WO2023066019A1 - 手术机器人系统、安全控制方法、从端装置及可读介质 - Google Patents

手术机器人系统、安全控制方法、从端装置及可读介质 Download PDF

Info

Publication number
WO2023066019A1
WO2023066019A1 PCT/CN2022/123328 CN2022123328W WO2023066019A1 WO 2023066019 A1 WO2023066019 A1 WO 2023066019A1 CN 2022123328 W CN2022123328 W CN 2022123328W WO 2023066019 A1 WO2023066019 A1 WO 2023066019A1
Authority
WO
WIPO (PCT)
Prior art keywords
surgical instrument
surgical
boundary
virtual
pose
Prior art date
Application number
PCT/CN2022/123328
Other languages
English (en)
French (fr)
Inventor
李自汉
苗燕楠
彭晓宁
王家寅
何超
Original Assignee
上海微创医疗机器人(集团)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海微创医疗机器人(集团)股份有限公司 filed Critical 上海微创医疗机器人(集团)股份有限公司
Publication of WO2023066019A1 publication Critical patent/WO2023066019A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/37Master-slave robots

Definitions

  • the present application relates to the technical field of medical devices, in particular to a surgical robot system, a safety control method, a slave device and a readable medium.
  • Surgical robots have become a powerful tool to help doctors complete operations.
  • da Vinci surgical robots have been used in major hospitals around the world, bringing good news to patients because of their small injuries, less bleeding, and faster recovery.
  • the design concept of the surgical robot is to use a minimally invasive method to accurately perform complex surgical operations.
  • surgical robots have been developed to replace traditional surgery.
  • Surgical robots break through the limitations of the human eye and use stereoscopic imaging technology to present internal organs to the operator more clearly.
  • the robotic arm can complete 360-degree rotation, movement, swing, clamping, and avoid shaking.
  • the wound is small, the bleeding is less, and the recovery is fast, which greatly shortens the postoperative hospital stay of patients, and the postoperative survival rate and recovery rate can also be significantly improved. in a clinical operation.
  • a safe operating boundary is generally set for the surgical robot, so that the surgical robot can move within the safe boundary.
  • the existing surgical robot safety boundary detection method only protects the surgical robot system itself.
  • the movement range boundary of the surgical robot is set by the mechanical limit of each joint of the surgical robot, so as to ensure that the surgical robot does not hit the mechanical limit when moving, or avoid surgery.
  • the robot enters a dangerous zone where it collides with surrounding equipment.
  • these safety boundaries have nothing to do with specific surgical clinical scenarios.
  • Existing surgical robots cannot identify the safe operating range in the surgical field area during surgery, and it is easy to exceed the safe operating range, stabbing normal tissues, nerves and blood vessels, resulting in surgical risks. .
  • the doctor cannot get effective information feedback.
  • the purpose of the present application is to provide a surgical robot system, a safety control method, a slave device and a readable medium, so as to solve the problem that the operation safety of the existing surgical robot cannot be guaranteed.
  • the present application provides a safety control method for a surgical robot, which includes: obtaining the surgical field scene map collected in real time during the operation, and fusing it with preoperative image information to generate a virtual safety boundary;
  • the step of restricting the expected pose of the surgical instrument in the next motion cycle from exceeding the virtual safety boundary includes:
  • command pose of the surgical instrument in the next motion cycle does not exceed the virtual safety boundary, then determine the command pose as the expected pose of the next motion cycle
  • Option 1 limiting the movement speed of the surgical instrument so that the expected pose of the surgical instrument in the next movement cycle does not exceed the virtual safety boundary;
  • Option 2 adjusting the command pose of the surgical instrument in the next motion cycle, so that the expected pose of the surgical instrument in the next motion cycle does not exceed the virtual safety boundary;
  • Option 3 Simultaneously limit the movement speed of the surgical instrument and adjust the command pose of the surgical instrument in the next motion cycle, so that the expected pose of the surgical instrument in the next motion cycle does not exceed the virtual safety boundary;
  • Option 4 Refuse to execute the motion instruction of the next motion cycle, and determine the current pose of the surgical instrument as the expected pose of the next motion cycle.
  • the command pose of the next motion cycle is calculated and judged according to the Cartesian pose and Cartesian velocity of the surgical instrument, or, the command pose of the next motion cycle is based on the Calculate and judge the joint position and joint speed of the surgical instrument.
  • the step of restricting the expected pose of the surgical instrument in the next motion cycle from exceeding the virtual safety boundary includes:
  • command pose of the surgical instrument in the next motion cycle does not exceed the virtual safety boundary, then determine the command pose as the expected pose of the next motion cycle
  • Option five restrict access to master-slave control, and prompt a warning message that the current pose of the surgical instrument is outside the virtual safety boundary;
  • Option six planning a return trajectory from the current pose of the surgical instrument to within the virtual safety boundary, and driving the surgical instrument to move along the return trajectory to within the virtual safety boundary;
  • Option 7 Planning a return trajectory from the current pose of the surgical instrument to the virtual safety boundary, and prompting the return trajectory, so as to guide the master device to control the surgical instrument to return along the The trajectory moves into the virtual safety boundary.
  • the Boundary force information is fed back to the master device.
  • the step of feeding back the boundary force information corresponding to the virtual safety boundary to the master device includes:
  • the Cartesian velocity at which the surgical instrument moves out of the virtual safety boundary is removed, and at the same time, the master device feeds back a feedback force that is opposite to the movement direction of the surgical instrument and is proportional to the virtual boundary force or virtual boundary moment or feedback torque.
  • visual images and/or acousto-optic means Prompt warning information.
  • the step of obtaining the surgical field scene map collected in real time during the operation and merging it with the preoperative image information to generate a virtual safety boundary includes:
  • the surgical field scene map is fused with the preoperative image information, and a virtual safety boundary is generated based on the safety boundary information.
  • the step of fusing the surgical field scene map with the preoperative image information includes:
  • the coordinate system of the virtual three-dimensional model is registered with the coordinate system of the surgical field scene map to realize the fusion of the surgical field scene map and the preoperative image information.
  • the present application also provides a slave device of a surgical robot, which includes: a mechanical arm, a safety boundary generation unit and a control unit;
  • the mechanical arm is used to connect and drive surgical instruments and endoscopes
  • the safety boundary generation unit is used to obtain the operation field scene map collected by the endoscope in real time during the operation, and fuse it with the preoperative image information to generate a virtual safety boundary;
  • the control unit is used to obtain the current pose of the surgical instrument, and calculate the relative relationship between the current pose of the surgical instrument and the virtual safety boundary; if the current pose of the surgical instrument is within the virtual safety boundary If it is within the boundary or on the virtual safety boundary, the expected pose of the surgical instrument in the next motion cycle is restricted from exceeding the virtual safety boundary.
  • the slave device further includes a force feedback unit
  • the force feedback unit is used to move the virtual safety boundary
  • the corresponding boundary force information is fed back to the master device.
  • the safety boundary generation unit includes: a boundary establishment module and an image processing module;
  • the boundary establishment module is used to obtain the preoperative image information, and establish safety boundary information based on the preoperative image information;
  • the image processing module is used to fuse the surgical field scene map with the preoperative image information, and generate the virtual safety boundary based on the safety boundary information.
  • the present application also provides a readable storage medium on which a program is stored, and when the program is run, the safety control method for the surgical robot as described above is realized.
  • the present application also provides a surgical robot system, which includes: a master device of the surgical robot and a slave device of the surgical robot as described above;
  • the control method performs security controls.
  • the master device includes a master operator, and the movement instructions generated by the master operator drive the surgical instrument to move through master-slave mapping;
  • the main operator When the movement instruction generated by the main operator will drive the command pose of the surgical instrument to reach or exceed the virtual safety boundary, the main operator will feedback that the movement direction of the surgical instrument is opposite to that of the surgical instrument, and Feedback force or torque that maps proportionally to the magnitude of the virtual boundary force or virtual boundary moment.
  • the surgical robot system further includes a display device and/or an imaging device, when the current pose of the surgical instrument moves from within the virtual safe boundary to on the virtual safe boundary, or the surgical instrument
  • the display device and/or the imaging device are used to display warning information when the current pose of the device moves on the virtual safety boundary.
  • the surgical robot safety control method includes: obtaining the surgical field collected in real time during the operation The scene graph is fused with preoperative image information to generate a virtual safety boundary; the current pose of the surgical instrument is obtained, and the relative positional relationship between the current pose of the surgical instrument and the virtual safety boundary is calculated; if the surgical If the current pose of the instrument is within or on the virtual safety boundary, the expected pose of the surgical instrument in the next motion cycle is restricted from exceeding the virtual safety boundary.
  • the relative relationship between the current pose of the surgical instrument and the virtual safety boundary is controlled to avoid accidentally injuring the surrounding normal tissues, blood vessels and Nerve, effectively improving the safety of surgical robot surgery.
  • Fig. 1 is a schematic diagram of the application scenario of the surgical robot system involved in the present application
  • Fig. 2 is the schematic diagram of the master-slave operation control of the embodiment of the present application.
  • Fig. 3 is a schematic diagram of a surgical operation space scene according to an embodiment of the present application.
  • Fig. 4 is a schematic diagram of the mechanically accessible operating area of the surgical instrument according to the embodiment of the present application.
  • Fig. 5 is a schematic diagram of obtaining preoperative image information according to an embodiment of the present application.
  • Fig. 6 is a flow chart of the fusion of preoperative image information, surgical field scene map and surgical robot coordinate system according to the embodiment of the present application;
  • FIG. 7 is a schematic diagram of a virtual security boundary in an embodiment of the present application.
  • Fig. 8 is a schematic diagram of the initial set-up position of the surgical instrument relative to the virtual safety boundary according to the embodiment of the present application;
  • Fig. 9 is a flow chart of the corresponding operation of the surgical instrument relative to the virtual safety boundary according to the embodiment of the present application.
  • Fig. 10 is a flow chart of determining the expected pose of the next motion cycle of the surgical instrument according to the embodiment of the present application.
  • Fig. 11 is a schematic diagram of the first control algorithm of the embodiment of the present application.
  • Fig. 12 is a schematic diagram of the second control algorithm of the embodiment of the present application.
  • Fig. 13 is a schematic diagram of a third control algorithm according to an embodiment of the present application.
  • Fig. 14 is a flow chart of feeding back boundary force information in an embodiment of the present application.
  • FIG. 15 is a schematic diagram of displaying warning information according to an embodiment of the present application.
  • proximal end is usually the end close to the operator
  • distal end is usually the end close to the patient, that is, the end close to the lesion.
  • One end and “the other end” as well as “proximal end” and “distal end” usually refer to the corresponding two parts, which not only include the end point, the term “installation” , “connected” and “connected” should be understood in a broad sense.
  • connection can be fixed connection, detachable connection, or integrated; it can be mechanical connection or electrical connection; it can be direct connection or through
  • the intermediary is indirectly connected, which can be the internal communication of two elements or the interaction relationship between two elements.
  • an element is arranged on another element, usually only means that there is a connection, coupling, cooperation or transmission relationship between the two elements, and the relationship between the two elements can be direct or indirect through an intermediate element.
  • connection, coupling, fit or transmission but should not be understood as indicating or implying the spatial positional relationship between two elements, that is, one element can be in any orientation such as inside, outside, above, below or on one side of another element, unless the content Also clearly point out.
  • the purpose of the present application is to provide a surgical robot system, a safety control method, a slave device and a readable medium, so as to solve the problem that the operation safety of the existing surgical robot in the surgical field area cannot be guaranteed.
  • Figure 1 is a schematic diagram of the application scene of the surgical robot system involved in the present application
  • Figure 2 is a schematic diagram of the master-slave operation control of the embodiment of the application
  • Figure 3 is a schematic diagram of the embodiment of the application Schematic diagram of the surgical operation space scene
  • FIG. 4 is a schematic diagram of the mechanically accessible operating area of the surgical instrument in the embodiment of the application
  • FIG. 5 is a schematic diagram of the acquisition of preoperative image information in the embodiment of the application
  • FIG. 1 is a schematic diagram of the application scene of the surgical robot system involved in the present application
  • Figure 2 is a schematic diagram of the master-slave operation control of the embodiment of the application
  • Figure 3 is a schematic diagram of the embodiment of the application Schematic diagram of the surgical operation space scene
  • FIG. 4 is a schematic diagram of the mechanically accessible operating area of the surgical instrument in the embodiment of the application
  • FIG. 5 is a schematic diagram of the acquisition of preoperative image information in the embodiment of the application
  • FIG. 7 is a schematic diagram of the virtual safety boundary of the embodiment of the application
  • Figure 8 is the initial position of the surgical instrument relative to the virtual safety boundary of the embodiment of the application
  • Figure 9 is a flow chart of the corresponding operation of the surgical instrument relative to the virtual safety boundary in the embodiment of the present application
  • Figure 10 is a flow chart of determining the expected pose of the surgical instrument in the next motion cycle in the embodiment of the present application
  • Fig. 11 is a schematic diagram of the first control algorithm of the embodiment of the present application
  • FIG. 12 is a schematic diagram of the second control algorithm of the embodiment of the present application
  • FIG. 13 is a schematic diagram of the third control algorithm of the embodiment of the present application
  • FIG. 14 is a schematic diagram of the implementation of the present application
  • Figure 15 is a schematic diagram of displaying warning information in an embodiment of the present application.
  • Fig. 1 shows an application scenario of a surgical robot system, which includes a master-slave teleoperated surgical robot, that is, the surgical robot system includes a master device 100 (ie, a doctor-side control device), a slave device 200 (ie, the patient-side control device), a main controller, and a supporting device 400 (eg, an operating bed) for supporting the surgical object for surgery.
  • the supporting device 400 may also be replaced by other surgical operation platforms, which is not limited in the present application.
  • the main end device 100 is the operating end of the teleoperated surgical robot, and includes a main operating hand 101 installed thereon.
  • the main operating hand 101 is used to receive the operator's hand movement information, which can be input as the movement control signal of the whole system.
  • the master controller is also disposed on the master device 100 .
  • the master device 100 further includes an imaging device 102, the imaging device 102 can provide a stereoscopic image for the operator, and provide a scene map of the surgical field for the operator to perform the operation.
  • the surgical field scene diagram includes the type and quantity of surgical instruments, the posture in the abdomen, the shape and arrangement of the patient's organ tissue and blood vessels in the surrounding organ tissue, etc.
  • the master device 100 also includes a foot-operated surgical control device 103 , through which the operator can complete input of relevant operation instructions such as electrocution and electrocoagulation.
  • the slave device 200 is a specific execution platform of the teleoperated surgical robot, and includes a base 201 and a surgical execution component installed thereon.
  • the operation execution assembly includes a mechanical arm 210 and instruments, and the instruments include surgical instruments 221 (such as high-frequency electrosurgical knife, etc.) for performing surgery, and an endoscope 222 for assisting observation.
  • the robotic arm includes an adjustment arm and a tool arm.
  • the tool arm as a mechanical fixed point mechanism, is used to drive the instrument to move around the mechanical fixed point, so as to perform minimally invasive surgical treatment on the patient 410 on the supporting device 400 .
  • the adjusting arm is used to adjust the position of the mechanical fixed point in the working space.
  • the mechanical arm 210 is a spatially configured mechanism with at least six degrees of freedom, which is used to drive the surgical instrument 221 to move around an active fixed point under program control.
  • the surgical instruments 221 are used to perform specific surgical operations, such as clipping, cutting, scissors, etc., or to assist operations, such as photographing. It should be noted that since the surgical instrument 221 has a certain volume in practice, the above “fixed point” should be understood as a fixed area. Of course, those skilled in the art can understand the "fixed point” according to the prior art.
  • the master controller is connected to the master device 100 and the slave device 200 respectively, and is used to control the movement of the operation execution component according to the movement of the master operator 101.
  • the master controller includes a master-slave mapping module, the The master-slave mapping module is used to obtain the terminal pose of the master operator 101 and the predetermined master-slave mapping relationship to obtain the desired terminal pose of the surgical actuator, and then control the mechanical arm 210 to drive the instrument to move to the desired terminal pose .
  • the master-slave mapping module is also used to receive instrument function operation instructions (such as electric cutting, electrocoagulation and other related operation instructions), and control the energy driver of the surgical instrument 221 to release energy to implement electric cutting, electrocoagulation and other surgical operations.
  • the main controller also accepts the force information received by the surgical execution component (for example, the force information of the human tissue and organ on the surgical instrument), and feeds back the force information received by the surgical execution component to the main operator 101 , so that the operator can feel the feedback force of the surgical operation more intuitively.
  • the surgical execution component for example, the force information of the human tissue and organ on the surgical instrument
  • the medical robot system also includes an image trolley 300 .
  • the image trolley 300 includes: an endoscope processor (not shown) communicated with the endoscope 222 .
  • the endoscope 222 is used to obtain an intracavity (referring to a patient's body cavity) surgical scene view.
  • the endoscope processor is used to process the image of the surgical field scene acquired by the endoscope 222 and transmit it to the imaging device 102, so that the operator can observe the surgical field scene.
  • the image trolley 300 further includes a display device 302 .
  • the display device 302 is connected in communication with the endoscope processor, and is used to provide an auxiliary operator (such as a nurse) with a real-time display of an operation field scene map or other auxiliary display information.
  • the operator controls the end pose of the surgical instrument 221 through master-slave teleoperation under the guidance of 3D vision.
  • the operator sits in front of the main end device 100 located outside the sterile field, observes the surgical field scene image transmitted back through the imaging device 102, and controls the movement of the surgical execution component by operating the main operating hand 101 to complete various surgical procedures.
  • the surgical robot system also includes auxiliary components such as a ventilator, an anesthesia machine 500 and an instrument table 600 for use in surgery.
  • auxiliary components such as a ventilator, an anesthesia machine 500 and an instrument table 600 for use in surgery.
  • FIG. 3 shows the surgical operation space scene of the surgical execution unit.
  • 3 to 4 surgical holes can be drilled on the body surface of the patient 410, and fixed stamping cards can be installed.
  • the surgical holes are respectively used for supplying The surgical instrument 221 and the endoscope 222 enter the surgical operation space in the body. During the operation, the position of the operation hole will remain still (i.e. form a fixed point), so as to avoid crushing and damaging the surrounding tissues.
  • the surgical instruments 221 are used to cut, electrocut, electrocoagulate, and suture the lesion tissue 411 (for example, the prostate) to complete the predetermined surgical goal.
  • the surgical instrument 221 enters the surgical operation space through the surgical hole on the body surface of the patient 410.
  • the surgical operating space of the surgical instrument 221 in the patient 410 is a cone-shaped section, and the surgical
  • the mechanically accessible range 223 of the operating space is related to its mechanical structure. In order to ensure sufficient operating space and convenient adjustment, the mechanically accessible range 223 of the surgical instrument 221 is generally relatively large.
  • the mechanically accessible range 223 of the surgical instrument 221 not only covers the operation range of the entire lesion tissue 411, but also covers the normal sensitive tissue 412 and important vascular and nerve tissue 413, so that the surgical instrument 221 can
  • the surgical operation it is easy to accidentally puncture the surrounding normal sensitive tissues 412 and important vascular and nerve tissues 413 , especially the sensitive tissues 412 and important vascular and nerve tissues 413 that are not visible in the surgical field of view.
  • the operator can see the scene of the surgical operation space through the surgical field scene map.
  • the lesion tissue 411 can be seen, and at the same time, some sensitive tissues 412 and vascular tissues 413 can be seen , but there are also other sensitive tissues 412 and blood vessel and nerve tissues 413 that are not within the surgical field of view. If the surgical instrument 221 moves beyond the surgical field of view, it is easy to accidentally injure these sensitive tissues 412 .
  • this embodiment provides a safety control method for a surgical robot, and the surgical robot system performs safety control according to the safety control method for a surgical robot.
  • the safety control method of the surgical robot includes:
  • Step S1 Obtain the surgical field scene map collected in real time during the operation, and fuse it with the preoperative image information to generate a virtual safety boundary 224;
  • Step S2 Obtain the current pose of the surgical instrument 221, and calculate the relative positional relationship between the current pose of the surgical instrument 221 and the virtual safety boundary 224;
  • Step S3 If the current pose of the surgical instrument 221 is within or on the virtual safe boundary 224, limit the expected pose of the surgical instrument 221 in the next motion cycle to not exceed the virtual safe boundary 224. Safe Boundary 224.
  • This surgical robot safety control method is based on the relative spatial position relationship between the lesion tissue 411 and the surrounding sensitive tissue 412 and vascular nerve tissue 413, and establishes a virtual safety boundary 224 as a safe operation interval for surgery, so that the surgical instrument 221 can only operate within the virtual safety boundary 224. internal movement, but cannot break through the virtual security boundary 224.
  • the virtual safety boundary 224 covers the entire operation space of the lesion tissue 411, but at the same time protects the surrounding sensitive tissue 412 and the blood vessel and nerve tissue 413 in the periphery, so as to improve the safety of the surgical operation and avoid accidentally injuring the surrounding sensitive tissue 412 and Vascular Neural Tissue 413 .
  • the slave device 200 includes a safety boundary generation unit and a control unit, and if the safety boundary generation unit and the control unit can be integrated in the slave device 200, they can also be set independently, which is not discussed in this embodiment. limit.
  • the safety boundary generating unit is used to obtain the operation field scene map collected by the endoscope 222 in real time during the operation, and is fused with the preoperative image information to generate a virtual safety boundary 224;
  • the current pose of the instrument 221 and calculate the relative relationship between the current pose of the surgical instrument 221 and the virtual safety boundary 224; if the current pose of the surgical instrument 221 is within the virtual safety boundary 224 or On the virtual safety boundary 224 , the expected pose of the surgical instrument 221 in the next motion cycle is restricted from exceeding the virtual safety boundary 224 .
  • the safety boundary generation unit includes: a boundary establishment module and an image processing module; the boundary establishment module is used to obtain the preoperative image information, and establish safety boundary information based on the preoperative image information; the safety boundary
  • the information can be the boundary line obtained based on the preoperative image map, and the image processing module is used to fuse the surgical field scene map with the preoperative image information, and generate the Virtual security perimeter 224 .
  • the safety boundary generation unit can be independently set in a computer 225, and the preoperative image information can pass through the medical image scanning device 226 (such as CT or MRI, etc.)
  • the patient 410 is scanned for acquisition.
  • the boundary building module completes the tissue modeling in the operation space through an image processing algorithm, and completes the three-dimensional reconstruction of the operation scene.
  • the operator can determine the key tissues that need special attention according to the situation in the abdominal cavity, and mark the feature points for the three-dimensional reconstruction of the surgical operation scene.
  • the preoperative image information can be fused with the surgical field scene map, and the surgical field scene map can be fused with the coordinate system of the surgical robot.
  • the step of obtaining the surgical field scene map collected in real time during the operation and merging it with the preoperative image information to generate the virtual safety boundary 224 includes:
  • the operation field scene map is fused with the preoperative image information, and a virtual safety boundary 224 is generated based on the safety boundary information.
  • the step of fusing the surgical field scene map with the preoperative image information includes:
  • the coordinate system of the virtual three-dimensional model is registered with the coordinate system of the surgical field scene map to realize the fusion of the surgical field scene map and the preoperative image information.
  • the spatial position information of the key tissues is marked, and then the position of the feature points of the key tissues in the surgical field scene map is adapted to complete the surgical operation scene coordinate system and the surgical field scene
  • the registration fusion of the map coordinate system realizes the fusion of the preoperative image information and the surgical field scene map during the operation.
  • the relative spatial relationship of the lesion tissue 411 relative to the surrounding sensitive tissue 412 and vascular nerve tissue 413 can be calculated, based on the safety boundary established according to the preoperative image information information, a virtual security perimeter 224 may be generated.
  • the movement position information including the position and speed information of each joint of the mechanical arm 210) of the mechanical arm 210 (including the instrument arm on which the surgical instrument 211 is mounted and the endoscope arm on which the endoscope 212 is mounted
  • the forward kinematics and kinematics mapping relationship of the robot are calculated to obtain the pose of the surgical instrument 211 in the endoscopic image coordinate system, thereby realizing the fusion of the surgical field scene map and the surgical robot coordinate system.
  • the fusion of preoperative image information, intraoperative surgical field scene map, and surgical robot coordinate system can be realized, so that the three-dimensional spatial position of the surgical instrument 211 in the surgical operation scene can be calculated in real time.
  • the relative spatial positional relationship between the surgical instrument 211 relative to the lesion tissue 411 , the sensitive tissue 412 and the blood vessel and nerve tissue 413 , and the relative spatial positional relationship of the surgical instrument 211 relative to the virtual safety boundary 224 are obtained, as shown in FIG. 7 .
  • the virtual safety boundary 224 is an arc-shaped curved surface, such as an ellipsoid, a cone, or a sphere, and those skilled in the art can configure it according to actual conditions.
  • the initial positioning position of the surgical instrument 211 in the preoperative preparation stage, and the position of the surgical instrument 211 relative to the virtual safety boundary 224 are divided into the following three types:
  • Case A The surgical instrument 211 is within the virtual safety boundary 224 .
  • Case B The surgical instrument 211 is on the virtual safety boundary 224 .
  • Case C The surgical instrument 211 is outside the virtual safety boundary 224 .
  • the steps of calculating the positional relationship of the surgical instrument 221 relative to the virtual safety boundary 224 are as follows:
  • the master-slave operation based on the Cartesian pose and Cartesian velocity of the end of the master operator 101 of the master device 100, calculate the command of the surgical instrument 211 of the slave device 200 in response to the control command issued by the master controller pose and command velocity, and then determine the relative positional relationship of the surgical instrument 211 relative to the virtual safety boundary 224 .
  • the mathematical model of its virtual safety boundary 224 is:
  • the relative positional relationship of the surgical instrument 211 with respect to the virtual safety boundary 224 can be calculated.
  • Those skilled in the art can set and configure the boundary judgment model according to the prior art.
  • the surgical robot safety control method of this embodiment executes different corresponding operation procedures.
  • Step A1 Obtain the command pose of the next movement cycle of the surgical instrument 211; generally, the movement of the surgical instrument 211 is based on the control command issued by the main controller of the master device 100, and the control command is a It is issued frame by frame, and after each frame of control command is issued, the surgical instrument 211 responds and completes the motion, which is a motion cycle.
  • Step A2 If the command pose of the surgical instrument 211 in the next motion cycle does not exceed the virtual safety boundary 224, then determine the command pose as the expected pose of the next motion cycle; at this time, the surgical instrument 211 actually In a state of normal control above, the movement command of the master operator 101 is mapped to the movement of the surgical instrument 211 .
  • Step A3 If the command pose of the next motion cycle of the surgical instrument 211 exceeds the virtual safety boundary 224, choose to execute one of the following options:
  • Option 1 limit the movement speed of the surgical instrument 221 so that the expected pose of the surgical instrument 211 in the next movement cycle does not exceed the virtual safety boundary 224; this option mainly limits the movement speed of the surgical instrument 221, The surgical instrument 221 is made to move at most to the position of the virtual safety boundary 224 in the next movement cycle without exceeding the virtual safety boundary 224 .
  • Option 2 Adjust the command pose of the next motion cycle of the surgical instrument 221 so that the expected pose of the next motion cycle of the surgical instrument 221 does not exceed the virtual safety boundary 224;
  • the command pose is restricted so that the surgical instrument 221 moves to the position of the virtual safety boundary 224 at most in the next motion cycle without exceeding the virtual safety boundary 224 .
  • Option 3 Simultaneously limit the movement speed of the surgical instrument 221 and adjust the command pose of the next movement cycle of the surgical instrument 221, so that the expected pose of the next movement cycle of the surgical instrument 221 does not exceed the virtual safety Boundary 224.
  • Option 4 Refuse to execute the motion command of the next motion cycle, and determine the current pose of the surgical instrument 221 as the expected pose of the next motion cycle. This option is to refuse to execute the movement command and keep the surgical instrument 221 at the current pose, which can ensure that the expected pose of the surgical instrument 221 does not exceed the virtual safety boundary 224 .
  • the current pose of the surgical instrument 211 can be obtained by obtaining the current command pose of the surgical instrument 211 . If the current command pose of the surgical instrument 211 is within the virtual safety boundary 224, that is, for the above case A, the command pose of the surgical instrument 211 in the next motion cycle is calculated, as shown in the following formula:
  • Pcmd_next represents the command pose of the next motion cycle
  • Pcmd_cur represents the command pose of the current motion cycle
  • Vcmd_cur represents the command speed of the current motion cycle or the next motion cycle
  • T_cycle represents the duration of the motion cycle.
  • the command pose of the next motion cycle can be calculated and judged using the Cartesian pose and Cartesian velocity of the end of the surgical instrument 211, for example, using the command pose and command of the current motion cycle
  • the speed is calculated and judged, or the actual pose and actual speed are used for calculation and judgment, or the command pose, actual pose, command speed and actual speed are used for calculation and judgment.
  • the command pose of the next motion cycle can be calculated and judged using the joint position and joint velocity of the surgical instrument 211, for example, using the command joint position and command joint speed for calculation and judgment, or using the actual joint position Calculate and judge with the actual joint speed, or use the command joint position, the actual joint position, the command joint speed and the actual joint speed to calculate and judge at the same time.
  • the command pose can be calculated according to the actual situation, and no further description is given here.
  • Steps beyond the virtual security perimeter 224 include:
  • Step B1 Obtain the command pose of the next motion cycle of the surgical instrument 211;
  • Step B2 If the command pose of the surgical instrument 211 in the next motion cycle does not exceed the virtual safety boundary 224, then determine the command pose as the expected pose of the next motion cycle;
  • Step B3 If the command pose of the next motion cycle of the surgical instrument 211 exceeds the virtual safety boundary 224, then refuse to execute the motion command of the next motion cycle, and determine the current pose of the surgical instrument 211 as the next The expected pose for the motion cycle.
  • the surgical instrument 211 when the surgical instrument 211 is already on the virtual safety boundary 224, the surgical instrument 211 can only move towards the inside of the virtual safety boundary 224, that is, only when the command pose of the next motion cycle is within the virtual safety boundary 224 or When the virtual safety boundary 224 is on, the corresponding motion command is responded; when the command pose of the next motion cycle of the surgical instrument 211 is outside the virtual safety boundary 224, that is, when the surgical instrument 211 will move to the outside of the virtual safety boundary 224 , then refuse to execute the corresponding motion command.
  • Option five restrict access to master-slave control, and prompt a warning message that the current pose of the surgical instrument 211 is outside the virtual safety boundary 224; for example, display the current position of the surgical instrument 211 on the display device 302 and/or the imaging device 102 The position is outside the virtual safety boundary 224 , requiring the operator (such as a nurse) to manually adjust the surgical instrument 211 into the virtual safety boundary 224 .
  • the virtual safety boundary 224 may be displayed on the display device 302 and/or the imaging device 102 by darkening the image at the same time.
  • Option six planning a return trajectory from the current pose of the surgical instrument 211 to within the virtual safety boundary 224, and driving the surgical instrument 211 to move along the return trajectory to within the virtual safety boundary 224;
  • the control unit of the slave device 200 can plan a safe return trajectory for the surgical instrument 211, and then drive the surgical instrument 211 to automatically return to the inside of the virtual safety boundary 224 along the return trajectory, and then the master operator 101 follows it. Master-slave posture matching.
  • Option 7 Plan the return trajectory from the current pose of the surgical instrument 211 to the virtual safety boundary 224, and prompt the return trajectory, so as to guide the master device 100 to control the surgical instrument 211 along the The return trajectory moves into the virtual safety boundary 224 .
  • the control unit of the slave device 200 can plan a safe return trajectory for the surgical instrument 211, but does not directly drive the surgical instrument 211 to automatically return, but prompts the return trajectory to guide the operator to drive the surgical instrument 211 to return.
  • images or text can be displayed on the display device 302 and/or the imaging device 102, prompting the operator that the surgical instrument 211 is outside the virtual safety boundary 224, and by displaying the image or text, the return track is given, or the return position is indicated.
  • the direction arrow of the trajectory guides the operator to actively operate and operate the surgical instrument 211 back into the virtual safety boundary 224 .
  • the control unit of the slave device 200 only accepts movement instructions along the return trajectory, that is, the operator can only operate the surgical instrument 211 to move toward the inside of the virtual safety boundary 224, but cannot drive the surgical instrument 211 to other directions. sports.
  • the surgical robot system can normally enter the master-slave control.
  • the slave device 200 further includes a force feedback unit; the force feedback unit is used to move the surgical instrument 211 from the virtual safety boundary 224 to the virtual safety boundary 224 , or when the surgical instrument 211 moves on the virtual safety boundary 224 , the boundary force information corresponding to the virtual safety boundary 224 is fed back to the master device 100 .
  • the boundary force information may include, for example, virtual boundary force or virtual boundary moment information.
  • the surgical instrument 211 moves to the virtual safety boundary 224, it will be limited by the virtual safety boundary 224. At this time, it can be considered that the surgical instrument 211 is subjected to the virtual boundary force or virtual boundary moment of the virtual safety boundary 224.
  • the step of feeding back the boundary force information corresponding to the virtual safety boundary 224 to the master device 100 includes: removing the Cartesian velocity at which the surgical instrument 211 moves out of the virtual safety boundary 224, such as setting it to 0, and at the same time
  • the main-end device 100 feeds back the feedback force or feedback torque that is opposite to the movement direction of the surgical instrument 211 and is proportional to the virtual boundary force or virtual boundary moment, to prompt the operator that the surgical instrument 211 has moved to the virtual safety boundary 224, Movement beyond the virtual safety boundary 224 cannot be continued.
  • the main operator 101 when the motion instruction generated by the main operator 101 will drive the command pose of the surgical instrument 211 to reach or exceed the virtual safety boundary 224, the main operator 101 will feedback with the surgical instrument 211
  • the direction of motion is opposite to that of the virtual boundary force or virtual boundary moment, and the feedback force or feedback torque is mapped in proportion to the magnitude of the virtual boundary force or virtual boundary moment.
  • FIG. 15 optionally, when the surgical instrument 211 moves from within the virtual safety boundary 224 to the virtual safety boundary 224, or when the surgical instrument 211 moves on the virtual safety boundary 224 , prompting warning information through visual images and/or sound and light.
  • Visual image prompts such as may be displayed by display device 302 and/or imaging device 102 .
  • the embodiment of the present application also provides a readable storage medium, on which a program is stored, and when the program is run, the safety control method for the surgical robot as described above is implemented.
  • the readable storage medium can be set independently or integrated in the surgical robot system, for example, it can be integrated in the control unit of the slave device 200, which is not limited in the present application.
  • the surgical robot safety control method includes: obtaining the surgical field collected in real time during the operation The scene graph is fused with preoperative image information to generate a virtual safety boundary; the current pose of the surgical instrument is obtained, and the relative positional relationship between the current pose of the surgical instrument and the virtual safety boundary is calculated; if the surgical If the current pose of the instrument is within or on the virtual safety boundary, the expected pose of the surgical instrument in the next motion cycle is restricted from exceeding the virtual safety boundary.
  • the relative relationship between the current pose of the surgical instrument and the virtual safety boundary is controlled to avoid accidentally injuring the surrounding normal tissues, blood vessels and Nerve, effectively improving the safety of surgical robot surgery.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Robotics (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Manipulator (AREA)

Abstract

本申请提供一种手术机器人系统、安全控制方法、从端装置及可读介质,手术机器人安全控制方法包括:获取术中实时采集的手术术野场景图,将其与术前影像信息融合,生成虚拟安全边界;获取手术器械的当前位姿,并计算所述手术器械的当前位姿与所述虚拟安全边界的相对位置关系;若所述手术器械的当前位姿位于所述虚拟安全边界内或所述虚拟安全边界上,则限制所述手术器械在下一运动周期的预期位姿不超出所述虚拟安全边界。如此配置,基于具体手术场景的需求,根据术前影像信息与实时采集的手术术野场景图,对手术器械的当前位姿与虚拟安全边界的相对关系进行控制,避免误伤周围正常组织、血管与神经,有效提高手术机器人手术操作的安全性。

Description

手术机器人系统、安全控制方法、从端装置及可读介质 技术领域
本申请涉及医疗器械技术领域,特别涉及一种手术机器人系统、安全控制方法、从端装置及可读介质。
背景技术
手术机器人的出现符合精准外科的发展趋势。手术机器人成为帮助医生完成手术有力工具,如da Vinci手术机器人已经应用在全球各大医院,因其伤害小、出血少、恢复快,为患者带来福音。
手术机器人其设计理念是采用微创伤方式,精准地实施复杂的外科手术。在传统的手术面临种种局限的情况下,发展出了手术机器人来替代传统手术,手术机器人突破了人眼的局限,采用立体成像技术,将内部器官更加清晰的呈现给操作者。在原来手伸不进的区域,机械臂能完成360度的转动、挪动、摆动、夹持,并避免抖动。创口小,出血少,恢复快,大大缩短了患者术后住院时间,术后存活率和康复率也能明显提高,受到广大医患的青睐,现在作为一种高端医疗器械,已广泛运用于各种临床手术中。
手术机器人的手术操作中,为了保障手术操作安全,一般会给手术机器人设定一个安全操作边界,使得手术机器人在安全边界内运动。现有手术机器人安全边界检测方法保护的只是手术机器人系统本身,例如通过手术机器人各关节机械限位来设定手术机器人的运动范围边界,保障手术机器人在运动时不撞机械限位,或者避免手术机器人进入与周围设备发生碰撞的危险区间。但这些安全边界与具体手术临床场景无关,现有手术机器人在手术操作时,不能识别手术术野区域内的安全操作区间,容易超出安全操作区间,戳伤正常组织、神经与血管,导致手术风险。此外,现有手术机器人操作超出安全操作区间时,医生不能得到有效信息反馈。
发明内容
本申请的目的在于提供一种手术机器人系统、安全控制方法、从端装置及可读介质,以解决现有的手术机器人的操作安全性无法得到保障的问题。
为解决上述技术问题,本申请提供一种手术机器人安全控制方法,其包括:获取术中实时采集的手术术野场景图,将其与术前影像信息融合,生成虚拟安全边界;
获取手术器械的当前位姿,并计算所述手术器械的当前位姿与所述虚拟安全边界的相对位置关系;
若所述手术器械的当前位姿位于所述虚拟安全边界内或所述虚拟安全边界上,则限制所述手术器械在下一运动周期的预期位姿不超出所述虚拟安全边界。
可选的,若所述手术器械的当前位姿位于所述虚拟安全边界内,限制所述手术器械在下一运动周期的预期位姿不超出所述虚拟安全边界的步骤包括:
获取所述手术器械在下一运动周期的指令位姿;
若所述手术器械在下一运动周期的指令位姿不超出所述虚拟安全边界,则将该指令位姿确定为下一运动周期的预期位姿;
若所述手术器械在下一运动周期的指令位姿超出所述虚拟安全边界,则选择执行以下选项之一:
选项一:限制所述手术器械的运动速度,以使所述手术器械在下一运动周期的预期位姿不超出所述虚拟安全边界;
选项二:调整所述手术器械在下一运动周期的指令位姿,以使所述手术器械在下一运动周期的预期位姿不超出所述虚拟安全边界;
选项三:同时限制所述手术器械的运动速度及调整所述手术器械在下一运动周期的指令位姿,以使所述手术器械在下一运动周期的预期位姿不超出所述虚拟安全边界;
选项四:拒绝执行下一运动周期的运动指令,将所述手术器械的当前位姿确定为下一运动周期的预期位姿。
可选的,所述下一运动周期的指令位姿是根据所述手术器械的笛卡尔位姿及笛卡尔速度进行计算以及判断的,或者,所述下一运动周期的指令位姿是根据所述手术器械的关节位置及关节速度进行计算以及判断的。
可选的,若所述手术器械的当前位姿位于所述虚拟安全边界上,限制所述手术器械在下一运动周期的预期位姿不超出所述虚拟安全边界的步骤包括:
获取所述手术器械在下一运动周期的指令位姿;
若所述手术器械在下一运动周期的指令位姿不超出所述虚拟安全边界,则将该指令位姿确定为下一运动周期的预期位姿;
若所述手术器械在下一运动周期的指令位姿超出所述虚拟安全边界,则拒绝执行下一运动周期的运动指令,将所述手术器械的当前位姿确定为下一运动周期的预期位姿。
可选的,若所述手术器械的当前位姿位于所述虚拟安全边界外,则选择执行以下选项之一:
选项五:限制进入主从控制,并提示所述手术器械的当前位姿位于所述虚拟安全边界外的警示信息;
选项六:规划自所述手术器械的当前位姿至所述虚拟安全边界内的回位轨迹,并驱动所述手术器械沿所述回位轨迹运动至所述虚拟安全边界内;
选项七:规划自所述手术器械的当前位姿至所述虚拟安全边界内的回位轨迹,并提示所述回位轨迹,以指引所述主端装置控制所述手术器械沿所述回位轨迹运动至所述虚拟安全边界内。
可选的,在所述手术器械由所述虚拟安全边界内运动至所述虚拟安全边界上时,或者所述手术器械在所述虚拟安全边界上运动时,将所述虚拟安全边界所对应的边界力信息反馈给主端装置。
可选的,将所述虚拟安全边界所对应的边界力信息反馈给主端装置的步骤包括:
将所述手术器械运动出虚拟安全边界的笛卡尔速度去除,同时在所述主端装置反馈与所述手术器械的运动方向相反,且与虚拟边界力或虚拟边界力矩大小等比例映射的反馈力或反馈力矩。
可选的,所述手术器械由所述虚拟安全边界内运动至所述虚拟安全边界上时,或者所述手术器械在所述虚拟安全边界上运动时,通过视觉图像和/或声光的方式提示警示信息。
可选的,获取术中实时采集的手术术野场景图,与术前影像信息融合,生成虚拟安全边界的步骤包括:
获取所述术前影像信息,并基于所述术前影像信息建立安全边界信息;
将所述手术术野场景图与所述术前影像信息融合,并基于所述安全边界信息生成虚拟安全边界。
可选的,将所述手术术野场景图与所述术前影像信息融合的步骤包括:
根据所述术前影像信息建立虚拟三维模型;
在所述虚拟三维模型中标记特征点,将所述特征点在所述虚拟三维模型中的位置及所述特征点在所述手术术野场景图中的位置进行匹配;
基于匹配的所述特征点,将所述虚拟三维模型的坐标系与所述手术术野场景图的坐标系进行配准,实现所述手术术野场景图与所述术前影像信息融合。
为解决上述技术问题,本申请还提供一种手术机器人的从端装置,其包括:机械臂、安全边界生成单元及控制单元;
所述机械臂用于连接和驱动手术器械及内窥镜;
所述安全边界生成单元用于获取所述内窥镜于术中实时采集的手术术野场景图,将其与术前影像信息融合,生成虚拟安全边界;
所述控制单元用于获取所述手术器械的当前位姿,并计算所述手术器械的当前位姿与所述虚拟安全边界的相对关系;若所述手术器械的当前位姿位于所述虚拟安全边界内或所述虚拟安全边界上,则限制所述手术器械在下一运动周期的预期位姿不超出所述虚拟安全边界。
可选的,所述从端装置还包括力反馈单元;
所述力反馈单元用于在所述手术器械由所述虚拟安全边界内运动至所述虚拟安全边界上时,或者所述手术器械在所述虚拟安全边界上运动时,将所述虚拟安全边界所对应的边界力信息反馈给主端装置。
可选的,所述安全边界生成单元包括:边界建立模块及图像处理模块;
所述边界建立模块用于获取所述术前影像信息,并基于所述术前影像信息建立安全边界信息;
所述图像处理模块用于将所述手术术野场景图与所述术前影像信息融合,并基于所述安全边界信息生成所述虚拟安全边界。
为解决上述技术问题,本申请还提供一种可读存储介质,其上存储有程序,所述程序运行时,实现如上所述的手术机器人安全控制方法。
为解决上述技术问题,本申请还提供一种手术机器人系统,其包括:手术机器人的主端装置及如上所述的手术机器人的从端装置;所述手术机器人系统根据如上所述的手术机器人安全控制方法进行安全控制。
可选的,所述主端装置包括主操作手,所述主操作手所产生的运动指令通过主从映射驱动所述手术器械运动;
在所述主操作手所产生的运动指令将驱动所述手术器械的指令位姿到达或超出所述虚拟安全边界时,所述主操作手上反馈有与所述手术器械的运动方向相反,且与虚拟边界力或虚拟边界力矩大小等比例映射的反馈力或反馈力矩。
可选的,所述手术机器人系统还包括显示设备和/或成像设备,在所述手术器械的当前位姿由所述虚拟安全边界内运动至所述虚拟安全边界上时,或者所述手术器械的当前位姿在所述虚拟安全边界上运动时,所述显示设备和/或所述成像设备用于显示警示信息。
综上所述,本申请提供的手术机器人安全控制方法、手术机器人的从端装置、可读存储介质及手术机器人系统中,所述手术机器人安全控制方法包括:获取术中实时采集的手术术野场景图,将其与术前影像信息融合,生成虚拟安全边界;获取手术器械的当前位姿,并计算所述手术器械的当前位姿与所述虚拟安全边界的相对位置关系;若所述手术器械的当前位姿位于所述虚拟安全边界内或所述虚拟安全边界上,则限制所述手术器械在下一运动周期的预期位姿不超出所述虚拟安全边界。
如此配置,基于具体手术场景的需求,根据术前影像信息与实时采集的手术术野场景图,对手术器械的当前位姿与虚拟安全边界的相对关系进行控制,避免误伤周围正常组织、血管与神经,有效提高手术机器人手术操作的安全性。
附图说明
本领域的普通技术人员将会理解,提供的附图用于更好地理解本申请,而不对本申请的范围构成任何限定。其中:
图1是本申请涉及的手术机器人系统的应用场景的示意图;
图2是本申请实施例的主从操作控制的原理图;
图3是本申请实施例的手术操作空间场景的示意图;
图4是本申请实施例的手术器械的机械可达操作区域的示意图;
图5是本申请实施例的获取术前影像信息的示意图;
图6是本申请实施例的术前影像信息、手术术野场景图与手术机器人坐标系融合的流程图;
图7是本申请实施例的虚拟安全边界的示意图;
图8是本申请实施例的手术器械相对虚拟安全边界的初始摆位位置的示意图;
图9是本申请实施例的手术器械相对虚拟安全边界的对应操作的流程图;
图10是本申请实施例确定手术器械下一运动周期的预期位姿的流程图;
图11是本申请实施例的第一控制算法的示意图;
图12是本申请实施例的第二控制算法的示意图;
图13是本申请实施例的第三控制算法的示意图;
图14是本申请实施例的反馈边界力信息的流程图;
图15是本申请实施例的显示警示信息的示意图。
附图中:
100-主端装置;101-主操作手;102-成像设备;103-脚踏手术控制设备;200-从端装置;201-底座;210-机械臂;221-手术器械;222-内窥镜;223-机械可达范围;224-虚拟安全边界;225-计算机;226-医学影像扫描装置;300-图像台车;302-显示设备;400-支撑装置;410-患者;411-病灶组织;412-敏感组织;413-血管神经组织;500-呼吸机和麻醉机;600-器械台。
具体实施方式
为使本申请的目的、优点和特征更加清楚,以下结合附图和具体实施例对本申请作进一步详细说明。需说明的是,附图均采用非常简化的形式且未按比例绘制,仅用以方便、 明晰地辅助说明本申请实施例的目的。此外,附图所展示的结构往往是实际结构的一部分。特别的,各附图需要展示的侧重点不同,有时会采用不同的比例。
如在本申请中所使用的,单数形式“一”、“一个”以及“该”包括复数对象,术语“或”通常是以包括“和/或”的含义而进行使用的,术语“若干”通常是以包括“至少一个”的含义而进行使用的,术语“至少两个”通常是以包括“两个或两个以上”的含义而进行使用的,此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括一个或者至少两个该特征,术语“近端”通常是靠近操作者的一端,术语“远端”通常是靠近患者即靠近病灶的一端,“一端”与“另一端”以及“近端”与“远端”通常是指相对应的两部分,其不仅包括端点,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。此外,如在本申请中所使用的,一元件设置于另一元件,通常仅表示两元件之间存在连接、耦合、配合或传动关系,且两元件之间可以是直接的或通过中间元件间接的连接、耦合、配合或传动,而不能理解为指示或暗示两元件之间的空间位置关系,即一元件可以在另一元件的内部、外部、上方、下方或一侧等任意方位,除非内容另外明确指出外。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请的目的在于提供一种手术机器人系统、安全控制方法、从端装置及可读介质,以解决现有的手术机器人在术野区域内的操作安全性无法得到保障的问题。
下面结合附图进行描述。
请参考图1至图15,其中,图1是本申请涉及的手术机器人系统的应用场景的示意图;图2是本申请实施例的主从操作控制的原理图;图3是本申请实施例的手术操作空间场景的示意图;图4是本申请实施例的手术器械的机械可达操作区域的示意图;图5是本申请实施例的获取术前影像信息的示意图;图6是本申请实施例的术前影像信息、手术术野场景图与手术机器人坐标系融合的流程图;图7是本申请实施例的虚拟安全边界的示意图;图8是本申请实施例的手术器械相对虚拟安全边界的初始摆位位置的示意图;图9是本申请实施例的手术器械相对虚拟安全边界的对应操作的流程图;图10是本申请实施例确定手术器械下一运动周期的预期位姿的流程图;图11是本申请实施例的第一控制算法的示意图;图12是本申请实施例的第二控制算法的示意图;图13是本申请实施例的第三控制算法的示意图;图14是本申请实施例的反馈边界力信息的流程图;图15是本申请实施例显示警示信息的示意图。
图1示出了一个手术机器人系统的应用场景,所述手术机器人系统包括主从式遥操作 的手术机器人,即所述手术机器人系统包括主端装置100(即医生端控制装置)、从端装置200(即患者端控制装置)、主控制器以及用于支撑手术对象进行手术的支撑装置400(例如,手术床)。需要说明的,在一些实施例中,支撑装置400也可替换为其它的手术操作平台,本申请对此不限。
所述主端装置100为遥操作手术机器人的操作端,并包含安装其上的主操作手101。所述主操作手101用于接收操作者的手部运动信息,以作为整个系统的运动控制信号输入。可选的,所述主控制器亦设置在所述主端装置100上。优选的,主端装置100还包括成像设备102,所述成像设备102可为操作者提供立体图像,为操作者进行手术操作提供手术术野场景图。所述手术术野场景图包括手术器械类型、数量、在腹中的位姿,病患器官组织以及周围器官组织血管的形态、布置等。可选的,主端装置100还包括脚踏手术控制设备103,操作者还可通过脚踏手术控制设备103,完成电切、电凝等相关操作指令的输入。
从端装置200为遥操作手术机器人的具体执行平台,并包括底座201及安装于其上的手术执行组件。所述手术执行组件包括机械臂210和器械,器械包括具体执行手术的手术器械221(如高频电刀等),以及用于辅助观察的内窥镜222等。在一个实施例中,所述机械臂包括调整臂和工具臂。所述工具臂作为机械不动点机构,用于驱动器械围绕机械不动点运动,以实现对支撑装置400上的患者410进行微创伤手术治疗。所述调整臂用于调整机械不动点在工作空间的位置。在另外一个实施例中,所述机械臂210为一个至少具有六个自由度的空间构型的机构,用于在程序控制下驱动手术器械221围绕一主动不动点运动。所述手术器械221用于执行具体的手术操作,如夹、切、剪等操作,或者用于辅助手术,如拍摄等。需要说明的,由于实际中手术器械221有一定的体积,上述的“不动点”应理解为一个不动区域。当然本领域技术人员可根据现有技术对“不动点”进行理解。
主控制器分别与主端装置100、从端装置200通信连接,用于根据主操作手101的运动控制手术执行组件的运动,具体而言,所述主控制器包括主从映射模块,所述主从映射模块用于获取所述主操作手101的末端位姿,以及预定的主从映射关系,获得手术执行组件的期望末端位姿,进而控制机械臂210驱动器械运动到期望的末端位姿。进一步,所述主从映射模块还用于接收器械功能操作指令(如电切、电凝等相关操作指令),控制手术器械221的能量驱动器,以释放能量实现电切、电凝等手术操作。一些实施例中,主控制器还接受手术执行组件所受到的作用力信息(例如人体组织器官对手术器械的作用力信息),并将手术执行组件所受到的作用力信息反馈给主操作手101,以使操作者能够更加直观地感受手术操作的反馈力。
进一步,所述医疗机器人系统还包括图像台车300。所述图像台车300包括:与所述内窥镜222通信连接内窥镜处理器(未图示)。所述内窥镜222用于获取腔内(指患者的体腔内)的手术术野场景图。所述内窥镜处理器用于对所述内窥镜222所获取的手术术野场景图进行图像化处理,并传输至所述成像设备102,以便于操作者观察到手术术野场景 图。可选的,所述图像台车300还包括显示设备302。所述显示设备302与所述内窥镜处理器通信连接,用于为辅助操作者(例如护士)实时提供显示手术术野场景图或其它的辅助显示信息。
请参考图2,在正常手术操作时,操作者(例如,主操作医生)在3D视觉的引导下,通过主从遥操作,对手术器械221的末端位姿进行控制。手术中,操作者坐在位于无菌区之外的主端装置100前,通过成像设备102观察传回的手术术野场景图,并通过操作主操作手101来控制手术执行组件运动,以完成各种手术操作。
可选的,在一些手术的应用场景中,手术机器人系统还包括呼吸机和麻醉机500以及器械台600等辅助部件,以用于供手术中使用。本领域技术人员可根据现有技术对这些辅助部件进行选择和配置,这里不再展开描述。
请参考图3,其示出了手术执行组件的手术操作空间场景,在一个示范例中,可在患者410体表打3~4个手术孔,并安装固定戳卡,手术孔分别用于供手术器械221与内窥镜222进入体内的手术操作空间。在手术操作时,手术孔的位置会保持不动(即形成不动点),以避免挤压损伤周围组织,操作者在内窥镜222所拍摄的手术术野场景图的指引下,通过操作手术器械221,对病灶组织411(如以前列腺为例)进行切割、电切电凝、缝合,来完成既定手术目标。
请参考图4,手术器械221通过患者410体表的手术孔进入手术操作空间,在保持手术孔不变动的前提下,手术器械221在患者410体内的手术操作空间是一个锥形区间,而且手术操作空间的机械可达范围223与其机械结构相关。为保证足够的操作空间与调整便利性,手术器械221的机械可达范围223一般比较大。但同时也带来一个风险隐患:手术器械221的机械可达范围223不仅覆盖整个病灶组织411的操作区间,同时也覆盖了正常的敏感组织412与重要的血管神经组织413,使得手术器械221在手术操作时容易误戳伤周围正常的敏感组织412与重要的血管神经组织413,特别是手术视野不可见的敏感组织412与重要的血管神经组织413。在手术操作时,操作者通过手术术野场景图可以看到手术操作空间的场景,在操作者的手术视野内,可以看到病灶组织411,同时也能看到部分敏感组织412与血管组织413,但也有其它敏感组织412与血管神经组织413不在手术视野内,如果手术器械221的运动超出手术视野,很容易误伤这些敏感组织412。
为了提高手术操作的安全性,本实施例提供一种手术机器人安全控制方法,所述手术机器人系统根据该手术机器人安全控制方法进行安全控制。所述手术机器人安全控制方法包括:
步骤S1:获取术中实时采集的手术术野场景图,将其与术前影像信息融合,生成虚拟安全边界224;
步骤S2:获取手术器械221的当前位姿,并计算所述手术器械221的当前位姿与所述虚拟安全边界224的相对位置关系;
步骤S3:若所述手术器械221的当前位姿位于所述虚拟安全边界224内或所述虚拟安全边界224上,则限制所述手术器械221在下一运动周期的预期位姿不超出所述虚拟安全边界224。
该手术机器人安全控制方法基于病灶组织411与周围的敏感组织412和血管神经组织413的相对空间位置关系,建立虚拟安全边界224作为手术的安全操作区间,使得手术器械221只能在虚拟安全边界224的内部运动,而不能突破虚拟安全边界224。该虚拟安全边界224覆盖了病灶组织411的完整操作空间,但同时将周围的敏感组织412和血管神经组织413保护在外围,以此来提升手术操作的安全性,避免误伤周围的敏感组织412和血管神经组织413。
在一个可替代的实施例中,从端装置200包括安全边界生成单元及控制单元,安全边界生成单元及控制单元如可集成在从端装置200中,也可独立设置,本实施例对此不限。所述安全边界生成单元用于获取所述内窥镜222于术中实时采集的手术术野场景图,与术前影像信息融合,生成虚拟安全边界224;所述控制单元用于获取所述手术器械221的当前位姿,并计算所述手术器械221的当前位姿与所述虚拟安全边界224的相对关系;若所述手术器械221的当前位姿位于所述虚拟安全边界224内或所述虚拟安全边界224上,则限制所述手术器械221在下一运动周期的预期位姿不超出所述虚拟安全边界224。
可选的,所述安全边界生成单元包括:边界建立模块及图像处理模块;所述边界建立模块用于获取所述术前影像信息,并基于所述术前影像信息建立安全边界信息;安全边界信息如可为基于术前影像图所得到的边界线等,所述图像处理模块用于将所述手术术野场景图与所述术前影像信息融合,并基于所述安全边界信息生成所述虚拟安全边界224。
请参考图5,在一个可替代的示范例中,安全边界生成单元可独立设置于一台计算机225中,术前影像信息如可在术前通过医学影像扫描装置226(如CT或MRI等)对患者410扫描来获取。在一个可选的实施例中,边界建立模块在得到术前影像信息后,经图像处理算法完成手术空间内的组织建模,并完成手术操作场景的三维重建。操作者在术前可根据腹腔内的情况,确定需要特别关注的关键组织,并标记特征点,以用于手术操作场景的三维重建。基于术前影像信息完成手术操作场景的三维重建,包括病灶组织411,周围的敏感组织412以及血管神经组织413的重建,确定病灶组织411在患者410体内的三维空间位置,以及相对于周围的敏感组织412与血管神经组织413的相对空间位置,从而建立安全边界信息。
请参考图6,在建立三维的手术操作场景后,可将术前影像信息与手术术野场景图融合,以及将手术术野场景图与手术机器人坐标系融合。可选的,获取术中实时采集的手术术野场景图,与术前影像信息融合,生成虚拟安全边界224的步骤包括:
获取所述术前影像信息,并基于所述术前影像信息建立安全边界信息;
将所述手术术野场景图与所述术前影像信息融合,并基于所述安全边界信息生成虚拟 安全边界224。
进一步的,将所述手术术野场景图与所述术前影像信息融合的步骤包括:
根据所述术前影像信息建立虚拟三维模型;
在所述虚拟三维模型中标记特征点,匹配所述特征点在所述虚拟三维模型中的位置及所述特征点在所述手术术野场景图中的位置;
基于匹配的所述特征点,将所述虚拟三维模型的坐标系与所述手术术野场景图的坐标系进行配准,实现所述手术术野场景图与所述术前影像信息融合。
通过术前影像信息建立三维的手术操作场景后,标记关键组织的空间位置信息,然后适配关键组织的特征点在手术术野场景图下的位置,完成手术操作场景坐标系与手术术野场景图坐标系的配准融合,实现术前影像信息与术中的手术术野场景图的融合。
通过术前影像信息与术中的手术术野场景图的融合,可以计算得到病灶组织411相对于周围的敏感组织412与血管神经组织413的相对空间关系,基于根据术前影像信息建立的安全边界信息,可以生成虚拟安全边界224。
进一步的,根据机械臂210(包括挂载手术器械211的器械臂与挂载内窥镜212的内窥镜臂)的运动位置信息(包括机械臂210的各关节的位置、速度信息),通过机器人正向运动学与运动学映射关系,计算得到手术器械211在内窥镜图像坐标系下的位姿,从而实现手术术野场景图与手术机器人坐标系的融合。由此,实现术前影像信息、术中的手术术野场景图以及手术机器人坐标系的融合,从而可以实时计算出手术器械211在手术操作场景中的三维空间位置。从而得到手术器械211相对于病灶组织411、敏感组织412与血管神经组织413之间的相对空间位置关系,以及手术器械211相对于虚拟安全边界224的相对空间位置关系,如图7所示。在一个可替代的示范例中,虚拟安全边界224为弧形曲面体,例如为椭球体、圆锥体或球体等,本领域技术人员可根据实际进行配置。
请参考图8,基于不同的术式,在术前准备阶段的手术器械211的初始摆位位置,手术器械211相对于虚拟安全边界224的位置分为以下三种:
A情况:手术器械211在虚拟安全边界224内。
B情况:手术器械211在虚拟安全边界224上。
C情况:手术器械211在虚拟安全边界224外。
在一个示范例中,计算手术器械221相对于虚拟安全边界224的位置关系的步骤如下:
在主从手术操作时,基于主端装置100的主操作手101的末端的笛卡尔位姿与笛卡尔速度,计算从端装置200的手术器械211的响应于主控制器发出的控制指令的指令位姿与指令速度,然后判断手术器械211相对于虚拟安全边界224的相对位置关系。
以虚拟安全边界224为椭球体形为例,其虚拟安全边界224的数学模型为:
x 2/a 2+y 2/b 2+z 2/c 2=1
式中:x、y、z表示手术器械211之末端的笛卡尔空间位置;a、b、c表示椭球体的 虚拟安全边界224在x、y、z方向的半径长度。
将手术器械211之末端的指令笛卡尔位姿映射到虚拟安全边界224的坐标系后,将其带入边界判断模型,即可计算得到手术器械211相对于虚拟安全边界224的相对位置关系。本领域技术人员可根据现有技术对边界判断模型进行设定和配置。
请参考图9,根据以上三种不同的情况,本实施例的手术机器人安全控制方法执行不同的对应操作流程。
请参考图10和图11,对于上述A情况,执行第一控制算法,若所述手术器械211的当前位姿位于所述虚拟安全边界224内,限制所述手术器械211在下一运动周期的预期位姿不超出所述虚拟安全边界224的步骤包括:
步骤A1:获取所述手术器械211下一运动周期的指令位姿;一般的,手术器械211的运动是基于主端装置100之主控制器所发出的控制指令来运动的,而控制指令是一帧一帧发出的,每一帧控制指令发出后,手术器械211响应并完成运动即为一个运动周期。
步骤A2:若所述手术器械211下一运动周期的指令位姿不超出所述虚拟安全边界224,则将该指令位姿确定为下一运动周期的预期位姿;此时,手术器械211实际上处于正常控制的状态下,主操作手101的运动指令被映射为手术器械211的运动。
步骤A3:若所述手术器械211下一运动周期的指令位姿超出所述虚拟安全边界224,则选择执行以下选项之一:
选项一:限制所述手术器械221的运动速度,以使所述手术器械211下一运动周期的预期位姿不超出所述虚拟安全边界224;该选项主要对手术器械221的运动速度进行限制,使得手术器械221在下个运动周期至多运动到虚拟安全边界224的位置而不会超过虚拟安全边界224。
选项二:调整所述手术器械221下一运动周期的指令位姿,以使所述手术器械221下一运动周期的预期位姿不超出所述虚拟安全边界224;该选项主要对手术器械221的指令位姿进行限制,使得手术器械221在下个运动周期至多运动到虚拟安全边界224的位置而不会超过虚拟安全边界224。
选项三:同时限制所述手术器械221的运动速度及调整所述手术器械221下一运动周期的指令位姿,以使所述手术器械221下一运动周期的预期位姿不超出所述虚拟安全边界224。
选项四:拒绝执行下一运动周期的运动指令,将所述手术器械221的当前位姿确定为下一运动周期的预期位姿。该选项为拒绝执行运动指令,使手术器械221保持于当前的位姿,可保证手术器械221的预期位姿不超出所述虚拟安全边界224。
在一个示范例中,手术器械211的当前位姿可通过获取手术器械211的当前指令位姿的方式来获取。若手术器械211的当前指令位姿在虚拟安全边界224内,即对于上述A情况,则对下一个运动周期的手术器械211的指令位姿进行计算,如下式所示:
Pcmd_next=Pcmd_cur+Vcmd_cur*T_cycle
式中:Pcmd_next表示下一个运动周期的指令位姿,Pcmd_cur表示当前运动周期的指令位姿,Vcmd_cur表示当前运动周期或下一运动周期的指令速度,T_cycle表示运动周期的时长。
将手术器械211在下一运动周期的指令位姿带入边界判断模型,即可获知下一运动周期手术器械211的指令位姿与虚拟安全边界224的相对位置关系。
具体的,在一些实施例中,下一运动周期的指令位姿如可使用手术器械211之末端的笛卡尔位姿与笛卡尔速度进行计算以及判断,例如使用当前运动周期的指令位姿与指令速度进行计算以及判断,或者使用实际位姿与实际速度进行计算以及判断,又或者同时使用指令位姿、实际位姿、指令速度与实际速度进行计算以及判断。在另一些实施例中,下一运动周期的指令位姿可使用手术器械211的关节位置与关节速度进行计算以及判断,例如使用指令关节位置与指令关节速度进行计算以及判断,或者使用实际关节位置与实际关节速度进行计算以及判断,又或者同时使用指令关节位置、实际关节位置、指令关节速度与实际关节速度进行计算以及判断。本领域技术人员可根据实际对指令位姿进行计算,这里不再展开说明。
请参考图12,对于上述B情况,执行第二控制算法,若所述手术器械211的当前位姿位于所述虚拟安全边界224上,限制所述手术器械211在下一运动周期的预期位姿不超出所述虚拟安全边界224的步骤包括:
步骤B1:获取所述手术器械211下一运动周期的指令位姿;
步骤B2:若所述手术器械211下一运动周期的指令位姿不超出所述虚拟安全边界224,则将该指令位姿确定为下一运动周期的预期位姿;
步骤B3:若所述手术器械211下一运动周期的指令位姿超出所述虚拟安全边界224,则拒绝执行下一运动周期的运动指令,将所述手术器械211的当前位姿确定为下一运动周期的预期位姿。
对于上述B情况,当手术器械211已经在虚拟安全边界224上时,则手术器械211只能往虚拟安全边界224的内部运动,即只有当下一个运动周期的指令位姿在虚拟安全边界224内或虚拟安全边界224上时,才响应对应的运动指令;当手术器械211的下一运动周期的指令位姿在虚拟安全边界224外时,即当手术器械211将往虚拟安全边界224的外部运动时,则拒绝执行对应的运动指令。
请参考图12,对于上述C情况,执行第三控制算法,若所述手术器械211的当前位姿位于所述虚拟安全边界224外,则选择执行以下选项之一:
选项五:限制进入主从控制,并提示所述手术器械211的当前位姿位于所述虚拟安全边界224外的警示信息;例如在显示设备302和/或成像设备102上显示当前手术器械211的位置在虚拟安全边界224外,需要操作者(如护士)手动将手术器械211调整进入虚拟 安全边界224内部。可选的,显示设备302和/或成像设备102上可同时通过加深图像,显示虚拟安全边界224。
选项六:规划自所述手术器械211的当前位姿至所述虚拟安全边界224内的回位轨迹,并驱动所述手术器械211沿所述回位轨迹运动至所述虚拟安全边界224内;从端装置200的控制单元可对手术器械211规划一条安全的回位轨迹,进而驱动手术器械211沿着该回位轨迹自动回位到虚拟安全边界224的内部,主操作手101再跟随地进行主从姿态匹配。
选项七:规划自所述手术器械211的当前位姿至所述虚拟安全边界224内的回位轨迹,并提示所述回位轨迹,以指引所述主端装置100控制所述手术器械211沿所述回位轨迹运动至所述虚拟安全边界224内。从端装置200的控制单元可对手术器械211规划一条安全的回位轨迹,但不直接驱动手术器械211自动回位,而是提示该回位轨迹,以引导操作者驱动手术器械211回位。例如显示设备302和/或成像设备102上可显示图像或文字,提示操作者手术器械211在虚拟安全边界224外,并通过显示图像或文字的方式,给出回位轨迹,或表示该回位轨迹的方向箭头指引,引导操作者主动操作,将手术器械211操作回虚拟安全边界224内。此时从端装置200的控制单元只接受沿该回位轨迹的运动指令,即此时操作者只能操作手术器械211往虚拟安全边界224的内部运动,而无法驱动手术器械211往其它的方向运动。
当手术器械211回到虚拟安全边界224内之后,手术机器人系统才能正常进入主从控制。
请参考图14,优选的,所述从端装置200还包括力反馈单元;所述力反馈单元用于在所述手术器械211由所述虚拟安全边界224内运动至所述虚拟安全边界224上时,或者所述手术器械211在所述虚拟安全边界224上运动时,将所述虚拟安全边界224所对应的边界力信息反馈给主端装置100。边界力信息如可包括虚拟边界力或虚拟边界力矩的信息。在一个示范例中,手术器械211在运动至虚拟安全边界224上时,将被虚拟安全边界224限制,此时可认为手术器械211受到虚拟安全边界224的虚拟边界力或虚拟边界力矩,需要说明的,该虚拟边界力或虚拟边界力矩实际上并不存在,而是由机械臂210上各关节的关节输出力矩来实现反馈。将所述虚拟安全边界224所对应的边界力信息反馈给主端装置100的步骤包括:将所述手术器械211运动出虚拟安全边界224的笛卡尔速度去除,如置为0,同时在所述主端装置100反馈与所述手术器械211的运动方向相反,与虚拟边界力或虚拟边界力矩大小等比例映射的反馈力或反馈力矩,以提示操作者手术器械211已经运动到虚拟安全边界224,不能继续向超越虚拟安全边界224的方向运动。优选的,可在主操作手101所产生的运动指令将驱动所述手术器械211的指令位姿到达或超出所述虚拟安全边界224时,所述主操作手101上反馈与所述手术器械211的运动方向相反,与虚拟边界力或虚拟边界力矩大小等比例映射的反馈力或反馈力矩。
在对主端装置100的主操作手101进行力反馈计算时,可根据力反馈控制理论与算法, 实现主操作手101的关节输出力矩结算,最终完成边界力反馈链路实现,将虚拟安全边界224所对应的边界力信息反馈到操作者手上,实现从端装置200的虚拟安全边界224的边界力信息在主端装置100的主操作手101上的力反馈的重建。
请参考图15,可选的,在所述手术器械211由所述虚拟安全边界224内运动至所述虚拟安全边界224上时,或者所述手术器械211在所述虚拟安全边界224上运动时,通过视觉图像和/或声光的方式提示警示信息。视觉图像的提示如可通过显示设备302和/或成像设备102显示。
进一步的,本申请实施例还提供一种可读存储介质,其上存储有程序,所述程序运行时,实现如上所述的手术机器人安全控制方法。该可读存储介质可独立设置,也可以集成设置于手术机器人系统中,如可集成在从端装置200的控制单元中,本申请对此不限。
综上所述,本申请提供的手术机器人安全控制方法、手术机器人的从端装置、可读存储介质及手术机器人系统中,所述手术机器人安全控制方法包括:获取术中实时采集的手术术野场景图,将其与术前影像信息融合,生成虚拟安全边界;获取手术器械的当前位姿,并计算所述手术器械的当前位姿与所述虚拟安全边界的相对位置关系;若所述手术器械的当前位姿位于所述虚拟安全边界内或所述虚拟安全边界上,则限制所述手术器械在下一运动周期的预期位姿不超出所述虚拟安全边界。如此配置,基于具体手术场景的需求,根据术前影像信息与实时采集的手术术野场景图,对手术器械的当前位姿与虚拟安全边界的相对关系进行控制,避免误伤周围正常组织、血管与神经,有效提高手术机器人手术操作的安全性。
需要说明的,上述若干实施例之间可相互组合。上述描述仅是对本申请较佳实施例的描述,并非对本申请范围的任何限定,本申请领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于权利要求书的保护范围。

Claims (17)

  1. 一种手术机器人安全控制方法,其特征在于,包括:
    获取术中实时采集的手术术野场景图,将其与术前影像信息融合,生成虚拟安全边界;
    获取手术器械的当前位姿,并计算所述手术器械的当前位姿与所述虚拟安全边界的相对位置关系;
    若所述手术器械的当前位姿位于所述虚拟安全边界内或所述虚拟安全边界上,则限制所述手术器械在下一运动周期的预期位姿不超出所述虚拟安全边界。
  2. 根据权利要求1所述的手术机器人安全控制方法,其特征在于,若所述手术器械的当前位姿位于所述虚拟安全边界内,限制所述手术器械在下一运动周期的预期位姿不超出所述虚拟安全边界的步骤包括:
    获取所述手术器械在下一运动周期的指令位姿;
    若所述手术器械在下一运动周期的指令位姿不超出所述虚拟安全边界,则将该指令位姿确定为下一运动周期的预期位姿;
    若所述手术器械在下一运动周期的指令位姿超出所述虚拟安全边界,则选择执行以下选项之一:
    选项一:限制所述手术器械的运动速度,以使所述手术器械在下一运动周期的预期位姿不超出所述虚拟安全边界;
    选项二:调整所述手术器械在下一运动周期的指令位姿,以使所述手术器械在下一运动周期的预期位姿不超出所述虚拟安全边界;
    选项三:同时限制所述手术器械的运动速度及调整所述手术器械在下一运动周期的指令位姿,以使所述手术器械在下一运动周期的预期位姿不超出所述虚拟安全边界;
    选项四:拒绝执行下一运动周期的运动指令,将所述手术器械的当前位姿确定为下一运动周期的预期位姿。
  3. 根据权利要求2所述的手术机器人安全控制方法,其特征在于,所述下一运动周期的指令位姿是根据所述手术器械的笛卡尔位姿及笛卡尔速度进行计算以及判断的,或者,所述下一运动周期的指令位姿是根据所述手术器械的关节位置及关节速度进行计算以及判断的。
  4. 根据权利要求1所述的手术机器人安全控制方法,其特征在于,若所述手术器械 的当前位姿位于所述虚拟安全边界上,限制所述手术器械在下一运动周期的预期位姿不超出所述虚拟安全边界的步骤包括:
    获取所述手术器械在下一运动周期的指令位姿;
    若所述手术器械在下一运动周期的指令位姿不超出所述虚拟安全边界,则将该指令位姿确定为下一运动周期的预期位姿;
    若所述手术器械在下一运动周期的指令位姿超出所述虚拟安全边界,则拒绝执行下一运动周期的运动指令,将所述手术器械的当前位姿确定为下一运动周期的预期位姿。
  5. 根据权利要求1所述的手术机器人安全控制方法,其特征在于,若所述手术器械的当前位姿位于所述虚拟安全边界外,则选择执行以下选项之一:
    选项五:限制进入主从控制,并提示所述手术器械的当前位姿位于所述虚拟安全边界外的警示信息;
    选项六:规划自所述手术器械的当前位姿至所述虚拟安全边界内的回位轨迹,并驱动所述手术器械沿所述回位轨迹运动至所述虚拟安全边界内;
    选项七:规划自所述手术器械的当前位姿至所述虚拟安全边界内的回位轨迹,并提示所述回位轨迹,以指引所述主端装置控制所述手术器械沿所述回位轨迹运动至所述虚拟安全边界内。
  6. 根据权利要求1所述的手术机器人安全控制方法,其特征在于,在所述手术器械由所述虚拟安全边界内运动至所述虚拟安全边界上时,或者所述手术器械在所述虚拟安全边界上运动时,将所述虚拟安全边界所对应的边界力信息反馈给主端装置。
  7. 根据权利要求6所述的手术机器人安全控制方法,其特征在于,将所述虚拟安全边界所对应的边界力信息反馈给主端装置的步骤包括:
    将所述手术器械运动出虚拟安全边界的笛卡尔速度去除,同时在所述主端装置反馈与所述手术器械的运动方向相反,且与虚拟边界力或虚拟边界力矩大小等比例映射的反馈力或反馈力矩。
  8. 根据权利要求1所述的手术机器人安全控制方法,其特征在于,在所述手术器械由所述虚拟安全边界内运动至所述虚拟安全边界上时,或者所述手术器械在所述虚拟安全边界上运动时,通过视觉图像和/或声光的方式提示警示信息。
  9. 根据权利要求1所述的手术机器人安全控制方法,其特征在于,获取术中实时采 集的手术术野场景图,将其与术前影像信息融合,生成虚拟安全边界的步骤包括:
    获取所述术前影像信息,并基于所述术前影像信息建立安全边界信息;
    将所述手术术野场景图与所述术前影像信息融合,并基于所述安全边界信息生成虚拟安全边界。
  10. 根据权利要求9所述的手术机器人安全控制方法,其特征在于,将所述手术术野场景图与所述术前影像信息融合的步骤包括:
    根据所述术前影像信息建立虚拟三维模型;
    在所述虚拟三维模型中标记特征点,将所述特征点在所述虚拟三维模型中的位置及所述特征点在所述手术术野场景图中的位置进行匹配;
    基于匹配的所述特征点,将所述虚拟三维模型的坐标系与所述手术术野场景图的坐标系进行配准,实现所述手术术野场景图与所述术前影像信息融合。
  11. 一种手术机器人的从端装置,其特征在于,包括:机械臂、安全边界生成单元及控制单元;
    所述机械臂用于连接和驱动手术器械及内窥镜;
    所述安全边界生成单元用于获取所述内窥镜于术中实时采集的手术术野场景图,将其与术前影像信息融合,生成虚拟安全边界;
    所述控制单元用于获取所述手术器械的当前位姿,并计算所述手术器械的当前位姿与所述虚拟安全边界的相对关系;若所述手术器械的当前位姿位于所述虚拟安全边界内或所述虚拟安全边界上,则限制所述手术器械在下一运动周期的预期位姿不超出所述虚拟安全边界。
  12. 根据权利要求11所述的从端装置,其特征在于,所述从端装置还包括力反馈单元;
    所述力反馈单元用于在所述手术器械由所述虚拟安全边界内运动至所述虚拟安全边界上时,或者所述手术器械在所述虚拟安全边界上运动时,将所述虚拟安全边界所对应的边界力信息反馈给主端装置。
  13. 根据权利要求11所述的从端装置,其特征在于,所述安全边界生成单元包括:边界建立模块及图像处理模块;
    所述边界建立模块用于获取所述术前影像信息,并基于所述术前影像信息建立安全边 界信息;
    所述图像处理模块用于将所述手术术野场景图与所述术前影像信息融合,并基于所述安全边界信息生成所述虚拟安全边界。
  14. 一种可读存储介质,其上存储有程序,其特征在于,所述程序运行时,实现根据权利要求1~10中任一项所述的手术机器人安全控制方法。
  15. 一种手术机器人系统,其特征在于,包括:手术机器人的主端装置及根据权利要求11~13中任一项所述的手术机器人的从端装置;所述手术机器人系统根据权利要求1~10中任一项所述的手术机器人安全控制方法进行安全控制。
  16. 根据权利要求15所述的手术机器人系统,其特征在于,所述主端装置包括主操作手,所述主操作手所产生的运动指令通过主从映射驱动所述手术器械运动;
    在所述主操作手所产生的运动指令将驱动所述手术器械的指令位姿到达或超出所述虚拟安全边界时,所述主操作手上反馈有与所述手术器械的运动方向相反,且与虚拟边界力或虚拟边界力矩大小等比例映射的反馈力或反馈力矩。
  17. 根据权利要求16所述的手术机器人系统,其特征在于,所述手术机器人系统还包括显示设备和/或成像设备,所述手术器械由所述虚拟安全边界内运动至所述虚拟安全边界上时,或者所述手术器械在所述虚拟安全边界上运动时,所述显示设备和/或所述成像设备用于显示警示信息。
PCT/CN2022/123328 2021-10-21 2022-09-30 手术机器人系统、安全控制方法、从端装置及可读介质 WO2023066019A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111228171.6 2021-10-21
CN202111228171.6A CN115998427A (zh) 2021-10-21 2021-10-21 手术机器人系统、安全控制方法、从端装置及可读介质

Publications (1)

Publication Number Publication Date
WO2023066019A1 true WO2023066019A1 (zh) 2023-04-27

Family

ID=86025345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/123328 WO2023066019A1 (zh) 2021-10-21 2022-09-30 手术机器人系统、安全控制方法、从端装置及可读介质

Country Status (2)

Country Link
CN (1) CN115998427A (zh)
WO (1) WO2023066019A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118383874A (zh) * 2024-06-26 2024-07-26 深圳市精锋医疗科技股份有限公司 应用于手术机器人组织识别的相关系统和方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001046399A (ja) * 1999-08-13 2001-02-20 Olympus Optical Co Ltd 手術用顕微鏡装置
CN104723350A (zh) * 2015-03-16 2015-06-24 珠海格力电器股份有限公司 工业机器人安全防护智能控制方法及系统
CN112245004A (zh) * 2020-10-20 2021-01-22 哈尔滨医科大学 一种基于术前模型和术中超声图像的消融规划检验方法
CN112618018A (zh) * 2020-12-16 2021-04-09 苏州微创畅行机器人有限公司 导航手术系统及其注册方法、计算机可读存储介质
CN112641513A (zh) * 2020-12-15 2021-04-13 深圳市精锋医疗科技有限公司 手术机器人及其控制方法、控制装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001046399A (ja) * 1999-08-13 2001-02-20 Olympus Optical Co Ltd 手術用顕微鏡装置
CN104723350A (zh) * 2015-03-16 2015-06-24 珠海格力电器股份有限公司 工业机器人安全防护智能控制方法及系统
CN112245004A (zh) * 2020-10-20 2021-01-22 哈尔滨医科大学 一种基于术前模型和术中超声图像的消融规划检验方法
CN112641513A (zh) * 2020-12-15 2021-04-13 深圳市精锋医疗科技有限公司 手术机器人及其控制方法、控制装置
CN112618018A (zh) * 2020-12-16 2021-04-09 苏州微创畅行机器人有限公司 导航手术系统及其注册方法、计算机可读存储介质

Also Published As

Publication number Publication date
CN115998427A (zh) 2023-04-25

Similar Documents

Publication Publication Date Title
US20240216090A1 (en) Structural adjustment systems and methods for a teleoperational medical system
JP7405432B2 (ja) 追跡カメラ技術を有するロボット手術デバイスならびに関連するシステムおよび方法
JP6138227B2 (ja) 腹腔鏡超音波ロボット外科手術システム
Mitsuishi et al. Remote ultrasound diagnostic system
JP5467615B2 (ja) 医療用ロボットシステムにおけるコンピュータディスプレイ上の補助画像の表示および操作
JP6741731B2 (ja) ロボット手術器具およびその組み立て方法
JP7469120B2 (ja) ロボット手術支援システム、ロボット手術支援システムの作動方法、及びプログラム
CN114311031B (zh) 手术机器人主从端延时测试方法、系统、存储介质和设备
KR20140139840A (ko) 디스플레이 장치 및 그 제어방법
CN109431606A (zh) 一种血管介入手术机器人组合系统及其使用方法
CN114533263B (zh) 机械臂碰撞提示方法、可读存储介质、手术机器人及系统
CN116196111B (zh) 一种眼科手术机器人系统及其控制方法
CN115500950A (zh) 内窥镜位姿调整方法、手术机器人及存储介质
WO2023066019A1 (zh) 手术机器人系统、安全控制方法、从端装置及可读介质
JP2020510474A (ja) 関節動作可能な遠位部分を持つツールを制御するためのシステム及び方法
WO2022199650A1 (zh) 计算机可读存储介质、电子设备及手术机器人系统
CN113081273B (zh) 打孔辅助系统及手术机器人系统
US12011236B2 (en) Systems and methods for rendering alerts in a display of a teleoperational system
WO2023065988A1 (zh) 碰撞检测方法、装置、设备、可读存储介质
CN114081631B (zh) 健康监测系统及手术机器人系统
CN115998439A (zh) 手术机器人的碰撞检测方法、可读存储介质及手术机器人
CN115363772A (zh) 手术机器人的调整方法、可读存储介质及手术机器人系统
US11850004B2 (en) Systems and methods for determining an arrangement of explanted tissue and for displaying tissue information
US20240070875A1 (en) Systems and methods for tracking objects crossing body wallfor operations associated with a computer-assisted system
WO2022253286A1 (zh) 术中不动点的调整方法、可读存储介质及手术机器人系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22882630

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22882630

Country of ref document: EP

Kind code of ref document: A1