WO2023066048A1 - 电场发生装置及其控制方法、计算机可读存储介质 - Google Patents

电场发生装置及其控制方法、计算机可读存储介质 Download PDF

Info

Publication number
WO2023066048A1
WO2023066048A1 PCT/CN2022/124124 CN2022124124W WO2023066048A1 WO 2023066048 A1 WO2023066048 A1 WO 2023066048A1 CN 2022124124 W CN2022124124 W CN 2022124124W WO 2023066048 A1 WO2023066048 A1 WO 2023066048A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrical signal
electrodes
electrode
switch
electric field
Prior art date
Application number
PCT/CN2022/124124
Other languages
English (en)
French (fr)
Inventor
衷兴华
汪龙
杨克
周丽波
陶银炯
Original Assignee
杭州维纳安可医疗科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州维纳安可医疗科技有限责任公司 filed Critical 杭州维纳安可医疗科技有限责任公司
Priority to KR1020247013020A priority Critical patent/KR20240060830A/ko
Publication of WO2023066048A1 publication Critical patent/WO2023066048A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/40Applying electric fields by inductive or capacitive coupling ; Applying radio-frequency signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/025Digital circuitry features of electrotherapy devices, e.g. memory, clocks, processors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0408Use-related aspects
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0472Structure-related aspects
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0472Structure-related aspects
    • A61N1/0476Array electrodes (including any electrode arrangement with more than one electrode for at least one of the polarities)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/08Arrangements or circuits for monitoring, protecting, controlling or indicating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36002Cancer treatment, e.g. tumour
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • A61N1/3603Control systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/40ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to mechanical, radiation or invasive therapies, e.g. surgery, laser therapy, dialysis or acupuncture

Definitions

  • the present application relates to the field of surgery, and in particular, the present application relates to an electric field generating device, a control method thereof, and a computer-readable storage medium.
  • Electric field therapy is a kind of therapy implemented by portable and non-invasive medical devices. Its principle is to use a low-intensity, medium-frequency designed electric field to act on target biological tissues, such as tubulin that proliferates diseased cells, and interfere with the mitosis of diseased cells. Affected diseased cells undergo apoptosis and inhibit diseased cell growth.
  • the electrical signal generator outputs a series of electrical signals to the electrode pair. Since the two electrodes in the electrode pair are facing each other, the A vertical electric field is generated between two facing electrodes of the electrode pair, and the vertical electric field acts on the target biological tissue region containing the target biological tissue.
  • the inventors of the present application have found that the electrode pair is located on the periphery of the target biological tissue area, and the target biological tissue (such as diseased cells) in the target biological tissue area is not necessarily located within the vertical electric field range of the existing electrode pair, or not It is completely within the range of the existing vertical electric field, that is, the coverage of the existing vertical electric field is too fixed and too small, resulting in limited coverage of the target biological tissue, resulting in limited intensity of the electric field covering the target biological tissue, resulting in a Inhibition of division of target biological tissues such as cells is poor.
  • the target biological tissue such as diseased cells
  • the present application proposes an electric field generating device and its control method, and a computer-readable storage medium to solve the problem in the prior art that the intensity of the electric field covering the target biological tissue area is limited, thus covering the target biological tissue area.
  • the intensity of the electric field of the target biological tissue is limited, which leads to the technical problem that the inhibitory effect on the division of the target biological tissue such as diseased cells is not good.
  • an electric field generating device including:
  • n electrodes used to be arranged around the target biological tissue area according to the design; n is an integer not less than 3;
  • An electrical signal generator electrically connected to the n electrodes
  • the control signal generator is electrically connected with the electrical signal generator, and is used to control the electrical signal generator to output the first electrical signal to the m electrodes in the n electrodes, and to control the electrical signal generator to output the first electrical signal to at least two of the n-m electrodes.
  • the electrodes output a second electrical signal, so that an electric field is generated between the electrode with the first electrical signal and the electrode with the second electrical signal; the voltage of the second electrical signal is smaller than the voltage of the first electrical signal, 1 ⁇ m ⁇ n, m is integer.
  • the second aspect of the present application provides a control method of an electric field generating device, which is applied to the electric field generating device described in the first aspect, and the control method of the electric field generating device includes:
  • n is an integer not less than 3, 1 ⁇ m ⁇ n, m is an integer;
  • the electric field generating device includes an electric signal generator and n electrodes electrically connected; the voltage of the second electric signal is lower than the voltage of the first electric signal.
  • the third aspect of the present application provides a computer-readable storage medium, which stores a computer program.
  • the computer program is executed by a processor, the steps of the control method of the electric field generating device as described below are implemented:
  • n is an integer not less than 3, 1 ⁇ m ⁇ n, m is an integer;
  • the electric field generating device includes an electric signal generator and n electrodes electrically connected; the voltage of the second electric signal is lower than the voltage of the first electric signal.
  • n electrodes are arranged around the target biological tissue area according to the design, and the first electrical signal is output to m electrodes in the n electrodes by controlling the electrical signal generator, and the generation of the electrical signal is controlled.
  • the device outputs the second electric signal to at least two electrodes among the n-m electrodes, n is an integer not less than 3, and 1 ⁇ m ⁇ n, m is an integer.
  • the number of electrodes located around the target biological tissue area can be flexibly selected, and which electrodes have the second electrical signal can be controlled, so that the electrodes with the first electrical signal are the same as the electrodes with the first electrical signal.
  • the coverage area of the electric field generated between the electrodes of the second electrical signal matches the location of the target biological tissue most, so this embodiment can improve the matching degree of the coverage area of the electric field and the location of the target biological tissue, and the coverage of the electric field on the target biological tissue efficiency, flexibility or adaptability, which is conducive to increasing the intensity of the electric field covering the target biological tissue, and can further improve the inhibitory effect on the division of target biological tissue such as diseased cells.
  • multiple electric fields can be generated between the electrode with the first electrical signal and at least two electrodes with the second electrical signal, and the superposition of multiple electric fields makes the electric field strength in the superimposed area of the electric field be enhanced. It is reasonable to select at least two electrodes with the second electrical signal.
  • the electrode of the second electric signal can increase the coverage of the target biological tissue in the electric field superposition area, thereby improving the inhibitory effect on the division of the target biological tissue such as diseased cells.
  • Fig. 1 is a schematic frame diagram of an electric field generating device provided in an embodiment of the present application
  • Fig. 2 is a schematic frame diagram of another electric field generating device provided in the embodiment of the present application.
  • Fig. 3 is a schematic diagram of the electric field when another electric field generating device provided in the embodiment of the present application adopts six electrode arrangements;
  • FIG. 4 is a schematic diagram of a two-dimensional model of a target biological tissue region provided in an embodiment of the present application.
  • Figure 5a is a diagram of the field intensity distribution of a single electrode grounded case of a two-dimensional model of the target biological tissue region provided by the embodiment of the present application;
  • Figure 5b is a diagram of the field intensity distribution of a two-electrode grounding situation of a two-dimensional model of the target biological tissue region provided by the embodiment of the present application;
  • Fig. 5c is a diagram of the field intensity distribution of another two-electrode grounding situation of the two-dimensional model of the target biological tissue region provided by the embodiment of the present application;
  • FIG. 6 is a schematic diagram of a three-dimensional model of the human chest cavity provided by the embodiment of the present application.
  • FIG. 7 is a schematic diagram of a double-layer structure of a single electrode of the three-dimensional model of the human chest cavity provided by the embodiment of the present application;
  • Fig. 8a is a schematic diagram of the distribution of electrode arrays on the chest, back, and side of the human thoracic lung cancer treatment of the three-dimensional model of the human thoracic cavity provided by the embodiment of the present application;
  • Fig. 8b is a schematic diagram of the distribution of the electrode array on the back of the human thoracic lung cancer treatment of the three-dimensional model of the human thoracic cavity provided by the embodiment of the present application;
  • Figures 9a-9d are schematic diagrams of the size and location distribution of four virtual tumor models of the three-dimensional model of the human chest cavity provided by the embodiment of the present application;
  • Fig. 10 is a graph of the electric field strength and volume of the three-dimensional model of the human chest cavity provided by the embodiment of the present application;
  • Fig. 11a is a schematic diagram of the electric field distribution at the level of the thorax when the tumor T1 of the three-dimensional model of the human thorax provided by the embodiment of the present application is grounded with a single-electrode array on the back of the human body;
  • Fig. 11b is a schematic diagram of the electric field distribution at the level of the thoracic cavity when the two-electrode array is grounded on the left side of the human body and the back of the tumor T1 of the three-dimensional model of the human thoracic cavity provided by the embodiment of the present application;
  • Figure 11c is a schematic diagram of the electric field distribution at the level of the chest cavity when the two-electrode array on the back of the human body is grounded on the tumor T1 of the three-dimensional model of the human chest cavity provided by the embodiment of the present application;
  • Fig. 12a is a schematic diagram of the electric field distribution at the level of the thoracic cavity when the single-electrode array on the back of the human body is grounded in the tumor T2 of the three-dimensional model of the human thoracic cavity provided by the embodiment of the present application;
  • Fig. 12b is a schematic diagram of the electric field distribution at the level of the thoracic cavity of the three-dimensional model of the human thoracic cavity provided by the embodiment of the present application when the tumor T2 is grounded on the left side and the back of the human body with double electrode arrays;
  • Fig. 12c is a schematic diagram of the electric field distribution at the level of the thoracic cavity when the double-electrode array on the back of the human body is grounded for the tumor T2 of the three-dimensional model of the human thoracic cavity provided by the embodiment of the present application;
  • Fig. 13a is a schematic diagram of the electric field distribution in the horizontal plane of the thoracic cavity when the single-electrode array grounding mode of the tumor T3 on the back of the human body of the three-dimensional model of the human thoracic cavity provided by the embodiment of the present application;
  • Fig. 13b is a schematic diagram of the electric field distribution at the level of the thorax when the right side and the back of the tumor T3 of the three-dimensional model of the human thorax provided by the embodiment of the present application are grounded with double electrode arrays;
  • Fig. 13c is a schematic diagram of the electric field distribution in the horizontal plane of the thorax when the double-electrode array on the human back of the tumor T3 of the three-dimensional model of the human thorax provided by the embodiment of the present application is grounded;
  • Fig. 14a is a schematic diagram of the electric field distribution in the horizontal plane of the thoracic cavity when the single-electrode array grounding mode of the tumor T4 human back of the three-dimensional model of the human thoracic cavity provided by the embodiment of the present application;
  • Figure 14b is a schematic diagram of the electric field distribution at the level of the thorax when the two-electrode array on the right side of the human body and the back of the tumor T4 of the three-dimensional model of the human thorax provided by the embodiment of the present application are grounded;
  • Fig. 14c is a schematic diagram of the electric field distribution at the level of the thoracic cavity when the double-electrode array on the back of the human body with tumor T4 is grounded in the three-dimensional model of the human thoracic cavity provided by the embodiment of the present application.
  • 10-n electrodes 25-electric signal generator, 20-first electric signal generating circuit, 30-second electric signal generating circuit, 40-control signal generator, 50-first switch assembly, 501-first switch Unit, 60-second switch assembly, 601-second switch unit, 70-multi-channel analog switch unit;
  • the present application provides an electric field generating device, its control method, and a computer-readable storage medium, which are used to solve the problems existing in the prior art due to the limited strength of the electric field covering the target biological tissue area, thus causing the electric field covering the target biological tissue to The strength is limited, which leads to the technical problem of poor inhibition of the division of target biological tissues such as diseased cells
  • the inventors of the present application have conducted research and found that the electrode pair is located on the periphery of the target biological tissue area, and the target biological tissue (such as diseased cells) in the target biological tissue area is not necessarily located within the vertical electric field range of the existing electrode pair, or not It is completely within the range of the existing vertical electric field, that is, the coverage of the existing vertical electric field is too fixed and too small, resulting in limited coverage of the target biological tissue, resulting in limited intensity of the electric field covering the target biological tissue, resulting in a Inhibition of division of target biological tissues such as cells is poor.
  • the target biological tissue such as diseased cells
  • the device for generating a target electric field and its control method provided by the present application aim to solve the above technical problems in the prior art.
  • the electric field generating device provided in the embodiment of the present application is used for surgery, and is suitable for surgical medical instruments.
  • the electric field generating device includes: n electrodes 10 , an electrical signal generator 25 and a control signal generator 40 .
  • n electrodes 10 are designed to be arranged around the target biological tissue area; n is an integer not less than 3.
  • the target biological tissue area includes target biological tissue and normal biological tissue; the target biological tissue includes diseased cells, tumors or lesions.
  • Lesion refers to the part of the body where the disease occurs, or a localized diseased tissue in the body that contains pathogenic microorganisms. For example, if a certain part of the lung is destroyed by tuberculosis bacteria, this part is the focus of tuberculosis.
  • Normal biological tissue refers to biological tissue that does not contain diseased cells, tumors, and lesions, and can be considered as biological tissue other than the target biological tissue.
  • the electrical signal generator 25 is electrically connected to the n electrodes 10 .
  • the control signal generator 40 is electrically connected to the electrical signal generator 25, and is used to control the electrical signal generator 25 to output the first electrical signal to the m electrodes in the n electrodes 10, and to control the electrical signal generator 25 to output the first electrical signal to the n-m electrodes.
  • At least two electrodes of the at least two electrodes output a second electrical signal, so that an electric field is generated between the electrode with the first electrical signal and the electrode with the second electrical signal; the voltage of the second electrical signal is less than the voltage of the first electrical signal, 1 ⁇ m ⁇ n and m are integers.
  • the first electrical signal and the second electrical signal may be output by one electrical signal generator, or may be output by two electrical signal generators respectively.
  • the n electrodes 10 can be attached to target parts of the human body or animal body in a designed manner.
  • control signal generator 40 can be a CPU (Central Processing Unit, central processing unit), a general purpose processor, a DSP (Digital Signal Processor, a data signal processor), an ASIC (Application Specific Integrated Circuit, an application specific integrated circuit), an FPGA (Field-Programmable GateArray, Field Programmable Gate Array) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It can implement or execute the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the control signal generator 40 may also be a combination that realizes computing functions, such as a combination of one or more microprocessors, a combination of DSP and a microprocessor, and the like.
  • the number of electrodes located around the target biological tissue area can be flexibly selected, and which electrodes have the second electrical signal can be controlled, so that the electrodes with the first electrical signal are the same as the electrodes with the first electrical signal.
  • the coverage area of the electric field generated between the electrodes of the second electrical signal matches the location of the target biological tissue most, so this embodiment can improve the matching degree of the coverage area of the electric field and the location of the target biological tissue, and the coverage of the electric field on the target biological tissue efficiency, flexibility or adaptability, which is conducive to increasing the intensity of the electric field covering the target biological tissue, and can further improve the inhibitory effect on the division of target biological tissue such as diseased cells.
  • multiple electric fields can be generated between the electrode with the first electrical signal and at least two electrodes with the second electrical signal, and the superposition of multiple electric fields makes the electric field strength in the superimposed area of the electric field be enhanced. It is reasonable to select at least two electrodes with the second electrical signal.
  • the electrode of the second electric signal can increase the coverage of the target biological tissue in the electric field superposition area, thereby improving the inhibitory effect on the division of the target biological tissue such as diseased cells.
  • the electrical signal generator 25 includes a first electrical signal generating circuit 20 and a second electrical signal generating circuit 30 .
  • the first electrical signal generating circuit 20 is electrically connected to the n electrodes for outputting the first electrical signal; the second electrical signal generating circuit 30 is electrically connected to the n electrodes for outputting the second electrical signal.
  • the electric field generating device further includes: a first switch assembly 50 and a second switch assembly 60;
  • the first electrical signal generating circuit 20 is electrically connected to the n electrodes 10 through the first switch assembly 50, and the control signal generator 40 is electrically connected to the first switch assembly 50;
  • the second electrical signal generating circuit 30 is electrically connected to the n electrodes 10 through the second switch assembly 60, and the control signal generator 40 is electrically connected to the second switch assembly 60;
  • the control signal generator 40 is used to control the first switch assembly 50 to transmit the first electrical signal to m electrodes among the n electrodes 10, and to control the second switch assembly 60 to transmit the second electrical signal to at least one of the n-m electrodes. two electrodes such that an electric field is generated between the electrode with the first electrical signal and the electrode with the second electrical signal.
  • the first switch assembly 50 includes n first switch units 501; the second switch assembly 60 includes n second switch units 601;
  • the n first switch units 501 are electrically connected to the n electrodes 10 in one-to-one correspondence, and are electrically connected to the first electrical signal generating circuit 20 and the control signal generator 40;
  • the n second switch units 601 are electrically connected to the n electrodes 10 in one-to-one correspondence, and are electrically connected to both the second electrical signal generating circuit 30 and the control signal generator 40 .
  • the n first switch units include: No. 1 first switch unit to No. n first switch unit; the n second switch units include: No. 1 second switch unit to No. n second switch unit; n The electrodes include: No. 1 electrode to No. n electrode.
  • No. 1 first switch unit to No. n first switch unit, No. 1 second switch unit to No. n second switch unit are respectively electrically connected to No. 1 electrode to No. n electrode;
  • No. 2 switch unit is electrically connected to No. 1 electrode, No. 2 first switch unit and No. 2 second switch unit are electrically connected to No. 2 electrode, ..., No. n first switch unit, No. n second switch unit Both are electrically connected to the n-th electrode.
  • the electric field generating device further includes a multi-channel analog switch unit 70, and the multi-channel analog switch unit 70 is connected with n first switch units 501, n second switch units 601, and a control signal generator 40. Both are electrically connected, and are used to control the switching of the transmission path of the control signal output by the signal generator 40 .
  • the multi-channel analog switch unit 70 has the advantages of fast switching speed, no jitter, low power consumption, small size, reliable operation and easy control.
  • the electric field generating device also includes at least one of the following:
  • the first electrical signal includes: an AC voltage signal, a pulse voltage signal or a square wave voltage signal;
  • the second electrical signal includes: a constant voltage signal or a fluctuating voltage signal
  • the absolute value of the voltage amplitude of the first electrical signal is not less than 0 volts and not greater than 500 volts;
  • the absolute value of the voltage amplitude of the second electrical signal is not less than 0 volts and not greater than 10 volts;
  • the strength of the electric field is not less than 0.1 volts per centimeter and not more than 10 volts per centimeter;
  • the frequency of the electric field is not less than 50 kHz and not greater than 500 kHz;
  • a constant voltage signal means that the voltage remains unchanged;
  • a fluctuating voltage signal means that the sum of the absolute values of the positive and negative voltage deviations does not exceed 10% of the rated value.
  • the first electrical signal generating circuit 20 includes: an alternating current signal generating circuit, a pulse electrical signal generating circuit or a square wave electrical signal generating circuit; an alternating current signal generating circuit for outputting an alternating voltage signal; a pulse electrical signal generating circuit for It is used to output pulse voltage signal; the square wave electrical signal generating circuit is used to output square wave voltage signal.
  • the absolute value of the voltage amplitude of the second electrical signal is 0 volts, 1 volts or 5 volts.
  • the target biological tissue region 80 can be the target region of the patient, there are 6 electrodes (electrode 101, electrode 102, electrode 103, electrode 104, electrode 105 and electrode 106 ) are externally placed on the target biological tissue area 80 (eg electrodes 101-106 may be configured to be placed against the patient's body).
  • the first electrical signal generating circuit 20 is electrically connected to the 6 electrodes, and is used to output the first electrical signal to the 6 electrodes;
  • the second electrical signal generating circuit 30 is electrically connected to the 6 electrodes, and is used to output the first electrical signal to the 6 electrodes. second electrical signal.
  • control signal generator 40 controls a first switch unit 501 to transmit the first electrical signal to the electrode 101, and controls other first switch units 501 to be turned off; at the same time, it controls the second switch unit electrically connected to the electrode 101 601 is turned off, and controls the rest of the second switch unit 601 to transmit the second electrical signal to the electrodes 102-106.
  • the control electrode 101 has the first electric signal
  • the control electrodes 102-106 have the second electric signal
  • the first electric field is generated between the electrode 101 and the electrode 102
  • the second electric field is generated between the electrode 101 and the electrode 103
  • a third electric field is generated between the electrode 101 and the electrode 104
  • a fourth electric field is generated between the electrode 101 and the electrode 105
  • a fifth electric field is generated between the electrode 101 and the electrode 106 .
  • the first electric signal applied to the electrode 101 is controlled to be a high voltage signal (for example, between 0 and 500V), and the second electric signal applied to the electrodes 102-106 is controlled to be a low voltage signal (for example, 0 to 10V), that is, the electrode 101
  • the electrode 101 There are multiple potential differences between the electrode 101 and the electrodes 102-106, and multiple electric fields are generated between the electrode 101 and the electrodes 102-106, thereby increasing the coverage area of the electric field in the patient's target area, thereby improving the coverage in the patient's target area.
  • the intensity of the electric field, thereby increasing the intensity of the electric field covering the target biological tissue, the target biological tissue area includes the target biological tissue and normal biological tissue, and improves the inhibitory effect on the division of the target biological tissue such as diseased cells.
  • control electrode 101 and the electrode 102 can also have the first electrical signal, and the control electrodes 103-106 have the second electrical signal; or, the control electrode 101 has the first electrical signal, and the control electrode 103 and the electrode 105 both have the second electrical signal. or, the control electrode 101 has a first electrical signal, and the control electrode 102, the electrode 104, and the electrode 106 all have a second electrical signal; or, the control electrode 101 has a first electrical signal, and the control electrode 103, the electrode 104, and the electrode 105 all have a second electrical signal; There is a second electrical signal, etc., which are not particularly limited in this application.
  • the number of electrodes located around the target biological tissue area can be flexibly selected, and which electrodes have the second electrical signal can be controlled, so that the electrodes with the first electrical signal are the same as the electrodes with the first electrical signal.
  • the coverage area of the electric field generated between the electrodes of the second electrical signal matches the location of the target biological tissue most, so this embodiment can improve the matching degree of the coverage area of the electric field and the location of the target biological tissue, and the coverage of the electric field on the target biological tissue efficiency, flexibility or adaptability, which is conducive to increasing the intensity of the electric field covering the target biological tissue, and can further improve the inhibitory effect on the division of target biological tissue such as diseased cells.
  • multiple electric fields can be generated between the electrode with the first electrical signal and at least two electrodes with the second electrical signal, and the superposition of multiple electric fields makes the electric field strength in the superimposed area of the electric field be enhanced. It is reasonable to select at least two electrodes with the second electrical signal.
  • the electrode of the second electric signal can increase the coverage of the target biological tissue in the electric field superposition area, thereby improving the inhibitory effect on the division of the target biological tissue such as diseased cells.
  • the switch unit 601 is turned off, and the remaining second switch units 601 are synchronously controlled to be turned on sequentially according to the design sequence, and the second electrical signal is sequentially transmitted to the electrodes 102-106 according to the design sequence. That is, the electrode 101 continues to have the first electrical signal, and the electrodes 102-106 have the second electrical signal sequentially according to the designed sequence (that is, the second electrical signal is switched among the electrodes 102-106 according to the designed sequence).
  • the design sequence includes: clockwise, counterclockwise, n-pointed star, or various jumping dislocation sequences.
  • the time interval for each second switch unit 601 to be turned on or off sequentially according to the design sequence is not less than 20 milliseconds and not more than 500 milliseconds.
  • control electrode 101 has a first electrical signal within a first time period
  • control electrode 102 has a second electrical signal within a second time period
  • control electrode 103 has a second electrical signal within a third time period
  • the electrode 104 has the second electric signal in the fourth time period
  • control electrode 105 has the second electric signal in the fifth time period
  • control electrode 106 has the second electric signal in the sixth time period.
  • the above-mentioned first time period, The time of the second time period, the third time period, the fourth time period, the fifth time period, and the sixth time period may be all the same, all different, or partly the same, which can be set according to the actual situation, and this application does not make special limited.
  • the remaining electrodes 102-106 are controlled to have the second electrical signal sequentially according to the design order, and the voltage of the second electrical signal possessed by the remaining electrodes 102-106 is lower than that of the first electrical signal.
  • the power consumption of the electric field generating device is reduced, thereby reducing the power consumption of the electric field generating device and prolonging the standby time of the battery used for power supply of the electric field generating device.
  • the electric field generated by the electric field generating device is used to destroy diseased cells or inhibit the division of diseased cells.
  • These electric fields are called TTF (Tumor Treating Field, tumor treatment field) in this application.
  • TTF can prevent the active cells (such as cancer cells) from rapidly proliferating Proliferate and destroy the living cells.
  • the six first switch units 501 are controlled to be turned on sequentially according to the design sequence, and the first electrical signals are sequentially transmitted to the corresponding electrodes according to the design sequence, and the synchronous control and The six second switch units 601 that are electrically connected to the corresponding electrodes are turned off sequentially according to the designed sequence, and the second switch units 601 that are not turned off are synchronously controlled to be turned on sequentially according to the designed sequence, and the second electrical signals are sequentially transmitted to the unplugged second switch units 601 according to the designed sequence.
  • the design sequence includes: clockwise, counterclockwise, n-pointed star, or various jumping dislocation sequences.
  • the time interval for each second switch unit 61 to be turned on or off sequentially according to the design sequence is not less than 20 milliseconds and not more than 500 milliseconds.
  • the time for controlling each electrode to have the first electrical signal and the time to have the second electrical signal can be set according to actual conditions, which are not specifically limited in this application.
  • the electrodes 101-106 have the first electrical signal and the second electrical signal sequentially according to the design sequence, which further reduces the power consumption of the electric field generating device, thereby preventing the electric field generating device from overheating.
  • the embodiment of the present application provides a control method of an electric field generator, which is applied to the electric field generator in any optional embodiment above, and the control method of the electric field generator includes:
  • n is an integer not less than 3, 1 ⁇ m ⁇ n, m is an integer;
  • the electric field generating device includes an electric signal generator and n electrodes electrically connected; the voltage of the second electric signal is lower than the voltage of the first electric signal.
  • n electrodes are arranged around the target biological tissue area according to the design, and by controlling the electric signal generator to output the first electric signal to m electrodes among the n electrodes, And control the electrical signal generator to output the second electrical signal to at least two electrodes among the n-m electrodes, n is an integer not less than 3, 1 ⁇ m ⁇ n, m is an integer, the embodiment of the present application can be based on the target biological tissue in The position of the target biological tissue area, flexibly select the number of electrodes located around the target biological tissue area, and control which electrodes have the second electrical signal, so that the electrode with the first electrical signal and the electrode with the second electrical signal are generated
  • the coverage area of the electric field best matches the location of the target biological tissue, so this embodiment can improve the matching degree between the coverage area of the electric field and the location of the target biological tissue, and the coverage, flexibility or adaptability of the electric field to the target biological tissue, thereby having It is beneficial to increase the intensity of the
  • multiple electric fields can be generated between the electrode with the first electrical signal and at least two electrodes with the second electrical signal, and the superposition of multiple electric fields makes the electric field strength in the superimposed area of the electric field be enhanced. It is reasonable to select at least two electrodes with the second electrical signal.
  • the electrode of the second electric signal can increase the coverage of the target biological tissue in the electric field superposition area, thereby improving the inhibitory effect on the division of the target biological tissue such as diseased cells.
  • the electrical signal generator is controlled to output the first electrical signal to m electrodes in the n electrodes, and the electrical signal generator is controlled to output the second electrical signal to at least two electrodes in the n-m electrodes, so that there is generating an electric field between an electrode with a first electrical signal and an electrode with a second electrical signal, comprising:
  • controlling the first switch assembly to transmit the first electrical signal to m electrodes among the n electrodes, and controlling the second switch assembly to transmit the second electrical signal to at least two electrodes among the n-m electrodes, so that the first electrical signal An electric field is generated between the electrode of the electrode and the electrode having the second electric signal;
  • the electric signal generator includes: a first electric signal generating circuit and a second electric signal generating circuit; the electric field generating device also includes: a first switch assembly and a second switch assembly; the first switch assembly and the first electric signal generating circuit, the control signal The generator and the n electrodes are all electrically connected; the second switch assembly is electrically connected to the second electrical signal generating circuit, the control signal generator, and the n electrodes.
  • the first switch assembly is controlled to transmit the first electrical signal to m electrodes among the n electrodes
  • the second switch assembly is controlled to transmit the second electrical signal to at least two electrodes among the n-m electrodes, causing an electric field between an electrode with a first electrical signal and an electrode with a second electrical signal, comprising:
  • the No. 1 second switch unit is turned off, and at least two second switch units from the No. 2 second switch unit to the No. n second switch unit are controlled to transmit the second electrical signal to the n electrodes except the No. 1 electrode at least two electrodes.
  • the first switch assembly includes n first switch units; the second switch assembly includes n second switch units; the n first switch units include: No. 1 first switch unit to No. n first switch units; n second The switch unit includes: No. 1 second switch unit to No. n second switch unit; and the n electrodes include: No. 1 electrode to No. n electrode.
  • No. 1 first switch unit to No. n first switch unit, No. 1 second switch unit to No. n second switch unit are respectively electrically connected to No. 1 electrode to No. n electrode;
  • No. 2 switch unit is electrically connected to No. 1 electrode, No. 2 first switch unit and No. 2 second switch unit are electrically connected to No. 2 electrode, ..., No. n first switch unit, No. n second switch unit Both are electrically connected to the n-th electrode.
  • n can also be other numbers, such as 20, 30, 50, etc., and the number is not limited.
  • the target biological tissue region 80 can be the target region of the patient, there are 6 electrodes (electrode 101, electrode 102, electrode 103, electrode 104, electrode 105 and electrode 106 ), that is, electrodes No. 1 to No. 6 are all externally placed on the target biological tissue area 80 (for example, the electrodes 101-106 can be configured to be placed against the patient's body).
  • There are six first switch units 501 in FIG. 3 that is, the first switch unit No. 1 to the first switch unit No. 6.
  • There are six second switch units 601 in FIG. 3 that is, No. 1 second switch unit to No. 6 second switch unit.
  • the first electrical signal generating circuit 20 is electrically connected to the 6 electrodes, and is used to output the first electrical signal to the 6 electrodes;
  • the second electrical signal generating circuit 30 is electrically connected to the 6 electrodes, and is used to output the first electrical signal to the 6 electrodes. second electrical signal.
  • control signal generator 40 controls a first switch unit 501 to transmit the first electrical signal to the electrode 101, and controls other first switch units 501 to be turned off; at the same time, it controls the second switch unit electrically connected to the electrode 101 601 is turned off, and controls the remaining second switch units 601 to transmit the second electrical signal to the electrodes 102-106.
  • the control electrode 101 has the first electric signal
  • the control electrodes 102-106 have the second electric signal
  • the first electric field is generated between the electrode 101 and the electrode 102
  • the second electric field is generated between the electrode 101 and the electrode 103
  • a third electric field is generated between the electrode 101 and the electrode 104
  • a fourth electric field is generated between the electrode 101 and the electrode 105
  • a fifth electric field is generated between the electrode 101 and the electrode 106 .
  • the first electric signal applied to the electrode 101 is controlled to be a high voltage signal (for example, between 0 and 500V), and the second electric signal applied to the electrodes 102 to 106 is controlled to be a low voltage signal (for example, 0 to 10V), that is, the electrode 101
  • a high voltage signal for example, between 0 and 500V
  • the second electric signal applied to the electrodes 102 to 106 is controlled to be a low voltage signal (for example, 0 to 10V)
  • the electrode 101 There are multiple potential differences between the electrodes 102-106, and multiple electric fields are generated between the electrode 101 and the electrodes 102-106.
  • the superposition of multiple electric fields makes the electric field strength in the superposition area of the electric field enhanced. It is reasonable to select at least two with the second
  • the electrode of the second electric signal can increase the coverage of the target biological tissue in the electric field superposition area, thereby improving the inhibitory effect on the division of the target biological tissue such as diseased cells.
  • control electrodes 101 and 102 can also have the first electrical signal, and the control electrodes 103-106 can have the second electrical signal; or, the control electrode 101 can have the first electrical signal, and both the control electrode 103 and the electrode 105 can have the second electrical signal.
  • control electrode 101 has the first electric signal, and the control electrode 102, the electrode 104 and the electrode 106 all have the second electric signal; or, the control electrode 101 has the first electric signal, and the control electrode 103, the electrode 104 and the electrode 105 all have the
  • the second electrical signal and the like are not particularly limited in this application.
  • the number of electrodes located around the target biological tissue area can be flexibly selected, and which electrodes have the second electrical signal can be controlled, so that the electrodes with the first electrical signal are the same as the electrodes with the first electrical signal.
  • the coverage area of the electric field generated between the electrodes of the second electrical signal matches the location of the target biological tissue most, so this embodiment can improve the matching degree of the coverage area of the electric field and the location of the target biological tissue, and the coverage of the electric field on the target biological tissue efficiency, flexibility or adaptability, which is conducive to increasing the intensity of the electric field covering the target biological tissue, and can further improve the inhibitory effect on the division of target biological tissue such as diseased cells.
  • the first switch assembly is controlled to transmit the first electrical signal to m electrodes among the n electrodes
  • the second switch assembly is controlled to transmit the second electrical signal to at least two electrodes among the n-m electrodes, causing an electric field between an electrode with a first electrical signal and an electrode with a second electrical signal, comprising:
  • the No. 1 second switch unit is turned off, and synchronously controls at least two second switch units from the No. 2 second switch unit to the No. n second switch unit to be turned on sequentially according to the design sequence, and the second electrical signals are sequentially transmitted according to the design sequence. to at least two electrodes except the first electrode among the n electrodes.
  • the first switch assembly includes n first switch units; the second switch assembly includes n second switch units; the n first switch units include: No. 1 first switch unit to No. n first switch units; n second The switch unit includes: No. 1 second switch unit to No. n second switch unit; and the n electrodes include: No. 1 electrode to No. n electrode.
  • No. 1 first switch unit to No. n first switch unit, No. 1 second switch unit to No. n second switch unit are respectively electrically connected to No. 1 electrode to No. n electrode;
  • No. 2 switch unit is electrically connected to No. 1 electrode, No. 2 first switch unit and No. 2 second switch unit are electrically connected to No. 2 electrode, ..., No. n first switch unit, No. n second switch unit Both are electrically connected to the n-th electrode.
  • the remaining electrodes are controlled to have the second electrical signal in sequence according to the design sequence, and the voltage of the second electrical signal possessed by the remaining electrodes is less than the voltage of the first electrical signal , compared to loading all the electrodes with the first electrical signal and switching the first electrical signal, in this embodiment, one electrode is loaded with the first electrical signal, the remaining electrodes are loaded with the second electrical signal, and the second electrical signal is switched between the remaining electrodes The power consumption is reduced, thereby reducing the power consumption of the electric field generating device.
  • one first switch unit 501 is controlled to transmit the first electrical signal to the electrode 101, and other first switch units 501 are controlled to be turned off; at the same time, the second switch unit electrically connected to the electrode 101 is controlled
  • the switch unit 601 is turned off, and the remaining second switch units 601 are synchronously controlled to be turned on sequentially according to the design sequence, and the second electrical signal is sequentially transmitted to the electrodes 102-106 according to the design sequence. That is, the electrode 101 continuously has the first electrical signal, and the electrodes 102-106 have the second electrical signal sequentially according to the design sequence (that is, the second electrical signal is switched among the electrodes 102-106 according to the design sequence).
  • the design sequence includes: clockwise, counterclockwise, n-pointed star, or various jumping dislocation sequences.
  • the time interval for each second switch unit 601 to be turned on or off sequentially according to the design sequence is not less than 20 milliseconds and not more than 500 milliseconds.
  • control electrode 101 has a first electrical signal within a first time period
  • control electrode 102 has a second electrical signal within a second time period
  • control electrode 103 has a second electrical signal within a third time period
  • the electrode 104 has the second electric signal in the fourth time period
  • control electrode 105 has the second electric signal in the fifth time period
  • control electrode 106 has the second electric signal in the sixth time period.
  • the above-mentioned first time period, The time of the second time period, the third time period, the fourth time period, the fifth time period, and the sixth time period may be all the same, all different, or partly the same, which can be set according to the actual situation, and this application does not make special limited.
  • the remaining electrodes 102-106 are controlled to have the second electrical signal sequentially according to the design sequence, and the voltage of the second electrical signal possessed by the remaining electrodes 102-106 is lower than that of the first electrical signal.
  • the power consumption of the electric field generating device is reduced, thereby reducing the power consumption of the electric field generating device and prolonging the standby time of the battery used for power supply of the electric field generating device.
  • the first switch assembly is controlled to transmit the first electrical signal to m electrodes among the n electrodes
  • the second switch assembly is controlled to transmit the second electrical signal to at least two electrodes among the n-m electrodes, causing an electric field between an electrode with a first electrical signal and an electrode with a second electrical signal, comprising:
  • n first switch units are controlled to be turned on sequentially according to the design order, so that the n electrodes receive the first electrical signal sequentially according to the design order, and the n second switch units are synchronously controlled to be turned off sequentially according to the design order, and synchronously controlled
  • Each second switch unit combination is turned on sequentially according to the design sequence, so that the electrode combination corresponding to each second switch unit combination receives the second electrical signal sequentially according to the design sequence;
  • the second switch unit combination includes n-1 unturned The at least two second switch units in the two switch units;
  • the electrode combination includes at least two electrodes that do not receive the first electrical signal.
  • the first switch assembly includes n first switch units; the second switch assembly includes n second switch units.
  • the power consumption of the electric field generating device is further reduced by controlling the n electrodes to have the first electrical signal (high voltage signal) and the second electrical signal (low voltage signal) in sequence according to the design sequence, thereby preventing the electric field generating device from overheat.
  • the six first switch units 501 are controlled to be turned on sequentially according to the design sequence, and the first electrical signals are sequentially transmitted to the corresponding electrodes according to the design sequence, and the synchronous control and The six second switch units 601 that are electrically connected to the corresponding electrodes are turned off sequentially according to the designed sequence, and the second switch units 601 that are not turned off are synchronously controlled to be turned on sequentially according to the designed sequence, and the second electrical signals are sequentially transmitted to the unplugged second switch units 601 according to the designed sequence.
  • the design sequence includes: clockwise, counterclockwise, n-pointed star, or various jumping dislocation sequences.
  • the time interval for each second switch unit 61 to be turned on or off sequentially according to the design sequence is not less than 20 milliseconds and not more than 500 milliseconds.
  • the time for controlling each electrode to have the first electrical signal and the time to have the second electrical signal can be set according to actual conditions, which are not specifically limited in this application.
  • the electrodes 101-106 have the first electrical signal and the second electrical signal sequentially according to the design sequence, which further reduces the power consumption of the electric field generating device, thereby preventing the electric field generating device from overheating.
  • the time intervals for each second switch unit 61 to be turned on or off sequentially according to the design sequence are not less than 20 milliseconds and not more than 500 milliseconds.
  • the target biological tissue area includes target biological tissue and normal biological tissue, and the target biological tissue includes diseased cells, tumors, or lesions.
  • two-dimensional modeling is carried out on the target biological tissue and the n electrodes arranged around the target biological tissue area, and the human chest cavity and the tumor in the human chest cavity Do 3D modeling.
  • the finite element modeling process is as follows:
  • the built model is shown in FIG. 4 , and the four electrodes are identified as electrode 107 , electrode 108 , electrode 109 and electrode 110 .
  • Material electrical parameter setting set the conductivity of the tumor area (i.e. target biological tissue 81) to 0.24S/m (Siemens per meter), and the dielectric constant to 2000; set the conductivity of the surrounding normal biological tissue 82 to 0.11S/m, and 1980.
  • the applied frequency is 150kHz (kilohertz)
  • the peak-to-peak value is a continuous sine wave of 120V (volts).
  • the signal has a frequency of 150 kHz (kilohertz) and a peak-to-peak value of 120 V (volts).
  • first electrical signal output by the first electrical signal generating circuit is a high voltage signal
  • second electrical signal output by the second electrical signal generating circuit is a low voltage signal
  • the electrode 107 is set as a power receiving terminal for receiving the first electrical signal output by the first electrical signal generating circuit, and the electrodes 108-110 are set as ground terminals for receiving the second electrical signal output by the second electrical signal generating circuit.
  • the electrode 107 is set to receive the first electrical signal (high voltage signal) of the output of the first electrical signal generating circuit, and the electrode 108 receives the second electrical signal (low voltage signal) output of the second electrical signal generating circuit. ), that is, the electrode 107 receives the power supply voltage, and the electrode 108 is grounded.
  • electrode 107 is set to receive the first electrical signal (high voltage signal) output by the first electrical signal generating circuit, and both electrodes 108 and 109 receive the first electrical signal output by the second electrical signal generating circuit.
  • Two electrical signals (low voltage signals) that is, the electrode 107 receives the power supply voltage, and the electrodes 108 and 109 are both grounded.
  • the field strength distribution diagram of the dual-electrode grounding situation is shown in Figure 5b; the average field strength of the tumor area is calculated to be 1.6775V/cm, which is 4.35% higher than that of the single-electrode grounding situation.
  • the electrode 107 is set to receive the first electrical signal (high voltage signal) output by the first electrical signal generating circuit, and both the electrode 108 and the electrode 110 receive the first electrical signal output by the second electrical signal generating circuit.
  • Two electrical signals (low voltage signals) that is, the electrode 107 receives the power supply voltage, and both the electrode 108 and the electrode 110 are grounded.
  • the field strength distribution diagram of the dual-electrode grounding situation is shown in Figure 5c; the average field strength of the tumor area is calculated to be 1.6775V/cm, which is 4.35% higher than that of the single-electrode grounding situation.
  • the average field strength of the tumor under different conditions is shown in Table 1.
  • Table 1 Average field strength of tumors under different conditions
  • This embodiment can increase the coverage area of the electric field on the target biological tissue, can increase the intensity of the electric field covering the target biological tissue area, thereby can increase the intensity of the electric field covering the target biological tissue, thereby improving the effect on the target biological tissue such as diseased cells. split inhibitory effect.
  • the finite element modeling process is as follows:
  • Constructing the human thorax first build the approximate shape of each part of the actual tissue in Rhino3D NURBS 7, then compare it with multiple CT (Computed Tomography, computerized tomography) slices, modify the boundary contour, and finally restore the real human body model .
  • the modeling content includes skin, fat, muscle, bone, lung, heart, and liver. Some overly detailed tissues (such as connective tissue, pleura, etc.) are merged into muscle tissue due to similar electrical parameters and difficult modeling. The final model The model is shown in Figure 6.
  • each electrode is modeled as a double-layer structure shown in Figure 7 (i.e. the first layer 91 and the second layer 92 in Figure 7), wherein the larger layer (the first layer 91 in Figure 7) is close to
  • the skin is a gel layer with a diameter of 21 mm and a thickness of 0.5 to 2 mm; the smaller layer (the second layer 92 in FIG. 7 ) is an insulating layer with a diameter of 20 mm and a thickness of 1 mm.
  • ceramics with a high dielectric constant are used as the insulating layer material, and the dielectric constant is close to 10,000.
  • the electric field is transmitted to the human body through the ceramic layer and the gel layer.
  • the electrode array is composed of a plurality of electrodes, for example, 5 electrodes, 10 electrodes, or 15 electrodes can be used to form multiple different electrode arrays.
  • the electrode array layout suitable for the treatment of human thoracic lung cancer and Figure 8a shows the initial electrode array layout.
  • the electrode arrays suitable for the treatment of lung cancer are divided into three categories, which are the front chest electrode array (the first electrode array 201 located on the front chest of the human body in Figure 8a), and the back electrode array (the first electrode array 201 located on the human body's chest in Figure 8a).
  • the front chest electrode array and the back electrode array respectively include more electrodes, i.e. the front chest electrode array (i.e. the first electrode array 201) and the back electrode array (the first electrode array 201).
  • the two electrode arrays 202) respectively include 20 electrodes; while the placement positions on both sides of the human body are limited, the electrode arrays placed on both sides of the human body include fewer electrodes, that is, the third electrode arrays 203 are respectively placed on both sides of the human body.
  • the three-electrode array 203 includes 13 electrodes. As shown in Figure 8a, the first electrode array 201 is placed on the chest of the human body, the second electrode array 202 is placed on the back of the human body, the third electrode array 203 is placed on the left side of the body, and the third electrode array 203 is placed on the right side of the body.
  • Electrode array 203 that is, four electrode arrays are placed on the chest, back, left side, and right side of the human body (ie, the first electrode array 201, the second electrode array 202, the third electrode array 203, and the third electrode array 203) .
  • FIG. 9a, 9b, 9c and 9d A total of 4 virtual tumor models were built, as shown in Figures 9a, 9b, 9c and 9d, and the target biological tissues 81 in Figures 9a, 9b, 9c and 9d were respectively set as tumor T1, tumor T2 and tumor T3 and tumor T4.
  • tumor T1 in Figure 9a is located in the middle lobe of the right lung with a diameter of 40 mm
  • tumor T2 in Figure 9b is located in the right lung
  • tumor T3 in Figure 9c is located in the middle lobe of the left lung
  • tumor T4 in Figure 9d is located in the lower lobe of the left lung
  • the diameters of tumors T2, T3, and T4 are all 60 mm.
  • HyperMesh14.0 is used for mesh division, and individual meshes including electrodes, gel, skin, fat, bone, muscle, lung, heart, liver, and tumor are divided into separate meshes, which are imported into COMSOLMultiphysics5 one by one.
  • COMSOLMultiphysics5 one by one.
  • use the current module to solve the electroquasistatic equations of Maxwell's equations.
  • Material electrical parameter setting According to Table 2, the electrical conductivity and dielectric constant of each tissue component were set to corresponding values.
  • Simulation power supply setting using frequency domain simulation, the frequency is set to 150kHz, and the normal current density on each electrode is set to 100mA/cm 2 (milliampere per square centimeter).
  • Field strength evaluation method use COMSOL to calculate the electric field strength-volume curve (EVH) at the tumor, as shown in Figure 10, where the axis of abscissa is the field strength (V/cm), and the axis of ordinate is the volume in the tumor Proportion (%), the point on the curve represents the volume ratio of the tumor that is greater than the corresponding field strength value of the point, and the area under the entire curve is used to represent the coverage of the field strength at the tumor, and the area can be calculated by integrating the curve The value of the area is denoted as E AUC .
  • first electrical signal output by the first electrical signal generating circuit is a high voltage signal
  • second electrical signal output by the second electrical signal generating circuit is a low voltage signal
  • the chest electrode array is set as the power receiving end for receiving the first electrical signal output by the first electrical signal generating circuit
  • the back electrode array, the left electrode array and the right electrode array are set as the grounding end for receiving the first electrical signal The second electrical signal output by the second electrical signal generating circuit.
  • the front chest electrode array (such as the first electrode array 201 in Figure 8a) is set to receive the first electrical signal (high voltage signal) output by the first electrical signal generating circuit, and the back electrode array ( As shown in Fig. 8a, the second electrode array 202) receives the second electrical signal (low voltage signal) output by the second electrical signal generating circuit, that is, the chest electrode array receives the power supply voltage, and the back electrode array is grounded.
  • the front chest electrode array (such as the first electrode array 201 in Figure 8a) is set to receive the first electrical signal (high voltage signal) output by the first electrical signal generating circuit, and the back electrode array ( The second electrode array 202 in Fig. 8 a) and the left electrode array (the third electrode array 203 in Fig. 8 a) all receive the second electric signal (low voltage signal) that the second electric signal generating circuit outputs, i.e. the front chest electrode The array receives the supply voltage, and both the back electrode array and the left electrode array are grounded.
  • Figure 11a and Figure 11b are schematic diagrams of the electric field distribution in the horizontal plane of the human thoracic cavity of the tumor T1, and the location is selected at the center of the tumor sphere. It can be seen from the figure that the intensity of the electric field on the left side of the human body in Figure 11b (the left part in the figure) is stronger than the intensity of the electric field on the left side in Figure 11a.
  • Figure 12a and Figure 12b are schematic diagrams of the electric field distribution at the level of the human thoracic cavity of the tumor T2, and the location is selected at the center of the tumor sphere. It can be seen from the figure that the intensity of the electric field on the left side of the human body in Figure 12b (the left part in the figure) is stronger than the intensity of the electric field on the left side in Figure 12a.
  • Table 3 Values of field strength coverage E AUC of tumor T1 and T2 under different conditions
  • the front chest electrode array (such as the first electrode array 201 in Figure 8a) is set to receive the first electrical signal (high voltage signal) output by the first electrical signal generating circuit, and the back electrode array ( As shown in Fig. 8a, the second electrode array 202) receives the second electrical signal (low voltage signal) output by the second electrical signal generating circuit, that is, the chest electrode array receives the power supply voltage, and the back electrode array is grounded.
  • the front chest electrode array (such as the first electrode array 201 in Figure 8a) is set to receive the first electrical signal (high voltage signal) output by the first electrical signal generating circuit, and the back electrode array ( The second electrode array 202 in Fig. 8 a) and the right electrode array (the third electrode array 203 in Fig. 8 a) both receive the second electric signal (low voltage signal) that the second electric signal generation circuit outputs, i.e. the chest electrode
  • the array receives the supply voltage, and both the back electrode array and the right electrode array are grounded.
  • Figure 13a and Figure 13b are schematic diagrams of the electric field distribution at the level of the human thoracic cavity of the tumor T3, and the location is selected at the center of the tumor sphere. It can be seen from the figure that the intensity of the electric field on the right side of the human body in Figure 13b (the right part in the figure) is stronger than the intensity of the electric field on the right side in Figure 13a.
  • Figure 14a and Figure 14b are schematic diagrams of the electric field distribution at the level of the human thoracic cavity of the tumor T4, and the location is selected at the center of the tumor sphere. It can be seen from the figure that the intensity of the electric field on the right side of the human body in Figure 14b (the right part in the figure) is stronger than the intensity of the electric field on the right side in Figure 14a.
  • Table 4 Values of field strength coverage E AUC of tumor T3 and T4 under different conditions
  • the field strength in the tumor area can be increased by using the double grounding method of the electrode array near the tumor side and the back electrode array, compared with the single grounding method of the back electrode array, and the electric field generated between the electrode arrays can be improved.
  • the field strength coverage of the electric field is increased, which can further improve the inhibitory effect on the division of target biological tissues such as diseased cells.
  • the front chest electrode array (such as the first electrode array 201 in Figure 8a) is set to receive the first electrical signal (high voltage signal) output by the first electrical signal generating circuit, and the back electrode array ( As shown in Fig. 8a, the second electrode array 202) receives the second electrical signal (low voltage signal) output by the second electrical signal generating circuit, that is, the chest electrode array receives the power supply voltage, and the back electrode array is grounded.
  • the front chest electrode array (such as the first electrode array 201 in Figure 8a) is set to receive the first electrical signal (high voltage signal) output by the first electrical signal generating circuit, and the back electrode array (
  • the two second electrode arrays 202 in Fig. 8b both receive the second electrical signal (low voltage signal) output by the second electrical signal generating circuit, that is, the chest electrode array receives the power supply voltage, and the back electrode array is grounded.
  • Figure 11a and Figure 11c are schematic diagrams of the electric field distribution at the level of the human thoracic cavity of the tumor T1, and the location is selected at the center of the tumor sphere. It can be seen from the figure that the intensity of the electric field located on the back side of the human body (the upper part in the figure) in Figure 11c is stronger than the intensity of the upper electric field in Figure 11a.
  • Figure 12a and Figure 12c are schematic diagrams of the electric field distribution at the level of the human thoracic cavity of the tumor T2, and the location is selected at the center of the tumor sphere. It can be seen from the figure that the intensity of the electric field located on the back side of the human body (the upper part in the figure) in Figure 12c is stronger than the intensity of the upper electric field in Figure 12a.
  • Figure 13a and Figure 13c are schematic diagrams of the electric field distribution at the level of the human thoracic cavity of the tumor T3, and the location is selected at the center of the tumor sphere. It can be seen from the figure that the intensity of the electric field located on the back side of the human body (the upper part in the figure) in Figure 13c is stronger than the intensity of the upper electric field in Figure 13a.
  • Figure 14a and Figure 14c are schematic diagrams of the electric field distribution at the level of the human thoracic cavity of the tumor T4, and the location is selected at the center of the tumor sphere. It can be seen from the figure that the intensity of the electric field located on the back side of the human body (the upper part in the figure) in Figure 14c is stronger than the intensity of the upper electric field in Figure 14a.
  • Table 5 Values of field strength coverage E AUC of tumors T1, T2, T3 and T4 under different conditions
  • the more electrodes with the second electrical signal lower voltage signal
  • the more electrodes with the first electrical signal and the electrodes with the second electrical signal when the number of electrodes with the first electrical signal (high voltage signal) remains unchanged, the more electrodes with the second electrical signal (low voltage signal), the more electrodes with the first electrical signal and the electrodes with the second electrical signal.
  • the more electric fields generated between the electrodes of the two electrical signals the larger the coverage area of the electric field in the target biological tissue area, which can increase the intensity of the electric field covering the target biological tissue area, thereby improving the electric field intensity covering the target biological tissue.
  • the inhibitory effect on the division of target biological tissues such as diseased cells is further improved.
  • an embodiment of the present application provides a computer-readable storage medium storing a computer program, and when the computer program is executed by a processor, the control method of the electric field generating device in any optional embodiment above is implemented.
  • a computer-readable storage medium provided in an embodiment of the present application is suitable for various optional implementations of the control method of the above-mentioned electric field generating device.
  • the computer-readable storage medium may be a non-volatile readable storage medium or a volatile volatile readable storage medium. I won't repeat them here.
  • n electrodes are arranged around the target biological tissue area according to the design, and by controlling the electrical signal generator to output the first electrical signal to m electrodes in the n electrodes, And control the electric signal generator to output the second electric signal to at least two electrodes among the n-m electrodes, n is an integer not less than 3, and 1 ⁇ m ⁇ n, m is an integer.
  • the number of electrodes located around the target biological tissue area can be flexibly selected, and which electrodes have the second electrical signal can be controlled, so that the electrodes with the first electrical signal are the same as the electrodes with the first electrical signal.
  • the coverage area of the electric field generated between the electrodes of the second electrical signal matches the location of the target biological tissue most, so this embodiment can improve the matching degree of the coverage area of the electric field and the location of the target biological tissue, and the coverage of the electric field on the target biological tissue efficiency, flexibility or adaptability, which is conducive to increasing the intensity of the electric field covering the target biological tissue, and can further improve the inhibitory effect on the division of target biological tissue such as diseased cells.
  • multiple electric fields can be generated between the electrode with the first electrical signal and at least two electrodes with the second electrical signal, and the superposition of multiple electric fields makes the electric field strength in the superimposed area of the electric field be enhanced. It is reasonable to select at least two electrodes with the second electrical signal.
  • the electrode of the second electric signal can increase the coverage of the target biological tissue in the electric field superposition area, thereby improving the inhibitory effect on the division of the target biological tissue such as diseased cells.
  • the other electrodes are controlled to have the second electrical signal in sequence according to the design sequence, and the voltage of the second electrical signal possessed by the remaining electrodes is lower than that of the first electrical signal.
  • the voltage of the signal compared to loading all electrodes and switching the first electrical signal, in this embodiment, one electrode is loaded with the first electrical signal, the remaining electrodes are loaded with the second electrical signal, and the second electrical signal is switched among the remaining electrodes. The power consumption of the electric signal is reduced, thereby reducing the power consumption of the electric field generating device.
  • the power consumption of the electric field generating device is further reduced by controlling the n electrodes to have the first electrical signal (high voltage signal) and the second electrical signal (low voltage signal) in sequence according to the design sequence, thus preventing the The electric field generator is overheated.
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the present application, unless otherwise specified, "plurality” means two or more.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Oncology (AREA)
  • Hospice & Palliative Care (AREA)
  • Biophysics (AREA)
  • Neurology (AREA)
  • Surgery (AREA)
  • Urology & Nephrology (AREA)
  • Epidemiology (AREA)
  • Medical Informatics (AREA)
  • Primary Health Care (AREA)
  • Electrotherapy Devices (AREA)

Abstract

本申请涉及外科领域,提供了一种电场发生装置及其控制方法、计算机可读存储介质,电场发生装置包括n个电极、电信号发生器和控制信号发生器。所述控制信号发生器与所述电信号发生器电连接,用于控制所述电信号发生器向所述n个电极中的m个电极输出第一电信号,并控制所述电信号发生器向n-m个电极中的至少两个电极输出第二电信号,使得具有所述第一电信号的电极与具有所述第二电信号的电极之间产生电场,n为不小于3的整数,1≤m<n,m为整数;所述第二电信号的电压小于所述第一电信号的电压。本申请能够提升电场对目标生物组织的覆盖率和灵活性,从而提高对病变细胞分裂的抑制效果。

Description

电场发生装置及其控制方法、计算机可读存储介质
本申请要求于2021年10月22日提交中国专利局、申请号为202111231292.6、发明名称为“电场发生装置及其控制方法、计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在申请中。
技术领域
本申请涉及外科领域,具体而言,本申请涉及一种电场发生装置及其控制方法、计算机可读存储介质。
背景技术
电场治疗是一种通过便携式、无创的医疗器械实施的疗法,其原理是通过低强度、中频的设计电场,作用于目标生物组织,例如增殖病变细胞的微管蛋白,干扰病变细胞的有丝分裂,使受影响的病变细胞凋亡并抑制病变细胞生长。
目前,现有的用于破坏病变细胞或者抑制病变细胞分裂的装置中,电信号发生器向电极对输出一串电信号,由于电极对中两个电极之间的是相互正对的,因此在电极对的两个正对的电极之间产生垂直的电场,垂直电场作用于包含目标生物组织的目标生物组织区域处。
然而,本申请的发明人发现,电极对位于目标生物组织区域的外围,目标生物组织区域内的目标生物组织(例如病变细胞),并不一定位于现有电极对的垂直电场范围内,或不完全位于现有的垂直电场范围内,即现有的垂直电场的覆盖范围过于固定且过小,导致对目标生物组织的覆盖率有限,导致覆盖在目标生物组织的电场的强度有限,导致对病变细胞等目标生物组织分裂的抑制效果不佳。
发明内容
本申请针对现有方式的缺点,提出一种电场发生装置及其控制方法、计算机可读存储介质,用以解决现有技术存在的由于覆盖在目标生物组织区域的电场的强度有限,从而覆盖在目标生物组织的电场的强度有限,从而导致对病变细胞等目标生物组织分裂的抑制效果不佳的技术问题。
为实现上述目的,本申请第一方面提供了一种电场发生装置,包括:
n个电极,用于按照设计方式设置于目标生物组织区域的周围;n为不小于3的整数;
电信号发生器,与n个电极电连接;
控制信号发生器,与电信号发生器电连接,用于控制电信号发生器向n个电极中的m个电极输出第一电信号,并控制电信号发生器向n-m个电极中的至少两个电极输出第二电信号,使得具有第一电信号的电极与具有第二电信号的电极之间产生电场;第二电信号的电压小于第一电信号的电压,1≤m<n,m为整数。
本申请第二方面提供了一种电场发生装置的控制方法,应用于如第一方面所述的电场发生装置,电场发生装置的控制方法包括:
控制电信号发生器向n个电极中的m个电极输出第一电信号,并控制电信号发生器向n-m个电极中的至少两个电极输出第二电信号,使得具有第一电信号的电极与具有第二电信号的电极之间产生电场,n为不小于3的整数,1≤m<n,m为整数;
电场发生装置包括电连接的电信号发生器和n个电极;第二电信号的电压小于第一电信号的电压。
本申请第三方面提供了一种计算机可读存储介质,存储有计算机程序,计算机程序被处理器执行时实现如下所述的电场发生装置的控制方法的步骤:
控制电信号发生器向n个电极中的m个电极输出第一电信号,并控制电信号发生器向n-m个电极中的至少两个电极输出第二电信号,使得具有第一电信号的电极与具有第二电信号的电极之间产生电场,n为不小于3的整数,1≤m<n,m为整数;
电场发生装置包括电连接的电信号发生器和n个电极;第二电信号的电压小于第一电信号的电压。
本申请提供的技术方案中,将n个电极按照设计方式设置于目标生物组织区域的周围,通过控制电信号发生器向n个电极中的m个电极输出第一电信号,并控制电信号发生器向n-m个电极中的至少两个电极输出第二电信号,n为不小于3的整数,且1≤m<n,m为整数。本申请实施例可以根据目标生物组织在目标生物组织区域的位置,灵活选择位于目标生物组织区域周围的电极的数量,以及控制哪些电极具有第二电信号,使得具有第一电信号的电极与具有第二电信号的电极之间产生的电场的覆盖面积与目标生物组织所在位置最匹配,因此本实施例能够提升电场的覆盖面积与目标生物组织所在位置的匹配度、电场对目标生物组织的覆盖率、灵活性或适应性,从而有利于提高覆盖在目标生物组织的电场的强度,能够进一步提高对病变细胞等目标生物组织分裂的抑制效果。
并且,具有第一电信号的电极与至少两个具有第二电信号的电极之间能够产生多个电场,多个电场叠加使得电场叠加区域的电场强度得到增强,合理的选择至少两个具有第二电信号的电极,能够提高电场叠加区域对目标生物组织的覆盖率,从而有利于提高对病变细胞等目标生物组织分裂的抑制效果。
本申请附加的方面和优点将在下面的描述中部分给出,这些将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为本申请实施例提供的一种电场发生装置的框架示意图;
图2为本申请实施例提供的另一种电场发生装置的框架示意图;
图3为本申请实施例提供的又一种电场发生装置采用6个电极布置时的电场示意图;
图4为本申请实施例提供的目标生物组织区域的二维模型的示意图;
图5a为本申请实施例提供的目标生物组织区域的二维模型的单电极接地情况的场强分布意图;
图5b为本申请实施例提供的目标生物组织区域的二维模型的一种双电极接地情况的场强分布意图;
图5c为本申请实施例提供的目标生物组织区域的二维模型的另一种双电极接地情况的场强分布意图;
图6为本申请实施例提供的人体胸腔的三维模型的示意图;
图7为本申请实施例提供的人体胸腔的三维模型的单个电极的双层结构的示意图;
图8a为本申请实施例提供的人体胸腔的三维模型的人体胸腔肺癌治疗的前胸、背部、侧面的电极阵列的分布示意图;
图8b为本申请实施例提供的人体胸腔的三维模型的人体胸腔肺癌治疗的背部的电极阵列的分布示意图;
图9a~9d为本申请实施例提供的人体胸腔的三维模型的4个虚拟肿瘤模型的大小和位置分布示意图;
图10为本申请实施例提供的人体胸腔的三维模型的电场强度与体积的曲线图;
图11a为本申请实施例提供的人体胸腔的三维模型的肿瘤T1的人体背部单电极阵列接地方式时的胸腔水平面电场分布示意图;
图11b为本申请实施例提供的人体胸腔的三维模型的肿瘤T1的人体左侧和背部双电极阵列接地方式时的胸腔水平面电场分布示意图;
图11c为本申请实施例提供的人体胸腔的三维模型的肿瘤T1人体背部双电极阵列接地 时的胸腔水平面电场分布示意图;
图12a为本申请实施例提供的人体胸腔的三维模型的肿瘤T2的人体背部单电极阵列接地方式时的胸腔水平面电场分布示意图;
图12b为本申请实施例提供的人体胸腔的三维模型的肿瘤T2人体左侧和背部双电极阵列接地方式时的胸腔水平面电场分布示意图;
图12c为本申请实施例提供的人体胸腔的三维模型的肿瘤T2人体背部双电极阵列接地时的胸腔水平面电场分布示意图;
图13a为本申请实施例提供的人体胸腔的三维模型的肿瘤T3人体背部单电极阵列接地方式时的胸腔水平面电场分布示意图;
图13b为本申请实施例提供的人体胸腔的三维模型的肿瘤T3人体右侧和背部双电极阵列接地方式时的胸腔水平面电场分布示意图;
图13c为本申请实施例提供的人体胸腔的三维模型的肿瘤T3人体背部双电极阵列接地时的胸腔水平面电场分布示意图;
图14a为本申请实施例提供的人体胸腔的三维模型的肿瘤T4人体背部单电极阵列接地方式时的胸腔水平面电场分布示意图;
图14b为本申请实施例提供的人体胸腔的三维模型的肿瘤T4人体右侧和背部双电极阵列接地方式时的胸腔水平面电场分布示意图;
图14c为本申请实施例提供的人体胸腔的三维模型的肿瘤T4人体背部双电极阵列接地时的胸腔水平面电场分布示意图。
附图标记:
10-n个电极,25-电信号发生器,20-第一电信号发生电路,30-第二电信号发生电路,40-控制信号发生器,50-第一开关组件,501-第一开关单元,60-第二开关组件,601-第二开关单元,70-多路模拟开关单元;
80-目标生物组织区域,81-目标生物组织,82-正常生物组织;
91-第一层,92-第二层,201-第一电极阵列,202-第二电极阵列,203-第三电极阵列。
具体实施方式
本申请提供了一种电场发生装置及其控制方法、计算机可读存储介质,用以解决现有技术存在的由于覆盖在目标生物组织区域的电场的强度有限,从而覆盖在目标生物组织的电场的强度有限,从而导致对病变细胞等目标生物组织分裂的抑制效果不佳的技术问题
下面详细描述本申请,本申请实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的部件或具有相同或类似功能的部件。此外,如果已知技术的详细描述对于示出的本申请的特征是不必要的,则将其省略。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能解释为对本申请的限制。
本技术领域技术人员可以理解,除非另外定义,这里使用的所有术语(包括技术术语和科学术语),具有与本申请所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语,应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样被特定定义,否则不会用理想化或过于正式的含义来解释。
本技术领域技术人员可以理解,除非特意声明,这里使用的单数形式“一”、“一个”、“所述”和“该”也可包括复数形式。应该进一步理解的是,本申请的说明书中使用的措辞“包括”是指存在所述特征、整数、步骤、操作、元件和/或组件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元件、组件和/或它们的组。应该理解,当我们称元件被“连接”或“耦接”到另一元件时,它可以直接连接或耦接到其他元件,或者也可以存在中间元件。此外,这里使用的“连接”或“耦接”可以包括无线连接或无线 耦接。这里使用的措辞“和/或”包括一个或更多个相关联的列出项的全部或任一单元和全部组合。
本申请的发明人进行研究发现,电极对位于目标生物组织区域的外围,目标生物组织区域内的目标生物组织(例如病变细胞),并不一定位于现有电极对的垂直电场范围内,或不完全位于现有的垂直电场范围内,即现有的垂直电场的覆盖范围过于固定且过小,导致对目标生物组织的覆盖率有限,导致覆盖在目标生物组织的电场的强度有限,导致对病变细胞等目标生物组织分裂的抑制效果不佳。
本申请提供的目标电场的发生装置及其控制方法,旨在解决现有技术的如上技术问题。
下面以具体地实施例对本申请的技术方案以及本申请的技术方案如何解决上述技术问题进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。下面将结合附图,对本申请的实施例进行描述。
本申请实施例提供的电场发生装置是外科用的,适用于外科用医疗器械。
本申请实施例提供了一种电场发生装置,如图1所示,电场发生装置包括:n个电极10、电信号发生器25和控制信号发生器40。具体的,n个电极10用于按照设计方式设置于目标生物组织区域的周围;n为不小于3的整数。其中,目标生物组织区域包括目标生物组织和正常生物组织;目标生物组织包括病变细胞、肿瘤或病灶等。病灶指机体上发生病变的部分、或者机体中一个局限的、具有病原微生物的病变组织。例如,肺的某一部分被结核菌破坏,这部分就是肺结核病灶。正常生物组织是指不包含病变细胞、肿瘤和病灶的生物组织,可以认为是除了目标生物组织之外的生物组织。
电信号发生器25与n个电极10电连接。
控制信号发生器40与电信号发生器25电连接,用于控制电信号发生器25向n个电极10中的m个电极输出第一电信号,并控制电信号发生器25向n-m个电极中的至少两个电极输出第二电信号,使得具有第一电信号的电极与具有第二电信号的电极之间产生电场;第二电信号的电压小于第一电信号的电压,1≤m<n,m为整数。
可选地,第一电信号和第二电信号可以由一个电信号发生器输出,也可以由两个电信号发生器分别输出。
可选地,n个电极10可以按照设计方式贴设于人体或动物体的目标部位。
可选地,具有第一电信号的电极为至少一个,具有第二电信号的电极为至少两个;具有第一电信号的电极的数量小于具有第二电信号的电极的数量。
可选地,控制信号发生器40可以是CPU(Central Processing Unit,中央处理器),通用处理器,DSP(Digital Signal Processor,数据信号处理器),ASIC(ApplicationSpecific Integrated Circuit,专用集成电路),FPGA(Field-Programmable GateArray,现场可编程门阵列)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。控制信号发生器40也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等。
本申请实施例可以根据目标生物组织在目标生物组织区域的位置,灵活选择位于目标生物组织区域周围的电极的数量,以及控制哪些电极具有第二电信号,使得具有第一电信号的电极与具有第二电信号的电极之间产生的电场的覆盖面积与目标生物组织所在位置最匹配,因此本实施例能够提升电场的覆盖面积与目标生物组织所在位置的匹配度、电场对目标生物组织的覆盖率、灵活性或适应性,从而有利于提高覆盖在目标生物组织的电场的强度,能够进一步提高对病变细胞等目标生物组织分裂的抑制效果。
并且,具有第一电信号的电极与至少两个具有第二电信号的电极之间能够产生多个电场,多个电场叠加使得电场叠加区域的电场强度得到增强,合理的选择至少两个具有第二电信号的电极,能够提高电场叠加区域对目标生物组织的覆盖率,从而有利于提高对病变 细胞等目标生物组织分裂的抑制效果。
在一些实施例中,如图1所示,电信号发生器25包括第一电信号发生电路20和第二电信号发生电路30。第一电信号发生电路20与n个电极电连接,用于输出第一电信号;第二电信号发生电路30与n个电极电连接,用于输出第二电信号。
在一些实施例中,如图2所示,电场发生装置还包括:第一开关组件50和第二开关组件60;
第一电信号发生电路20通过第一开关组件50与n个电极10电连接,控制信号发生器40与第一开关组件50电连接;
第二电信号发生电路30通过第二开关组件60与n个电极10电连接,控制信号发生器40与第二开关组件60电连接;
控制信号发生器40用于控制第一开关组件50将第一电信号传输至n个电极10中的m个电极,并控制第二开关组件60将第二电信号传输至n-m个电极中的至少两个电极,使得具有第一电信号的电极与具有第二电信号的电极之间产生电场。
在一些实施例中,如图2所示,第一开关组件50包括n个第一开关单元501;第二开关组件60包括n个第二开关单元601;
n个第一开关单元501与n个电极10一一对应电连接,并与第一电信号发生电路20、控制信号发生器40都电连接;
n个第二开关单元601与n个电极10一一对应电连接,并与第二电信号发生电路30、控制信号发生器40都电连接。
可选地,n个第一开关单元包括:一号第一开关单元至n号第一开关单元;n个第二开关单元包括:一号第二开关单元至n号第二开关单元;n个电极包括:一号电极至n号电极。
一号第一开关单元至n号第一开关单元、一号第二开关单元至n号第二开关单元,分别与一号电极至n号电极对应电连接;即一号第一开关单元、一号第二开关单元都与一号电极电连接,二号第一开关单元、二号第二开关单元都与二号电极电连接,……,n号第一开关单元、n号第二开关单元都与n号电极电连接。
可选地,如图3所示,电场发生装置还包括多路模拟开关单元70,多路模拟开关单元70与n个第一开关单元501、n个第二开关单元601、控制信号发生器40都电连接,用于控制信号发生器40输出的控制信号的传输路径的切换。多路模拟开关单元70具有切换速率快、无抖动、耗电省、体积小、工作可靠且容易控制等优点。
在一些实施例中,电场发生装置还包括下述至少一项:
第一电信号包括:交流电压信号、脉冲电压信号或方波电压信号;
第二电信号包括:恒定的电压信号或波动的电压信号;
第一电信号的电压幅值的绝对值不小于0伏特、且不大于500伏特;
第二电信号的电压幅值的绝对值不小于0伏特、且不大于10伏特;
电场的强度不小于0.1伏特每厘米、且不大于10伏特每厘米;
电场的频率不小于50千赫兹、且不大于500千赫兹;
m为1。
其中,恒定的电压信号是指电压大小保持不变;波动的电压信号是指电压正、负偏差的绝对值之和不超过额定值的10%。
可选地,第一电信号发生电路20包括:交流电信号发生电路、脉冲电信号发生电路或方波电信号发生电路;交流电信号发生电路用于输出交流电压信号;脉冲电信号发生电路用于输出脉冲电压信号;方波电信号发生电路用于输出方波电压信号。
在一些实施例中,第二电信号的电压幅值的绝对值为0伏特、1伏特或5伏特。
如图3所示,仅作为示例,设定n=6,当然n还可以为其他数量,例如20、30、50等,数量不做限定。以电场发生装置施加电场作用于目标生物组织区域80,目标生物组织区域80可以为患者的目标区域,图3中有6个电极(电极101、电极102、电极103、电极104、电极105和电极106)均外置在目标生物组织区域80(例如电极101-106可以被配置成靠着患者的身体放置)。
具体的,第一电信号发生电路20与6个电极电连接,用于向6个电极输出第一电信号;第二电信号发生电路30与6个电极电连接,用于向6个电极输出第二电信号。
可选地,控制信号发生器40控制一个第一开关单元501将第一电信号传输至电极101,并控制其它第一开关单元501都关断;同时控制与电极101电连接的第二开关单元601关断,并控制其余的第二开关单元601将第二电信号传输至电极102-106。
也就是说,控制电极101具有第一电信号,以及控制电极102-106具有第二电信号,则电极101与电极102之间产生第一电场,电极101与电极103之间产生第二电场,电极101与电极104之间产生第三电场,电极101与电极105之间产生第四电场,电极101与电极106之间产生第五电场。其中,控制向电极101施加的第一电信为高电压信号(例如0~500V之间),控制向电极102-106施加的第二电信号为低电压信号(例如0~10V),即电极101和电极102-106之间具有多个电位差,电极101与电极102-106之间产生了多个电场,进而提高了电场在患者的目标区域的覆盖面积,从而提高了覆盖在患者的目标区域的电场的强度,从而提高了覆盖在目标生物组织的电场的强度,目标生物组织区域包括目标生物组织和正常生物组织,提高了对病变细胞等目标生物组织分裂的抑制效果。
当然,还可以控制电极101和电极102具有第一电信号,以及控制电极103-106具有第二电信号;或者,控制电极101具有第一电信号,控制电极103和电极105都具有第二电信号;或者,控制电极101具有第一电信号,控制电极102、电极104和电极106都具有第二电信号;或者,控制电极101具有第一电信号,控制电极103、电极104和电极105都具有第二电信号等,本申请不做特别的限定。
本申请实施例可以根据目标生物组织在目标生物组织区域的位置,灵活选择位于目标生物组织区域周围的电极的数量,以及控制哪些电极具有第二电信号,使得具有第一电信号的电极与具有第二电信号的电极之间产生的电场的覆盖面积与目标生物组织所在位置最匹配,因此本实施例能够提升电场的覆盖面积与目标生物组织所在位置的匹配度、电场对目标生物组织的覆盖率、灵活性或适应性,从而有利于提高覆盖在目标生物组织的电场的强度,能够进一步提高对病变细胞等目标生物组织分裂的抑制效果。
并且,具有第一电信号的电极与至少两个具有第二电信号的电极之间能够产生多个电场,多个电场叠加使得电场叠加区域的电场强度得到增强,合理的选择至少两个具有第二电信号的电极,能够提高电场叠加区域对目标生物组织的覆盖率,从而有利于提高对病变细胞等目标生物组织分裂的抑制效果。
可选地,继续参考图3所示,控制一个第一开关单元501将第一电信号传输至电极101,并控制其它第一开关单元501都关断;同时控制与电极101电连接的第二开关单元601关断,并同步控制其余的第二开关单元601按照设计顺序依次开启,将第二电信号按照设计顺序依次传输至电极102-106。即电极101持续具有第一电信号,电极102-106按照设计顺序依次具有第二电信号(即第二电信号在电极102-106之间按照设计顺序进行切换)。
可选地,设计顺序包括:顺时针、逆时针、n芒星形、或者各种跳跃错位的顺序。
可选地,各第二开关单元601按照设计顺序依次开启或关断的时间间隔不小于20毫秒、且不大于500毫秒。
可选地,控制电极101在第一时间段内具有第一电信号,控制电极102在第二时间段内具有第二电信号,控制电极103在第三时间段内具有第二电信号,控制电极104在第四 时间段内具有第二电信号,控制电极105在第五时间段内具有第二电信号,控制电极106在第六时间段内具有第二电信号,上述第一时间段、第二时间段、第三时间段、第四时间段、第五时间段、第六时间段的时间可以均相同、均不相同、或者部分相同,可以根据实际情况设置,本申请不做特别的限定。
本实施例通过控制电极101持续具有第一电信号,控制其余电极102-106按照设计顺序依次具有第二电信号,并且其余电极102-106具有的第二电信号的电压小于第一电信号的电压,相比于将各电极全部加载并切换第一电信号,而本实施例将一个电极加载第一电信号,将其余电极加载第二电信号、以及在其余电极之间切换第二电信号的功耗减小,从而减小了电场发生装置的功耗,延长了电场发生装置的用于供电的电池待机的时长。
电场发生装置产生的电场用于破坏病变细胞或者抑制病变细胞分裂,这些电场在本申请中被称为是TTF(TumorTreating Field,肿瘤处理场),TTF能够阻止快速增殖的活性细胞(例如癌症细胞)增殖和破坏该活性细胞。
可选地,继续参考图3所示,为了防止电场发生装置过热,控制6个第一开关单元501按照设计顺序依次开启,将第一电信号按照设计顺序依次传输至对应的电极,同步控制与对应的电极电连接的6个第二开关单元601按照设计顺序依次关断,并同步控制未关断的第二开关单元601按照设计顺序依次开启,将第二电信号按照设计顺序依次传输至未接收第一电信号的电极。
可选地,设计顺序包括:顺时针、逆时针、n芒星形、或者各种跳跃错位的顺序。
可选地,各第二开关单元61按照设计顺序依次开启或关断的时间间隔不小于20毫秒、且不大于500毫秒。
可选地,控制各电极具有第一电信号的时间和具有第二电信号的时间可以根据实际情况进行设置,本申请不做特别的限定。
也就是说,电极101-106按照设计顺序依次具有第一电信号和第二电信号,进一步减小了电场发生装置的功耗,从而防止了电场发生装置过热。
基于同一发明构思,本申请实施例提供了一种电场发生装置的控制方法,应用于如上述任一可选的实施例中的电场发生装置,电场发生装置的控制方法包括:
控制电信号发生器向n个电极中的m个电极输出第一电信号,并控制所述电信号发生器向n-m个电极中的至少两个电极输出第二电信号,使得具有第一电信号的电极与具有第二电信号的电极之间产生电场,n为不小于3的整数,1≤m<n,m为整数;
电场发生装置包括电连接的电信号发生器和n个电极;第二电信号的电压小于第一电信号的电压。
本申请实施例提供的电场发生装置的控制方法,将n个电极按照设计方式设置于目标生物组织区域的周围,通过控制电信号发生器向n个电极中的m个电极输出第一电信号,并控制电信号发生器向n-m个电极中的至少两个电极输出第二电信号,n为不小于3的整数,1≤m<n,m为整数,本申请实施例可以根据目标生物组织在目标生物组织区域的位置,灵活选择位于目标生物组织区域周围的电极的数量,以及控制哪些电极具有第二电信号,使得具有第一电信号的电极与具有第二电信号的电极之间产生的电场的覆盖面积与目标生物组织所在位置最匹配,因此本实施例能够提升电场的覆盖面积与目标生物组织所在位置的匹配度、电场对目标生物组织的覆盖率、灵活性或适应性,从而有利于提高覆盖在目标生物组织的电场的强度,能够进一步提高对病变细胞等目标生物组织分裂的抑制效果。
并且,具有第一电信号的电极与至少两个具有第二电信号的电极之间能够产生多个电场,多个电场叠加使得电场叠加区域的电场强度得到增强,合理的选择至少两个具有第二电信号的电极,能够提高电场叠加区域对目标生物组织的覆盖率,从而有利于提高对病变细胞等目标生物组织分裂的抑制效果。
在一些实施例中,控制电信号发生器向n个电极中的m个电极输出第一电信号,并控制电信号发生器向n-m个电极中的至少两个电极输出第二电信号,使得具有第一电信号的电极与具有第二电信号的电极之间产生电场,包括:
控制第一开关组件将第一电信号传输至n个电极中的m个电极,并控制第二开关组件将第二电信号传输至n-m个电极中的至少两个电极,使得具有第一电信号的电极与具有第二电信号的电极之间产生电场;
电信号发生器包括:第一电信号发生电路和第二电信号发生电路;电场发生装置还包括:第一开关组件和第二开关组件;第一开关组件与第一电信号发生电路、控制信号发生器、n个电极都电连接;第二开关组件与第二电信号发生电路、控制信号发生器、n个电极都电连接。
在一些实施例中,控制第一开关组件将第一电信号传输至n个电极中的m个电极,并控制第二开关组件将第二电信号传输至n-m个电极中的至少两个电极,使得具有第一电信号的电极与具有第二电信号的电极之间产生电场,包括:
控制一号第一开关单元将第一电信号传输至n个电极中的一号电极,并控制二号第一开关单元至n号第一开关单元都关断;同时控制与一号电极电连接的一号第二开关单元关断,并控制二号第二开关单元至n号第二开关单元的至少两个第二开关单元将第二电信号传输至n个电极中除了一号电极之外的至少两个电极。
第一开关组件包括n个第一开关单元;第二开关组件包括n个第二开关单元;n个第一开关单元包括:一号第一开关单元至n号第一开关单元;n个第二开关单元包括:一号第二开关单元至n号第二开关单元;n个电极包括:一号电极至n号电极。
一号第一开关单元至n号第一开关单元、一号第二开关单元至n号第二开关单元,分别与一号电极至n号电极对应电连接;即一号第一开关单元、一号第二开关单元都与一号电极电连接,二号第一开关单元、二号第二开关单元都与二号电极电连接,……,n号第一开关单元、n号第二开关单元都与n号电极电连接。
示例性地,如图3所示,设定n=6,当然n还可以为其他数量,例如20、30、50等,数量不做限定。以电场发生装置施加电场作用于目标生物组织区域80,目标生物组织区域80可以为患者的目标区域,图3中有6个电极(电极101、电极102、电极103、电极104、电极105和电极106),即一号电极至六号电极,均外置在目标生物组织区域80(例如电极101~106可以被配置成靠着患者的身体放置)。图3中6个第一开关单元501,即一号第一开关单元至六号第一开关单元。图3中6个第二开关单元601,即一号第二开关单元至六号第二开关单元。
具体的,第一电信号发生电路20与6个电极电连接,用于向6个电极输出第一电信号;第二电信号发生电路30与6个电极电连接,用于向6个电极输出第二电信号。
可选地,控制信号发生器40控制一个第一开关单元501将第一电信号传输至电极101,并控制其它第一开关单元501都关断;同时控制与电极101电连接的第二开关单元601关断,并控制其余的第二开关单元601将第二电信号传输至电极102~106。
也就是说,控制电极101具有第一电信号,以及控制电极102~106具有第二电信号,则电极101与电极102之间产生第一电场,电极101与电极103之间产生第二电场,电极101与电极104之间产生第三电场,电极101与电极105之间产生第四电场,电极101与电极106之间产生第五电场。
其中,控制向电极101施加的第一电信为高电压信号(例如0~500V之间),控制向电极102~106施加的第二电信号为低电压信号(例如0~10V),即电极101和电极102~106之间具有多个电位差,电极101与电极102~106之间产生了多个电场,多个电场叠加使得电场叠加区域的电场强度得到增强,合理的选择至少两个具有第二电信号的电极,能够提高 电场叠加区域对目标生物组织的覆盖率,从而有利于提高对病变细胞等目标生物组织分裂的抑制效果。
当然,还可以控制电极101和102具有第一电信号,以及控制电极103-106具有第二电信号;或者,控制电极101具有第一电信号,控制电极103和电极105都具有第二电信号;或者,控制电极101具有第一电信号,控制电极102、电极104和电极106都具有第二电信号;或者,控制电极101具有第一电信号,控制电极103、电极104和电极105都具有第二电信号等,本申请不做特别的限定。
本申请实施例可以根据目标生物组织在目标生物组织区域的位置,灵活选择位于目标生物组织区域周围的电极的数量,以及控制哪些电极具有第二电信号,使得具有第一电信号的电极与具有第二电信号的电极之间产生的电场的覆盖面积与目标生物组织所在位置最匹配,因此本实施例能够提升电场的覆盖面积与目标生物组织所在位置的匹配度、电场对目标生物组织的覆盖率、灵活性或适应性,从而有利于提高覆盖在目标生物组织的电场的强度,能够进一步提高对病变细胞等目标生物组织分裂的抑制效果。
在一些实施例中,控制第一开关组件将第一电信号传输至n个电极中的m个电极,并控制第二开关组件将第二电信号传输至n-m个电极中的至少两个电极,使得具有第一电信号的电极与具有第二电信号的电极之间产生电场,包括:
控制一号第一开关单元将第一电信号传输至n个电极中的一号电极,并控制二号第一开关单元至n号第一开关单元都关断;同时控制与一号电极电连接的一号第二开关单元关断,并同步控制二号第二开关单元至n号第二开关单元的至少两个第二开关单元按照设计顺序依次开启,将第二电信号按照设计顺序依次传输至n个电极中除了一号电极之外的至少两个电极。
第一开关组件包括n个第一开关单元;第二开关组件包括n个第二开关单元;n个第一开关单元包括:一号第一开关单元至n号第一开关单元;n个第二开关单元包括:一号第二开关单元至n号第二开关单元;n个电极包括:一号电极至n号电极。
一号第一开关单元至n号第一开关单元、一号第二开关单元至n号第二开关单元,分别与一号电极至n号电极对应电连接;即一号第一开关单元、一号第二开关单元都与一号电极电连接,二号第一开关单元、二号第二开关单元都与二号电极电连接,……,n号第一开关单元、n号第二开关单元都与n号电极电连接。
本实施例通过控制n个电极中的一个电极持续具有第一电信号,控制其余电极按照设计顺序依次具有第二电信号,并且其余电极具有的第二电信号的电压小于第一电信号的电压,相比于将各电极全部加载并切换第一电信号,而本实施例将一个电极加载第一电信号,将其余电极加载第二电信号、以及在其余电极之间切换第二电信号的功耗减小,从而减小了电场发生装置的功耗。
示例性地,继续参考图3所示,控制一个第一开关单元501将第一电信号传输至电极101,并控制其它第一开关单元501都关断;同时控制与电极101电连接的第二开关单元601关断,并同步控制其余的第二开关单元601按照设计顺序依次开启,将第二电信号按照设计顺序依次传输至电极102~106。即电极101持续具有第一电信号,电极102~106按照设计顺序依次具有第二电信号(即第二电信号在电极102~106之间按照设计顺序进行切换)。
可选地,设计顺序包括:顺时针、逆时针、n芒星形、或者各种跳跃错位的顺序。
可选地,各第二开关单元601按照设计顺序依次开启或关断的时间间隔不小于20毫秒、且不大于500毫秒。
可选地,控制电极101在第一时间段内具有第一电信号,控制电极102在第二时间段内具有第二电信号,控制电极103在第三时间段内具有第二电信号,控制电极104在第四 时间段内具有第二电信号,控制电极105在第五时间段内具有第二电信号,控制电极106在第六时间段内具有第二电信号,上述第一时间段、第二时间段、第三时间段、第四时间段、第五时间段、第六时间段的时间可以均相同、均不相同、或者部分相同,可以根据实际情况设置,本申请不做特别的限定。
本实施例通过控制电极101持续具有第一电信号,控制其余电极102~106按照设计顺序依次具有第二电信号,并且其余电极102~106具有的第二电信号的电压小于第一电信号的电压,相比于将各电极全部加载并切换第一电信号,而本实施例将一个电极加载第一电信号,将其余电极加载第二电信号、以及在其余电极之间切换第二电信号的功耗减小,从而减小了电场发生装置的功耗,延长了电场发生装置的用于供电的电池待机的时长。
在一些实施例中,控制第一开关组件将第一电信号传输至n个电极中的m个电极,并控制第二开关组件将第二电信号传输至n-m个电极中的至少两个电极,使得具有第一电信号的电极与具有第二电信号的电极之间产生电场,包括:
m为1,控制n个第一开关单元按照设计顺序依次开启,使得n个电极按照设计顺序依次接收到第一电信号,同步控制n个第二开关单元按照设计顺序依次关断,并同步控制各第二开关单元组合按照设计顺序依次开启,使得与各第二开关单元组合对应的电极组合按照设计顺序依次接收到第二电信号;第二开关单元组合包括未关断的n-1个第二开关单元中的至少两个第二开关单元;电极组合包括未接收所述第一电信号的至少两个电极。
第一开关组件包括n个第一开关单元;第二开关组件包括n个第二开关单元。
本实施例通过控制n个电极按照设计顺序依次具有第一电信号(高电压信号)和第二电信号(低电压信号),进一步减小了电场发生装置的功耗,从而防止了电场发生装置过热。
示例性地,继续参考图3所示,为了防止电场发生装置过热,控制6个第一开关单元501按照设计顺序依次开启,将第一电信号按照设计顺序依次传输至对应的电极,同步控制与对应的电极电连接的6个第二开关单元601按照设计顺序依次关断,并同步控制未关断的第二开关单元601按照设计顺序依次开启,将第二电信号按照设计顺序依次传输至未接收第一电信号的电极。
可选地,设计顺序包括:顺时针、逆时针、n芒星形、或者各种跳跃错位的顺序。
可选地,各第二开关单元61按照设计顺序依次开启或关断的时间间隔不小于20毫秒、且不大于500毫秒。
可选地,控制各电极具有第一电信号的时间和具有第二电信号的时间可以根据实际情况进行设置,本申请不做特别的限定。
也就是说,电极101~106按照设计顺序依次具有第一电信号和第二电信号,进一步减小了电场发生装置的功耗,从而防止了电场发生装置过热。
在一些实施例中,各第二开关单元61按照设计顺序依次开启或关断的时间间隔不小于20毫秒、且不大于500毫秒。
需要说明的是,目标生物组织区域包括目标生物组织和正常生物组织,目标生物组织包括病变细胞、肿瘤或病灶等。
为了进一步验证本申请的技术效果,以目标生物组织为肿瘤为例,对目标生物组织和设置在目标生物组织区域周围的n个电极进行二维建模,以及对人体胸腔和人体胸腔内的肿瘤进行三维建模。
二维模型:
有限元建模过程如下:
首先,在COMSOL中搭建几何模型。构建直径为40mm(毫米)的圆作为肿瘤(即目标生物组织81);构建200mm边长的正方形作为目标生物组织区域80,正方形中心与肿瘤的圆心重合,正方形位于圆之外的区域表示肿瘤外的正常生物组织82;在上述正方形的4 条边的中心处分别放置长度为80mm的直线(如图4中h1为80mm),作为电极。所建模型如图4所示,4个电极分别标识为电极107、电极108、电极109和电极110。
材料电参数设置:肿瘤区域(即目标生物组织81)设置电导率为0.24S/m(西门子每米),介电常数为2000;周围正常生物组织82设置电导率0.11S/m,介电常数1980。
施加电压波形:该实施例中施加频率150kHz(千赫兹),峰-峰值为120V(伏特)的连续正弦波,即第一电信号发生电路为交流电信号发生电路,输出交流电压信号,交流电压信号的频率为150kHz(千赫兹),峰-峰值为120V(伏特)。
需要说明的是,第一电信号发生电路的输出的第一电信号为高电压信号,第二电信号发生电路输出的第二电信号为低电压信号。
设置电极107作为电源接收端,用于接收第一电信号发生电路输出的第一电信号,设置电极108~110作为接地端,用于接收第二电信号发生电路输出的第二电信号。
根据上述设置,参见如下三种情况:
1、单电极接地的情况,设置电极107接收第一电信号发生电路的输出的第一电信号(高电压信号)、电极108接收第二电信号发生电路输出的第二电信号(低电压信号),即电极107接收电源电压,电极108接地。
如图5a所示的单电极接地情况的场强分布意图;经过计算得到肿瘤区域的平均场强为1.6075V/cm(伏特每厘米)。
2、双电极接地的第一种情况,设置电极107接收第一电信号发生电路的输出的第一电信号(高电压信号)、电极108和电极109都接收第二电信号发生电路输出的第二电信号(低电压信号),即电极107接收电源电压,电极108和电极109均接地。
如图5b所示的双电极接地情况的场强分布意图;经过计算得到肿瘤区域的平均场强为1.6775V/cm,相比于单电极接地情况,肿瘤区域的平均场强提升了4.35%。
3、双电极接地的第二种情况,设置电极107接收第一电信号发生电路的输出的第一电信号(高电压信号)、电极108和电极110都接收第二电信号发生电路输出的第二电信号(低电压信号),即电极107接收电源电压,电极108和电极110均接地。
如图5c所示的双电极接地情况的场强分布意图;经过计算得到肿瘤区域的平均场强为1.6775V/cm,相比于单电极接地情况,肿瘤区域的平均场强提升了4.35%。
肿瘤在不同情况下的平均场强如表一所示。
表一:肿瘤在不同情况下的平均场强
  平均场强(V/cm)
单电极接地的情况 1.6075
双电极接地的第一种情况 1.6775
双电极接地的第二种情况 1.6775
由上述可知,在具有高电压信号的电极数量不变的情况下,具有低电压信号的电极数量越多,肿瘤区域的平均场强越大。
本实施例能够提高电场在目标生物组织的覆盖面积,能够提高覆盖在目标生物组织区域的电场的强度,从而能够提高覆盖在目标生物组织的电场的强度,从而提高了对病变细胞等目标生物组织分裂的抑制效果。
三维模型:
有限元建模过程如下:
构建人体胸腔:首先在Rhino3D NURBS 7中搭建出实际各部分组织的大致形状,再和多张CT(Computed Tomography,电子计算机断层扫描),切片进行比对,修改边界轮廓, 最终还原出真实人体模型。建模内容包含皮肤、脂肪、肌肉、骨骼、肺、心、肝脏,一些过于细化的组织(如结缔组织、胸膜等)由于电参数相近且难以建模,被合并为肌肉组织,最终所建模型如图6所示。
构建单个电极:每个电极被建模为图7所示的双层结构(即图7中第一层91和第二层92),其中面积较大层(图7中第一层91)贴近皮肤为凝胶层,直径为21mm,厚度在0.5~2mm之间;面积较小层(图7中第二层92)为绝缘层,直径为20mm,厚度为1mm。在绝缘材料的选取上,采用高介电常数的陶瓷作为绝缘层材料,介电常数接近10000,电场经由陶瓷层、凝胶层传递至人体。
构建电极阵列:所述电极阵列由多个电极构成,例如,可以由5个电极、10个电极、或者15个等其他数量的电极构成多个不同的电极阵列。如图8a和8b所示,适用于人体胸腔肺癌治疗的电极阵列布局,图8a中展示的是初始电极阵列布局。
如图8a所示,适用于肺癌治疗的电极阵列分为三类,分别是前胸电极阵列(图8a中位于人体前胸的第一电极阵列201),后背电极阵列(图8a中位于人体后背的第二电极阵列202),以及侧边电极阵列(图8a中位于人体一侧的第三电极阵列203)。由于人体前胸和后背处皮肤面积较大,前胸电极阵列和后背电极阵列分别包括了更多的电极,即前胸电极阵列(即第一电极阵列201)和后背电极阵列(第二电极阵列202)分别包括20个电极;而人体两侧贴放位置受限,放置在人体两侧的电极阵列包括了较少的电极,即在人体两侧分别放置第三电极阵列203,第三电极阵列203包括13个电极。如图8a所示,在人体的前胸放置第一电极阵列201,在人体的后背放置第二电极阵列202,在身体的左侧放置第三电极阵列203,在身体的右侧放置第三电极阵列203,即在人体前胸、后背、左侧、右侧处放置4个电极阵列(即第一电极阵列201、第二电极阵列202、第三电极阵列203、第三电极阵列203)。
构建肿瘤模型:共搭建了4个虚拟肿瘤模型,如图9a、9b、9c和9d所示,图9a、9b、9c和9d中的目标生物组织81分别设为肿瘤T1、肿瘤T2、肿瘤T3和肿瘤T4。4种肿瘤的大小和位置如图9a、9b、9c和9d中虚线圆圈所示,其中图9a中的肿瘤T1位于右肺中叶,直径40mm;图9b中的肿瘤T2位于右肺中叶,图9c中的肿瘤T3位于左肺中叶,图9d中的肿瘤T4位于左肺下叶,肿瘤T2、T3和T4的直径都为60mm。
模型搭建完成后,使用HyperMesh14.0进行网格划分,划分出包含电极、凝胶、皮肤、脂肪、骨骼、肌肉、肺、心脏、肝脏、肿瘤几种不同组织的单独网格,逐一导入至COMSOLMultiphysics5.5中,使用电流模块求解麦克斯韦方程组的电准静态方程。
材料电参数设置:根据表二所示,将各个组织成分的电导率和介电常数设置为相应数值。
表二:各个组织成分的电导率和介电常数
Figure PCTCN2022124124-appb-000001
仿真电源设置:采用频域仿真,频率设置为150kHz,每个电极上的法向电流密度设置为100mA/cm 2(毫安每平方厘米)。
场强评价方法:利用COMSOL计算出肿瘤处的电场强度-体积曲线图(EVH),如图10所示,其中横坐标轴为场强大小(V/cm),纵坐标轴为在肿瘤中体积占比(%),曲线上的点表示肿瘤中大于该点对应场强值的体积占比,用整条曲线下的面积来表示场强在肿瘤处 的覆盖量,该面积可以通过对曲线积分得到,该面积值记为E AUC
需要说明的是,第一电信号发生电路的输出的第一电信号为高电压信号,第二电信号发生电路输出的第二电信号为低电压信号。
设置电极前胸电极阵列作为电源接收端,用于接收第一电信号发生电路输出的第一电信号,设置后背电极阵列、左侧电极阵列和右侧电极阵列作为接地端,用于接收第二电信号发生电路输出的第二电信号。
在肿瘤T1和肿瘤T2中,仿真结果如表三所示,比较了场强覆盖量E AUC的数值。表三中的两种情况如下:
1、单电极阵列接地的情况,设置前胸电极阵列(如图8a中第一电极阵列201)接收第一电信号发生电路的输出的第一电信号(高电压信号)、后背电极阵列(如图8a中第二电极阵列202)接收第二电信号发生电路输出的第二电信号(低电压信号),即前胸电极阵列接收电源电压,后背电极阵列接地。
2、双电极阵列接地的情况,设置前胸电极阵列(如图8a中第一电极阵列201)接收第一电信号发生电路的输出的第一电信号(高电压信号)、后背电极阵列(如图8a中第二电极阵列202)和左侧电极阵列(如图8a中第三电极阵列203)都接收第二电信号发生电路输出的第二电信号(低电压信号),即前胸电极阵列接收电源电压,后背电极阵列和左侧电极阵列都接地。
如表三中结果表明双电极阵列接地时的场强覆盖量E AUC的数值,相较于单电极阵列接地时的场强覆盖量E AUC的数值提高了,从而场强覆盖量得到了提升。从表三可以得出,肿瘤T1双电极阵列接地时相较于单电极阵列接地情况,场强覆盖量E AUC的数值提升了1.22%;肿瘤T2双电极阵列接地时相较于单电极阵列接地情况,场强覆盖量E AUC的数值提升了1.23%。
肿瘤T1的人体胸腔水平面电场分布示意图如图11a和图11b所示,位置选取在肿瘤球心处。从图中可以看出图11b中位于人体左侧(如图中的左面部分)的电场的强度相比于图11a中左侧的电场的强度增强了。
肿瘤T2的人体胸腔水平面电场分布示意图如图12a和图12b所示,位置选取在肿瘤球心处。从图中可以看出图12b中位于人体左侧(如图中的左面部分)的电场的强度相比于图12a中左侧的电场的强度增强了。
表三:肿瘤T1和T2在不同情况下的场强覆盖量E AUC的数值
Figure PCTCN2022124124-appb-000002
在肿瘤T3和肿瘤T4中,仿真结果如表四所示,同样比较了场强覆盖量E AUC的数值,表四中的两种情况如下:
1、单电极阵列接地的情况,设置前胸电极阵列(如图8a中第一电极阵列201)接收第一电信号发生电路的输出的第一电信号(高电压信号)、后背电极阵列(如图8a中第二电极阵列202)接收第二电信号发生电路输出的第二电信号(低电压信号),即前胸电极阵列接收电源电压,后背电极阵列接地。
2、双电极阵列接地的情况,设置前胸电极阵列(如图8a中第一电极阵列201)接收第 一电信号发生电路的输出的第一电信号(高电压信号)、后背电极阵列(如图8a中第二电极阵列202)和右侧电极阵列(如图8a中第三电极阵列203)都接收第二电信号发生电路输出的第二电信号(低电压信号),即前胸电极阵列接收电源电压,后背电极阵列和右侧电极阵列都接地。
如表四中结果表明双电极阵列接地时的场强覆盖量E AUC的数值,相较于单电极阵列接地时的场强覆盖量E AUC的数值提高了,从而场强覆盖量得到了提升。从表三可以得出,肿瘤T3双电极阵列接地时相较于单电极阵列接地情况,场强覆盖量E AUC的数值提升了16.20%;肿瘤T4双电极阵列接地时相较于单电极阵列接地情况,场强覆盖量E AUC的数值提升了15.79%。
肿瘤T3的人体胸腔水平面电场分布示意图如图13a和图13b所示,位置选取在肿瘤球心处。从图中可以看出图13b中位于人体右侧(如图中的右面部分)的电场的强度相比于图13a中右侧的电场的强度增强了。
肿瘤T4的人体胸腔水平面电场分布示意图如图14a和图14b所示,位置选取在肿瘤球心处。从图中可以看出图14b中位于人体右侧(如图中的右面部分)的电场的强度相比于图14a中右侧的电场的强度增强了。
表四:肿瘤T3和T4在不同情况下的场强覆盖量E AUC的数值
Figure PCTCN2022124124-appb-000003
通过上述结果可以发现,通过使用靠近肿瘤一侧的电极阵列与背部电极阵列双接地的方式,相较于背部电极阵列单接地的方式,能够提升肿瘤区域的场强,各电极阵列之间产生的电场的场强覆盖量提升了,能够进一步提高对病变细胞等目标生物组织分裂的抑制效果。
此外,如图8b所示,若在肿瘤T1、肿瘤T2、肿瘤T3和肿瘤T4中,将背部偏左和偏右的位置贴放置两个电极阵列。表五中的两种情况如下:
1、单电极阵列接地的情况,设置前胸电极阵列(如图8a中第一电极阵列201)接收第一电信号发生电路的输出的第一电信号(高电压信号)、后背电极阵列(如图8a中第二电极阵列202)接收第二电信号发生电路输出的第二电信号(低电压信号),即前胸电极阵列接收电源电压,后背电极阵列接地。
2、双电极阵列接地的情况,设置前胸电极阵列(如图8a中第一电极阵列201)接收第一电信号发生电路的输出的第一电信号(高电压信号)、后背电极阵列(如图8b中的两个第二电极阵列202)都接收第二电信号发生电路输出的第二电信号(低电压信号),即前胸电极阵列接收电源电压,后背电极阵列接地。
可见,背部放置两个第二电极阵列202同时具有低电压信号,相较于背部仅放置一个第二电极阵列202具有低电压信号的方式,同样能够带来肿瘤处场强大小的提升。如表五所示,表五展示了前述4种肿瘤模型在背部放置一个第二电极阵列202和背部放置两个第二电极阵列202情况下的场强覆盖量E AUC的数值对比。
从表五中可以得出,肿瘤T1双电极阵列接地时相较于单电极阵列接地情况,场强覆盖量E AUC的数值提升了4.12%;肿瘤T2双电极阵列接地时相较于单电极阵列接地情况,场强 覆盖量E AUC的数值提升了4.49%;肿瘤T3双电极阵列接地时相较于单电极阵列接地情况,场强覆盖量E AUC的数值提升了15.08%;肿瘤T4双电极阵列接地时相较于单电极阵列接地情况,场强覆盖量E AUC的数值提升了9.57%。
肿瘤T1的人体胸腔水平面电场分布示意图如图11a和图11c所示,位置选取在肿瘤球心处。从图中可以看出图11c中位于人体背部一侧(如图中的上面部分)的电场的强度相比于图11a中上面的电场的强度增强了。
肿瘤T2的人体胸腔水平面电场分布示意图如图12a和图12c所示,位置选取在肿瘤球心处。从图中可以看出图12c中位于人体背部一侧(如图中的上面部分)的电场的强度相比于图12a中上面的电场的强度增强了。
肿瘤T3的人体胸腔水平面电场分布示意图如图13a和图13c所示,位置选取在肿瘤球心处。从图中可以看出图13c中位于人体背部一侧(如图中的上面部分)的电场的强度相比于图13a中上面的电场的强度增强了。
肿瘤T4的人体胸腔水平面电场分布示意图如图14a和图14c所示,位置选取在肿瘤球心处。从图中可以看出图14c中位于人体背部一侧(如图中的上面部分)的电场的强度相比于图14a中上面的电场的强度增强了。
表五:肿瘤T1、T2、T3和T4在不同情况下的场强覆盖量E AUC的数值
Figure PCTCN2022124124-appb-000004
由上述可知,在具有高电压信号的电极阵列数量不变的情况下,具有低电压信号的电极阵列数量越多,各电极阵列之间产生的电场的场强覆盖量提升了,能够进一步提高对病变细胞等目标生物组织分裂的抑制效果。
本申请实施例在具有第一电信号(高电压信号)的电极数量不变的情况下,具有第二电信号(低电压信号)的电极数量越多,具有第一电信号的电极与具有第二电信号的电极之间产生的电场越多,电场在目标生物组织区域的覆盖面积越大,能够提高覆盖在目标生物组织区域的电场的强度,从而能够提高覆盖在目标生物组织的电场强度,进一步提高了对病变细胞等目标生物组织分裂的抑制效果。
基于同一发明构思,本申请实施例提供了一种计算机可读存储介质,存储有计算机程序,计算机程序被处理器执行时实现如上述任一可选的实施例中的电场发生装置的控制方法。
本申请实施例提供的一种计算机可读存储介质适用于上述电场发生装置的控制方法的各种可选实施方式,该计算机可读存储介质可以是非易失性可读存储介质,也可以是易失性可读存储介质。在此不再赘述。
应用本申请实施例,至少能够实现如下有益效果:
(1)本申请实施例提供的电场发生装置,将n个电极按照设计方式设置于目标生物组织区域的周围,通过控制电信号发生器向n个电极中的m个电极输出第一电信号,并控制电信号发生器向n-m个电极中的至少两个电极输出第二电信号,n为不小于3的整数,且1≤m<n,m为整数。本申请实施例可以根据目标生物组织在目标生物组织区域的位置,灵活选择位于目标生物组织区域周围的电极的数量,以及控制哪些电极具有第二电信号,使 得具有第一电信号的电极与具有第二电信号的电极之间产生的电场的覆盖面积与目标生物组织所在位置最匹配,因此本实施例能够提升电场的覆盖面积与目标生物组织所在位置的匹配度、电场对目标生物组织的覆盖率、灵活性或适应性,从而有利于提高覆盖在目标生物组织的电场的强度,能够进一步提高对病变细胞等目标生物组织分裂的抑制效果。
并且,具有第一电信号的电极与至少两个具有第二电信号的电极之间能够产生多个电场,多个电场叠加使得电场叠加区域的电场强度得到增强,合理的选择至少两个具有第二电信号的电极,能够提高电场叠加区域对目标生物组织的覆盖率,从而有利于提高对病变细胞等目标生物组织分裂的抑制效果。
(2)本实施例通过控制n个电极中的一个电极持续具有第一电信号,控制其余电极按照设计顺序依次具有第二电信号,并且其余电极具有的第二电信号的电压小于第一电信号的电压,相比于将各电极全部加载并切换第一电信号,而本实施例将一个电极加载第一电信号,将其余电极加载第二电信号、以及在其余电极之间切换第二电信号的功耗减小,从而减小了电场发生装置的功耗。
(3)本实施例通过控制n个电极按照设计顺序依次具有第一电信号(高电压信号)和第二电信号(低电压信号),进一步减小了电场发生装置的功耗,从而防止了电场发生装置过热。
(4)在具有第一电信号(高电压信号)的电极数量不变的情况下,具有第二电信号(低电压信号)的电极数量越多,具有第一电信号的电极与具有第二电信号的电极之间产生的电场越多,电场在目标生物组织区域的覆盖面积越大,能够提高覆盖在目标生物组织区域的电场的强度,从而能够提高覆盖在目标生物组织的电场强度,进一步提高了对病变细胞等目标生物组织分裂的抑制效果。
本技术领域技术人员可以理解,本申请中已经讨论过的各种操作、方法、流程中的步骤、措施、方案可以被交替、更改、组合或删除。进一步地,具有本申请中已经讨论过的各种操作、方法、流程中的其他步骤、措施、方案也可以被交替、更改、重排、分解、组合或删除。进一步地,现有技术中的具有与本申请中公开的各种操作、方法、流程中的步骤、措施、方案也可以被交替、更改、重排、分解、组合或删除。
术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
应该理解的是,虽然附图的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,其可以以其他的顺序执行。而且,附图的流程图中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,其执行顺序也不必然是依次进行,而是可以与其他步骤或者其他步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
以上所述仅是本申请的部分实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (20)

  1. 一种电场发生装置,其中,包括:
    n个电极,用于按照设计方式设置于目标生物组织区域的周围;n为不小于3的整数;
    电信号发生器,与所述n个电极电连接;
    控制信号发生器,与所述电信号发生器电连接,用于控制所述电信号发生器向所述n个电极中的m个电极输出第一电信号,并控制所述电信号发生器向n-m个电极中的至少两个电极输出第二电信号,使得具有所述第一电信号的电极与具有所述第二电信号的电极之间产生电场;所述第二电信号的电压小于所述第一电信号的电压,1≤m<n,m为整数。
  2. 根据权利要求1所述的电场发生装置,其中,所述电信号发生器包括:
    第一电信号发生电路,与所述n个电极电连接,用于输出所述第一电信号;
    第二电信号发生电路,与所述n个电极电连接,用于输出所述第二电信号。
  3. 根据权利要求2所述的电场发生装置,其中,还包括:第一开关组件和第二开关组件;
    所述第一电信号发生电路通过所述第一开关组件与所述n个电极电连接,所述控制信号发生器与所述第一开关组件电连接;
    所述第二电信号发生电路通过所述第二开关组件与所述n个电极电连接,所述控制信号发生器与所述第二开关组件电连接;
    所述控制信号发生器用于控制所述第一开关组件将所述第一电信号传输至所述n个电极中的m个电极,并控制所述第二开关组件将所述第二电信号传输至n-m个电极中的至少两个电极,使得具有所述第一电信号的电极与具有所述第二电信号的电极之间产生电场。
  4. 根据权利要求3所述的电场发生装置,其中,所述第一开关组件包括n个第一开关单元;所述第二开关组件包括n个第二开关单元;
    所述n个第一开关单元与所述n个电极一一对应电连接,并与所述第一电信号发生电路、所述控制信号发生器都电连接;
    所述n个第二开关单元与所述n个电极一一对应电连接,并与所述第二电信号发生电路、所述控制信号发生器都电连接。
  5. 根据权利要求1所述的电场发生装置,其中,还包括下述至少一项:
    所述第一电信号包括:交流电压信号、脉冲电压信号或方波电压信号;
    所述第二电信号包括:恒定的电压信号或波动的电压信号;
    所述第一电信号的电压幅值的绝对值不小于0伏特、且不大于500伏特;
    所述第二电信号的电压幅值的绝对值不小于0伏特、且不大于10伏特;
    所述电场的强度不小于0.1伏特每厘米、且不大于10伏特每厘米;
    所述电场的频率不小于50千赫兹、且不大于500千赫兹;
    m为1。
  6. 根据权利要求5所述的电场发生装置,其中,
    所述第二电信号的电压幅值的绝对值为0伏特、1伏特或5伏特。
  7. 一种电场发生装置的控制方法,其中,应用于如权利要求1至6任一项所述的电场发生装置,包括:
    控制电信号发生器向n个电极中的m个电极输出第一电信号,并控制所述电信号发生器向n-m个电极中的至少两个电极输出第二电信号,使得具有所述第一电信号的电极与具有所述第二电信号的电极之间产生电场,n为不小于3的整数,1≤m<n,m为整数;
    所述电场发生装置包括电连接的所述电信号发生器和所述n个电极;所述第二电信号的电压小于所述第一电信号的电压。
  8. 根据权利要求7所述的电场发生装置的控制方法,其中,控制电信号发生器向n个 电极中的m个电极输出第一电信号,并控制所述电信号发生器向n-m个电极中的至少两个电极输出第二电信号,使得具有所述第一电信号的电极与具有所述第二电信号的电极之间产生电场,包括:
    控制第一开关组件将所述第一电信号传输至所述n个电极中的m个电极,并控制第二开关组件将所述第二电信号传输至n-m个电极中的至少两个电极,使得具有所述第一电信号的电极与具有所述第二电信号的电极之间产生电场;
    所述电信号发生器包括:第一电信号发生电路和第二电信号发生电路;所述电场发生装置还包括:第一开关组件和第二开关组件;所述第一开关组件与所述第一电信号发生电路、所述控制信号发生器、所述n个电极都电连接;所述第二开关组件与所述第二电信号发生电路、所述控制信号发生器、所述n个电极都电连接。
  9. 根据权利要求8所述的电场发生装置的控制方法,其中,控制第一开关组件将所述第一电信号传输至所述n个电极中的m个电极,并控制第二开关组件将所述第二电信号传输至n-m个电极中的至少两个电极,使得具有所述第一电信号的电极与具有所述第二电信号的电极之间产生电场,包括:
    控制一号第一开关单元将所述第一电信号传输至所述n个电极中的一号电极,并控制二号第一开关单元至n号第一开关单元都关断;同时控制与所述一号电极电连接的一号第二开关单元关断,并控制二号第二开关单元至n号第二开关单元的至少两个第二开关单元将所述第二电信号传输至所述n个电极中除了所述一号电极之外的至少两个电极;
    所述第一开关组件包括n个第一开关单元;所述第二开关组件包括n个第二开关单元;所述n个第一开关单元包括:一号第一开关单元至n号第一开关单元;所述n个第二开关单元包括:一号第二开关单元至n号第二开关单元;所述n个电极包括:一号电极至n号电极。
  10. 根据权利要求8所述的电场发生装置的控制方法,其中,控制第一开关组件将所述第一电信号传输至所述n个电极中的m个电极,并控制第二开关组件将所述第二电信号传输至n-m个电极中的至少两个电极,使得具有所述第一电信号的电极与具有所述第二电信号的电极之间产生电场,包括:
    控制一号第一开关单元将所述第一电信号传输至所述n个电极中的一号电极,并控制二号第一开关单元至n号第一开关单元都关断;同时控制与所述一号电极电连接的一号第二开关单元关断,并同步控制二号第二开关单元至n号第二开关单元的至少两个第二开关单元按照设计顺序依次开启,将所述第二电信号按照所述设计顺序依次传输至所述n个电极中除了所述一号电极之外的至少两个电极;
  11. 根据权利要求8所述的电场发生装置的控制方法,其中,控制第一开关组件将所述第一电信号传输至所述n个电极中的m个电极,并控制第二开关组件将所述第二电信号传输至n-m个电极中的至少两个电极,使得具有所述第一电信号的电极与具有所述第二电信号的电极之间产生电场,包括:
    m为1,控制n个第一开关单元按照设计顺序依次开启,使得n个电极按照所述设计顺序依次接收到所述第一电信号,同步控制n个第二开关单元按照所述设计顺序依次关断,并同步控制各第二开关单元组合按照所述设计顺序依次开启,使得与各所述第二开关单元组合对应的电极组合按照所述设计顺序依次接收到所述第二电信号;所述第二开关单元组合包括未关断的n-1个第二开关单元中的至少两个第二开关单元;所述电极组合包括未接收所述第一电信号的至少两个电极;
    所述第一开关组件包括n个第一开关单元;所述第二开关组件包括n个第二开关单元。
  12. 根据权利要求10或11中任一项所述的电场发生装置的控制方法,其中,
    各第二开关单元按照设计顺序依次开启或关断的时间间隔不小于20毫秒、且不大于 500毫秒。
  13. 根据权利要求7所述的电场发生装置的控制方法,其中,
    电信号发生器向n个电极中的m个电极输出的第一电信号为高电压信号,控制所述电信号发生器向n-m个电极中的至少两个电极输出的第二电信号为低电压信号。
  14. 一种计算机可读存储介质,其中,存储有计算机程序,所述计算机程序被处理器执行时实现如下所述的电场发生装置的控制方法的步骤:
    控制电信号发生器向n个电极中的m个电极输出第一电信号,并控制所述电信号发生器向n-m个电极中的至少两个电极输出第二电信号,使得具有所述第一电信号的电极与具有所述第二电信号的电极之间产生电场,n为不小于3的整数,1≤m<n,m为整数;
    所述电场发生装置包括电连接的所述电信号发生器和所述n个电极;所述第二电信号的电压小于所述第一电信号的电压。
  15. 根据权利要求14所述的计算机可读存储介质,其中,控制电信号发生器向n个电极中的m个电极输出第一电信号,并控制所述电信号发生器向n-m个电极中的至少两个电极输出第二电信号,使得具有所述第一电信号的电极与具有所述第二电信号的电极之间产生电场,包括:
    控制第一开关组件将所述第一电信号传输至所述n个电极中的m个电极,并控制第二开关组件将所述第二电信号传输至n-m个电极中的至少两个电极,使得具有所述第一电信号的电极与具有所述第二电信号的电极之间产生电场;
    所述电信号发生器包括:第一电信号发生电路和第二电信号发生电路;所述电场发生装置还包括:第一开关组件和第二开关组件;所述第一开关组件与所述第一电信号发生电路、所述控制信号发生器、所述n个电极都电连接;所述第二开关组件与所述第二电信号发生电路、所述控制信号发生器、所述n个电极都电连接。
  16. 根据权利要求15所述的计算机可读存储介质,其中,控制第一开关组件将所述第一电信号传输至所述n个电极中的m个电极,并控制第二开关组件将所述第二电信号传输至n-m个电极中的至少两个电极,使得具有所述第一电信号的电极与具有所述第二电信号的电极之间产生电场,包括:
    控制一号第一开关单元将所述第一电信号传输至所述n个电极中的一号电极,并控制二号第一开关单元至n号第一开关单元都关断;同时控制与所述一号电极电连接的一号第二开关单元关断,并控制二号第二开关单元至n号第二开关单元的至少两个第二开关单元将所述第二电信号传输至所述n个电极中除了所述一号电极之外的至少两个电极;
    所述第一开关组件包括n个第一开关单元;所述第二开关组件包括n个第二开关单元;所述n个第一开关单元包括:一号第一开关单元至n号第一开关单元;所述n个第二开关单元包括:一号第二开关单元至n号第二开关单元;所述n个电极包括:一号电极至n号电极。
  17. 根据权利要求15所述的计算机可读存储介质,其中,控制第一开关组件将所述第一电信号传输至所述n个电极中的m个电极,并控制第二开关组件将所述第二电信号传输至n-m个电极中的至少两个电极,使得具有所述第一电信号的电极与具有所述第二电信号的电极之间产生电场,包括:
    控制一号第一开关单元将所述第一电信号传输至所述n个电极中的一号电极,并控制二号第一开关单元至n号第一开关单元都关断;同时控制与所述一号电极电连接的一号第二开关单元关断,并同步控制二号第二开关单元至n号第二开关单元的至少两个第二开关单元按照设计顺序依次开启,将所述第二电信号按照所述设计顺序依次传输至所述n个电极中除了所述一号电极之外的至少两个电极;
  18. 根据权利要求15所述的计算机可读存储介质,其中,控制第一开关组件将所述第 一电信号传输至所述n个电极中的m个电极,并控制第二开关组件将所述第二电信号传输至n-m个电极中的至少两个电极,使得具有所述第一电信号的电极与具有所述第二电信号的电极之间产生电场,包括:
    m为1,控制n个第一开关单元按照设计顺序依次开启,使得n个电极按照所述设计顺序依次接收到所述第一电信号,同步控制n个第二开关单元按照所述设计顺序依次关断,并同步控制各第二开关单元组合按照所述设计顺序依次开启,使得与各所述第二开关单元组合对应的电极组合按照所述设计顺序依次接收到所述第二电信号;所述第二开关单元组合包括未关断的n-1个第二开关单元中的至少两个第二开关单元;所述电极组合包括未接收所述第一电信号的至少两个电极;
    所述第一开关组件包括n个第一开关单元;所述第二开关组件包括n个第二开关单元。
  19. 根据权利要求17或18中任一项所述的计算机可读存储介质,其中,
    各第二开关单元按照设计顺序依次开启或关断的时间间隔不小于20毫秒、且不大于500毫秒。
  20. 根据权利要求14所述的计算机可读存储介质,其中,
    电信号发生器向n个电极中的m个电极输出的第一电信号为高电压信号,控制所述电信号发生器向n-m个电极中的至少两个电极输出的第二电信号为低电压信号。
PCT/CN2022/124124 2021-10-22 2022-10-09 电场发生装置及其控制方法、计算机可读存储介质 WO2023066048A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020247013020A KR20240060830A (ko) 2021-10-22 2022-10-09 전기장 발생 장치와 그 제어 방법 및 컴퓨터 판독 가능한 저장 매체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111231292.6 2021-10-22
CN202111231292.6A CN113663215B (zh) 2021-10-22 2021-10-22 电场发生装置及其控制方法、计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2023066048A1 true WO2023066048A1 (zh) 2023-04-27

Family

ID=78550820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/124124 WO2023066048A1 (zh) 2021-10-22 2022-10-09 电场发生装置及其控制方法、计算机可读存储介质

Country Status (3)

Country Link
KR (1) KR20240060830A (zh)
CN (1) CN113663215B (zh)
WO (1) WO2023066048A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113663215B (zh) * 2021-10-22 2022-01-21 杭州维纳安可医疗科技有限责任公司 电场发生装置及其控制方法、计算机可读存储介质
CN114534091B (zh) * 2022-02-17 2022-09-09 湖南安泰康成生物科技有限公司 利用电场抑制肿瘤增殖的设备及其控制装置
CN116585610A (zh) * 2023-03-31 2023-08-15 湖南安泰康成生物科技有限公司 一种能覆盖幕下的穿戴式电极装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170049513A1 (en) * 2009-11-06 2017-02-23 Cosman Medical, Inc. Multiple electrode generator
CN106823145A (zh) * 2017-03-24 2017-06-13 长沙普特斯科技有限公司 一种采用调幅电场治疗肿瘤的装置
CN109432601A (zh) * 2017-10-20 2019-03-08 湖南安泰康成生物科技有限公司 用于破坏和抑制患者体内病变组织快速生长的设备
CN113082519A (zh) * 2021-04-30 2021-07-09 杭州维那泰克医疗科技有限责任公司 用于破坏或者抑制病变细胞分裂的装置及其控制方法
CN113476746A (zh) * 2021-07-20 2021-10-08 杭州维纳安可医疗科技有限责任公司 抑制病变细胞分裂的设备、控制方法及控制装置
CN113663215A (zh) * 2021-10-22 2021-11-19 杭州维纳安可医疗科技有限责任公司 电场发生装置及其控制方法、计算机可读存储介质

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8565867B2 (en) * 2005-01-28 2013-10-22 Cyberonics, Inc. Changeable electrode polarity stimulation by an implantable medical device
JP4210953B2 (ja) * 2006-04-14 2009-01-21 ソニー株式会社 電界制御装置及び検出装置
WO2013138252A1 (en) * 2012-03-16 2013-09-19 Boston Scientific Neuromodulation Corporation Field augmented current steering using voltage sources
WO2014138990A1 (en) * 2013-03-15 2014-09-18 Myndtec Inc. Electrical stimulation system with pulse control
CN207477801U (zh) * 2017-03-24 2018-06-12 长沙普特斯科技有限公司 一种采用调幅电场治疗肿瘤的装置
CN108939292B (zh) * 2018-07-23 2024-03-29 中国人民解放军第四军医大学 一种生物组织时域干涉电刺激装置及其使用方法
IT201800009240A1 (it) * 2018-10-08 2020-04-08 We Care Thecnologies Srl Apparecchiatura di elettrostimolazione
CN112618951A (zh) * 2019-09-24 2021-04-09 上海微创医疗器械(集团)有限公司 一种电刺激信号发生器、电刺激系统及控制电极的方法
EP4090414A4 (en) * 2020-01-17 2024-02-21 London Health Sciences Centre Research Inc. DYNAMICALLY ORIENTED ELECTRIC FIELD PLANNING AND ADMINISTRATION FOR BIOMEDICAL APPLICATIONS
CN113018682A (zh) * 2021-02-25 2021-06-25 杭州维那泰克医疗科技有限责任公司 细胞分裂抑制装置及其控制方法、装置、系统、存储介质
CN113599703A (zh) * 2021-07-30 2021-11-05 杭州维纳安可医疗科技有限责任公司 电场发生装置及其控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170049513A1 (en) * 2009-11-06 2017-02-23 Cosman Medical, Inc. Multiple electrode generator
CN106823145A (zh) * 2017-03-24 2017-06-13 长沙普特斯科技有限公司 一种采用调幅电场治疗肿瘤的装置
CN109432601A (zh) * 2017-10-20 2019-03-08 湖南安泰康成生物科技有限公司 用于破坏和抑制患者体内病变组织快速生长的设备
CN113082519A (zh) * 2021-04-30 2021-07-09 杭州维那泰克医疗科技有限责任公司 用于破坏或者抑制病变细胞分裂的装置及其控制方法
CN113476746A (zh) * 2021-07-20 2021-10-08 杭州维纳安可医疗科技有限责任公司 抑制病变细胞分裂的设备、控制方法及控制装置
CN113663215A (zh) * 2021-10-22 2021-11-19 杭州维纳安可医疗科技有限责任公司 电场发生装置及其控制方法、计算机可读存储介质

Also Published As

Publication number Publication date
KR20240060830A (ko) 2024-05-08
CN113663215B (zh) 2022-01-21
CN113663215A (zh) 2021-11-19

Similar Documents

Publication Publication Date Title
WO2023066048A1 (zh) 电场发生装置及其控制方法、计算机可读存储介质
US11701161B2 (en) Optimizing treatment using TTFields by changing the frequency during the course of long term tumor treatment
US11779758B2 (en) Apparatus and method of non-invasive directional tissue treatment
EP3824805B1 (en) Apparatus for treating a tumor with an alternating electric field and for selecting a treatment frequency based on estimated cell size
JP2022009757A (ja) 非侵襲的容量性電気刺激のためのデバイスおよび方法、ならびに患者の頸部の迷走神経刺激のためのそれらの使用
US8137258B1 (en) Magnetic method for treatment of human tissue
US9278231B2 (en) Sequentially programmed magnetic field therapeutic system (SPMF)
Sano et al. Burst and continuous high frequency irreversible electroporation protocols evaluated in a 3D tumor model
CN202844368U (zh) 肿瘤电场治疗仪
JP2007535978A (ja) 電磁誘導処理装置および方法
CN101160152A (zh) 电磁治疗感应装置和方法
KR102214521B1 (ko) 미용에 사용하는 복합 전극패드를 이용한 미용기기와 그 방법
CN106388933B (zh) 用于不可逆电穿孔设备的电极
CN112473009A (zh) 肿瘤治疗仪
EP4397358A1 (en) Electric field generating apparatus and control method therefor, and computer-readable storage medium
CN114886545B (zh) 一种同步双极性短脉冲肿瘤消融方法与装置
CN210250889U (zh) 一种利用电磁波抑制病变组织快速生长的可穿戴设备
CN104984479A (zh) 电子对撞对异性细胞的抑制系统及抑制方法
Wu et al. Linear Channel Characteristics Analysis for Conductive Intracardiac Communication
Aronowitz Ethereal fire: antecedents of radiology and radiotherapy
US20240091525A1 (en) Systems and methods for implantable electrodes with feedback for application of electric field therapy within the body
US20230211161A1 (en) Electrical applicators with non-penetrating electrodes for applying energy to tissue surfaces
Ritter et al. Fem-Driven Parameter Optimization of an Electrochemotherapy Catheter Prototype
CN110051933A (zh) 一种利用电磁波抑制病变组织快速生长的可穿戴设备
CN102100944A (zh) 生物负电场保健治疗仪设备系统及理疗方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22882658

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022882658

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20247013020

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022882658

Country of ref document: EP

Effective date: 20240402

NENP Non-entry into the national phase

Ref country code: DE