WO2023065977A1 - 频谱资源共享方法、基站及计算机可读存储介质 - Google Patents

频谱资源共享方法、基站及计算机可读存储介质 Download PDF

Info

Publication number
WO2023065977A1
WO2023065977A1 PCT/CN2022/121237 CN2022121237W WO2023065977A1 WO 2023065977 A1 WO2023065977 A1 WO 2023065977A1 CN 2022121237 W CN2022121237 W CN 2022121237W WO 2023065977 A1 WO2023065977 A1 WO 2023065977A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
subframe
target
lte system
occupied
Prior art date
Application number
PCT/CN2022/121237
Other languages
English (en)
French (fr)
Inventor
范闻达
杨坚
李海波
耿海建
饶琼
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023065977A1 publication Critical patent/WO2023065977A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, relate to a spectrum resource sharing method, a base station, and a computer-readable storage medium.
  • Frequency-division duplexing (FDD) spectrum sharing (dynamic spectrum sharing, DSS) is a fifth-generation mobile communication (new air interface) technology (new radio, NR) and fourth-generation mobile communication (long-term evolution) LTE technology (long term evolution, LTE) shares the same spectrum resources to deploy NR and LTE network technologies. Due to scarce spectrum resources, some operators cannot independently deploy 5G networks. On the other hand, in the initial stage of 5G construction, the penetration rate of terminals supporting 5G is not high. Deploying 5G networks alone will lead to low utilization efficiency of spectrum resources, making the deployment of 5G networks difficult. The investment is large but the return is small. FDD DSS utilizes the existing LTE spectrum and deploys 5G networks on this basis to help operators quickly deploy 5G networks at low cost and build brand competitiveness.
  • FDD DSS utilizes the existing LTE spectrum and deploys 5G networks on this basis to help operators quickly deploy 5G networks at low cost and build brand competitiveness.
  • the physical channels of LTE and NR need to avoid each other to avoid conflicts, and LTE and NR will send their respective fixed channels on the same spectrum.
  • the NR DSS network additionally introduces LTE cell reference signal (cell reference signal, CRS), physical downlink control channel (Physical Downlink Control Channel, PDCCH), and spectrum resources of LTE system messages
  • LTE cell reference signal cell reference signal
  • PDCCH Physical Downlink Control Channel
  • the overhead makes the total available spectrum resources of the NR DSS network lower than that of the NR ONLY network under the same bandwidth, and the peak throughput of the NR DSS network is lower than that of the NR ONLY network.
  • Embodiments of the present application provide a spectrum resource sharing method, a base station, and a computer-readable storage medium, which are used to solve the problem of low spectrum resource utilization in an FDD spectrum sharing scenario in the related art.
  • the first aspect of the embodiment of the present application provides a spectrum resource sharing method, the method includes: the base station obtains the number of users in the radio resource control RRC connection state of the LTE cell; when the number of users in the RRC connection state is equal to 0, the base station sets the symbol 0
  • the PCFICH and PHICH occupied by the LTE system are punctured to give up the resource units occupied by the PCFICH and PHICH, and map the downlink service data of the NR system to the first target resource unit RE in the subframe.
  • the first target RE is the subframe
  • the time-frequency resource on symbol 0 occupied by the LTE system in the subframe is given to the NR system to send downlink service data, thereby improving the utilization of spectrum resources and further improving NR DSS peak throughput.
  • the configuration of the LTE system is 4 antenna ports
  • the method further includes: the base station maps the downlink service data to a second target RE in the subframe, and the second target RE is an unused RE of symbol 1 in the subframe REs occupied by the reference channel of the LTE system.
  • the LTE system still occupies the resource units on symbol 1 but there is no need to use them, part of the time-frequency resources occupied by the LTE system on symbol 1 can also be given up to the NR system to further improve the utilization of spectrum resources.
  • the configuration of the LTE system is 4 antenna ports
  • the method also includes: when the number of users in the RRC connection state is not equal to 0, the base station obtains the value of the control format indication CFI of the LTE system; when the value of the CFI is 1 , the base station maps the downlink service data to a third target RE in the subframe, where the third target RE is an RE with symbol 1 in the subframe that is not occupied by a channel of the LTE system.
  • the value of CFI is 1, indicating that some time-frequency resources on symbol 1 are not used by the LTE system without demand, and the unused spectrum resources on symbol 1 can be surrendered to the NR system.
  • the method further includes: the base station determines the target symbol occupied by the control channel of the NR system according to the number of antenna ports of the LTE system; the base station performs rate matching processing on the downlink service data to avoid the RE in the target symbol .
  • the subframe is an MBSFN subframe or a non-MBSFN subframe.
  • the second aspect of the embodiment of the present application also provides a base station, the base station includes: an acquisition module, used to acquire the number of users in the RRC connection state of an LTE cell; a mapping module, used to map the subframe The PCFICH and PHICH occupied by the LTE system are punctured, and the downlink service data of the NR system is mapped to the first target RE in the subframe.
  • the first target RE is the symbol 0 in the subframe that is not occupied by the reference channel of the LTE system. RE.
  • the configuration of the LTE system is 4 antenna ports
  • the mapping module is also used to: map the downlink service data to the second target RE in the subframe, and the second target RE is the symbol 1 in the subframe. REs occupied by reference channels of the LTE system.
  • the configuration of the LTE system is 4 antenna ports
  • the obtaining module is also used to obtain the value of the control format indication CFI of the LTE system when the number of users in the RRC connection state is not equal to 0
  • the mapping module is also used When the value of the CFI is 1, the downlink service data is mapped to the third target RE in the subframe, and the third target RE is an RE with symbol 1 in the subframe that is not occupied by a channel of the LTE system.
  • the base station further includes: a determining module, configured to determine the target symbol occupied by the control channel of the NR system according to the number of antenna ports of the LTE system; a rate matching module, configured to perform rate matching processing on the downlink service data , to avoid REs in the target symbol.
  • the subframe is an MBSFN subframe or a non-MBSFN subframe.
  • the third aspect of the embodiment of the present application also provides a base station, the base station includes a memory; and a processor coupled to the memory, and the processor is configured to execute the above-mentioned first aspect and any possibility thereof based on the instructions stored in the memory device.
  • the frequency spectrum resource sharing method of the implemented embodiment is configured to execute the above-mentioned first aspect and any possibility thereof based on the instructions stored in the memory device.
  • the fourth aspect of the embodiment of the present application also provides a computer-readable storage medium, including instructions, when the computer-readable storage medium is run on the base station, the base station executes the frequency spectrum as described in the above-mentioned first aspect and any possible implementation manners thereof. resource sharing method.
  • FIG. 1 is a schematic diagram of a communication system provided by the present application.
  • FIG. 2 is a schematic flowchart of an embodiment of a spectrum resource sharing method provided by the present application
  • 3 is a schematic diagram of time-frequency resource mapping of a resource block in a subframe when the number of users in the RCC connection state is 0 and the LTE antenna port is 1 or 2;
  • Figure 4 is a schematic diagram of time-frequency resource mapping of a resource block in a subframe when the number of users in the RCC connection state is 0 and the LTE antenna port is 4;
  • FIG. 5 is a schematic diagram of resource mapping of a subframe when the LTE antenna ports are 4 and the CFI is 1 provided by the present application;
  • FIG. 6 is a schematic structural diagram of an embodiment of a base station provided by the present application.
  • Fig. 7 is a schematic structural diagram of another embodiment of a base station provided in the present application.
  • Embodiments of the present application provide a spectrum resource sharing method, a base station, and a computer-readable storage medium, which are used to improve the utilization rate of spectrum resources in a frequency division duplex spectrum sharing scenario.
  • the embodiment of the present application may be applicable to a communication system, as shown in FIG. 1 , which is a schematic diagram of the communication system provided in the present application.
  • the communication system includes a base station and a terminal.
  • the terminal is a user equipment that communicates with the base station, including a 4G terminal and a 5G terminal, corresponding to a terminal in a target LTE cell and a terminal in a target NR cell in this embodiment of the application.
  • the base station is a dual-mode base station. One is LTE, and the other is NR. The frequency spectrum used by the LTE system and the NR system overlaps partially or completely.
  • the base station includes at least one LTE cell and at least one NR cell, and the number of the LTE cell is the same as the number of the NR cell.
  • the subcarriers of the NR system and the LTE system have the same spacing, for example, the subcarrier spacing is 15KHZ, so that the subcarriers of the NR system and the LTE system are orthogonal, and the interference between subcarriers can be reduced.
  • the lengths of the OFDM symbols of the subcarriers of the NR system and the LTE system are equal, for example, the lengths of the Orthogonal Frequency Division Multiplexing (OFDM) symbols are both one-seventh of a millisecond.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the interval between the subcarriers of the NR system and the LTE system may also be equal. In this case, a certain guard interval needs to be reserved between the NR system and the LTE system to reduce the interference between the subcarriers.
  • cyclic prefix (Cyclic Prefix, CP) length of the subcarriers of the NR system and the LTE system is equal.
  • the cyclic prefix refers to the prefix added before the OFDM symbol enters the channel, and is used to fill the guard interval.
  • FIG. 2 is a schematic flowchart of an embodiment of a spectrum resource sharing method provided in the present application.
  • the execution subject of this embodiment is a base station, and this embodiment includes the following steps:
  • the base station acquires the number of users in the RRC connection state of the LTE cell.
  • the base station acquires the number of users in the RRC connection state of the LTE cell, and can determine the spectrum requirement of the LTE cell according to the number of users in the RRC connection state.
  • RRC radio resource control
  • the base station When the number of users in the RRC connection state is equal to 0, the base station punctures the PCFICH and PHICH occupied by the LTE system in the subframe, and maps the downlink service data of the NR system to the first RE in the subframe.
  • the physical control format indicator channel (physical control format indicator channel, PCFICH), the physical control format indicator channel, indicates the location of the control information.
  • the PCFICH is a channel strongly related to the OFDM characteristics of the LTE system, and it carries the position information of the control channel in the OFDM symbol.
  • the physical hybrid ARQ indicator channel (PHICH) physical HARQ indicator channel carries the acknowledgment/non-confirmation (ACK/NACK) information of the hybrid automatic repeat request (HARQ).
  • the first target resource element is the RE that is not occupied by the reference channel of the LTE system with the symbol 0 in the subframe, including the RE occupied by the PCFICH, the RE occupied by the PHICH, and the physical downlink control channel (physical downlink control channel, PDCCH) occupied RE.
  • the subframe may be a multicast/multicast single frequency network (multicast broadcast single frequency network, MBSFN) subframe, or may be a non-MBSFN subframe.
  • MBSFN subframes may not send CRS, and only need 1 to 2 symbols to send PCFICH, PHICH and PDCCH, so the solution of this application is also applicable to MBSFN subframes, so that the time-frequency resources in different types of subframes can be fully and effectively ground use.
  • the number of users in the RRC connection state in the LTE cell is equal to 0, indicating that no user needs to transmit data in the current LTE cell, that is, the spectrum resource occupied by the control channel of the LTE system will not be used, so the control channel occupied by the LTE system in the subframe can be Give up to the NR system.
  • the base station since PCFICH and PHICH are usually mapped on the resource units corresponding to symbol 0 of the subframe, the base station performs puncturing processing on the PCFICH and PHICH occupied by the LTE system to give up the spectrum resources occupied by PCFICH and PHICH on symbol 0 . Since the cell reference signal (CRS) in the LTE system is sent discretely over the entire system bandwidth, the CRS will be sent in full bandwidth regardless of whether there are users receiving downlink data in the LTE cell, and the NR system needs to avoid the CRS.
  • CRS cell reference signal
  • the base station can further transfer the REs occupied by the CRS of the LTE system on symbol 0 (including the REs occupied by the punched PCFICH and PHICH) to the NR system, thereby improving the utilization of spectrum resources and improving the peak throughput of NR DSS .
  • the LTE system can be configured as 1-antenna port, 2-antenna port or 4-antenna port.
  • the control channel of the LTE system occupies the RE on subframe symbol 0; when the configuration of the LTE system is 4 antenna ports, the control channel of the LTE system occupies the subframe RE on symbols 0 and 1.
  • the base station can also map the downlink service data of the NR system to the subframe Among the REs of symbol 1 that are not occupied by the CRS of the LTE system, that is, on the second target RE.
  • the second target RE is specifically, for example, the RE occupied by the PDCCH of the LTE system on symbol 1.
  • Figure 3 is a schematic diagram of time-frequency resource mapping of a resource block in a subframe when the number of users in the RCC connection state is 0 and the number of LTE antenna ports is 1 or 2. It can be understood that the positions and numbers of CRS channels in the drawings of the embodiments of the present application are only examples, and are not intended to limit the present application.
  • the LTE antenna port is 1 or 2
  • the LTE system occupies symbol 0 as the control channel
  • the NR system occupies symbol 1 as the control channel
  • symbols 2 to 13 are used as the downlink traffic channels of the NR system.
  • the REs on symbol 0 except for the REs occupied by the CRS of the LTE system are not used, so the REs occupied by the PCFICH and PHICH on symbol 0 can be transferred to the NR system to transmit downlink services data.
  • FIG. 4 is a schematic diagram of time-frequency resource mapping of a resource block in a subframe when the number of users in the RCC connection state is 0 and the number of LTE antenna ports is 4.
  • the LTE antenna port is 4
  • the LTE system occupies symbols 0 and 1 as the control channel
  • the NR system occupies symbol 2 as the control channel
  • symbols 3 to 13 are used as the downlink traffic channels of the NR system. Since the number of users in the RCC connection state is 0, the REs on symbols 0 and 1 except for the REs occupied by the CRS of the LTE system are not used. Therefore, except for the REs occupied by the PCFICH and PHICH on symbols 0, they are called to the NR system for transmission.
  • REs on symbol 1 that are not occupied by the CRS of the LTE system can also be surrendered to the NR system for transmission of downlink service data.
  • the base station When the configuration of the LTE system is 4 antenna ports, but the number of users in the RCC connection state is not 0, the base station further obtains the value of the control format indicator (CFI) of the LTE system.
  • CFI control format indicator
  • the CFI is used to indicate the number of symbols occupied by the control channel of the LTE system.
  • the value of the CFI is 1, it indicates that the LTE system needs to occupy one symbol, that is, symbol 0, as the control channel.
  • the base station can map downlink service data to the third target RE in the subframe, and the third target RE is the channel of symbol 1 in the subframe that is not occupied by the LTE system , that is, the third target RE is an RE on symbol 1 that is not occupied by reference signals and downlink service data of the LTE system.
  • FIG. 5 is a schematic diagram of resource mapping of a subframe provided by the present application when the number of LTE antenna ports is 4 and the CFI is 1.
  • the LTE system occupies symbol 0 as a control channel, and occupies part of REs on symbols 1 to 13 to send LTE downlink service data.
  • the NR system occupies some REs on symbol 3 as control channels, and some REs on symbols 4 to 13 send NR downlink service data. Since the remaining part of REs on symbol 1 (REs not occupied by reference signals of the LTE system and downlink service data) are idle, the idle REs on symbol 1 can be used as the third target RE to send NR downlink service data.
  • the traffic channel is mapped to the symbol after the symbol occupied by the control channel. Since the NR downlink service data in this application is mapped to the RE before the NR control channel, the NR downlink service data needs to avoid the NR control channel.
  • the base station determines the target symbol occupied by the control channel of the NR system according to the number of antenna ports of the LTE system. For example, when the LTE antenna port is 1 or 2, the control channel of the NR system occupies symbol 1, and the target symbol is 1; when the LTE antenna port is 4, the control channel of the NR system occupies symbol 2, and the target symbol is 2.
  • the base station performs symbol-RB level rate matching processing on the downlink service data, so that the NR system knows which REs cannot be used for NR data scheduling on the downlink service data, so as to avoid REs in the target symbols.
  • the base station when the base station confirms that the control channel in the symbols occupied by the LTE system is not fully used, it schedules the idle REs to send NR downlink service data, thereby improving the utilization rate of spectrum resources in LTE and NR dynamic spectrum sharing scenarios, Further, the throughput rate of downlink service data of the NR system is improved.
  • a test is carried out based on the above embodiment: 20M and other bandwidth DSS scenarios, when there is no RRC connection state user in the LTE cell, NR downlink peak test.
  • Test results In the baseline FDD DSS scenario (without using the technical solution of this application), the NR DSS downlink peak throughput rate is measured to be 321.1Mbit/s. After using the bearer function of the present invention, the NR DSS downlink peak throughput rate is measured to be 366.53Mbit /s, the gain reaches 14.1%.
  • FIG. 6 is a schematic structural diagram of an embodiment of a base station provided in the present application.
  • the base station 600 includes:
  • the acquiring module 601 is configured to acquire the number of users in the RRC connected state of the LTE cell.
  • the mapping module 602 is used to puncture the PCFICH and PHICH occupied by the LTE system in the subframe when the number of users in the RRC connection state is equal to 0, and map the downlink service data of the NR system to the first target RE in the subframe.
  • a target RE is an RE with symbol 0 in the subframe that is not occupied by the reference channel of the LTE system.
  • the configuration of the LTE system is 4 antenna ports, and the mapping module 602 is also used to map the downlink service data to the second target RE in the subframe, and the second target RE is the symbol 1 in the subframe that is not used by the LTE system REs occupied by the reference channel.
  • the configuration of the LTE system is 4 antenna ports, and the obtaining module 601 is also used to obtain the value of the control format indication CFI of the LTE system when the number of users in the RRC connection state is not equal to 0; the mapping module 602 is also used for when the CFI When the value is 1, the downlink service data is mapped to the third target RE in the subframe, and the third target RE is an RE with symbol 1 in the subframe that is not occupied by a channel of the LTE system.
  • the base station also includes a determining module 603, configured to determine target symbols occupied by the control channel of the NR system according to the number of antenna ports of the LTE system; a rate matching module 604, configured to perform rate matching processing on the downlink service data to avoid RE in the target symbol.
  • a determining module 603 configured to determine target symbols occupied by the control channel of the NR system according to the number of antenna ports of the LTE system
  • a rate matching module 604 configured to perform rate matching processing on the downlink service data to avoid RE in the target symbol.
  • the subframe is an MBSFN subframe or a non-MBSFN subframe.
  • FIG. 7 is a schematic structural diagram of another embodiment of the base station provided in the present application.
  • the base station 700 includes: a memory 701 and a processor 702 coupled to the memory 701.
  • the processor 702 It is configured to execute the spectrum resource sharing method in any embodiment of the present invention based on the instructions stored in the memory 701 .
  • the memory 701 may include, for example, a system memory, a fixed non-volatile storage medium, and the like.
  • the system memory stores, for example, an operating system, an application program, a boot loader (Boot Loader), a database, and other programs.
  • the embodiment of the present application also relates to a computer storage medium, where the computer storage medium is used for storing computer software instructions used by the above-mentioned base station, which includes a program for executing a program designed for the base station.
  • the base station may be the base station as described in FIG. 6 or FIG. 7 .
  • the embodiment of the present application also relates to a computer program product, where the computer program product includes computer software instructions, and the computer software instructions can be loaded by a processor to implement the process in the above embodiment shown in FIG. 2 .
  • the disclosed system, device and method can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or part of the contribution to the prior art or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, read-only memory), random access memory (RAM, random access memory), magnetic disk or optical disc, etc., which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种频谱资源共享方法、基站及计算机可读存储介质,用于提高频分双工频谱共享的场景下频谱资源的利用率。本申请实施例方法包括:基站获取LTE小区的无线资源控制RRC连接态用户数;当RRC连接态用户数等于0时,基站将子帧中LTE系统占用的PCFICH和PHICH打孔,并将NR系统的下行业务数据映射到子帧中的第一目标RE,第一目标RE为子帧中符号0的未被LTE系统的参考信道占用的RE。

Description

频谱资源共享方法、基站及计算机可读存储介质
本申请要求于2021年10月22日提交中国专利局、申请号为202111235933.5、发明名称为“频谱资源共享方法、基站及计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,特别是涉及一种频谱资源共享方法、基站及计算机可读存储介质。
背景技术
频分双工(frequency-division duplexing,FDD)频谱共享(dynamic spectrum sharing,DSS)是一种第五代移动通信(新空口)技术(new radio,NR)和第四代移动通信(长期演进)技术(long term evolution,LTE)共用相同频谱资源部署NR和LTE网络的技术。由于稀缺的频谱资源,部分运营商无法独立部署5G网络,另一方面,在5G建设初期,支持5G的终端渗透率不高,单独部署5G网络将导致频谱资源利用效率较低,使得部署5G网络的投资大但收益少。FDD DSS利用LTE存量频谱,在此基础上部署5G网络,帮助运营商实现以低成本快速部署5G网络,打响品牌竞争力的目的。
在部署FDD DSS频谱过程中,LTE和NR的物理信道需要进行相互避让以避免冲突,并且,LTE和NR的将会在同一频谱上发送各自的固定信道。与相同频谱带宽大小的NR ONLY网络相比,NR DSS网络额外引入了LTE小区参考信号(cell reference signal,CRS),物理下行控制信道(Physical Downlink Control Channel,PDCCH),以及LTE系统消息的频谱资源开销,使得NR DSS网络的总可用频谱资源低于相同带宽下的NR ONLY网络,NR DSS网络的吞吐率峰值低于NR ONLY网络。
发明内容
本申请实施例提供了一种频谱资源共享方法、基站及计算机可读存储介质,用于解决相关技术中FDD频谱共享场景下频谱资源利用率低的问题。
本申请实施例第一方面提供一种频谱资源共享方法,该方法包括:基站获取LTE小区的无线资源控制RRC连接态用户数;当RRC连接态用户数等于0时,基站将子帧中符号0上LTE系统占用的PCFICH和PHICH打孔,以将PCFICH和PHICH占用的资源单元让出,并将NR系统的下行业务数据映射到子帧中的第一目标资源单元RE,第一目标RE为子帧中符号0的未被LTE系统的参考信道占用的RE。通过在LTE小区的RRC连接态用户数为0时,将子帧中LTE系统占用的符号0上的时频资源让给NR系统发送下行业务数据,从而提高频谱资源的利用率,进而提高NR DSS的峰值吞吐率。
在一些可能实现的方式中,LTE系统的配置为4天线端口,方法还包括:基站将下行业务数据映射到子帧中的第二目标RE,第二目标RE为子帧中符号1的未被LTE系统的参考信道占用的RE。当LTE系统还占用符号1上的资源单元但实际没有利用的需求时,LTE系统在 符号1上占用的部分时频资源同样可以让出给NR系统,进一步提高频谱资源的利用率。
在一些可能实现的方式中,LTE系统的配置为4天线端口,方法还包括:当RRC连接态用户数不等于0时,基站获取LTE系统的控制格式指示CFI的值;当CFI的值为1时,基站将下行业务数据映射到子帧中的第三目标RE,第三目标RE为子帧中符号1的未被LTE系统的信道占用的RE。CFI的值为1说明符号1上的部分时频资源LTE系统无需求不使用,则可以将符号1上不使用的频谱资源让出给NR系统。
在一些可能实现的方式中,方法还包括:基站根据LTE系统的天线端口数量确定NR系统的控制信道占用的目标符号;基站对所下行业务数据进行速率匹配处理,以避让所目标符号中的RE。
在一些可能实现的方式中,子帧为MBSFN子帧或非MBSFN子帧。
本申请实施例第二方面还提供一种基站,该基站包括:获取模块,用于获取LTE小区的RRC连接态用户数;映射模块,用于当RRC连接态用户数等于0时,将子帧中LTE系统占用的PCFICH和PHICH打孔,并将NR系统的下行业务数据映射到子帧中的第一目标RE,第一目标RE为子帧中符号0的未被LTE系统的参考信道占用的RE。
在一些可能实现的方式中,LTE系统的配置为4天线端口,映射模块还用于:将下行业务数据映射到子帧中的第二目标RE,第二目标RE为子帧中符号1的未被LTE系统的参考信道占用的RE。
在一些可能实现的方式中,LTE系统的配置为4天线端口,获取模块,还用于当RRC连接态用户数不等于0时,获取LTE系统的控制格式指示CFI的值;映射模块,还用于当CFI的值为1时,将下行业务数据映射到子帧中的第三目标RE,第三目标RE为子帧中符号1的未被LTE系统的信道占用的RE。
在一些可能实现的方式中,基站还包括:确定模块,用于根据LTE系统的天线端口数量确定NR系统的控制信道占用的目标符号;速率匹配模块,用于对所下行业务数据进行速率匹配处理,以避让所目标符号中的RE。
在一些可能实现的方式中,子帧为MBSFN子帧或非MBSFN子帧。
本申请实施例第三方面还提供一种基站,基站包括存储器;以及耦接至存储器的处理器,处理器被配置为基于存储在存储器装置中的指令,执行如上述第一方面及其任意可能实现的实施方式的频谱资源共享方法。
本申请实施例第四方面还提供一种计算机可读存储介质,包括指令,当计算机可读存储介质在基站上运行时,使得基站执行如上述第一方面及其任意可能实现的实施方式的频谱资源共享方法。
附图说明
图1为本申请提供的通信系统的示意图;
图2为本申请提供的频谱资源共享方法一实施例的流程示意图;
图3为RCC连接态用户数为0,LTE天线端口为1或2时子帧内一个资源块的时频资源映射示意图;
图4为RCC连接态用户数为0,LTE天线端口为4时子帧内一个资源块的时频资源映射示 意图;
图5为本申请提供的LTE天线端口为4、CFI为1时一子帧的资源映射示意图;
图6为本申请提供的基站的一实施例的结构示意图;
图7为本申请提供的基站的另一实施例的结构示意图。
具体实施方式
本申请实施例提供了一种频谱资源共享方法、基站及计算机可读存储介质,用于提高频分双工频谱共享的场景下频谱资源的利用率。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本申请实施例可以适用于通信系统,如图1所示,图1为本申请提供的通信系统的示意图。通信系统中包括基站和终端,终端是与基站进行通信的用户设备,包括4G终端和5G终端,对应本申请实施例中目标LTE小区的终端和目标NR小区的终端,基站为双制式基站,一种是LTE,另一种是NR,LTE系统与NR系统所使用的频谱部分重叠或全部重叠。基站包含至少一个LTE小区和至少一个NR小区,LTE小区的数目与NR小区的数目相同。
NR系统与LTE系统的子载波的间隔相等,如子载波的间隔都是15KHZ,如此可使NR系统和LTE系统的子载波正交,可以降低子载波之间的干扰。NR系统与LTE系统的子载波的OFDM符号的长度相等,如正交频分复用(orthogonal frequency division multiplexing,OFDM)符号的长度都是七分之一毫秒等。当然,NR系统与LTE系统的子载波的间隔也可以相等,该情况下,需要在NR系统与LTE系统之间预留一定的保护间隔,以降低子载波之间的干扰。
另外,NR系统与LTE系统的子载波的循环前缀(Cyclic Prefix,CP)长度相等,循环前缀是指OFDM符号在进入信道之前,加入的前缀,用于填充保护间隔。
如图2所示,图2为本申请提供的频谱资源共享方法一实施例的流程示意图。本实施例的执行主体为基站,本实施例包括如下步骤:
S201:基站获取LTE小区的RRC连接态用户数。
当用户终端处于无线资源控制(radio resource control,RRC)连接态时,说明该用户终端与基站有业务运行。基站获取LTE小区的RRC连接态用户数,能够根据RRC连接态用户数确定LTE小区对频谱需求情况。
S202:当RRC连接态用户数等于0时,基站将子帧中LTE系统占用的PCFICH和PHICH打孔,并将NR系统的下行业务数据映射到子帧中的第一目元RE。
其中,物理控制格式指示信道(physical control format indicator channel, PCFICH),物理控制格式指示信道,指明了控制信息所在的位置。PCFICH是LTE系统的OFDM特性强相关的信道,承载的是控制信道在OFDM符号中的位置信息。物理混合自动重传指示信道(physical hybird ARQ indicator channel,PHICH)物理HARQ指示信道,承载的是混合自动重传请求(hybrid sutomatic repeat request,HARQ)的确认/非确定(ACK/NACK)信息。
第一目标资源单元(resource element,RE)为子帧中符号0的未被LTE系统的参考信道占用的RE,包括PCFICH占用的RE、PHICH占用的RE和物理下行控制信道(physical downlink control channel,PDCCH)占用的RE。子帧可以为多播/组播单频网络(multicast broadcast single frequency network,MBSFN)子帧,也可以为非MBSFN子帧。MBSFN子帧可以不发送CRS,只需要1~2个符号发送PCFICH、PHICH和PDCCH,因而本申请的方案同样适用于MBSFN子帧,从而不同类型子帧中的时频资源都能够得到充分、有效地利用。
LTE小区中RRC连接态用户数等于0,说明当前LTE小区内无用户需要传输数据,也就是LTE系统控制信道占用的频谱资源不会被使用,因此LTE系统在子帧中占用的控制信道则可以让出给NR系统。
具体地,由于PCFICH和PHICH通常映射在子帧的符号0对应的资源单元上,因此基站对LTE系统占用的PCFICH和PHICH进行打孔处理,以让出PCFICH和PHICH在符号0上占用的频谱资源。由于LTE系统中的小区参考信号(cell reference signal,CRS)是在整个系统带宽上离散发送,无论LTE小区是否有用户接收下行数据,CRS都会全带宽发送,NR系统需要对CRS进行避让。因此,基站进一步可以调用符号0上除LTE系统的CRS占用的RE(包括已打孔的PCFICH和PHICH占用的RE)给NR系统,从而提高频谱资源的利用率,进而提高NR DSS的峰值吞吐率。
LTE系统可以是配置为1天线端口、2天线端口或4天线端口。LTE系统的配置为1天线端口或2天线端口的情况下,LTE系统的控制信道占用子帧符号0上的RE;LTE系统的配置为4天线端口的情况下,LTE系统的控制信道占用子帧符号0和1上的RE。因此,相较于1天线端口和2天线端口,当LTE系统的配置为4天线端口,且LTE小区的RRC连接态用户数为0时,基站还可以将NR系统的下行业务数据映射到子帧中符号1的未被LTE系统的CRS占用的RE中,即第二目标RE上。第二目标RE具体例如是符号1上的LTE系统的PDCCH占用的RE。
举例说明,如图3所示,图3为RCC连接态用户数为0,LTE天线端口为1或2时子帧内一个资源块的时频资源映射示意图。可以理解,本申请实施例附图中CRS信道的位置和数量仅作为示例,不作为对本申请的限制。LTE天线端口为1或2时,LTE系统占用符号0作为控制信道,NR系统占用符号1作为控制信道,符号2至13作为NR系统的下行业务信道。由于RCC连接态用户数为0,那么符号0上的除LTE系统的CRS占用的RE以外的RE均未被利用,因此可以将符号0上的PCFICH和PHICH占用的RE调用给NR系统传输下行业务数据。
如图4所示,图4为RCC连接态用户数为0,LTE天线端口为4时子帧内一个资源块的时频资源映射示意图。LTE天线端口为4时,LTE系统占用符号0和1作为控制信道,NR系统占用符号2作为控制信道,符号3至13作为NR系统的下行业务信道。由于RCC连接态用户数为0,那么符号0和1上的除LTE系统的CRS占用的RE以外的RE均未被利用,因此除了 将符号0上的PCFICH和PHICH占用的RE调用给NR系统传输下行业务数据,还可以将符号1上的未被LTE系统的CRS占用的RE让出给NR系统传输下行业务数据。
当LTE系统的配置为4天线端口,但RCC连接态用户数不为0时,基站进一步获取LTE系统的控制格式指示(control format indicatior,CFI)的值。CFI用于指示LTE系统控制信道占用的符号数,当CFI的值为1时,说明LTE系统需要占用1个符号即符号0作为控制信道。而符号1上的部分RE不会被LTE系统使用,因此基站可以将下行业务数据映射到子帧中的第三目标RE,第三目标RE为子帧中符号1的未被LTE系统的信道占用的RE,即第三目标RE为符号1上未被LTE系统的参考信号及下行业务数据占用的RE。
举例说明,如图5所示,图5为本申请提供的LTE天线端口为4、CFI为1时一子帧的资源映射示意图。其中,LTE系统占用符号0作为控制信道,并占用符号1至13上的部分RE发送LTE下行业务数据。NR系统占用符号3上的部分RE作为控制信道,符号4至13上的部分RE发送NR下行业务数据。由于符号1上剩余的部分RE(未被LTE系统的参考信号及下行业务数据占用的RE)空闲,因此可以将符号1上的空闲的RE作为第三目标RE发送NR下行业务数据。
一般情况下,业务信道映射到控制信道占用的符号之后的符号上,由于本申请NR下行业务数据映射到NR控制信道之前的RE上,因此NR下行业务数据需要对NR控制信道进行避让。具体地,基站根据LTE系统的天线端口数量确定NR系统的控制信道占用的目标符号。例如,LTE天线端口为1或2时,NR系统的控制信道占用符号1,目标符号为1;LTE天线端口为4时,NR系统的控制信道占用符号2,目标符号为2。基站对所下行业务数据进行符号-RB级速率匹配处理,以便NR系统知道哪些RE不可用于在下行业务数据上进行NR数据调度,以避让所目标符号中的RE。
本实施例中,基站通过确认LTE系统占用的符号中的控制信道未被充分使用时,调度其中空闲的RE发送NR下行业务数据,从而提高LTE和NR动态频谱共享场景下的频谱资源利用率,进而提高NR系统的下行业务数据的吞吐率。
为了验证本申请实施例的有益效果,基于上述实施例进行了测试:20M等带宽DSS场景,LTE小区内无RRC连接态用户时,NR下行峰值测试。测试结果:基线FDD DSS场景下(不使用本申请技术方案),NR DSS下行峰值吞吐率测得为321.1Mbit/s,使用本发明承载功能后,NR DSS下行峰值吞吐率测得的为366.53Mbit/s,增益达14.1%。
本申请提供的技术方案可降低LTE PDCCH对NR DSS的固定开销,最大降低开销幅度如下表所示:
Figure PCTCN2022121237-appb-000001
如图6所示,图6为本申请提供的基站的一实施例的结构示意图。该基站600包括:
获取模块601,用于获取LTE小区的RRC连接态用户数。
映射模块602,用于当RRC连接态用户数等于0时,将子帧中LTE系统占用的PCFICH和PHICH打孔,并将NR系统的下行业务数据映射到子帧中的第一目标RE,第一目标RE为子帧中符号0的未被LTE系统的参考信道占用的RE。
可选的,LTE系统的配置为4天线端口,映射模块602还用于将下行业务数据映射到子帧中的第二目标RE,第二目标RE为子帧中符号1的未被LTE系统的参考信道占用的RE。
可选的,LTE系统的配置为4天线端口,获取模块601还用于当RRC连接态用户数不等于0时,获取LTE系统的控制格式指示CFI的值;映射模块602还用于当CFI的值为1时,将下行业务数据映射到子帧中的第三目标RE,第三目标RE为子帧中符号1的未被LTE系统的信道占用的RE。
可选的,基站还包括确定模块603,用于根据LTE系统的天线端口数量确定NR系统的控制信道占用的目标符号;速率匹配模块604,用于对所下行业务数据进行速率匹配处理,以避让所目标符号中的RE。
本实施例中,子帧为MBSFN子帧或非MBSFN子帧。
本申请实施例还提供了一种基站,图7为本申请提供的基站的另一实施例的结构示意图,该基站700包括:存储器701以及耦接至该存储器701的处理器702,处理器702被配置为基于存储在存储器701中的指令,执行本发明中任意一个实施例中的频谱资源共享的方法。
其中,存储器701例如可以包括系统存储器、固定非易失性存储介质等。系统存储器例如存储有操作系统、应用程序、引导装载程序(Boot Loader)、数据库以及其他程序等。
本申请实施例还涉及一种计算机存储介质,该计算机存储介质用于储存为上述基站所用的计算机软件指令,其包括用于执行为基站所设计的程序。
该基站可以如图6或图7所描述的基站。
本申请实施例还涉及一种计算机程序产品,该计算机程序产品包括计算机软件指令,该计算机软件指令可通过处理器进行加载来实现上述图2所示实施例中的流程。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以 存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,read-only memory)、随机存取存储器(RAM,random access memory)、磁碟或者光盘等各种可以存储程序代码的介质。

Claims (12)

  1. 一种频谱资源共享方法,其特征在于,所述方法包括:
    基站获取长期演进LTE小区的无线资源控制RRC连接态用户数;
    当所述RRC连接态用户数等于0时,所述基站将子帧中LTE系统占用的物理控制格式指示信道PCFICH和物理混合自动重传指示信道PHICH打孔,并将新空口NR系统的下行业务数据映射到所述子帧中的第一目标资源单元RE,所述第一目标RE为所述子帧中符号0的未被所述LTE系统的参考信道占用的RE。
  2. 根据权利要求1所述的方法,其特征在于,所述LTE系统的配置为4天线端口,所述方法还包括:
    所述基站将所述下行业务数据映射到所述子帧中的第二目标RE,所述第二目标RE为所述子帧中符号1的未被所述LTE系统的所述参考信道占用的RE。
  3. 根据权利要求1所述的方法,其特征在于,所述LTE系统的配置为4天线端口,所述方法还包括:
    当所述RRC连接态用户数不等于0时,所述基站获取所述LTE系统的控制格式指示CFI的值;
    当所述CFI的值为1时,所述基站将所述下行业务数据映射到所述子帧中的第三目标RE,所述第三目标RE为所述子帧中符号1的未被所述LTE系统的信道占用的RE。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述方法还包括:
    所述基站根据所述LTE系统的天线端口数量确定所述NR系统的控制信道占用的目标符号;
    所述基站对所下行业务数据进行速率匹配处理,以避让所目标符号中的RE。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述子帧为MBSFN子帧或非MBSFN子帧。
  6. 一种基站,其特征在于,所述基站包括:
    获取模块,用于获取LTE小区的RRC连接态用户数;
    映射模块,用于当所述RRC连接态用户数等于0时,将子帧中LTE系统占用的PCFICH和PHICH打孔,并将NR系统的下行业务数据映射到所述子帧中的第一目标RE,所述第一目标RE为所述子帧中符号0的未被所述LTE系统的参考信道占用的RE。
  7. 根据权利要求6所述的基站,其特征在于,所述LTE系统的配置为4天线端口,所述映射模块还用于:将所述下行业务数据映射到所述子帧中的第二目标RE,所述第二目标RE为所述子帧中符号1的未被所述LTE系统的所述参考信道占用的RE。
  8. 根据权利要求6所述的基站,其特征在于,所述LTE系统的配置为4天线端口,
    所述获取模块,还用于当所述RRC连接态用户数不等于0时,获取所述LTE系统的控制格式指示CFI的值;
    所述映射模块,还用于当所述CFI的值为1时,将所述下行业务数据映射到所述子帧中的第三目标RE,所述第三目标RE为所述子帧中符号1的未被所述LTE系统的信道占用的RE。
  9. 根据权利要求6至8中任一项所述的基站,其特征在于,所述基站还包括:
    确定模块,用于根据所述LTE系统的天线端口数量确定所述NR系统的控制信道占用的目标符号;
    速率匹配模块,用于对所下行业务数据进行速率匹配处理,以避让所目标符号中的RE。
  10. 根据权利要求6至9中任一项所述的基站,其特征在于,所述子帧为MBSFN子帧或非MBSFN子帧。
  11. 一种基站,其特征在于,所述基站包括存储器;以及
    耦接至所述存储器的处理器,所述处理器被配置为基于存储在所述存储器装置中的指令,执行如权利要求1-5中任一项所述的频谱资源共享方法。
  12. 一种计算机可读存储介质,其特征在于,包括指令,当所述计算机可读存储介质在基站上运行时,使得所述基站执行所述权利要求1-5中任一项所述的频谱资源共享方法。
PCT/CN2022/121237 2021-10-22 2022-09-26 频谱资源共享方法、基站及计算机可读存储介质 WO2023065977A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111235933.5A CN116033432A (zh) 2021-10-22 2021-10-22 频谱资源共享方法、基站及计算机可读存储介质
CN202111235933.5 2021-10-22

Publications (1)

Publication Number Publication Date
WO2023065977A1 true WO2023065977A1 (zh) 2023-04-27

Family

ID=86057919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/121237 WO2023065977A1 (zh) 2021-10-22 2022-09-26 频谱资源共享方法、基站及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN116033432A (zh)
WO (1) WO2023065977A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117082531B (zh) * 2023-09-25 2024-01-12 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) 上下行解耦的频率复用方法、装置、电子设备及存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108366375A (zh) * 2017-01-26 2018-08-03 华为技术有限公司 一种共享下行频谱的方法和装置
CN110447295A (zh) * 2017-03-22 2019-11-12 Lg电子株式会社 执行波束恢复的方法和用户设备以及用于支持其的方法和基站

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108366375A (zh) * 2017-01-26 2018-08-03 华为技术有限公司 一种共享下行频谱的方法和装置
CN110447295A (zh) * 2017-03-22 2019-11-12 Lg电子株式会社 执行波束恢复的方法和用户设备以及用于支持其的方法和基站
US20200350974A1 (en) * 2017-03-22 2020-11-05 Lg Electronics Inc. Method and user equipment for executing beam recovery, and method and base station for supporting same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Study on Self Evaluation towards IMT-2020 Submission (Release 15)", 3GPP DRAFT; RP-182057 TR37.910 V0.3.0-RM, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 12 September 2018 (2018-09-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051551518 *

Also Published As

Publication number Publication date
CN116033432A (zh) 2023-04-28

Similar Documents

Publication Publication Date Title
US20220158805A1 (en) Code-Division Multiplexing (CDM) Groups for Multi-Source Transmission
US9918308B2 (en) Enhanced PDCCH overlapping with the PDCCH region
JP6844855B2 (ja) 端末、無線通信方法及び基地局
EP3468276B1 (en) Method for transmitting or receiving signal in wireless communication system and apparatus therefor
EP2445271B1 (en) Mobile station device, base station device, radio communication method and communication program
JP6017960B2 (ja) 複数のコンポーネント搬送波を支援する無線通信システムにおける信号送受信方法及び装置
US11647505B2 (en) Uplink signal transmission method and device
RU2735619C2 (ru) Терминальное устройство, устройство базовой станции и способ связи
US11343835B2 (en) Method for transmitting data, terminal device and network device
CN103220809B (zh) 一种下行物理控制信道的发送、接收方法及相应装置
WO2018059168A1 (zh) 传输数据的方法、网络设备和终端设备
US11206679B2 (en) Resource processing method and apparatus
EP2900026A1 (en) Terminal, base station, wireless communication method, and integrated circuit
JP7078549B2 (ja) 端末、無線通信方法、基地局及びシステム
US10075887B2 (en) Terminal device, integrated circuit, and communication method
TW201320800A (zh) 處理用於機器型態通訊之縮短的資源區塊的方法及其通訊裝置
EP3544347A1 (en) Method for transmitting information, network device and terminal device
WO2023065977A1 (zh) 频谱资源共享方法、基站及计算机可读存储介质
CN108306706A (zh) 一种数据接收、发送方法和接收、发送设备
WO2019214966A1 (en) Broadcast operation with bi-directional subframe slots in multibeam deployment
US9313006B2 (en) Methods and apparatus for resource element mapping
WO2019049349A1 (ja) ユーザ端末及び無線通信方法
CN116981062A (zh) 频域资源配置方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22882588

Country of ref document: EP

Kind code of ref document: A1