WO2023066042A1 - 一种浪涌防护器件和供电系统 - Google Patents

一种浪涌防护器件和供电系统 Download PDF

Info

Publication number
WO2023066042A1
WO2023066042A1 PCT/CN2022/124053 CN2022124053W WO2023066042A1 WO 2023066042 A1 WO2023066042 A1 WO 2023066042A1 CN 2022124053 W CN2022124053 W CN 2022124053W WO 2023066042 A1 WO2023066042 A1 WO 2023066042A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
power supply
sensitive element
pressure sensitive
surge protection
Prior art date
Application number
PCT/CN2022/124053
Other languages
English (en)
French (fr)
Inventor
宋文涛
李闯鹏
赵东升
王啟伟
高晓
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023066042A1 publication Critical patent/WO2023066042A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • H02H9/041Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage using a short-circuiting device
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • H02H9/06Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage using spark-gap arresters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks

Definitions

  • the present application relates to the technical field of power supply, in particular to a surge protection device and a power supply system.
  • surge can also be called surge, which mainly refers to the instantaneous overvoltage on electrical equipment that exceeds the normal working voltage.
  • surge There are internal reasons for the surge, such as the start, stop or sudden failure of electrical equipment, as well as external reasons, such as lightning. Since surges can easily cause electrical equipment failure or damage, surge protection for electrical equipment is very necessary.
  • surge protection circuits are usually designed on the power supply path between the power supply and the electrical equipment.
  • a surge protection circuit is designed in an input electromagnetic compatibility (EMC) protection module of a common alternating current (AC) power supply (AC source for short).
  • EMC electromagnetic compatibility
  • AC alternating current
  • Most of the existing surge protection circuits are composed of piezoresistors, gas discharge tubes and other devices, and are discretely welded on the single board of the power supply, which leads to a large footprint of the existing surge protection circuit , There are also difficulties in installation and post-maintenance. Therefore, the applicability of the existing surge protection circuit is poor.
  • this application provides a surge protection device and a power supply system, which can solve the problems that the existing surge protection circuit occupies a large area and is difficult to install and maintain, and can improve the applicability of the surge protection circuit and practicality.
  • the present application provides a surge protection device.
  • the surge protection device includes: a casing and an integrated device fixed in the casing, the integrated device includes a plurality of pressure sensitive elements and a plurality of electrodes, each of the plurality of pressure sensitive elements The two ends are respectively connected to the first ends of the two electrodes in the plurality of electrodes, and the second end of each electrode in the plurality of electrodes is used as a pin of the surge protection device, and is used to connect the One of the multiple power supply lines provided by the power supply outside the surge protection device.
  • the second end of each electrode in the plurality of electrodes is respectively correctly connected to one of the power supply lines in the plurality of power supply lines, a phenomenon occurs between any two power supply lines in the plurality of power supply lines.
  • the pressure-sensitive element connected between the any two power supply lines among the multiple pressure-sensitive elements is used to short-circuit the any two power supply lines.
  • the pressure sensitive element is used to short-circuit the first power supply line and the second power supply line.
  • the integrated device obtained by integrating a plurality of electrodes and a plurality of pressure sensitive elements is packaged in the casing, and the second end of each electrode in the plurality of electrodes is used as an external pin, thereby forming a A surge protection device connected to multiple power supply lines provided by the power supply.
  • the surge protection device When the surge protection device is correctly connected to the multiple power supply lines through its internal electrodes, the surge protection device can short-circuit any two power supply lines in the multiple power supply lines (such as in the multiple power supply lines) The first power supply line and the second power supply line) to effectively achieve surge protection.
  • the integrated surge protection device is small in size and convenient for installation and maintenance. It can effectively solve the problem that the existing surge protection circuit occupies a large area and is difficult to install and maintain later, and can effectively improve the surge protection. The applicability and practicality of the surge protection circuit.
  • the surge protection device further includes a base, the base is provided with a plurality of through holes, when the base is fixedly connected to the housing and covers the When the bottom surface is used, the second end of each electrode in the plurality of electrodes is used to respectively connect to one of the plurality of power supply lines through one of the through holes in the plurality of through holes.
  • the bottom of the casing is covered by the base, on the one hand, the sealing performance of the entire surge protection device can be improved, and the safety of the surge protection device can be improved.
  • an insulating medium is filled between the housing and the integrated device.
  • the gap between the housing and the integrated device is filled with an insulating medium, which can further improve the sealing and safety of the surge protection device.
  • the pressure-sensitive element is a cylindrical varistor
  • one end face of the cylindrical varistor is the first end of the pressure-sensitive element, so The other end face of the cylindrical varistor is the second end of the varistor.
  • the axial direction of each pressure sensitive element in the plurality of pressure sensitive elements is the same, and the axial direction of each pressure sensitive element is the same as the bottom surface of the housing parallel to each other.
  • adopting this structure can effectively shorten the length of each electrode inside the housing, further reduce the volume of the surge protection device, and improve the integration of the surge protection device.
  • the multiple pressure sensitive elements include a first pressure sensitive element, a second pressure sensitive element, and a third pressure sensitive element
  • the multiple electrodes include a first electrode
  • the plurality of power supply lines include the first power supply line, the second power supply line and the third power supply line.
  • the first end of the first pressure sensitive element is connected to the first end of the first electrode
  • the second end of the first pressure sensitive element is connected to the first end of the second electrode
  • the first end of the second electrode is also connected to the first end of the second pressure sensitive element
  • the second end of the second pressure sensitive element is connected to the first end of the third electrode
  • the first end of the third electrode is also connected to the first end of the third pressure sensitive element
  • the second end of the third pressure sensitive element is connected to the first end of the fourth electrode
  • the The second end of the first electrode and the second end of the fourth electrode are used to connect the first power supply line
  • the second end of the second electrode is used to connect the second power supply line
  • the third The second end of the electrode is used to connect to the third power supply line.
  • the power supply outside the surge protection device is a DC source
  • the first power supply line is the protective ground line of the DC source
  • the second power supply line is The positive bus bar of the DC source
  • the third power supply line is the negative bus bar of the DC source.
  • the power supply outside the surge protection device is an AC source
  • the first power supply line is the protective ground line of the AC source
  • the second power supply line is The first phase line of the AC source
  • the third power supply line is the neutral line of the AC source.
  • the plurality of pressure-sensitive elements further include a fourth pressure-sensitive element, a fifth pressure-sensitive element, a sixth pressure-sensitive element, and a seventh pressure-sensitive element, and the plurality of pressure-sensitive elements
  • Each electrode also includes a fifth electrode, a sixth electrode, a seventh electrode and an eighth electrode
  • the plurality of power supply lines also includes a second phase line and a third phase line of the AC source.
  • the second end of the first electrode is also connected to the first end of the fourth pressure sensitive element, and the second end of the fourth pressure sensitive element is connected to the first end of the fifth electrode
  • the first end of the fifth electrode is also connected to the first end of the fifth pressure sensitive element
  • the second end of the fifth pressure sensitive element is connected to the first end of the sixth electrode
  • the The first end of the fourth electrode is also connected to the first end of the sixth pressure sensitive element
  • the second end of the sixth pressure sensitive element is connected to the first end of the seventh electrode
  • the first end of the sixth pressure sensitive element is connected to the first end of the seventh electrode.
  • the first end of the seven electrodes is also connected to the first end of the seventh pressure sensitive element
  • the second end of the seventh pressure sensitive element is also connected to the first end of the eighth electrode
  • the first end of the seventh pressure sensitive element is also connected to the first end of the eighth electrode.
  • the second end of the six electrodes and the eighth electrode is used to connect the neutral line
  • the second end of the fifth electrode is used to connect the third phase line
  • the second end of the seventh electrode is used to for connecting the second phase line.
  • the power supply outside the surge protection device is an AC source
  • the first power supply line is the protective ground line of the AC source
  • the second power supply line is The first phase line of the AC source
  • the third power supply line is the second phase line of the AC source.
  • the power supply outside the surge protection device is an AC source
  • the first power supply line is the neutral line or protective ground line of the AC source
  • the The neutral wire of the AC source is short-circuited with the protective ground wire
  • the second power supply wire is the first phase wire of the AC source
  • the third power supply wire is the second phase wire of the AC source.
  • the integrated device further includes a gas discharge tube, the second end of the first electrode and the second end of the fourth electrode are connected to the gas discharge tube The first ends are connected, and the second end of the gas discharge tube is used to connect to the protection ground wire.
  • the power supply outside the surge protection device is an AC source
  • the first power supply line is the first phase line of the AC source
  • the second power supply line is the second phase wire of the AC source
  • the plurality of power supply wires further include a third phase wire of the AC source and a protective ground wire.
  • the plurality of pressure sensitive elements include a first pressure sensitive element, a second pressure sensitive element, a third pressure sensitive element, a fourth pressure sensitive element, a fifth pressure sensitive element and a sixth pressure sensitive element
  • the plurality of pressure sensitive elements include a first electrode, a second electrode, a third electrode, a fourth electrode, a fifth electrode, a sixth electrode, a seventh electrode and an eighth electrode.
  • the first end of the first pressure sensitive element is connected to the first end of the first electrode, the second end of the first pressure sensitive element is connected to the first end of the second electrode, the The first end of the second electrode is also connected to the first end of the second pressure sensitive element, the second end of the second pressure sensitive element is connected to the first end of the third electrode, and the first end of the second pressure sensitive element is connected to the first end of the third electrode.
  • the first end of the three electrodes is also connected to the first end of the third pressure sensitive element, the second end of the third pressure sensitive element is also connected to the first end of the fourth electrode, and the first end of the third pressure sensitive element is connected to the first end of the fourth electrode.
  • the first end of the fifth electrode is connected to the first end of the fourth pressure sensitive element, the second end of the fourth pressure sensitive element is connected to the first end of the sixth electrode, and the sixth electrode
  • the first end of the fifth pressure sensitive element is also connected to the first end of the fifth pressure sensitive element, the second end of the fifth pressure sensitive element is connected to the first end of the seventh electrode, and the seventh electrode
  • the first end is also connected to the first end of the sixth pressure sensitive element, and the second end of the sixth pressure sensitive element is connected to the first end of the eighth electrode;
  • the first electrode and the second end of the seventh electrode are used to connect the protective ground wire, and the second electrode and the second end of the fifth electrode are used to connect the first phase line, so The second ends of the third electrode and the eighth electrode are used to connect to the second phase line, and the second ends of the fourth electrode and the sixth electrode are used to connect to the third phase line.
  • the integrated device further includes a gas discharge tube, and the second ends of the first electrode and the seventh electrode are connected to the first end of the gas discharge tube. connected, the second end of the gas discharge tube is used to connect to the protective ground wire.
  • the present application provides a power supply system.
  • the power supply system includes a power supply, the first aspect and the surge protection device provided in any feasible implementation manner of the first aspect, and a load.
  • the surge protection device is connected to multiple power supply lines between the power supply and the load. When the power supply supplies power to the load through the plurality of power supply lines, the surge protection device is used for performing surge protection on the load.
  • the power supply is a DC source
  • the multiple power supply lines include the positive bus bar of the DC source, the negative bus bar of the DC source, and the protection of the DC source. ground wire.
  • the power supply is an AC source
  • the multiple power supply lines are the first phase line of the AC source, the second phase line of the AC source, the At least three items of the third phase wire of the AC source, the neutral wire of the AC source, and the protection ground wire of the AC source.
  • Fig. 1 is a schematic structural diagram of a surge protection device provided by an embodiment of the present application
  • Fig. 2 is another structural schematic diagram of a surge protection device provided by an embodiment of the present application.
  • Fig. 3 is a schematic diagram of the connection between a base and a housing provided by an embodiment of the present application
  • Fig. 4 is another structural schematic diagram of a surge protection device provided by an embodiment of the present application.
  • Fig. 5 is a structural schematic diagram of a pressure sensitive element and an electrode provided in an embodiment of the present application
  • Fig. 6 is another structural schematic diagram of a surge protection device provided by an embodiment of the present application.
  • Fig. 7 is another structural schematic diagram of a surge protection device provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a circuit principle provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of another circuit principle provided by the embodiment of the present application.
  • FIG. 10 is a schematic diagram of another circuit principle provided by the embodiment of the present application.
  • Fig. 11 is a schematic diagram of another circuit principle provided by the embodiment of the present application.
  • Fig. 12 is another structural schematic diagram of a surge protection device provided by an embodiment of the present application.
  • Fig. 13 is another structural schematic diagram of a surge protection device provided by an embodiment of the present application.
  • Fig. 14 is a schematic diagram of another circuit principle provided by the embodiment of the present application.
  • Fig. 15 is another structural schematic diagram of a surge protection device provided by an embodiment of the present application.
  • Fig. 16 is a schematic diagram of a circuit principle provided by the embodiment of the present application.
  • Fig. 17 is a schematic structural diagram of a power supply system provided by an embodiment of the present application.
  • surge protection circuits are often designed on the power supply path between the power supply and electrical equipment.
  • Most of the existing surge protection circuits are composed of piezoresistors, gas discharge tubes and other devices, and are discretely welded on the single board of the power supply, which leads to a large footprint of the existing surge protection circuit , and there are also difficulties in installation and post-maintenance. Therefore, the applicability and practicability of the existing surge protection circuit are poor.
  • the technical problem to be solved in this application is: how to reduce the volume of the surge protection circuit to improve the applicability and practicability of the surge protection circuit.
  • the present application provides a surge protection device, which encapsulates an integrated device integrated with a plurality of electrodes and a plurality of pressure sensitive elements in a casing, and uses the second of each electrode in the plurality of electrodes
  • the terminal is used as an external pin, thereby forming a surge protection device that can be connected to multiple power supply lines provided by the power supply.
  • the surge protection device is small in size, easy to install and maintain, and can effectively solve the problem that the existing surge protection circuit takes up a lot of effective space on the power supply board due to the large size of the current surge protection circuit. Maintenance is also relatively difficult, which can effectively improve the applicability and practicability of the surge protection circuit.
  • FIG. 1 is a schematic structural diagram of a surge protection device provided by an embodiment of the present application.
  • the surge protection device 100 may include a housing 10 and an integrated device 20 fixed inside the housing 10 .
  • the above-mentioned integrated device 20 is integrated with a plurality of pressure sensitive elements 201 and a plurality of electrodes 202 .
  • each of the plurality of pressure sensitive elements 201 is respectively connected to one end of two electrodes in the plurality of electrodes 202 (for convenience of distinction, the first end of the electrode is used instead of description below).
  • each of the above-mentioned plurality of pressure sensitive elements 201 has at least two ports.
  • each pressure sensitive element For each pressure sensitive element, one port thereof will be connected to the first end of one of the above-mentioned multiple electrodes 202, and the other port will be connected to the first end of another electrode among the above-mentioned multiple electrodes 202. connected. Moreover, the first end of each electrode among the plurality of electrodes 202 is connected to at least one pressure sensitive element.
  • the pressure sensitive element involved in this application corresponds to a voltage threshold. When the voltage applied to its two ends is lower than this voltage threshold, the current flowing through it is extremely small, and it is equivalent to a resistor with infinite resistance. In other words, it can be considered as an off-state switch when the voltage applied across it is below its corresponding voltage threshold.
  • each electrode in the above plurality of electrodes 202 can be used as an external pin of the surge protection device 100, and can be used to connect to the surge protection device 100.
  • the above-mentioned multiple power supply lines include the first power supply line 301 and the second power supply line 302
  • the first power supply line 301 and the second power supply line 302 are correctly connected to the above-mentioned plurality of electrodes 202
  • the current flowing through the pressure-sensitive element connected between the first power supply line 301 and the second power supply line 302 will surge, and its resistance value will become It is very small, so that the short circuit between the first power supply line 301 and the second power supply line 302 can be realized, so as to realize the surge protection function for the electrical equipment connected to the first power supply line 301 and the second power supply line 302 .
  • the above-mentioned integrated device 20 is fixedly arranged inside the housing 10 .
  • fix the integrated device 20 and the housing 10 There are many ways to fix the integrated device 20 and the housing 10 .
  • a fixing structure such as a buckle can be provided on the inner wall of the housing 10, and then the integrated device 20 can be snapped together with the fixing structure on the inner wall through the pressure-sensitive element and/or electrodes contained therein, so as to realize fixing to the housing 10 connect.
  • the application does not specifically limit the fixing method between the integrated device 20 and the housing 10 .
  • the second end of each of the plurality of electrodes 202 needs to be connected to an external power supply line. Therefore, in order to facilitate the installation of the surge protection device 100, the second end of each electrode in the above-mentioned plurality of electrodes 202 usually passes through the bottom surface of the housing 10 and faces the outside of the housing 10, that is to say, among the above-mentioned plurality of electrodes 202 The second end of each electrode is exposed outside the housing 10 and is used as a pin of the surge protection device 100 to be connected to other electrical components other than the surge protection device 100 .
  • the integrated device 20 obtained by integrating a plurality of pressure sensitive elements 201 and a plurality of electrodes 202 is packaged inside the housing 10, and the second end of each electrode in the plurality of electrodes 202 is used as an external pin , so as to form a surge protection device 100 that can be connected to a plurality of power supply lines 310 provided by the power supply 300 .
  • the surge protection device 100 When the surge protection device 100 is correctly connected to any two power supply lines of the external power supply 300 through its electrodes, the surge protection device 100 can effectively realize surge protection by shorting the any two power supply lines.
  • the surge protection device 100 is small in size, convenient for installation and maintenance, and can effectively solve the problem of large board area caused by the large volume of the existing surge protection circuit, and difficult installation and later maintenance. , can effectively improve the applicability and practicability of the surge protection circuit.
  • FIG. 2 is another schematic structural diagram of a surge protection device provided in an embodiment of the present application.
  • the surge protection device 100 may further include a base 30 , and the base 30 is provided with a plurality of through holes 31 penetrating through the top surface and the bottom surface of the base 30 .
  • the base 30 When the base 30 is fixedly connected to the housing 10 , the top surface of the base 30 will cover the bottom surface of the housing 10 , so that the inside of the housing 10 becomes a well-sealed cavity.
  • each electrode in the plurality of electrodes 202 included in the integrated device 20 will pass through one of the plurality of through holes 31 and be exposed to the outside, as a pin, and used to connect the plurality of electrodes 202 described above.
  • One of the power supply lines 310 It should be understood that among the plurality of electrodes 202 mentioned above, there may be two electrodes whose second ends are connected to the same power supply line. The power supply line is connected.
  • each of the plurality of through holes 31 and the position of each through hole on the base 30 can be determined by the preset pin tolerance and pin length of the surge protection device 100 .
  • the exposed length of the second end of each of the plurality of electrodes 202 (also can be understood as the length of the pin) can be set based on the thickness of the power supply board to which the surge protection device 100 is to be adapted.
  • the bottom of the housing 10 is covered by the base 30 , on the one hand, the sealing performance of the entire surge protection device 100 can be improved, and the safety of the surge protection device 100 can be improved.
  • FIG. 3 is a schematic diagram of connection between a base and a housing provided by an embodiment of the present application.
  • a first buckle structure 101 and a second buckle structure 102 can be provided on the outer wall of the housing 10 near the bottom surface, and a third buckle structure 32 and a fourth buckle structure can be provided on the base 30 correspondingly. buckle structure 33 .
  • the bottom surface of the housing 10 is close to the top surface of the base 30, the first buckle structure 101 and the third buckle structure 32 are engaged with each other, and the second buckle structure 102 is engaged with the fourth buckle structure 33.
  • FIG. 3 is only an example of the fixing method of the base 30 and the housing 10. In practical applications, other structures (such as screws, etc.) can also be used to achieve this. Specific restrictions.
  • FIG. 4 is another schematic structural diagram of a surge protection device provided in an embodiment of the present application.
  • an insulating medium 40 is filled between the housing 10 and the integrated device 20 .
  • the insulating medium 40 may specifically be epoxy resin, rubber, etc., which is not specifically limited in the present application.
  • the gap between the housing 10 and the integrated device 20 is filled with the insulating medium 40 , which can further improve the sealing and safety of the surge protection device 100 .
  • any one of the above-mentioned multiple pressure sensitive elements 201 may specifically be a columnar piezoresistor.
  • the end face of the columnar varistor is the port of the varistor.
  • FIG. 5 is a schematic structural diagram of a pressure-sensitive element and electrodes provided in an embodiment of the present application.
  • the pressure sensitive element S1 is a columnar piezoresistor, and one end face thereof is the first end of the pressure sensitive element S1, and the other One end surface is the second end of the pressure sensitive element S1.
  • Using the columnar piezoresistor with the port as the piezoresistor can effectively reduce the space occupied by the piezoresistor and increase the integration of the surge protection device.
  • the varistors can be varistors with a specification of 460, varistors with a specification of 385, varistors with a specification of 230 and varistors with a specification of 385.
  • the specifications of the varistors connected between the power supply lines can be the same or different, which can be selected according to actual needs, and this application does not make specific restrictions on this.
  • the first end of each of the plurality of electrodes 202 connected to the pressure sensitive element may adopt a grid structure. Please refer to FIG. 5 together. As shown in FIG. 5 , the first end of the electrode G1 among the plurality of electrodes 202 adopts a grid structure.
  • designing the first end of the electrode as a grid structure can make the electrode and the pressure-sensitive element more fully contact, and can improve the flow-through capacity and heat dissipation capacity of the electrode.
  • the connectors between the two ends of each electrode shown in FIG. 5 are linear structures.
  • the connecting body between the two ends of each electrode may also be involved in a curved structure according to the position of each through hole, which is not limited in the present application.
  • FIG. 6 is another schematic structural diagram of a surge protection device provided in an embodiment of the present application.
  • the pressure sensitive element adopts a columnar piezoresistor
  • the axial direction of each pressure sensitive element in the above-mentioned plurality of pressure sensitive elements 201 is the same, that is, these pressure sensitive elements are of the same axial direction.
  • the axial directions of these pressure sensitive elements are also parallel to the bottom surface of the housing 10 .
  • the structure of the surge protection device 100 and the specific structure of its internal components have been described in a general way above, and the specific structure and functions of the surge protection device 100 will be further described below in conjunction with the specific application scenarios of the surge protection device 100. details.
  • FIG. 7 is another structural schematic diagram of a surge protection device provided in an embodiment of the present application.
  • the plurality of pressure sensitive elements 201 may specifically include a first pressure sensitive element S1 , a second pressure sensitive element S2 , and a third pressure sensitive element S3 .
  • the plurality of electrodes 202 may specifically include a first electrode G1 , a second electrode G2 , a third electrode G3 and a fourth electrode G4 .
  • the above-mentioned plurality of power supply lines 310 may further include a third power supply line 303 in addition to the first power supply line 301 and the second power supply line 302 described above.
  • first end of the first pressure sensitive element S1 is connected to the first end of the first electrode G1, and the second end of the first pressure sensitive element S1 is connected to the first end of the second electrode G2.
  • the first end of the second electrode G2 is also connected to the first end of the second pressure sensitive element S2, and the second end of the second pressure sensitive element S2 is connected to the third electrode G3
  • the first end of the third electrode G3 is also connected to the first end of the third pressure sensitive element S3, and the second end of the third pressure sensitive element S3 is connected to the first end of the first pressure sensitive element S3.
  • the first ends of the four electrodes are connected.
  • the second end of the first electrode G1 and the second end of the fourth electrode G4 are connected to the first power supply line 301, and the second end of the second electrode G2 is connected to the second power supply line 302, so The second end of the third electrode G3 is connected to the third power supply line 303 .
  • the surge protection device 100 can realize surge protection for the electrical equipment (ie, the load) connected to the first power supply line 301 , the second power supply line 302 and the third power supply line 303 .
  • the foregoing power supply 300 may be a DC source.
  • the second power supply line 302 can be specifically the positive bus bar 30a of the DC source
  • the third power supply line 303 can be specifically the negative bus bar 30b of the DC source
  • the first power supply line 301 can be specifically the protection ground line 30c of the DC source.
  • FIG. 8 is a schematic diagram of a circuit principle provided by an embodiment of the present application.
  • FIG. 8 shows a schematic diagram of a circuit principle corresponding to the application of the surge protection device 100 with the structure shown in FIG. 7 in a DC power supply scenario.
  • the electrodes are equivalent to wires in actual use, they are not specifically shown in FIG. 8 , and the same is true for the following, which will not be described again.
  • the first pressure sensitive element S1 is connected between the positive bus bar 30a and the protective ground line 30c
  • the positive A second pressure sensitive element S2 is connected between the bus bar 30a and the negative bus bar 30b
  • a third pressure sensitive element S3 is connected between the negative bus bar 30b and the protective ground wire 30c.
  • the first pressure sensitive element S1 can short-circuit the positive bus 30a and the protective ground 30c.
  • the second pressure sensitive element S2 can short-circuit the positive bus bar 30a and the negative bus bar 30b.
  • the third pressure sensitive element S3 can short-circuit the negative bus 30b and the protection ground 30c.
  • the above-mentioned power supply 300 is an AC source
  • the above-mentioned second power supply line 302 can specifically be the first phase line 30d of the AC source
  • the above-mentioned third power supply line 303 can specifically be The neutral line 30e of the AC source
  • the first power supply line 301 may specifically be the protection ground line 30c of the AC source.
  • FIG. 9 is a schematic diagram of another circuit principle provided by an embodiment of the present application.
  • FIG. 9 shows a schematic diagram of the circuit principle corresponding to the application of the surge protection device 100 with the structure shown in FIG. 7 in a single-phase AC power supply scenario. As shown in FIG.
  • a first pressure sensitive element S1 is connected between the first phase line 30d and the protective ground line 30c.
  • a second pressure sensitive element S2 is connected between the first phase line 30d and the neutral line 30e, and a third pressure sensitive element S3 is connected between the neutral line 30e and the protective ground line 30c.
  • the first pressure sensitive element S1 can short-circuit the first phase line 30d and the protection ground line 30c.
  • the second pressure sensitive element S2 can short-circuit the first phase line 30d and the neutral line 30e.
  • the third pressure sensitive element S3 can short-circuit the neutral line 30e and the protective ground line 30c.
  • the above-mentioned power supply 300 is an AC source
  • the above-mentioned second power supply line 302 can specifically be the first phase line 30d of the AC source
  • the above-mentioned third power supply line 303 can specifically be The second phase line 30f of the AC source
  • the above-mentioned first power supply line 301 may specifically be the protection ground line 30c of the AC source.
  • FIG. 10 is a schematic diagram of another circuit principle provided by an embodiment of the present application.
  • FIG. 10 shows a schematic diagram of the circuit principle corresponding to the application of the surge protection device 100 with the structure shown in FIG. 7 in a dual live wire power supply scenario.
  • a first pressure sensitive element S1 is connected between the first phase line 30d and the protective ground line 30c.
  • a second pressure sensitive element S2 is connected between the first phase line 30d and the second phase line 30f, and a third pressure sensitive element S3 is connected between the second phase line 30f and the protective ground line 30c.
  • the first pressure sensitive element S1 can short-circuit the first phase line 30d and the protection ground line 30c.
  • the second pressure sensitive element S2 can short-circuit the first phase line 30d and the second phase line 30f.
  • the third pressure sensitive element S3 can short-circuit the second phase line 30f and the protection ground line 30c.
  • the above-mentioned power supply 300 is an AC source
  • the above-mentioned second power supply line 302 can be specifically the first phase line 30d of the AC source
  • the above-mentioned third power supply line 303 can be specifically It is the second phase line 30f of the AC source
  • the above-mentioned first power supply line 301 may specifically be the protection ground line 30c or the neutral line 30e of the AC source, and the protection ground line 30c or the neutral line 30e is shorted.
  • Fig. 11 is a schematic diagram of another circuit principle provided by the embodiment of the present application.
  • FIG. 11 is a schematic diagram of another circuit principle provided by the embodiment of the present application.
  • FIG. 11 is a schematic diagram of another circuit principle provided by the embodiment of the present application.
  • FIG. 11 is a schematic diagram of another circuit principle provided by the embodiment of the present application.
  • FIG. 11 is a schematic diagram of another circuit principle provided by the embodiment of the present application.
  • FIG. 11 is a schematic diagram of another circuit
  • FIG. 11 shows a schematic diagram of the circuit principle corresponding to the application of the surge protection device 100 with the structure shown in FIG. 7 in a dual-phase AC power supply scenario. What needs to be explained here is that in FIG. 11 , the specific scenario in which the first power supply line 301 is the neutral line 30e is shown, and the scenario in which the first power supply line 301 is the protective ground line 30c is the same, and will not be repeated here. repeat. As shown in FIG. 11 , the specific scenario in which the first power supply line 301 is the neutral line 30e is shown, and the scenario in which the first power supply line 301 is the protective ground line 30c is the same, and will not be repeated here. repeat. As shown in FIG. 11 , the specific scenario in which the first power supply line 301 is the neutral line 30e is shown, and the scenario in which the first power supply line 301 is the protective ground line 30c is the same, and will not be repeated here. repeat. As shown in FIG. 11 , the specific scenario in which the first power supply line 301 is the neutral
  • a first pressure sensitive element S1 is connected between the first phase line 30d and the protective ground line 30c
  • a second pressure sensitive element S2 is connected between the first phase line 30d and the second phase line 30f
  • a third pressure sensitive element S3 is connected between the second phase line 30f and the neutral line 30e.
  • the first pressure sensitive element S1 can short-circuit the first phase line 30d and the neutral line 30e.
  • the second pressure sensitive element S2 can short-circuit the first phase line 30d and the second phase line 30f.
  • the third pressure sensitive element S3 can short-circuit the second phase line 30f and the protection ground line 30c.
  • FIG. 12 Another structural schematic diagram of a surge protection device is provided.
  • the first power supply line 301 is used as the protection ground line 30c as an example for description.
  • the second power supply line 302 or the third power supply line 303 is used as the protection ground line 30c, the surge protection device 100 The structure is the same, so it will not be repeated in the following text.
  • the above-mentioned integrated device 20 may also include a gas discharge tube 203, and the second end of the first electrode G1 and the second end of the fourth electrode G4 are connected to the first end of the gas discharge tube 203 at the same time.
  • the second end of the gas discharge tube 203 is used as a pin of the surge protection device 100 for connecting to the protective ground wire 30c.
  • the resistance of the first pressure sensitive element S1 becomes very small, and the voltage at both ends of the gas discharge tube 203 is almost equal to the surge voltage .
  • the gas discharge tube 203 If the voltage at both ends of the gas discharge tube 203 exceeds the dielectric strength of the gas inside the gas discharge tube 203, the gas discharge tube 203 will discharge and break down, and change from the original insulation state to the conduction state, so that the second power supply line 302 and The protective ground wire 30c is actually shorted. If the voltage across the gas discharge tube 203 does not exceed the dielectric strength of the gas inside the gas discharge tube 203 , the gas discharge tube 203 remains insulated so that the second power supply line 302 and the protective ground line 30c will not be short-circuited.
  • the resistance of the third pressure sensitive element S3 becomes very small, and the voltage across the gas discharge tube 203 is almost equal to the surge voltage. If the voltage at both ends of the gas discharge tube 203 exceeds the dielectric strength of the gas inside the gas discharge tube 203, the gas discharge tube 203 will discharge and break down, and change from the original insulating state to a conducting state, so that the third power supply line 303 and The protective ground wire 30c is actually shorted.
  • the gas discharge tube 203 continues to maintain an insulated state, so that the third power supply line 303 and the protective ground wire 30c will not be short-circuited.
  • the surge protection device 100 is also integrated with the gas discharge tube 203, so that the surge protection device 100 can use the pressure sensitive element and the gas discharge tube to detect the surge between other power supply lines and the protection ground 30c. The surge is protected more reasonably and effectively, and the reliability and safety of the surge protection device 100 are improved.
  • the above-mentioned power supply 300 is an AC source
  • the above-mentioned second power supply line 302 can specifically be the first phase line 30d of the AC source
  • the above-mentioned third power supply line 303 is specifically the neutral line 30e of the AC source
  • the above-mentioned first power supply line 301 may specifically be the protection ground line 30c of the AC source.
  • the plurality of power supply lines 310 may further include a second phase line 30f and a third phase line 30g of an AC source.
  • the above-mentioned multiple pressure sensitive elements 201 may include a first pressure sensitive element S1, a second pressure sensitive element S2, a third pressure sensitive element S3, a fourth pressure sensitive element S4, a fifth pressure sensitive element S5, a sixth pressure sensitive element S6 and the seventh pressure sensitive element S7.
  • the plurality of electrodes 202 may specifically include a first electrode G1 , a second electrode G2 , a third electrode G3 , a fourth electrode G4 , a fifth electrode G5 , a sixth electrode G6 , a seventh electrode G7 and an eighth electrode G8 .
  • FIG. 13 is another structural schematic diagram of a surge protection device provided in an embodiment of the present application.
  • the first end of the first pressure sensitive element S1 is connected to the first end of the first electrode G1, and the second end of the first pressure sensitive element S1 is connected to the second electrode G1.
  • the first end of G2 is connected, the first end of the second electrode G2 is also connected to the first end of the second pressure sensitive element S2, the second end of the second pressure sensitive element S2 is connected to the
  • the first end of the third electrode G3 is connected, the first end of the third electrode G3 is also connected to the first end of the third pressure sensitive element S3, and the second end of the third pressure sensitive element S3 connected to the first end of the fourth electrode.
  • the second end of the first electrode G1 is also connected to the first end of the fourth pressure sensitive element S4, and the second end of the fourth pressure sensitive element S4 is connected to the first end of the fifth electrode G5.
  • the first end of the fifth electrode G5 is also connected to the first end of the fifth pressure sensitive element S5, the second end of the fifth pressure sensitive element S5 is connected to the first end of the sixth electrode G6
  • the first end of the fourth electrode G4 is also connected to the first end of the sixth pressure sensitive element S6, and the second end of the sixth pressure sensitive element S6 is connected to the seventh electrode G7
  • the first end of the seventh electrode G7 is also connected to the first end of the seventh pressure sensitive element S7, and the second end of the seventh pressure sensitive element S7 is also connected to the first end of the seventh pressure sensitive element S7.
  • First ends of the eighth electrodes G8 are connected.
  • the second end of the first electrode G1 and the second end of the fourth electrode G4 are connected to the first power supply line 301, and the second end of the second electrode G2 is connected to the second power supply line 302, so The second end of the third electrode G3 is connected to the third power supply line 303 .
  • the second ends of the sixth electrode G6 and the eighth electrode G8 are used to connect to the neutral line 30e
  • the second ends of the fifth electrode G5 are used to connect to the third phase line 30g
  • the The second end of the seventh electrode G7 is used to connect to the second phase line 30f.
  • FIG. 14 is a schematic diagram of another circuit principle provided by an embodiment of the present application.
  • FIG. 14 shows a schematic diagram of the circuit principle corresponding to the application of the surge protection device 100 with the structure shown in FIG. 13 in a three-phase five-wire AC power supply scenario.
  • a first pressure sensitive element S1 is connected between the first phase line 30d and the protective ground line 30c
  • the second pressure sensitive element S2 is connected between the first phase line 30d and the neutral line 30e
  • the third pressure sensitive element S3 is connected between the neutral line 30e and the protection ground line 30c
  • the third phase line 30g and the protection ground line 30c The fourth pressure-sensitive element S4 is connected between them
  • the fifth pressure-sensitive element S5 is connected between the third phase line 30g and the neutral line 30e
  • the sixth pressure-sensitive element S6 is connected between the second phase line 30f and the protective ground line 30c.
  • a seventh pressure sensitive element S7 is connected between the second phase line 30f and the neutral line 30e.
  • the first pressure sensitive element S1 can short-circuit the first phase line 30d and the protection ground line 30c.
  • the second pressure sensitive element S2 can short-circuit the first phase line 30d and the neutral line 30e.
  • the third pressure sensitive element S3 can short-circuit the neutral line 30e and the protective ground line 30c.
  • the fourth pressure sensitive element S4 can short-circuit the third phase line 30g and the protection ground line 30c.
  • the fifth pressure sensitive element S5 can short-circuit the third phase line 30g and the neutral line 30e.
  • the sixth pressure sensitive element S6 can short-circuit the second phase line 30f and the protection ground line 30c.
  • the seventh pressure sensitive element S7 can short-circuit the second phase line 30f and the neutral line 30e.
  • the integrated device 20 may also include the gas discharge tube 203 described above, and the second end of the first electrode G1 and the fourth electrode The second end of G4 is connected to the first end of the gas discharge tube 203 at the same time, and the second end of the gas discharge tube 203 is used as a pin of the surge protection device 100 for connecting the protective ground wire 30c .
  • the functions that the gas discharge tube 203 can realize are the same as those mentioned above, and will not be repeated here.
  • the above-mentioned power supply 300 is an AC source
  • the above-mentioned first power supply line 301 is the first phase line 30d of the AC source
  • the above-mentioned second power supply line 302 is The second phase line 30f of the AC source
  • the plurality of power supply lines 310 may specifically include a protection ground line 30c of the AC source and a third phase line 30g.
  • the plurality of pressure sensitive elements 201 include a first pressure sensitive element S1 , a second pressure sensitive element S2 , a third pressure sensitive element S3 , a fourth pressure sensitive element S4 , a fifth pressure sensitive element S5 and a sixth pressure sensitive element S6 .
  • the plurality of electrodes 202 includes a first electrode G1 , a second electrode G2 , a third electrode G3 , a fourth electrode G4 , a fifth electrode G5 , a sixth electrode G6 , a seventh electrode G7 and an eighth electrode G8 .
  • FIG. 15 is another structural schematic diagram of a surge protection device provided by an embodiment of the present application. As shown in Figure 15, the first end of the first pressure sensitive element S1 is connected to the first end of the first electrode G1, and the second end of the first pressure sensitive element S1 is connected to the second electrode G1.
  • the first end of G2 is connected, the first end of the second electrode G2 is also connected to the first end of the second pressure sensitive element S2, the second end of the second pressure sensitive element S2 is connected to the The first end of the third electrode G3 is connected, the first end of the third electrode G3 is also connected to the first end of the third pressure sensitive element S3, and the second end of the third pressure sensitive element S3 Also, the first end of the fourth electrode G4 is connected.
  • the first end of the fifth electrode G5 is connected to the first end of the fourth pressure sensitive element S4, and the second end of the fourth pressure sensitive element S4 is connected to the first end of the sixth electrode G6.
  • the first end of the sixth electrode G6 is also connected to the first end of the fifth pressure sensitive element S5, and the second end of the fifth pressure sensitive element S5 is connected to the first end of the seventh electrode G7.
  • the first end of the seventh electrode G7 is also connected to the first end of the sixth pressure sensitive element S6, and the second end of the sixth pressure sensitive element S6 is connected to the eighth electrode The first end of G8 is connected.
  • the second ends of the first electrode G1 and the seventh electrode G7 are used to connect to the protective ground wire 30c, and the second ends of the second electrode G2 and the fifth electrode G5 are used to connect to the first A phase line 30d, the second end of the third electrode G3 and the eighth electrode G8 is used to connect the second phase line 30f, the second end of the fourth electrode G4 and the sixth electrode G6 Used to connect the third phase line 30g.
  • FIG. 16 is a schematic diagram of a circuit principle provided by an embodiment of the present application.
  • FIG. 16 shows a schematic diagram of the circuit principle corresponding to the application of the surge protection device 100 with the structure shown in FIG. 15 in a three-phase four-wire AC power supply scenario.
  • a first pressure sensitive element S1 is connected between the first phase line 30d and the protective ground line 30c.
  • a second pressure-sensitive element S2 is connected between the first phase line 30d and the second phase line 30f
  • a third pressure-sensitive element S3 is connected between the second phase line 30f and the third phase line 30g
  • the third phase line 30g is connected to the second phase line.
  • a fourth pressure-sensitive element S4 is connected between one phase line 30d
  • a fifth pressure-sensitive element S5 is connected between the third phase line 30g and the protection ground wire 30c
  • a sixth pressure-sensitive element S5 is connected between the second phase line 30f and the protection ground wire 30c.
  • Sensitive element S6 is connected between the first phase line 30d and the second phase line 30f
  • a third pressure-sensitive element S3 is connected between the second phase line 30f and the third phase line 30g
  • the third phase line 30g is connected to the second phase line.
  • the first pressure sensitive element S1 can short-circuit the first phase line 30d and the protection ground line 30c.
  • the second pressure sensitive element S2 can be used to short-circuit the first phase line 30d and the second phase line 30f.
  • the third pressure sensitive element S3 can short-circuit the second phase line 30f and the third phase line 30g.
  • the fourth pressure sensitive element S4 can be used to short-circuit the third phase line 30g and the first phase line 30d.
  • the fifth pressure sensitive element S5 can short-circuit the third phase line 30g and the protection ground line 30c.
  • the sixth pressure sensitive element S6 can be used to short-circuit the third phase line 30g and the protection ground line 30c.
  • the integrated device 20 may also include a gas discharge tube 203, and the second end of the first electrode G1 and the second end of the seventh electrode G7 At the same time, the first end of the gas discharge tube 203 is connected to the first end of the gas discharge tube 203, and the second end of the gas discharge tube 203 is used as a pin of the surge protection device 100 for connecting to the protective ground wire 30c.
  • the functions that the gas discharge tube 203 can realize are the same as those mentioned above, and will not be repeated here.
  • first phase line 30d, the second phase line 30f or the third phase line 30g described above respectively correspond to the three-phase alternating current (including A-phase alternating current, B-phase alternating current and C-phase alternating current) output by the alternating current source.
  • a power supply line corresponding to a single-phase alternating current may be a power supply line corresponding to A-phase AC power
  • the second phase line 30f may be a power supply line corresponding to B-phase AC power
  • the third phase line 30g may be a power supply line corresponding to C-phase AC power.
  • the first phase line 30d may be a power supply line corresponding to B-phase AC power
  • the second phase line 30f may be a power supply line corresponding to C-phase AC power
  • the third phase line 30g may be a power supply line corresponding to A-phase AC power. All in all, this application does not limit the specific type of single-phase alternating current corresponding to each phase line.
  • the second end of the second electrode G2 can be connected to the negative bus bar 30b, and the second end of the third electrode G3 can also be connected to the positive bus bar 30a, so that the first piezo-sensitive element S1 can be connected to the negative bus bar 30b.
  • the third pressure sensitive element S3 is connected between the positive bus bar and the protection ground wire 30c.
  • the surge protection device 100 can still normally realize the surge protection function.
  • FIG. 17 is a schematic structural diagram of a power supply system provided by an embodiment of the present application.
  • the power supply system may specifically include the aforementioned power supply 300 , the aforementioned surge protection device 100 and the load 500 .
  • the power supply 300 is connected to the load 500 through multiple power supply lines 310
  • the surge protection device 100 is connected to the multiple power supply lines 310 between the power supply 300 and the load 500 .
  • the multiple power supply lines 310 include a positive bus bar 30a of the DC source, a negative bus bar 30b of the DC source, and a protective ground wire 30c of the DC source.
  • the above-mentioned surge protection device 100 is respectively connected to the above-mentioned three wires.
  • the plurality of power supply lines 310 are the first phase line 30d of the AC source, the second phase line 30f of the AC source, the third phase line 30g of the AC source, the At least three of the neutral wire 30e of the AC source and the protective ground wire 30c of the AC source.
  • the above-mentioned surge protection device 100 is respectively connected to the above-mentioned at least three items.
  • the surge protection device 100 is used to protect the load 500 from surges, and the specific process can be referred to above The described process will not be repeated here.
  • the integrated device 20 obtained by integrating a plurality of pressure sensitive elements 201 and a plurality of electrodes 202 is packaged inside the housing 10, and the second end of each electrode in the plurality of electrodes 202 is used as a pin , so as to form a surge protection device 100 that can be connected to a plurality of power supply lines 310 provided by the power supply 300 . And when the surge protection device 100 is correctly connected to any two power supply lines of the external power supply 300 through its electrodes, the surge protection device 100 can effectively realize surge protection by shorting the any two power supply lines.
  • Such a surge protection device 100 is small in size, easy to install and maintain, and can effectively solve the problem of large board area caused by the large size of the existing surge protection circuit, and it is difficult to install and maintain later. It can effectively improve the applicability and practicability of the surge protection circuit.
  • the disclosed system, device or method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.

Abstract

本申请涉及供电技术领域,尤其涉及一种浪涌防护器件和供电系统。该浪涌防护器件包括外壳和固定在外壳内的集成器件。该集成器件包括多个压敏元件和多个电极。这多个压敏元件中的每个压敏元件的两端分别与多个电极中的两个电极的第一端相连接。这多个电极中的每个电极的第二端分别用于连接电源提供的多根供电线中的其中一根供电线。这多根供电线中的第一供电线和第二供电线之间出现浪涌,连接在该第一供电线和第二供电线之间的压敏元件可用于短接该第一供电线和第二供电线。采用本申请提供的浪涌防护器件,可提升浪涌防护电路的适用性和实用性。

Description

一种浪涌防护器件和供电系统
本申请要求于2021年10月20日提交中国专利局、申请号为202111221958.X、申请名称为“一种浪涌防护器件和供电系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及供电技术领域,尤其涉及一种浪涌防护器件和供电系统。
背景技术
在电力系统中,浪涌是一种常见的现象。所谓的浪涌又可以称为突波,主要指电气设备上超过正常工作电压的瞬间过电压。产生浪涌的原因有内部原因,如电气设备的启动、停止或者突发故障等,也有外部原因,如雷电等。由于浪涌极易造成电气设备的故障或者损毁,因此针对电气设备的浪涌防护是十分必要的。
现有技术中,为了保证电气设备能够安全可靠的工作,多会在供电电源和电气设备之间的供电路径上设计浪涌防护电路。例如,常用的交流电(alternating current,AC)电源(简称交流源)的输入电磁兼容(electro magnetic compatibility,EMC)防护模块中即设计有浪涌防护电路。现有的浪涌防护电路大多是由压敏电阻以及气体放电管等器件构成,并且是分立的焊接在供电电源的单板上,这就导致现有的浪涌防护电路的占板面积较大,安装和后期维护上也存在困难。因此,现有的浪涌防护电路的适用性较差。
发明内容
为了解决上述问题,本申请提供了一种浪涌防护器件和供电系统,可解决现有的浪涌防护电路占板面积大并且安装和维护较困难的问题,可提升浪涌防护电路的适用性和实用性。
第一方面,本申请提供了一种浪涌防护器件。所述浪涌防护器件包括:外壳以及固定在所述外壳内的集成器件,所述集成器件包括多个压敏元件以及多个电极,所述多个压敏元件中的每个压敏元件的两端分别与所述多个电极中的两个电极的第一端相连接,所述多个电极中的每个电极的第二端作为该浪涌防护器件的一个引脚,并用于连接所述浪涌防护器件外部的电源提供的多根供电线中的其中一根供电线。当所述多个电极中的每个电极的第二端分别与所述多根供电线中的其中一根供电线正确连接时,所述多根供电线中的任意两根供电线之间出现浪涌,所述多个压敏元件中连接在所述任意两根供电线之间的压敏元件用于短接所述任意两根供电线。例如,当所述多根供电线中的第一供电线和第二供电线之间出现浪涌,所述多个压敏元件中连接在所述第一供电线和第二供电线之间的压敏元件就用于短接所述第一供电线和第二供电线。
在上述实现中,将由多个电极和多个压敏元件集成得到的集成器件封装在外壳内,并以多个电极中的每个电极的第二端作为外部的引脚,从而形成了可与电源提供的多根供电线相连接的浪涌防护器件。当该浪涌防护器件通过其内部的电极与这多根供电线正确连接时,该浪涌防护器件能够通过短接该多根供电线中的任意两根供电线(如该多根供电线中的第一供电线和第二供电线)来有效的实现浪涌防护。该集成的浪涌防护器件的体积小,安装和维护 都比较便利,可以有效的解决现有的浪涌防护电路的占板面积大,并且安装和后期维护比较困难的问题,可以有效的提升浪涌防护电路的适用性和实用性。
结合第一方面,在一种可行的实施方式中,所述浪涌防护器件还包括底座,所述底座设置有多个通孔,当所述底座与所述外壳固定连接并覆盖所述外壳的底面时,所述多个电极中的每个电极的第二端用于通过所述多个通孔中的一个通孔来分别连接所述多根供电线中的其中一个供电线。
在上述实现中,通过底座来覆盖外壳的底部,一方面可以使得整个浪涌防护器件的密封性较高,可以提升浪涌防护器件的安全性。另一方面也可以通过控制底座的开孔精度以及电极精度,来保证浪涌防护器件的出脚公差在满足预设范围,这样就可以使得浪涌防护器件可以兼容波峰焊和通孔回流焊,可便于浪涌防护器件的安装和维护。
结合第一方面,在一种可行的实施方式中,所述外壳与所述集成器件之间填充有绝缘介质。
在上述实现中,在外壳与集成器件之间的缝隙填充绝缘介质,可以进一步提升浪涌防护器件的密封性和安全性。
结合第一方面,在一种可行的实施方式中,所述压敏元件为柱体状压敏电阻,所述柱体状压敏电阻的一个端面为所述压敏元件的第一端,所述柱体状压敏电阻的另一端面为所述压敏元件的第二端。
在上述实现中,采用这种柱状的并且端面即为端口的压敏电阻来作为压敏元件,可有效减少压敏元件占用的空间体积,可提升浪涌防护器件的集成度。
结合第一方面,在一种可行的实施方式中,所述多个压敏元件中的每个压敏元件的轴向方向相同,并且每个压敏元件的轴向方向与所述外壳的底面相互平行。在上述实现中,采用这种结构,可以有效缩短每个电极在外壳内部的长度,可进一步减小浪涌防护器件的体积,提升浪涌防护器件的集成度。
结合第一方面,在一种可行的实施方式中,所述多个压敏元件包括第一压敏元件、第二压敏元件、第三压敏元件,所述多个电极包括第一电极、第二电极、第三电极以及第四电极,所述多根供电线包括上述第一供电线、上述第二供电线以及第三供电线。其中,所述第一压敏元件的第一端与所述第一电极的第一端相连接,所述第一压敏元件的第二端与所述第二电极的第一端相连接,所述第二电极的第一端还与所述第二压敏元件的第一端相连接,所述第二压敏元件的第二端与所述第三电极的第一端相连接,所述第三电极的第一端还与所述第三压敏元件的第一端相连接,所述第三压敏元件的第二端与所述第四电极的第一端相连接,所述第一电极的第二端以及所述第四电极的第二端用于连接所述第一供电线,所述第二电极的第二端用于连接所述第二供电线,所述第三电极的第二端用于连接所述第三供电线。
结合第一方面,在一种可行的实施方式中,所述浪涌防护器件外部的电源为直流源,所述第一供电线为所述直流源的保护地线,所述第二供电线为所述直流源的正母线,所述第三供电线为所述直流源的负母线。
结合第一方面,在一种可行的实施方式中,所述浪涌防护器件外部的电源为交流源,所述第一供电线为所述交流源的保护地线,所述第二供电线为所述交流源的第一相线,所述第三供电线为所述交流源的中性线。
结合第一方面,在一种可行的实施方式中,所述多个压敏元件还包括第四压敏元件、第五压敏元件、第六压敏元件和第七压敏元件,所述多个电极还包括第五电极、第六电极、第七电极和第八电极,所述多根供电线还包括所述交流源的第二相线和第三相线。其中,所述 第一电极的第二端还与所述第四压敏元件的第一端相连接,所述第四压敏元件的第二端与所述第五电极的第一端相连接,所述第五电极的第一端还与所述第五压敏元件的第一端相连接,所述第五压敏元件的第二端与第六电极的第一端相连接,所述第四电极的第一端还与所述第六压敏元件的第一端相连接,所述第六压敏元件的第二端与所述第七电极的第一端相连接,所述第七电极的第一端还与所述第七压敏元件的第一端相连接,所述第七压敏元件的第二端还与所述第八电极的第一端相连接,所述第六电极和所述第八电极的第二端用于连接所述中性线,所述第五电极的第二端用于连接所述第三相线,所述第七电极的第二端用于连接所述第二相线。
结合第一方面,在一种可行的实施方式中,所述浪涌防护器件外部的电源为交流源,所述第一供电线为所述交流源的保护地线,所述第二供电线为所述交流源的第一相线,所述第三供电线为所述交流源的第二相线。
结合第一方面,在一种可行的实施方式中,所述浪涌防护器件外部的电源为交流源,所述第一供电线为所述交流源的中性线或者保护地线,并且所述交流源的中性线和保护地线短接,所述第二供电线为所述交流源第一相线,所述第三供电线为所述交流源的第二相线。
结合第一方面,在一种可行的实施方式中,所述集成器件还包括气体放电管,所述第一电极的第二端以及所述第四电极的第二端与所述气体放电管的第一端相连接,所述气体放电管的第二端用于连接所述保护地线。
结合第一方面,在一种可行的实施方式中,所述浪涌防护器件外部的电源为交流源,所述第一供电线为所述交流源的第一相线,所述第二供电线为所述交流源的第二相线,所述多根供电线还包括所述交流源的第三相线以及保护地线。其中,所述多个压敏元件包括第一压敏元件、第二压敏元件、第三压敏元件、第四压敏元件、第五压敏元件以及第六压敏元件,所述多个电极包括第一电极、第二电极、第三电极、第四电极、第五电极、第六电极、第七电极以及第八电极。所述第一压敏元件的第一端与所述第一电极的第一端相连接,所述第一压敏元件的第二端与所述第二电极的第一端相连接,所述第二电极的第一端还与所述第二压敏元件的第一端相连接,所述第二压敏元件的第二端与所述第三电极的第一端相连接,所述第三电极的第一端还与所述第三压敏元件的第一端相连接,所述第三压敏元件的第二端还有所述第四电极的第一端相连接,所述第五电极的第一端与所述第四压敏元件的第一端相连接,所述第四压敏元件的第二端与所述第六电极的第一端相连接,所述第六电极的第一端还与所述第五压敏元件的第一端相连接,所述第五压敏元件的第二端与所述第七电极的第一端相连接,所述第七电极的第一端还与所述第六压敏元件的第一端相连接,所述第六压敏元件的第二端与所述第八电极的第一端相连接;
所述第一电极和所述第七电极的第二端用于连接所述保护地线,所述第二电极和所述第五电极的第二端用于连接所述第一相线,所述第三电极和所述第八电极的第二端用于连接所述第二相线,所述第四电极和所述第六电极的第二端用于连接所述第三相线。
结合第一方面,在一种可行的实施方式中,所述集成器件还包括气体放电管,所述第一电极和所述第七电极的第二端与所述气体放电管的第一端相连接,所述气体放电管的第二端用于连接所述保护地线。
第二方面,本申请提供了一种供电系统。所述供电系统包括电源、如第一方面以及第一方面中任一可行的实现方式所提供的浪涌防护器件以及负载。所述浪涌防护器件与所述电源和所述负载之间的多根供电线相连接。当所述电源通过所述多根供电线为所述负载供电时,所述浪涌防护器件用于对所述负载进行浪涌防护。
结合第二方面,在一种可行的实施方式中,所述电源为直流源,所述多根供电线包括所述直流源的正母线、所述直流源的负母线以及所述直流源的保护地线。
结合第二方面,在一种可行的实施方式中,所述电源为交流源,所述多根供电线为所述交流源的第一相线、所述交流源的第二相线、所述交流源的第三相线、所述交流源的中性线以及所述交流源的保护地线中的至少三项。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是本申请实施例提供的一种浪涌防护器件一结构示意图;
图2是本申请实施例提供的一种浪涌防护器件又一结构示意图;
图3是本申请实施例提供的一种底座与外壳的连接示意图;
图4是本申请实施例提供的一种浪涌防护器件又一结构示意图;
图5是本申请实施例提供的一种压敏元件及电极的结构示意图;
图6是本申请实施例提供的一种浪涌防护器件又一结构示意图;
图7是本申请实施例提供的一种浪涌防护器件又一结构示意图;
图8是本申请实施例提供的一种电路原理示意图;
图9是本申请实施例提供的又一种电路原理示意图;
图10是本申请实施例提供的又一种电路原理示意图;
图11是本申请实施例提供的又一种电路原理示意图;
图12是本申请实施例提供的一种浪涌防护器件又一结构示意图;
图13是本申请实施例提供的一种浪涌防护器件又一结构示意图;
图14是本申请实施例提供的又一种电路原理示意图;
图15是本申请实施例提供的一种浪涌防护器件又一结构示意图;
图16是本申请实施例提供的有一种电路原理示意图;
图17是本申请实施例提供的一种供电系统的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
随着科学技术的发展以及社会经济水平的不断提升,电气设备已经成为人们日常生活中不可或缺的一部分。因此,电气设备的安全性和可靠性也愈发的被人们所关注。作为一种常见的现象,浪涌极易造成电气设备的故障或者损毁,因此针对电气设备的浪涌防护是十分必要的。为了保证电气设备能够安全可靠的工作,多会在供电电源和电气设备之间供电路径上设计浪涌防护电路。现有的浪涌防护电路大多是由压敏电阻以及气体放电管等器件构成,并且是分立的焊接在供电电源的单板上,这就导致现有的浪涌防护电路的占板面积较大,并且安装和后期维护上也存在困难。所以,现有的浪涌防护电路的适用性和实用性都较差。
因此,本申请要解决的技术问题是:如何减小浪涌防护电路的体积,以提升浪涌防护电 路的适用性和实用性。
为解决上述技术问题,本申请提供了一种浪涌防护器件,将由多个电极和多个压敏元件集成得到的集成器件封装在外壳内,并以多个电极中的每个电极的第二端作为外部的引脚,从而形成了可与电源提供的多根供电线相连接的浪涌防护器件。该浪涌防护器件的体积小,安装和维护都比较便利,可以有效的解决现有的浪涌防护电路的体积较大所导致的占用了电源单板较多的有效利用空间,并且安装和后期维护上也比较困难的问题,可以有效的提升浪涌防护电路的适用性和实用性。
请参见图1,图1是本申请实施例提供的一种浪涌防护器件一结构示意图。如图1所示,该浪涌防护器件100可以包括外壳10以及固定在该外壳10内部的集成器件20。并且,上述集成器件20集成有多个压敏元件201以及多个电极202。其中,上述多个压敏元件201中的每个压敏元件分别与上述多个电极202中的两个电极的一端(为了方便区别,下文以电极的第一端代替描述)分别相连接。这里应理解,在实际实现中,上述多个压敏元件201中的每个压敏元件至少具有两个端口。对于每个压敏元件来说,其一个端口会与上述多个电极202中的一个电极的第一端相连接,其另一个端口会与上述多个电极202中的另一个电极的第一端相连接。并且,上述多个电极202中的每个电极的第一端都至少与一个压敏元件相连接。这里应理解,本申请涉及的压敏元件对应有一个电压阈值。当加在其两端上的电压低于这个电压阈值时,流过它的电流极小,它相当于一个阻值无穷大的电阻。或者说,当加在它两端的电压低于其对应的电压阈值时,它可以视为一个断开状态的开关。而当加在其两端的电压超过这个电压阈值时,流过它的电流激增,它相当于阻值无穷小的电阻。或者说,当加在它两端的电压高于这个电压阈值时,它可以视为一个闭合状态的开关。上述多个电极202中的每个电极的另一端(为了方便区别,后文将以电极的第二端代替描述)可作为该浪涌防护器件100的一个外部引脚,并可用于连接浪涌防护器件100外部的电源300所提供的多根供电线310中的一根供电线。
在实际工作时,在上述多个电极202中的每个电极的第二端分别与上述多根供电线310中的其中一根供电线正确连接的情况下,当上述多根供电线310中的任意两根供电线之间出现浪涌时,上述多个压敏元件201中连接在该任意两根供电线之间的至少一个压敏元件可用于短接这任意两根供电线。例如,假设上述多根供电线中包括有第一供电线301以及第二供电线302,在第一供电线301以及第二供电线302与上述多个电极202正确相连的情况下,则当第一供电线301与第二供电线302之间出现浪涌时,则流过连接在第一供电线301与第二供电线302之间的压敏元件的电流会激增,其阻值会变得非常小,这样可以实现第一供电线301与第二供电线302的短接,从而实现对第一供电线301与第二供电线302所连接的电气设备的浪涌防护功能。
这里需要说明的是,在实际实现时,上述集成器件20是固定设置在外壳10的内部的。集成器件20与外壳10之间的固定方式可以有多种。例如,可以在外壳10的内壁上设置卡扣等固定结构,然后集成器件20可以通过其包含的压敏元件和/或者电极与内壁上的固定结构扣合在一起,从而实现与外壳10的固定连接。又例如,也可以在集成器件20与外壳10的内壁之间的空隙填充一些防火绝缘材料,以通过这个防火绝缘材料实现集成器件20与外壳10之间的相互固定。应理解,本申请对集成器件20与外壳10之间的固定方式不作具体限制。
这里还需要说明的是,由于在实际使用时,上述多个电极202中的每个电极的第二端都需要与外部的一根供电线相连接。所以为了方便浪涌防护器件100的安装,上述多个电极202中的每个电极的第二端通常会穿过外壳10的底面并朝向外壳10的外部,也就是说,上述多 个电极202中的每个电极的第二端会裸露在外壳10的外部,并作为浪涌防护器件100的引脚与浪涌防护器件100以外的其他电气元件相连接的。
在上述实现中,将由多个压敏元件201以及多个电极202集成得到的集成器件20封装在外壳10的内部,并以多个电极202中的每个电极的第二端作为外部的引脚,从而形成一个可与电源300提供的多根供电线310相连接浪涌防护器件100。当该浪涌防护器件100通过其电极与外部的电源300的任意两根供电线正确连接时,该浪涌防护器件100即能够通过短接该任意两根供电线来有效的实现浪涌防护。该浪涌防护器件100的体积小,安装和维护都比较便利,可以有效的解决现有的浪涌防护电路的体积较大所导致的占板面积大,并且安装和后期维护也比较困难的问题,可以有效的提升浪涌防护电路的适用性和实用性。
在一些可选的实现方式中,请参见图2,图2是本申请实施例提供的一种浪涌防护器件又一结构示意图。如图2所示,该浪涌防护器件100还可包括一个底座30,并且该底座30设置有贯穿该底座30顶面和底面的多个通孔31。该底座30与外壳10固定连接时,该底座30的顶面会覆盖外壳10的底面,从而使得外壳10的内部成为一个密封性比较好的腔体。而集成器件20所包含的多个电极202中的每个电极的第二端会穿过上述多个通孔31中的一个通孔并裸露在外部,以作为一个引脚,并用于连接上述多根供电线310中的一根供电线。应理解,上述多个电极202中可能会存在某两个电极的第二端连接的是同一根供电线,这种情况下,这两个电极的第二端即可通过同一个通孔与该供电线相连接。
这里还需要说明的是,上述多个通孔31中的每个通孔的尺寸以及每个通孔在底座30上的位置可由上述浪涌防护器件100预设的引脚公差以及出脚长度来确定,上述多个电极202中的每个电极的第二端裸露在外部的长度(也可以理解为引脚长度)可基于浪涌防护器件100将要适配的电源单板的厚度来设定。
在上述实现中,通过底座30来覆盖外壳10的底部,一方面可以使得整个浪涌防护器件100的密封性较高,可以提升浪涌防护器件100的安全性。另一方面也可以通过控制底座30的开孔精度以及电极精度,来保证浪涌防护器件100的出脚公差在满足预设范围,这样就可以使得浪涌防护器件100可以兼容波峰焊和通孔回流焊,可便于浪涌防护器件100的安装和维护。
可选的,在实际实现中,上述底座30与外壳10可采用多种不同的方式固定连接在一起。例如,请参见图3,图3是本申请实施例提供的一种底座与外壳的连接示意图。如图3所示,外壳10的靠近底面一侧的外壁上可设置有第一卡扣结构101和第二卡扣结构102,底座30上相应的设置有第三卡扣结构32以及第四卡扣结构33。在外壳10的底面与底座30的顶面相靠近时,上述第一卡扣结构101与第三卡扣结构32相互扣合,上述第二卡扣结构102与上述第四卡扣结构33相互扣合,从而可以实现外壳10与底座30的固定相连接。这里应理解,图3中仅示出了两对卡扣结构,在实际使用时,也可以采用四对或者更多对卡扣结构来实现。这里也需要说明的是,图3也仅是对底座30与外壳10的固定方式的一种示例,在实际应用中,也可以采用其他的结构(如螺丝等)来实现,本申请对此不作具体限制。
在一些可选的实现方式中,请参见图4,图4是本申请实施例提供的一种浪涌防护器件又一结构示意图。如图4所示,上述外壳10与集成器件20之间填充有绝缘介质40。这里,该绝缘介质40具体可以为环氧树脂、橡胶等,本申请对此不作具体限制。
在上述实现中,在外壳10与集成器件20之间的缝隙填充绝缘介质40,可以进一步提升浪涌防护器件100的密封性和安全性。
在一些可选的实现方式中,上述多个压敏元件201中任意一个压敏元件具体可以是柱状 压敏电阻。并且,该柱状压敏电阻的端面即为压敏元件的端口。例如,请参见图5,图5是本申请实施例提供的一种压敏元件及电极的结构示意图。如图5所示,以上述多个压敏元件201中的压敏元件S1为例,该压敏元件S1即为柱状压敏电阻,并且其一个端面为压敏元件S1的第一端,另一个端面为压敏元件S1的第二端。采用这种柱状的并且端面即为端口的压敏电阻作为压敏元件,可有效减少压敏元件占用的空间体积,可提升浪涌防护器件的集成度。
需要补充说明的是,在压敏元件为压敏电阻的情况下,这些压敏电阻的具体可以为460规格的压敏电阻、385规格的压敏电阻、230规格的压敏电阻以及385规格的压敏电阻等,各供电线之间连接的压敏电阻的规格可以相同,也可以不相同,具体可根据实际需求来选择,本申请对此不作具体限制。
在一些可选的实现方式中,上述多个电极202中的每个电极与压敏元件相连接的第一端可采用网格结构。请一并参见图5,如图5所示,上述多个电极202中的电极G1的第一端即采用的是网格结构。这里,将电极的第一端设计成网格结构,可以使得电极与压敏元件能够更充分的接触,可提高电极的通流能力以及散热能力。
这里还需要说明的是,图5所示的每个电极的两端之间的连接体都是直线型结构,在实际实现中,为了方便各电极的第二端能够准确的穿过底座30上的各个通孔,每个电极的两端之间的连接体也可以根据各个通孔位置涉及成弯曲型结构,本申请对此不作限制。
在一些可行的实现方式中,请参见图6,图6是本申请实施例提供的一种浪涌防护器件又一结构示意图。如图6所示,在压敏元件采用柱状压敏电阻的情况下,上述多个压敏元件201中的每个压敏元件的轴向方向是相同的,即这些压敏元件为同一轴向。并且,这些压敏元件的轴向还与外壳10的底面相互平行。采用这种结构,可以有效缩短每个电极在外壳10内部的长度,可进一步减小浪涌防护器件100的体积,提升浪涌防护器件100的集成度。
前文针对浪涌防护器件100的结构及其内部器件的具体结构进行了概括性的描述,下文将结合该浪涌防护器件100的具体应用场景,对浪涌防护器件100的具体结构和功能进行进一步的详述。
请参见图7,图7是本申请实施例提供的一种浪涌防护器件又一结构示意图。如图7所示,上述多个压敏元件201具体可包括第一压敏元件S1、第二压敏元件S2、第三压敏元件S3。上述多个电极202具体可包括第一电极G1、第二电极G2、第三电极G3以及第四电极G4。上述多根供电线310除了包括前文所述的第一供电线301和第二供电线302,还可包括第三供电线303。其中,所述第一压敏元件S1的第一端与所述第一电极G1的第一端相连接,所述第一压敏元件S1的第二端与所述第二电极G2的第一端相连接,所述第二电极G2的第一端还与所述第二压敏元件S2的第一端相连接,所述第二压敏元件S2的第二端与所述第三电极G3的第一端相连接,所述第三电极G3的第一端还与所述第三压敏元件S3的第一端相连接,所述第三压敏元件S3的第二端与所述第四电极的第一端相连接。所述第一电极G1的第二端以及所述第四电极G4的第二端连接所述第一供电线301,所述第二电极G2的第二端连接所述第二供电线302,所述第三电极G3的第二端连接所述第三供电线303。
实际工作时,当第一供电线301与第二供电线302之间存在浪涌时,第一压敏元件S1可以短接第一供电线301与第二供电线302。同理,当第一供电线301与第三供电线303之间存在浪涌时,第三压敏元件S3可以短接第一供电线301与第三供电线303。当第二供电线302与第三供电线303之间存在浪涌时,第二压敏元件S2可以短接第二供电线302与第三电线303。所以,浪涌防护器件100即可实现针对上述第一供电线301、第二供电线302以及第三供电线303所连接的电气设备(即负载)的浪涌防护。
在一种可行的实现方式中,在直流供电场景中,上述电源300可以为直流源。上述第二供电线302具体可以为直流源的正母线30a,上述第三供电线303具体为所述直流源的负母线30b,上述第一供电线301具体可以为直流源的保护地线30c。具体的,请参见图8,图8是本申请实施例提供的一种电路原理示意图。这里,图8示出的是图7所示结构的浪涌防护器件100应用于直流供电场景所对应的电路原理示意图。这里应理解,由于电极在实际使用时就相当于导线,因此图8中并未具体示出,后文同样如此,并不再赘述。如图8所示,在浪涌防护器件100中的各电极的第二端与对应的供电线正确连接的情况下,正母线30a与保护地线30c之间接有第一压敏元件S1,正母线30a与负母线30b之间接有第二压敏元件S2,负母线30b与保护地线30c之间接有第三压敏元件S3。在实际工作时,当正母线302与保护地线30c之间存在浪涌时,第一压敏元件S1可以短接正母线30a与保护地线30c。当正母线30a与负母线30b之间存在浪涌时,第二压敏元件S2可以短接正母线30a与负母线30b。当负母线30b与保护地线30c之间存在浪涌时,第三压敏元件S3可以短接负母线30b与保护地线30c。
在一种可行的实现方式中,在单相交流供电场景下,上述电源300为交流源,上述第二供电线302具体可以为交流源的第一相线30d,上述第三供电线303具体为所述交流源的中性线30e,上述第一供电线301具体可以为交流源的保护地线30c。具体的,请参见图9,图9是本申请实施例提供的又一种电路原理示意图。这里,图9示出的是图7所示结构的浪涌防护器件100应用于单相交流供电场景所对应的电路原理示意图。如图9所示,在浪涌防护器件100中的各电极的第二端与对应的供电线正确连接的情况下,第一相线30d与保护地线30c之间接有第一压敏元件S1,第一相线30d与中性线30e之间接有第二压敏元件S2,中性线30e与保护地线30c之间接有第三压敏元件S3。在实际工作时,当第一相线30d与保护地线30c之间存在浪涌时,第一压敏元件S1可以短接第一相线30d与保护地线30c。当第一相线30d与中性线30e之间存在浪涌时,第二压敏元件S2可以短接第一相线30d与中性线30e。当中性线30e与保护地线30c之间存在浪涌时,第三压敏元件S3可以短接中性线30e与保护地线30c。
在一种可行的实现方式中,在双火线供电的场景下,上述电源300为交流源,上述第二供电线302具体可以为交流源的第一相线30d,上述第三供电线303具体为所述交流源的第二相线30f,上述第一供电线301具体可以为交流源的保护地线30c。具体的,请参见图10,图10是本申请实施例提供的又一种电路原理示意图。这里,图10示出的是图7所示结构的浪涌防护器件100应用于双火线供电场景所对应的电路原理示意图。如图10所示,在浪涌防护器件100中的各电极的第二端与对应的供电线正确连接的情况下,第一相线30d与保护地线30c之间接有第一压敏元件S1,第一相线30d与第二相线30f之间接有第二压敏元件S2,第二相线30f与保护地线30c之间接有第三压敏元件S3。在实际工作时,当第一相线30d与保护地线30c之间存在浪涌时,第一压敏元件S1可以短接第一相线30d与保护地线30c。当第一相线30d与第二相线30f之间存在浪涌时,第二压敏元件S2可以短接第一相线30d与第二相线30f。当第二相线30f与保护地线30c之间存在浪涌时,第三压敏元件S3可以短接第二相线30f与保护地线30c。
在一种可行的实现方式中,在双相交流供电的场景下,上述电源300为交流源,上述第二供电线302具体可以为交流源的第一相线30d,上述第三供电线303具体为所述交流源的第二相线30f,上述第一供电线301具体可以为交流源的保护地线30c或者中性线30e,并且,保护地线30c或者中性线30e短接。具体的,请参见图11,图11是本申请实施例提供的又一 种电路原理示意图。这里,图11示出的是图7所示结构的浪涌防护器件100应用于双相交流供电场景所对应的电路原理示意图。这里需要说明的是,图11中是以第一供电线301为中性线30e这一具体场景示出的,第一供电线301为保护地线30c的场景与之相同,此处便不再赘述。如图11所示,在浪涌防护器件100中的各电极的第二端与对应的供电线正确连接的情况下,第一相线30d与保护地线30c之间接有第一压敏元件S1,第一相线30d与第二相线30f之间接有第二压敏元件S2,第二相线30f与中性线30e之间接有第三压敏元件S3。在实际工作时,当第一相线30d与中性线30e之间存在浪涌时,第一压敏元件S1可以短接第一相线30d与中性线30e。当第一相线30d与第二相线30f之间存在浪涌时,第二压敏元件S2可以短接第一相线30d与第二相线30f。当第二相线30f与中性线30e之间存在浪涌时,第三压敏元件S3可以短接第二相线30f与保护地线30c。
在一种可行的实现方式中,在上述第一供电线301、第二供电线302以及第三供电线303中存在保护地线30c的情况下,请参见图12,图12是本申请实施例提供的一种浪涌防护器件又一结构示意图。这里,图12中是以第一供电线301为保护地线30c为例进行描述的,由于第二供电线302或者第三供电线303作为保护地线30c的场景下,浪涌防护器件100的结构都是一样的,因此后文便不再赘述。如图12所示,上述集成器件20还可包括气体放电管203,上述第一电极G1的第二端以及所述第四电极G4的第二端同时与所述气体放电管203的第一端相连接,该气体放电管203的第二端则作为浪涌防护器件100的一个引脚,用于连接所述保护地线30c。实际工作时,当上述第二供电线302与保护地线30c之间出现浪涌时,第一压敏元件S1阻值变得很小,此时气体放电管203两端的电压近乎等于浪涌电压。若气体放电管203两端的电压超过气体放电管203内部的气体的绝缘强度时,气体放电管203将放电击穿,并由原来的绝缘状态变成导通状态,从而使得第二供电线302与保护地线30c真正的短接。若气体放电管203两端的电压并未超过气体放电管203内部的气体的绝缘强度时,则气体放电管203继续保持绝缘状态,使得第二供电线302与保护地线30c不会短接。同理,当上述第三供电线303与保护地线30c之间出现浪涌时,第三压敏元件S3阻值变得很小,此时气体放电管203两端的电压近乎等于浪涌电压。若气体放电管203两端的电压超过气体放电管203内部的气体的绝缘强度时,气体放电管203将放电击穿,并由原来的绝缘状态变成导通状态,从而使得第三供电线303与保护地线30c真正的短接。若气体放电管203两端的电压并未超过气体放电管203内部的气体的绝缘强度时,则气体放电管203继续保持绝缘状态,使得第三供电线303与保护地线30c不会短接。
在上述实现中,浪涌防护器件100中还集成有气体放电管203,从而可以使得浪涌防护器件100可以通过压敏元件和气体放电管对其他供电线与保护地线30c之间存在的浪涌进行更为合理且有效的防护,提升了浪涌防护器件100可靠性和安全性。
在一些可行的实现方式中,在三相五线制的交流供电场景下,上述电源300为交流源,上述第二供电线302具体可以为交流源的第一相线30d,上述第三供电线303具体为所述交流源的中性线30e,上述第一供电线301具体可以为交流源的保护地线30c。上述多根供电线310还可包括交流源的第二相线30f和第三相线30g。上述多个压敏元件201中可包括第一压敏元件S1、第二压敏元件S2、第三压敏元件S3、第四压敏元件S4、第五压敏元件S5、第六压敏元件S6和第七压敏元件S7。上述多个电极202具体可包括第一电极G1、第二电极G2、第三电极G3、第四电极G4、第五电极G5、第六电极G6、第七电极G7以及第八电极G8。具体的,请参见图13,图13是本申请实施例提供的一种浪涌防护器件又一结构示意图。如图13所示,所述第一压敏元件S1的第一端与所述第一电极G1的第一端相连接,所述第一 压敏元件S1的第二端与所述第二电极G2的第一端相连接,所述第二电极G2的第一端还与所述第二压敏元件S2的第一端相连接,所述第二压敏元件S2的第二端与所述第三电极G3的第一端相连接,所述第三电极G3的第一端还与所述第三压敏元件S3的第一端相连接,所述第三压敏元件S3的第二端与所述第四电极的第一端相连接。所述第一电极G1的第二端还与所述第四压敏元件S4的第一端相连接,所述第四压敏元件S4的第二端与所述第五电极G5的第一端相连接,所述第五电极G5的第一端还与所述第五压敏元件S5的第一端相连接,所述第五压敏元件S5的第二端与第六电极G6的第一端相连接,所述第四电极G4的第一端还与所述第六压敏元件S6的第一端相连接,所述第六压敏元件S6的第二端与所述第七电极G7的第一端相连接,所述第七电极G7的第一端还与所述第七压敏元件S7的第一端相连接,所述第七压敏元件S7的第二端还与所述第八电极G8的第一端相连接。所述第一电极G1的第二端以及所述第四电极G4的第二端连接所述第一供电线301,所述第二电极G2的第二端连接所述第二供电线302,所述第三电极G3的第二端连接所述第三供电线303。所述第六电极G6和所述第八电极G8的第二端用于连接所述中性线30e,所述第五电极G5的第二端用于连接所述第三相线30g,所述第七电极G7的第二端用于连接所述第二相线30f。
进一步的,请一并参见图14,图14是本申请实施例提供的又一种电路原理示意图。这里,图14示出的是图13所示结构的浪涌防护器件100应用于三相五线制的交流供电场景所对应的电路原理示意图。如图14所示,在浪涌防护器件100中的各电极的第二端与对应的供电线正确连接的情况下,第一相线30d与保护地线30c之间接有第一压敏元件S1,第一相线30d与中性线30e之间接有第二压敏元件S2,中性线30e与保护地线30c之间接有第三压敏元件S3,第三相线30g与保护地线30c之间接有第四压敏元件S4,第三相线30g与中性线30e之间接有第五压敏元件S5,第二相线30f与保护地线30c之间接有第六压敏元件S6,第二相线30f与中性线30e之间接有第七压敏元件S7。在实际工作中,当第一相线30d与保护地线30c之间存在浪涌时,第一压敏元件S1可以短接第一相线30d与保护地线30c。当第一相线30d与中性线30e之间存在浪涌时,第二压敏元件S2可以短接第一相线30d与中性线30e。当中性线30e与保护地线30c之间存在浪涌时,第三压敏元件S3可以短接中性线30e与保护地线30c。当第三相线30g与保护地线30c之间存在浪涌时,第四压敏元件S4可以短接第三相线30g与保护地线30c。当第三相线30g与中性线30e之间存在浪涌时,第五压敏元件S5可以短接第三相线30g与中性线30e。当第二相线30f与保护地线30c之间存在浪涌时,第六压敏元件S6可以短接第二相线30f与保护地线30c。当第二相线30f与中性线30e之间存在浪涌时,第七压敏元件S7可以短接第二相线30f与中性线30e。简而言之,当任一压敏元件的两端所接的两根供电线之间出现浪涌时,这个压敏元件既可以短接这两根供电线,从而实现浪涌防护功能。
可选的,和前文类似,在图13所示结构的基础上,该集成器件20也可包括前文所述的气体放电管203,并且上述第一电极G1的第二端以及所述第四电极G4的第二端同时与所述气体放电管203的第一端相连接,该气体放电管203的第二端则作为浪涌防护器件100的一个引脚,用于连接所述保护地线30c。该气体放电管203所能实现的功能和前文相同,此处便不再赘述。
在一些可行的实现方式中,在三相四线制的交流供电场景下,上述电源300为交流源,上述第一供电线301为交流源的第一相线30d,上述第二供电线302为交流源的第二相线30f,上述多根供电线310具体可包括交流源的保护地线30c以及第三相线30g。上述多个压敏元件201包括第一压敏元件S1、第二压敏元件S2、第三压敏元件S3、第四压敏元件S4、第五 压敏元件S5以及第六压敏元件S6。上述多个电极202包括第一电极G1、第二电极G2、第三电极G3、第四电极G4、第五电极G5、第六电极G6、第七电极G7以及第八电极G8。具体的,请参见图15,图15是本申请实施例提供的一种浪涌防护器件又一结构示意图。如图15所示,所述第一压敏元件S1的第一端与所述第一电极G1的第一端相连接,所述第一压敏元件S1的第二端与所述第二电极G2的第一端相连接,所述第二电极G2的第一端还与所述第二压敏元件S2的第一端相连接,所述第二压敏元件S2的第二端与所述第三电极G3的第一端相连接,所述第三电极G3的第一端还与所述第三压敏元件S3的第一端相连接,所述第三压敏元件S3的第二端还有所述第四电极G4的第一端相连接。所述第五电极G5的第一端与所述第四压敏元件S4的第一端相连接,所述第四压敏元件S4的第二端与所述第六电极G6的第一端相连接,所述第六电极G6的第一端还与所述第五压敏元件S5的第一端相连接,所述第五压敏元件S5的第二端与所述第七电极G7的第一端相连接,所述第七电极G7的第一端还与所述第六压敏元件S6的第一端相连接,所述第六压敏元件S6的第二端与所述第八电极G8的第一端相连接。所述第一电极G1和所述第七电极G7的第二端用于连接所述保护地线30c,所述第二电极G2和所述第五电极G5的第二端用于连接所述第一相线30d,所述第三电极G3和所述第八电极G8的第二端用于连接所述第二相线30f,所述第四电极G4和所述第六电极G6的第二端用于连接所述第三相线30g。
进一步的,请参见图16,图16是本申请实施例提供的有一种电路原理示意图。这里,图16示出的是图15所示结构的浪涌防护器件100应用于三相四线制的交流供电场景所对应的电路原理示意图。如图16所示,在浪涌防护器件100中的各电极的第二端与对应的供电线正确连接的情况下,第一相线30d与保护地线30c之间接有第一压敏元件S1,第一相线30d与第二相线30f之间接有第二压敏元件S2,第二相线30f与第三相线30g之间接有第三压敏元件S3,第三相线30g与第一相线30d之间接有第四压敏元件S4,第三相线30g与保护地线30c之间接有第五压敏元件S5,第二相线30f与保护地线30c之间接有第六压敏元件S6。在实际工作时,当第一相线30d与保护地线30c存在浪涌时,第一压敏元件S1可以短接第一相线30d与保护地线30c。当第一相线30d与第二相线30f之间存在浪涌时,第二压敏元件S2可用于短接第一相线30d与第二相线30f。当第二相线30f与第三相线30g之间存在浪涌时,第三压敏元件S3可以短接第二相线30f与第三相线30g。当第三相线30g与第一相线30d之间存在浪涌时,第四压敏元件S4可用于短接第三相线30g与第一相线30d。当第三相线30g与保护地线30c之间存在浪涌时,第五压敏元件S5可以短接第三相线30g与保护地线30c。当第三相线30g与保护地线30c之间存在浪涌时,第六压敏元件S6可用于短接第三相线30g与保护地线30c。
可选的,和前文类似,在图15所示结构的基础上,该集成器件20也可包括气体放电管203,并且上述第一电极G1的第二端以及所述第七电极G7的第二端同时与所述气体放电管203的第一端相连接,该气体放电管203的第二端则作为浪涌防护器件100的一个引脚,用于连接所述保护地线30c。该气体放电管203所能实现的功能和前文相同,此处便不再赘述。
需要说明的是,前文叙述的第一相线30d、第二相线30f或者第三相线30g分别对应交流源输出的三相交流电(包括A相交流电、B相交流电和C相交流电)中的一单相交流电所对应的供电线。例如,第一相线30d可以是A相交流电对应的供电线,第二相线30f可以是B相交流电对应的供电线,第三相线30g可以是C相交流电对应的供电线。又或者,第一相线30d可以是B相交流电对应的供电线,第二相线30f可以是C相交流电对应的供电线,第三相线30g可以是A相交流电对应的供电线。总而言之,本申请对每个相线所对应的单相交流 电的具体类型不作限定。
还需要补充说明的是,前文基于直流供电场景、单相交流供电场景、双火线供电场景、双相交流供电场景、三相五线制交流供电场景以及三相四线制交流供电场景描述了浪涌防护器件100多种可能的结构以及相应的与电源300提供的各供电线的连接方式。这里需要理解到的是,在这些不同的场景中,前文叙述的浪涌防护器件100的结构以及相应的与电源300提供的各供电线的连接方式并不是唯一的,其可存在多种变形。例如,在直流供电场景中,第二电极G2的第二端可以连接负母线30b,第三电极G3的第二端也可连接正母线30a,这样就可以使得第一压敏元件S1接在负母线30b与保护地线30c之间,而第三压敏元件S3则接在正母线和保护地线30c之间,这种情况下浪涌防护器件100仍然可以正常的实现浪涌防护功能。由于基于前文所述的浪涌防护器件100的结构以及相应的与电源300提供的各供电线的连接方式演化出的方案,在功能上前文描述各个方式都是相同的,仅在压敏元件和电极的个数上,以及与各供电线的连接关系上存在一定的区别。因此,为了避免重复,本申请对这些方案便不再一一列举。应理解,基于前文所述的浪涌防护器件100的结构以及相应的与电源300提供的各供电线的连接方式演化出的方案均应包括在本申请的保护范围之内。
本申请还保护了一种供电系统。请参见图17,图17是本申请实施例提供的一种供电系统的结构示意图。如图17所示,该供电系统具体可包括前文所述的电源300、前文所述的浪涌防护器件100以及负载500。其中,上述电源300通过多根供电线310与负载500相连接,上述浪涌防护器件100与所述电源300和所述负载500之间的多根供电线310相连接。
这里需要说明的是,当电源300为直流源时,所述多根供电线310包括所述直流源的正母线30a、所述直流源的负母线30b以及所述直流源的保护地线30c。此时,上述浪涌防护器件100则分别与上述三根线相连接。当电源300为交流源时,所述多根供电线310为所述交流源的第一相线30d、所述交流源的第二相线30f、所述交流源的第三相线30g、所述交流源的中性线30e以及所述交流源的保护地线30c中的至少三项。此时,上述浪涌防护器件100则分别与上述至少三项相连接。
在实际工作时,当所述电源300通过所述多根供电线310为所述负载500供电时,所述浪涌防护器件100用于对所述负载500进行浪涌防护,具体过程可参见前文所描述的过程,此处便不再赘述。
在本申请实施例中,将由多个压敏元件201以及多个电极202集成得到的集成器件20封装在外壳10的内部,并以多个电极202中的每个电极的第二端作为引脚,从而形成一个可与电源300提供的多根供电线310相连接浪涌防护器件100。并且当该浪涌防护器件100通过其电极与外部的电源300的任意两根供电线正确连接时,该浪涌防护器件100能够通过短接该任意两根供电线来有效的实现浪涌防护。这样的浪涌防护器件100的体积小,安装和维护都比较便利,可以有效的解决现有的浪涌防护电路的体积较大所导致的占板面积大,并且安装和后期维护上也比较困难的问题,可以有效的提升浪涌防护电路的适用性和实用性。
在本申请所提供的实施例中,应该理解到,所揭露的系统、装置或者方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部 件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
以上所述的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请的具体实施方式而已,并不用于限定本申请的保护范围,凡在本申请的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请的保护范围之内。

Claims (17)

  1. 一种浪涌防护器件,其特征在于,所述浪涌防护器件包括:外壳以及固定在所述外壳内的集成器件,所述集成器件集成有多个压敏元件以及多个电极,所述多个压敏元件中的每个压敏元件的两端分别与所述多个电极中的两个电极的第一端相连接,所述多个电极中的每个电极的第二端用于连接所述浪涌防护器件外部的电源提供的多根供电线中的其中一根供电线;
    所述多根供电线中的第一供电线和第二供电线之间出现浪涌,所述多个压敏元件中连接在所述第一供电线和第二供电线之间的压敏元件用于短接所述第一供电线和第二供电线。
  2. 根据权利要求1所述的浪涌防护器件,其特征在于,所述浪涌防护器件还包括底座,所述底座设置有多个通孔,当所述底座与所述外壳固定连接并覆盖所述外壳的底面时,所述多个电极中的每个电极的第二端分别通过所述多个通孔中的一个通孔来连接所述多根供电线中的其中一根供电线。
  3. 根据权利要求1或2所述的浪涌防护器件,其特征在于,所述压敏元件为柱体状压敏电阻,所述柱体状压敏电阻的一个端面为所述压敏元件的第一端,所述柱体状压敏电阻的另一端面为所述压敏元件的第二端。
  4. 根据权利要求3所述的浪涌防护器件,其特征在于,所述多个压敏元件中的每个压敏元件的轴向方向相同,并且每个压敏元件的轴向方向与所述外壳的底面相互平行。
  5. 根据权利要求1-4任一项所述的浪涌防护器件,其特征在于,所述多个压敏元件包括第一压敏元件、第二压敏元件、第三压敏元件,所述多个电极包括第一电极、第二电极、第三电极以及第四电极,所述多根供电线包括所述第一供电线、所述第二供电线以及第三供电线;
    其中,所述第一压敏元件的第一端与所述第一电极的第一端相连接,所述第一压敏元件的第二端与所述第二电极的第一端相连接,所述第二电极的第一端还与所述第二压敏元件的第一端相连接,所述第二压敏元件的第二端与所述第三电极的第一端相连接,所述第三电极的第一端还与所述第三压敏元件的第一端相连接,所述第三压敏元件的第二端与所述第四电极的第一端相连接,所述第一电极的第二端以及所述第四电极的第二端用于连接所述第一供电线,所述第二电极的第二端用于连接所述第二供电线,所述第三电极的第二端用于连接所述第三供电线。
  6. 根据权利要求5所述的浪涌防护器件,其特征在于,所述浪涌防护器件外部的电源为直流源,所述第一供电线为所述直流源的保护地线,所述第二供电线为所述直流源的正母线,所述第三供电线为所述直流源的负母线。
  7. 根据权利要求5所述的浪涌防护器件,其特征在于,所述浪涌防护器件外部的电源为交流源,所述第一供电线为所述交流源的保护地线,所述第二供电线为所述交流源的第一相线,所述第三供电线为所述交流源的中性线。
  8. 根据权利要求7所述的浪涌防护器件,其特征在于,所述多个压敏元件还包括第四压 敏元件、第五压敏元件、第六压敏元件和第七压敏元件,所述多个电极还包括第五电极、第六电极、第七电极和第八电极,所述多根供电线还包括所述交流源的第二相线和第三相线;
    其中,所述第一电极的第二端还与所述第四压敏元件的第一端相连接,所述第四压敏元件的第二端与所述第五电极的第一端相连接,所述第五电极的第一端还与所述第五压敏元件的第一端相连接,所述第五压敏元件的第二端与第六电极的第一端相连接,所述第四电极的第一端还与所述第六压敏元件的第一端相连接,所述第六压敏元件的第二端与所述第七电极的第一端相连接,所述第七电极的第一端还与所述第七压敏元件的第一端相连接,所述第七压敏元件的第二端还与所述第八电极的第一端相连接,所述第六电极和所述第八电极的第二端用于连接所述中性线,所述第五电极的第二端用于连接所述第三相线,所述第七电极的第二端用于连接所述第二相线。
  9. 根据权利要求5所述的浪涌防护器件,其特征在于,所述浪涌防护器件外部的电源为交流源,所述第一供电线为所述交流源的保护地线,所述第二供电线为所述交流源的第一相线,所述第三供电线为所述交流源的第二相线。
  10. 根据权利要求5所述的浪涌防护器件,其特征在于,所述浪涌防护器件外部的电源为交流源,所述第一供电线为所述交流源的中性线或者保护地线,并且所述交流源的中性线和保护地线短接,所述第二供电线为所述交流源第一相线,所述第三供电线为所述交流源的第二相线。
  11. 根据权利要求6-10任一项所述的浪涌防护器件,其特征在于,所述集成器件还包括气体放电管,所述第一电极的第二端以及所述第四电极的第二端与所述气体放电管的第一端相连接,所述气体放电管的第二端用于连接所述保护地线。
  12. 根据权利要求1-4任一项所述的浪涌防护器件,其特征在于,所述浪涌防护器件外部的电源为交流源,所述第一供电线为所述交流源的第一相线,所述第二供电线为所述交流源的第二相线,所述多根供电线包括所述交流源的第三相线以及保护地线,所述多个压敏元件包括第一压敏元件、第二压敏元件、第三压敏元件、第四压敏元件、第五压敏元件以及第六压敏元件,所述多个电极包括第一电极、第二电极、第三电极、第四电极、第五电极、第六电极、第七电极以及第八电极;
    所述第一压敏元件的第一端与所述第一电极的第一端相连接,所述第一压敏元件的第二端与所述第二电极的第一端相连接,所述第二电极的第一端还与所述第二压敏元件的第一端相连接,所述第二压敏元件的第二端与所述第三电极的第一端相连接,所述第三电极的第一端还与所述第三压敏元件的第一端相连接,所述第三压敏元件的第二端还有所述第四电极的第一端相连接,所述第五电极的第一端与所述第四压敏元件的第一端相连接,所述第四压敏元件的第二端与所述第六电极的第一端相连接,所述第六电极的第一端还与所述第五压敏元件的第一端相连接,所述第五压敏元件的第二端与所述第七电极的第一端相连接,所述第七电极的第一端还与所述第六压敏元件的第一端相连接,所述第六压敏元件的第二端与所述第八电极的第一端相连接;
    所述第一电极和所述第七电极的第二端用于连接所述保护地线,所述第二电极和所述第五电极的第二端用于连接所述第一相线,所述第三电极和所述第八电极的第二端用于连接所 述第二相线,所述第四电极和所述第六电极的第二端用于连接所述第三相线。
  13. 根据权利要求12所述的浪涌防护器件,其特征在于,所述集成器件还包括气体放电管,所述第一电极和所述第七电极的第二端与所述气体放电管的第一端相连接,所述气体放电管的第二端用于连接所述保护地线。
  14. 根据权利要求1-13任一项所述的浪涌防护器件,其特征在于,所述外壳与所述集成器件之间填充有绝缘介质。
  15. 一种供电系统,其特征在于,所述供电系统包括电源、如权利要求1-13任一项所述的浪涌防护器件以及负载,所述浪涌防护器件与所述电源和所述负载之间的多根供电线相连接;
    当所述电源通过所述多根供电线为所述负载供电时,所述浪涌防护器件用于对所述负载进行浪涌防护。
  16. 根据权权利要求15所述的供电系统,所述电源为直流源,所述多根供电线包括所述直流源的正母线、所述直流源的负母线以及所述直流源的保护地线。
  17. 根据权利要求15所述的供电系统,其特征在于,所述电源为交流源,所述多根供电线为所述交流源的第一相线、所述交流源的第二相线、所述交流源的第三相线、所述交流源的中性线以及所述交流源的保护地线中的至少三项。
PCT/CN2022/124053 2021-10-20 2022-10-09 一种浪涌防护器件和供电系统 WO2023066042A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111221958.XA CN113991625B (zh) 2021-10-20 2021-10-20 一种浪涌防护器件和供电系统
CN202111221958.X 2021-10-20

Publications (1)

Publication Number Publication Date
WO2023066042A1 true WO2023066042A1 (zh) 2023-04-27

Family

ID=79739607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/124053 WO2023066042A1 (zh) 2021-10-20 2022-10-09 一种浪涌防护器件和供电系统

Country Status (2)

Country Link
CN (1) CN113991625B (zh)
WO (1) WO2023066042A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113991625B (zh) * 2021-10-20 2023-07-28 华为技术有限公司 一种浪涌防护器件和供电系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070103268A1 (en) * 2005-11-08 2007-05-10 Rih-Lang Luo Varistor with three parallel ceramic layer
CN204089186U (zh) * 2014-07-09 2015-01-07 广西新未来信息产业股份有限公司 一种电路保护用压敏电阻器
CN108242805A (zh) * 2016-12-23 2018-07-03 Ripd研究与知识产权发展有限公司 用于主动过电压保护的装置
CN113991625A (zh) * 2021-10-20 2022-01-28 华为技术有限公司 一种浪涌防护器件和供电系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1604238A (zh) * 2004-10-29 2005-04-06 成都铁达电子有限责任公司 一种具有分步失效功能的浪涌保护器内置压敏芯片
CN104377673A (zh) * 2013-08-13 2015-02-25 中兴通讯股份有限公司 浪涌防护装置和方法
CN203761658U (zh) * 2014-03-31 2014-08-06 厦门赛尔特电子有限公司 一种具有浪涌防护功能的光控器
US9906017B2 (en) * 2014-06-03 2018-02-27 Ripd Research And Ip Development Ltd. Modular overvoltage protection units
FR3057403B1 (fr) * 2016-10-10 2019-10-18 Citel Composant integrant une varistance thermoprotegee et un eclateur en serie
CN113141002A (zh) * 2020-01-20 2021-07-20 青岛海尔空调电子有限公司 用于三相空调系统的浪涌吸收电路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070103268A1 (en) * 2005-11-08 2007-05-10 Rih-Lang Luo Varistor with three parallel ceramic layer
CN204089186U (zh) * 2014-07-09 2015-01-07 广西新未来信息产业股份有限公司 一种电路保护用压敏电阻器
CN108242805A (zh) * 2016-12-23 2018-07-03 Ripd研究与知识产权发展有限公司 用于主动过电压保护的装置
CN113991625A (zh) * 2021-10-20 2022-01-28 华为技术有限公司 一种浪涌防护器件和供电系统

Also Published As

Publication number Publication date
CN113991625B (zh) 2023-07-28
CN113991625A (zh) 2022-01-28

Similar Documents

Publication Publication Date Title
CN201417941Y (zh) 一种接口防护电路
US9054514B2 (en) Reduced let through voltage transient protection or suppression circuit
US4862311A (en) Overvoltage protector for use with data cables
WO2012113216A1 (zh) 一种防雷保护电路
WO2023066042A1 (zh) 一种浪涌防护器件和供电系统
KR20170086615A (ko) 드라이 타입 트랜스포머들의 보호를 위한 시스템
US8570701B2 (en) Rackmount I/O signal protector assembly for surge protection
CN203166496U (zh) 模块式雷击突波保护装置
CN103855550A (zh) 连接器电路及其高压突波保护方法
CN102668292A (zh) 用于提供浪涌保护的系统和方法
US20080112098A1 (en) Separate box assembly for voltage surge protection
JP2006109681A (ja) 避雷器
CN109787210B (zh) 浪涌保护电路和浪涌保护器件
CN204118718U (zh) 一种poe以太网络提供电涌能量控制的系统
US20200366087A1 (en) Surge protection device for the protection of multiple dc or ac power lines
CN212935516U (zh) 具有超大容量滤波防雷装置和防雷箱
CN215646165U (zh) 一种poe++以太网交换机防雷击电路
CN219086800U (zh) 一种浪涌保护电路及开关电源
CN216056319U (zh) 一种高可靠的防雷电路
CN215498235U (zh) 一种保护电路以及电气线路、消防电子设备、供电保护装置
CN203674972U (zh) 过压过流保护电路
CN114221313B (zh) 一种防护系统及浮地设备
CN217182946U (zh) 多场景高能贴片压敏保护电路
CN219843434U (zh) 一种电气隔离的以太网接口电路
US20240087779A1 (en) Surge arresting power cable

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22882652

Country of ref document: EP

Kind code of ref document: A1