WO2023066022A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2023066022A1
WO2023066022A1 PCT/CN2022/123465 CN2022123465W WO2023066022A1 WO 2023066022 A1 WO2023066022 A1 WO 2023066022A1 CN 2022123465 W CN2022123465 W CN 2022123465W WO 2023066022 A1 WO2023066022 A1 WO 2023066022A1
Authority
WO
WIPO (PCT)
Prior art keywords
session
address
information
network element
terminal device
Prior art date
Application number
PCT/CN2022/123465
Other languages
English (en)
French (fr)
Inventor
周晓云
戚彩霞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023066022A1 publication Critical patent/WO2023066022A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections

Definitions

  • the embodiments of the present application relate to the field of wireless communication, and in particular, to a communication method and device.
  • the 5G network uses the remote authentication dial in user service (RADIUS) or Diameter (Diameter) protocol to communicate with the authentication authorization and accounting (AAA) server to authenticate, authorize and account for terminal devices. account.
  • RADIUS remote authentication dial in user service
  • Diameter Diameter
  • AAA authentication authorization and accounting
  • the AAA server can provide the session management network element with tunnel information for protocol data unit (protocol data unit, PDU) session anchor (PDU session anchor, PSA) and layer 2 tunneling protocol (layer 2 tunneling protocol, L2TP) network server (L2TP networking server, LNS) to establish an L2TP tunnel.
  • PDU protocol data unit
  • PSA protocol data unit
  • L2TP layer 2 tunneling protocol
  • L2TP networking server LNS
  • the session management network element can select multiple user plane network elements as PSA for a PDU session, or the session management network element can insert a new user plane network element for a PDU session Plane NEs serve as PSAs.
  • multiple PSAs need to establish L2TP tunnels with the LNS respectively, but currently only the AAA server is supported to provide tunnel information for a user plane network element.
  • the embodiments of the present application provide a communication method and device for establishing L2TP tunnels between multiple PSAs and LNSs respectively.
  • the present application provides a communication method, which includes:
  • the session management network element sends first information to the first device, where the first device is an authentication, authorization and accounting server, and the first information indicates N session anchor points, where N is a positive integer greater than or equal to 1.
  • the session management network element receives a response to the first information from the first device, where the response to the first information includes M pieces of layer 2 tunneling protocol L2TP tunnel information, where the N A session anchor point has an association relationship with the M L2TP tunnel information, and each L2TP tunnel information is used for the corresponding session anchor point to establish or reuse an L2TP tunnel with the L2TP network server, M is a positive integer greater than or equal to 1, M ⁇ N.
  • the session management network element sends corresponding L2TP tunnel information to the N session anchor points respectively.
  • the session management network element sends the first information to the first device, and the first information indicates N session anchor points, so that the first device allocates M pieces of L2TP tunnel information according to the first information, and the session management network element according to the received
  • the M L2TP tunnel information instructs the session anchor to establish an L2TP tunnel with the LNS.
  • the first information includes addresses or identifiers respectively corresponding to the N session anchors.
  • the first information can clearly indicate which session anchors need to request L2TP tunnel information.
  • the first information includes the number N of session anchors.
  • the first information may indicate the number of session anchors, thereby saving signaling overhead.
  • N is a positive integer greater than or equal to 2; before the session management network element sends the first information to the first device, the session management network element may also receive A session establishment request message of the device, where the session establishment request message is used to request establishment of a first session, and the session management network element selects the N session anchor points for the first session.
  • the session management network element can select multiple session anchor points for the first session according to the session establishment request message of the terminal device.
  • the N session anchors include a first session anchor and a second session anchor; the session management network element receives all the session anchors from the first session anchor The first IP address of the terminal device receives the second IP address of the terminal device from the second session anchor point; the session management network element sends the first IP address to the terminal device; the The session management network element sends a first distribution rule to the upstream classifier, and the first distribution rule instructs the upstream classifier to divide the data from the terminal device according to the destination address of the data from the terminal device sending to the first session anchor point or the second session anchor point; the session management network element sends first indication information to the second session anchor point, and the first indication information indicates that the second session anchor point
  • the anchor converts the source address of the data from the upstream classifier from the first IP address to the second IP address and sends it to the data network, and converts the source address of the data from the data network from the The second IP address is converted into the first IP address and then sent to the upstream classifier.
  • the uplink classifier can send the data of the terminal device to the first session anchor point or the second session anchor point according to the first offload rule indicated by the session management network element, and the second session anchor point needs to Perform network address translation to realize service distribution.
  • the N session anchors include a first session anchor and a second session anchor; the session management network element receives all the session anchors from the first session anchor the first IP address of the terminal device, and receive the second IP address of the terminal device from the second session anchor point; the session management network element sends the first IP address and the the second IP address; the session management network element sends a second distribution rule to the branch point, and the second distribution rule instructs the branch point to transfer the data from the terminal device according to the source address of the data from the terminal device.
  • the data of the terminal device is sent to the first session anchor point or the second session anchor point.
  • the branch point can send the data of the terminal device to the first session anchor point or the second session anchor point according to the second offload rule indicated by the session management network element, thereby realizing service offload.
  • the first information is used to request L2TP tunnel information or to indicate a new session anchor point.
  • the first device can be allocated new L2TP tunnel information by notifying the first device to request L2TP tunnel information or to add a new session anchor point.
  • the session management network element determines to be the The second session adds the N session anchor points.
  • the session management network element can add one or more session anchor points for the established second session.
  • N 1
  • the N session anchors are the fourth session anchor
  • the session management network element receives the fourth session anchor from the terminal device of the fourth session anchor IP address
  • the session management network element sends a third distribution rule to the upstream classifier, and the third distribution rule instructs the upstream classifier to transfer the data from the terminal device according to the destination address of the data from the terminal device
  • the data of the terminal device is sent to the third session anchor point or the fourth session anchor point, wherein the third session anchor point is that the session management network element is the second session anchor point during the establishment process of the second session A session anchor selected by the session
  • the session management network element sends second indication information to the fourth session anchor, and the second indication information indicates that the second session anchor will come from the uplink classifier
  • the source address of the data is converted from the third IP address to the fourth IP address and then sent to the data network, and the source address of the data from the data network is converted from the fourth IP address to the third IP address and then sent to the uplink classifier, wherein the third IP address correspond
  • the uplink classifier can send the data of the terminal device to the first session anchor point or the second session anchor point according to the third distribution rule indicated by the session management network element, and the second session anchor point needs to Perform network address translation to realize service distribution.
  • N 1
  • the N session anchors are the fourth session anchor; the session management network element receives the fourth session anchor from the terminal device of the fourth session anchor IP address.
  • the session management network element sends the fourth IP address to the terminal device; the session management network element sends a fourth distribution rule to the branch point, and the fourth distribution rule indicates that the branch point according to the The source address of the data of the terminal device sends the data from the terminal device to the third session anchor point or the fourth session anchor point, where the third session anchor point is the The session anchor selected by the session management network element for the second session during the establishment of the second session.
  • the branch point can send the data of the terminal device to the first session anchor point or the second session anchor point according to the fourth offloading rule indicated by the session management network element, thereby realizing service offloading.
  • the present application provides a communication method, which includes:
  • the first device receives first information from a session management network element, the first device is an authentication, authorization, and accounting server, and the first information indicates N session anchor points, where N is a positive integer greater than or equal to 2;
  • the first device sends a response to the first information to the session management network element, where the response to the first information includes M pieces of L2TP tunnel information, where the N session anchor points are related to the The M pieces of L2TP tunnel information are associated, and each L2TP tunnel information is used by the corresponding session anchor point to establish or reuse the L2TP tunnel with the L2TP network server, M is a positive integer greater than or equal to 1, and M ⁇ N.
  • the first device receives the first information from the session management network element, the first information indicates N session anchor points, the first device can allocate M L2TP tunnel information according to the first information, and send the information to the session management network element Sending a response to the first information, where the response to the first information includes information on M pieces of L2TP tunnels allocated by the first device.
  • the first information includes addresses and identifiers respectively corresponding to the N session anchors.
  • the first information includes the number N of session anchors.
  • the first information includes indication information for requesting L2TP tunnel information or indication information for adding a session anchor point.
  • the present application also provides a device.
  • the device can perform the method design described above.
  • the apparatus may be a chip or a circuit capable of performing the function corresponding to the above method, or a device including the chip or circuit.
  • the device includes: a memory storing computer executable program codes; and a processor coupled to the memory.
  • the program codes stored in the memory include instructions, and when the processor executes the instructions, the device or the device installed with the device executes the method in any one of the above possible designs.
  • the device may further include a communication interface, which may be a transceiver, or, if the device is a chip or a circuit, the communication interface may be an input/output interface of the chip, such as an input/output pin.
  • a communication interface which may be a transceiver, or, if the device is a chip or a circuit, the communication interface may be an input/output interface of the chip, such as an input/output pin.
  • the device includes corresponding functional units, respectively used to implement the steps in the above method.
  • the functions may be implemented by hardware, or may be implemented by executing corresponding software through hardware.
  • Hardware or software includes one or more units corresponding to the functions described above.
  • the present application provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, and when the computer program is run on a device, the method in any one of the above-mentioned possible designs is executed.
  • the present application provides a computer program product, the computer program product includes a computer program, and when the computer program is run on a device, the method in any one of the above possible designs is executed.
  • FIG. 1 is a schematic diagram of the architecture of the 5G system applied in the embodiment of the present application and the external data network intercommunication;
  • FIG. 2 is an architecture diagram of implementing service distribution by using a branch point or an upstream classifier in an embodiment of the present application
  • FIG. 3 is a specific flow chart of the DN-AAA server providing the SMF network element with information for the UPF network element and the LNS to establish an L2TP tunnel when the UE accesses the 5G system in an embodiment of the present application;
  • FIG. 4 is an overview flowchart of a communication method in an embodiment of the present application.
  • Fig. 5 is the flow chart that SMF network element selects two UPFs as PSA for PDU session in the PDU session establishment process in the embodiment of the present application and carries out business distribution;
  • Fig. 6 is the flow chart that SMF network element inserts a UPF as PSA for the established PDU session in the embodiment of the present application and carries out business distribution;
  • Fig. 7 is one of the structural schematic diagrams of a device in the embodiment of the present application.
  • FIG. 8 is the second structural schematic diagram of a device in the embodiment of the present application.
  • At least one item (piece) of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple .
  • the technical solutions provided by the embodiments of the present application can be applied to various communication systems. For example, it can be applied to a long term evolution (long term evolution, LTE) system or a 5G system, and can also be applied to other future-oriented new systems, such as a programmable user plane system, which is not specifically limited in this embodiment of the present application. Also, the term “system” and “network” may be used interchangeably.
  • FIG. 1 is a schematic diagram of a possible application scenario of the embodiment of the present application, and the system architecture shown in FIG. 1 is not limited to the embodiment of the present application.
  • the terminal device is the entrance for the mobile user to interact with the network, and can provide basic computing power and storage capacity, display service windows to the user, and receive user operation input.
  • the next-generation terminal equipment (NextGen UE) can adopt new air interface technology to establish a signal connection and data connection with the next-generation radio access network (NG-RAN), thereby transmitting control signals and business data to the mobile network.
  • Terminal devices may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to wireless modems, as well as various forms of terminals, mobile stations (mobile station, MS), terminal (terminal), user equipment (UE), soft terminals, etc., such as water meters, electricity meters, sensors, etc.
  • the terminal device may be a UE.
  • Access network equipment Similar to the base station in the traditional network, it is deployed close to the terminal equipment, provides network access functions for authorized users in a specific area, and can determine different quality transmission tunnels for transmission according to user levels and business requirements. User data. As shown in Figure 1, the access network device may be NG-RAN.
  • Session management network element mainly used for session management, IP address allocation and management of terminal equipment, selection of endpoints that can manage user equipment plane functions, policy control, or charging function interfaces, and downlink data notification.
  • the session management network element can be a session management function (session management function, SMF) network element.
  • SMF session management function
  • the session management function network element can still be an SMF network element, or have other names. Applications are not limited to this.
  • Nsmf is a service-based interface provided by SMF. SMF can communicate with other network functions through Nsmf.
  • the session management network element may be an SMF network element.
  • User plane network element used for packet routing and forwarding, or quality of service (QoS) processing of user plane data, etc.
  • the user plane network element can be a user plane function (UPF) network element.
  • UPF user plane function
  • future communication such as a 6G network
  • the user plane network element can still be a UPF network element, or have other names. This application There is no limit to this.
  • the user plane network element may be a UPF network element.
  • Data network a data network that provides business services for users.
  • the client is located in the terminal device, and the server is located in the data network.
  • the data network can be a private network, such as a local area network, or an external network not controlled by the operator, such as the Internet (Internet), or a proprietary network jointly deployed by the operator, such as providing an IP multimedia network subsystem (IP multimedia network subsystem). core network subsystem, IMS) service network.
  • IP multimedia network subsystem IP multimedia network subsystem
  • IMS core network subsystem
  • the AAA server may be located in the DN, and the AAA server is used for authentication, authorization and accounting of the terminal equipment.
  • branching point branching point
  • uplink classifier uplink classifier
  • the session management network element may decide to insert a BP on the data path of the PDU session.
  • the session management network element may decide to insert a BP on the data path of the PDU session when the PDU connection is established, or after the PDU is established.
  • BP can communicate with UPF1 and UPF2.
  • a PDU session can be associated with multiple IPv6 address prefixes. Therefore, the terminal device will obtain multiple IPv6 address prefixes associated with the PDU session, so as to realize the use of different IPv6 prefix addresses for different services.
  • the BP may distribute the received uplink data packets (data packets from the terminal device) according to the distribution rules configured by the session management network element.
  • the BP can perform distribution by checking the source IP address (for example, IPv6 prefix) of the uplink data packet. Specifically, the BP can forward the uplink data packets with different source IP addresses to different PSAs (and then these PSAs send them to the DN. For example, if the BP determines that the source IP address of the uplink data packets is IP address 1, IP address 1 and UPF1 associated, then BP sends the uplink data packet to UPF1.
  • IP address for example, IPv6 prefix
  • BP determines that the source IP address of the uplink data packet is IP address 2, and IP address 2 is associated with UPF2, then BP sends the uplink data packet to UPF2.
  • different PSA Receive the downlink data packets from the DN and send them to the BP, and the BP combines the downlink data packets from different PSAs and sends the combined data packets to the terminal device.
  • the session management network element may decide to insert a UL CL on the data transmission path of the PDU session. Wherein, the session management network element may decide to insert a UL CL on the data path of the PDU session when the PDU connection is established, or after the PDU is established.
  • UL CL When UL CL is inserted in the data path of a PDU session, there are multiple PSAs for this PDU session, as shown in Figure 2, UL CL can communicate with UPF1 and UPF2.
  • the terminal device does not perceive that the uplink data packet is transferred by the UL CL, nor is it involved in the process of inserting or deleting the UL CL. End devices will only get an IP address associated with the PDU session. Exemplarily, if the PDU session type is IPv4 (or IPv6), the terminal device will only obtain an IPv4 address (or IPv6 address prefix) associated with the PDU session.
  • IPv4 or IPv6 address prefix
  • the UL CL can distribute the received uplink data packet (data packet from the terminal device) according to the distribution rule configured by the session management network element.
  • the UL CL can perform distribution by checking the destination IP address of the uplink data packet. Specifically, the UL CL forwards uplink data packets with different destination IP addresses to different PSAs, and then these PSAs send them to the DN. At the same time, different PSAs receive downlink data packets from DN and send them to UL CL, and UL CL combines the downlink data packets from different PSAs and sends the combined data packets to the terminal device.
  • the session management network element since the terminal device will only obtain one IP address associated with the PDU session, the session management network element also needs to instruct the PSA associated with the IP address other than this IP address to perform network address translation (network address translation, NAT ).
  • network address translation network address translation
  • UL CL can communicate with UPF1 and UPF2.
  • IP address 1 is associated with UPF1
  • IP address 2 is associated with UPF2.
  • an end device gets IP address 1.
  • UPF2 converts the source IP address (IP address 1) of the uplink data packet into IP address 2 and sends it to the DN.
  • UPF2 receives the downlink data packet whose destination IP address is IP address 2
  • UPF2 converts the destination IP address (IP address 2) of the downlink data packet into IP address 1 and sends it to ULCL.
  • the RADIUS protocol is the most widely used AAA protocol.
  • RADIUS is a client-server (Client-Server, C/S) structure protocol.
  • the RADIUS protocol authentication mechanism is flexible, and multiple authentication methods such as Password Authentication Protocol (Password Authentication Protocol, PAP) or Challenge Handshake Authentication Protocol (Challenge Handshake Authentication Protocol, CHAP) can be used.
  • Password Authentication Protocol PAP
  • Challenge Handshake Authentication Protocol CHAP
  • PAP authentication is a scheme for establishing authentication of peer nodes by using two handshakes.
  • PAP authentication is applied to the stage of link establishment, and the user name and password are sent in plain text format.
  • the authenticated party sends an authentication request (including user name and password) to the main authenticating party, and the main authenticating party receives the authentication request, and then goes to its own database to verify whether the user name and password are correct according to the user name sent by the authenticated party, If the user name and password are correct, the PAP authentication is passed; if the user name or password is wrong, the PAP authentication fails.
  • CHAP authentication is a scheme for establishing authentication of peer nodes by using a 3-way handshake, and sends CHAP authentication information in ciphertext format.
  • the authenticator initiates CHAP authentication, and has a re-authentication detection mechanism after the link is established successfully.
  • the RADIUS protocol can be applied to but not limited to the following services: ordinary telephone Internet access, ADSL Internet access, residential broadband Internet access, IP telephony, virtual private dialup networks (VPDN) based on dial-up users, and mobile phone prepaid.
  • IEEE proposed the 802.1x standard, which is a port-based standard for access authentication of wireless networks, and also uses the RADIUS protocol during authentication.
  • a user accesses a network access server (net access server, NAS), and the NAS uses an access request (access-require) to submit user information to the RADIUS server, including user name, password and other related information; If necessary, a challenge can be proposed to require further user authentication, and similar authentication can also be performed on the NAS; if the user is a legitimate user, the RADIUS server sends an access-accept to the NAS Response, allow the user to proceed to the next step, otherwise return access-reject (access-reject) data packet, deny user access; if allow user access, NAS can make an accounting request (Account-Require) to the RADIUS server, Accept (Account-Accept) response, start billing the user, and the user can perform desired operations at the same time.
  • Account-Require accounting request
  • Account-Accept Accept
  • RADIUS also supports proxy and roaming functions.
  • a RADIUS server can act as a proxy for other RADIUS servers and is responsible for forwarding RADIUS authentication and accounting packets.
  • the user can be authenticated through a RADIUS server that has nothing to do with it, so that the user can also obtain services at the location of the non-home operator.
  • the Diameter protocol can be used as an improvement or replacement of the RADIUS protocol, which is a new generation of AAA protocol.
  • the Diameter protocol is used to confirm the user's identity, determine whether the user is authorized to use a certain network resource, and monitor the status of the user's use of network resources, and charge the user according to the detected record.
  • DN-AAA server provides the SMF network element with information for the UPF network element and the LNS to establish an L2TP tunnel when the UE accesses the 5G system.
  • the AAA server located in the DN (hereinafter referred to as DN-AAA server) can perform authentication, authorization and accounting for the UE.
  • DN-AAA devices usually support RADIUS protocol and Diameter protocol.
  • Step 301 The SMF network element receives a PDU session establishment request (PDU session establishment request) message from the terminal device.
  • PDU session establishment request message carries authentication information for PAP or CHAP.
  • Step 302 The SMF network element sends an access-request message (corresponding to the RADIUS protocol) to the DN-AAA server.
  • the access request message carries PAP or CHAP authentication information.
  • the access request message can also be replaced by a DER message (corresponding to the Diameter protocol).
  • Step 303 The SMF network element receives an access-response (access-response) message from the DN-AAA server, and the access-response message carries L2TP tunnel information.
  • L2TP tunnel information includes LNS IPv4 address or LNSIPv6 address, and tunnel password.
  • Step 304 The SMF network element sends an N4 session establishment request (N4 session establishment request) message to the UPF network element, and the N4 session establishment request message includes L2TP tunnel information.
  • N4 session establishment request N4 session establishment request
  • the SMF network element supports L2TP.
  • Step 305 The UPF network element interacts with the LNS to establish an L2TP tunnel.
  • the UPF network element can decide to establish a new L2TP tunnel according to the L2TP tunnel information, and then the UPF network element interacts with the LNS to establish an L2TP tunnel. If the UPF network element judges that the existing L2TP tunnel can be reused according to the L2TP tunnel information and the network policy configured by the UPF. If the UPF network element reuses the existing L2TP tunnel, the UPF network element does not need to perform step 305 .
  • Step 306 The UPF network element interacts with the LNS to establish an L2TP session.
  • the LNS assigns the UE IP address, domain name server (domain name server, DNS) address, etc. for the PDU session.
  • Step 307 The UPF network element sends an N4 session establishment response (N4 session establishment response) message to the SMF network element.
  • the N4 session establishment response message includes the UE IP address.
  • Step 308 The SMF network element sends a PDU session establishment response (PDU session establishment response) message to the UE.
  • the PDU session establishment response message includes the UE IP address.
  • the DN-AAA server can assign an L2TP tunnel information to the UE by default.
  • the method shown in FIG. 3 cannot obtain more L2TP tunnel information.
  • the SMF network element when an SMF network element selects multiple UPF network elements during the establishment of a PDU session, the SMF network element cannot obtain the L2TP tunnel information corresponding to multiple UPF network elements from the DN-AAA server, or the SMF network element inserts For a new UPF network element, the SMF network element cannot obtain the L2TP tunnel information corresponding to multiple UPF network elements from the DN-AAA server.
  • the present application provides a communication method for establishing an L2TP tunnel between multiple user plane network elements and an LNS. As shown in Figure 4, the method includes:
  • Step 400 The session management network element sends first information to the first device.
  • the first device is an authentication, authorization and accounting server.
  • the first information indicates N session anchors, where N is a positive integer greater than or equal to 1.
  • the first device may be a DN-AAA server.
  • the first information may be carried by an access request message or a DER message, for example, refer to step 302 above.
  • the first information may also be described as being used to indicate the quantity of requested L2TP tunnel information.
  • the session anchor point may be a PDU session anchor point, and this embodiment of the present application may be applied during session establishment (corresponding to the following first implementation mode) or after the session establishment is completed (corresponding to the following second implementation mode) .
  • the first implementation mode before the session management network element sends the first information to the first device, the session management network element receives a session establishment request message from the terminal device, the session establishment request message is used to request establishment of the first session, and the session management The network element selects N session anchors for the first session. Therefore, the session management network element may indicate the N session anchors through the first information during the session establishment process. It can be understood that the present application does not limit the specific method for the session management network element to determine to select a session anchor for the first session.
  • the second implementation manner before the session management network element sends the first information to the first device, after the terminal device establishes the second session, the session management network element determines to add N session anchor points for the second session. Therefore, after the session is established, the session management network element may indicate the N session anchors through the first information. It can be understood that the present application does not limit the specific method for the session management network element to determine to add N session anchor points for the second session.
  • the first information may include but not limited to the following implementation methods:
  • the first information may include addresses or identifiers corresponding to the N session anchors respectively.
  • the respective addresses corresponding to the N session anchors refer to the MAC addresses or IP addresses respectively corresponding to the N session anchors.
  • the session management network element determines UPF1 and UPF2, and the first information may include UPF1 IP Address and UPF2 IP Address.
  • the first information may clearly indicate which session anchors need to request L2TP tunnel information.
  • the first information may include the number N of session anchors.
  • the session management network element determines UPF1 and UPF2, and the first information may indicate that the number of session anchors is 2.
  • the first information may indicate the number of session anchors, thereby saving signaling overhead.
  • the first information is used to request L2TP tunnel information or to indicate the new session anchor.
  • the first device allocates L2TP tunnel information according to the first information.
  • the session management network element may adopt the implementation manner of mode 3. For example, a new bit is added in the access request message or DER message. When the bit indicates 0, it indicates that the session management network element does not insert a new session anchor point for the session. When the bit indicates 1, it indicates that the session management network element Insert a new session anchor for the session.
  • Step 410 The session management network element receives a response to the first information from the first device, and the response to the first information includes M L2TP tunnel information.
  • the N session anchors are associated with the M L2TP tunnel information, and each L2TP tunnel information is used by the corresponding session anchor to establish or reuse an L2TP tunnel with the L2TP network server.
  • the response to the first information also indicates the corresponding relationship between the addresses (or identities) of the N session anchors and the M pieces of L2TP tunnel information.
  • the response to the first information indicates the address of each session anchor and corresponding L2TP tunnel information.
  • the session management network element determines the session anchor point corresponding to each L2TP tunnel information according to the corresponding relationship between M L2TP tunnel information, addresses (or identifiers) of N session anchor points and M L2TP tunnel information.
  • the first device may determine that the N PDU session anchors need to establish an L2TP tunnel with the LNS according to addresses corresponding to the N PDU session anchors, and then allocate one L2TP tunnel information to each of the N PDU session anchors.
  • the response to the first information also includes the correspondence between the addresses of the N PDU session anchors and the information on the N L2TP tunnels, and the information on the N L2TP tunnels.
  • the first information may include UPF1IP Address and UPF2IPAddress, and the first device sends L2TP tunnel information 1 and L2TP tunnel information 2 to the session management network, wherein UPF1IP Address corresponds to L2TP tunnel information 1, and UPF2IPAddress corresponds to L2TP tunnel information 2.
  • the first device determines that M PDU session anchors among the N PDU session anchors need to establish an L2TP tunnel with the LNS according to the addresses corresponding to the N PDU session anchors, and some of the PDU session anchors Assign the same L2TP tunnel information.
  • the first information may include UPF1IPAddress and UPF2IPAddress, and the first device determines that UPF1 and UPF2 need to establish an L2TP tunnel with the LNS, and uses the same L2TP tunnel information, then the first device sends L2TP tunnel information 1 to the session management network, indicating that UPF1 and UPF2 UPF2 adopts the same L2TP tunnel information1.
  • the first device may allocate a corresponding number of L2TP tunnel information according to the number of session anchors. For example, when the number of session anchors is N, the first device allocates one L2TP tunnel information.
  • the first device allocates one piece of L2TP tunnel information according to the first information.
  • the session management network element determines that the L2TP tunnel information is allocated for the newly inserted session anchor point.
  • Step 420 The session management network element sends corresponding L2TP tunnel information to the N session anchor points respectively.
  • the session management network element can determine the L2TP tunnel information that needs to be sent to each session anchor point.
  • the L2TP tunnel information may be carried by the N4 session establishment request message.
  • the session anchor point receiving the L2TP tunnel information may perform the above steps 305 and 306, which will not be repeated here.
  • the session management network element determines to select two session anchors for the first session, where the two session anchors include the first session anchor and the second session anchor.
  • the first session anchor After the first session anchor performs the above steps 305 and 306, the first session anchor sends the first IP address of the terminal device to the session management network element. Wherein, the first IP address of the terminal device may be carried in the N4 session establishment response message.
  • the second session anchor After the second session anchor performs the above steps 305 and 306, the second session anchor sends the second IP address of the terminal device to the session management network element. Wherein, the second IP address of the terminal device may be carried in the N4 session establishment response message.
  • the session management network element sends a session establishment response message to the terminal device, and the session establishment response message includes the first IP address.
  • the session management network element also sends the first distribution rule to the upstream classifier, and the first distribution rule instructs the upstream classifier to send the data from the terminal device to the first session anchor or the second session anchor according to the destination address of the data from the terminal device. Session anchor.
  • the session management network element also sends first indication information to the second session anchor point, and the first indication information indicates that the second session anchor point converts the source address of the data from the uplink classifier from the first IP address to the second IP address Send to the data network, convert the source address of the data from the data network from the second IP address to the first IP address, and send the data from the data network to the upstream classifier.
  • the first IP address in the session establishment response message may also be replaced with the second IP address.
  • the session management network element sends the third indication information to the first session anchor point, and the third indication information instructs the first session anchor point to convert the source address of the data from the uplink classifier from the second IP address to the first IP address After that, it is sent to the data network, and the source address of the data from the data network is converted from the first IP address to the second IP address and then sent to the upstream classifier.
  • the session management network element sends a session establishment response message to the terminal device, and the session establishment response message includes the first IP address and the second IP address.
  • the session management network element sends the second distribution rule to the branch point, and the second distribution rule instructs the branch point to send the data from the terminal device to the first session anchor point or the second session anchor point according to the source address of the data from the terminal device .
  • the session management network element has selected the third session anchor point for the second session, and after the second session is established, the session management network element determines that the second session is newly inserted A session anchor, where the session anchor is the fourth session anchor.
  • the fourth session anchor After the fourth session anchor performs the above steps 305 and 306, the fourth session anchor sends the fourth IP address of the terminal device to the session management network element, wherein the third session anchor has sent the terminal device's IP address to the session management network element Third IP address.
  • the session management network element sends the third distribution rule to the upstream classifier, and the third distribution rule instructs the upstream classifier to send the data from the terminal device according to the destination address of the data from the terminal device.
  • the third distribution rule instructs the upstream classifier to send the data from the terminal device according to the destination address of the data from the terminal device.
  • the session management network element sends second indication information to the fourth session anchor point, and the second indication information instructs the second session anchor point to convert the source address of the data from the uplink classifier from the third IP address to the fourth IP address before sending to the data network, converting the source address of the data from the data network from the fourth IP address to the third IP address and sending it to the upstream classifier.
  • the session management network element sends the fourth IP address to the terminal device.
  • the session management network element sends the fourth distribution rule to the branch point, and the fourth distribution rule instructs the branch point to send the data from the terminal device to the third session anchor point or the fourth session anchor point according to the source address of the data from the terminal device .
  • the session management network element when the session management network element performs access authentication and authorization with the first device, the session management network element sends the first information to the first device, so that the first device allocates L2TP tunnel information according to the first information, and the session management network The element instructs the session anchor to establish an L2TP tunnel with the LNS according to the received L2TP tunnel information.
  • the SMF network element selects two UPFs as PSAs for the PDU session to perform service offloading.
  • the SMF network element receives a PDU session establishment request message from the UE.
  • the PDU session establishment request message carries authentication information for PAP or CHAP.
  • the SMF network element selects two UPFs as two PSAs for the PDU session.
  • the SMF network element sends an access request message to the DN-AAA server.
  • the access request message carries authentication information for PAP or CHAP, and UPF1 IPAddress1 and UPF2 IPAddress2.
  • the DN-AAA server sends an access response message to the SMF network element.
  • the access response message carries the LNS address, L2TP tunnel information 1 and L2TP tunnel information 2, wherein UPF1IPAddress1 corresponds to L2TP tunnel information 1, and UPF2IPAddress2 corresponds to L2TP tunnel information 2.
  • the DN-AAA server can assign L2TP tunnel information 1 to UPF1IPaddress1 according to the security policy, and assign L2TP tunnel information 2 according to UPF2 IPAddress2.
  • the SMF network element sends an N4 session establishment request message 1 to the UPF1, and the N4 session establishment request message 1 includes the L2TP tunnel information 1.
  • S506 The UPF1 interacts with the LNS to establish an L2TP tunnel.
  • UPF1 decides to establish a new L2TP tunnel, then UPF1 interacts with the LNS to establish the L2TP tunnel. Wherein, UPF1 determines that the existing L2TP tunnel cannot be reused. It can be understood that, if UPF1 determines that the existing L2TP tunnel can be reused, UPF1 does not need to execute S506.
  • the UPF1 interacts with the LNS to establish an L2TP session. Among them, the LNS allocates UE IP address 1, DNS server address, etc. for the PDU session.
  • UPF1 sends N4 session establishment response message 1 to SMF network element, and N4 session establishment response message 1 includes UE IP address 1.
  • S509 The SMF network element continues to complete the configuration of the RAN, UL CL/BP and UPF1 tunnels.
  • the SMF network element sends an N4 session establishment request message 2 to the UPF2, and the N4 session establishment request message 2 includes the L2TP tunnel information 2.
  • UPF2 decides to establish a new L2TP tunnel, then UPF2 interacts with the LNS to establish the L2TP tunnel. Wherein, UPF2 determines that the existing L2TP tunnel cannot be reused. It can be understood that, if UPF2 determines that the existing L2TP tunnel can be reused, UPF2 does not need to execute S511.
  • the UPF2 interacts with the LNS to establish an L2TP session. Among them, the LNS allocates UE IP address 2, DNS server address, etc. for the PDU session.
  • UPF2 sends N4 session establishment response message 2 to SMF network element, and N4 session establishment response message 2 includes UE IP address 2.
  • S514 The SMF network element continues to configure the RAN, UL CL/BP and UPF2 tunnels.
  • S515 The SMF network element sends a PDU session establishment response message to the UE.
  • the SMF network element can send UE IP address 1 to the UE, and the PDU session establishment response message carries UE IP address 1.
  • the SMF network element sends the first distribution rule to UL CL, and the first distribution rule instructs UL CL to send UPF1 and UPF2 respectively according to the destination address of the uplink data, and the SMF network element instructs UPF2 to perform NAT.
  • the source address (UE IP address 1) is converted into UE IP address 2
  • the source address (UE IP address 2) of the downlink data is converted into UE IP address 1.
  • the SMF network element uses BP to implement service offloading, the SMF network element sends UE IP address 1 and UE IP address 2 to the UE, and the PDU session establishment response message carries UE IP address 1 and UE IP address 2.
  • the SMF network element sends the second distribution rule to the BP, and the second distribution rule instructs the BP to send the uplink data to UPF1 and UPF2 respectively according to the source address of the uplink data.
  • the session management network element can obtain the corresponding tunnel information for multiple UPFs at the same time, and then complete the establishment of L2TP tunnels between the multiple UPFs and the LNS.
  • the SMF network element inserts another UPF as a PSA for the established PDU session to perform service offloading.
  • the UE has established a PDU session, and the SMF network element selects UPF1 as the PSA for the PDU session.
  • the SMF network element decides to insert a UPF2 as a new PSA for the PDU session.
  • the SMF network element can use the UL CL or BP method for offloading.
  • the SMF network element sends an access request message to the DN-AAA server.
  • the access request message carries the re-authorization indication and UPF2 IPAddress2.
  • the DN-AAA server sends an access response message to the SMF network element, where the access response message carries L2TP tunnel information 2.
  • the DN-AAA server can assign L2TP tunnel information 2 to UPF2IP Address2 according to the security policy.
  • the SMF network element sends an N4 session establishment request message 2 to the UPF2, and the N4 session establishment request message 2 includes the L2TP tunnel information 2.
  • S605 The UPF2 interacts with the LNS to establish an L2TP tunnel.
  • UPF2 decides to establish a new L2TP tunnel, then UPF2 interacts with the LNS to establish the L2TP tunnel. Wherein, UPF2 determines that the existing L2TP tunnel cannot be reused. It can be understood that if UPF2 determines that the existing L2TP tunnel can be reused, UPF2 may need to execute S605.
  • the UPF2 interacts with the LNS to establish an L2TP session.
  • the LNS assigns the UE IP address2, DNS server address, etc. for the PDU session.
  • N4 session establishment response message 2 includes UE IP address 2.
  • S608 The SMF network element continues to configure the RAN, UL CL/BP and UPF2 tunnels.
  • S609 The SMF initiates a PDU session modification process.
  • the SMF network element uses UL CL to realize service distribution, the SMF network element sends the third distribution rule to UL CL, so that the uplink data is sent to UPF1 and UPF2 respectively according to the destination address, and the third distribution rule instructs UL CL according to the destination address of the uplink data Send them to UPF1 and UPF2 respectively, and the SMF network element instructs UPF2 to perform network address translation (NAT).
  • UPF2 converts the source address (UE IP address 1) of the uplink data into UE IP address 2, and converts the source address (UE IP address 1) of the downlink data ( UE IP address 2) is converted to UE IP address 1.
  • the SMF network element uses BP to realize service distribution, the SMF network element sends the UE IP address 2 to the UE. At the same time, the SMF network element sends the fourth distribution rule to the BP. to UPF1 and UPF2.
  • the session management network element can obtain the corresponding tunnel information for the newly added UPF, and then complete the establishment of the L2TP tunnel between the newly added UPF and the LNS.
  • Fig. 7 shows a possible exemplary block diagram of an apparatus involved in the embodiment of the present application.
  • the apparatus 700 includes: a transceiver module 710 and a processing module 720, and the transceiver module 710 may include a receiving unit and a sending unit.
  • the processing module 720 is used to control and manage the actions of the device 700 .
  • the transceiver module 710 is used to support communication between the device 700 and other network entities.
  • the device 700 may further include a storage unit for storing program codes and data of the device 700 .
  • each module in the apparatus 700 may be implemented by software.
  • the processing module 720 may be a processor or a controller, such as a general-purpose central processing unit (central processing unit, CPU), a general-purpose processor, digital signal processing (digital signal processing, DSP), an application-specific integrated circuit (application specific integrated circuits, ASIC), field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof. It can realize or execute various exemplary logical blocks, modules and circuits described in conjunction with the disclosed content of the embodiments of the present application.
  • the processor may also be a combination of computing functions, for example, a combination of one or more microprocessors, a combination of DSP and a microprocessor, and so on.
  • the transceiver module 710 may be a communication interface, a transceiver or a transceiver circuit, etc., wherein the communication interface is collectively referred to as, in a specific implementation, the communication interface may include multiple interfaces, and the storage unit may be a memory.
  • the processing module 720 in the device 700 can support the device 700 to execute the actions of the session management network element in the above method examples.
  • the processing module 720 may support the apparatus 700 to execute S502, S509, S514 in FIG. 5 and S601, S608 in FIG. 6 .
  • the transceiver module 710 may support the communication between the apparatus 700 and the first device or user plane network element, for example, the transceiver module 710 may support the apparatus 700 to perform step 400, step 410, step 420 in FIG. 4, S501 in FIG. 5, S503, S504, S505, S508, S510, S513, S515, S602, S603, S604, S607, S609 in FIG. 6 .
  • the processing module 720 calls the transceiver module 710 to execute:
  • each L2TP tunnel information is used for the corresponding session anchor point to establish or reuse the L2TP tunnel with the L2TP network server, M is a positive integer greater than or equal to 1, M ⁇ N; to the N session anchor points Send the corresponding L2TP tunnel information respectively.
  • the first information includes addresses or identifiers respectively corresponding to the N session anchors.
  • the first information includes the number N of session anchors.
  • N 2
  • the N session anchors include a first session anchor and a second session anchor
  • the processing module 720 calls the transceiver module 710 to execute:
  • N 2
  • the N session anchors include a first session anchor and a second session anchor
  • the processing module 720 calls the transceiver module 710 to execute:
  • the data of the terminal device is sent to the first session anchor point or the second session anchor point.
  • the first information is used to request L2TP tunnel information or to indicate a new session anchor point.
  • the processing module 720 is configured to determine, by the session management network element, after the terminal device establishes the second session before sending the first information to the first device The second session adds the N session anchor points.
  • N 1
  • the N session anchors are the fourth session anchors
  • the processing module 720 calls the transceiver module 710 to execute:
  • the destination address of the data sends the data from the terminal device to the third session anchor point or the fourth session anchor point, wherein the third session anchor point is during the second session establishment process
  • the session anchor point selected by the session management network element for the second session; sending second indication information to the fourth session anchor point, the second indication information indicating that the second session anchor point will come from
  • the source address of the data of the upstream classifier is converted from the third IP address to the fourth IP address and sent to the data network, and the source address of the data from the data network is converted from the fourth IP address to The third IP address is then sent to the uplink classifier, where the third IP address corresponds to the third session anchor.
  • N 1
  • the N session anchors are the fourth session anchors
  • the processing module 720 calls the transceiver module 710 to execute:
  • the device 700 may correspond to the session management network element in the foregoing method embodiment, and the operations and/or functions of each module in the device 700 are to realize the session management network element in the foregoing method embodiment.
  • the corresponding steps of the method can therefore also achieve the beneficial effects of the foregoing method embodiments, and for the sake of brevity, details are not described here.
  • the processing module 720 in the apparatus 700 may support the apparatus 700 to execute the actions of the first device in the above method examples.
  • the transceiver module 710 can support the communication between the device 700 and the session management network element.
  • the transceiver module 710 can support the device 700 to execute steps 400 and 410 in FIG. 4 , S503 and S504 in FIG. 5 , and S602 in FIG. 6 , S603.
  • the processing module 720 calls the transceiver module 710 to execute:
  • the response to the first information includes M pieces of L2TP tunnel information, wherein the N session anchor points are associated with the M pieces of L2TP tunnel information, and each L2TP tunnel information is used for a corresponding session anchor point Establish or reuse the L2TP tunnel with the L2TP network server, M is a positive integer greater than or equal to 1, M ⁇ N.
  • the first information includes addresses and identifiers respectively corresponding to the N session anchors.
  • the first information includes the number N of session anchors.
  • the first information includes indication information for requesting L2TP tunnel information or indication information for adding a session anchor point.
  • the apparatus 700 may correspond to the method of the first device in the foregoing method embodiments, and the operations and/or functions of each module in the apparatus 700 are to realize the first device in the foregoing method embodiments.
  • the corresponding steps of the method can therefore also achieve the beneficial effects of the foregoing method embodiments, and for the sake of brevity, details are not described here.
  • Fig. 8 shows a schematic structural diagram of a communication device 800 according to an embodiment of the present application.
  • the apparatus 800 includes: a processor 801 .
  • the device 800 is a session management network element or a chip in a session management network element, in a possible implementation manner, when the processor 801 is used to call an interface to perform the following actions:
  • each L2TP tunnel information is used for the corresponding session anchor point to establish or reuse the L2TP tunnel with the L2TP network server, M is a positive integer greater than or equal to 1, M ⁇ N; to the N session anchor points Send the corresponding L2TP tunnel information respectively.
  • apparatus 800 may also be used to perform other steps and/or operations on the session management network element side in the foregoing embodiments, and details are not described here for brevity.
  • the response to the first information includes M pieces of L2TP tunnel information, wherein the N session anchor points are associated with the M pieces of L2TP tunnel information, and each L2TP tunnel information is used for a corresponding session anchor point Establish or reuse the L2TP tunnel with the L2TP network server, M is a positive integer greater than or equal to 1, M ⁇ N.
  • apparatus 800 may also be used to perform other steps and/or operations on the first device side in the foregoing embodiments, and details are not described here for brevity.
  • the processor 801 may call an interface to perform the above sending and receiving actions, where the called interface may be a logical interface or a physical interface, which is not limited.
  • the physical interface can be implemented through a transceiver.
  • the apparatus 800 further includes a transceiver 803 .
  • the apparatus 800 further includes a memory 802, and the memory 802 may store the program codes in the foregoing method embodiments, so as to be called by the processor 801.
  • the apparatus 800 includes a processor 801, a memory 802, and a transceiver 803, the processor 801, the memory 802, and the transceiver 803 communicate with each other through an internal connection path to transmit control and/or data signals.
  • the processor 801, the memory 802, and the transceiver 803 may be implemented by a chip, and the processor 801, the memory 802, and the transceiver 803 may be implemented in the same chip, or may be implemented in different chips respectively, Or a combination of any two of these functions can be implemented in one chip.
  • the memory 802 may store program codes, and the processor 801 invokes the program codes stored in the memory 802 to implement corresponding functions of the apparatus 800 .
  • a processor may be an integrated circuit chip with signal processing capabilities.
  • each step of the above-mentioned method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (digital signal processor, DSP), an application specific integrated circuit (application specific integrated circuit, ASIC), an off-the-shelf programmable gate array (field programmable gate array, FPGA) or other available Programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, system on chip (system on chip, SoC), central processor unit (central processor unit, CPU), or network processor (network processor, NP), can also be a digital signal processing circuit (digital signal processor, DSP), can also be a microcontroller (micro controller unit, MCU), can also be a programmable controller (programmable logic device, PLD) or other Integrated chip.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • FPGA field programmable gate array
  • Programmable logic devices discrete gate or transistor logic devices, discrete hardware components, system on chip (system on chip, SoC), central processor unit
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM), which acts as external cache memory.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM direct memory bus random access memory
  • direct rambus RAM direct rambus RAM
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and the order of execution of the processes should be determined by their functions and internal logic.
  • the various numerical numbers or serial numbers involved in the above-mentioned various processes are only for convenience of description, and shall not constitute any limitation to the implementation process of the embodiment of the present application.
  • the above is an example of the three elements of A, B and C to illustrate the optional items of the project.
  • the expression includes at least one of the following: A, B, ..., and X"
  • the applicable entries for this item can also be obtained according to the aforementioned rules.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory ROM, random access memory RAM, magnetic disk or optical disk, and other media capable of storing program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

一种通信方法及装置,用以实现多个PSA与LNS分别建立L2TP隧道。该方法包括:会话管理网元向第一设备发送第一信息,第一设备为认证、授权和记账服务器,第一信息指示N个会话锚点,会话管理网元接收来自于第一设备的针对第一信息的响应,针对第一信息的响应包括M个L2TP隧道信息,其中,N个会话锚点与M个L2TP隧道信息具有关联关系,每个L2TP隧道信息用于对应的会话锚点建立或重用与L2TP网络服务器之间的L2TP隧道,M≤N。会话管理网元向N个会话锚点分别发送对应的L2TP隧道信息。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2021年10月20日提交中国专利局、申请号为202111223211.8、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及无线通信领域,尤其涉及一种通信方法及装置。
背景技术
5G网络采用远程用户拨号认证(remote authentication dial In user service,RADIUS)或直径(Diameter)协议与认证、授权和记账(authentication authorization and accounting,AAA)服务器互通,对终端设备进行认证、授权和记账。
在这个过程中,AAA服务器可以向会话管理网元提供隧道信息,该隧道信息用于协议数据单元(protocol data unit,PDU)会话锚点(PDUsession anchor,PSA)和层2隧道协议(layer 2 tunneling protocol,L2TP)网络服务器(L2TP networking server,LNS)建立L2TP隧道。为了支持到数据网络(datanetwork,DN)的可选择路由功能,会话管理网元可以为一个PDU会话选择多个用户面网元作为PSA,或者会话管理网元可以为一个PDU会话插入一个新的用户面网元作为PSA。此时,多个PSA均需要与LNS分别建立L2TP隧道,但是,当前仅支持AAA服务器为一个用户面网元提供隧道信息。
发明内容
本申请实施例提供一种通信方法及装置,用以实现多个PSA与LNS分别建立L2TP隧道。
第一方面,本申请提供一种通信方法,该方法包括:
会话管理网元向第一设备发送第一信息,所述第一设备为认证、授权和记账服务器,所述第一信息指示N个会话锚点,N为大于等于1的正整数。所述会话管理网元接收来自于所述第一设备的针对所述第一信息的响应,所述针对所述第一信息的响应包括M个层2隧道协议L2TP隧道信息,其中,所述N个会话锚点与所述M个L2TP隧道信息具有关联关系,每个L2TP隧道信息用于对应的会话锚点建立或重用与L2TP网络服务器之间的L2TP隧道,M为大于等于1的正整数,M≤N。所述会话管理网元向所述N个会话锚点分别发送对应的L2TP隧道信息。
采用上述方法,会话管理网元向第一设备发送第一信息,第一信息指示N个会话锚点,以使第一设备根据第一信息分配M个L2TP隧道信息,会话管理网元根据接收到的M个L2TP隧道信息指示会话锚点与LNS建立L2TP隧道。
在一种可能的设计中,所述第一信息包括N个会话锚点分别对应的地址或标识。
采用上述设计,第一信息可以明确指示是哪些会话锚点需要请求L2TP隧道信息。
在一种可能的设计中,所述第一信息包括会话锚点的数目N。
采用上述设计,第一信息可指示会话锚点的数目,进而可以实现节省信令开销。
在一种可能的设计中,N为大于等于2的正整数;在所述会话管理网元向所述第一设备发送所述第一信息之前,所述会话管理网元还可以接收来自于终端设备的会话建立请求消息,所述会话建立请求消息用于请求建立第一会话,所述会话管理网元为所述第一会话选择所述N个会话锚点。
采用上述设计,会话管理网元可以根据终端设备的会话建立请求消息为第一会话选择多个会话锚点。
在一种可能的设计中,N=2,所述N个会话锚点包括第一会话锚点和第二会话锚点;所述会话管理网元接收来自于所述第一会话锚点的所述终端设备的第一IP地址,接收来自于所述第二会话锚点的所述终端设备的第二IP地址;所述会话管理网元向所述终端设备发送所述第一IP地址;所述会话管理网元向上行分类器发送第一分流规则,所述第一分流规则指示所述上行分类器根据来自于所述终端设备的数据的目的地址将所述来自于所述终端设备的数据发送至所述第一会话锚点或所述第二会话锚点;所述会话管理网元向所述第二会话锚点发送第一指示信息,所述第一指示信息指示所述第二会话锚点将来自于所述上行分类器的数据的源地址从所述第一IP地址转换为所述第二IP地址后发送至数据网络,将来自于所述数据网络的数据的源地址从所述第二IP地址转换为所述第一IP地址后发送至所述上行分类器。
采用上述设计,上行分类器可以根据会话管理网元指示的第一分流规则将终端设备的数据发送至第一会话锚点或第二会话锚点,且第二会话锚点需要根据第一指示信息执行网络地址转换,从而实现业务分流。
在一种可能的设计中,N=2,所述N个会话锚点包括第一会话锚点和第二会话锚点;所述会话管理网元接收来自于所述第一会话锚点的所述终端设备的第一IP地址,接收来自于所述第二会话锚点的所述终端设备的第二IP地址;所述会话管理网元向所述终端设备发送所述第一IP地址和所述第二IP地址;所述会话管理网元向分支点发送第二分流规则,所述第二分流规则指示所述分支点根据来自于所述终端设备的数据的源地址将所述来自于所述终端设备的数据发送至所述第一会话锚点或所述第二会话锚点。
采用上述设计,分支点可以根据会话管理网元指示的第二分流规则将终端设备的数据发送至第一会话锚点或第二会话锚点,从而实现业务分流。
在一种可能的设计中,所述第一信息用于请求L2TP隧道信息或用于指示新增会话锚点。
采用上述设计可以通过通知第一设备请求L2TP隧道信息或新增会话锚点,使得第一设备分配新的L2TP隧道信息。
在一种可能的设计中,在所述会话管理网元向所述第一设备发送所述第一信息之前,在所述终端设备建立第二会话之后,所述会话管理网元确定为所述第二会话新增所述N个会话锚点。
采用上述设计,会话管理网元可以为已建立的第二会话新增一个或多个会话锚点。
在一种可能的设计中,N=1,所述N个会话锚点为第四会话锚点;所述会话管理网元接收来自于所述第四会话锚点的所述终端设备的第四IP地址;所述会话管理网元向上行分类器发送第三分流规则,所述第三分流规则指示所述上行分类器根据来自于所述终端设备 的数据的目的地址将所述来自于所述终端设备的数据发送至第三会话锚点或所述第四会话锚点,其中,所述第三会话锚点为在所述第二会话建立过程中所述会话管理网元为所述第二会话选择的会话锚点;所述会话管理网元向所述第四会话锚点发送第二指示信息,所述第二指示信息指示所述第二会话锚点将来自于所述上行分类器的数据的源地址从第三IP地址转换为所述第四IP地址后发送至数据网络,将来自于所述数据网络的数据的源地址从所述第四IP地址转换为所述第三IP地址后发送至所述上行分类器,其中,所述第三IP地址对应所述第三会话锚点。
采用上述设计,上行分类器可以根据会话管理网元指示的第三分流规则将终端设备的数据发送至第一会话锚点或第二会话锚点,且第二会话锚点需要根据第二指示信息执行网络地址转换,从而实现业务分流。
在一种可能的设计中,N=1,所述N个会话锚点为第四会话锚点;所述会话管理网元接收来自于所述第四会话锚点的所述终端设备的第四IP地址。所述会话管理网元向所述终端设备发送所述第四IP地址;所述会话管理网元向分支点发送第四分流规则,所述第四分流规则指示所述分支点根据来自于所述终端设备的数据的源地址将所述来自于所述终端设备的数据发送至所述第三会话锚点或所述第四会话锚点,其中,所述第三会话锚点为在所述第二会话建立过程中所述会话管理网元为所述第二会话选择的会话锚点。
采用上述设计,分支点可以根据会话管理网元指示的第四分流规则将终端设备的数据发送至第一会话锚点或第二会话锚点,从而实现业务分流。
第二方面,本申请提供一种通信方法,该方法包括:
第一设备接收来自于会话管理网元的第一信息,所述第一设备为认证、授权和记账服务器,所述第一信息指示N个会话锚点,N为大于等于2的正整数;所述第一设备向所述会话管理网元发送针对所述第一信息的响应,所述针对所述第一信息的响应包括M个L2TP隧道信息,其中,所述N个会话锚点与所述M个L2TP隧道信息具有关联关系,每个L2TP隧道信息用于对应的会话锚点建立或重用与L2TP网络服务器之间的L2TP隧道,M为大于等于1的正整数,M≤N。
采用上述方法,第一设备接收来自于会话管理网元的第一信息,第一信息指示N个会话锚点,第一设备可以根据第一信息分配M个L2TP隧道信息,并向会话管理网元发送针对第一信息的响应,针对第一信息的响应包括第一设备分配的M个L2TP隧道信息。
在一种可能的设计中,所述第一信息包括N个会话锚点分别对应的地址和标识。
在一种可能的设计中,所述第一信息包括会话锚点的数目N。
在一种可能的设计中,所述第一信息包括请求L2TP隧道信息的指示信息或新增会话锚点的指示信息。
第三方面,本申请还提供一种装置。该装置可以执行上述方法设计。该装置可以是能够执行上述方法对应的功能的芯片或电路,或者是包括该芯片或电路的设备。
在一种可能的实现方式中,该装置包括:存储器,存储有计算机可执行程序代码;以及处理器,处理器与存储器耦合。其中存储器所存储的程序代码包括指令,当处理器执行所述指令时,使该装置或者安装有该装置的设备执行上述任意一种可能的设计中的方法。
其中,该装置还可以包括通信接口,该通信接口可以是收发器,或者,如果该装置为芯片或电路,则通信接口可以是该芯片的输入/输出接口,例如输入/输出管脚等。
在另一种可能的设计中,该装置包括相应的功能单元,分别用于实现以上方法中的步 骤。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的单元。
第四方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,当所述计算机程序在装置上运行时,执行上述任意一种可能的设计中的方法。
第五方面,本申请提供一种计算机程序产品,所述计算机程序产品包括计算机程序,当所述计算机程序在装置上运行时,执行上述任意一种可能的设计中的方法。
上述第二方面至第五方面中任一方面中的任一可能的设计可以达到的技术效果,可以参照上述第一方面中的任一可能的设计可以达到的技术效果描述,重复之处不予论述。
附图说明
图1为本申请的实施例应用的5G系统与外部数据网络互通的架构示意图;
图2为本申请的实施例应用的采用分支点或上行分类器实现业务分流的架构图;
图3为本申请的实施例中UE在接入5G系统时DN-AAA服务器向SMF网元提供用于UPF网元和LNS建立L2TP隧道的信息的具体流程图;
图4为本申请的实施例中一种通信方法的概述流程图;
图5为本申请的实施例中在PDU会话建立过程中SMF网元为PDU会话选择了两个UPF作为PSA进行业务分流的流程图;
图6为本申请的实施例中SMF网元为已建立的PDU会话插入一个UPF作为PSA进行业务分流的流程图;
图7为本申请的实施例中一种装置的结构示意图之一;
图8为本申请的实施例中一种装置的结构示意图之二。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。本申请的说明书和权利要求书及上述附图中的术语“第一”、第二”以及相应术语标号等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,这仅仅是描述本申请的实施例中对相同属性的对象在描述时所采用的区分方式。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,以便包含一系列单元的过程、方法、系统、产品或设备不必限于那些单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它单元。
在本申请的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,在本申请的描述中,“至少一项”是指一项或者多项,“多项”是指两项或两项以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
本申请实施例提供的技术方案可以应用于各种通信系统。例如:可以适用于长期演进 (long term evolution,LTE)系统或5G系统,也可以适用于其它面向未来的新系统等,例如可编程用户面系统,本申请实施例对此不作具体限定。此外,术语“系统”可以和“网络”相互替换。
参阅图1所示为5G系统与外部数据网络互通的架构示意图。可以理解的是,图1为本申请实施例的一种可能的应用场景的示意图,图1所示的系统架构不作为本申请实施例的限定。
以下对本申请实施例涉及的各个设备进行简要介绍。
其中,终端设备是移动用户与网络交互的入口,能够提供基本的计算能力,存储能力,向用户显示业务窗口,接收用户操作输入。下一代终端设备(NextGen UE)可以采用新空口技术,与下一代无线接入设备(NextGen radio access network,NG-RAN)建立信号连接,数据连接,从而传输控制信号和业务数据到移动网络。终端设备可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的终端,移动台(mobile station,MS),终端(terminal),用户设备(user equipment,UE),软终端等等,例如水表、电表、传感器等。如图1所示,终端设备可以为UE。
接入网设备:类似于传统网络里面的基站,部署在靠近终端设备的位置,为特定区域的授权用户提供入网功能,并能够根据用户的级别,业务的需求等确定不同质量的传输隧道来传输用户数据。如图1所示,接入网设备可以为NG-RAN。
会话管理网元:主要用于会话管理、终端设备的IP地址分配和管理、选择可管理用户设备平面功能、策略控制、或收费功能接口的终结点以及下行数据通知等。在5G网络中,会话管理网元可以是话管理功能(session management function,SMF)网元,在未来通信如6G通信中,会话管理功能网元仍可以是SMF网元,或者有其它名称,本申请对此不作限定。Nsmf是SMF提供的基于服务的接口,SMF可以通过Nsmf与其他的网络功能通信。如图1所示,会话管理网元可以为SMF网元。
用户面网元:用于分组路由和转发、或用户面数据的服务质量(quality of service,QoS)处理等。在5G网络中,用户面网元可以是用户面功能(user plane function,UPF)网元,在未来通信如6G网络中,用户面网元仍可以是UPF网元,或者有其它名称,本申请对此不作限定。如图1所示,用户面网元可以为UPF网元。
数据网络(data network,DN):为用户提供业务服务的数据网络,一般客户端位于终端设备,服务端位于数据网络。数据网络可以是私有网络,如局域网,也可以是不受运营商管控的外部网络,例如互联网(Internet),还可以是运营商共同部署的专有网络,例如提供IP多媒体网络子系统(IP multimedia core network subsystem,IMS)服务的网络。其中,AAA服务器可以位于DN中,AAA服务器用于对终端设备进行认证、授权和记账。
以下对本申请实施例涉及的两种分流方式进行简要介绍:
如图2所示采用分支点(branching point,BP)或上行分类器(uplink classifier,UL CL)实现业务分流的架构图。
1、采用BP实现业务分流
当PDU会话是IP版本6(IPversion 6,IPv6)、或者IPv4v6时,会话管理网元可以决定在PDU会话的数据路径上插入一个BP。示例性地,会话管理网元可以在PDU连接建立时,或者在PDU建立完成后,决定在PDU会话的数据路径上插入一个BP。当在PDU会 话的数据路径中插入BP时,此PDU会话有多个PSA,如图2所示,BP可以与UPF1和UPF2进行通信。
示例性地,一个PDU会话可以关联多个IPv6地址前缀。因此,终端设备会获得与该PDU会话关联的多个IPv6地址前缀,用以实现不同业务使用不同的IPv6前缀地址。
进一步地,BP可以根据会话管理网元配置的分流规则,对接收到的上行数据包(来自于终端设备的数据包)进行分流。示例性地,BP可以通过检查上行数据包的源IP地址(例如IPv6前缀)进行分流。具体地,BP可以将不同源IP地址的上行数据包转发至不同的PSA(然后由这些PSA发送至DN。例如,若BP确定上行数据包的源IP地址为IP地址1,IP地址1与UPF1关联,则BP将该上行数据包发送至UPF1。若BP确定上行数据包的源IP地址为IP地址2,IP地址2与UPF2关联,则BP将该上行数据包发送至UPF2。同时,不同PSA接收来自于DN的下行数据包,并发送至BP,BP将来自不同PSA的下行数据包进行合并,并将合并后的数据包发送至终端设备。
2、采用UL CL实现业务分流
当PDU会话是IP版本4(IPversion 4,IPv4)、IPv6、或者IPv4v6时,会话管理网元可以决定在PDU会话的数据传输路径上插入一个UL CL。其中,会话管理网元可以在PDU连接建立时,或者在PDU建立完成后,决定在PDU会话的数据路径上插入一个UL CL。当在PDU会话的数据路径中插入UL CL时,此PDU会话有多个PSA,如图2所示,UL CL可以与UPF1和UPF2进行通信。
其中,终端设备不感知上行数据包被UL CL转移,也不会涉及到插入或者删除UL CL的流程中。终端设备只会获得一个与PDU会话关联的IP地址。示例性地,如果PDU会话类型为IPv4(或者IPv6),终端设备只会获得一个与该PDU会话关联的IPv4地址(或者IPv6地址前缀)。
进一步地,UL CL可以根据会话管理网元配置的分流规则,对接收到的上行数据包(来自于终端设备的数据包)进行分流。示例性地,UL CL可以通过检查上行数据包的目的IP地址进行分流。具体地,UL CL将不同目的IP地址的上行数据包转发至不同的PSA,然后由这些PSA发送至DN。同时,不同PSA接收来自于DN的下行数据包,并发送至UL CL,UL CL将来自不同PSA的下行数据包进行合并,并将合并后的数据包发送至终端设备。
此外,由于终端设备只会获得一个与该PDU会话关联的IP地址,因此,会话管理网元还需指示与除该IP地址之外的IP地址关联的PSA执行网络地址转换(network address translation,NAT)。
例如,UL CL可以与UPF1和UPF2进行通信。IP地址1与UPF1关联,IP地址2与UPF2关联。假设终端设备获得IP地址1。在ULCL将上行数据包发送至UPF2时,UPF2将上行数据包的源IP地址(IP地址1)转换为IP地址2后发送至DN。在UPF2接收到目的IP地址为IP地址2的下行数据包时,UPF2将下行数据包的目的IP地址(IP地址2)转换为IP地址1后发送至ULCL。
以下对常用的AAA协议进行简要说明:
1.RADIUS协议
RADIUS协议是一种应用最广泛的AAA协议。
RADIUS是一种客户端服务器(Client-Server,C/S)结构的协议。RADIUS协议认证机制灵活,可以采用密码认证协议(PasswordAuthenticationProtocol,PAP)或质询握手认 证协议(ChallengeHandshakeAuthenticationProtocol,CHAP)等多种认证方式。
其中,PAP认证是一种通过使用2次握手实现对等结点建立认证的方案,PAP认证应用于链路建立的阶段,使用明文格式发送用户名和密码。示例性地,被认证方向主认证方发送认证请求(包含用户名和密码),主认证方接到认证请求,再根据被认证方发送来的用户名去到自己的数据库认证用户名和密码是否正确,如果用户名和密码正确,PAP认证通过,如果用户名或密码错误,PAP认证未通过。
CHAP认证是一种通过使用3次握手实现对等结点建立认证的方案,使用密文格式发送CHAP认证信息。由认证方发起CHAP认证,在链路建立成功后具有再次认证检测机制。
RADIUS协议可以应用但不限于以下业务:普通电话上网、ADSL上网、小区宽带上网、IP电话、基于拨号用户的虚拟专用拨号网业务(virtual private dialup networks,VPDN)、移动电话预付费。此外,IEEE提出了802.1x标准,这是一种基于端口的标准,用于对无线网络的接入认证,在认证时也采用RADIUS协议。
示例性地,用户接入网络访问服务器(net access server,NAS),NAS使用接入请求(access-require)向RADIUS服务器提交用户信息,包括用户名、密码等相关信息;RADIUS服务器对用户名和密码的合法性进行检验,必要时可以提出一个挑战(challenge),要求进一步对用户认证,也可以对NAS进行类似的认证;如果用户为合法用户,RADIUS服务器向NAS发送接入接受(access-accept)响应,允许用户进行下一步工作,否则返回接入拒绝(access-reject)数据包,拒绝用户访问;如果允许用户访问,NAS可以向RADIUS服务器提出计费请求(Account-Require),RADIUS服务器发送计费接受(Account-Accept)响应,开始对用户计费,同时用户可以进行期望操作。
RADIUS还支持代理和漫游功能。例如,RADIUS服务器可以作为其他RADIUS服务器的代理,负责转发RADIUS认证和计费数据包。又例如,用户可以通过本来和其无关的RADIUS服务器进行认证,用于实现用户到非归属运营商所在地也可以得到服务。
2.Diameter协议
Diameter协议可以作为RADIUS协议的改进或者替代,它是新一代AAA协议。
Diameter协议用于对用户身份进行确认,以及确定用户是否被授权使用某种网络资源,以及监测用户使用网络资源的状况,可依照检测的记录对用户收费。
以下以图3为例,说明UE在接入5G系统时DN-AAA服务器向SMF网元提供用于UPF网元和LNS建立L2TP隧道的信息的具体过程。其中,位于DN中的AAA服务器(以下简称为DN-AAA服务器)可以对UE进行认证、授权和记账。DN-AAA设备通常支持RADIUS协议和Diameter协议。
步骤301:SMF网元从终端设备接收PDU会话建立请求(PDU session establishment request)消息。其中,PDU会话建立请求消息携带用于PAP或CHAP的认证信息。
步骤302:SMF网元向DN-AAA服务器发送接入请求(access-request)消息(对应于RADIUS协议)。
接入请求消息携带PAP或CHAP的认证信息。
此外,接入请求消息还可以替换为DER消息(对应于Diameter协议)。
步骤303:SMF网元从DN-AAA服务器接收到接入响应(access-response)消息,接入响应消息携带L2TP隧道信息。L2TP隧道信息包括LNS IPv4地址或LNSIPv6地址,以 及隧道密码等。
步骤304:SMF网元向UPF网元发送N4会话建立请求(N4 session establishment request)消息,N4会话建立请求消息包括L2TP隧道信息。
可以理解的是,如无特殊说明书,在本申请中,SMF网元支持L2TP。
步骤305:UPF网元与LNS交互建立L2TP隧道。
UPF网元可以根据L2TP隧道信息决定建立新的L2TP隧道,则UPF网元与LNS交互,建立L2TP隧道,若UPF网元根据L2TP隧道信息以及UPF配置的网络策略判断已存在的L2TP隧道可以重用。若UPF网元重用已存在的L2TP隧道,UPF网元不需要执行步骤305。
步骤306:UPF网元与LNS交互建立L2TP会话。LNS为PDU会话分配UE IP地址,域名服务器(domain name server,DNS)地址等。
步骤307:UPF网元向SMF网元发送N4会话建立响应(N4 session establishment response)消息。N4会话建立响应消息包括UE IP地址。
步骤308:SMF网元向UE发送PDU会话建立应答(PDU session establishment response)消息。PDU会话建立应答消息包括UE IP地址。
由上可知,在SMF网元与DN-AAA服务器进行交互,以实现对UE的接入认证授权的过程中,DN-AAA服务器可以为UE默认分配一个L2TP隧道信息。但是,随着技术演进,当SMF网元需要更多的L2TP隧道信息时,采用图3所示的方法无法获得更多的L2TP隧道信息。例如,SMF网元在PDU会话建立过程中选择多个UPF网元时,SMF网元无法从DN-AAA服务器获得与多个UPF网元对应的L2TP隧道信息,或SMF网元为一个PDU会话插入一个新的UPF网元时,SMF网元无法从DN-AAA服务器获得与多个UPF网元对应的L2TP隧道信息。
基于此,本申请提供一种通信方法,用于实现多个用户面网元与LNS建立L2TP隧道。如图4所示,该方法包括:
步骤400:会话管理网元向第一设备发送第一信息,第一设备为认证、授权和记账服务器,第一信息指示N个会话锚点,N为大于等于1的正整数。
示例性地,如图1所示,第一设备可以为DN-AAA服务器。第一信息可以由接入请求消息或者DER消息携带,例如参考上述步骤302。其中,第一信息还可以描述为用于指示请求L2TP隧道信息的数量。
示例性地,会话锚点可以为PDU会话锚点,本申请实施例可以应用于会话建立过程中(对应下述第一种实现方式)或会话建立完成之后(对应下述第二种实现方式)。
第一种实现方式:在会话管理网元向第一设备发送第一信息之前,会话管理网元接收来自于终端设备的会话建立请求消息,会话建立请求消息用于请求建立第一会话,会话管理网元为第一会话选择N个会话锚点。因此,会话管理网元可以在会话建立过程中通过第一信息指示N个会话锚点。可以理解的是,本申请不限定会话管理网元确定为第一会话选择会话锚点的具体方法。
第二种实现方式:在会话管理网元向第一设备发送第一信息之前,终端设备建立第二会话之后,会话管理网元确定为第二会话新增N个会话锚点。因此,在会话建立完成后,会话管理网元可以通过第一信息指示N个会话锚点。可以理解的是,本申请不限定会话管理网元确定为第二会话新增N个会话锚点的具体方法。
其中,第一信息可以包括但不限于以下几种实现方式:
方式1:第一信息可以包括N个会话锚点分别对应的地址或标识。示例性地,N个会话锚点分别对应的地址是指N个会话锚点分别对应的MAC地址或IP地址。例如,会话管理网元确定UPF1和UPF2,第一信息可以包括UPF1IPAddress和UPF2 IP Address。
采用上述方式1,第一信息可以明确指示是哪些会话锚点需要请求L2TP隧道信息。
方式2:第一信息可以包括会话锚点的数目N。例如,会话管理网元确定UPF1和UPF2,第一信息可以指示会话锚点的数目为2。
采用上述方式2,第一信息可指示会话锚点的数目,进而可以实现节省信令开销。
方式3:当会话管理网元为一个会话插入新的会话锚点时,第一信息用于请求L2TP隧道信息或用于指示新增会话锚点。第一设备根据第一信息分配L2TP隧道信息。一般地,在会话管理网元确定新插入的会话锚点的数目为1时,会话管理网元可以采用方式3的实现方式。例如,在接入请求消息或者DER消息中新增1比特,当该比特指示0时,表明会话管理网元不为会话插入新的会话锚点,当该比特指示1时,表明会话管理网元为会话插入一个新的会话锚点。
步骤410:会话管理网元接收来自于第一设备的针对第一信息的响应,针对第一信息的响应包括M个层2隧道协议L2TP隧道信息。
其中,N个会话锚点与M个L2TP隧道信息具有关联关系,每个L2TP隧道信息用于对应的会话锚点建立或重用与L2TP网络服务器之间的L2TP隧道。
针对上述方式1,由于第一信息包括N个会话锚点分别对应的地址,第一设备可以根据N个会话锚点分别对应的地址或标识分配M个L2TP隧道信息。若第一设备根据安全策略确定每个会话锚点需要不同的安全认证,则第一设备为每个会话分配L2TP隧道信息(此时M=N),若第一设备根据安全策略确定N个会话锚点中的若干个会话锚点可以采用相同的安全认证,则第一设备为这若干个会话分配相同的L2TP隧道信息(此时M<N)。在极端情况下,若第一设备根据安全策略确定所有会话锚点采用相同的安全认证,则第一设备为所有会话分配一个L2TP隧道信息。
进而,针对第一信息的响应还指示N个会话锚点的地址(或标识)与M个L2TP隧道信息的对应关系。例如,针对第一信息的响应指示每个会话锚点的地址和对应的L2TP隧道信息。会话管理网元根据M个L2TP隧道信息、N个会话锚点的地址(或标识)与M个L2TP隧道信息的对应关系,确定每个L2TP隧道信息对应的会话锚点。
在一示例中,第一设备可以根据N个PDU会话锚点分别对应的地址确定N个PDU会话锚点需要与LNS建立L2TP隧道,则为N个PDU会话锚点分别分配一个L2TP隧道信息。针对第一信息的响应还包括N个PDU会话锚点的地址与N个L2TP隧道信息的对应关系,以及N个L2TP隧道信息。例如,第一信息可以包括UPF1IP Address和UPF2IPAddress,第一设备向会话管理网发送L2TP隧道信息1和L2TP隧道信息2,其中,UPF1IP Address对应L2TP隧道信息1,UPF2IPAddress对应L2TP隧道信息2。
在另一示例中,第一设备根据N个PDU会话锚点分别对应的地址确定N个PDU会话锚点中的M个PDU会话锚点需要与LNS建立L2TP隧道,则为其中一些PDU会话锚点分配相同的L2TP隧道信息。例如,第一信息可以包括UPF1IPAddress和UPF2IPAddress,第一设备确定UPF1和UPF2需要与LNS建立L2TP隧道,并且采用相同的L2TP隧道信息,则第一设备向会话管理网发送L2TP隧道信息1,表示UPF1和UPF2采用相同的L2TP隧道信息1。
针对上述方式2,第一设备可以根据会话锚点的数目分配对应数目的L2TP隧道信息。例如,当会话锚点的数目为N时,第一设备分配一个L2TP隧道信息。
针对上述方式3,第一设备根据第一信息分配一个L2TP隧道信息。会话管理网元确定该L2TP隧道信息是为新插入的会话锚点分配的。
步骤420:会话管理网元向N个会话锚点分别发送对应的L2TP隧道信息。
由上述步骤410可知,会话管理网元可以确定需要向每个会话锚点发送的L2TP隧道信息。其中,L2TP隧道信息可以由N4会话建立请求消息携带。进一步地,接收到L2TP隧道信息的会话锚点可以执行上述步骤305和306,此处不再赘述。
结合第一种实现方式,会话管理网元确定为第一会话选择2个会话锚点,其中,2个会话锚点包括第一会话锚点和第二会话锚点。在第一会话锚点执行上述步骤305和306之后,第一会话锚点向会话管理网元发送终端设备的第一IP地址。其中,终端设备的第一IP地址可以由N4会话建立响应消息携带。在第二会话锚点执行上述步骤305和306之后,第二会话锚点向会话管理网元发送终端设备的第二IP地址。其中,终端设备的第二IP地址可以由N4会话建立响应消息携带。
以下针对不同分流方式说明会话管理网元进行分流配置的相关过程。可以理解的是,下述过程也同样适用于N≥3的场景。
针对采用UL CL实现业务分流的方式,会话管理网元向终端设备发送会话建立应答消息,会话建立应答消息包括第一IP地址。会话管理网元还向上行分类器发送第一分流规则,第一分流规则指示上行分类器根据来自于终端设备的数据的目的地址将来自于终端设备的数据发送至第一会话锚点或第二会话锚点。
会话管理网元还向第二会话锚点发送第一指示信息,第一指示信息指示第二会话锚点将来自于上行分类器的数据的源地址从第一IP地址转换为第二IP地址后发送至数据网络,将来自于数据网络的数据的源地址从第二IP地址转换为第一IP地址,并将来自于数据网络的数据发送至上行分类器。
可以理解的是,此处还可以将会话建立应答消息中的第一IP地址替换为第二IP地址。同时,会话管理网元向第一会话锚点发送第三指示信息,第三指示信息指示第一会话锚点将来自于上行分类器的数据的源地址从第二IP地址转换为第一IP地址后发送至数据网络,将来自于数据网络的数据的源地址从第一IP地址转换为第二IP地址后发送至上行分类器。
针对采用BP实现业务分流的方式,会话管理网元向终端设备会话建立应答消息,会话建立应答消息包括第一IP地址和第二IP地址。
会话管理网元向分支点发送第二分流规则,第二分流规则指示分支点根据来自于终端设备的数据的源地址将来自于终端设备的数据发送至第一会话锚点或第二会话锚点。
结合第二种实现方式,在建立第二会话过程中,会话管理网元已为第二会话选择第三会话锚点,在第二会话建立完成后,会话管理网元确定为第二会话新插入一个会话锚点,其中,该会话锚点为第四会话锚点。在第四会话锚点执行上述步骤305和306之后,第四会话锚点向会话管理网元发送终端设备的第四IP地址,其中,第三会话锚点已向会话管理网元发送终端设备的第三IP地址。
可以理解的是,下述过程也同样适用于N≥3的场景。
针对采用UL CL实现业务分流的方式,会话管理网元向上行分类器发送第三分流规则,第三分流规则指示上行分类器根据来自于终端设备的数据的目的地址将来自于终端设备 的数据发送至第三会话锚点或第四会话锚点。
会话管理网元向第四会话锚点发送第二指示信息,第二指示信息指示第二会话锚点将来自于上行分类器的数据的源地址从第三IP地址转换为第四IP地址后发送至数据网络,将来自于数据网络的数据的源地址从第四IP地址转换为第三IP地址后发送至上行分类器。
针对采用BP实现业务分流的方式,会话管理网元向终端设备发送第四IP地址。会话管理网元向分支点发送第四分流规则,第四分流规则指示分支点根据来自于终端设备的数据的源地址将来自于终端设备的数据发送至第三会话锚点或第四会话锚点。
采用上述实施例,会话管理网元与第一设备进行接入认证授权时,会话管理网元向第一设备发送第一信息,以使第一设备根据第一信息分配L2TP隧道信息,会话管理网元根据接收到的L2TP隧道信息指示会话锚点与LNS建立L2TP隧道。
以下结合具体实施例对本申请图4所示实施例进行详细说明:
如图5所示为在PDU会话建立过程中,SMF网元为PDU会话选择了两个UPF作为PSA进行业务分流的具体流程。
S501:SMF网元从UE接收PDU会话建立请求消息。其中,PDU会话建立请求消息携带用于PAP或CHAP的认证信息。
S502:SMF网元为PDU会话选择两个UPF作为2个PSA。
S503:SMF网元向DN-AAA服务器发送接入请求消息。接入请求消息携带用于PAP或CHAP的认证信息,以及UPF1IPAddress1和UPF2 IPAddress2。
S504:DN-AAA服务器向SMF网元发送接入响应消息,接入响应消息携带LNS地址,L2TP隧道信息1和L2TP隧道信息2,其中,UPF1IPAddress1对应L2TP隧道信息1,UPF2IPAddress2对应L2TP隧道信息2。
其中,DN-AAA服务器可以根据安全策略为UPF1IPaddress1分配L2TP隧道信息1,根据UPF2 IPAddress2分配L2TP隧道信息2。
S505:SMF网元向UPF1发送N4会话建立请求消息1,N4会话建立请求消息1包括L2TP隧道信息1。
S506:UPF1与LNS交互建立L2TP隧道。
示例性地,UPF1决定建立新的L2TP隧道,则UPF1与LNS交互,建立L2TP隧道。其中,UPF1确定已存在的L2TP隧道不可以重用。可以理解的是,若UPF1确定已存在的L2TP隧道可以重用,UPF1可以不需要执行S506。
S507:UPF1与LNS交互建立L2TP会话。其中,LNS为PDU会话分配UE IP地址1,DNS服务器地址等。
S508:UPF1向SMF网元发送N4会话建立响应消息1,N4会话建立响应消息1包括UE IP地址1。
S509:SMF网元继续完成配置RAN,UL CL/BP和UPF1的隧道。
S510:SMF网元向UPF2发送N4会话建立请求消息2,N4会话建立请求消息2包括L2TP隧道信息2。
S511:UPF2决定建立新的L2TP隧道,则UPF2与LNS交互,建立L2TP隧道。其中,UPF2确定已存在的L2TP隧道不可以重用。可以理解的是,若UPF2确定已存在的L2TP隧道可以重用,UPF2可以不需要执行S511。
S512:UPF2与LNS交互建立L2TP会话。其中,LNS为PDU会话分配UE IP地址2,DNS服务器地址等。
S513:UPF2向SMF网元发送N4会话建立响应消息2,N4会话建立响应消息2包括UE IP地址2。
S514:SMF网元继续完成配置RAN,UL CL/BP和UPF2的隧道。
S515:SMF网元向UE发送PDU会话建立应答消息。
若SMF网元采用UL CL实现业务分流,则SMF网元可以将UE IP地址1发送给UE,PDU会话建立应答消息携带UE IP地址1。同时,SMF网元向UL CL发送第一分流规则,第一分流规则指示UL CL根据上行数据的目的地址分别发送给UPF1和UPF2,SMF网元指示UPF2执行NAT,具体的,UPF2将上行数据的源地址(UE IP地址1)转换成UE IP地址2,将下行数据的源地址(UE IP地址2)转换成UE IP地址1。
若SMF网元采用BP实现业务分流,则SMF网元将UE IP地址1和UE IP地址2发送给UE,PDU会话建立应答消息携带UE IP地址1和UE IP地址2。同时,SMF网元向BP发送第二分流规则,第二分流规则指示BP根据上行数据的源地址分别发送给UPF1和UPF2。
采用上述如图5所示的示例可以实现会话管理网元同时为多个UPF获得对应的隧道信息,进而完成多个UPF与LNS建立L2TP隧道。
如图6所示,SMF网元为已建立的PDU会话再插入一个UPF作为PSA进行业务分流的具体流程。UE已建立PDU会话,SMF网元为PDU会话选择UPF1作为PSA。
S601:SMF网元决定为PDU会话插入一个UPF2作为新的PSA。
其中,SMF网元可以采用UL CL或BP方式进行分流。
S602:SMF网元向DN-AAA服务器发送接入请求消息。接入请求消息携带重授权指示和UPF2 IPAddress2。
S603:DN-AAA服务器向SMF网元发送接入响应消息,接入响应消息携带L2TP隧道信息2。
DN-AAA服务器可以根据安全策略为UPF2IP Address2分配L2TP隧道信息2。
S604:SMF网元向UPF2发送N4会话建立请求消息2,N4会话建立请求消息2包括L2TP隧道信息2。
S605:UPF2与LNS交互建立L2TP隧道。
示例性地,UPF2决定建立新的L2TP隧道,则UPF2与LNS交互,建立L2TP隧道。其中,UPF2确定已存在的L2TP隧道不可以重用。可以理解的是,若UPF2确定已存在的L2TP隧道可以重用,UPF2可以需要执行S605。
S606:UPF2与LNS交互建立L2TP会话。LNS为PDU会话分配UE IP地址2,DNS服务器地址等。
S607:UPF2向SMF网元发送N4会话建立响应消息2,N4会话建立响应消息2包括UE IP地址2。
S608:SMF网元继续完成配置RAN,UL CL/BP和UPF2的隧道。
S609:SMF发起PDU会话修改流程。
若SMF网元采用UL CL实现业务分流,SMF网元向UL CL发送第三分流规则,以便让上行数据根据目的地址分别发送给UPF1和UPF2,第三分流规则指示UL CL根据上行 数据的目的地址分别发送给UPF1和UPF2,SMF网元指示UPF2执行网络地址转换(NAT),具体的,UPF2将上行数据的源地址(UE IP地址1)转换成UE IP地址2,将下行数据的源地址(UE IP地址2)转换成UE IP地址1。
若SMF网元采用BP实现业务分流,则SMF网元将UE IP地址2发送给UE,同时,SMF网元向BP发送第四分流规则,第四分流规则指示BP根据上行数据的源地址分别发送给UPF1和UPF2。
采用上述如图6所示的示例可以实现会话管理网元为新增的UPF获得对应的隧道信息,进而完成新增的UPF与LNS建立L2TP隧道。
图7示出了本申请实施例中所涉及的一种装置的可能的示例性框图,该装置700包括:收发模块710和处理模块720,收发模块710可以包括接收单元和发送单元。处理模块720用于对装置700的动作进行控制管理。收发模块710用于支持装置700与其他网络实体的通信。可选地,装置700还可以包括存储单元,所述存储单元用于存储装置700的程序代码和数据。
可选地,所述装置700中各个模块可以是通过软件来实现。
可选地,处理模块720可以是处理器或控制器,例如可以是通用中央处理器(central processing unit,CPU),通用处理器,数字信号处理(digital signal processing,DSP),专用集成电路(application specific integrated circuits,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请实施例公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。收发模块710可以是通信接口、收发器或收发电路等,其中,该通信接口是统称,在具体实现中,该通信接口可以包括多个接口,存储单元可以是存储器。
当装置700为会话管理网元或会话管理网元中的芯片时,装置700中的处理模块720可以支持装置700执行上文中各方法示例中会话管理网元的动作。例如,处理模块720可以支持装置700执行图5中的S502,S509,S514,图6中的S601,S608。
收发模块710可以支持装置700与第一设备或用户面网元之间的通信,例如,收发模块710可以支持装置700执行图4中的步骤400,步骤410,步骤420,图5中的S501,S503,S504,S505,S508,S510,S513,S515,图6中的S602,S603,S604,S607,S609。
例如,可以如下:
在一种实现方式中,所述处理模块720调用所述收发模块710执行:
向第一设备发送第一信息,所述第一设备为认证、授权和记账服务器,所述第一信息指示N个会话锚点,N为大于等于1的正整数;接收来自于所述第一设备的针对所述第一信息的响应,所述针对所述第一信息的响应包括M个层2隧道协议L2TP隧道信息,其中,所述N个会话锚点与所述M个L2TP隧道信息具有关联关系,每个L2TP隧道信息用于对应的会话锚点建立或重用与L2TP网络服务器之间的L2TP隧道,M为大于等于1的正整数,M≤N;向所述N个会话锚点分别发送对应的L2TP隧道信息。
在一种可能的设计中,所述第一信息包括N个会话锚点分别对应的地址或标识。
在一种可能的设计中,所述第一信息包括会话锚点的数目N。
在一种可能的设计中,N为大于等于2的正整数;所述收发模块710,用于在向所述第一设备发送所述第一信息之前,接收来自于终端设备的会话建立请求消息,所述会话建立请求消息用于请求建立第一会话;所述处理模块720,用于为所述第一会话选择所述N个会话锚点。
在一种可能的设计中,N=2,所述N个会话锚点包括第一会话锚点和第二会话锚点;
所述处理模块720调用所述收发模块710执行:
接收来自于所述第一会话锚点的所述终端设备的第一IP地址;接收来自于所述第二会话锚点的所述终端设备的第二IP地址;向所述终端设备发送所述第一IP地址;向上行分类器发送第一分流规则,所述第一分流规则指示所述上行分类器根据来自于所述终端设备的数据的目的地址将所述来自于所述终端设备的数据发送至所述第一会话锚点或所述第二会话锚点;向所述第二会话锚点发送第一指示信息,所述第一指示信息指示所述第二会话锚点将来自于所述上行分类器的数据的源地址从所述第一IP地址转换为所述第二IP地址后发送至数据网络,将来自于所述数据网络的数据的源地址从所述第二IP地址转换为所述第一IP地址后发送至所述上行分类器。
在一种可能的设计中,N=2,所述N个会话锚点包括第一会话锚点和第二会话锚点;
所述处理模块720调用所述收发模块710执行:
接收来自于所述第一会话锚点的所述终端设备的第一IP地址;接收来自于所述第二会话锚点的所述终端设备的第二IP地址;向所述终端设备发送所述第一IP地址和所述第二IP地址;向分支点发送第二分流规则,所述第二分流规则指示所述分支点根据来自于所述终端设备的数据的源地址将所述来自于所述终端设备的数据发送至所述第一会话锚点或所述第二会话锚点。
在一种可能的设计中,所述第一信息用于请求L2TP隧道信息或用于指示新增会话锚点。
在一种可能的设计中,所述处理模块720,用于在向所述第一设备发送所述第一信息之前,在所述终端设备建立第二会话之后,所述会话管理网元确定为所述第二会话新增所述N个会话锚点。
在一种可能的设计中,N=1,所述N个会话锚点为第四会话锚点;
所述处理模块720调用所述收发模块710执行:
接收来自于所述第四会话锚点的所述终端设备的第四IP地址;向上行分类器发送第三分流规则,所述第三分流规则指示所述上行分类器根据来自于所述终端设备的数据的目的地址将所述来自于所述终端设备的数据发送至第三会话锚点或所述第四会话锚点,其中,所述第三会话锚点为在所述第二会话建立过程中所述会话管理网元为所述第二会话选择的会话锚点;向所述第四会话锚点发送第二指示信息,所述第二指示信息指示所述第二会话锚点将来自于所述上行分类器的数据的源地址从第三IP地址转换为所述第四IP地址后发送至数据网络,将来自于所述数据网络的数据的源地址从所述第四IP地址转换为所述第三IP地址后发送至所述上行分类器,其中,所述第三IP地址对应所述第三会话锚点。
在一种可能的设计中,N=1,所述N个会话锚点为第四会话锚点;
所述处理模块720调用所述收发模块710执行:
接收来自于所述第四会话锚点的所述终端设备的第四IP地址;向所述终端设备发送所述第四IP地址;向分支点发送第四分流规则,所述第四分流规则指示所述分支点根据来自 于所述终端设备的数据的源地址将所述来自于所述终端设备的数据发送至所述第三会话锚点或所述第四会话锚点,其中,所述第三会话锚点为在所述第二会话建立过程中所述会话管理网元为所述第二会话选择的会话锚点。
应理解,根据本申请实施例的装置700可对应于前述方法实施例中会话管理网元,并且装置700中的各个模块的操作和/或功能分别为了实现前述方法实施例中会话管理网元的方法的相应步骤,因此也可以实现前述方法实施例中的有益效果,为了简洁,这里不作赘述。
当装置700为第一设备或第一设备中的芯片时,装置700中的处理模块720可以支持装置700执行上文中各方法示例中第一设备的动作。
收发模块710可以支持装置700与会话管理网元之间的通信,例如,收发模块710可以支持装置700执行图4中的步骤400,步骤410,图5中的S503,S504,图6中的S602,S603。
例如,可以如下:
在一种实现方式,所述处理模块720调用所述收发模块710执行:
接收来自于会话管理网元的第一信息,所述第一信息指示N个会话锚点,N为大于等于2的正整数;向所述会话管理网元发送针对所述第一信息的响应,所述针对所述第一信息的响应包括M个L2TP隧道信息,其中,所述N个会话锚点与所述M个L2TP隧道信息具有关联关系,每个L2TP隧道信息用于对应的会话锚点建立或重用与L2TP网络服务器之间的L2TP隧道,M为大于等于1的正整数,M≤N。
在一种可能的设计中,所述第一信息包括N个会话锚点分别对应的地址和标识。
在一种可能的设计中,所述第一信息包括会话锚点的数目N。
在一种可能的设计中,所述第一信息包括请求L2TP隧道信息的指示信息或新增会话锚点的指示信息。
应理解,根据本申请实施例的装置700可对应于前述方法实施例中第一设备的方法,并且装置700中的各个模块的操作和/或功能分别为了实现前述方法实施例中第一设备的方法的相应步骤,因此也可以实现前述方法实施例中的有益效果,为了简洁,这里不作赘述。
图8示出了根据本申请实施例的通信装置800的示意性结构图。如图8所示,所述装置800包括:处理器801。
[根据细则91更正 14.11.2022] 
当装置800为会话管理网元或会话管理网元中的芯片时,一种可能的实现方式中,当所述处理器801用于调用接口执行以下动作:
向第一设备发送第一信息,所述第一设备为认证、授权和记账服务器,所述第一信息指示N个会话锚点,N为大于等于1的正整数;接收来自于所述第一设备的针对所述第一信息的响应,所述针对所述第一信息的响应包括M个层2隧道协议L2TP隧道信息,其中,所述N个会话锚点与所述M个L2TP隧道信息具有关联关系,每个L2TP隧道信息用于对应的会话锚点建立或重用与L2TP网络服务器之间的L2TP隧道,M为大于等于1的正整数,M≤N;向所述N个会话锚点分别发送对应的L2TP隧道信息。
应理解,所述装置800还可用于执行前文实施例中会话管理网元侧的其他步骤和/或操作,为了简洁,这里不作赘述。
[根据细则91更正 14.11.2022] 
当装置800为第一设备或第一设备中的芯片时,一种可能的实现方式中,当所述处理 器801用于调用接口执行以下动作:
接收来自于会话管理网元的第一信息,所述第一信息指示N个会话锚点,N为大于等于2的正整数;向所述会话管理网元发送针对所述第一信息的响应,所述针对所述第一信息的响应包括M个L2TP隧道信息,其中,所述N个会话锚点与所述M个L2TP隧道信息具有关联关系,每个L2TP隧道信息用于对应的会话锚点建立或重用与L2TP网络服务器之间的L2TP隧道,M为大于等于1的正整数,M≤N。
应理解,所述装置800还可用于执行前文实施例中第一设备侧的其他步骤和/或操作,为了简洁,这里不作赘述。
应理解,所述处理器801可以调用接口执行上述收发动作,其中,调用的接口可以是逻辑接口或物理接口,对此不作限定。可选地,物理接口可以通过收发器实现。可选地,所述装置800还包括收发器803。
可选地,所述装置800还包括存储器802,存储器802中可以存储上述方法实施例中的程序代码,以便于处理器801调用。
具体地,若所述装置800包括处理器801、存储器802和收发器803,则处理器801、存储器802和收发器803之间通过内部连接通路互相通信,传递控制和/或数据信号。在一个可能的设计中,处理器801、存储器802和收发器803可以通过芯片实现,处理器801、存储器802和收发器803可以是在同一个芯片中实现,也可能分别在不同的芯片实现,或者其中任意两个功能组合在一个芯片中实现。该存储器802可以存储程序代码,处理器801调用存储器802存储的程序代码,以实现装置800的相应功能。
上述本申请实施例揭示的方法可以应用于处理器中,或者由处理器实现。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM), 其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,在本申请实施例中,编号“第一”、“第二”…仅仅为了区分不同的对象,比如为了区分不同的参数信息或者消息,并不对本申请实施例的范围构成限制,本申请实施例并不限于此。
还应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。上述各个过程涉及的各种数字编号或序号仅为描述方便进行的区分,而不应对本申请实施例的实施过程构成任何限定。
还应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请中出现的类似于“项目包括如下中的一项或多项:A,B,以及C”表述的含义,如无特别说明,通常是指该项目可以为如下中任一个:A;B;C;A和B;A和C;B和C;A,B和C;A和A;A,A和A;A,A和B;A,A和C,A,B和B;A,C和C;B和B,B,B和B,B,B和C,C和C;C,C和C,以及其他A,B和C的组合。以上是以A,B和C共3个元素进行举例来说明该项目的可选用条目,当表达为“项目包括如下中至少一种:A,B,……,以及X”时,即表达中具有更多元素时,那么该项目可以适用的条目也可以按照前述规则获得。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各 个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (30)

  1. 一种通信方法,其特征在于,该方法包括:
    会话管理网元向第一设备发送第一信息,所述第一设备为认证、授权和记账服务器,所述第一信息指示N个会话锚点,N为大于等于1的正整数;
    所述会话管理网元接收来自于所述第一设备的针对所述第一信息的响应,所述针对所述第一信息的响应包括M个层2隧道协议L2TP隧道信息,其中,所述N个会话锚点与所述M个L2TP隧道信息具有关联关系,每个L2TP隧道信息用于对应的会话锚点建立或重用与L2TP网络服务器之间的L2TP隧道,M为大于等于1的正整数,M≤N;
    所述会话管理网元向所述N个会话锚点分别发送对应的L2TP隧道信息。
  2. 如权利要求1所述的方法,其特征在于,所述第一信息包括N个会话锚点分别对应的地址或标识。
  3. 如权利要求1或2所述的方法,其特征在于,所述第一信息包括会话锚点的数目N。
  4. 如权利要求1-3任一项所述的方法,其特征在于,N为大于等于2的正整数;
    在所述会话管理网元向所述第一设备发送所述第一信息之前,还包括:
    所述会话管理网元接收来自于终端设备的会话建立请求消息,所述会话建立请求消息用于请求建立第一会话;
    所述会话管理网元为所述第一会话选择所述N个会话锚点。
  5. 如权利要求4所述的方法,其特征在于,N=2,所述N个会话锚点包括第一会话锚点和第二会话锚点;
    所述方法还包括:
    所述会话管理网元接收来自于所述第一会话锚点的所述终端设备的第一IP地址;
    所述会话管理网元接收来自于所述第二会话锚点的所述终端设备的第二IP地址;
    所述会话管理网元向所述终端设备发送所述第一IP地址;
    所述会话管理网元向上行分类器发送第一分流规则,所述第一分流规则指示所述上行分类器根据来自于所述终端设备的数据的目的地址将所述来自于所述终端设备的数据发送至所述第一会话锚点或所述第二会话锚点;
    所述会话管理网元向所述第二会话锚点发送第一指示信息,所述第一指示信息指示所述第二会话锚点将来自于所述上行分类器的数据的源地址从所述第一IP地址转换为所述第二IP地址后发送至数据网络,将来自于所述数据网络的数据的源地址从所述第二IP地址转换为所述第一IP地址后发送至所述上行分类器。
  6. 如权利要求4所述的方法,其特征在于,N=2,所述N个会话锚点包括第一会话锚点和第二会话锚点;
    所述方法还包括:
    所述会话管理网元接收来自于所述第一会话锚点的所述终端设备的第一IP地址;
    所述会话管理网元接收来自于所述第二会话锚点的所述终端设备的第二IP地址;
    所述会话管理网元向所述终端设备发送所述第一IP地址和所述第二IP地址;
    所述会话管理网元向分支点发送第二分流规则,所述第二分流规则指示所述分支点根据来自于所述终端设备的数据的源地址将所述来自于所述终端设备的数据发送至所述第一会话锚点或所述第二会话锚点。
  7. 如权利要求1所述的方法,其特征在于,所述第一信息用于请求L2TP隧道信息或用于指示新增会话锚点。
  8. 如权利要求1-3、7任一项所述的方法,其特征在于,在所述会话管理网元向所述第一设备发送所述第一信息之前,还包括:
    在所述终端设备建立第二会话之后,所述会话管理网元确定为所述第二会话新增所述N个会话锚点。
  9. 如权利要求8所述的方法,其特征在于,N=1,所述N个会话锚点为第四会话锚点;
    所述方法还包括:
    所述会话管理网元接收来自于所述第四会话锚点的所述终端设备的第四IP地址;
    所述会话管理网元向上行分类器发送第三分流规则,所述第三分流规则指示所述上行分类器根据来自于所述终端设备的数据的目的地址将所述来自于所述终端设备的数据发送至第三会话锚点或所述第四会话锚点,其中,所述第三会话锚点为在所述第二会话建立过程中所述会话管理网元为所述第二会话选择的会话锚点;
    所述会话管理网元向所述第四会话锚点发送第二指示信息,所述第二指示信息指示所述第二会话锚点将来自于所述上行分类器的数据的源地址从第三IP地址转换为所述第四IP地址后发送至数据网络,将来自于所述数据网络的数据的源地址从所述第四IP地址转换为所述第三IP地址后发送至所述上行分类器,其中,所述第三IP地址对应所述第三会话锚点。
  10. 如权利要求8所述的方法,其特征在于,N=1,所述N个会话锚点为第四会话锚点;
    所述方法还包括:
    所述会话管理网元接收来自于所述第四会话锚点的所述终端设备的第四IP地址;
    所述会话管理网元向所述终端设备发送所述第四IP地址;
    所述会话管理网元向分支点发送第四分流规则,所述第四分流规则指示所述分支点根据来自于所述终端设备的数据的源地址将所述来自于所述终端设备的数据发送至所述第三会话锚点或所述第四会话锚点,其中,所述第三会话锚点为在所述第二会话建立过程中所述会话管理网元为所述第二会话选择的会话锚点。
  11. 一种通信方法,其特征在于,该方法包括:
    第一设备接收来自于会话管理网元的第一信息,所述第一设备为认证、授权和记账服务器,所述第一信息指示N个会话锚点,N为大于等于2的正整数;
    所述第一设备向所述会话管理网元发送针对所述第一信息的响应,所述针对所述第一信息的响应包括M个L2TP隧道信息,其中,所述N个会话锚点与所述M个L2TP隧道信息具有关联关系,每个L2TP隧道信息用于对应的会话锚点建立或重用与L2TP网络服务器之间的L2TP隧道,M为大于等于1的正整数,M≤N。
  12. 如权利要求11所述的方法,其特征在于,所述第一信息包括N个会话锚点分别对应的地址和标识。
  13. 如权利要求11或12所述的方法,其特征在于,所述第一信息包括会话锚点的数目N。
  14. 如权利要求11至13任一所述的方法,其特征在于,所述第一信息包括请求L2TP隧道信息的指示信息或新增会话锚点的指示信息。
  15. 一种通信装置,其特征在于,所述装置为会话管理网元或具有会话管理网元的功能 的装置,所述装置包括:收发单元和处理单元;所述处理单元调用所述收发单元执行:
    向第一设备发送第一信息,所述第一设备为认证、授权和记账服务器,所述第一信息指示N个会话锚点,N为大于等于1的正整数;
    接收来自于所述第一设备的针对所述第一信息的响应,所述针对所述第一信息的响应包括M个层2隧道协议L2TP隧道信息,其中,所述N个会话锚点与所述M个L2TP隧道信息具有关联关系,每个L2TP隧道信息用于对应的会话锚点建立或重用与L2TP网络服务器之间的L2TP隧道,M为大于等于1的正整数,M≤N;
    向所述N个会话锚点分别发送对应的L2TP隧道信息。
  16. 如权利要求15所述的装置,其特征在于,所述第一信息包括N个会话锚点分别对应的地址或标识。
  17. 如权利要求15或16所述的装置,其特征在于,所述第一信息包括会话锚点的数目N。
  18. 如权利要求15-17任一项所述的装置,其特征在于,N为大于等于2的正整数;
    所述处理单元调用所述收发单元向所述第一设备发送所述第一信息之前,还执行:
    接收来自于终端设备的会话建立请求消息,所述会话建立请求消息用于请求建立第一会话;
    为所述第一会话选择所述N个会话锚点。
  19. 如权利要求18所述的装置,其特征在于,N=2,所述N个会话锚点包括第一会话锚点和第二会话锚点;
    所述处理单元调用所述收发单元还执行:
    接收来自于所述第一会话锚点的所述终端设备的第一IP地址;
    接收来自于所述第二会话锚点的所述终端设备的第二IP地址;
    向所述终端设备发送所述第一IP地址;
    向上行分类器发送第一分流规则,所述第一分流规则指示所述上行分类器根据来自于所述终端设备的数据的目的地址将所述来自于所述终端设备的数据发送至所述第一会话锚点或所述第二会话锚点;
    向所述第二会话锚点发送第一指示信息,所述第一指示信息指示所述第二会话锚点将来自于所述上行分类器的数据的源地址从所述第一IP地址转换为所述第二IP地址后发送至数据网络,将来自于所述数据网络的数据的源地址从所述第二IP地址转换为所述第一IP地址后发送至所述上行分类器。
  20. 如权利要求18所述的装置,其特征在于,N=2,所述N个会话锚点包括第一会话锚点和第二会话锚点;
    所述处理单元调用所述收发单元还执行:
    接收来自于所述第一会话锚点的所述终端设备的第一IP地址;
    接收来自于所述第二会话锚点的所述终端设备的第二IP地址;
    向所述终端设备发送所述第一IP地址和所述第二IP地址;
    向分支点发送第二分流规则,所述第二分流规则指示所述分支点根据来自于所述终端设备的数据的源地址将所述来自于所述终端设备的数据发送至所述第一会话锚点或所述第二会话锚点。
  21. 如权利要求15所述的装置,其特征在于,所述第一信息用于请求L2TP隧道信息 或用于指示新增会话锚点。
  22. 如权利要求15-17、21任一项所述的装置,其特征在于,所述处理单元调用所述收发单元在向所述第一设备发送所述第一信息之前,以及在所述终端设备建立第二会话之后,还用于确定为所述第二会话新增所述N个会话锚点。
  23. 如权利要求22所述的装置,其特征在于,N=1,所述N个会话锚点为第四会话锚点;
    所述处理单元调用所述收发单元还执行:
    接收来自于所述第四会话锚点的所述终端设备的第四IP地址;
    向上行分类器发送第三分流规则,所述第三分流规则指示所述上行分类器根据来自于所述终端设备的数据的目的地址将所述来自于所述终端设备的数据发送至第三会话锚点或所述第四会话锚点,其中,所述第三会话锚点为在所述第二会话建立过程中所述会话管理网元为所述第二会话选择的会话锚点;
    向所述第四会话锚点发送第二指示信息,所述第二指示信息指示所述第二会话锚点将来自于所述上行分类器的数据的源地址从第三IP地址转换为所述第四IP地址后发送至数据网络,将来自于所述数据网络的数据的源地址从所述第四IP地址转换为所述第三IP地址后发送至所述上行分类器,其中,所述第三IP地址对应所述第三会话锚点。
  24. 如权利要求22所述的装置,其特征在于,N=1,所述N个会话锚点为第四会话锚点;
    所述处理单元调用所述收发单元还执行:
    接收来自于所述第四会话锚点的所述终端设备的第四IP地址;
    向所述终端设备发送所述第四IP地址;
    向分支点发送第四分流规则,所述第四分流规则指示所述分支点根据来自于所述终端设备的数据的源地址将所述来自于所述终端设备的数据发送至所述第三会话锚点或所述第四会话锚点,其中,所述第三会话锚点为在所述第二会话建立过程中所述会话管理网元为所述第二会话选择的会话锚点。
  25. 一种通信装置,其特征在于,所述装置为认证、授权和记账服务器,或者用于实现所述认证、授权和记账服务器的功能的装置,所述装置包括收发单元和处理单元;
    所述处理单元调用所述收发单元执行:
    接收来自于会话管理网元的第一信息,所述第一信息指示N个会话锚点,N为大于等于2的正整数;
    向所述会话管理网元发送针对所述第一信息的响应,所述针对所述第一信息的响应包括M个L2TP隧道信息,其中,所述N个会话锚点与所述M个L2TP隧道信息具有关联关系,每个L2TP隧道信息用于对应的会话锚点建立或重用与L2TP网络服务器之间的L2TP隧道,M为大于等于1的正整数,M≤N。
  26. 如权利要求25所述的装置,其特征在于,所述第一信息包括N个会话锚点分别对应的地址和标识。
  27. 如权利要求25或26所述的装置,其特征在于,所述第一信息包括会话锚点的数目N。
  28. 如权利要求25至27任一所述的装置,其特征在于,所述第一信息包括请求L2TP隧道信息的指示信息或新增会话锚点的指示信息。
  29. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器用于通过逻辑电路或执行代码指令实现如权利要求1至14中任一项所述的方法。
  30. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如权利要求1至14中任一项所述的方法。
PCT/CN2022/123465 2021-10-20 2022-09-30 一种通信方法及装置 WO2023066022A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111223211.8 2021-10-20
CN202111223211.8A CN115996482A (zh) 2021-10-20 2021-10-20 一种通信方法及装置

Publications (1)

Publication Number Publication Date
WO2023066022A1 true WO2023066022A1 (zh) 2023-04-27

Family

ID=85990812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/123465 WO2023066022A1 (zh) 2021-10-20 2022-09-30 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN115996482A (zh)
WO (1) WO2023066022A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180279180A1 (en) * 2017-03-21 2018-09-27 Electronics And Telecommunications Research Institute Session management method based on reallocation of pdu session anchor device, and device performing the session management method
CN109314695A (zh) * 2016-07-04 2019-02-05 华为技术有限公司 确定用户面协议栈的方法、控制面网元和系统
CN111031080A (zh) * 2018-10-09 2020-04-17 华为技术有限公司 报文传输方法及装置
CN111770531A (zh) * 2019-04-01 2020-10-13 华为技术有限公司 获取数据包延迟参数的方法、系统和装置
CN112953748A (zh) * 2019-12-11 2021-06-11 华为技术有限公司 一种通信方法及装置
CN113395214A (zh) * 2021-08-18 2021-09-14 深圳艾灵网络有限公司 工业设备联网方法、电子设备及存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109314695A (zh) * 2016-07-04 2019-02-05 华为技术有限公司 确定用户面协议栈的方法、控制面网元和系统
US20180279180A1 (en) * 2017-03-21 2018-09-27 Electronics And Telecommunications Research Institute Session management method based on reallocation of pdu session anchor device, and device performing the session management method
CN111031080A (zh) * 2018-10-09 2020-04-17 华为技术有限公司 报文传输方法及装置
CN111770531A (zh) * 2019-04-01 2020-10-13 华为技术有限公司 获取数据包延迟参数的方法、系统和装置
CN112953748A (zh) * 2019-12-11 2021-06-11 华为技术有限公司 一种通信方法及装置
CN113395214A (zh) * 2021-08-18 2021-09-14 深圳艾灵网络有限公司 工业设备联网方法、电子设备及存储介质

Also Published As

Publication number Publication date
CN115996482A (zh) 2023-04-21

Similar Documents

Publication Publication Date Title
EP3627793B1 (en) Session processing method and device
US20190069182A1 (en) Systems and Methods for Accessing a Network
CN107995052B (zh) 用于针对有线和无线节点的公共控制协议的方法和设备
EP1774750B1 (en) Method, apparatuses and computer readable medium for establishing secure end-to-end connections by binding IPSec Security Associations
US8272046B2 (en) Network mobility over a multi-path virtual private network
CN101379801B (zh) 用于eap扩展(eap-ext)的eap方法
US20160119297A1 (en) Method for secure network based route optimization in mobile networks
US9515824B2 (en) Provisioning devices for secure wireless local area networks
EP1588535B1 (en) Establishing communication tunnels
JP2018537912A (ja) 複数の接続およびサービスコンテキストをサポートするためのセキュリティモデルを使用したワイヤレス通信のための方法および装置
EP3459318A1 (en) Using wlan connectivity of a wireless device
US11006339B2 (en) Handling at least one communication exchange between a telecommunications network and at least one user equipment
US20230189368A1 (en) Associating transport identifiers with quality of service flows
WO2014101755A1 (zh) 业务数据分流方法及系统
BRPI0113044B1 (pt) método e sistema para autorização da portadora em uma rede de comunicação sem fio fornecendo uma segurança melhorada ao autorizar o acesso ao serviço
WO2017124231A1 (zh) 分配互联网协议地址的方法、控制面网关和用户面网关
WO2018054272A1 (zh) 数据的发送方法和装置、计算机存储介质
WO2023066022A1 (zh) 一种通信方法及装置
WO2012022212A1 (zh) 用户设备接入方法、装置及系统
JP5947763B2 (ja) 通信システム、通信方法、および、通信プログラム
US20240196206A1 (en) Methods and Devices in Communication Network
JP2020526131A (ja) 通信デバイスおよび通信方法
WO2013155938A1 (zh) 用户地址通告方法及装置
CN103582160B (zh) 数据传输方法及装置
CN117979373A (zh) 通信方法、系统、存储介质和程序产品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22882633

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE