WO2023065841A1 - 一种适用于w波段的波导微带径向探针转换装置 - Google Patents

一种适用于w波段的波导微带径向探针转换装置 Download PDF

Info

Publication number
WO2023065841A1
WO2023065841A1 PCT/CN2022/116444 CN2022116444W WO2023065841A1 WO 2023065841 A1 WO2023065841 A1 WO 2023065841A1 CN 2022116444 W CN2022116444 W CN 2022116444W WO 2023065841 A1 WO2023065841 A1 WO 2023065841A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
radial probe
microstrip
conversion device
device suitable
Prior art date
Application number
PCT/CN2022/116444
Other languages
English (en)
French (fr)
Inventor
许靓
郭嘉帅
Original Assignee
深圳飞骧科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳飞骧科技股份有限公司 filed Critical 深圳飞骧科技股份有限公司
Publication of WO2023065841A1 publication Critical patent/WO2023065841A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/10Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced lines or devices with unbalanced lines or devices
    • H01P5/107Hollow-waveguide/strip-line transitions

Definitions

  • the utility model relates to the technical field of wireless communication and radar systems, in particular to a waveguide microstrip radial probe conversion device suitable for W wave band.
  • MMICs mmWave monolithic integrated circuits
  • the microstrip line has quickly become a very important transmission line form in the modern millimeter wave integrated circuit due to its easy integration characteristics, and various MMIC monolithic circuits are also designed and manufactured based on the microstrip transmission structure .
  • MMIC monolithic circuits are also designed and manufactured based on the microstrip transmission structure .
  • most of the circuit functional modules are connected by metal waveguide, because as the frequency continues to increase, the microstrip transmission line can no longer meet the requirements of low transmission loss in the system.
  • This utility model is to overcome at least one of the technical problems above, and to provide a radial probe conversion device suitable for waveguide microstrips in the W band, thereby reducing insertion energy consumption and extending the working frequency band.
  • the utility model provides a waveguide microstrip radial probe conversion device suitable for the W band, including:
  • a waveguide comprising a first waveguide and a second waveguide formed by bending and extending one end of the first waveguide, wherein the length of the first waveguide is greater than the length of the second waveguide;
  • the transition structure includes a substrate substrate and a metal conduction strip integrated on the substrate substrate;
  • the metal conduction strip includes a microstrip line, a high inductance line connected to the end of the microstrip line, and a radial probe connected to the end of the high inductance line, and the radial probe is arranged on the in the second waveguide;
  • the radius of the radial probe is 0.52 mm
  • the central angle of the radial probe is 45 degrees
  • the distance between the center line of the radial probe and the short-circuit surface of the second waveguide is 0.8 mm .
  • one side of the second waveguide is recessed inwardly to form a rectangular opening, and the radial probe is arranged in the rectangular opening.
  • the height, width and length of the rectangular window are 0.83 mm, 1.0 mm and 0.9 mm, respectively.
  • the radial probe is a fan-shaped structure.
  • the length of the high reactance line is 0.55mm, and the width is 0.18mm.
  • the depth at which the substrate enters the second waveguide is 1.0mm.
  • the width of the microstrip line is 0.26mm.
  • microstrip line is a standard 50-ohm microstrip line.
  • the base substrate is made of Rogers 4350 material.
  • the frequency range of the transition structure in the W band is 75-110 GHz.
  • the utility model uses radial probes for the probes of the transition structure.
  • the radial structure can realize electromagnetic energy coupling to a greater extent, thereby reducing insertion loss.
  • it can also play a role The role of expanding the working frequency band.
  • Fig. 1 is the structural representation of the waveguide microstrip radial probe conversion device applicable to the W wave band provided by the utility model;
  • Fig. 2 is the schematic diagram of the optimization simulation result of Fig. 1;
  • Fig. 3 is a structural schematic diagram of a waveguide microstrip radial probe conversion device suitable for the W band provided by the utility model;
  • Fig. 4 is the schematic diagram of the optimization simulation result of Fig. 3;
  • Fig. 5 is a structural schematic diagram of the transition structure provided by the present invention.
  • waveguide 2. first waveguide, 3. second waveguide, 4. transition structure, 5. substrate substrate, 6. metal conductive band, 7. microstrip line, 8. high inductance line, 9. Radial probe, 10. Fan-shaped structure.
  • the utility model provides a waveguide microstrip radial probe conversion device suitable for W band, including a waveguide 1 and a transition structure 4 arranged in the waveguide 1 .
  • the waveguide 1 includes a first waveguide 2 and a second waveguide 3 formed by bending and extending one end of the first waveguide 2 , wherein the length of the first waveguide 2 is greater than the length of the second waveguide 3 .
  • the transition structure 4 is disposed in the second waveguide 3 , and the transition structure 4 includes a substrate 5 and a metal conduction strip 6 integrated on the substrate 5 .
  • the substrate substrate 5 is the transmission medium of the radio frequency signal, and is also the support body of the entire transition structure 4.
  • the support body is convenient for installing and setting the metal conduction band 6, and the performance of the entire transition circuit can be improved by selecting a suitable substrate.
  • the metal conductive strip 6 includes a microstrip line 7, a high inductance line 8 connected to the end of the microstrip line 7 and a radial probe 9 connected to the end of the high inductance line 8, the diameter
  • the radial probe 9 is arranged in the second waveguide 3; wherein, the radius of the radial probe 9 is 0.52 mm, the central angle of the radial probe 9 is 45 degrees, and the radial probe 9
  • the distance between the center line of the second waveguide 3 and the short-circuit surface of the second waveguide 3 is 0.8 mm.
  • the material commonly used as the transition substrate substrate 5 is generally a low dielectric constant material, such as Rogers 4350/5880, quartz, alumina, etc., that is, the wide side a of the rectangular waveguide 1 port is 2.54mm, and the narrow side b is 1.27mm .
  • the connection between the transition conversion circuit and the MMIC chip basically adopts the hybrid integration form of gold wire bonding.
  • the waveguide 1 adopts WR-10 standard size, that is, the wide side a of the rectangular waveguide 1 port is 2.54 mm, and the narrow side b is 1.27 mm.
  • the thickness of the base substrate 5 is 0.127mm.
  • the size of the transition conversion circuit on the substrate substrate 5 is 7.092mm ⁇ 1mm ⁇ 0.127mm, and the thickness of the metal conduction strip 6 is 0.018mm.
  • one side of the second waveguide 3 is recessed inwardly to form a rectangular window, and the two radial probes 9 are disposed in the rectangular window.
  • the radial probe 9 is conveniently inserted into the second waveguide 3, and the insertion loss is effectively reduced.
  • the height, width and length of the rectangular window are 0.83 mm, 1.0 mm and 0.9 mm, respectively.
  • the size of the rectangular window is suitable, the insertion of the radial probe 9 is convenient, and the loss is reduced.
  • the radial probe 9 is a fan-shaped structure 10 .
  • the fan-shaped structure 10 can realize electromagnetic energy coupling to a greater extent, thereby reducing insertion loss, and on the other hand, it can also play a role in expanding the working frequency band.
  • the high reactance line 8 has a length of 0.55mm and a width of 0.18mm.
  • the depth at which the substrate substrate 5 enters the second waveguide 3 is 1.0 mm.
  • the width of the microstrip line 7 is 0.26 mm.
  • the microstrip line 7 is a standard 50-ohm microstrip line 7 . Since the radial probe 9 exhibits capacitive reactance in impedance, a section of high inductance line 8 with a slightly narrower width is connected in series between the radial probe 9 and the 50-ohm microstrip to achieve impedance matching while eliminating its capacitive effect.
  • the frequency range of the transition structure 4 in the W band is 75-110 GHz.
  • the waveguide 1-microstrip transition circuit is usually processed into a back-to-back structure, the input and output interfaces are on the same axis, and the waveguide 1 is bent with a certain curvature at a distance of 3.8mm from the short-circuit surface of the waveguide 1, and finally Output at 90 degrees to the connection, as shown in Figure 3.
  • the back-to-back structure of the waveguide 1-microstrip transition circuit is in the W frequency range, the return loss is >18dB, and the insertion loss is ⁇ 0.4dB.
  • the simulation results are shown in Figure 4.

Landscapes

  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)

Abstract

本实用新型提供了一种适用于W波段的波导微带径向探针转换装置,包括:波导,波导包括第一波导和由第一波导的一端弯折延伸形成的第二波导,其中,第一波导的长度大于第二波导的长度;过渡结构,过渡结构的一端设置于第二波导内,过渡结构包括衬底基片和集成于衬底基片上的金属导带;金属导带包括微带线、连接于微带线的末端的高感抗线和连接于高感抗线的末端的径向探针,径向探针设置于第二波导内;其中,径向探针的半径为0.52mm,径向探针的圆心角为45度,径向探针的中心线距离第二波导的短路面的距离为0.8mm。本实用新型能降低插入损耗,以及起到扩展工作频带的效果。

Description

一种适用于W波段的波导微带径向探针转换装置 【技术领域】
本实用新型涉及无线通讯和雷达系统技术领域,尤其涉及一种适用于W波段的波导微带径向探针转换装置。
【背景技术】
随着毫米波技术在无线通讯和雷达系统中的应用持续增长,低成本、高可靠性的毫米波单片集成电路(MMIC)的使用也日趋广泛。在使用MMIC芯片的毫米波接收系统中,微带线以其便于集成的特点很快成为现代毫米波集成电路中十分重要的传输线形式,各种MMIC单片电路也是基于微带传输结构设计制作的。但在毫米波电路系统中,各电路功能模块大多采用金属波导的连接方式,因为随着频率不断提升,微带传输线已不能满足系统中低传输损耗的要求。
然而,在该贴片流程中,在后端检查出元件单端焊接、元件移位等问题后,有问题的PCB板只能通过送往人工维修处进行重新焊接,存在换料流程上不够自动化,耗费人力成本的问题,同时若遇到大范围换料的情况,人工维修换料效率低下,且容易出错。
因此,实有必要提供一种新的适用于W波段的波导微带径向探针转换装置以解决上述技术问题。
【实用新型内容】
本实用新型的目的是克服上述至少一个技术问题,提供一种适用于W波段的波导微带,从而降低插入能耗及扩展工作频带的作用的径向探针转换装置。
为了实现上述目的,本实用新型提供一种适用于W波段的波导微带径向探针转换装置,包括:
波导,所述波导包括第一波导和由所述第一波导的一端弯折延伸形成的第二波导,其中,所述第一波导的长度大于所述第二波导的长度;
过渡结构,所述过渡结构的一端设置于所述第二波导内,所述过渡结构包括衬底基片和集成于所述衬底基片上的金属导带;
所述金属导带包括微带线、连接于所述微带线的末端的高感抗线和连接于所述高感抗线的末端的径向探针,所述径向探针设置于所述第二波导内;
其中,所述径向探针的半径为0.52mm,所述径向探针的圆心角为45度,所述径向探针的中心线距离所述第二波导的短路面的距离为0.8mm。
更进一步地,所述第二波导的一侧向内凹陷形成矩形开窗,所述径向探针设置于所述矩形开窗内。
更进一步地,所述矩形开窗的高度、宽度及长度分别为0.83mm、1.0mm及0.9mm。
更进一步地,所述径向探针为扇形结构。
更进一步地,所述高感抗线的长度为0.55mm,宽度为0.18mm。
更进一步地,所述衬底基片进入所述第二波导的深度为1.0mm。
更进一步地,所述微带线的宽度为0.26mm。
更进一步地,所述微带线为标准50欧姆微带线。
更进一步地,所述衬底基片为Rogers 4350材料制成。
更进一步地,所述过渡结构在W波段的频率范围为75-110GHz。
与相关技术相比,本实用新型通过将过渡结构的探针采用径向探针设置,径向结构一方面可以更大程度的实现电磁能量耦合,从而降低插入损耗,另一方面还可以起到扩展工作频带的作用。
【附图说明】
为了更清楚地说明本实用新型实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述 中的附图仅仅是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
图1为本实用新型提供的适用于W波段的波导微带径向探针转换装置的结构示意图;
图2为图1的优化仿真结果示意图;
图3为本实用新型提供的适用于W波段的波导微带径向探针转换装置的结构示意图;
图4为图3的优化仿真结果示意图;
图5是本实用新型提供的过渡结构的结构示意图。
图中,1、波导,2、第一波导,3、第二波导,4、过渡结构,5、衬底基片,6、金属导带,7、微带线,8、高感抗线,9、径向探针,10、扇形结构。
【具体实施方式】
下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本实用新型的一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本实用新型保护的范围。
请参阅图1-5所示,本实用新型提供一种适用于W波段的波导微带径向探针转换装置,包括波导1和设置于所述波导1内的过渡结构4。
所述波导1包括第一波导2和由所述第一波导2的一端弯折延伸形成的第二波导3,其中,所述第一波导2的长度大于所述第二波导3的长度。
所述过渡结构4的一端设置于所述第二波导3内,所述过渡结构4包括衬底基片5和集成于所述衬底基片5上的金属导带6。衬底基片 5是射频信号的传输媒介,同时也是整个过渡结构4的支撑体,该支撑体方便安装设置金属导带6,通过选择合适的衬底有助于整个过渡电路性能的提升。
所述金属导带6包括微带线7、连接于所述微带线7的末端的高感抗线8和连接于所述高感抗线8的末端的径向探针9,所述径向探针9设置于所述第二波导3内;其中,所述径向探针9的半径为0.52mm,所述径向探针9的圆心角为45度,所述径向探针9的中心线距离所述第二波导3的短路面的距离为0.8mm。常用作过渡衬底基片5的材料一般为低介电常数材料,比如,Rogers 4350/5880、石英、氧化铝等,即矩形波导1口的宽边a为2.54mm,窄边b为1.27mm。而过渡转换电路与MMIC芯片的连接基本采用金丝键合的混合集成形式。通过将过渡结构4的探针采用径向探针9设置,径向结构一方面可以更大程度的实现电磁能量耦合,从而降低插入损耗,另一方面还可以起到扩展工作频带的作用。
其中,波导1采用WR-10标准尺寸,即矩形波导1口的宽边a为2.54mm,窄边b为1.27mm。所述衬底基片5的厚度为0.127mm。衬底基片5上的过渡转换电路尺寸为7.092mm×1mm×0.127mm,金属导带6厚度0.018mm。
在本实施例中,所述第二波导3的一侧向内凹陷形成矩形开窗,两所述径向探针9设置于所述矩形开窗内。使得径向探针9方便插入到第二波导3内,有效降低插入损耗。
在本实施例中,所述矩形开窗的高度、宽度及长度分别为0.83mm、1.0mm及0.9mm。矩形开窗大小适宜,径向探针9插入方便,降低损耗。
在本实施例中,所述径向探针9为扇形结构10。扇形结构10一方面可以更大程度的实现电磁能量耦合,从而降低插入损耗,另一方面还可以起到扩展工作频带的作用。
在本实施例中,所述高感抗线8的长度为0.55mm,宽度为0.18mm。
在本实施例中,所述衬底基片5进入所述第二波导3的深度为1.0mm。
在本实施例中,所述微带线7的宽度为0.26mm。
在本实施例中,所述微带线7为标准50欧姆微带线7。由于径向探针9在阻抗上呈现容性电抗,因此在径向探针9与50欧姆微带之间串联了一段宽度稍窄的高感抗线8,以实现完成阻抗匹配的同时也消除了其容性效应。
在本实施例中,所述过渡结构4在W波段的频率范围为75-110GHz。
在本实施例中,通过用电磁仿真软件对提出的W波段矩形波导1-微带过渡结构4的进行仿真,仿真结果如图2所示,单转换波导1-微带过渡结构4在W波段75~110GHz频率范围内,回波损耗仍能>15dB,插损<0.3dB,性能优异。
进一步的,为了方便测试设备连接,通常将波导1-微带过渡电路都会加工成背靠背结构,输入输出接口在同一轴线上,在距离波导1短路面3.8mm处将波导1以一定曲率弯曲,最后与连接处成90度输出,具体如图3所示。波导1-微带过渡电路的背靠背结构在W频段范围内,回波损耗>18dB,插入损耗<0.4dB,仿真结果如图4所示。
以上所述的仅是本实用新型的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本实用新型创造构思的前提下,还可以做出改进,但这些均属于本实用新型的保护范围。

Claims (10)

  1. 一种适用于W波段的波导微带径向探针转换装置,其特征在于,包括:
    波导,所述波导包括第一波导和由所述第一波导的一端弯折延伸形成的第二波导,其中,所述第一波导的长度大于所述第二波导的长度;
    过渡结构,所述过渡结构的一端设置于所述第二波导内,所述过渡结构包括衬底基片和集成于所述衬底基片上的金属导带;
    所述金属导带包括微带线、连接于所述微带线的末端的高感抗线和连接于所述高感抗线的末端的径向探针,所述径向探针设置于所述第二波导内;
    其中,所述径向探针的半径为0.52mm,所述径向探针的圆心角为45度,所述径向探针的中心线距离所述第二波导的短路面的距离为0.8mm。
  2. 根据权利要求1所述的适用于W波段的波导微带径向探针转换装置,其特征在于,所述第二波导的一侧向内凹陷形成矩形开窗,所述径向探针设置于所述矩形开窗内。
  3. 根据权利要求2所述的适用于W波段的波导微带径向探针转换装置,其特征在于,所述矩形开窗的高度、宽度及长度分别为0.83mm、1.0mm及0.9mm。
  4. 根据权利要求1所述的适用于W波段的波导微带径向探针转换装置,其特征在于,所述径向探针为扇形结构。
  5. 根据权利要求1所述的适用于W波段的波导微带径向探针转换装置,其特征在于,所述高感抗线的长度为0.55mm,宽度为0.18mm。
  6. 根据权利要求1所述的适用于W波段的波导微带径向探针转换装置,其特征在于,所述衬底基片进入所述第二波导的深度为1.0mm。
  7. 根据权利要求1所述的适用于W波段的波导微带径向探针转 换装置,其特征在于,所述微带线的宽度为0.26mm。
  8. 根据权利要求1所述的适用于W波段的波导微带径向探针转换装置,其特征在于,所述微带线为标准50欧姆微带线。
  9. 根据权利要求1所述的适用于W波段的波导微带径向探针转换装置,其特征在于,所述衬底基片为Rogers 4350材料制成。
  10. 根据权利要求1所述的适用于W波段的波导微带径向探针转换装置,其特征在于,所述过渡结构在W波段的频率范围为75-110GHz。
PCT/CN2022/116444 2021-10-22 2022-09-01 一种适用于w波段的波导微带径向探针转换装置 WO2023065841A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202122558982.4U CN215989171U (zh) 2021-10-22 2021-10-22 一种适用于w波段的波导微带径向探针转换装置
CN202122558982.4 2021-10-22

Publications (1)

Publication Number Publication Date
WO2023065841A1 true WO2023065841A1 (zh) 2023-04-27

Family

ID=80573911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/116444 WO2023065841A1 (zh) 2021-10-22 2022-09-01 一种适用于w波段的波导微带径向探针转换装置

Country Status (2)

Country Link
CN (1) CN215989171U (zh)
WO (1) WO2023065841A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN215989171U (zh) * 2021-10-22 2022-03-08 深圳飞骧科技股份有限公司 一种适用于w波段的波导微带径向探针转换装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205646074U (zh) * 2016-03-23 2016-10-12 中国科学院微电子研究所 探针型波导微带转换装置
CN205666315U (zh) * 2016-06-06 2016-10-26 中国电子科技集团公司第三十八研究所 用于w波段波导—微带探针转换器
CN208093713U (zh) * 2017-12-22 2018-11-13 四川欣科奥电子科技有限公司 一种新型的毫米波波导到微带的过渡结构
US20180358677A1 (en) * 2015-10-02 2018-12-13 Limited Liability Company "Radio Gigabit" Waveguide-to-microstrip transition
JP2020145603A (ja) * 2019-03-07 2020-09-10 国立大学法人広島大学 導波管変換器
CN215989171U (zh) * 2021-10-22 2022-03-08 深圳飞骧科技股份有限公司 一种适用于w波段的波导微带径向探针转换装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180358677A1 (en) * 2015-10-02 2018-12-13 Limited Liability Company "Radio Gigabit" Waveguide-to-microstrip transition
CN205646074U (zh) * 2016-03-23 2016-10-12 中国科学院微电子研究所 探针型波导微带转换装置
CN205666315U (zh) * 2016-06-06 2016-10-26 中国电子科技集团公司第三十八研究所 用于w波段波导—微带探针转换器
CN208093713U (zh) * 2017-12-22 2018-11-13 四川欣科奥电子科技有限公司 一种新型的毫米波波导到微带的过渡结构
JP2020145603A (ja) * 2019-03-07 2020-09-10 国立大学法人広島大学 導波管変換器
CN215989171U (zh) * 2021-10-22 2022-03-08 深圳飞骧科技股份有限公司 一种适用于w波段的波导微带径向探针转换装置

Also Published As

Publication number Publication date
CN215989171U (zh) 2022-03-08

Similar Documents

Publication Publication Date Title
CN110444840B (zh) 基于枝节负载谐振器的双频差分带通滤波器
CN103022614B (zh) 基片集成波导与矩形金属波导的过渡结构
CN112382837B (zh) 一种端接电容圆弧探针形式的波导-微带转换结构
CN110212277B (zh) 一种带接地回路的波导到微带e面探针过渡结构
CN206864596U (zh) 一种毫米波差分微带线到矩形波导的过渡结构
WO2023065841A1 (zh) 一种适用于w波段的波导微带径向探针转换装置
CN107275735B (zh) 一种新型的同轴微带转换器
CN207282718U (zh) 一种宽频圆极化缝隙天线
CN105743533A (zh) 一种基于高温无压无缝烧结技术的小型化毫米波收发组件
CN202121040U (zh) 高缺陷共面波导双频滤波器
CN112018067B (zh) 基于宽带传输的bga陶瓷垂直互联结构及管壳
CN114784475B (zh) 带有微带滤波枝节的毫米波波导-悬置微带探针过渡结构
CN116960592A (zh) 一种宽带异面传输线
CN204424433U (zh) 一种缺陷地结构的新型演化微带巴伦
CN114171872B (zh) 一种宽带小型化毫米波双通道交叉电桥
CN113708030B (zh) 基于多模缝隙线谐振器的平衡超宽带带通滤波器
CN114374094A (zh) 基于脊间隙波导和倒置微带线间隙波导的垂直传输结构
CN110400999B (zh) 一种直线型e面探针微带波导过渡装置
CN112397860A (zh) 超宽带毫米波大功率平面薄膜负载
CN217387495U (zh) 一种应用于毫米波段设备的波导微带转换器
CN105530026A (zh) 一种小型化毫米波收发组件
CN111029706A (zh) 一种耦合器
CN114284676B (zh) 一种基于v型天线的波导-微带过渡结构
CN115377640B (zh) 一种具有跨接电容的微带定向耦合器
CN217062470U (zh) 信号传输结构及射频信号接收设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22882457

Country of ref document: EP

Kind code of ref document: A1