WO2023065423A1 - 一种水下无人无缆作业型机器人 - Google Patents

一种水下无人无缆作业型机器人 Download PDF

Info

Publication number
WO2023065423A1
WO2023065423A1 PCT/CN2021/129926 CN2021129926W WO2023065423A1 WO 2023065423 A1 WO2023065423 A1 WO 2023065423A1 CN 2021129926 W CN2021129926 W CN 2021129926W WO 2023065423 A1 WO2023065423 A1 WO 2023065423A1
Authority
WO
WIPO (PCT)
Prior art keywords
free operation
empennage
hatch
underwater unmanned
propeller
Prior art date
Application number
PCT/CN2021/129926
Other languages
English (en)
French (fr)
Inventor
田晓庆
葛浩凡
潘华辰
陈宏华
章雪挺
吕明
朱泽飞
杨俊毅
刘敬彪
Original Assignee
杭州电子科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州电子科技大学 filed Critical 杭州电子科技大学
Publication of WO2023065423A1 publication Critical patent/WO2023065423A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C11/00Equipment for dwelling or working underwater; Means for searching for underwater objects
    • B63C11/52Tools specially adapted for working underwater, not otherwise provided for

Definitions

  • the invention relates to the technical field of underwater robots, in particular to an underwater unmanned and cable-free operation robot.
  • Conventional unmanned unmanned underwater robot AUV can be mainly divided into the following two categories: monitoring type and operational type.
  • the monitoring type underwater robot is mainly equipped with different sensors to directly measure related parameters, only for its own speed and battery life.
  • the mileage and sensor installation position can be limited; the latter is affected by many factors such as its own endurance, its own stability and complex sea conditions, and there are few related products in the world.
  • a monitoring robot such as the Chinese patent application number 202020449668.5 discloses an underwater robot for underwater detection.
  • the vertical direction of the forward direction of the shell of the robot is thinner than the horizontal plane, and the underwater communication system is fixed on the shell.
  • the energy system, pressure detection system and pressure control cabin are set inside the shell;
  • the retractable stabilizer is fixed on the outer surface of the tail of the shell;
  • four vector thrusters are arranged on both sides of the shell;
  • the control system of the underwater robot is installed in the control cabin;
  • the shell of the pressure-resistant control cabin includes a cylindrical shell and a plurality of ribs, and the ribs are distributed on the outer surface of the cylindrical shell.
  • the cylindrical shell includes an upper shell plate, a lower shell plate and a decompression layer; the upper shell The outer wall of the plate and the inner wall of the lower shell are parallel slopes, and a gap is formed between the outer wall of the upper shell and the inner wall of the lower shell, and a decompression layer is inside the gap; the material of the decompression layer is buoyancy material, damping material or absorbing material. sound material.
  • An operation-type robot such as a Chinese patent application number 201810745727.0 discloses an underwater robotic arm system for an underwater robot, which consists of three parts: the underwater robot body, the underwater robotic arm, and the auxiliary adjustment device; the underwater robot body is without Cable-type autonomous underwater robot, its power system uses underactuation to realize the attitude and motion control of the underwater robot.
  • It is an underwater robotic arm with five functions.
  • the underwater robotic arm is composed of two rotary joints, two swing joints and a mechanical gripper.
  • the auxiliary adjustment device is installed directly below the underwater robot, near the stern.
  • the device is driven by a screw slider mechanism and a servo motor. By moving the slider, the center of gravity of the underwater robot can be adjusted. It is used to compensate the influence of the underwater robot arm on the longitudinal change of the center of gravity of the underwater robot during the movement process, so as to realize the attitude stability of the underwater robot.
  • the following focuses on the operational underwater robot. Since the AUV itself has its own energy, it must consider the energy saving and drag reduction of its shape. However, during the operation of the operational AUV, it needs to hover stably under complex sea conditions. resistance.
  • the mechanical arm of the traditional operational AUV is directly installed on the outside of the body and close to the bow. Due to the complex structure of the mechanical arm itself, it is greatly affected by hydrodynamic forces as a whole, and the greater the speed, the greater the resistance, making it difficult to increase the cruising speed. It also increases energy consumption. Therefore, the traditional operational AUV has poor battery life, insufficient operating range, and relatively high energy consumption.
  • the purpose of the present invention is to provide an underwater unmanned cable-free operation robot with better performance.
  • an underwater unmanned cable-free operation robot including a bow, a middle part and a stern, and the bow, the middle and the stern are all hollow structures
  • the middle part is provided with a mechanical arm lifting device and a door opening and closing mechanism
  • a first horizontal channel propeller and a first vertical channel propeller are provided on the bow
  • two Second vertical slot thruster and four main thrusters are provided.
  • the mechanical arm lifting device includes a fixed base installed in the middle part, a push rod mounted on the fixed base that can be stretched up and down, a mechanical arm connected to the lower end of the push rod, and A guide shaft that passes up and down on the fixed base and whose lower end is fixedly connected to the top of the mechanical arm.
  • the stern includes a base part and an upper vertical empennage, a left horizontal empennage, a lower vertical empennage and a right horizontal empennage are fixed on the outer wall of the base part, and the upper vertical empennage, the left horizontal empennage, the lower vertical empennage The empennage and the right horizontal empennage are equally spaced around the circumference and are each equipped with a main propeller.
  • one said second vertical slot propeller is respectively installed on said left horizontal tail and said right horizontal tail, and the position of said second vertical slot propeller is located at the position of said main propeller. the front side of the position.
  • the upper side edge of the upper vertical empennage, the left side edge of the left horizontal empennage, the lower side edge of the lower vertical empennage and the right side edge of the right horizontal empennage are all integral
  • the molding is connected with wing edges extending forward and backward to strengthen the guide shuttle-shaped wing.
  • the length of the bow is 750-1000mm
  • the ratio of the length of the bow to the length of the middle is 0.3 to 0.6
  • the ratio of the length of the stern to the length of the middle is 0.7 to 1.0.
  • the door opening and closing mechanism includes a drive motor installed in the middle part, a crank mounted on the drive motor, a rocker installed at the end of the crank, and the other end of the rocker Connect the hatch, the four corners of the hatch are defined in the slide rail, the slide rail is fixedly installed in the middle, when the hatch is closed, the crank is in line with the rocker and closes the hatch tightly, When the door is opened, the crank is again in-line with the rocker and keeps the door open.
  • a counterweight module is installed in the middle part around the cabin door.
  • the counterweight module includes strip-shaped flow-guiding lead blocks that are distributed at equal intervals around the cabin door and are scattered, and a supply cabin is formed between adjacent strip-shaped flow-guiding lead blocks.
  • a diversion channel that diverts the active flow of water when the door is opened or closed.
  • the mechanical arm of the robot of this application is installed on the telescopic platform and a hatch is installed below it.
  • the mechanical arm When cruising, the mechanical arm is retracted inside the robot and the hatch is closed to maintain a streamlined shape to reduce water resistance; during operation, the mechanical arm The landing gear is extended to ensure the working space of the robotic arm.
  • the mechanical arm In order to increase the operating capability of the AUV when it is hovering stably, the mechanical arm is designed near the center of gravity of the AUV. This will not only save its own energy consumption, but also improve its stable suspension. stop resistance.
  • the AUV's robotic arm innovatively adopts a middle opening. Compared with the traditional front-operating AUV, the operating range of the AUV's robotic arm is significantly increased during the operation of the same length of the robotic arm. Moreover, the main inspection of this operational AUV is the inspection of underwater submarine cables. Submarine cables are generally laid on the seabed, directly below the body of the AUV, thus further improving the operating range of the underwater operating AUV.
  • the robotic arm of the robot of this application stretches and rotates back and forth during the operation process, and it is really difficult to stabilize itself and the AUV.
  • the directional propeller structure and the unique tail design are used to comprehensively control the pitch angle, roll angle and roll angle of the underwater robot to achieve the effect of increasing its stability.
  • Fig. 1 is the schematic diagram of the three-dimensional structure after the upper part of the robot is opened in the embodiment
  • Fig. 2 is a three-dimensional structural schematic diagram of another viewing angle of Fig. 1;
  • Fig. 3 is the three-dimensional structure schematic diagram of the complete outer outline of the robot in the embodiment.
  • Fig. 4 is the specific structural schematic diagram of the robot in the hatch opening and closing mechanism in the embodiment
  • Fig. 5 is the schematic diagram of the three-dimensional structure of the mechanical arm lifting device of the robot in the embodiment
  • Fig. 6 is the schematic diagram of the three-dimensional structure of the stern part of the robot in the embodiment.
  • Fig. 7 is the left side view of the robotic arm of the robot in Fig. 3 stretched out of the cabin;
  • Figure 8 is a top view of the structure in Figure 7;
  • FIG. 9 is a schematic diagram of a three-dimensional structure with an optimized counterweight module in the middle of the robot.
  • an underwater unmanned cable-free operation robot including a bow 1, a middle 2 and a stern 3, and the bow 1, the middle 2 and the stern 3 are all hollow structure, the middle part 2 is provided with a mechanical arm lifting device and a hatch opening and closing mechanism, and the bow part 1 is provided with a first horizontal slot propeller 11 and a first vertical slot propeller 12, and the stern Two second vertical channel propellers 31 and four main propellers 32 are arranged on the part 3 .
  • the mechanical arm lifting device with the working type mechanical arm is arranged in the middle part 2, and is preferably arranged in the middle part of the middle part 2 near the front and back, which can be stored in a shrinkable manner.
  • the middle part can be stretched out to carry out operations.
  • the lifting range can be large and the working range will be wider. Therefore, it will also make the mechanical arm
  • the range of motion of the propeller will be very large.
  • the mechanical arm lifting device includes a fixed base 41 installed in the middle part 2, a push rod 42 mounted on the fixed base 41 that can be stretched up and down, and a mechanical arm connected to the lower end of the push rod 42. 43 and a guide shaft 44 that is vertically passed through the fixed base 41 and whose lower end is fixedly connected to the top of the mechanical arm 43 .
  • the fixed base 41 can adopt structures such as rectangular steel plates to be fixed with the inner wall of the middle part 2, for example, a fixed rod is fixedly connected between the two, and the push rod 42 passes through the fixed base 41 up and down and can be stretched up and down.
  • the lower end of push rod 42 just can move up and down with mechanical arm 43, and push rod 42 itself can be lifting equipment such as cylinder and its piston rod passes through fixed base 41 rear lower end to connect downwards Mechanical arm, these methods are all achievable, of course, in order to stabilize the lifting, it is also necessary to configure the guide shaft 44, the guide shaft also passes through the fixed base 41 up and down, and the top of the guide shaft is to be connected with a diameter larger than its main body
  • the limit head of diameter size since the fixed base 41 will have a hole structure consistent with the diameter of the main body of the guide shaft 44, the limit head can limit the upper side of these holes to prevent the guide shaft 44 from going downward. Fall out of the fixed base 41 .
  • the stern part 3 includes a base part 301 and an upper vertical empennage 3021, a left horizontal empennage 3022, a lower vertical empennage 3023 and a right horizontal empennage 3024 are fixed on the outer wall of the base part 301, the upper vertical empennage 3021, the left horizontal empennage
  • the horizontal empennage 3022 , the lower vertical empennage 3023 and the right horizontal empennage 3024 are distributed at equal intervals around the circumference and are respectively equipped with one main propeller 32 .
  • These four empennages are also arranged in a square matrix.
  • the main propeller 32 on the upper vertical empennage 3021 is located at its rear upper position
  • the main propeller 32 on the left horizontal empennage 3022 is located at its rear left position
  • the main propeller 32 on the lower vertical empennage 3023 is located at its rear.
  • the rear portion is lower
  • the main thruster 32 on the right horizontal tail 3024 is located at the rear portion to the right.
  • the main thruster 32 also can adopt the channel thruster, but its direction is to advance and retreat in the front-back direction.
  • the left horizontal empennage 3022 and the right horizontal empennage 3024 are also respectively equipped with a second vertical slot propeller 31, and the position of the second vertical slot propeller 31 is located at the position of the main propeller. 32 position on the front side.
  • the second vertical slot propeller 31 on the left horizontal empennage 3022 and the right horizontal empennage 3024 are all arranged at their center of gravity positions, and the second vertical slot propeller 31 works vertically, and also That is, advance and retreat in the up and down direction.
  • the left horizontal tail 3022 and the right horizontal tail 3024 and the connection structures on them are preferably left-right mirror-symmetrical.
  • the structural design of the upper vertical tail 3021 and the lower vertical tail 3023 is preferably symmetrical up and down. of.
  • the upper side of the upper vertical empennage 3021, the left side of the left horizontal empennage 3022, the lower side of the lower vertical empennage 3023 and the right side of the right horizontal empennage 3024 are each The one-piece molding is connected with wing edges extending back and forth to strengthen the diversion shuttle-shaped fin 3025 .
  • the edge of the wing is strengthened and the diversion shuttle-shaped wing 3025 improves the structural strength of the edge of the wing, and at the same time increases the force-bearing area on the edge.
  • the controllability is better, and it can better play a role in stable driving and precise suspension. stop effect.
  • the length of the bow 1 is 750-1000mm
  • the ratio of the length of the bow 1 to the length of the middle part 2 is 0.3 to 0.6
  • the length of the stern 3 The ratio to the length of the middle part 2 is 0.7 to 1.0.
  • the structural design of this size is more conducive to the realization of the robot of this embodiment.
  • the door opening and closing mechanism includes a drive motor 51 installed in the middle part 2, a crank 52 mounted on the drive motor, a rocker 53 installed at the end of the crank 52, and the rocker
  • the other end of 53 is connected to the hatch 54, the four corners of the hatch 54 are defined in the slide rail 55, and the slide rail 55 is fixedly installed in the middle part 2, when the hatch 54 is closed, the crank 52 and the crank
  • the rod 53 is collinear and closes the hatch 54 tightly.
  • the crank 52 is collinear again with the rocker 53 and keeps the hatch 54 open.
  • the hatch 54 when the hatch 54 is closed, when the crank 52 is in line with the rocker 53, the dead point formed by the connecting rod mechanism of the crank 52 and the rocker 53 closes the hatch 54 tightly.
  • the hatch door 54 when the hatch door 54 is opened, when the crank 52 and the rocking bar 53 are collinear again, the linkage mechanism returns to the dead point to keep the hatch door 54 open.
  • the hatch 54 can move left and right, and the hatch door opened in the middle part 2 needs to be smaller than or equal to the size of the hatch door.
  • One front and rear slide rails 55 extend left and right, and the left and right dimensions of the slide rails 55 are larger than the left and right sides of the hatch door. Size, can make hatch door can have enough left and right movement space to seal hatch door doorway like this and be stored in the part that slide rail 55 is not in hatch door doorway 56 place when opening.
  • the door opening and closing mechanism can adopt other existing door opening and closing structures.
  • An underwater unmanned cable-free operation robot comprising a bow 1, a middle 2 and a stern 3, the bow 1, the middle 2 and the stern 3 are all hollow structures, the bow, the middle and the stern of the present invention
  • the hollow structure of the stern can ensure the pressure balance inside and outside, so that the present invention can generally be applied to a water depth of 500 meters.
  • the length A of the bow is 750 to 1000mm, the length of the present embodiment refers to the size of the front and rear directions of the bow 1 to the stern 3, and the width is the size of the left and right;
  • the horizontal section of the bow is a semi-ellipse, and its length
  • the axis is a is 2*A, the major axis is the up-down direction, the minor axis b is 1.2*A to 1.5*A, and the minor axis is the left-right direction;
  • the ratio of the length B of the middle part to the length A of the bow is that A/B is 0.3 to 0.6;
  • the shape of the middle part is a hollow cylinder whose section is an upper ellipse and a lower moment, wherein the major axis of the semi-ellipse is c, and the long The axis is also up and down, the short axis is d, the short axis is left and right, the width of the rectangular part is also e, and the height is also f.
  • the ratio C/B of the length C of the stern to the length B of the middle part is 0.7 to 1.0; the outer wall of the stern is distributed with four fins at equal intervals of 90°, namely the upper vertical tail 3021, the left horizontal tail 3022, the lower tail Vertical empennage 3023 and right horizontal empennage 3024, left horizontal empennage 3022 and right horizontal empennage 3024 are all 0.3*B to 0.5*B in length before and after, and between the leftmost side of left horizontal empennage 3022 and the rightmost side of right horizontal empennage 3024
  • the spacing is 0.6*B to 0.7*B, the inclination angle between the left front edge of the left horizontal tail 3022 and the front and rear extension direction is 5°-15°, and the right horizontal tail 3024 is near the right front edge and the front and rear extension direction.
  • the angle of inclination is 5°-15°.
  • the front and rear lengths of the upper vertical tail 3021 and the lower vertical tail 3023 are both 0.2*B to 0.4*B, and the distance between the uppermost side of the upper vertical tail 3021 and the lowermost side of the lower vertical tail 3023 is 0.6*B to 0.7*B,
  • the inclination angle between the front side of the upper vertical empennage 3021 and the front and rear extension direction is 30°-60°
  • the inclination angle between the front side of the lower vertical empennage 3023 and the front and rear extension direction is 30°-60°.
  • the first vertical channel propeller 12 is installed at 1/3 of the bow from the bow to the stern, that is, at 1/3 of the length from front to rear, and the first horizontal channel propeller 11 is installed at the bow 7/10 of the length from front to back, that is, the horizontal propeller is further behind.
  • the mechanical arm lifting device includes a fixed base 41 , a push rod 42 , a guide shaft 44 and a mechanical arm 43 .
  • the fixed base 41 is fixed at 3/5 of the length from front to rear in the middle;
  • the push rod 42 is mounted on the fixed base 41 and the fixed base 41 is provided with a through hole concentric with the push rod 42 and for the push rod 42 to pass through
  • the hole structure around the guide shaft 44 is concentric with the fixed base 41 and passes through these holes up and down, and the lower end of the guide shaft 44 is fixed on the mechanical arm;
  • the mechanical arm has a cylindrical base 40, and the cylindrical base Concentric with the push rod 42 and fixedly connected with the lower end of the push rod 42; when the mechanical arm 43 is stored in the middle, the distance between the lowest end of the mechanical arm 43 and the closed hatch 5 is preferably 0.03*B.
  • the second vertical channel propeller 31 is preferably at the 3/5 place of the length from front to rear of the stern, between the second vertical channel propeller 31 of the left horizontal empennage 3022 and the second vertical channel propeller 31 of the right horizontal empennage 3024
  • the spacing between is preferably 0.75*B;
  • four main propellers are distributed at four empennage ends, and the spacing between the main propeller 32 of left horizontal stabilizer 3022 and the main propeller 32 of right horizontal stabilizer 3024 is preferably 0.53*B B, the distance between the main propeller 32 of the upper vertical empennage 3021 and the main propeller 32 of the lower vertical empennage 3023 is also preferably 0.53*B.
  • the overall length and central space of the present invention can be adjusted according to the number of loading equipment, and the overall energy consumption can be estimated according to the sensor working time and cruising time to determine a reasonable battery loading volume. Control devices, etc. On the other hand, it can also improve the stability of the autonomous underwater vehicle.
  • the large horizontal and vertical tail fins are conducive to maintaining a stable attitude during high-speed cruising, and are conducive to the rapid alignment of the underwater autonomous vehicle.
  • the direction of incoming flow, the specific adjustment method is as follows: if the ocean current in the working area is at the upper left of the operational underwater robot, the impact force received by the M surface of the upper vertical tail 3021 will be greater than its N surface, and the M surface is the left side.
  • the N surface is the surface of its wing edge to strengthen the diversion shuttle-shaped wing 3025.
  • the operational underwater robot will rotate around its own specific rotating shaft until the force on the M and N surfaces of the empennage is the same; at the same time, the left horizontal empennage
  • the impact force received by the H surface of 3022 is greater than that of its G surface, the upper side of the H surface, and the G surface is the surface of the shuttle wing 3025 whose wing edge strengthens the flow guide, and the operating underwater robot will rotate around its own specific rotation axis Until the forces on both sides of H and G are the same.
  • the bow of the operational underwater robot will be aligned with the direction of the incoming ocean current, part of the thrust of the main propeller will be used to resist the ocean current, and the rest will be used to resist the ocean current. Navigate to the work area.
  • the three-point vertical slot thrusters are easy to ensure the hovering accuracy of the autonomous underwater vehicle during operation.
  • the operating type underwater robot is designed to have slightly positive buoyancy, and adopts power to dive.
  • the special curved surface design of the bow and the smooth shape of the middle help to reduce the resistance during cruising, and the horizontal and vertical fins at the stern can improve stability.
  • the horizontal and vertical tail fins at the stern help the underwater autonomous vehicle to quickly align with the direction of the ocean current and use the main propeller to fight against the ocean current. stop height and stability.
  • a counterweight module is installed around the cabin door 54 in the middle part 2 .
  • the robot of the present invention is also like this, which is water-permeable. But even for such a robot, after opening the hatch, especially when the robot arm is lifted or operated, there will be a large range of motion from the robot arm to drive the water movement, and the affected water flow will have an impact on the stability of the robot. In particular, it will have a significant impact on hovering, so setting a configuration module here can effectively ensure the impact of water flow caused by the movement of the robotic arm and better improve stability.
  • the counterweight module includes strip-shaped flow guide lead blocks 551 that are distributed at equal intervals around the hatch 54 and are scattered, and a hatch door is formed between adjacent strip-shaped lead guide blocks 551 .
  • the diversion groove 552 that diverts the active water flow when it is opened or closed, the diversion groove 552 allows the activated active water flow to spread to the surroundings relatively uniformly, ensuring the stability of the robot as much as possible.
  • some buffer pads 500 are fixed on the surface of the bar-shaped guide block 551 , such as sponges with a porous structure to reduce the impact of active water flow.
  • a pay-off drum 501 is installed and connected to the bar-shaped lead block 551, and the pay-off drum 501 is a rotatable drum, for example, installed on the bar-shaped lead block 551 through a torsion spring structure, or Other existing drum structures that allow the pay-off drum 501 to rotate and then turn around, preferably have the above-mentioned torsion spring in the direction of rotation so that there is cushioning performance, and then the pay-off drum is wound with stainless steel wire or other nylon
  • the traction makes the mechanical arm not only guided by the guide shaft, driven by the push rod, but also pulled by the line around the door buckle, forming a three-dimensional support and telescopic drive mechanism, which can make the movement of the mechanical arm more stable , so that the structure of the whole robot is more stable, and the hovering effect is better.
  • the pay-off drum 501 needs to ensure the smooth flow of the wires, so as not to affect the lifting of the mechanical arm and the rotation during operation.
  • the wire end of the wire body 502 can be installed and connected to the base of the mechanical arm.

Abstract

一种水下无人无缆作业型机器人,涉及水下机器人的技术领域,包括艏部(1)、中部(2)和艉部(3),艏部(1)、中部(2)和艉部(3)均为中空结构,中部(2)设置有机械臂升降装置和舱门开合机构,艏部(1)上设置有一个第一水平槽道推进器(11)和一个第一垂直槽道推进器(12),艉部(3)上设置有两个第二垂直槽道推进器(31)和四个主推进器(32),既能实现一种水下无人无缆作业型机器人的高速巡航又能满足其作业所需要的稳定、精确悬停。

Description

一种水下无人无缆作业型机器人 技术领域
本发明涉及水下机器人的技术领域,具体为一种水下无人无缆作业型机器人。
背景技术
常规的无人无缆水下机器人AUV主要可以分为如下两类:监测型和作业型,其中监测类水下机器人主要搭载不同的传感器,直接进行相关参数的测量,只对本身的航速、续航里程和传感器安装位置等进行限制即可;后者由于受自身续航能力、自身平恒性及复杂海况等诸多因素的影响,国际上相关产品较少。
监测型的机器人如申请号为202020449668.5的中国专利公开的一种用于水下检测的水下机器人,所述机器人的壳体前进方向的垂直面方向薄于水平面,水下通信系统固定在壳体顶部,能源系统、耐压检测系统和耐压控制舱设置在壳体内部;可收放式稳定翼固定在壳体尾部的外表面;四个矢量推进器布置在壳体的两侧;耐压控制舱内装有水下机器人的控制系统;耐压控制舱的外壳包括柱壳和多个肋骨,肋骨分布在柱壳外表面,柱壳包括上壳板、下壳板和减压层;上壳板外侧壁与下壳板内侧壁为平行的斜面,上壳板外侧壁与下壳板内侧壁之间形成空隙,该空隙内减压层;减压层的材料为浮力材料、阻尼材料或吸声材料。
作业型的机器人如申请号为201810745727.0的中国专利公开的一种水下机器人 水下机械臂系统,由三部分组成:水下机器人本体、水下机械臂和辅助调节装置;水下机器人本体为无缆型的自主式水下机器人,其动力系统采用欠驱动方式实现水下机器人的姿态和运动控制,其驱动系统由单推进器和一个十字舵组成,安装在其艉部;本系统采用四自由度五功能的水下机械臂,该水下机械臂由两个回转关节和两个摆动关节和一个机械手抓组成,辅助调节装置安装在水下机器人的正下方,靠近艉部。该装置由丝杠滑块机构,和伺服电机驱动。通过移动滑块,能够实现对水下机器人重心的调节。用来补偿水下机械臂在运动过程中对水下机器人重心纵向变化影响,实现水下机器人姿态稳定。
下面着重来讲作业型的水下机器人,由于AUV本身自带能源,所以必须考虑其外形的节能减阻,但是由于作业型AUV作业过程中,复杂海况下需要稳定悬停,实际上就是增加自身阻力。
传统的作业型AUV的机械臂直接安装在本体的外部并靠近艏部,由于机械臂本身结构复杂,所以整体受水动力的影响较大,且速度越大阻力越大,难以提高巡航速度,而且还会增加能源消耗。所以传统的作业型AUV续航能力差,作业范围不够广,能耗也相对较高。
技术问题
本发明的目的是提供一种性能更好的水下无人无缆作业型机器人。
技术解决方案
本发明的上述技术目的是通过以下技术方案得以实现的:一种水下无人无缆作业型机器人,包括艏部、中部和艉部,所述艏部、中部和艉部均为中空结构,所述中部设置有机械臂升降装置和舱门开合机构,所述艏部上设置有一个第一水平槽道推进器和一个第一垂直槽道推进器,所述艉部上设置有两个第二垂直槽道推进器和四个主推进器。
作为对本发明的优选,所述机械臂升降装置包括安装在所述中部内的固定底座、所述固定底座上安装有的能上下伸缩的推杆、所述推杆的下端连接有的机械臂以及上下穿设在所述固定底座上并下端与所述机械臂顶部固定连接住的导向轴。
作为对本发明的优选,所述导向轴具有四个并围绕在所述推杆的外围呈圆周等间距分布。
作为对本发明的优选,所述艉部包括基础部分以及所述基础部分外壁上固定有上垂直尾翼、左水平尾翼、下垂直尾翼和右水平尾翼,所述上垂直尾翼、左水平尾翼、下垂直尾翼和右水平尾翼呈圆周等间距分布且各安装有一个所述主推进器。
作为对本发明的优选,所述左水平尾翼和所述右水平尾翼上还分别安装有一个所述第二垂直槽道推进器,所述第二垂直槽道推进器的位置位于所述主推进器的位置的前侧。
作为对本发明的优选,所述上垂直尾翼的上侧边部、所述左水平尾翼的左侧边部、所述下垂直尾翼的下侧边部以及右水平尾翼的右侧边部均各自一体成型连接有前后延伸的翼边沿加强导流梭形翅。
作为对本发明的优选,所述艏部的长度为750-1000mm,所述艏部的长度与所述中部的长度比例为0.3至0.6,所述艉部的长度与所述中部的长度比例为0.7至1.0。
作为对本发明的优选,所述舱门开合机构包括安装在所述中部内的驱动电机、所述驱动电机上安装有的曲柄,所述曲柄末端安装有的摇杆,所述摇杆另一端连接舱门,所述舱门四个角限定在滑轨中,所述滑轨固定安装在中部,所述舱门关闭时,所述曲柄与所述摇杆共线并关紧所述舱门,所述舱门打开时,所述曲柄与所述摇杆再次共线并使所述舱门保持打开状态。
作为对本发明的优选,所述中部内位于所述舱门的周围安装有配重模块。
为对本发明的优选,所述配重模块包括围绕在舱门周围呈圆周等间距分布并呈散射状的条形导流铅块,相邻的条形导流铅块之间形成有供舱门打开或者关闭时对活动的水流进行引流的导流槽。
有益效果
本发明的有益效果:本申请机器人的机械臂安装在伸缩平台上并在其下方安装有舱门,巡航时机械臂收回机器人内部并关闭舱门,以保持流线型以降低水阻力;作业时机械臂通过起落架伸出,保证机械臂作业空间,为增加AUV稳定悬停时的作业能力,将其机械臂设计在AUV的重心附近,这样不仅能节约本身的能耗,而且也能提升其稳定悬停的阻力。
进一步地,该AUV的机械臂创新性采用中部开口,相对于传统的前部作业型AUV,相同长度的机械臂作业过程中,显著增加了AUV机械臂的作业范围。而且该作业型AUV的主要巡检是针对水下海缆的巡检。海底电缆一般是敷设在海底的,是在AUV身体的正下方,因而,更进一步地提高了水下作业型AUV的作业范围。
本申请的机器人在作业过程中机械臂来回伸缩和旋转,确实难以将其自身和AUV稳定下来,为避免该状况的发生,在设计过程中在艏部和艉部依次添加了一个和两个垂向的推进器结构并配合独特的尾翼设计,以综合控制水下机器人的俯仰角、横滚角和侧翻角,以达到增加其稳定的效果。
附图说明
图1为实施例中的机器人上部打开后的立体结构示意图;
图2为图1另一视角的立体结构示意图;
图3为实施例中的机器人完整的外部轮廓的立体结构示意图;
图4为实施例中的机器人在舱门开合机构处的具体结构示意图;
图5为实施例中的机器人的机械臂升降装置的立体结构示意图;
图6为实施例中的机器人艉部处的立体结构示意图;
图7为图3中的机器人机械臂伸出舱外后的左视图;
图8为图7中结构的俯视图;
图9为机器人的中部具有优化有配重模块后的立体结构示意图。
本发明的实施方式
以下具体实施例仅仅是对本发明的解释,其并不是对本发明的限制,本领域技术人员在阅读完本说明书后可以根据需要对本实施例做出没有创造性贡献的修改,但只要在本发明的权利要求范围内都受到专利法的保护。
实施例,如图1-9所示,一种水下无人无缆作业型机器人,包括艏部1、中部2和艉部3,所述艏部1、中部2和艉部3均为中空结构,所述中部2设置有机械臂升降装置和舱门开合机构,所述艏部1上设置有一个第一水平槽道推进器11和一个第一垂直槽道推进器12,所述艉部3上设置有两个第二垂直槽道推进器31和四个主推进器32。本实例跟现有技术很大的一个区别在于,带有作业型机械臂的机械臂升降装置是在中部2设置的,并且优选是设置在中部2靠前后中间的位置上,其能收缩存储在中部的内侧空间,又能伸出中部进行作业,这样相比于现有技术中机械臂在舱外设置的,升降的幅度可以很大,作业范围会更宽,由此,也会使得机械臂的动作幅度会很大,通过上述推进器的设计,可以有效改善这一点,并能起到很大的稳定效果。
进一步,所述机械臂升降装置包括安装在所述中部2内的固定底座41、所述固定底座41上安装有的能上下伸缩的推杆42、所述推杆42的下端连接有的机械臂43以及上下穿设在所述固定底座41上并下端与所述机械臂43顶部固定连接住的导向轴44。固定底座41可以采用矩形钢板等结构与中部2的内壁固定住即可,例如两者之间固定连接一个固定杆等,推杆42上下穿过固定底座41并能上下伸缩,推杆42可以通过安装在中部的气缸等驱动上下活动,推杆42的下端就能带着机械臂43上下活动了,推杆42本身可以是气缸等升降设备并且其活塞杆向下穿过固定底座41后下端连接机械臂,这些方式都是可以实现的,当然,为了升降的稳定,还需要配置导向轴44,导向轴也是上下穿过固定底座41的,并且导向轴的顶部是要连接有直径尺寸大于其主体直径尺寸的限位头,由于固定底座41上会开设跟导向轴44主体部分直径尺寸一致的孔洞结构,这样限位头就能在这些孔洞上进行上侧的限位,防止导向轴44向下掉落掉出固定底座41。
作为优选,所述导向轴44具有四个并围绕在所述推杆42的外围呈圆周等间距分布,如果是四个导向轴44,也就是一个正方形的矩阵排布的结构,结构相对稳定。
作为优选,所述艉部3包括基础部分301以及所述基础部分301外壁上固定有上垂直尾翼3021、左水平尾翼3022、下垂直尾翼3023和右水平尾翼3024,所述上垂直尾翼3021、左水平尾翼3022、下垂直尾翼3023和右水平尾翼3024呈圆周等间距分布且各安装有一个所述主推进器32,这四个尾翼也是呈正方形的矩阵排布的。上垂直尾翼3021上的主推进器32位于其后部靠上的位置,左水平尾翼3022上的主推进器32位于其后部靠左的位置,下垂直尾翼3023上的主推进器32位于其后部靠下的位置,右水平尾翼3024上的主推进器32位于其后部靠右的位置。主推进器32也可以采用槽道推进器,但其方向是在前后方向进行推进和后退的。
进一步,所述左水平尾翼3022和所述右水平尾翼3024上还分别安装有一个所述第二垂直槽道推进器31,所述第二垂直槽道推进器31的位置位于所述主推进器32的位置的前侧。优选,所述左水平尾翼3022和所述右水平尾翼3024上的第二垂直槽道推进器31都是在他们的重心位置设置为宜,第二垂直槽道推进器31是垂直作业的,也即是在上下方向进退的。
上述结构中,所述左水平尾翼3022和所述右水平尾翼3024及其上的连接结构优选是左右镜像对称的,同样,上垂直尾翼3021和下垂直尾翼3023处的结构设计是优选上下进行对称的。进一步优选,所述上垂直尾翼3021的上侧边部、所述左水平尾翼3022的左侧边部、所述下垂直尾翼3023的下侧边部以及右水平尾翼3024的右侧边部均各自一体成型连接有前后延伸的翼边沿加强导流梭形翅3025。翼边沿加强导流梭形翅3025提升了翼边的结构强度,同时增加了边上的受力面积,在水下作业时,可控性更好,能更好地起到稳定行驶和精确悬停的效果。
另外,还有些尺寸设计的要求,尽量是所述艏部1的长度为750-1000mm,所述艏部1的长度与所述中部2的长度比例为0.3至0.6,所述艉部3的长度与所述中部2的长度比例为0.7至1.0。这种尺寸的结构设计更有利于本实施例这种机器人的实现。
具体地,所述舱门开合机构包括安装在所述中部2内的驱动电机51、所述驱动电机上安装有的曲柄52,所述曲柄52末端安装有的摇杆53,所述摇杆53另一端连接舱门54,所述舱门54四个角限定在滑轨55中,所述滑轨55固定安装在中部2,所述舱门54关闭时,所述曲柄52与所述摇杆53共线并关紧所述舱门54,所述舱门54打开时,所述曲柄52与所述摇杆53再次共线并使所述舱门54保持打开状态。具体是,所述舱门54关闭时,所述曲柄52与所述摇杆53共线时,所述曲柄52与所述摇杆53这个连杆机构所形成的死点关紧所述舱门54,所述舱门54打开时,所述曲柄52与所述摇杆53再次共线时连杆机构又回到死点使所述舱门54保持打开状态。舱门54可以是左右移动的,那个中部2开设的舱门门口是需要小于等于舱门尺寸的,滑轨55中前后各一个并左右延伸,滑轨55的左右尺寸是要大于舱门的左右尺寸的,这样可以使得舱门可以具有足够的左右移动空间来封闭舱门门口和打开时存放在滑轨55没有处在舱门门口56处的部分。当然,舱门开合机构可以采用现有其他门开合的结构。
下面介绍一种具体的实施案例:
一种水下无人无缆作业型机器人,包括艏部1、中部2和艉部3,所述的艏部1、中部2和艉部3均为中空结构,本发明的艏部、中部和艉部中空结构,能够保证内外的压力均衡,使本发明一般能够应用于500米水深。所述艏部长度A为750至1000mm,本实实施例的长度是指艏部1至艉部3前后方向的尺寸,宽度是左右的尺寸;所述的艏部水平截面为半椭圆,其长轴为a为2*A,长轴是上下方向,短轴b为1.2*A 至1.5*A,短轴是左右方向;所述艏部与中部连接处截面为上半椭圆下矩形的曲面结构,其中半椭部分的长轴c为1.3*A 至1.7*A,长轴是上下方向的,短轴d=b,短轴是左右方向的,矩形部分宽e=d,高f=c/2。所述中部的长度B与艏部的长度A的比例为A/B为0.3至0.6;所述中部的形状为截面为上椭下矩的空心柱体,其中半椭部分长轴为c,长轴也是上下方向的,短轴为d,短轴是左右方向的,矩形部分宽也为e,高也为f。所述艉部长度C与中部长度B的比例C/B为0.7至1.0;所述的艉部外壁上90°等间距分布有四个尾翼,分别为上垂直尾翼3021、左水平尾翼3022、下垂直尾翼3023和右水平尾翼3024,左水平尾翼3022和右水平尾翼3024前后长度均为0.3*B至0.5*B,而左水平尾翼3022的最左侧与右水平尾翼3024的最右侧之间的间距为0.6*B至0.7*B,左水平尾翼3022靠左前方的边与前后延伸方向的倾斜角的角度为5°-15°,右水平尾翼3024靠右前方的边与前后延伸方向的倾斜角的角度为5°-15°。上垂直尾翼3021和下垂直尾翼3023前后长度均为0.2*B至0.4*B,上垂直尾翼3021的最上侧和下垂直尾翼3023的最下侧之间的间距为0.6*B至0.7*B,上垂直尾翼3021的前侧边与前后延伸方向的倾斜角的角度为30°-60°,下垂直尾翼3023的前侧边与前后延伸方向的倾斜角的角度为30°-60°。
第一垂直槽道推进器12安装在艏部的从艏部至艉部方向的1/3处,也即从前向后长度的1/3处,第一水平槽道推进器11安装在艏部的从前向后长度的7/10处,也即水平的推进器是更靠后的。
所述机械臂升降装置包括固定底座41、推杆42、导向轴44和机械臂43。所述固定底座41固定于中部从前向后长度的3/5处;所述推杆42安装在固定底座41处并固定底座41上开设与推杆42同心并供推杆42穿过的通孔;所述导向轴44与固定底座41四周的孔洞结构同心并上下穿过这些孔洞,所述导向轴44下端端固定于机械臂上;机械臂具有圆柱形基座40,则该圆柱形基座与推杆42同心并与推杆42下端固定连接;所述机械臂43在中部收纳的时候,机械臂43最低端与关合的舱门5的间距优选为0.03*B。
第二垂直槽道推进器31优选在艉部从前向后长度的3/5处,左水平尾翼3022的第二垂直槽道推进器31与右水平尾翼3024的第二垂直槽道推进器31之间的间距优选为0.75*B;另外,四个主推进器分布于四个尾翼末端,左水平尾翼3022的主推进器32与右水平尾翼3024的主推进器32之间的间距优选为0.53*B,上垂直尾翼3021的主推进器32与下垂直尾翼3023的主推进器32之间的间距也优选为0.53*B。
本发明整体长度与中部空间可根据装载设备数量进行调整,整体能耗可根据传感器工作时间与巡航时间进行估算,确定合理的电池搭载体积,中部的类似长方体设计一方面有利于搭载传感器、电池、操控装置等,另一方面也可以提高自主式水下航行器的稳定性,艉部较大的水平和垂直尾翼有利于高速巡航时保持姿态稳定,工作时有利于水下自主航行器快速对准来流方向,具体调整方式举例如下:设工作区域洋流在作业型水下机器人的左上方,则上垂直尾翼3021的M面收到的冲击力将大于其N面,M面为左侧面,N面为其翼边沿加强导流梭形翅3025的表面,此时作业型水下机器人将绕其自身的特定转轴进行旋转,直至尾翼M、N面受力相同;与此同时,左水平尾翼3022的H面收到的冲击力大于其G面, H面其上侧面,G面为其翼边沿加强导流梭形翅3025的表面,作业型水下机器人将绕其自身的特定转轴进行旋转直至H、G两面受力相同。当上述M、N面受力相同,H、G面受力相同时,作业型水下机器人艏部将对准洋流来流方向,主推进器的推力一部分将用于抵抗洋流,余下部分用于航行至作业区域。三点式垂直槽道推进器易于保障作业时自主式水下航行器的悬停精度,其工作方式如下:作业型水下机器人到达工作范围后,三个垂直槽道推进器产生推力,使作业型水下机器人到达指定深度,当机械臂伸出舱工作时导致作业型水下机器人重心位置发生改变,重心与浮心的位置差,使得重力与浮力产生滚动力矩,此时水平尾翼的两个垂直槽道推进器反向增加相同推力以抵消重心改变产生的滚动力矩来维持作业型水下机器人的作业姿态。
本发明中作业型水下机器人设计为略微正浮力,采用动力下潜。高速巡航时,艏部的特殊曲面设计和中部平滑的形状有利于降低巡航时的阻力,艉部的水平和垂直尾翼可提高稳定性。作业时,艉部的水平和垂直尾翼有利于水下自主航行器快速对准洋流方向并采用主推进器对抗洋流,中部伸出机械臂,增大作业范围,三点式垂直槽道推进器可以保证悬停的高度和稳定度。
进一步优化,所述中部2内位于所述舱门54的周围安装有配重模块。这里先介绍一下,水下机器人大部分是透水型的,也即水会机器人内部存在,本发明的机器人也是如此,是透水型的。但即便是这样的机器人,由于打开舱门后,特别是机械臂升降或者作业过程中,会有较大动作幅度从机械臂会带动水活动,受动的水流会对机器人的稳定性产生影响,特别是对悬停会有不小的影响,所以在该处设置配置模块可以有效保证机械臂动作带来的水流影响,更好地提升稳定性。
更进一步,所述配重模块包括围绕在舱门54周围呈圆周等间距分布并呈散射状的条形导流铅块551,相邻的条形导流铅块551之间形成有供舱门打开或者关闭时对活动的水流进行引流的导流槽552,导流槽552使得受动的活动水流可以较为均为的向四周扩散,尽量保证机器人的稳定性。更为优选的是,在条形导流铅块551的表面固定有些缓冲垫500,例如海绵等带有多孔的结构,减少活动水流的影响。更为优化的是,在条形导流铅块551上安装连接有放线滚筒501,放线滚筒501是能回转的滚筒,例如通过扭簧结构安装在条形导流铅块551上,或者其他现有能让放线滚筒501转动之后又能回转的滚筒结构即可,最好是在转动方向有上述扭簧这样能有缓冲性能的,然后,放线滚筒上缠绕有不锈钢丝线或者其他尼龙线或者弹性线的线体502,所述线体502一端缠绕在放线滚筒501上,另一端为拉出的线头并跟机械臂连接住,使得机械臂在升降和作业的过程中,有线体的牵拉,使得机械臂不仅有导向轴的导向,推杆的驱动,还有舱门扣周围的线体的牵拉,形成一个立体的支撑和伸缩驱动机构,能够使得机械臂的动作更加稳定,从而使得整个机器人的结构也更加稳定,悬停效果也更加好。当然,放线滚筒501需要保证出线的流畅,不要影响机械臂升降和作业时转动等即可。线体502的线头可以安装连接到机械臂的基座上。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (10)

  1. 一种水下无人无缆作业型机器人,其特征在于:包括艏部(1)、中部(2)和艉部(3),所述艏部(1)、中部(2)和艉部(3)均为中空结构,所述中部(2)设置有机械臂升降装置和舱门开合机构,所述艏部(1)上设置有一个第一水平槽道推进器(11)和一个第一垂直槽道推进器(12),所述艉部(3)上设置有两个第二垂直槽道推进器(31)和四个主推进器(32)。
  2. 根据权利要求1所述的一种水下无人无缆作业型机器人,其特征在于:所述机械臂升降装置包括安装在所述中部(2)内的固定底座(41)、所述固定底座(41)上安装有的能上下伸缩的推杆(42)、所述推杆(42)的下端连接有的机械臂(43)以及上下穿设在所述固定底座(41)上并下端与所述机械臂(43)顶部固定连接住的导向轴(44)。
  3. 根据权利要求2所述的一种水下无人无缆作业型机器人,其特征在于:所述导向轴(44)具有四个并围绕在所述推杆(42)的外围呈圆周阵列分布。
  4. 根据权利要求2所述的一种水下无人无缆作业型机器人,其特征在于:所述艉部(3)包括基础部分(301)以及所述基础部分(301)外壁上固定有上垂直尾翼(3021)、左水平尾翼(3022)、下垂直尾翼(3023)和右水平尾翼(3024),所述上垂直尾翼(3021)、左水平尾翼(3022)、下垂直尾翼(3023)和右水平尾翼(3024)呈圆周等间距分布且各安装有一个所述主推进器(32)。
  5. 根据权利要求4所述的一种水下无人无缆作业型机器人,其特征在于:所述左水平尾翼(3022)和所述右水平尾翼(3024)上还分别安装有一个所述第二垂直槽道推进器(31),所述第二垂直槽道推进器(31)的位置位于所述主推进器(32)的位置的前侧。
  6. 根据权利要求4所述的一种水下无人无缆作业型机器人,其特征在于:所述上垂直尾翼(3021)的上侧边部、所述左水平尾翼(3022)的左侧边部、所述下垂直尾翼(3023)的下侧边部以及右水平尾翼(3024)的右侧边部均各自一体成型连接有前后延伸的翼边沿加强导流梭形翅(3025)。
  7. 根据权利要求1所述的一种水下无人无缆作业型机器人,其特征在于:所述艏部(1)的长度为750-1000 mm,所述艏部(1)的长度与所述中部(2)的长度比例为0.3至0.6,所述艉部(3)的长度与所述中部(2)的长度比例为0.7至1.0。
  8. 根据权利要求1所述的一种水下无人无缆作业型机器人,其特征在于:所述舱门开合机构包括安装在所述中部(2)内的驱动电机(51)、所述驱动电机上安装有的曲柄(52),所述曲柄(52)末端安装有的摇杆(53),所述摇杆(53)另一端连接舱门(54),所述舱门(54)四个角限定在滑轨(55)中,所述滑轨(55)固定安装在中部(2),所述舱门(54)关闭时,所述曲柄(52)与所述摇杆(53)共线并关紧所述舱门(54),所述舱门(54)打开时,所述曲柄(52)与所述摇杆(53)再次共线并使所述舱门(54)保持打开状态。
  9. 根据权利要求1所述的一种水下无人无缆作业型机器人,其特征在于:所述中部(2)内位于所述舱门(54)的周围安装有配重模块。
  10. 根据权利要求9所述的一种水下无人无缆作业型机器人,其特征在于:所述配重模块包括围绕在舱门(54)周围呈圆周阵列分布并呈散射状的条形导流铅块(551),相邻的条形导流铅块(551)之间形成有供舱门打开或者关闭时对活动的水流进行引流的导流槽(552)。
PCT/CN2021/129926 2021-10-22 2021-11-11 一种水下无人无缆作业型机器人 WO2023065423A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111230127.9 2021-10-22
CN202111230127.9A CN113844627A (zh) 2021-10-22 2021-10-22 一种水下无人无缆作业型机器人

Publications (1)

Publication Number Publication Date
WO2023065423A1 true WO2023065423A1 (zh) 2023-04-27

Family

ID=78982640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/129926 WO2023065423A1 (zh) 2021-10-22 2021-11-11 一种水下无人无缆作业型机器人

Country Status (2)

Country Link
CN (1) CN113844627A (zh)
WO (1) WO2023065423A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106828838A (zh) * 2017-01-24 2017-06-13 哈尔滨工程大学 一种便携式流线型遥控水下机器人
CN108045532A (zh) * 2017-12-04 2018-05-18 国网山东省电力公司电力科学研究院 一种水下电动机械臂作业吊舱及使用方法
CN108860527A (zh) * 2018-07-09 2018-11-23 哈尔滨工程大学 一种水下机器人-水下机械臂系统
CN109533239A (zh) * 2018-11-27 2019-03-29 长安大学 一种深水水下智能操作机器人及其控制系统
CN110386238A (zh) * 2018-04-19 2019-10-29 中国科学院沈阳自动化研究所 一种全海深arv水下机器人结构
CN111645835A (zh) * 2019-12-10 2020-09-11 河北汉光重工有限责任公司 一种一带多水下无人子母潜航器
US20210155330A1 (en) * 2018-04-10 2021-05-27 Kawasaki Jukogyo Kabushiki Kaisha Autonomous underwater vehicle

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106428547B (zh) * 2015-08-12 2023-01-13 中山福昆航空科技有限公司 一种带可自动收放多旋翼的垂直起降固定翼飞机
CN207274931U (zh) * 2017-10-17 2018-04-27 青岛中邦防务智能装备有限公司 一种用于海滩接货的两栖无人船
CN111846170A (zh) * 2020-08-11 2020-10-30 中国科学院沈阳自动化研究所 一种大范围巡航自主水下机器人结构
CN112937808B (zh) * 2021-03-24 2022-04-12 中国船舶科学研究中心 一种深海原位载人实验研究平台

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106828838A (zh) * 2017-01-24 2017-06-13 哈尔滨工程大学 一种便携式流线型遥控水下机器人
CN108045532A (zh) * 2017-12-04 2018-05-18 国网山东省电力公司电力科学研究院 一种水下电动机械臂作业吊舱及使用方法
US20210155330A1 (en) * 2018-04-10 2021-05-27 Kawasaki Jukogyo Kabushiki Kaisha Autonomous underwater vehicle
CN110386238A (zh) * 2018-04-19 2019-10-29 中国科学院沈阳自动化研究所 一种全海深arv水下机器人结构
CN108860527A (zh) * 2018-07-09 2018-11-23 哈尔滨工程大学 一种水下机器人-水下机械臂系统
CN109533239A (zh) * 2018-11-27 2019-03-29 长安大学 一种深水水下智能操作机器人及其控制系统
CN111645835A (zh) * 2019-12-10 2020-09-11 河北汉光重工有限责任公司 一种一带多水下无人子母潜航器

Also Published As

Publication number Publication date
CN113844627A (zh) 2021-12-28

Similar Documents

Publication Publication Date Title
CN109703705B (zh) 一种半潜式无人平台
CN109018271B (zh) 一种新型大翼展混合驱动无人水下航行器
CN109878666A (zh) 一种前缘旋转圆柱型翼控制水下拖曳体
JP2007276609A (ja) 水中グライダー
JP2007276609A5 (zh)
JP2008018899A (ja) 水中航走体
JP5563103B2 (ja) ムーンプールにおける流動抵抗を軽減するための装置
CN211519810U (zh) 一种喷水电磁控制多自由度运动水下航行器
JPH0749277B2 (ja) 重力・浮力調整による艇姿勢の制御を用いたグライダ−型潜水艇
CN109866903B (zh) 一种仿生可折叠胸鳍的机器鱼
CN103625622A (zh) 一种立式航向稳定可操纵水下拖曳体
CN107089296A (zh) 具有助航水翼的复合三体船
CN110641643A (zh) 一种减摇系统及减摇方法
CN110282100A (zh) 鱼雷型主体多自由度操纵的水下航行器
CN206704473U (zh) 一种具备精确避碰功能的无人艇
CN110683025A (zh) 一种海流驱动的锚泊式长航时滑翔器
CN114435565A (zh) 一种无压载式水面水下载人航行器
WO2023065423A1 (zh) 一种水下无人无缆作业型机器人
CN211969710U (zh) 一种吊舱式可调尾翼多自由度水下拖曳体
JP2002316687A (ja) 船舶の水中翼装置
CN102627138A (zh) 可控水翼滑行艇及其控制方法
CN111762306A (zh) 一种携带环翼的混合驱动水下滑翔机
CN211281425U (zh) 一种舵操纵多自由度控制水下潜器
CN110015387B (zh) 一种适用于低速船舶的减摇装置
CN212980504U (zh) 一种三桨式水下航行器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17928274

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21961163

Country of ref document: EP

Kind code of ref document: A1