • device A modulates the data to be transmitted into a first signal, and couples the first signal to the power line;
  • device B modulates the data to be transmitted into a second signal, and couples the second signal to the power line. power line.
  • the first signal and the second signal may interfere with each other and merge into a third signal.
  • the domain master node with management functions in the power line network can equally allocate sending opportunities to each node, and each node can take turns according to the sending order set by the domain master node. for data transfer.
  • the domain master node can assign sending opportunities within the transmission management period to the first node, the second node, and the third node, and set the sending order of the first node, the second node, and the third node as the third node-first node node - the second node.
  • the first node, the second node and the third node may perform data transmission sequentially according to the above sending order.
  • the third node first transmits data; after the third node finishes sending, it is the turn of the first node to transmit data; after the first node finishes sending, it is the turn of the second node to transmit data; the second node finishes sending After that, it is the turn of the third node to transmit data again.
  • each node can perform data transmission in an orderly manner, avoiding mutual interference of data sent by each node.
  • the domain master node since the domain master node equally allocates sending opportunities to each node, that is to say, even if some idle nodes have no data transmission requirements, the domain master node will allocate sending opportunities to these idle nodes.
  • each sending opportunity has a minimum sending time slot. Therefore, when it is the turn of an idle node to send, even if the idle node has no data to transmit, the next node must wait for the minimum sending time slot before defaulting that the above idle node gives up this sending opportunity and proceeds with the node. data transmission.
  • the third node After the first node has sent data, even if the second node has not transmitted data, the third node has to wait for the minimum sending time slot. After waiting for the minimum sending time slot, if the second node has not yet transmitted data, the third node may assume that the second node gives up this sending opportunity, and the third node starts data transmission. Wherein, the minimum sending time slot that the third node waits for can be regarded as a wasted time slot.
  • the embodiment of the present application provides a power line carrier communication method
  • the main routing device can dynamically adjust the sending opportunity of the sub-routing device according to the device access status of the sub-routing device, reduce wasted time slots, and improve bandwidth utilization rate, with strong ease of use and practicality.
  • Fig. 1 exemplarily shows a power line carrier communication system to which this embodiment of the present application is applicable.
  • the power line carrier communication system may include: a power line network 101 , a main routing device 102 , a sub routing device 103 and a user device 104 .
  • the main routing device 102 is an electronic device with routing function and management function, and the main routing device 102 can manage the sending opportunities of the main routing device 102 and each sub-routing device 103 connected to the power line network 101 .
  • the sub-routing device 103 is an electronic device that has a routing function but does not have a management function.
  • the user device 104 is an electronic device other than the main routing device 102 and the sub-routing device 103 .
  • User equipment 104 may include desktop computers, notebook computers, tablet computers, mobile phones, smart TVs, smart large screens, smart speakers, smart air conditioners, sweeping robots, dishwashers, smart lamps, smart door locks, smart curtains, laser radar, millimeter One or more of electronic devices such as wave radar, smart door lock, and video doorbell.
  • the main routing device 102 and the sub-routing device 103 can be directly connected to the power line network 101 to perform data interaction through the power line network 101 .
  • main routing device 102 and the sub-routing device 103 can also be connected through communication such as Wi-Fi connection, Bluetooth connection, universal serial bus (universal serial bus, USB) connection, registered socket 45 (Registered Jack 45, RJ45) connection One or more of them for data interaction.
  • Wi-Fi connection Bluetooth connection
  • universal serial bus universal serial bus, USB
  • registered socket 45 Registered Jack 45, RJ45
  • the user equipment 104 may access the main routing device 102, and/or, the user equipment 104 may also access the sub-routing device 103.
  • the user device 104 When the user device 104 is connected to the main routing device 102/sub-routing device 103, the user device 104 and the main routing device 102/sub-routing device 103 can be connected through Wi-Fi connection, Bluetooth connection, USB connection, RJ45 connection, etc. One or more data interactions.
  • the main routing device 102 when the main routing device 102 is connected to the Internet line, the main routing device can receive the uplink data sent by the sub-routing device 103 and/or the user equipment 104, and transmit the uplink data to the Internet through the Internet line;
  • the main routing device 102 may also receive the downlink data transmitted by the Internet through the Internet connection, and forward the downlink data to the sub-routing device 103 and/or the user equipment 104 .
  • the above-mentioned Internet access lines may include any one or more of lines such as Asymmetric Digital Subscriber Line (ADSL), Digital Data Network (DDN) lines, and optical fiber broadband lines.
  • ADSL Asymmetric Digital Subscriber Line
  • DDN Digital Data Network
  • optical fiber broadband lines optical fiber broadband lines.
  • the power line carrier communication system may have more or fewer The sub-routing device 103 and the user equipment 104.
  • the sub-routing devices 103 and user equipment 104 shown in FIG. 1 should not impose any limitation on the specific number of sub-routing devices 103 and user equipment 104 .
  • FIG. 2 exemplarily shows a schematic structural diagram of an electronic device 200 provided by an embodiment of the present application.
  • the electronic device 200 may be the above-mentioned main routing device 102 , sub-routing device 103 or user device 104 .
  • the electronic device 200 may include a processor 210, an external memory interface 220, an internal memory 221, a universal serial bus (universal serial bus, USB) interface 230, a charging management module 240, a power management module 241, a battery 242, an antenna 1, and an antenna 2 , mobile communication module 250, wireless communication module 260, audio module 270, speaker 270A, receiver 270B, microphone 270C, earphone jack 270D, sensor module 280, button 290, motor 291, indicator 292, camera 293, display screen 294, and A subscriber identification module (subscriber identification module, SIM) card interface 295 and the like.
  • SIM subscriber identification module
  • the sensor module 280 may include a pressure sensor 280A, a gyro sensor 280B, an air pressure sensor 280C, a magnetic sensor 280D, an acceleration sensor 280E, a distance sensor 280F, a proximity light sensor 280G, a fingerprint sensor 280H, a temperature sensor 280J, a touch sensor 280K, and an ambient light sensor.
  • the processor 210 may include one or more processing units, for example: the processor 210 may include an application processor (application processor, AP), a modem processor, a graphics processing unit (graphics processing unit, GPU), an image signal processor (image signal processor, ISP), controller, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural network processor (neural-network processing unit, NPU), etc. . Wherein, different processing units may be independent devices, or may be integrated in one or more processors.
  • application processor application processor, AP
  • modem processor graphics processing unit
  • GPU graphics processing unit
  • image signal processor image signal processor
  • ISP image signal processor
  • controller video codec
  • digital signal processor digital signal processor
  • baseband processor baseband processor
  • neural network processor neural-network processing unit
  • the controller can generate an operation control signal according to the instruction opcode and timing signal, and complete the control of fetching and executing the instruction.
  • a memory may also be provided in the processor 210 for storing instructions and data.
  • the memory in processor 210 is a cache memory.
  • the memory may hold instructions or data that the processor 210 has just used or recycled. If the processor 210 needs to use the instruction or data again, it can be called directly from the memory. Repeated access is avoided, and the waiting time of the processor 210 is reduced, thereby improving the efficiency of the system.
  • processor 210 may include one or more interfaces.
  • the interface may include an integrated circuit (inter-integrated circuit, I2C) interface, an integrated circuit built-in audio (inter-integrated circuit sound, I2S) interface, a pulse code modulation (pulse code modulation, PCM) interface, a universal asynchronous transmitter (universal asynchronous receiver/transmitter, UART) interface, mobile industry processor interface (mobile industry processor interface, MIPI), general-purpose input and output (general-purpose input/output, GPIO) interface, subscriber identity module (subscriber identity module, SIM) interface, and /or universal serial bus (universal serial bus, USB) interface, etc.
  • I2C integrated circuit
  • I2S integrated circuit built-in audio
  • PCM pulse code modulation
  • PCM pulse code modulation
  • UART universal asynchronous transmitter
  • MIPI mobile industry processor interface
  • GPIO general-purpose input and output
  • subscriber identity module subscriber identity module
  • SIM subscriber identity module
  • USB universal serial bus
  • the I2C interface is a bidirectional synchronous serial bus, including a serial data line (serial data line, SDA) and a serial clock line (derail clock line, SCL).
  • processor 210 may include multiple sets of I2C buses.
  • the processor 210 can be respectively coupled to the touch sensor 280K, the charger, the flashlight, the camera 293 and so on through different I2C bus interfaces.
  • the processor 210 may be coupled to the touch sensor 280K through the I2C interface, so that the processor 210 and the touch sensor 280K communicate through the I2C bus interface to realize the touch function of the electronic device 200 .
  • the I2S interface can be used for audio communication.
  • processor 210 may include multiple sets of I2S buses.
  • the processor 210 may be coupled to the audio module 270 through an I2S bus to implement communication between the processor 210 and the audio module 270 .
  • the audio module 270 can transmit audio signals to the wireless communication module 260 through the I2S interface, so as to realize the function of answering calls through the Bluetooth headset.
  • the PCM interface can also be used for audio communication, sampling, quantizing and encoding the analog signal.
  • the audio module 270 and the wireless communication module 260 may be coupled through a PCM bus interface.
  • the audio module 270 can also transmit audio signals to the wireless communication module 260 through the PCM interface, so as to realize the function of answering calls through the Bluetooth headset. Both the I2S interface and the PCM interface can be used for audio communication.
  • the UART interface is a universal serial data bus used for asynchronous communication.
  • the bus can be a bidirectional communication bus. It converts the data to be transmitted between serial communication and parallel communication.
  • a UART interface is generally used to connect the processor 210 and the wireless communication module 260 .
  • the processor 210 communicates with the Bluetooth module in the wireless communication module 260 through the UART interface to realize the Bluetooth function.
  • the audio module 270 can transmit audio signals to the wireless communication module 260 through the UART interface, so as to realize the function of playing music through the Bluetooth headset.
  • the MIPI interface can be used to connect the processor 210 with the peripheral devices such as the display screen 294 and the camera 293 .
  • MIPI interface includes camera serial interface (camera serial interface, CSI), display serial interface (display serial interface, DSI), etc.
  • the processor 210 communicates with the camera 293 through the CSI interface to realize the shooting function of the electronic device 200 .
  • the processor 210 communicates with the display screen 294 through the DSI interface to realize the display function of the electronic device 200 .
  • the GPIO interface can be configured by software.
  • the GPIO interface can be configured as a control signal or as a data signal.
  • the GPIO interface can be used to connect the processor 210 with the camera 293 , the display screen 294 , the wireless communication module 260 , the audio module 270 , the sensor module 280 and so on.
  • the GPIO interface can also be configured as an I2C interface, I2S interface, UART interface, MIPI interface, etc.
  • the USB interface 230 is an interface conforming to the USB standard specification, specifically, it may be a Mini USB interface, a Micro USB interface, a USB Type C interface, and the like.
  • the USB interface 230 can be used to connect a charger to charge the electronic device 200, and can also be used to transmit data between the electronic device 200 and peripheral devices. It can also be used to connect headphones and play audio through them. This interface can also be used to connect other electronic devices, such as AR devices.
  • the interface connection relationship between the modules shown in the embodiment of the present invention is only a schematic illustration, and does not constitute a structural limitation of the electronic device 200 .
  • the electronic device 200 may also adopt different interface connection manners in the foregoing embodiments, or a combination of multiple interface connection manners.
  • the charging management module 240 is configured to receive charging input from the charger.
  • the charger may be a wireless charger or a wired charger.
  • the charging management module 240 can receive the charging input of the wired charger through the USB interface 230 .
  • the charging management module 240 may receive wireless charging input through a wireless charging coil of the electronic device 200 . While the charging management module 240 is charging the battery 242 , it can also supply power to the electronic device through the power management module 241 .
  • the power management module 241 is used for connecting the battery 242 , the charging management module 240 and the processor 210 .
  • the power management module 241 receives the input from the battery 242 and/or the charging management module 240 to provide power for the processor 210 , the internal memory 221 , the display screen 294 , the camera 293 , and the wireless communication module 260 .
  • the power management module 241 can also be used to monitor parameters such as battery capacity, battery cycle times, and battery health status (leakage, impedance).
  • the power management module 241 can also be set in the processor 210 .
  • the power management module 241 and the charging management module 240 may also be set in the same device.
  • the wireless communication function of the electronic device 200 can be realized by the antenna 1, the antenna 2, the mobile communication module 250, the wireless communication module 260, the modem processor and the baseband processor.
  • Antenna 1 and Antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in electronic device 200 may be used to cover single or multiple communication frequency bands. Different antennas can also be multiplexed to improve the utilization of the antennas.
  • Antenna 1 can be multiplexed as a diversity antenna of a wireless local area network.
  • the antenna may be used in conjunction with a tuning switch.
  • the mobile communication module 250 can provide wireless communication solutions including 2G/3G/4G/5G applied on the electronic device 200 .
  • the mobile communication module 250 may include at least one filter, switch, power amplifier, low noise amplifier (low noise amplifier, LNA) and the like.
  • the mobile communication module 250 can receive electromagnetic waves through the antenna 1, filter and amplify the received electromagnetic waves, and send them to the modem processor for demodulation.
  • the mobile communication module 250 can also amplify the signal modulated by the modem processor, convert it into electromagnetic wave and radiate it through the antenna 1 .
  • at least part of the functional modules of the mobile communication module 250 may be set in the processor 210 .
  • at least part of the functional modules of the mobile communication module 250 and at least part of the modules of the processor 210 may be set in the same device.
  • a modem processor may include a modulator and a demodulator.
  • the modulator is used for modulating the low-frequency baseband signal to be transmitted into a medium-high frequency signal.
  • the demodulator is used to demodulate the received electromagnetic wave signal into a low frequency baseband signal. Then the demodulator sends the demodulated low-frequency baseband signal to the baseband processor for processing.
  • the low-frequency baseband signal is passed to the application processor after being processed by the baseband processor.
  • the application processor outputs sound signals through audio equipment (not limited to speaker 270A, receiver 270B, etc.), or displays images or videos through display screen 294 .
  • the modem processor may be a stand-alone device.
  • the modem processor may be independent of the processor 210, and be set in the same device as the mobile communication module 250 or other functional modules.
  • the wireless communication module 260 can provide wireless local area networks (wireless local area networks, WLAN) (such as wireless fidelity (Wireless Fidelity, Wi-Fi) network), bluetooth (bluetooth, BT), global navigation satellite, etc. applied on the electronic device 200.
  • System global navigation satellite system, GNSS
  • frequency modulation frequency modulation, FM
  • near field communication technology near field communication, NFC
  • infrared technology infrared, IR
  • the wireless communication module 260 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 260 receives electromagnetic waves via the antenna 2, frequency-modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 210.
  • the wireless communication module 260 can also receive the signal to be sent from the processor 210 , frequency-modulate it, amplify it, and convert it into electromagnetic waves through the antenna 2 to radiate out.
  • the antenna 1 of the electronic device 200 is coupled to the mobile communication module 250, and the antenna 2 is coupled to the wireless communication module 260, so that the electronic device 200 can communicate with the network and other devices through wireless communication technology.
  • the wireless communication technology may include global system for mobile communications (GSM), general packet radio service (general packet radio service, GPRS), code division multiple access (code division multiple access, CDMA), broadband Code division multiple access (wideband code division multiple access, WCDMA), time division code division multiple access (time-division code division multiple access, TD-SCDMA), long term evolution (long term evolution, LTE), BT, GNSS, WLAN, NFC , FM, and/or IR techniques, etc.
  • GSM global system for mobile communications
  • general packet radio service general packet radio service
  • CDMA code division multiple access
  • WCDMA broadband Code division multiple access
  • time division code division multiple access time-division code division multiple access
  • TD-SCDMA time-division code division multiple access
  • long term evolution long term evolution
  • LTE long
  • the GNSS may include a global positioning system (global positioning system, GPS), a global navigation satellite system (global navigation satellite system, GLONASS), a Beidou navigation satellite system (beidou navigation satellite system, BDS), a quasi-zenith satellite system (quasi -zenith satellite system (QZSS) and/or satellite based augmentation systems (SBAS).
  • GPS global positioning system
  • GLONASS global navigation satellite system
  • Beidou navigation satellite system beidou navigation satellite system
  • BDS Beidou navigation satellite system
  • QZSS quasi-zenith satellite system
  • SBAS satellite based augmentation systems
  • the electronic device 200 realizes the display function through the GPU, the display screen 294 , and the application processor.
  • the GPU is a microprocessor for image processing, and is connected to the display screen 294 and the application processor. GPUs are used to perform mathematical and geometric calculations for graphics rendering.
  • Processor 210 may include one or more GPUs that execute program instructions to generate or change display information.
  • the display screen 294 is used to display images, videos and the like.
  • Display 294 includes a display panel.
  • the display panel can be a liquid crystal display (LCD), an organic light-emitting diode (OLED), an active matrix organic light emitting diode or an active matrix organic light emitting diode (active-matrix organic light emitting diode, AMOLED), flexible light-emitting diode (flex light-emitting diode, FLED), Miniled, MicroLed, Micro-oLed, quantum dot light emitting diodes (quantum dot light emitting diodes, QLED), etc.
  • the electronic device 200 may include 1 or N display screens 294, where N is a positive integer greater than 1.
  • the electronic device 200 can realize the shooting function through the ISP, the camera 293 , the video codec, the GPU, the display screen 294 and the application processor.
  • the ISP is used for processing the data fed back by the camera 293 .
  • the light is transmitted to the photosensitive element of the camera through the lens, and the light signal is converted into an electrical signal, and the photosensitive element of the camera transmits the electrical signal to the ISP for processing, and converts it into an image visible to the naked eye.
  • ISP can also perform algorithm optimization on image noise, brightness, and skin color.
  • ISP can also optimize the exposure, color temperature and other parameters of the shooting scene.
  • the ISP may be located in the camera 293 .
  • Camera 293 is used to capture still images or video.
  • the object generates an optical image through the lens and projects it to the photosensitive element.
  • the photosensitive element may be a charge coupled device (CCD) or a complementary metal-oxide-semiconductor (CMOS) phototransistor.
  • CMOS complementary metal-oxide-semiconductor
  • the photosensitive element converts the light signal into an electrical signal, and then transmits the electrical signal to the ISP to convert it into a digital image signal.
  • the ISP outputs the digital image signal to the DSP for processing.
  • DSP converts digital image signals into standard RGB, YUV and other image signals.
  • the electronic device 200 may include 1 or N cameras 293, where N is a positive integer greater than 1.
  • Digital signal processors are used to process digital signals. In addition to digital image signals, they can also process other digital signals. For example, when the electronic device 200 selects a frequency point, the digital signal processor is used to perform Fourier transform on the frequency point energy.
  • Video codecs are used to compress or decompress digital video.
  • the electronic device 200 may support one or more video codecs.
  • the electronic device 200 can play or record videos in various encoding formats, for example: moving picture experts group (moving picture experts group, MPEG) 1, MPEG2, MPEG3, MPEG4 and so on.
  • MPEG moving picture experts group
  • the NPU is a neural-network (NN) computing processor.
  • NN neural-network
  • Applications such as intelligent cognition of the electronic device 200 can be implemented through the NPU, such as image recognition, face recognition, speech recognition, text understanding, and the like.
  • the external memory interface 220 can be used to connect an external memory card, such as a Micro SD card, to expand the storage capacity of the electronic device 200.
  • the external memory card communicates with the processor 210 through the external memory interface 220 to implement a data storage function. Such as saving music, video and other files in the external memory card.
  • the internal memory 221 may be used to store computer-executable program codes including instructions.
  • the internal memory 221 may include an area for storing programs and an area for storing data.
  • the stored program area can store an operating system, at least one application program required by a function (such as a sound playing function, an image playing function, etc.) and the like.
  • the storage data area can store data created during the use of the electronic device 200 (such as audio data, phonebook, etc.) and the like.
  • the internal memory 221 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, flash memory device, universal flash storage (universal flash storage, UFS) and the like.
  • the processor 210 executes various functional applications and data processing of the electronic device 200 by executing instructions stored in the internal memory 221 and/or instructions stored in a memory provided in the processor.
  • the electronic device 200 can realize the audio function through the audio module 270 , the speaker 270A, the receiver 270B, the microphone 270C, the earphone interface 270D, and the application processor. Such as music playback, recording, etc.
  • the audio module 270 is used to convert digital audio information into analog audio signal output, and is also used to convert analog audio input into digital audio signal.
  • the audio module 270 may also be used to encode and decode audio signals.
  • the audio module 270 can be set in the processor 210 , or some functional modules of the audio module 270 can be set in the processor 210 .
  • Speaker 270A also referred to as a "horn" is used to convert audio electrical signals into sound signals.
  • Electronic device 200 can listen to music through speaker 270A, or listen to hands-free calls.
  • Receiver 270B also called “earpiece” is used to convert audio electrical signals into audio signals.
  • the receiver 270B can be placed close to the human ear to receive the voice.
  • the microphone 270C also called “microphone” or “microphone” is used to convert sound signals into electrical signals.
  • the user can make a sound by approaching the microphone 270C with a human mouth, and input the sound signal to the microphone 270C.
  • the electronic device 200 may be provided with at least one microphone 270C.
  • the electronic device 200 may be provided with two microphones 270C, which may also implement a noise reduction function in addition to collecting sound signals.
  • the electronic device 200 can also be provided with three, four or more microphones 270C to collect sound signals, reduce noise, identify sound sources, and realize directional recording functions, etc.
  • the earphone interface 270D is used for connecting wired earphones.
  • the earphone interface 270D can be a USB interface 230, or a 3.5mm open mobile terminal platform (OMTP) standard interface, or a cellular telecommunications industry association of the USA (CTIA) standard interface.
  • OMTP open mobile terminal platform
  • CTIA cellular telecommunications industry association of the USA
  • the pressure sensor 280A is used to sense the pressure signal and convert the pressure signal into an electrical signal.
  • pressure sensor 280A may be located on display screen 294 .
  • pressure sensors 280A such as resistive pressure sensors, inductive pressure sensors, and capacitive pressure sensors.
  • a capacitive pressure sensor may be comprised of at least two parallel plates with conductive material.
  • the electronic device 200 may also calculate the touched position according to the detection signal of the pressure sensor 280A.
  • touch operations acting on the same touch position but with different touch operation intensities may correspond to different operation instructions. For example: when a touch operation with a touch operation intensity less than the first pressure threshold acts on the short message application icon, an instruction to view short messages is executed. When a touch operation whose intensity is greater than or equal to the first pressure threshold acts on the icon of the short message application, the instruction of creating a new short message is executed.
  • the gyro sensor 280B can be used to determine the motion posture of the electronic device 200 .
  • the angular velocity of the electronic device 200 about three axes may be determined by the gyro sensor 280B.
  • the gyro sensor 280B can be used for image stabilization. Exemplarily, when the shutter is pressed, the gyro sensor 280B detects the shaking angle of the electronic device 200, and calculates the distance that the lens module needs to compensate according to the angle, and allows the lens to counteract the shaking of the electronic device 200 through reverse movement to achieve anti-shake.
  • the gyro sensor 280B can also be used for navigation and somatosensory game scenes.
  • the air pressure sensor 280C is used to measure air pressure. In some embodiments, the electronic device 200 calculates the altitude based on the air pressure value measured by the air pressure sensor 280C to assist positioning and navigation.
  • the magnetic sensor 280D includes a Hall sensor.
  • the electronic device 200 may use the magnetic sensor 280D to detect the opening and closing of the flip leather case.
  • the electronic device 200 may detect opening and closing of the flip according to the magnetic sensor 280D.
  • features such as automatic unlocking of the flip cover are set.
  • the acceleration sensor 280E can detect the acceleration of the electronic device 200 in various directions (generally three axes). When the electronic device 200 is stationary, the magnitude and direction of gravity can be detected. It can also be used to identify the posture of electronic devices, and can be used in applications such as horizontal and vertical screen switching, pedometers, etc.
  • the distance sensor 280F is used to measure the distance.
  • the electronic device 200 may measure the distance by infrared or laser. In some embodiments, when shooting a scene, the electronic device 200 can use the distance sensor 280F to measure distance to achieve fast focusing.
  • Proximity light sensor 280G may include, for example, a light emitting diode (LED) and a light detector, such as a photodiode.
  • the light emitting diodes may be infrared light emitting diodes.
  • the electronic device 200 emits infrared light through the light emitting diode.
  • Electronic device 200 uses photodiodes to detect infrared reflected light from nearby objects. When sufficient reflected light is detected, it may be determined that there is an object near the electronic device 200 . When insufficient reflected light is detected, the electronic device 200 may determine that there is no object near the electronic device 200 .
  • the electronic device 200 can use the proximity light sensor 280G to detect that the user holds the electronic device 200 close to the ear to make a call, so as to automatically turn off the screen to save power.
  • Proximity light sensor 280G can also be used in leather case mode, automatic unlock and lock screen in pocket mode.
  • the ambient light sensor 280L is used for sensing ambient light brightness.
  • the electronic device 200 can adaptively adjust the brightness of the display screen 294 according to the perceived ambient light brightness.
  • the ambient light sensor 280L can also be used to automatically adjust the white balance when taking pictures.
  • the ambient light sensor 280L can also cooperate with the proximity light sensor 280G to detect whether the electronic device 200 is in the pocket, so as to prevent accidental touch.
  • the fingerprint sensor 280H is used to collect fingerprints.
  • the electronic device 200 can use the collected fingerprint characteristics to implement fingerprint unlocking, access to the application lock, take pictures with the fingerprint, answer calls with the fingerprint, and the like.
  • the temperature sensor 280J is used to detect temperature.
  • the electronic device 200 uses the temperature detected by the temperature sensor 280J to implement a temperature treatment strategy. For example, when the temperature reported by the temperature sensor 280J exceeds the threshold, the electronic device 200 may reduce the performance of the processor located near the temperature sensor 280J, so as to reduce power consumption and implement thermal protection.
  • the electronic device 200 when the temperature is lower than another threshold, the electronic device 200 heats the battery 242 to avoid abnormal shutdown of the electronic device 200 caused by the low temperature.
  • the electronic device 200 boosts the output voltage of the battery 242 to avoid abnormal shutdown caused by low temperature.
  • the touch sensor 280K is also called “touch device”.
  • the touch sensor 280K can be arranged on the display screen 294, and the touch sensor 280K and the display screen 294 form a touch screen, also called “touch screen”.
  • the touch sensor 280K is used to detect a touch operation on or near it.
  • the touch sensor can pass the detected touch operation to the application processor to determine the type of touch event.
  • Visual output related to touch operations can be provided through the display screen 294 .
  • the touch sensor 280K may also be disposed on the surface of the electronic device 200 , which is different from the position of the display screen 294 .
  • the bone conduction sensor 280M can acquire vibration signals.
  • the bone conduction sensor 280M can acquire the vibration signal of the vibrating bone mass of the human voice.
  • the bone conduction sensor 280M can also contact the human pulse and receive the blood pressure beating signal.
  • the bone conduction sensor 280M can also be disposed in the earphone, combined into a bone conduction earphone.
  • the audio module 270 can analyze the voice signal based on the vibration signal of the vibrating bone mass of the vocal part acquired by the bone conduction sensor 280M, so as to realize the voice function.
  • the application processor can analyze the heart rate information based on the blood pressure beating signal acquired by the bone conduction sensor 280M, so as to realize the heart rate detection function.
  • the keys 290 include a power key, a volume key and the like.
  • the key 290 may be a mechanical key. It can also be a touch button.
  • the electronic device 200 may receive key input and generate key signal input related to user settings and function control of the electronic device 200 .
  • the motor 291 can generate a vibrating reminder.
  • the motor 291 can be used for incoming call vibration prompts, and can also be used for touch vibration feedback.
  • touch operations applied to different applications may correspond to different vibration feedback effects.
  • the motor 291 can also correspond to different vibration feedback effects for touch operations acting on different areas of the display screen 294 .
  • Different application scenarios for example: time reminder, receiving information, alarm clock, games, etc.
  • the touch vibration feedback effect can also support customization.
  • the indicator 292 can be an indicator light, which can be used to indicate the charging status, the change of the battery capacity, and also can be used to indicate messages, missed calls, notifications and so on.
  • the SIM card interface 295 is used for connecting a SIM card.
  • the SIM card can be connected and separated from the electronic device 200 by inserting it into the SIM card interface 295 or pulling it out from the SIM card interface 295 .
  • the electronic device 200 may support 1 or N SIM card interfaces, where N is a positive integer greater than 1.
  • SIM card interface 295 can support Nano SIM card, Micro SIM card, SIM card etc. Multiple cards can be inserted into the same SIM card interface 295 at the same time. The types of the multiple cards may be the same or different.
  • the SIM card interface 295 is also compatible with different types of SIM cards.
  • the SIM card interface 295 is also compatible with external memory cards.
  • the electronic device 200 interacts with the network through the SIM card to implement functions such as calling and data communication.
  • the electronic device 200 adopts an eSIM, that is, an embedded SIM card.
  • the eSIM card can be embedded in the electronic device 200 and cannot be separated from the electronic device 200 .
  • the structure illustrated in the embodiment of the present application does not constitute a specific limitation on the electronic device 200 .
  • the electronic device 200 may include more or fewer components than shown in the figure, or combine certain components, or separate certain components, or arrange different components.
  • the illustrated components can be realized in hardware, software or a combination of software and hardware.
  • the main routing device can determine the transmission management period and the window division mode in response to the configuration operation of the administrator (that is, the device manufacturer or user).
  • the transmission management cycle can be understood as a cycle in which the master routing device manages sending opportunities of each routing device.
  • the main routing device can configure the sending opportunity and sending order of each routing device, and notify each sub-routing device through an index frame (MAP frame).
  • MAP frame index frame
  • the structure of the MAP frame can be set according to actual requirements.
  • the structure of the MAP frame may include header files, configuration information and extended information.
  • the configuration information may include at least one description information, such as description information 1, description information 2, description information n (n is a positive integer greater than 2), and the like.
  • the above description information is used to record information such as device identifiers and sending sequences of routing devices assigned sending opportunities.
  • the sub-routing device When the sub-routing device receives the MAP frame, the sub-routing device can obtain the sending opportunity and the sending order of each routing device from the MAP frame.
  • the routing devices configured with sending opportunities can perform data transmission sequentially according to the above sending order, and the routing devices not configured with sending opportunities cannot perform data transmission.
  • sub-routing device A For example, assume that the main routing device, sub-routing device A, sub-routing device B, and sub-routing device C are all connected to the power line network.
  • the main routing device configures the sending opportunity and sending order of the main routing device, sub-routing device A and sub-routing device B through the MAP frame, but does not configure the sending opportunity of sub-routing device C.
  • the main routing device, sub-routing device A, and sub-routing device B can transmit data sequentially according to the above sending order, and sub-routing device C is not configured with a sending opportunity, so sub-routing device C cannot perform data transmission .
  • a transmission management cycle may include one or more AC cycles.
  • the alternating current period can be calculated from the frequency of the alternating current.
  • one alternating current cycle is 20ms.
  • one alternating current cycle is about 16.7ms.
  • the windowing method refers to the method of dividing the alternating current cycle.
  • the main routing device can divide an alternating current cycle into multiple time windows according to the above window division method, and set different channel parameters in each time window.
  • multiple routing devices can send different message frames.
  • the same frame message can only be transmitted within one time window, and cannot be transmitted across multiple time windows.
  • the above window division manner may be set according to actual requirements. For example, it is assumed that one transmission management cycle includes two AC cycles, and each AC cycle is 20 ms.
  • the transmission management cycle may include 16 time windows, each of which is 2.5 ms.
  • the transmission management cycle may include 20 time windows, each of which is 2 ms.
  • the main routing device When the main routing device enters the working state, the main routing device can obtain the device access status of each sub-routing device connected to the power line network through the status transmission channel.
  • the above state transmission channel may include one or more of communication connections such as power line network, Wi-Fi connection, Bluetooth connection, USB connection, RJ45 connection and the like.
  • the foregoing device access status is used to indicate whether there is user equipment accessing the sub-routing device.
  • the foregoing device access status may include user equipment access and no user equipment access.
  • the foregoing device access status may be represented by one or a combination of representation elements such as numbers, characters, and punctuation marks.
  • an electronic device may use 1 to indicate that there is user equipment access, and 0 to indicate that there is no user equipment access; in other scenarios, the electronic device may also use a-1 to indicate that there is user equipment access, and use b-9 indicates that there is no user equipment access; in other scenarios, the electronic equipment may also indicate the equipment access status in other forms.
  • the embodiment of the present application does not limit the specific expression form of the device access state.
  • the above device access status may be requested by the main routing device from the sub-routing device, or the above device access status may also be actively sent by the sub-routing device to the main routing device.
  • the main routing device may send an access state request to the sub-routing device.
  • the sub-routing device may respond to the access status request and feed back the device access status of the sub-routing device to the main routing device.
  • the sub-routing device when the sub-routing device discovers the main routing device, it can actively send the device access status of the sub-routing device to the main routing device.
  • the embodiment of the present application does not limit the specific manner in which the main routing device obtains the device access status of the sub-routing device.
  • the main routing device may allocate sending opportunities for the sub-routing device according to the device access status of the sub-routing device.
  • the main routing device may determine the sub-routing device as an active device.
  • the main routing device may determine the sub-routing device as an idle device.
  • the main routing device can allocate the sending opportunity of the first time period of the transmission management cycle to the main routing device and the active device, set the first sending order of the main routing device and the active device, and not allocate the sending opportunity of the first time period to the idle device Chance.
  • the main routing device can also allocate sending opportunities for the main routing device, active device and idle device in the second time period of the transmission management cycle, and set the second sending order of the main routing device, active device and idle device.
  • first time period and the second time period are disjoint time periods.
  • the first time period and the second time period can be set according to actual needs.
  • the first time period and the second time period may be preset fixed time periods.
  • one transmission management cycle includes 20 time windows.
  • the main routing device may set the first time window to the 13th time window in the transmission management cycle as the first time period, and set the 14th time window as the time period for transmitting MAP frames.
  • the 15th time window to the 20th time window are fixedly set as the second time period.
  • the main routing device can set the first time window to the ninth time window in the transmission management cycle as the first time period, and set the tenth time window as the time period for transmitting MAP frames. , and the 11th time window to the 20th time window are fixedly set as the second time period.
  • the first time period and the second time period may also be dynamically adjusted time periods.
  • the main routing device may calculate the theoretical minimum bandwidth of the idle device when different numbers of time windows are set in the second time period according to the number of idle devices.
  • the calculation method of the theoretical minimum bandwidth can be determined according to the actual scene, and the embodiment of the present application does not limit the specific calculation method of the theoretical minimum bandwidth.
  • the main routing device can set the first time period and the second time period under the condition that the theoretical minimum bandwidth of the idle device satisfies the basic cost of the idle device.
  • the main routing device calculates that when the second time period has 3 time windows, the theoretical minimum bandwidth of the idle device is greater than the basic overhead of the idle device.
  • the main routing device can randomly select 3 time windows from the 16 time windows as the second time period, randomly select 1 time window as the time period for transmitting MAP frames, and determine other time windows as the first time period .
  • a transmission management period includes 20 time windows
  • the main routing device calculates that when there are 4 time windows set in the second time period, the theoretical minimum bandwidth of the idle device is greater than the basic overhead of the idle device.
  • the main routing device can determine the first time window to the fifth time window in the transmission management cycle as the second time period, and determine the sixth time window as the transmission MAP frame under the condition of retaining a certain margin time period, the 7th time window to the 20th time window are determined as the first time period.
  • the main routing device may also set the first time period and the second time period in other ways.
  • the embodiment of the present application does not limit the specific setting manner of the first time period and the second time period.
  • the above-mentioned generating method of the sending sequence may be set according to actual requirements.
  • the main routing device can randomly sort the device IDs of each routing device in a random order to obtain the sending order; in other embodiments, the main routing device can start from the first bit of the device ID , according to any one or more combinations of sorting rules such as descending number, ascending number, descending letter, ascending letter, etc., sort the device identifiers of each routing device to obtain the sending order; in other embodiments, the main router The device can also generate the sending sequence in other ways. The embodiment of the present application does not limit the specific manner of generating the sending order by the main routing device.
  • the main routing device may directly generate the second sending order according to the above generating manner.
  • the main routing device can also arrange the device IDs of the idle devices first, and then arrange the device IDs of the main routing device and the active device, so that the idle devices can have the priority of sending opportunities in the second time period to ensure the bandwidth of the idle devices.
  • sub-routing device A is an idle device
  • sub-routing devices B and C are active devices.
  • the main routing device may arrange the sub-routing device A first. Then, after the sub-routing device A, the main routing device sorts the main routing device, sub-routing device B and sub-routing device C to obtain the second sending sequence.
  • the second sending order may be: sub-routing device A-sub-routing device C-main routing device-sub-routing device B.
  • the main routing device can broadcast a MAP frame in the power line network, and notify each sub-routing device of the configuration of the sending opportunity and sending sequence through the MAP frame.
  • the sub-routing device can determine the sending opportunity and sending sequence of the device through the MAP frame.
  • the main routing device and the active device may perform data transmission sequentially within the first time period according to the above-mentioned first sending order.
  • main routing device, the active device and the idle device may sequentially perform data transmission within the second time period according to the above-mentioned second sending sequence.
  • the power line carrier communication system includes a main routing device A0, a sub-routing device A1, a sub-routing device A2, a sub-routing device A3, a sub-routing device A4, a sub-routing device A5 and a power line network A6.
  • the main routing device A0, the sub-routing device A1, the sub-routing device A2, the sub-routing device A3, the sub-routing device A4 and the sub-routing device A5 are all connected to the power line network A6.
  • the main routing device A0 will equally allocate sending opportunities to each routing device.
  • the sending sequence generated by the main routing device A0 can be: A1-A2-A3-A4-A5-A0.
  • Figure 6 schematically lists the distribution of the time slots occupied by each routing device within the two time windows picture.
  • the main routing device A0 and each sub-routing device may have sending opportunities sequentially according to the above sending order.
  • the routing device can use the sending opportunity to perform data transmission.
  • routing device may remain silent. At this time, after waiting for the minimum sending time slot, other routing devices may assume that the routing device gives up this sending opportunity by default, and it is the next sending opportunity of the routing device to continue.
  • each sub-routing device has no data to transmit, in each time window, the main routing device A0 needs to wait for 5 minimum sending time slots before the data transmission of the device can be performed.
  • the proportion of wasted bandwidth increases accordingly.
  • the first 13 time windows of the transmission management cycle are the first time period
  • the 14th time window is the time period for transmitting MAP frames
  • the 15th time window to the 20th time window The first time window is the second time period
  • each sub-routing device has no user equipment access.
  • the main routing device A0 After the main routing device A0 enters the working state, the main routing device A0 can obtain the device access status of each sub-routing device.
  • the device access states fed back to the main routing device A0 by the sub-routing device A1, the sub-routing device A2, the sub-routing device A3, the sub-routing device A4, and the sub-routing device A5 are all no user equipment access.
  • the main routing device A0 may determine the sub-routing device A1, the sub-routing device A2, the sub-routing device A3, the sub-routing device A4, and the sub-routing device A5 as idle devices.
  • the main routing device A0 may allocate the sending opportunity of the first time period to the main routing device A0, not allocate the sending opportunity of the first time period to other sub-routing devices, and set the first sending order as: A0.
  • the main routing device A0 can assign the sending opportunity of the second time period to the main routing device A0, the sub-routing device A1, the sub-routing device A2, the sub-routing device A3, the sub-routing device A4 and the sub-routing device A5, and the second sending sequence
  • the settings are: A1-A2-A3-A4-A5-A0.
  • the main routing device A0 may broadcast a MAP frame on the power line network, and notify each sub-routing device of the above configuration of the sending opportunity and sending sequence through the MAP frame.
  • each sub-routing device After each sub-routing device receives the MAP frame, it can determine the sending opportunity and sending sequence of the device through the MAP frame.
  • the main routing device A0 and each sub-routing device perform data transmission according to the above sending opportunity and sending sequence.
  • FIG. 7 exemplarily lists a distribution diagram of time slots occupied by each routing device in two time windows in the first time period.
  • the method of the embodiment of the present application can save 5 wasted minimum transmission time slots in each time window of the first time period, and increase the bandwidth by 8.96%. utilization rate.
  • the utilization rate of bandwidth saved by the method of the embodiment of the present application can be further improved.
  • the method of the embodiment of the present application can save 15 wasted minimum sending time slots in each time window of the first time period, and increase the bandwidth utilization rate by 26.88%.
  • FIG. 8 exemplarily lists a distribution diagram of time slots occupied by each routing device in two time windows in the second time period.
  • the main routing device A0 and each sub-routing device can transmit data sequentially according to the second sending order, so as to meet the needs of each idle device for transmitting a small number of management packets base cost.
  • Tables 1 and 2 are the experimental data obtained by testing the two power line carrier communication methods under the conditions listed in the above example.
  • Table 1 is the experimental data of the first power line carrier communication method in this example:
  • Table 2 is the experimental data of the power line carrier communication method provided by the embodiment of the present application:
  • the power line carrier communication method provided by the embodiment of the present application can effectively improve the bandwidth utilization rate of the power line network.
  • the bandwidth utilization rate improved by the method provided in the embodiment of the present application will also increase accordingly.
  • the main routing device can allocate the sending opportunity of the second time period to the idle device, and not allocate the sending opportunity of the first time period to the idle device, thereby reducing idle time.
  • the transmission opportunity of the device avoids wasting too many time slots for idle devices, effectively improves the bandwidth utilization rate of the power line network, and improves the data transmission efficiency of each routing device.
  • the user equipment may be connected to or disconnected from the sub-routing device at any time.
  • the device access state of the sub-routing device may be affected by the user equipment, changing from user equipment access to no user equipment access, or from no user equipment access to user equipment access.
  • the sub-routing device can send a status change notification to the main routing device through the state transmission channel.
  • the main routing device can determine the device access state of the sub-routing device according to the state change notification, and re-allocate sending opportunities for each routing device.
  • the main routing device may determine the sub-routing device as an idle device, and no longer allocate the first time period to it Update the first sending order of the main routing device and the active device within the sending opportunity.
  • the main routing device may determine the sub-routing device as an active device and assign it a sending opportunity within the first time period, The first sending order of the main routing device and the active device is updated.
  • the power line carrier communication system includes a main routing device B0, a sub-routing device B1, a sub-routing device B2, a sub-routing device B3, a power line network B4 and a user device B5.
  • the user equipment B5 establishes a communication connection with the sub-routing equipment B1.
  • the main routing device B0 obtains the device access status of each sub-routing device.
  • the device access state fed back by the sub-routing device B1 is that there is user equipment access, and the device access states fed back by the sub-routing device B2 and the sub-routing device B3 are both without user equipment access.
  • the main routing device B0 may allocate sending opportunities for the first time period to the main routing device B0 and the sub-routing device B1, and set the first sending order as: B0-B1.
  • main routing device B0 can allocate sending opportunities for the second time period to the main routing device B0, the sub-routing device B1, the sub-routing device B2 and the sub-routing device B3, and set the second sending order as: B0-B1-B2-B3 .
  • the main routing device B0 can broadcast the MAP frame on the power line network, and inform each sub-routing device of the configuration of the sending opportunity and sending order.
  • the rectangular rectangles in FIG. 10 and FIG. 11 represent time windows, and the rectangles with rounded corners represent time slots occupied by each routing device.
  • the main routing device B0 and the sub-routing device B1 may perform data transmission in turn according to the above-mentioned first sending sequence.
  • the main routing device B0 can start data transmission first according to the above-mentioned first sending order; after the main routing device B0 completes the transmission, it is the turn of the sub-routing device B1 to send the opportunity, and the sub-routing device B1 starts data transmission; After the device B1 completes the transmission, it is the turn of the main routing device B0 to send again, and the main routing device B0 starts data transmission.
  • the main routing device B0 and the sub-routing device B1 perform data transmission in turn according to the above cyclic manner until the end of the first time period.
  • the routing device when it is the turn of a routing device to transmit, if the routing device has data to transmit, the length of the time slot occupied by the routing device in this sending opportunity is positively correlated with the amount of data that the routing device needs to transmit relation.
  • the same frame message is only allowed to be transmitted within the same time window, and cannot be transmitted across multiple time windows.
  • the longest time slot occupied by the routing device in this sending opportunity is the length of the time window, and the time slots occupied by the routing device in this sending opportunity cannot span different time windows.
  • each sending opportunity has a minimum sending time slot
  • the routing device since each sending opportunity has a minimum sending time slot, if the routing device has no data to transmit, or the routing device needs to transmit very little data and the transmission time is shorter than the minimum sending time slot, then the routing device The time slot occupied by the routing device in this sending opportunity is the minimum sending time slot.
  • the main routing device B0, the sub-routing device B1, the sub-routing device B2, and the sub-routing device B3 may perform data transmission in turn according to the second sending order.
  • the user equipment B5 disconnects the communication connection with the sub-routing device B1, and the user equipment B6 establishes a communication connection with the sub-routing device B3.
  • the sub-routing device B1 sends a state change notification 1 to the main routing device B0, and the sub-routing device B2 sends a state change notification 2 to the main routing device B0.
  • the main routing device B0 After receiving the state change notification 1, the main routing device B0 determines that the device access state of the sub-routing device B1 has changed to no user equipment access, and no longer allocates the sending opportunity for the first time period to the sub-routing device B1.
  • the main routing device B0 After receiving the state change notification 2, the main routing device B0 determines that the device access state of the sub-routing device B3 has changed to user equipment access, and allocates a sending opportunity for the first time period to the sub-routing device B3.
  • the main routing device may update the first sending order to: B0-B3, and notify each sub-routing device of the updated sending opportunity and sending order through a MAP frame.
  • the main routing device B0 and the sub-routing device B3 may perform data transmission in turn according to the updated first sending sequence.
  • the main routing device B0, the sub-routing device B1, the sub-routing device B2, and the sub-routing device B3 may continue to transmit data in turn according to the second transmission sequence that has not been updated.
  • the main routing device when the device access state of the sub-routing device changes, the main routing device can dynamically adjust the sending opportunity of the sub-routing device according to the change of the sub-routing device.
  • the main routing device can stop allocating the sending opportunity for the sub-routing device in the first time period, reducing wasted time slots, Improve bandwidth utilization.
  • the main routing device can allocate a sending opportunity for the sub-routing device in the first time period to improve the transmission efficiency of the sub-routing device .
  • the sub-routing device may also access the power line network or disconnect from the power line network in response to the user's operation.
  • the master routing device may assign a sending opportunity within the transmission management period to the new sub-routing device.
  • the main routing device when the main routing device discovers a new sub-routing device, the main routing device can default the device access status of the sub-routing device to no user device access, and determine the sub-routing device as an idle device .
  • the main routing device may allocate sending opportunities within the second time period to the sub-routing device, update the second sending order, and not allocate sending opportunities within the first time period to the sub-routing device.
  • the sub-routing device may send a status change notification to the main routing device.
  • the main routing device After the main routing device receives the status change notification, it can determine the access status of the sub-routing device as user equipment access according to the status change notification, determine the sub-routing device as an active device, and assign the first sub-routing device to the sub-routing device. For sending opportunities within the time period, update the first sending order.
  • the power line carrier communication system includes a power line network C0, a main routing device C1, a sub-routing device C2, and a sub-routing device C3. Neither the sub-routing device C2 nor the sub-routing device C3 has user equipment access.
  • the main routing device C1 may allocate the sending opportunity of the first time period to the main routing device C1, and set the first sending order as: C1.
  • the main routing device C1 may allocate sending opportunities for the second time period to the main routing device C1, the sub-routing device C2 and the sub-routing device C3, and set the second sending order as: C2-C3-C1.
  • the main routing device C1 finds that the sub-routing device C4 is connected to the power line network C0. At this time, the main routing device C1 can default the device access status of the sub-routing device C4 as no user device access, and not allocate a sending opportunity for the first time period to the sub-routing device C4, and allocate a second time period for the sub-routing device C4 the sending opportunity, update the second sending sequence to: C2-C3-C4-C1.
  • the sub-routing device C4 can send a state change notification 3 to the main routing device C1.
  • the main routing device C1 After receiving the status change notification 3, the main routing device C1 determines that the device access status of the sub-routing device C4 is user equipment access. Therefore, the main routing device C1 may allocate sending opportunities within the first time period to the sub-routing device C4, and update the first sending order to: C1-C4.
  • the main routing device when the main routing device discovers that a new sub-routing device is connected to the power line network, the main routing device can default the sub-routing device as an idle device, and only assign it a sending opportunity in the second time period to reduce wasted time. Time slots to improve the bandwidth utilization of the power line network.
  • the main routing device can determine the sub-routing device as an active device, and assign the sub-routing device a sending opportunity in the first time period to improve the sub-routing device. data transfer efficiency.
  • the main routing device when the main routing device discovers a new sub-routing device, the main routing device can default the device access status of the sub-routing device as user equipment access, and determine the sub-routing device as active equipment.
  • the main routing device may allocate sending opportunities within the first time period and the second time period to the sub-routing device, and update the first sending order and the second sending order.
  • the main routing device can wait for a preset period of time.
  • the preset duration can be set according to actual needs. For example, the preset duration can be set to 1 minute, 5 minutes, 10 minutes, etc.
  • the main routing device can maintain the current configuration scheme.
  • the main routing device can send the sub-routing device
  • the routing device is determined to be an idle device, stops allocating sending opportunities within the first time period, and updates the first sending sequence.
  • the power line carrier communication system includes a power line network D0, a main routing device D1, a sub-routing device D2, and a sub-routing device D3. Neither the sub-routing device D2 nor the sub-routing device D3 has user equipment access.
  • the main routing device D1 may allocate the sending opportunity of the first time period to the main routing device D1, and set the first sending order as: D1.
  • the main routing device D1 may allocate sending opportunities for the second time period to the main routing device D1, the sub-routing device D2 and the sub-routing device D3, and set the second sending order as: D2-D3-D1.
  • the main routing device D1 finds that the sub-routing device D4 is connected to the power line network D0. At this time, the main routing device D1 can default the device access status of the sub-routing device D4 as user equipment access, allocate the sending opportunities of the first time period and the second time period for the sub-routing device D4, and update the first sending opportunity It is: D1-D4, and the second sending sequence is updated to: D2-D3-D4-D1.
  • the sub-routing device D4 may not send the device access status of the device to the main routing device D1.
  • the main routing device D1 can determine that the device access status of the sub-routing device D4 is no user device access, no longer allocate the sending opportunity for the first time period to the sub-routing device D4, and update the first sending order to: D1.
  • the main routing device when the main routing device discovers that a new sub-routing device is connected to the power line network, the main routing device can default the sub-routing device as an active device, and allocate sending opportunities for the first time period and the second time period, So that the sub-routing device can provide smooth data transmission service for the user equipment, and improve the data transmission efficiency of the user equipment.
  • the main routing device can determine the sub-routing device as an idle device and no longer allocate the first sub-routing device to it. Send opportunities in time slots, reduce wasted time slots, and improve bandwidth utilization.
  • the main routing device may stop allocating sending opportunities for the sub-routing device, and update the sending sequence.
  • the main routing device may stop allocating sending opportunities to the sub-routing device during the first time period and the second time period, and update the first sending order and the second sending order.
  • the main routing device may stop allocating sending opportunities to the sub-routing device in the second time period, and update the second sending sequence.
  • the power line carrier communication system includes a main routing device E0 , a sub-routing device E1 , a sub-routing device E2 and a power line network E3.
  • the main routing device E0, the sub-routing device E1 and the sub-routing device E2 are all connected to the power line network E3.
  • the main routing device E0 determines the sub-routing device E1 and the sub-routing device E2 as idle devices.
  • the main routing device E0 may allocate a sending opportunity in the first time period to the device, and set the first sending order as: E0.
  • the main routing device may allocate sending opportunities for the second time period to the main routing device E0, the sub-routing device E1, and the sub-routing device E2, and set the second sending order as: E1-E2-E0.
  • the sub-routing device E2 leaves the power line network E3.
  • the main routing device E0 may no longer allocate sending opportunities for the second time period to the sub-routing device E2, and update the second sending order to: E1-E0.
  • the main routing device finds that the sub-routing device has left the power line network, the main routing device can no longer allocate sending opportunities for it, update the sending order, reduce wasted time slots, and improve the bandwidth utilization of the power line network.
  • the power line carrier communication system includes a power line network F0, a main routing device F1, a sub-routing device F2, a sub-routing device F3, a sub-routing device F4 and a user device F5.
  • the main routing device F1, the sub-routing device F2, the sub-routing device F3 and the sub-routing device F4 are all connected to the power line network F0, and the user equipment F5 is connected to the sub-routing device F3.
  • the main routing device F1 enters the working state, and sends an access state request to the sub-routing device F2, the sub-routing device F3 and the sub-routing device F4.
  • the sub-routing device F2 and the sub-routing device F4 have no user equipment access, and the sub-routing device F3 has user equipment F5 access, the device access status fed back by the sub-routing device F2 and the sub-routing device F4 to the main routing device F1 If there is no user equipment access, the sub-routing device F3 feeds back the device access status to the main routing device F1 as user equipment access.
  • the main routing device F1 After receiving the device access status fed back by each sub-routing device, the main routing device F1 can determine the sub-routing device F2 and the sub-routing device F4 as idle devices, and determine the sub-routing device F3 as an active device.
  • the main routing device F1 can allocate the sending opportunity of the first time period to the main routing device F1 and the sub-routing device F3, and the first sending order is set to: F1-F3; and, the main routing device F1 can be the main routing device F1, The sub-routing device F2, the sub-routing device F3 and the sub-routing device F4 allocate sending opportunities in the second time period, and set the second sending sequence as: F1-F2-F3-F4.
  • the main routing device F1 may broadcast the MAP frame 1 in the power line network, and notify each sub-routing device of the configuration of the sending opportunity and sending order through the MAP frame 1 .
  • each sub-routing device After receiving the MAP frame 1, each sub-routing device can determine the sending opportunity and sending sequence of the device according to the MAP frame 1.
  • FIG. 22 and FIG. 23 Please refer to FIG. 22 and FIG. 23.
  • the rectangular rectangles in FIG. 22 and FIG. 23 represent time windows, and the rectangles with rounded corners represent time slots occupied by each routing device.
  • the main routing device F1 and the sub-routing device F3 may perform data transmission in turn according to the above-mentioned first sending order.
  • the main routing device F1 , the sub-routing device F2 , the sub-routing device F3 and the sub-routing device F4 can perform data transmission in turn according to the above-mentioned second sending order.
  • the user equipment F5 disconnects from the sub-routing equipment F3.
  • the sub-routing device F3 may send a status change notification to the main routing device F1.
  • the main routing device F1 After the main routing device F1 receives the status change notification, it determines that the device access status of the sub-routing device F3 has changed to no user equipment access, so the main routing device F1 can determine the sub-routing device F3 as an idle device and is no longer a sub-routing device.
  • the routing device F3 allocates sending opportunities within the first time period, and updates the first sending order to: F1.
  • the main routing device F1 may broadcast the MAP frame 2 in the power line network, and notify each sub-routing device of the above-mentioned updated sending opportunity and sending sequence through the MAP frame 2 .
  • each sub-routing device After receiving the MAP frame 2, each sub-routing device can determine the sending opportunity and sending sequence of the device according to the MAP frame 2.
  • the main routing device F1, the sub-routing device F2, the sub-routing device F3 and the sub-routing device F4 can perform data transmission in turn according to the unupdated second sending order.
  • the sub-routing device F6 accesses the power line network F0, and the sub-routing device F6 establishes a communication connection with the user equipment F7.
  • the main routing device F1 After the main routing device F1 discovers the sub-routing device F6, it can default the sub-routing device F6 as an active device, allocate sending opportunities for the first time period and the second time period for the sub-routing device F6, and update the first sending order to : F1-F6, update the second sending sequence to: F1-F2-F3-F4-F6.
  • the main routing device F1 may broadcast the MAP frame 3 in the power line network, and notify each sub-routing device of the above-mentioned updated sending opportunity and sending sequence through the MAP frame 3 .
  • each sub-routing device After receiving the MAP frame 3, each sub-routing device can determine the sending opportunity and sending order of the device according to the MAP frame 3.
  • the main routing device F1 and the sub-routing device F6 may perform data transmission in turn according to the updated first sending order.
  • the main routing device F1, the sub-routing device F2, the sub-routing device F3, the sub-routing device F4 and the sub-routing device F6 can perform data transmission in turn according to the updated second sending order .
  • the main routing device F1 receives the device access status sent by the sub-routing device F6, and the device access status is that there is a user device connected.
  • the main routing device F1 can continue to use the previously configured sending opportunity and sending sequence.
  • the main routing device can obtain the device access status of each sub-routing device, and determine whether there is a user accessing the sub-routing device.
  • the main routing device can determine the sub-routing device as an active device, and allocate sending opportunities for the sub-routing device in the first time period and the second time period to ensure that the sub-routing device transmission efficiency.
  • the main routing device may determine the sub-routing device as an idle device, and only allocate the sending opportunity of the second time period to the sub-routing device, and not allocate the first time period to the sub-routing device Segment sending opportunities, reducing the sending opportunities of idle devices, avoiding idle devices wasting too much minimum sending time slots, thereby effectively improving the bandwidth utilization of the power line network and increasing the transmission speed.
  • the main routing device can dynamically adjust the sending opportunity of the sub-routing device according to the change of the sub-routing device.
  • the main routing device can stop allocating the sending opportunity for the sub-routing device in the first time period, reducing wasted time slots, Improve bandwidth utilization.
  • the main routing device can allocate a sending opportunity for the sub-routing device in the first time period to improve the transmission efficiency of the sub-routing device .
  • the main routing device can default the sub-routing device as an idle device, and only assign the sub-routing device a sending opportunity in the second time period, reducing wasted time slots and improving Bandwidth utilization of powerline networks.
  • the main routing device can also default the sub-routing device as an active device, and allocate sending opportunities for the first time period and the second time period for the sub-routing device, so that the sub-routing device can provide smooth data for the user equipment. Transmission service to improve the data transmission efficiency of user equipment.
  • the main routing device can stop allocating sending opportunities for the sub-routing device, reducing wasted time slots and improving the bandwidth utilization of the power line network.
  • the power line carrier communication method provided in this embodiment includes:
  • the embodiment of the present application provides a power line carrier communication method, which is applied to the main routing device, including:
  • the main routing device is an electronic device with routing functions and management functions.
  • the sub-routing device is an electronic device that has a routing function but does not have a management function.
  • the first sub-routing device can be understood as a sub-routing device connected to the same power line network as the main routing device.
  • the device access state of the first sub-routing device may be acquired.
  • the device access status may be requested by the main routing device from the first sub-routing device, or the device access status may also be actively sent to the main routing device by the first sub-routing device.
  • the device access state may include a first state and a second state.
  • the first state is used to indicate that there is user equipment accessing the first sub-routing device
  • the second state is used to indicate that no user equipment is accessing the first sub-routing device.
  • User equipment refers to electronic equipment other than main routing equipment and sub-routing equipment.
  • the device access state of the first sub-routing device is the first state, the first sub-routing device is not allocated a sending opportunity in the first time period of the transmission management cycle, and the first sub-routing device is allocated the above-mentioned a sending opportunity for the second time period of the transmission management cycle;
  • the above-mentioned main routing device and the above-mentioned first sub-routing device are connected to the same power line network
  • the above-mentioned first state is used to indicate that no user equipment is connected to the above-mentioned first sub-routing device
  • the above-mentioned first time period and the above-mentioned second time period Segments are disjoint time segments.
  • the device state of the first sub-routing device is the first state, it means that no user equipment accesses the first sub-routing device, and the first sub-routing device has no service data to transmit.
  • the main routing device may determine the first sub-routing device as an idle device, not assign the first sub-routing device a sending opportunity in the first time period of the transmission management cycle, and assign the first sub-routing device a transmission management The sending opportunity for the second time period of the cycle.
  • the main routing device does not equally allocate sending opportunities for the entire transmission management period to the first sub-routing device, but only allocates sending opportunities for a part of the transmission management period to the first sub-routing device .
  • the main routing device can reduce the sending opportunities of idle devices and reduce the time slots wasted by idle devices, thereby improving the bandwidth utilization rate of the power line network, which has strong usability and practicability.
  • the method further includes:
  • the first sub-routing device is assigned sending opportunities in the first time period and the second time period, and the second state is used to indicate that there are users The device accesses the first sub-routing device.
  • the device state of the first sub-routing device is the second state, it means that there is user equipment accessing the first sub-routing device, and the first sub-routing device may have service data to be transmitted.
  • the main routing device may determine the first sub-routing device as an active device, and allocate sending opportunities for the active device in the first time period and the second time period, so as to ensure the transmission efficiency of the active device.
  • the first sub-routing device After the routing device allocates the sending opportunity in the second time period of the above-mentioned transmission management cycle, it also includes:
  • the first sub-routing device When the first state change notification sent by the first sub-routing device is received, the first sub-routing device is assigned sending opportunities in the first time period and the second time period.
  • the user equipment may access the sub-routing device or disconnect from the sub-routing device at any time.
  • the device access state of the sub-routing device may be affected by the user equipment, changing from the first state to the second state, or changing from the second state to the first state.
  • the sub-routing device may send a status change notification to the main routing device, where the status change notification is used to indicate that the device status of the sub-routing device has changed.
  • the main routing device when the main routing device receives the first state change notification sent by the first sub-routing device, it indicates that the device access state of the first sub-routing device is changed from the first state to the second state.
  • the main routing device may allocate sending opportunities of the first time period and the second time period to the first sub-routing device.
  • the method further includes:
  • the main routing device receives the second state change notification sent by the first sub-routing device, it indicates that the device access state of the first sub-routing device is changed from the second state to the first state.
  • the first sub-routing device has no service data to transmit, and if the main routing device continues to allocate sending opportunities for the first sub-routing device in the first time period and the second time period, more time slots may be wasted.
  • the main routing device may stop allocating sending opportunities for the first sub-routing device for the first time period, allocate sending opportunities for the first sub-routing device for the second time period, and reduce the sending opportunities of the first sub-routing device, Thereby reducing wasted time slots and improving the bandwidth utilization rate of the power line network.
  • the above method also includes:
  • the second sub-routing device When it is detected that the second sub-routing device is connected to the power line network, the second sub-routing device is not allocated a sending opportunity in the first time period, and the second sub-routing device is allocated a sending opportunity in the second time period.
  • the sub-routing device may also be connected to the power line network or disconnected from the power line network.
  • the second sub-routing device refers to a sub-routing device newly connected to the power line network.
  • the main routing device detects that the second sub-routing device is connected to the power line network, since the newly connected sub-routing device usually has no user equipment access, the main routing device can default the second sub-routing device as an idle device instead of the second sub-routing device.
  • the second sub-routing device allocates sending opportunities in the first time period, and allocates sending opportunities in the second time period to the second sub-routing device, thereby reducing wasted time slots and improving bandwidth utilization of the power line network.
  • the method further includes:
  • the second sub-routing device may send a third change notification to the main routing device.
  • the main routing device may determine that there is user equipment accessing the second sub-routing device, and the second sub-routing device is an active device.
  • the main routing device may allocate sending opportunities in the first time period and the second time period to the second sub-routing device, so as to ensure the transmission efficiency of the second sub-routing device.
  • the above method also includes:
  • the sending opportunity in the first time period is to allocate the sending opportunity in the second time period to the second sub-routing device, and the third state is used to indicate that no user equipment accesses the second sub-routing device.
  • the main routing device when the main routing device detects that the second sub-routing device is connected to the power line network, the main routing device may first allocate the first time period and the second time period to the second sub-routing device. send opportunity.
  • the main routing device waits for a preset period of time. If the main routing device does not receive the device access status of the second sub-routing device within the preset time period, or if the device access status received by the main routing device is the third state, the main routing device can send the second sub-routing device
  • the device is determined to be an idle device, stop allocating sending opportunities for the second sub-routing device in the first time period, and allocate sending opportunities for the second sub-routing device in the second time period, reducing the sending opportunities of the second sub-routing device and reducing waste time slots, improving the bandwidth utilization of the power line network.
  • the main routing device receives the device access state of the second sub-routing device within the preset time period, and the device access state is the fourth state, it means that there is user equipment accessing the second sub-routing device.
  • the main routing device can maintain the previous configuration scheme without any changes.
  • the above method also includes:
  • the main routing device finds that the first sub-routing device is disconnected from the power line network, it means that the first sub-routing device no longer performs data transmission through the power line network.
  • the main routing device can stop allocating the sending opportunities of the first time period and the second time period to the first sub-routing device, reducing invalid sending opportunities, reducing wasted time slots, and improving the bandwidth utilization rate of the power line network.
  • the above S291 includes: obtaining the device access status of the first sub-routing device through a state transmission channel, the above-mentioned state transmission channel includes the above-mentioned power line network, Bluetooth connection, Wi-Fi connection, universal serial bus connection, network cable connection one or more of.
  • the main routing device can obtain the device access status of each sub-routing device through the status transmission channel.
  • the state transmission channel may include one or more of a power line network, a Bluetooth connection, a Wi-Fi connection, a Universal Serial Bus connection, and a network cable connection.
  • FIG. 30 shows a structural block diagram of the power line carrier communication device provided by the embodiment of the present application. For the convenience of description, only the parts related to the embodiment of the present application are shown.
  • This device can be applied to the main routing equipment, referring to Figure 30, the device includes:
  • a status acquisition module 301 configured to acquire the device access status of the first sub-routing device
  • the idle setting module 302 is configured to, if the device access state of the first sub-routing device is the first state, then not allocate a sending opportunity for the first time period of the transmission management period to the first sub-routing device, and for the first sub-routing device to The sub-routing device allocates sending opportunities in the second time period of the above-mentioned transmission management cycle;
  • the above-mentioned main routing device and the above-mentioned first sub-routing device are connected to the same power line network
  • the above-mentioned first state is used to indicate that no user equipment is connected to the above-mentioned first sub-routing device
  • the above-mentioned first time period and the above-mentioned second time period Segments are disjoint time segments.
  • the above device further includes: an active setting module, configured to allocate the first time period and the second time period to the first sub-routing device if the device access state of the first sub-routing device is the second state.
  • a sending opportunity in a time period, and the second state is used to indicate that there is user equipment accessing the first sub-routing device.
  • the above apparatus further includes: a first change module, configured to allocate the above first time period and the above first sub-routing device to the above-mentioned first sub-routing device when receiving the first state change notification sent by the above-mentioned first sub-routing device. Sending opportunities for two time periods.
  • a first change module configured to allocate the above first time period and the above first sub-routing device to the above-mentioned first sub-routing device when receiving the first state change notification sent by the above-mentioned first sub-routing device. Sending opportunities for two time periods.
  • the above apparatus further includes: a second change module, configured to stop allocating the sending of the first time period for the above-mentioned first sub-routing device when receiving the second state change notification sent by the above-mentioned first sub-routing device Opportunities, allocating sending opportunities in the second time period to the first sub-routing device.
  • a second change module configured to stop allocating the sending of the first time period for the above-mentioned first sub-routing device when receiving the second state change notification sent by the above-mentioned first sub-routing device Opportunities, allocating sending opportunities in the second time period to the first sub-routing device.
  • the above apparatus further includes: a first access module, configured to not assign the second sub-routing device a sending opportunity in the first time period when it is detected that the second sub-routing device is connected to the above-mentioned power line network, Allocating sending opportunities in the second time period to the above-mentioned second sub-routing device.
  • a first access module configured to not assign the second sub-routing device a sending opportunity in the first time period when it is detected that the second sub-routing device is connected to the above-mentioned power line network, Allocating sending opportunities in the second time period to the above-mentioned second sub-routing device.
  • the above apparatus further includes: a third changing module, configured to allocate the above first time period and the above second sub-routing device to the above-mentioned second sub-routing device when receiving the third state change notification sent by the above-mentioned second sub-routing device. Sending opportunities for two time periods.
  • a third changing module configured to allocate the above first time period and the above second sub-routing device to the above-mentioned second sub-routing device when receiving the third state change notification sent by the above-mentioned second sub-routing device. Sending opportunities for two time periods.
  • the above-mentioned device also includes:
  • the second access module is configured to assign sending opportunities for the first time period and the second time period to the second sub-routing device when it is detected that the second sub-routing device is connected to the power line network;
  • the fourth change module is used to stop the above-mentioned if the device access state of the second sub-routing device is not obtained within the preset time period, or if the device access state of the second sub-routing device is the third state.
  • the second sub-routing device allocates the sending opportunity of the first time period, allocates the sending opportunity of the second time period to the second sub-routing device, and the third state is used to indicate that no user equipment accesses the second sub-routing device .
  • the above-mentioned device also includes:
  • a device disconnection module configured to stop allocating sending opportunities of the first time period and the second time period to the first sub-routing device when the first sub-routing device is disconnected from the power line network.
  • the state acquisition module 301 is specifically configured to obtain the device access state of the first sub-routing device through a state transmission channel, the state transmission channel includes the above-mentioned power line network, Bluetooth connection, Wi-Fi connection, universal serial bus connection , one or more of network cable connections.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the above-mentioned integrated modules/units are realized in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the present application realizes all or part of the processes in the methods of the above-mentioned embodiments, and can also be completed by instructing related hardware through computer programs.
  • the above-mentioned computer programs can be stored in a computer-readable storage medium.
  • the computer program When executed by a processor, the steps in the above-mentioned various method embodiments can be realized.
  • the above-mentioned computer program includes computer program code, and the computer program code may be in the form of source code, object code, executable file or some intermediate form.
  • the computer-readable storage medium may include: any entity or device capable of carrying the computer program code, a recording medium, a USB flash drive, a removable hard disk, a magnetic disk, an optical disk, a computer memory, a read-only memory (ROM, Read-Only Memory) ), Random Access Memory (RAM, Random Access Memory), electrical carrier signal, telecommunication signal, and software distribution medium, etc.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • electrical carrier signal telecommunication signal
  • software distribution medium etc.
  • the content contained in the computer-readable storage medium can be appropriately increased or decreased according to the requirements of legislation and patent practice in the jurisdiction.
  • computer-readable Storage media excludes electrical carrier signals and telecommunication signals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请适用于通信控制领域,提供了一种电力线载波通信方法、主路由设备及装置。在本申请提供的方法中,主路由设备可以获取第一子路由设备的设备接入状态。如果该第一子路由设备的设备接入状态为第一状态,则表示没有用户设备接入该第一子路由设备。此时,主路由设备可以不为该第一子路由设备分配传输管理周期的第一时间段的发送机会,为该第一子路由设备分配传输管理周期的第二时间段的发送机会,减少该第一子路由设备的发送机会,避免该第一子路由设备浪费过多的时隙,提高电力线网络的带宽利用率,具有较强的实用性和易用性。

Description

电力线载波通信方法、主路由设备及装置
本申请要求于2021年10月19日提交国家知识产权局、申请号为202111215714.0、申请名称为“电力线载波通信方法、主路由设备及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信控制领域,尤其涉及一种电力线载波通信方法、主路由设备及装置。
背景技术
电力线载波通信(Power Line Communication,PLC)是一种利用电力线作为传输媒介,实现数据传递和信息交换的通信技术。
在现有的PLC技术中,域主节点通常采用共享式传输方案,平等地为电力线网络中的各个节点分配发送机会。
也即是说,即使电力线网络中有部分空闲节点没有数据传输需求,域主节点也会为空闲节点分配发送机会,从而导致这些发送机会对应的时隙被浪费,带宽利用率低。
发明内容
本申请实施例提供了一种电力线载波通信方法、主路由设备及装置,可以解决现有的电力线载波通信技术浪费的时隙多,带宽利用低的问题。
第一方面,本申请实施例提供了一种电力线载波通信方法,应用于主路由设备,包括:
获取第一子路由设备的设备接入状态;
若所述第一子路由设备的设备接入状态为第一状态,则不为所述第一子路由设备分配传输管理周期的第一时间段的发送机会,为所述第一子路由设备分配所述传输管理周期的第二时间段的发送机会;
其中,所述主路由设备和所述第一子路由设备接入了同一电力线网络中,所述第一状态用于指示无用户设备接入所述第一子路由设备,所述第一时间段和所述第二时间段为不相交的时间段。
需要说明的是,主路由设备为具备路由功能和管理功能的电子设备。子路由设备为具备路由功能,且不具备管理功能的电子设备。第一子路由设备可以理解为与主路由设备接入了同一电力线网络的子路由设备。
主路由设备进入工作状态之后,可以获取第一子路由设备的设备接入状态。
该设备接入状态可以是主路由设备向第一子路由设备请求的,或者,该设备接入状态也可以是第一子路由设备主动发送给主路由设备的。
该设备接入状态可以包括第一状态和第二状态。第一状态用于指示有用户设备接入第一子路由设备,第二状态用于指示无用户设备接入第一子路由设备。
用户设备是指主路由设备和子路由设备以外的电子设备。
当第一子路由设备的设备状态为第一状态时,表示没有用户设备接入第一子路由设备,第一子路由设备没有业务数据需要传输。
此时,主路由设备可以将该第一子路由设备确定为空闲设备,不为该第一子路由设备分配传输管理周期的第一时间段的发送机会,为该第一子路由设备分配传输管理周期的第二时间段的发送机会。
也即是说,主路由设备并不是平等地为该第一子路由设备分配整个传输管理周期的发送机会,而是只为该第一子路由设备分配传输管理周期中的部分时间段的发送机会。
通过上述方式,主路由设备可以减少空闲设备的发送机会,减少空闲设备浪费的时隙,从而提高电力线网络的带宽利用率,具有较强的易用性和实用性。
在第一方面的一种可能的实现方式中,在所述获取第一子路由设备的设备接入状态之后,还包括:
若所述第一子路由设备的设备接入状态为第二状态,则为所述第一子路由设备分配所述第一时间段和所述第二时间段的发送机会,所述第二状态用于指示有用户设备接入所述第一子路由设备。
需要说明的是,当第一子路由设备的设备状态为第二状态时,表示有用户设备接入该第一子路由设备,该第一子路由设备可能有业务数据需要传输。
此时,主路由设备可以将该第一子路由设备确定为活跃设备,为活跃设备分配第一时间段和第二时间段的发送机会,保障活跃设备的传输效率。
在第一方面的一种可能的实现方式中,在所述若所述第一子路由设备的设备接入状态为第一状态,则不为所述第一子路由设备分配传输管理周期的第一时间段的发送机会,为所述第一子路由设备分配所述传输管理周期的第二时间段的发送机会之后,还包括:
当接收到所述第一子路由设备发送的第一状态变更通知时,为所述第一子路由设备分配所述第一时间段和所述第二时间段的发送机会。
需要说明的是,在实际的应用场景中,用户设备随时有可能接入子路由设备,或者,断开与子路由设备的连接。
因此,子路由设备的设备接入状态可能受到用户设备的影响,从第一状态变成第二状态,或者,从第二状态变成第一状态。
当子路由设备的设备接入状态发生变化时,子路由设备可以向主路由设备发送状态变更通知,该状态变更通知用于指示子路由设备的设备状态发生了变化。
所以,当主路由设备接收到第一子路由设备发送的第一状态变更通知时,表示第一子路由设备的设备接入状态从第一状态变更为第二状态。
此时,为了保障第一子路由设备的传输效率,主路由设备可以为该第一子路由设备分配第一时间段和第二时间段的发送机会。
在第一方面的一种可能的实现方式中,在所述为所述第一子路由设备分配所述第一时间段和所述第二时间段的发送机会之后,还包括:
当接收到所述第一子路由设备发送的第二状态变更通知时,停止为所述第一子路由设备分配所述第一时间段的发送机会,为所述第一子路由设备分配第二时间段的发送机会。
需要说明的是,当主路由设备接收到第一子路由设备发送的第二状态变更通知时,表示第一子路由设备的设备接入状态从第二状态变更为第一状态。
此时,该第一子路由设备没有业务数据需要传输,主路由设备如果继续为该第一子 路由设备分配第一时间段和第二时间段的发送机会,可能会浪费较多的时隙。
所以,主路由设备可以停止为该第一子路由设备分配第一时间段的发送机会,为该第一子路由设备分配第二时间段的发送机会,减少该第一子路由设备的发送机会,从而减少被浪费时隙,提高电力线网络的带宽利用率。
在第一方面的一种可能的实现方式中,所述方法还包括:
当检测到第二子路由设备接入所述电力线网络时,不为所述第二子路由设备分配所述第一时间段的发送机会,为所述第二子路由设备分配第二时间段的发送机会。
需要说明的是,子路由设备除了设备接入状态可能发生变化以外,还可能接入电力线网络或断开与电力线网络的连接。
第二子路由设备是指新接入电力线网络的子路由设备。当主路由设备检测到第二子路由设备接入电力线网络时,由于新接入的子路由设备通常没有用户设备接入,所以,主路由设备可以默认第二子路由设备为空闲设备,不为第二子路由设备分配第一时间段的发送机会,为第二子路由设备分配第二时间段的发送机会,以此减少被浪费的时隙,提高电力线网络的带宽利用率。
在第一方面的一种可能的实现方式中,在所述不为所述第二子路由设备分配所述第一时间段的发送机会,为所述第二子路由设备分配第二时间段的发送机会之后,还包括:
当接收到所述第二子路由设备发送的第三状态变更通知时,为所述第二子路由设备分配所述第一时间段和所述第二时间段的发送机会。
需要说明的是,当有用户设备接入第二子路由设备时,第二子路由设备可以向主路由设备发送第三变更通知。
当主路由设备接收到第三变更通知时,主路由设备可以确定有用户设备接入第二子路由设备,第二子路由设备为活跃设备。
此时,主路由设备可以为第二子路由设备分配第一时间段和第二时间段的发送机会,以此保障第二子路由设备的传输效率。
在第一方面的一种可能的实现方式中,所述方法还包括:
当检测到第二子路由设备接入所述电力线网络时,为所述第二子路由设备分配所述第一时间段和所述第二时间段的发送机会;
若在预设时长内未获取到所述第二子路由设备的设备接入状态,或者,所述第二子路由设备的设备接入状态为第三状态,则停止为所述第二子路由设备分配所述第一时间段的发送机会,为所述第二子路由设备分配所述第二时间段的发送机会,所述第三状态用于指示无用户设备接入所述第二子路由设备。
需要说明的是,在另一些场景中,当主路由设备检测到第二子路由设备接入电力线网络时,主路由设备也可以先为第二子路由设备分配第一时间段和第二时间段的发送机会,保障第二子路由设备的传输效率。
然后,主路由设备等待预设时长。如果主路由设备在预设时长内没有接收到第二子路由设备的设备接入状态,或者,主路由设备接收到的设备接入状态为第三状态,则主路由设备可以将第二子路由设备确定为空闲设备,停止为第二子路由设备分配第一时间段的发送机会,为第二子路由设备分配第二时间段的发送机会,减少第二子路由设备的发送机会,减少被浪费的时隙,提高电力线网络的带宽利用率。
如果主路由设备在预设时长内接收到第二子路由设备的设备接入状态,且该设备接入状态为第四状态,则主路由设备可以保持之前的配置方案,不进行更改。
其中,第三状态用于指示无用户设备接入该第二子路由设备,第四状态用于指示有用户设备接入该第二子路由设备。
在第一方面的一种可能的实现方式中,所述方法还包括:
当所述第一子路由设备断开与所述电力线网络的连接时,停止为所述第一子路由设备分配所述第一时间段和所述第二时间段的发送机会。
需要说明的是,当主路由设备发现第一子路由设备断开与电力线网络的连接时,表示该第一子路由设备不再通过电力线网络进行数据传输。此时,主路由设备可以停止为该第一子路由设备分配第一时间段和第二时间段的发送机会,减少无效的发送机会,减少被浪费的时隙,提高电力线网络的带宽利用率。
在第一方面的一种可能的实现方式中,所述获取第一子路由设备的设备接入状态,包括:
通过状态传输通道获取第一子路由设备的设备接入状态,所述状态传输通道包括所述电力线网络、蓝牙连接、Wi-Fi连接、通用串行总线连接、网线连接中的一种或多种。
需要说明的是,主路由设备可以通过状态传输通道获取各个子路由设备的设备接入状态。
该状态传输通道可以包括电力线网络、蓝牙连接、Wi-Fi连接、通用串行总线连接、网线连接中的一种或多种。
第二方面,本申请实施例提供了一种电力线载波通信装置,应用于主路由设备,包括:
状态获取模块,用于获取第一子路由设备的设备接入状态;
空闲设置模块,用于若所述第一子路由设备的设备接入状态为第一状态,则不为所述第一子路由设备分配传输管理周期的第一时间段的发送机会,为所述第一子路由设备分配所述传输管理周期的第二时间段的发送机会;
其中,所述主路由设备和所述第一子路由设备接入了同一电力线网络中,所述第一状态用于指示无用户设备接入所述第一子路由设备,所述第一时间段和所述第二时间段为不相交的时间段。
在第二方面的一种可能的实现方式中,所述装置还包括:
活跃设置模块,用于若所述第一子路由设备的设备接入状态为第二状态,则为所述第一子路由设备分配所述第一时间段和所述第二时间段的发送机会,所述第二状态用于指示有用户设备接入所述第一子路由设备。
在第二方面的一种可能的实现方式中,所述装置还包括:
第一变更模块,用于当接收到所述第一子路由设备发送的第一状态变更通知时,为所述第一子路由设备分配所述第一时间段和所述第二时间段的发送机会。
在第二方面的一种可能的实现方式中,所述装置还包括:
第二变更模块,用于当接收到所述第一子路由设备发送的第二状态变更通知时,停止为所述第一子路由设备分配所述第一时间段的发送机会,为所述第一子路由设备分配第二时间段的发送机会。
在第二方面的一种可能的实现方式中,所述装置还包括:
第一接入模块,用于当检测到第二子路由设备接入所述电力线网络时,不为所述第二子路由设备分配所述第一时间段的发送机会,为所述第二子路由设备分配第二时间段的发送机会。
在第二方面的一种可能的实现方式中,所述装置还包括:
第三变更模块,用于当接收到所述第二子路由设备发送的第三状态变更通知时,为所述第二子路由设备分配所述第一时间段和所述第二时间段的发送机会。
在第二方面的一种可能的实现方式中,所述装置还包括:
第二接入模块,用于当检测到第二子路由设备接入所述电力线网络时,为所述第二子路由设备分配所述第一时间段和所述第二时间段的发送机会;
第四变更模块,用于若在预设时长内未获取到所述第二子路由设备的设备接入状态,或者,所述第二子路由设备的设备接入状态为第三状态,则停止为所述第二子路由设备分配所述第一时间段的发送机会,为所述第二子路由设备分配所述第二时间段的发送机会,所述第三状态用于指示无用户设备接入所述第二子路由设备。
在第二方面的一种可能的实现方式中,所述装置还包括:
设备断开模块,用于当所述第一子路由设备断开与所述电力线网络的连接时,停止为所述第一子路由设备分配所述第一时间段和所述第二时间段的发送机会。
在第二方面的一种可能的实现方式中,状态获取模块,具体用于通过状态传输通道获取第一子路由设备的设备接入状态,所述状态传输通道包括所述电力线网络、蓝牙连接、Wi-Fi连接、通用串行总线连接、网线连接中的一种或多种。
第三方面,本申请实施例提供了一种主路由设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器被配置为执行所述计算机程序时实现如第一方面和第一方面可能的实现方式中任一所述的方法。
第四方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质被配置为存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如第一方面和第一方面可能的实现方式中任一所述的方法。
第五方面,本申请实施例提供了一种计算机程序产品,所述计算机程序产品被配置为在主路由设备上运行时,使得主路由设备执行如第一方面和第一方面可能的实现方式中任一所述的方法。
第六方面,本申请实施例提供了一种芯片系统,所述芯片系统包括存储器和处理器,所述处理器被配置为执行所述存储器中存储的计算机程序,以实现如第一方面和第一方面可能的实现方式中任一所述的方法。
本申请实施例与现有技术相比存在的有益效果是:
在本申请的电力线载波通信方法中,主路由设备可以获取第一子路由设备的设备接入状态。当第一子路由设备的设备接入状态为第一状态时,表示该第一子路由设备没有用户设备接入,没有业务数据需要传输。
此时,主路由设备可以不为该第一子路由设备分配传输管理周期的第一时间段的发送机会,为该第一子路由设备分配传输管理周期的第二时间段的发送机会,第一时间段和第二时间段为不相交的时间段。
也即是说,主路由设备并不是平等地为该第一子路由设备分配整个传输管理周期的发送机会,而是只为该第一子路由设备分配传输管理周期中的部分时间段的发送机会。
通过上述方法,主路由设备可以减少分配给该第一子路由设备的发送机会,减少被浪费的时隙,从而提高电力线网络的带宽利用率,具有较强的易用性和实用性。
附图说明
图1为本申请实施例提供的一种电力线载波通信系统的系统架构图;
图2为本申请实施例提供的一种电子设备的结构示意图;
图3为本申请实施例提供的一种索引帧的结构示意图;
图4为本申请实施例提供的一种分窗示意图;
图5为本申请实施例提供的一种场景示意图;
图6为本申请实施例提供的一种时隙分布图;
图7为本申请实施例提供的另一种时隙分布图;
图8为本申请实施例提供的另一种时隙分布图;
图9为本申请实施例提供的另一种场景示意图;
图10为本申请实施例提供的另一种时隙分布图;
图11为本申请实施例提供的另一种时隙分布图;
图12为本申请实施例提供的另一种场景示意图;
图13为本申请实施例提供的另一种时隙分布图;
图14为本申请实施例提供的另一种时隙分布图;
图15为本申请实施例提供的另一种场景示意图;
图16为本申请实施例提供的另一种场景示意图;
图17为本申请实施例提供的另一种场景示意图;
图18为本申请实施例提供的另一种场景示意图;
图19为本申请实施例提供的另一种场景示意图;
图20为本申请实施例提供的另一种场景示意图;
图21为本申请实施例提供的另一种场景示意图;
图22为本申请实施例提供的另一种时隙分布图;
图23为本申请实施例提供的另一种时隙分布图;
图24为本申请实施例提供的另一种场景示意图;
图25为本申请实施例提供的另一种时隙分布图;
图26为本申请实施例提供的另一种场景示意图;
图27为本申请实施例提供的另一种时隙分布图;
图28为本申请实施例提供的另一种时隙分布图;
图29为本申请实施例提供的一种电力线载波通信方法的流程示意图;
图30为本申请实施例提供的一种电力线载波通信装置的结构示意图。
具体实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本申请实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本申请。在其它情况中,省略对众所周知的系统、 装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。
应当理解,当在本申请说明书和所附权利要求书中使用时,术语“包括”指示所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。
还应当理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
如在本申请说明书和所附权利要求书中所使用的那样,术语“如果”可以依据上下文被解释为“当...时”或“一旦”或“响应于确定”或“响应于检测到”。类似地,短语“如果确定”或“如果检测到[所描述条件或事件]”可以依据上下文被解释为意指“一旦确定”或“响应于确定”或“一旦检测到[所描述条件或事件]”或“响应于检测到[所描述条件或事件]”。
另外,在本申请说明书和所附权利要求书的描述中,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
在本申请说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
电力线载波通信(Power Line Communication,PLC)是一种利用电力线作为传输媒介,实现数据传递和信息交换的通信技术。
当电子设备接入了电力线网络时,如果该电子设备具备PLC功能,则该电子设备可以通过电力线网络广播数据和接收数据。
在电力线网络中,各个节点(即接入电力线网络的电子设备)的地位是平等的,任一节点对电力线施加的影响均可以被电力线网络中的其他节点感知到。
所以,当电力线网络中有多个节点在同一时刻进行数据传输时,多个节点发送的数据可能会相互干扰,影响传输效果。
例如,假设设备甲和设备乙接入了电力线网络,设备甲和设备乙均具备PLC功能。
在某一时刻,设备甲将需要传输的数据调制成了第一信号,并将第一信号耦合到电力线上;设备乙将需要传输的数据调制成了第二信号,并将第二信号耦合到电力线上。
此时,第一信号和第二信号可能相互干扰,融合成为第三信号。
当电力线网络中的其他节点接收到第三信号时,其他节点可能无法将第三信号解调成设备甲和设备乙希望传输的数据,导致设备甲和设备乙数据传输失败。
因此,为了使电力线网络中的各个节点可以有序进行数据传输,电力线网络中具备管理功能的域主节点可以平等地为各个节点分配发送机会,各个节点可以按照域主节点设置的发送顺序,轮流进行数据传输。
例如,假设电力线网络中包括第一节点、第二节点和第三节点,域主节点为第二节点。此时,域主节点可以为第一节点、第二节点和第三节点分配传输管理周期内的发送机会,设置第一节点、第二节点和第三节点的发送顺序为第三节点-第一节点-第二节点。
在到达传输管理周期时,第一节点、第二节点和第三节点可以按照上述发送顺序依 次进行数据传输。按照上述发送顺序,第三节点首先进行数据传输;第三节点发送完毕之后,轮到第一节点进行数据传输;第一节点发送完毕之后,轮到第二节点进行数据传输;第二节点发送完毕之后,再次轮到第三节点进行数据传输。
通过上述方式,各个节点可以有序地进行数据传输,避免各个节点发送的数据相互干扰。但是,由于域主节点是平等地为各个节点分配发送机会,也即是说,即使有部分空闲节点没有数据传输需求,域主节点也会为这些空闲节点分配发送机会。
按照PLC的标准规定,每次发送机会都有一个最小发送时隙。因此,当轮到某一个空闲节点的发送机会时,即使该空闲节点没有数据需要传输,下一个节点也要在等待最小发送时隙之后,才能默认上述空闲节点放弃本次发送机会,进行本节点的数据传输。
例如,参照上一示例,假设第一节点发送完毕之后,轮到第二节点的发送机会。但是,第二节点没有数据需要传输,所以第二节点始终保持静默。
在第一节点发送了数据之后,即使第二节点没有传输数据,第三节点也必须等待最小发送时隙。在等待了最小发送时隙之后,如果第二节点仍未进行数据传输,则第三节点可以默认第二节点放弃本次发送机会,第三节点开始进行数据传输。其中,第三节点等待的最小发送时隙可以认为是被浪费的时隙。
因此,当电力线网络中存在大量空闲节点时,如果域主节点按照上述方式分配发送机会,可能会导致大量的时隙被浪费,严重降低了电力线网络的带宽利用率。
有鉴于此,本申请实施例提供了一种电力线载波通信方法,主路由设备可以根据子路由设备的设备接入状态,动态调整子路由设备的发送机会,减少被浪费的时隙,提高带宽利用率,具有较强的易用性和实用性。
首先,请参阅图1。图1示例性地示出了本申请实施例适用的一种电力线载波通信系统。
如图1所示,该电力线载波通信系统可以包括:电力线网络101、主路由设备102、子路由设备103和用户设备104。
其中,主路由设备102为具备路由功能和管理功能的电子设备,主路由设备102可以管理主路由设备102和接入电力线网络101的各个子路由设备103的发送机会。
子路由设备103为具备路由功能,且不具备管理功能的电子设备。
用户设备104为主路由设备102和子路由设备103以外的电子设备。用户设备104可以包括台式电脑、笔记本电脑、平板电脑、手机、智能电视、智慧大屏、智能音箱、智能空调、扫地机器人、洗碗机、智能灯具、智能门锁、智能窗帘、激光雷达、毫米波雷达、智能门锁、可视门铃等类型的电子设备中的一种或多种。
主路由设备102和子路由设备103可以直接接入电力线网络101,通过电力线网络101进行数据交互。
和/或,主路由设备102和子路由设备103也可以通过Wi-Fi连接、蓝牙连接、通用串行总线(universal serial bus,USB)连接、注册插座45(Registered Jack 45,RJ45)连接等通信连接中一种或多种进行数据交互。
用户设备104可以接入主路由设备102,和/或,用户设备104也可以接入子路由设备103。
当用户设备104接入了主路由设备102/子路由设备103时,用户设备104和主路 由设备102/子路由设备103可以通过Wi-Fi连接、蓝牙连接、USB连接、RJ45连接等通信连接中一种或多种进行数据交互。
此外,当主路由设备102与上网线路连接时,主路由设备可以接收子路由设备103和/或用户设备104发送的上行数据,通过上网线路将上行数据传输至因特网中;
和/或,主路由设备102也可以通过上网线路接收因特网传输的下行数据,并向子路由设备103和/或用户设备104转发该下行数据。
上述上网线路可以包括非对称数字用户线路(Asymmetric Digital Subscriber Line,ADSL)、数字数据网(digital data network,DDN)线路、光纤宽带等线路中的任意一种或多种。
可以理解的是,虽然图1中示出了4个子路由设备103和2个用户设备104,但是,在实际的应用场景中,电力线载波通信系统可以拥有比图1所示更多或更少的子路由设备103和用户设备104。图1中示出的子路由设备103和用户设备104不应对子路由设备103和用户设备104的具体数量造成任何限制。
参考图2,图2示例性示出了本申请实施例提供的电子设备200的结构示意图,该电子设备200可以是上述主路由设备102、子路由设备103或用户设备104。
电子设备200可以包括处理器210,外部存储器接口220,内部存储器221,通用串行总线(universal serial bus,USB)接口230,充电管理模块240,电源管理模块241,电池242,天线1,天线2,移动通信模块250,无线通信模块260,音频模块270,扬声器270A,受话器270B,麦克风270C,耳机接口270D,传感器模块280,按键290,马达291,指示器292,摄像头293,显示屏294,以及用户标识模块(subscriber identification module,SIM)卡接口295等。其中传感器模块280可以包括压力传感器280A,陀螺仪传感器280B,气压传感器280C,磁传感器280D,加速度传感器280E,距离传感器280F,接近光传感器280G,指纹传感器280H,温度传感器280J,触摸传感器280K,环境光传感器280L,骨传导传感器280M等。
处理器210可以包括一个或多个处理单元,例如:处理器210可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器210中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器210中的存储器为高速缓冲存储器。该存储器可以保存处理器210刚用过或循环使用的指令或数据。如果处理器210需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器210的等待时间,因而提高了系统的效率。
在一些实施例中,处理器210可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuit sound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器 (universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,和/或通用串行总线(universal serial bus,USB)接口等。
I2C接口是一种双向同步串行总线,包括一根串行数据线(serial data line,SDA)和一根串行时钟线(derail clock line,SCL)。在一些实施例中,处理器210可以包含多组I2C总线。处理器210可以通过不同的I2C总线接口分别耦合触摸传感器280K,充电器,闪光灯,摄像头293等。例如:处理器210可以通过I2C接口耦合触摸传感器280K,使处理器210与触摸传感器280K通过I2C总线接口通信,实现电子设备200的触摸功能。
I2S接口可以用于音频通信。在一些实施例中,处理器210可以包含多组I2S总线。处理器210可以通过I2S总线与音频模块270耦合,实现处理器210与音频模块270之间的通信。在一些实施例中,音频模块270可以通过I2S接口向无线通信模块260传递音频信号,实现通过蓝牙耳机接听电话的功能。
PCM接口也可以用于音频通信,将模拟信号抽样,量化和编码。在一些实施例中,音频模块270与无线通信模块260可以通过PCM总线接口耦合。在一些实施例中,音频模块270也可以通过PCM接口向无线通信模块260传递音频信号,实现通过蓝牙耳机接听电话的功能。所述I2S接口和所述PCM接口都可以用于音频通信。
UART接口是一种通用串行数据总线,用于异步通信。该总线可以为双向通信总线。它将要传输的数据在串行通信与并行通信之间转换。在一些实施例中,UART接口通常被用于连接处理器210与无线通信模块260。例如:处理器210通过UART接口与无线通信模块260中的蓝牙模块通信,实现蓝牙功能。在一些实施例中,音频模块270可以通过UART接口向无线通信模块260传递音频信号,实现通过蓝牙耳机播放音乐的功能。
MIPI接口可以被用于连接处理器210与显示屏294,摄像头293等外围器件。MIPI接口包括摄像头串行接口(camera serial interface,CSI),显示屏串行接口(display serial interface,DSI)等。在一些实施例中,处理器210和摄像头293通过CSI接口通信,实现电子设备200的拍摄功能。处理器210和显示屏294通过DSI接口通信,实现电子设备200的显示功能。
GPIO接口可以通过软件配置。GPIO接口可以被配置为控制信号,也可被配置为数据信号。在一些实施例中,GPIO接口可以用于连接处理器210与摄像头293,显示屏294,无线通信模块260,音频模块270,传感器模块280等。GPIO接口还可以被配置为I2C接口,I2S接口,UART接口,MIPI接口等。
USB接口230是符合USB标准规范的接口,具体可以是Mini USB接口,Micro USB接口,USB Type C接口等。USB接口230可以用于连接充电器为电子设备200充电,也可以用于电子设备200与外围设备之间传输数据。也可以用于连接耳机,通过耳机播放音频。该接口还可以用于连接其他电子设备,例如AR设备等。
可以理解的是,本发明实施例示意的各模块间的接口连接关系,只是示意性说明,并不构成对电子设备200的结构限定。在本申请另一些实施例中,电子设备200也可以 采用上述实施例中不同的接口连接方式,或多种接口连接方式的组合。
充电管理模块240用于从充电器接收充电输入。其中,充电器可以是无线充电器,也可以是有线充电器。在一些有线充电的实施例中,充电管理模块240可以通过USB接口230接收有线充电器的充电输入。在一些无线充电的实施例中,充电管理模块240可以通过电子设备200的无线充电线圈接收无线充电输入。充电管理模块240为电池242充电的同时,还可以通过电源管理模块241为电子设备供电。
电源管理模块241用于连接电池242,充电管理模块240与处理器210。电源管理模块241接收电池242和/或充电管理模块240的输入,为处理器210,内部存储器221,显示屏294,摄像头293,和无线通信模块260等供电。电源管理模块241还可以用于监测电池容量,电池循环次数,电池健康状态(漏电,阻抗)等参数。在其他一些实施例中,电源管理模块241也可以设置于处理器210中。在另一些实施例中,电源管理模块241和充电管理模块240也可以设置于同一个器件中。
电子设备200的无线通信功能可以通过天线1,天线2,移动通信模块250,无线通信模块260,调制解调处理器以及基带处理器等实现。
天线1和天线2用于发射和接收电磁波信号。电子设备200中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块250可以提供应用在电子设备200上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块250可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块250可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块250还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块250的至少部分功能模块可以被设置于处理器210中。在一些实施例中,移动通信模块250的至少部分功能模块可以与处理器210的至少部分模块被设置在同一个器件中。
调制解调处理器可以包括调制器和解调器。其中,调制器用于将待发送的低频基带信号调制成中高频信号。解调器用于将接收的电磁波信号解调为低频基带信号。随后解调器将解调得到的低频基带信号传送至基带处理器处理。低频基带信号经基带处理器处理后,被传递给应用处理器。应用处理器通过音频设备(不限于扬声器270A,受话器270B等)输出声音信号,或通过显示屏294显示图像或视频。在一些实施例中,调制解调处理器可以是独立的器件。在另一些实施例中,调制解调处理器可以独立于处理器210,与移动通信模块250或其他功能模块设置在同一个器件中。
无线通信模块260可以提供应用在电子设备200上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块260可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块260经由天线2接收电磁波,将电磁波信号调频 以及滤波处理,将处理后的信号发送到处理器210。无线通信模块260还可以从处理器210接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。
在一些实施例中,电子设备200的天线1和移动通信模块250耦合,天线2和无线通信模块260耦合,使得电子设备200可以通过无线通信技术与网络以及其他设备通信。所述无线通信技术可以包括全球移动通讯系统(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),BT,GNSS,WLAN,NFC,FM,和/或IR技术等。所述GNSS可以包括全球卫星定位系统(global positioning system,GPS),全球导航卫星系统(global navigation satellite system,GLONASS),北斗卫星导航系统(beidou navigation satellite system,BDS),准天顶卫星系统(quasi-zenith satellite system,QZSS)和/或星基增强系统(satellite based augmentation systems,SBAS)。
电子设备200通过GPU,显示屏294,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏294和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器210可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。
显示屏294用于显示图像,视频等。显示屏294包括显示面板。显示面板可以采用液晶显示屏(liquid crystal display,LCD),有机发光二极管(organic light-emitting diode,OLED),有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light emitting diode的,AMOLED),柔性发光二极管(flex light-emitting diode,FLED),Miniled,MicroLed,Micro-oLed,量子点发光二极管(quantum dot light emitting diodes,QLED)等。在一些实施例中,电子设备200可以包括1个或N个显示屏294,N为大于1的正整数。
电子设备200可以通过ISP,摄像头293,视频编解码器,GPU,显示屏294以及应用处理器等实现拍摄功能。
ISP用于处理摄像头293反馈的数据。例如,拍照时,打开快门,光线通过镜头被传递到摄像头感光元件上,光信号转换为电信号,摄像头感光元件将所述电信号传递给ISP处理,转化为肉眼可见的图像。ISP还可以对图像的噪点,亮度,肤色进行算法优化。ISP还可以对拍摄场景的曝光,色温等参数优化。在一些实施例中,ISP可以设置在摄像头293中。
摄像头293用于捕获静态图像或视频。物体通过镜头生成光学图像投射到感光元件。感光元件可以是电荷耦合器件(charge coupled device,CCD)或互补金属氧化物半导体(complementary metal-oxide-semiconductor,CMOS)光电晶体管。感光元件把光信号转换成电信号,之后将电信号传递给ISP转换成数字图像信号。ISP将数字图像信号输出到DSP加工处理。DSP将数字图像信号转换成标准的RGB,YUV等格式的图像信号。在一些实施例中,电子设备200可以包括1个或N个摄像头293,N为大于1的正整数。
数字信号处理器用于处理数字信号,除了可以处理数字图像信号,还可以处理其他数字信号。例如,当电子设备200在频点选择时,数字信号处理器用于对频点能量进行 傅里叶变换等。
视频编解码器用于对数字视频压缩或解压缩。电子设备200可以支持一种或多种视频编解码器。这样,电子设备200可以播放或录制多种编码格式的视频,例如:动态图像专家组(moving picture experts group,MPEG)1,MPEG2,MPEG3,MPEG4等。
NPU为神经网络(neural-network,NN)计算处理器,通过借鉴生物神经网络结构,例如借鉴人脑神经元之间传递模式,对输入信息快速处理,还可以不断的自学习。通过NPU可以实现电子设备200的智能认知等应用,例如:图像识别,人脸识别,语音识别,文本理解等。
外部存储器接口220可以用于连接外部存储卡,例如Micro SD卡,实现扩展电子设备200的存储能力。外部存储卡通过外部存储器接口220与处理器210通信,实现数据存储功能。例如将音乐,视频等文件保存在外部存储卡中。
内部存储器221可以用于存储计算机可执行程序代码,所述可执行程序代码包括指令。内部存储器221可以包括存储程序区和存储数据区。其中,存储程序区可存储操作系统,至少一个功能所需的应用程序(比如声音播放功能,图像播放功能等)等。存储数据区可存储电子设备200使用过程中所创建的数据(比如音频数据,电话本等)等。此外,内部存储器221可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。处理器210通过运行存储在内部存储器221的指令,和/或存储在设置于处理器中的存储器的指令,执行电子设备200的各种功能应用以及数据处理。
电子设备200可以通过音频模块270,扬声器270A,受话器270B,麦克风270C,耳机接口270D,以及应用处理器等实现音频功能。例如音乐播放,录音等。
音频模块270用于将数字音频信息转换成模拟音频信号输出,也用于将模拟音频输入转换为数字音频信号。音频模块270还可以用于对音频信号编码和解码。在一些实施例中,音频模块270可以设置于处理器210中,或将音频模块270的部分功能模块设置于处理器210中。
扬声器270A,也称“喇叭”,用于将音频电信号转换为声音信号。电子设备200可以通过扬声器270A收听音乐,或收听免提通话。
受话器270B,也称“听筒”,用于将音频电信号转换成声音信号。当电子设备200接听电话或语音信息时,可以通过将受话器270B靠近人耳接听语音。
麦克风270C,也称“话筒”,“传声器”,用于将声音信号转换为电信号。当拨打电话或发送语音信息时,用户可以通过人嘴靠近麦克风270C发声,将声音信号输入到麦克风270C。电子设备200可以设置至少一个麦克风270C。在另一些实施例中,电子设备200可以设置两个麦克风270C,除了采集声音信号,还可以实现降噪功能。在另一些实施例中,电子设备200还可以设置三个,四个或更多麦克风270C,实现采集声音信号,降噪,还可以识别声音来源,实现定向录音功能等。
耳机接口270D用于连接有线耳机。耳机接口270D可以是USB接口230,也可以是3.5mm的开放移动电子设备平台(open mobile terminal platform,OMTP)标准接口,美国蜂窝电信工业协会(cellular telecommunications industry association of the USA,CTIA)标准接口。
压力传感器280A用于感受压力信号,可以将压力信号转换成电信号。在一些实施例中,压力传感器280A可以设置于显示屏294。压力传感器280A的种类很多,如电阻式压力传感器,电感式压力传感器,电容式压力传感器等。电容式压力传感器可以是包括至少两个具有导电材料的平行板。当有力作用于压力传感器280A,电极之间的电容改变。电子设备200根据电容的变化确定压力的强度。当有触摸操作作用于显示屏294,电子设备200根据压力传感器280A检测所述触摸操作强度。电子设备200也可以根据压力传感器280A的检测信号计算触摸的位置。在一些实施例中,作用于相同触摸位置,但不同触摸操作强度的触摸操作,可以对应不同的操作指令。例如:当有触摸操作强度小于第一压力阈值的触摸操作作用于短消息应用图标时,执行查看短消息的指令。当有触摸操作强度大于或等于第一压力阈值的触摸操作作用于短消息应用图标时,执行新建短消息的指令。
陀螺仪传感器280B可以用于确定电子设备200的运动姿态。在一些实施例中,可以通过陀螺仪传感器280B确定电子设备200围绕三个轴(即,x,y和z轴)的角速度。陀螺仪传感器280B可以用于拍摄防抖。示例性的,当按下快门,陀螺仪传感器280B检测电子设备200抖动的角度,根据角度计算出镜头模组需要补偿的距离,让镜头通过反向运动抵消电子设备200的抖动,实现防抖。陀螺仪传感器280B还可以用于导航,体感游戏场景。
气压传感器280C用于测量气压。在一些实施例中,电子设备200通过气压传感器280C测得的气压值计算海拔高度,辅助定位和导航。
磁传感器280D包括霍尔传感器。电子设备200可以利用磁传感器280D检测翻盖皮套的开合。在一些实施例中,当电子设备200是翻盖机时,电子设备200可以根据磁传感器280D检测翻盖的开合。进而根据检测到的皮套的开合状态或翻盖的开合状态,设置翻盖自动解锁等特性。
加速度传感器280E可检测电子设备200在各个方向上(一般为三轴)加速度的大小。当电子设备200静止时可检测出重力的大小及方向。还可以用于识别电子设备姿态,应用于横竖屏切换,计步器等应用。
距离传感器280F,用于测量距离。电子设备200可以通过红外或激光测量距离。在一些实施例中,拍摄场景,电子设备200可以利用距离传感器280F测距以实现快速对焦。
接近光传感器280G可以包括例如发光二极管(LED)和光检测器,例如光电二极管。发光二极管可以是红外发光二极管。电子设备200通过发光二极管向外发射红外光。电子设备200使用光电二极管检测来自附近物体的红外反射光。当检测到充分的反射光时,可以确定电子设备200附近有物体。当检测到不充分的反射光时,电子设备200可以确定电子设备200附近没有物体。电子设备200可以利用接近光传感器280G检测用户手持电子设备200贴近耳朵通话,以便自动熄灭屏幕达到省电的目的。接近光传感器280G也可用于皮套模式,口袋模式自动解锁与锁屏。
环境光传感器280L用于感知环境光亮度。电子设备200可以根据感知的环境光亮度自适应调节显示屏294亮度。环境光传感器280L也可用于拍照时自动调节白平衡。环境光传感器280L还可以与接近光传感器280G配合,检测电子设备200是否在口袋 里,以防误触。
指纹传感器280H用于采集指纹。电子设备200可以利用采集的指纹特性实现指纹解锁,访问应用锁,指纹拍照,指纹接听来电等。
温度传感器280J用于检测温度。在一些实施例中,电子设备200利用温度传感器280J检测的温度,执行温度处理策略。例如,当温度传感器280J上报的温度超过阈值,电子设备200执行降低位于温度传感器280J附近的处理器的性能,以便降低功耗实施热保护。在另一些实施例中,当温度低于另一阈值时,电子设备200对电池242加热,以避免低温导致电子设备200异常关机。在其他一些实施例中,当温度低于又一阈值时,电子设备200对电池242的输出电压执行升压,以避免低温导致的异常关机。
触摸传感器280K,也称“触控器件”。触摸传感器280K可以设置于显示屏294,由触摸传感器280K与显示屏294组成触摸屏,也称“触控屏”。触摸传感器280K用于检测作用于其上或附近的触摸操作。触摸传感器可以将检测到的触摸操作传递给应用处理器,以确定触摸事件类型。可以通过显示屏294提供与触摸操作相关的视觉输出。在另一些实施例中,触摸传感器280K也可以设置于电子设备200的表面,与显示屏294所处的位置不同。
骨传导传感器280M可以获取振动信号。在一些实施例中,骨传导传感器280M可以获取人体声部振动骨块的振动信号。骨传导传感器280M也可以接触人体脉搏,接收血压跳动信号。在一些实施例中,骨传导传感器280M也可以设置于耳机中,结合成骨传导耳机。音频模块270可以基于所述骨传导传感器280M获取的声部振动骨块的振动信号,解析出语音信号,实现语音功能。应用处理器可以基于所述骨传导传感器280M获取的血压跳动信号解析心率信息,实现心率检测功能。
按键290包括开机键,音量键等。按键290可以是机械按键。也可以是触摸式按键。电子设备200可以接收按键输入,产生与电子设备200的用户设置以及功能控制有关的键信号输入。
马达291可以产生振动提示。马达291可以用于来电振动提示,也可以用于触摸振动反馈。例如,作用于不同应用(例如拍照,音频播放等)的触摸操作,可以对应不同的振动反馈效果。作用于显示屏294不同区域的触摸操作,马达291也可对应不同的振动反馈效果。不同的应用场景(例如:时间提醒,接收信息,闹钟,游戏等)也可以对应不同的振动反馈效果。触摸振动反馈效果还可以支持自定义。
指示器292可以是指示灯,可以用于指示充电状态,电量变化,也可以用于指示消息,未接来电,通知等。
SIM卡接口295用于连接SIM卡。SIM卡可以通过插入SIM卡接口295,或从SIM卡接口295拔出,实现和电子设备200的接触和分离。电子设备200可以支持1个或N个SIM卡接口,N为大于1的正整数。SIM卡接口295可以支持Nano SIM卡,Micro SIM卡,SIM卡等。同一个SIM卡接口295可以同时插入多张卡。所述多张卡的类型可以相同,也可以不同。SIM卡接口295也可以兼容不同类型的SIM卡。SIM卡接口295也可以兼容外部存储卡。电子设备200通过SIM卡和网络交互,实现通话以及数据通信等功能。在一些实施例中,电子设备200采用eSIM,即:嵌入式SIM卡。eSIM卡可以嵌在电子设备200中,不能和电子设备200分离。
可以理解的是,本申请实施例示意的结构并不构成对电子设备200的具体限定。在本申请另一些实施例中,电子设备200可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
以下,将根据图1所示的电力线载波通信系统、图2所示的电子设备并结合具体的应用场景,对本申请实施例提供的电力线载波通信方法进行详细说明。
1、参数初始化。
在初始化阶段,主路由设备可以响应于管理员(即设备厂商或用户)的配置操作,确定传输管理周期和分窗方式。
传输管理周期可以理解为主路由设备管理各个路由设备的发送机会的周期。
在每个传输管理周期中,主路由设备可以配置各个路由设备的发送机会和发送顺序,并通过索引帧(MAP帧)通知各个子路由设备。
MAP帧的结构可以根据实际需求进行设置。例如,如图3所示,MAP帧的结构可以包括头文件、配置信息和扩展信息。配置信息中可以包括至少一个描述信息,比如描述信息1、描述信息2、描述信息n(n为大于2的正整数)等。上述描述信息用于记录分配有发送机会的路由设备的设备标识和发送顺序等信息。
当子路由设备接收到MAP帧时,子路由设备可以从MAP帧中获取各个路由设备的发送机会以及发送顺序。
在到达下一个传输管理周期时,配置了发送机会的路由设备可以根据上述发送顺序依次进行数据传输,没有配置发送机会的路由设备不可以进行数据传输。
例如,假设主路由设备、子路由设备甲、子路由设备乙和子路由设备丙均接入了电力线网络。
在某一个传输管理周期,主路由设备通过MAP帧配置了主路由设备、子路由设备甲和子路由设备乙的发送机会和发送顺序,没有配置子路由设备丙的发送机会。
在到达下一个传输管理周期时,主路由设备、子路由设备甲和子路由设备乙可以根据上述发送顺序依次进行数据传输,子路由设备丙没有被配置发送机会,所以子路由设备丙不能进行数据传输。
此外,一个传输管理周期可以包括一个或多个交流电周期。交流电周期可以根据交流电的频率进行计算。
例如,假设交流电的频率为50Hz,则一个交流电周期为20ms。此时,如果传输管理周期包括一个交流电周期,则传输管理周期为20ms;如果传输管理周期包括两个交流电周期,则传输管理周期为20*2=40ms。
假设交流电的频率为60Hz,则一个交流电周期约为16.7ms。此时,如果传输管理周期包括一个交流电周期,则传输管理周期约为16.7ms;如果传输管理周期包括两个交流电周期,则传输管理周期约为16.7*2=33.4ms。
分窗方式是指对交流电周期的划分方式。为了提高抗干扰性能,主路由设备可以根据上述分窗方式,将一个交流电周期划分为多个时间窗,在每个时间窗设置不同的信道参数。
在同一个时间窗中可以有多个路由设备发送不同的报文帧。但是,由于不同的时间 窗设置有不同的信道参数,所以,同一帧报文只可以一个时间窗内传输,不可以跨越多个时间窗传输。
上述分窗方式可以根据实际需求进行设置。例如,假设一个传输管理周期包括两个交流电周期,每个交流电周期为20ms。
此时,如图4中的(a)场景所示,如果每个交流电周期被划分为8个时间窗,则该传输管理周期可以包括16个时间窗,每个时间窗为2.5ms。
如图4中的(b)场景所示,如果每个交流电周期被划分为10个时间窗,则该传输管理周期可以包括20个时间窗,每个时间窗为2ms。
2、获取设备接入状态。
当主路由设备进入工作状态时,主路由设备可以通过状态传输通道获取接入电力线网络的各个子路由设备的设备接入状态。
上述状态传输通道可以包括电力线网络、Wi-Fi连接、蓝牙连接、USB连接、RJ45连接等通信连接中的一种或多种。
上述设备接入状态用于指示是否有用户设备接入子路由设备。上述设备接入状态可以包括有用户设备接入和无用户设备接入。
上述设备接入状态可以通过数字、字符、标点符号等表现元素中的一种或多种的组合进行表示。
例如,在一些场景中,电子设备可以通过1表示有用户设备接入,用0表示无用户设备接入;在另一些场景中,电子设备也可以通过a-1表示有用户设备接入,用b-9表示无用户设备接入;在另一些场景中,电子设备也可以通过其他形式表示设备接入状态。本申请实施例对设备接入状态的具体表现形式不予限制。
并且,上述设备接入状态可以是主路由设备向子路由设备请求的,或者,上述设备接入状态也可以是子路由设备主动向主路由设备发送的。
例如,在一些场景中,主路由设备可以向子路由设备发送接入状态请求。子路由设备在接收到接入状态请求之后,可以响应于该接入状态请求,向主路由设备反馈本设备的设备接入状态。
在另一些场景中,子路由设备可以在发现主路由设备时,主动向主路由设备发送本设备的设备接入状态。
本申请实施例对主路由设备获取子路由设备的设备接入状态的具体方式不予限制。
3、动态配置发送机会。
主路由设备在获取到子路由设备的设备接入状态之后,可以根据子路由设备的设备接入状态为子路由设备分配发送机会。
如果子路由设备的设备接入状态为有用户设备接入,则表示该子路由设备可能有业务数据需要传输。此时,主路由设备可以将该子路由设备确定为活跃设备。
如果子路由设备的设备接入状态为无用户设备接入,则表示该子路由设备处于空闲状态,没有业务数据需要传输。此时,主路由设备可以将该子路由设备确定为空闲设备。
之后,主路由设备可以为主路由设备和活跃设备分配传输管理周期的第一时间段的发送机会,设置主路由设备和活跃设备的第一发送顺序,不为空闲设备分配第一时间段的发送机会。
并且,主路由设备还可以为主路由设备、活跃设备和空闲设备分配传输管理周期的第二时间段的发送机会,设置主路由设备、活跃设备和空闲设备的第二发送顺序。
其中,第一时间段和第二时间段为不相交的时间段。第一时间段和第二时间段可以根据实际需求进行设置。
具体地,在一些实施例中,第一时间段和第二时间段可以是预先设置的固定时间段。
例如,假设一个传输管理周期包括20个时间窗。在一些场景中,主路由设备可以将传输管理周期中的第1个时间窗到第13个时间窗固定设置为第一时间段,将第14个时间窗固定设置为传输MAP帧的时间段,将第15个时间窗到第20个时间窗固定设置为第二时间段。
在另一些场景中,主路由设备可以将传输管理周期中的第1个时间窗到第9个时间窗固定设置为第一时间段,将第10个时间窗固定设置为传输MAP帧的时间段,将第11个时间窗到第20个时间窗固定设置为第二时间段。
在另一些实施例中,第一时间段和第二时间段也可以是动态调整的时间段。
此时,主路由设备可以根据空闲设备的数量,计算第二时间段设置有不同数量的时间窗时,空闲设备的理论最低带宽。理论最低带宽的计算方式可以根据实际场景确定,本申请实施例对理论最低带宽的具体计算方式不予限制。
然后,主路由设备可以在空闲设备的理论最低带宽满足空闲设备的基础开销的情况下,设置第一时间段和第二时间段。
例如,在一些场景中,假设一个传输管理周期包括16个时间窗,主路由设备计算到第二时间段设置有3个时间窗时,空闲设备的理论最低带宽大于空闲设备的基础开销。
此时,主路由设备可以将在16个时间窗中随机选择3个时间窗作为第二时间段,随机选择1个时间窗作为传输MAP帧的时间段,将其他时间窗确定为第一时间段。
在另一些场景中,假设一个传输管理周期包括20个时间窗,主路由设备计算到第二时间段设置有4个时间窗时,空闲设备的理论最低带宽大于空闲设备的基础开销。
此时,主路由设备可以在保留一定裕度的情况下,将传输管理周期内第1个时间窗到第5个时间窗确定为第二时间段,将第6个时间窗确定为传输MAP帧的时间段,将第7个时间窗到第20个时间窗确定为第一时间段。
在另一些场景中,主路由设备也可以通过其他方式设置第一时间段和第二时间段。本申请实施例对第一时间段和第二时间段的具体设置方式不予限制。
此外,上述发送顺序的生成方式可以根据实际需求进行设置。
例如,在一些实施例中,主路由设备可以通过随机排序的方式,对各个路由设备的设备标识进行随机排序,得到发送顺序;在另一些实施例中,主路由设备可以从设备标识的首位开始,根据数字降序、数字升序、字母降序、字母升序等排序规则中的任意一种或多种的组合,对各个路由设备的设备标识进行排序,得到发送顺序;在另一些实施例中,主路由设备也可以通过其他方式生成发送顺序。本申请实施例对主路由设备生成发送顺序的具体方式不予限制。
并且,主路由设备在生成第二发送顺序时,主路由设备可以根据上述生成方式直接生成第二发送顺序。
或者,主路由设备也可以先排列空闲设备的设备标识,再排列主路由设备和活跃设 备的设备标识,从而使空闲设备可以在第二时间段内优先拥有发送机会,保障空闲设备的带宽。
例如,假设子路由设备甲为空闲设备,子路由设备乙和子路由设备丙为活跃设备。主路由设备在生成第二发送顺序时,可以先排列子路由设备甲。然后,主路由设备在子路由设备甲之后,再对主路由设备、子路由设备乙和子路由设备丙进行排序,得到第二发送顺序。此时,第二发送顺序可能为:子路由设备甲-子路由设备丙-主路由设备-子路由设备乙。
主路由设备在配置了各个路由设备的发送机会和发送顺序之后,可以在电力线网络中广播MAP帧,通过MAP帧向各个子路由设备通知发送机会和发送顺序的配置情况。
当子路由设备接收到MAP帧时,子路由设备可以通过MAP帧确定本设备的发送机会和发送顺序。
在到达下一个传输管理周期时,主路由设备和活跃设备可以根据上述第一发送顺序,在第一时间段内依次进行数据传输。
以及,主路由设备、活跃设备和空闲设备可以根据上述第二发送顺序,在第二时间段内依次进行数据传输。
例如,请参阅图5,假设电力线载波通信系统中包括主路由设备A0、子路由设备A1、子路由设备A2、子路由设备A3、子路由设备A4、子路由设备A5和电力线网络A6。
主路由设备A0、子路由设备A1、子路由设备A2、子路由设备A3、子路由设备A4和子路由设备A5均接入了电力线网络A6。
在一些电力线载波通信方法中,不管子路由设备是否有数据需要传输,主路由设备A0都会平等地为各个路由设备分配发送机会。
假设只有主路由设备A0有下行数据需要传输,其他子路由设备没有数据需要传输,主路由设备A0生成的发送顺序可以为:A1-A2-A3-A4-A5-A0。
请参阅图6,图6中的直角矩形表示时间窗,圆角矩形表示各个路由设备占用的时隙,图6示意性地列出了两个时间窗内各个路由设备所占用的时隙的分布图。
如图6所示,在传输管理周期内,主路由设备A0和各个子路由设备可以按照上述发送顺序依次拥有发送机会。
当轮到某一个路由设备的发送机会时,如果该路由设备有数据需要传输,则该路由设备可以利用该发送机会进行数据传输。
如果该路由设备没有数据传输,则该路由设备可以保持静默。此时,其他路由设备可以在等待最小发送时隙后,默认该路由设备放弃本次发送机会,继续轮到下一个路由设备的发送机会。
因此,虽然各个子路由设备都没有数据需要传输,但是,在每一个时间窗中,主路由设备A0都需要等待5个最小发送时隙,才可以进行本设备的数据传输。
也即是说,在每个时间窗中,都有5个最小发送时隙对应的带宽被浪费。
假设一个传输管理周期包括20个时间窗,每个时间窗的时长为2ms,一个最小发送时隙为35.84us,则被浪费的带宽比例为(35.84*5)/2000=8.96%。
并且,随着子路由设备的数量的增加,被浪费的带宽比例会随之增加。当子路由设 备的数量增加到15个时,每个时间窗内被浪费的最小发送时隙会增加到15个,被浪费的带宽比例为(35.84*15)/2000=26.88%。
在本申请实施例提供的电力线载波通信方法中,假设传输管理周期的前13个时间窗为第一时间段,第14个时间窗为传输MAP帧的时间段,第15个时间窗到第20个时间窗为第二时间段,各个子路由设备均无用户设备接入。
当主路由设备A0进入工作状态之后,主路由设备A0可以获取各个子路由设备的设备接入状态。
此时,子路由设备A1、子路由设备A2、子路由设备A3、子路由设备A4、子路由设备A5反馈给主路由设备A0的设备接入状态均为无用户设备接入。
所以,主路由设备A0可以将子路由设备A1、子路由设备A2、子路由设备A3、子路由设备A4、子路由设备A5确定为空闲设备。
然后,主路由设备A0可以为主路由设备A0分配第一时间段的发送机会,不为其他子路由设备分配第一时间段的发送机会,将第一发送顺序设置为:A0。
并且,主路由设备A0可以为主路由设备A0、子路由设备A1、子路由设备A2、子路由设备A3、子路由设备A4和子路由设备A5分配第二时间段的发送机会,将第二发送顺序设置为:A1-A2-A3-A4-A5-A0。
之后,主路由设备A0可以在电力线网络上广播MAP帧,通过MAP帧向各个子路由设备通知上述发送机会和发送顺序的配置情况。
各个子路由设备在接收到MAP帧之后,可以通过MAP帧确定本设备的发送机会和发送顺序。
在到达下一个传输管理周期时,主路由设备A0和各个子路由设备根据上述发送机会和发送顺序进行数据传输。
请参阅图7,图7示例性地列出了第一时间段的两个时间窗内各个路由设备所占用的时隙的分布图。
如图7所示,在传输管理周期的第一时间段,每个时间窗中只有主路由设备A0进行数据传输,主路由设备A0不用等待其他子路由设备的时隙。
也即是说,与前一种电力线载波通信方法相比,本申请实施例的方法可以在第一时间段的每个时间窗中节约5个被浪费的最小发送时隙,提高8.96%的带宽利用率。
并且,随着子路由设备的数量的增加,本申请实施例的方法所节约的带宽利用率可以进一步提高。当子路由设备的数量提升至15个时,本申请实施例的方法可以在第一时间段的每个时间窗中节约15个被浪费的最小发送时隙,提高26.88%的带宽利用率。
请参阅图8,图8示例性地列出了第二时间段的两个时间窗内各个路由设备所占用的时隙的分布图。
如图8所示,在传输管理周期的第二时间段,主路由设备A0和各个子路由设备可以根据第二发送顺序,依次进行数据传输,以此满足各个空闲设备传输少量管理报文所需的基础开销。
此时,综合第一时间段和第二时间段,当子路由设备的数量为5个时,本申请实施例提供的方法所提高的带宽利用率为[(35.84*5)*13]/[2000*(13+6)]=6.13%。
当子路由设备的数量增加到15个时,本申请实施例提供的方法所提高的带宽利用 率为[(35.84*15)*13]/[2000*(13+6)]=18.39%。
此外,请参阅表1和表2。表1和表2是在上述示例所列出的条件下,对两种电力线载波通信方法进行测试所得到的实验数据。
其中,表1为本示例中第一种电力线载波通信方法的实验数据:
表1
Figure PCTCN2022125120-appb-000001
表2为本申请实施例提供的电力线载波通信方法的实验数据:
表2
Figure PCTCN2022125120-appb-000002
通过上述实验数据可知,本申请实施例提供的电力线载波通信方法与其他电力线载波通信方法相比,可以有效提高提高电力线网络的带宽利用率。
并且,随着子路由设备的数量的增加,本申请实施例提供的方法提升的带宽利用率也会随之增加。当子路由设备的数量增加到15个时,本申请实施例提供的方法可以提升(62%-45%)=17%的带宽利用率,提升效果极其明显。
综合上述示例和实验数据可知,在本申请实施例提供的方法中,主路由设备可以为空闲设备分配第二时间段的发送机会,不为空闲设备分配第一时间段的发送机会,从而减少空闲设备的发送机会,避免空闲设备浪费过多的时隙,有效提高了电力线网络的带宽利用率,提升了各个路由设备的数据传输效率。
4、设备接入状态变化。
在实际的应用场景中,用户设备随时有可能接入子路由设备,或者,断开与子路由设备的连接。
因此,子路由设备的设备接入状态可能受到用户设备的影响,从有用户设备接入变成无用户设备接入,或者,从无用户设备接入变成有用户设备接入。
当子路由设备的设备接入状态发生变化时,子路由设备可以通过状态传输通道向主路由设备发送状态变更通知。
当主路由设备接收到状态变更通知时,主路由设备可以根据状态变更通知确定该子路由设备的设备接入状态,并重新为各个路由设备分配发送机会。
具体地,当子路由设备的设备接入状态从有用户设备接入变成无用户设备接入时,主路由设备可以将该子路由设备确定为空闲设备,不再为其分配第一时间段内的发送机 会,更新主路由设备和活跃设备的第一发送顺序。
当子路由设备的设备接入状态从无用户设备接入变成有用户设备接入时,主路由设备可以将该子路由设备确定为活跃设备,为其分配第一时间段内的发送机会,更新主路由设备和活跃设备的第一发送顺序。
例如,如图9所示,假设电力线载波通信系统包括主路由设备B0、子路由设备B1、子路由设备B2、子路由设备B3、电力线网络B4和用户设备B5。用户设备B5与子路由设备B1建立了通信连接。
在第一时刻,主路由设备B0获取各个子路由设备的设备接入状态。此时,子路由设备B1反馈的设备接入状态为有用户设备接入,子路由设备B2和子路由设备B3反馈的设备接入状态均为无用户设备接入。
因此,主路由设备B0可以为主路由设备B0和子路由设备B1分配第一时间段的发送机会,将第一发送顺序设置为:B0-B1。
并且,主路由设备B0可以为主路由设备B0、子路由设备B1、子路由设备B2和子路由设备B3分配第二时间段的发送机会,将第二发送顺序设置为:B0-B1-B2-B3。
之后,主路由设备B0可以在电力线网络上广播MAP帧,将发送机会和发送顺序的配置情况告知各个子路由设备。
请参阅图10和图11,图10和图11中的直角矩形表示时间窗,圆角矩形表示各个路由设备占用的时隙。
在到达下一个传输管理周期的第一时间段时,如图10所示,主路由设备B0和子路由设备B1可以根据上述第一发送顺序,轮流进行数据传输。
此时,主路由设备B0可以根据上述第一发送顺序,先开始进行数据传输;主路由设备B0传输完成之后,轮到子路由设备B1的发送机会,子路由设备B1开始进行数据传输;子路由设备B1传输完成之后,再次轮到主路由设备B0的发送机会,主路由设备B0开始进行数据传输。
主路由设备B0和子路由设备B1根据上述循环方式,轮流进行数据传输,直至第一时间段结束。
其中,当轮到某一个路由设备的发送机会时,如果该路由设备有数据需要传输,则该路由设备在本次发送机会所占用的时隙长度与该路由设备需要传输的数据的多少呈正相关关系。
该路由设备需要传输的数据越多,则该路由设备发送的报文越长,占用的时隙也相应越长;该路由设备需要传输的数据越少,则该路由设备发送的报文越短,占用的时隙也相应越短。
并且,由于不同的时间窗设置有不同的信道参数,所以,对于同一帧报文,只允许在同一个时间窗内传输,不能跨越多个时间窗传输。
也即是说,该路由设备在本次发送机会所占用的时隙的最长长度为时间窗的长度,并且,该路由设备在本次发送机会所占用的时隙不能跨越不同的时间窗。
此外,由于每次发送机会都有一个最小发送时隙,所以,如果该路由设备没有数据需要传输,或者,该路由设备需要传输的数据极少,传输所用的时长小于最小发送时隙,则该路由设备在本次发送机会所占用的时隙为最小发送时隙。
在到达第二时间段时,如图11所示,主路由设备B0、子路由设备B1、子路由设备B2和子路由设备B3可以根据第二发送顺序,轮流进行数据传输。
在第二时刻,如图12所示,用户设备B5断开了与子路由设备B1的通信连接,用户设备B6与子路由设备B3建立了通信连接。
此时,子路由设备B1向主路由设备B0发送了状态变更通知1,子路由设备B2向主路由设备B0发送了状态变更通知2。
主路由设备B0接收到状态变更通知1之后,确定子路由设备B1的设备接入状态变更为无用户设备接入,不再为子路由设备B1分配第一时间段的发送机会。
主路由设备B0接收到状态变更通知2之后,确定子路由设备B3的设备接入状态变更为有用户设备接入,为子路由设备B3分配第一时间段的发送机会。
然后,主路由设备可以将第一发送顺序更新为:B0-B3,并通过MAP帧向各个子路由设备通知更新后的发送机会和发送顺序。
在到达下一个传输管理周期的第一时间段时,如图13所示,主路由设备B0和子路由设备B3可以根据更新后的第一发送顺序,轮流进行数据传输。
在到达第二时间段时,如图14所示,主路由设备B0、子路由设备B1、子路由设备B2和子路由设备B3可以继续根据未更新的第二发送顺序,轮流进行数据传输。
通过上述示例可知,在本申请实施例提供的方法中,当子路由设备的设备接入状态发生变化时,主路由设备可以根据子路由设备的变化情况动态调整该子路由设备的发送机会。
如果子路由设备的设备接入状态从有用户设备接入变成无用户设备接入,则主路由设备可以停止为该子路由设备分配第一时间段的发送机会,减少被浪费的时隙,提高带宽利用率。
如果子路由设备的设备接入状态从无用户设备接入变成有用户设备接入,则主路由设备可以为该子路由设备分配第一时间段的发送机会,提高该子路由设备的传输效率。
5、子路由设备的接入与离开。
除了设备接入状态可能发生变化以外,子路由设备还可能响应于用户的操作,接入电力线网络或断开与电力线网络的连接。
当有新的子路由设备接入电力线网络时,主路由设备可以为新的子路由设备分配传输管理周期内的发送机会。
在一些可能的实现方式中,当主路由设备发现新的子路由设备时,主路由设备可以将该子路由设备的设备接入状态默认为无用户设备接入,将该子路由设备确定为空闲设备。
然后,主路由设备可以为该子路由设备分配第二时间段内的发送机会,更新第二发送顺序,不为该子路由设备分配第一时间段内的发送机会。
之后,如果有用户设备接入该子路由设备,则该子路由设备可以向主路由设备发送状态变更通知。
主路由设备接收到状态变更通知之后,可以根据状态变更通知确定该子路由设备的接入状态为有用户设备接入,并将该子路由设备确定为活跃设备,为该子路由设备分配第一时间段内的发送机会,更新第一发送顺序。
例如,如图15所示,假设电力线载波通信系统包括电力线网络C0、主路由设备C1、子路由设备C2和子路由设备C3。子路由设备C2和子路由设备C3均无用户设备接入。
在第三时刻,主路由设备C1可以为主路由设备C1分配第一时间段的发送机会,将第一发送顺序设置为:C1。
以及,主路由设备C1可以为主路由设备C1、子路由设备C2和子路由设备C3分配第二时间段的发送机会,将第二发送顺序设置为:C2-C3-C1。
如图16所示,在第四时刻,主路由设备C1发现子路由设备C4接入了电力线网络C0。此时,主路由设备C1可以默认子路由设备C4的设备接入状态为无用户设备接入,不为子路由设备C4分配第一时间段的发送机会,为子路由设备C4分配第二时间段的发送机会,将第二发送顺序更新为:C2-C3-C4-C1。
此时,由于子路由设备C4有用户设备C5接入,所以子路由设备C4可以向主路由设备C1发送状态变更通知3。
主路由设备C1接收到状态变更通知3之后,确定子路由设备C4的设备接入状态为有用户设备接入。所以,主路由设备C1可以为子路由设备C4分配第一时间段内的发送机会,将第一发送顺序更新为:C1-C4。
通过上述示例可知,当主路由设备发现新的子路由设备接入电力线网络时,主路由设备可以将该子路由设备默认为空闲设备,只为其分配第二时间段的发送机会,减少被浪费的时隙,提高电力线网络的带宽利用率。
当主路由设备接收到该子路由设备发送的设备变更通知时,主路由设备可以将该子路由设备确定为活跃设备,为该子路由设备分配第一时间段的发送机会,以提高该子路由设备的数据传输效率。
在另一些可能的实现方式中,当主路由设备发现新的子路由设备时,主路由设备可以将该子路由设备的设备接入状态默认为有用户设备接入,将该子路由设备确定为活跃设备。
然后,主路由设备可以为该子路由设备分配第一时间段和第二时间段内的发送机会,更新第一发送顺序和第二发送顺序。
之后,主路由设备可以等待预设时长。预设时长可以实际需求进行设置。例如,预设时长可以设置为1分钟、5分钟、10分钟等时长。
如果在预设时长内,主路由设备接收到该子路由设备发送的设备接入状态,且该设备接入状态为有用户设备接入,则主路由设备可以保持当前的配置方案。
如果在预设时长内,主路由设备没有接收到该子路由设备发送的设备接入状态,或者,主路由设备接收到设备接入状态为无用户设备接入,则主路由设备可以将该子路由设备确定为空闲设备,停止为其分配第一时间段内的发送机会,并更新第一发送顺序。
例如,如图17所示,假设电力线载波通信系统包括电力线网络D0、主路由设备D1、子路由设备D2和子路由设备D3。子路由设备D2和子路由设备D3均无用户设备接入。
在第五时刻,主路由设备D1可以为主路由设备D1分配第一时间段的发送机会,将第一发送顺序设置为:D1。
以及,主路由设备D1可以为主路由设备D1、子路由设备D2和子路由设备D3分配第二时间段的发送机会,将第二发送顺序设置为:D2-D3-D1。
如图18所示,在第六时刻,主路由设备D1发现子路由设备D4接入了电力线网络D0。此时,主路由设备D1可以默认子路由设备D4的设备接入状态为有用户设备接入,为子路由设备D4分配第一时间段和第二时间段的发送机会,将第一发送机会更新为:D1-D4,将第二发送顺序更新为:D2-D3-D4-D1。
此时,由于子路由设备D4没有用户设备接入,所以子路由设备D4可以不向主路由设备D1发送本设备的设备接入状态。
假设预设时长为10分钟。主路由设备D1在等待了10分钟之后,仍然没有接收到子路由设备D4发送的设备接入状态。所以,主路由设备D1可以确定子路由设备D4的设备接入状态为无用户设备接入,不再为子路由设备D4分配第一时间段的发送机会,将第一发送顺序更新为:D1。
通过上述示例可知,当主路由设备发现新的子路由设备接入电力线网络时,主路由设备可以将该子路由设备默认为活跃设备,为其分配第一时间段和第二时间段的发送机会,以使得该子路由设备可以为用户设备提供流畅的数据传输服务,提高用户设备的数据传输效率。
当主路由设备发现该子路由设备没有用户设备接入,或者,该子路由设备超时未发送设备接入状态时,主路由设备可以将该子路由设备确定为空闲设备,不再为其分配第一时间段的发送机会,减少被浪费的时隙,提高带宽利用率。
此外,当有子路由设备断开与电力线网络的连接时,主路由设备可以停止为该子路由设备分配发送机会,并更新发送顺序。
如果该子路由设备为活跃设备,则主路由设备可以停止在第一时间段和第二时间段为该子路由设备分配发送机会,并更新第一发送顺序和第二发送顺序。
如果该子路由设备为空闲设备,则主路由设备可以停止在第二时间段为该子路由设备分配发送机会,并更新第二发送顺序。
例如,如图19所示,假设电力线载波通信系统包括主路由设备E0、子路由设备E1、子路由设备E2和电力线网络E3。主路由设备E0、子路由设备E1和子路由设备E2均接入了电力线网络E3。
在第七时刻,由于子路由设备E1和子路由设备E2均无用户设备接入,所以,主路由设备E0将子路由设备E1和子路由设备E2确定为空闲设备。
然后,主路由设备E0可以为本设备分配第一时间段的发送机会,将第一发送顺序设置为:E0。并且,主路由设备可以为主路由设备E0、子路由设备E1和子路由设备E2分配第二时间段的发送机会,将第二发送顺序设置为:E1-E2-E0。
在第八时刻,如图20所示,子路由设备E2离开了电力线网络E3。
主路由设备E0在发现子路由设备E2离开之后,主路由设备E0可以不再为子路由设备E2分配第二时间段的发送机会,将第二发送顺序更新为:E1-E0。
通过上述示例可知,当主路由设备发现子路由设备离开了电力线网络时,主路由设备可以不再为其分配发送机会,更新发送顺序,减少被浪费的时隙,提高电力线网络的带宽利用率。
以下,将结合具体地应用场景对上述电力线载波通信方法进行详细说明。
请参阅图21,在本示例中,电力线载波通信系统包括电力线网络F0、主路由设备F1、子路由设备F2、子路由设备F3、子路由设备F4和用户设备F5。
主路由设备F1、子路由设备F2、子路由设备F3和子路由设备F4均接入了电力线网络F0,用户设备F5接入了子路由设备F3。
在第九时刻,主路由设备F1进入工作状态,向子路由设备F2、子路由设备F3和子路由设备F4发送接入状态请求。
此时,由于子路由设备F2和子路由设备F4没有用户设备接入,子路由设备F3有用户设备F5接入,所以,子路由设备F2和子路由设备F4向主路由设备F1反馈的设备接入状态为无用户设备接入,子路由设备F3向主路由设备F1反馈的设备接入状态为有用户设备接入。
主路由设备F1在接收到各个子路由设备反馈的设备接入状态之后,可以将子路由设备F2和子路由设备F4确定为空闲设备,将子路由设备F3确定为活跃设备。
然后,主路由设备F1可以为主路由设备F1和子路由设备F3分配第一时间段的发送机会,将第一发送顺序设置为:F1-F3;以及,主路由设备F1可以为主路由设备F1、子路由设备F2、子路由设备F3和子路由设备F4分配第二时间段的发送机会,将第二发送顺序设置为:F1-F2-F3-F4。
之后,主路由设备F1可以在电力线网络中广播MAP帧1,通过MAP帧1向各个子路由设备通知上述发送机会和发送顺序的配置情况。
各个子路由设备接收到MAP帧1之后,可以根据MAP帧1确定本设备的发送机会和发送顺序。
请参阅图22和图23,图22和图23中的直角矩形表示时间窗,圆角矩形表示各个路由设备占用的时隙。
当到达下一个传输管理周期的第一时间段时,如图22所示,主路由设备F1和子路由设备F3可以按照上述第一发送顺序轮流进行数据传输。
当到达第二时间段时,如图23所示,主路由设备F1、子路由设备F2、子路由设备F3和子路由设备F4可以按照上述第二发送顺序轮流进行数据传输。
在第十时刻,如图24所示,用户设备F5断开了与子路由设备F3的连接。此时,子路由设备F3可以向主路由设备F1发送状态变更通知。
主路由设备F1接收到状态变更通知之后,确定子路由设备F3的设备接入状态变更为无用户设备接入,所以,主路由设备F1可以将子路由设备F3确定为空闲设备,不再为子路由设备F3分配第一时间段内的发送机会,将第一发送顺序更新为:F1。
之后,主路由设备F1可以在电力线网络中广播MAP帧2,通过MAP帧2向各个子路由设备通知上述更新后的发送机会和发送顺序。
各个子路由设备接收到MAP帧2之后,可以根据MAP帧2确定本设备的发送机会和发送顺序。
当到达下一个传输管理周期的第一时间段时,如图25所示,只有主路由设备F1可以进行数据传输。
当到达第二时间段时,主路由设备F1、子路由设备F2、子路由设备F3和子路由 设备F4可以按照未更新的第二发送顺序轮流进行数据传输。
在第十一时刻,如图26所示,子路由设备F6接入了电力线网络F0,子路由设备F6和用户设备F7建立有通信连接。
主路由设备F1在发现了子路由设备F6之后,可以将子路由设备F6默认为活跃设备,为子路由设备F6分配第一时间段和第二时间段的发送机会,将第一发送顺序更新为:F1-F6,将第二发送顺序更新为:F1-F2-F3-F4-F6。
然后,主路由设备F1可以在电力线网络中广播MAP帧3,通过MAP帧3向各个子路由设备通知上述更新后的发送机会和发送顺序。
各个子路由设备接收到MAP帧3之后,可以根据MAP帧3确定本设备的发送机会和发送顺序。
当到达下一个传输管理周期的第一时间段时,如图27所示,主路由设备F1和子路由设备F6可以按照更新后的第一发送顺序轮流进行数据传输。
当到达第二时间段时,如图28所示,主路由设备F1、子路由设备F2、子路由设备F3、子路由设备F4和子路由设备F6可以按照更新后的第二发送顺序轮流进行数据传输。
并且,主路由设备F1在等待了2分钟后,接收到子路由设备F6发送的设备接入状态,该设备接入状态为有用户设备接入。
由于2分钟小于预设时长5分钟,且子路由设备F6的设备接入状态为有用户设备接入,所以,主路由设备F1可以继续沿用之前配置的发送机会和发送顺序。
综上所述,在本申请实施例提供的方法中,主路由设备可以获取各个子路由设备的设备接入状态,确定是否有用户接入子路由设备。
如果有用户设备接入子路由设备,则主路由设备可以将该子路由设备确定为活跃设备,为该子路由设备分配第一时间段和第二时间段的发送机会,以保障该子路由设备的传输效率。
如果没有用户设备接入子路由设备,则主路由设备可以将该子路由设备确定为空闲设备,只为该子路由设备分配第二时间段的发送机会,不为该子路由设备分配第一时间段的发送机会,减少空闲设备的发送机会,避免空闲设备浪费过多的最小发送时隙,从而有效提高电力线网络的带宽利用率,提升传输速度。
当子路由设备的设备接入状态发生变化时,主路由设备可以根据子路由设备的变化情况动态调整该子路由设备的发送机会。
如果子路由设备的设备接入状态从有用户设备接入变成无用户设备接入,则主路由设备可以停止为该子路由设备分配第一时间段的发送机会,减少被浪费的时隙,提高带宽利用率。
如果子路由设备的设备接入状态从无用户设备接入变成有用户设备接入,则主路由设备可以为该子路由设备分配第一时间段的发送机会,提高该子路由设备的传输效率。
如果有新的子路由设备接入电力线网络,则主路由设备可以将该子路由设备默认为空闲设备,只为该子路由设备分配第二时间段的发送机会,减少被浪费的时隙,提高电力线网络的带宽利用率。
或者,主路由设备也可以将该子路由设备默认为活跃设备,为该子路由设备分配第 一时间段和第二时间段的发送机会,以使得该子路由设备可以为用户设备提供流畅的数据传输服务,提高用户设备的数据传输效率。
当有子路由设备离开电力线网络时,主路由设备可以停止为该子路由设备分配发送机会,减少被浪费的时隙,提高电力线网络的带宽利用率。
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
以下将从主路由设备的角度,对本申请实施例提供的另一种电力线载波通信方法进行详细说明。请参阅图29,本实施例提供的电力线载波通信方法包括:
第一方面,本申请实施例提供了一种电力线载波通信方法,应用于主路由设备,包括:
S291、获取第一子路由设备的设备接入状态;
需要说明的是,主路由设备为具备路由功能和管理功能的电子设备。子路由设备为具备路由功能,且不具备管理功能的电子设备。第一子路由设备可以理解为与主路由设备接入了同一电力线网络的子路由设备。
主路由设备进入工作状态之后,可以获取第一子路由设备的设备接入状态。
该设备接入状态可以是主路由设备向第一子路由设备请求的,或者,该设备接入状态也可以是第一子路由设备主动发送给主路由设备的。
该设备接入状态可以包括第一状态和第二状态。第一状态用于指示有用户设备接入第一子路由设备,第二状态用于指示无用户设备接入第一子路由设备。
用户设备是指主路由设备和子路由设备以外的电子设备。
S292、若上述第一子路由设备的设备接入状态为第一状态,则不为上述第一子路由设备分配传输管理周期的第一时间段的发送机会,为上述第一子路由设备分配上述传输管理周期的第二时间段的发送机会;
其中,上述主路由设备和上述第一子路由设备接入了同一电力线网络中,上述第一状态用于指示无用户设备接入上述第一子路由设备,上述第一时间段和上述第二时间段为不相交的时间段。
需要说明的是,当第一子路由设备的设备状态为第一状态时,表示没有用户设备接入第一子路由设备,第一子路由设备没有业务数据需要传输。
此时,主路由设备可以将该第一子路由设备确定为空闲设备,不为该第一子路由设备分配传输管理周期的第一时间段的发送机会,为该第一子路由设备分配传输管理周期的第二时间段的发送机会。
也即是说,主路由设备并不是平等地为该第一子路由设备分配整个传输管理周期的发送机会,而是只为该第一子路由设备分配传输管理周期中的部分时间段的发送机会。
通过上述方式,主路由设备可以减少空闲设备的发送机会,减少空闲设备浪费的时隙,从而提高电力线网络的带宽利用率,具有较强的易用性和实用性。
可选地,在上述获取第一子路由设备的设备接入状态之后,还包括:
若上述第一子路由设备的设备接入状态为第二状态,则为上述第一子路由设备分配上述第一时间段和上述第二时间段的发送机会,上述第二状态用于指示有用户设备接入上述第一子路由设备。
需要说明的是,当第一子路由设备的设备状态为第二状态时,表示有用户设备接入该第一子路由设备,该第一子路由设备可能有业务数据需要传输。
此时,主路由设备可以将该第一子路由设备确定为活跃设备,为活跃设备分配第一时间段和第二时间段的发送机会,保障活跃设备的传输效率。
可选地,在上述若上述第一子路由设备的设备接入状态为第一状态,则不为上述第一子路由设备分配传输管理周期的第一时间段的发送机会,为上述第一子路由设备分配上述传输管理周期的第二时间段的发送机会之后,还包括:
当接收到上述第一子路由设备发送的第一状态变更通知时,为上述第一子路由设备分配上述第一时间段和上述第二时间段的发送机会。
需要说明的是,在实际的应用场景中,用户设备随时有可能接入子路由设备,或者,断开与子路由设备的连接。
因此,子路由设备的设备接入状态可能受到用户设备的影响,从第一状态变成第二状态,或者,从第二状态变成第一状态。
当子路由设备的设备接入状态发生变化时,子路由设备可以向主路由设备发送状态变更通知,该状态变更通知用于指示子路由设备的设备状态发生了变化。
所以,当主路由设备接收到第一子路由设备发送的第一状态变更通知时,表示第一子路由设备的设备接入状态从第一状态变更为第二状态。
此时,为了保障第一子路由设备的传输效率,主路由设备可以为该第一子路由设备分配第一时间段和第二时间段的发送机会。
可选地,在上述为上述第一子路由设备分配上述第一时间段和上述第二时间段的发送机会之后,还包括:
当接收到上述第一子路由设备发送的第二状态变更通知时,停止为上述第一子路由设备分配上述第一时间段的发送机会,为上述第一子路由设备分配第二时间段的发送机会。
需要说明的是,当主路由设备接收到第一子路由设备发送的第二状态变更通知时,表示第一子路由设备的设备接入状态从第二状态变更为第一状态。
此时,该第一子路由设备没有业务数据需要传输,主路由设备如果继续为该第一子路由设备分配第一时间段和第二时间段的发送机会,可能会浪费较多的时隙。
所以,主路由设备可以停止为该第一子路由设备分配第一时间段的发送机会,为该第一子路由设备分配第二时间段的发送机会,减少该第一子路由设备的发送机会,从而减少被浪费时隙,提高电力线网络的带宽利用率。
可选地,上述方法还包括:
当检测到第二子路由设备接入上述电力线网络时,不为上述第二子路由设备分配上述第一时间段的发送机会,为上述第二子路由设备分配第二时间段的发送机会。
需要说明的是,子路由设备除了设备接入状态可能发生变化以外,还可能接入电力线网络或断开与电力线网络的连接。
第二子路由设备是指新接入电力线网络的子路由设备。当主路由设备检测到第二子路由设备接入电力线网络时,由于新接入的子路由设备通常没有用户设备接入,所以,主路由设备可以默认第二子路由设备为空闲设备,不为第二子路由设备分配第一时间段 的发送机会,为第二子路由设备分配第二时间段的发送机会,以此减少被浪费的时隙,提高电力线网络的带宽利用率。
可选地,在上述不为上述第二子路由设备分配上述第一时间段的发送机会,为上述第二子路由设备分配第二时间段的发送机会之后,还包括:
当接收到上述第二子路由设备发送的第三状态变更通知时,为上述第二子路由设备分配上述第一时间段和上述第二时间段的发送机会。
需要说明的是,当有用户设备接入第二子路由设备时,第二子路由设备可以向主路由设备发送第三变更通知。
当主路由设备接收到第三变更通知时,主路由设备可以确定有用户设备接入第二子路由设备,第二子路由设备为活跃设备。
此时,主路由设备可以为第二子路由设备分配第一时间段和第二时间段的发送机会,以此保障第二子路由设备的传输效率。
可选地,上述方法还包括:
当检测到第二子路由设备接入上述电力线网络时,为上述第二子路由设备分配上述第一时间段和上述第二时间段的发送机会;
若在预设时长内未获取到上述第二子路由设备的设备接入状态,或者,上述第二子路由设备的设备接入状态为第三状态,则停止为上述第二子路由设备分配上述第一时间段的发送机会,为上述第二子路由设备分配上述第二时间段的发送机会,上述第三状态用于指示无用户设备接入上述第二子路由设备。
需要说明的是,在另一些场景中,当主路由设备检测到第二子路由设备接入电力线网络时,主路由设备也可以先为第二子路由设备分配第一时间段和第二时间段的发送机会。
然后,主路由设备等待预设时长。如果主路由设备在预设时长内没有接收到第二子路由设备的设备接入状态,或者,主路由设备接收到的设备接入状态为第三状态,则主路由设备可以将第二子路由设备确定为空闲设备,停止为第二子路由设备分配第一时间段的发送机会,为第二子路由设备分配第二时间段的发送机会,减少第二子路由设备的发送机会,减少被浪费的时隙,提高电力线网络的带宽利用率。
如果主路由设备在预设时长内接收到第二子路由设备的设备接入状态,且该设备接入状态为第四状态,表示有用户设备接入该第二子路由设备。
此时,主路由设备可以保持之前的配置方案,不进行更改。
可选地,上述方法还包括:
当上述第一子路由设备断开与上述电力线网络的连接时,停止为上述第一子路由设备分配上述第一时间段和上述第二时间段的发送机会。
需要说明的是,当主路由设备发现第一子路由设备断开与电力线网络的连接时,表示该第一子路由设备不再通过电力线网络进行数据传输。此时,主路由设备可以停止为该第一子路由设备分配第一时间段和第二时间段的发送机会,减少无效的发送机会,减少被浪费的时隙,提高电力线网络的带宽利用率。
可选地,上述S291,包括:通过状态传输通道获取第一子路由设备的设备接入状态,上述状态传输通道包括上述电力线网络、蓝牙连接、Wi-Fi连接、通用串行总线连 接、网线连接中的一种或多种。
需要说明的是,主路由设备可以通过状态传输通道获取各个子路由设备的设备接入状态。
该状态传输通道可以包括电力线网络、蓝牙连接、Wi-Fi连接、通用串行总线连接、网线连接中的一种或多种。
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
对应于上述实施例所描述的电力线载波通信方法,图30示出了本申请实施例提供的电力线载波通信装置的结构框图,为了便于说明,仅示出与本申请实施例相关的部分。
该装置可以应用于主路由设备,参照图30,该装置包括:
状态获取模块301,用于获取第一子路由设备的设备接入状态;
空闲设置模块302,用于若上述第一子路由设备的设备接入状态为第一状态,则不为上述第一子路由设备分配传输管理周期的第一时间段的发送机会,为上述第一子路由设备分配上述传输管理周期的第二时间段的发送机会;
其中,上述主路由设备和上述第一子路由设备接入了同一电力线网络中,上述第一状态用于指示无用户设备接入上述第一子路由设备,上述第一时间段和上述第二时间段为不相交的时间段。
可选地,上述装置还包括:活跃设置模块,用于若上述第一子路由设备的设备接入状态为第二状态,则为上述第一子路由设备分配上述第一时间段和上述第二时间段的发送机会,上述第二状态用于指示有用户设备接入上述第一子路由设备。
可选地,上述装置还包括:第一变更模块,用于当接收到上述第一子路由设备发送的第一状态变更通知时,为上述第一子路由设备分配上述第一时间段和上述第二时间段的发送机会。
可选地,上述装置还包括:第二变更模块,用于当接收到上述第一子路由设备发送的第二状态变更通知时,停止为上述第一子路由设备分配上述第一时间段的发送机会,为上述第一子路由设备分配第二时间段的发送机会。
可选地,上述装置还包括:第一接入模块,用于当检测到第二子路由设备接入上述电力线网络时,不为上述第二子路由设备分配上述第一时间段的发送机会,为上述第二子路由设备分配第二时间段的发送机会。
可选地,上述装置还包括:第三变更模块,用于当接收到上述第二子路由设备发送的第三状态变更通知时,为上述第二子路由设备分配上述第一时间段和上述第二时间段的发送机会。
可选地,上述装置还包括:
第二接入模块,用于当检测到第二子路由设备接入上述电力线网络时,为上述第二子路由设备分配上述第一时间段和上述第二时间段的发送机会;
第四变更模块,用于若在预设时长内未获取到上述第二子路由设备的设备接入状态,或者,上述第二子路由设备的设备接入状态为第三状态,则停止为上述第二子路由设备分配上述第一时间段的发送机会,为上述第二子路由设备分配上述第二时间段的发送机会,上述第三状态用于指示无用户设备接入上述第二子路由设备。
可选地,上述装置还包括:
设备断开模块,用于当上述第一子路由设备断开与上述电力线网络的连接时,停止为上述第一子路由设备分配上述第一时间段和上述第二时间段的发送机会。
可选地,状态获取模块301,具体用于通过状态传输通道获取第一子路由设备的设备接入状态,上述状态传输通道包括上述电力线网络、蓝牙连接、Wi-Fi连接、通用串行总线连接、网线连接中的一种或多种。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。在本申请所提供的实施例中,应该理解到,所揭露的装置/电子设备和方法,可以通过其它的方式实现。例如,以上所描述的装置/电子设备实施例仅仅是示意性的,例如,上述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。
上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
上述集成的模块/单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读存储介质中。基于这样的理解,本申请实现上述实施例方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,上述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,上述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读存储介质可以包括:能够携带所述计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质等。需要说明的是,所述计算机可读存储介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减,例如在某些司法管辖区,根据立法和专利实践,计算机可读存储介质不包括电载波信号和电信信号。最后应说明的是:以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (13)

  1. 一种电力线载波通信方法,应用于主路由设备,其特征在于,包括:
    获取第一子路由设备的设备接入状态;
    若所述第一子路由设备的设备接入状态为第一状态,则不为所述第一子路由设备分配传输管理周期的第一时间段的发送机会,为所述第一子路由设备分配所述传输管理周期的第二时间段的发送机会;
    其中,所述主路由设备和所述第一子路由设备接入了同一电力线网络中,所述第一状态用于指示无用户设备接入所述第一子路由设备,所述第一时间段和所述第二时间段为不相交的时间段。
  2. 如权利要求1所述的方法,其特征在于,在所述获取第一子路由设备的设备接入状态之后,还包括:
    若所述第一子路由设备的设备接入状态为第二状态,则为所述第一子路由设备分配所述第一时间段和所述第二时间段的发送机会,所述第二状态用于指示有用户设备接入所述第一子路由设备。
  3. 如权利要求1所述的方法,其特征在于,在所述若所述第一子路由设备的设备接入状态为第一状态,则不为所述第一子路由设备分配传输管理周期的第一时间段的发送机会,为所述第一子路由设备分配所述传输管理周期的第二时间段的发送机会之后,还包括:
    当接收到所述第一子路由设备发送的第一状态变更通知时,为所述第一子路由设备分配所述第一时间段和所述第二时间段的发送机会。
  4. 如权利要求2所述的方法,其特征在于,在所述为所述第一子路由设备分配所述第一时间段和所述第二时间段的发送机会之后,还包括:
    当接收到所述第一子路由设备发送的第二状态变更通知时,停止为所述第一子路由设备分配所述第一时间段的发送机会,为所述第一子路由设备分配所述第二时间段的发送机会。
  5. 如权利要求1-4中任一项所述的方法,其特征在于,所述方法还包括:
    当检测到第二子路由设备接入所述电力线网络时,不为所述第二子路由设备分配所述第一时间段的发送机会,为所述第二子路由设备分配所述第二时间段的发送机会。
  6. 如权利要求5所述的方法,其特征在于,在所述不为所述第二子路由设备分配所述第一时间段的发送机会,为所述第二子路由设备分配所述第二时间段的发送机会之后,还包括:
    当接收到所述第二子路由设备发送的第三状态变更通知时,为所述第二子路由设备分配所述第一时间段和所述第二时间段的发送机会。
  7. 如权利要求1-4中任一项所述的方法,其特征在于,所述方法还包括:
    当检测到第二子路由设备接入所述电力线网络时,为所述第二子路由设备分配所述第一时间段和所述第二时间段的发送机会;
    若在预设时长内未获取到所述第二子路由设备的设备接入状态,或者,所述第二子路由设备的设备接入状态为第三状态,则停止为所述第二子路由设备分配所述第一时间段的发送机会,为所述第二子路由设备分配所述第二时间段的发送机会,所述第三状态 用于指示无用户设备接入所述第二子路由设备。
  8. 如权利要求1-7中任一项所述的方法,其特征在于,所述方法还包括:
    当所述第一子路由设备断开与所述电力线网络的连接时,停止为所述第一子路由设备分配所述第一时间段和所述第二时间段的发送机会。
  9. 如权利要求1-8中任一项所述的方法,其特征在于,所述获取第一子路由设备的设备接入状态,包括:
    通过状态传输通道获取第一子路由设备的设备接入状态,所述状态传输通道包括所述电力线网络、蓝牙连接、Wi-Fi连接、通用串行总线连接、网线连接中的一种或多种。
  10. 一种主路由设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器被配置为执行所述计算机程序时实现如权利要求1至9任一项所述的方法。
  11. 一种计算机可读存储介质,所述计算机可读存储介质被配置为存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至9任一项所述的方法。
  12. 一种计算机程序产品,其特征在于,所述计算机程序产品被配置为在主路由设备上运行时,使得主路由设备执行如权利要求1至9任一项所述的方法。
  13. 一种芯片系统,其特征在于,所述芯片系统包括存储器和处理器,所述处理器被配置为执行所述存储器中存储的计算机程序,以实现如权利要求1至9任一项所述的方法。
PCT/CN2022/125120 2021-10-19 2022-10-13 电力线载波通信方法、主路由设备及装置 WO2023066128A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111215714.0A CN115996072A (zh) 2021-10-19 2021-10-19 电力线载波通信方法、主路由设备及装置
CN202111215714.0 2021-10-19

Publications (1)

Publication Number Publication Date
WO2023066128A1 true WO2023066128A1 (zh) 2023-04-27

Family

ID=85989084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125120 WO2023066128A1 (zh) 2021-10-19 2022-10-13 电力线载波通信方法、主路由设备及装置

Country Status (2)

Country Link
CN (1) CN115996072A (zh)
WO (1) WO2023066128A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010032899A (ja) * 2008-07-30 2010-02-12 Daiichikosho Co Ltd カラオケホスト装置
CN103974423A (zh) * 2014-05-08 2014-08-06 江苏物联网研究发展中心 一种无线帧长自适应的通信方法及节点设备
CN107949062A (zh) * 2017-12-01 2018-04-20 湖南智领通信科技有限公司 基于多级帧结构的宽带自组网时隙资源动态分配方法
CN107959976A (zh) * 2017-11-06 2018-04-24 海能达通信股份有限公司 一种Mesh网络中资源调度方法及Mesh网络节点
CN112533264A (zh) * 2020-11-10 2021-03-19 烽火通信科技股份有限公司 一种组网场景模式的实现方法与装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010032899A (ja) * 2008-07-30 2010-02-12 Daiichikosho Co Ltd カラオケホスト装置
CN103974423A (zh) * 2014-05-08 2014-08-06 江苏物联网研究发展中心 一种无线帧长自适应的通信方法及节点设备
CN107959976A (zh) * 2017-11-06 2018-04-24 海能达通信股份有限公司 一种Mesh网络中资源调度方法及Mesh网络节点
CN107949062A (zh) * 2017-12-01 2018-04-20 湖南智领通信科技有限公司 基于多级帧结构的宽带自组网时隙资源动态分配方法
CN112533264A (zh) * 2020-11-10 2021-03-19 烽火通信科技股份有限公司 一种组网场景模式的实现方法与装置

Also Published As

Publication number Publication date
CN115996072A (zh) 2023-04-21

Similar Documents

Publication Publication Date Title
EP3893475B1 (en) Method for automatically switching bluetooth audio encoding method and electronic apparatus
CN111757477B (zh) 一种上报能力的方法及用户设备
WO2020133183A1 (zh) 音频数据的同步方法及设备
WO2020124610A1 (zh) 一种传输速率的控制方法及设备
EP3968133A1 (en) Air-mouse mode implementation method and related device
WO2021082829A1 (zh) 蓝牙连接方法及相关装置
WO2021043219A1 (zh) 一种蓝牙回连方法及相关装置
EP4192058A1 (en) Bluetooth communication method, terminal device, and computer-readable storage medium
CN112740728B (zh) 一种蓝牙通信方法及电子设备
EP4106238A1 (en) Wireless communication system and method
CN114868417A (zh) 一种通信方法、通信装置和系统
CN113498108B (zh) 基于业务类型调整数据传输策略的芯片、设备以及方法
WO2022262492A1 (zh) 数据下载方法、装置和终端设备
WO2022257592A1 (zh) 一种开关切换方法及相关装置
US20230388170A1 (en) Method and Apparatus for Determining Minimum Slot Offset Value
WO2022042265A1 (zh) 通信方法、终端设备及存储介质
WO2021027623A1 (zh) 一种设备能力发现方法及p2p设备
WO2021043250A1 (zh) 一种蓝牙通信方法及相关装置
CN110798893A (zh) 一种解决共存干扰的方法及电子设备
WO2023066128A1 (zh) 电力线载波通信方法、主路由设备及装置
WO2021197163A1 (zh) 一种发送功率控制方法、终端、芯片系统与系统
CN115378550B (zh) 信号传输控制方法、系统及相关装置
EP4207870A1 (en) Data sending method, electronic device, chip system, and storage medium
CN116708317B (zh) 数据包mtu的调整方法、装置和终端设备
WO2023226881A1 (zh) 一种设备注册方法、系统和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22882738

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022882738

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022882738

Country of ref document: EP

Effective date: 20240320