WO2023065377A1 - 用于内燃波转子的隔离段抑制激波前传结构及内燃波转子 - Google Patents

用于内燃波转子的隔离段抑制激波前传结构及内燃波转子 Download PDF

Info

Publication number
WO2023065377A1
WO2023065377A1 PCT/CN2021/126332 CN2021126332W WO2023065377A1 WO 2023065377 A1 WO2023065377 A1 WO 2023065377A1 CN 2021126332 W CN2021126332 W CN 2021126332W WO 2023065377 A1 WO2023065377 A1 WO 2023065377A1
Authority
WO
WIPO (PCT)
Prior art keywords
wave rotor
wave
internal combustion
rotor
valve
Prior art date
Application number
PCT/CN2021/126332
Other languages
English (en)
French (fr)
Inventor
李建中
郑仁传
金武
秦琼瑶
姚倩
巩二磊
Original Assignee
南京航空航天大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京航空航天大学 filed Critical 南京航空航天大学
Priority to US17/544,315 priority Critical patent/US11585533B2/en
Publication of WO2023065377A1 publication Critical patent/WO2023065377A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/14Gas-turbine plants characterised by the use of combustion products as the working fluid characterised by the arrangement of the combustion chamber in the plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/04Air intakes for gas-turbine plants or jet-propulsion plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to the technical field of unsteady combustion with a new concept, and more specifically, relates to an isolation section used for an internal combustion wave rotor to suppress a shock wave forward transmission structure and an internal combustion wave rotor.
  • the constant volume combustion chamber has the potential to significantly reduce the fuel consumption of the gas turbine and improve the overall thermal efficiency because it can achieve constant volume combustion inside.
  • the detonation engine and the internal combustion wave rotor are both new constant volume combustion devices.
  • the internal combustion wave rotor can realize the combination of constant volume combustion chamber and steady flow components, so it was once used as a dynamic pressure exchanger and assembled in gas turbines. Compared with other pressure gain combustors, the internal combustion wave rotor integrating supercharging and combustion can be better combined with turbomachinery, etc. due to the periodicity of the working sequence and the use of many combustion channels, so it has a high application value.
  • Chinese patent No. ZL201310018405.3 discloses an internal combustion wave rotor with supercharging function based on unsteady combustion and its working method. While the cycle efficiency is high and the supercharger technology is superior, the multi-channel sequential operation can realize the stable output of the airflow at the outlet of the internal combustion wave rotor.
  • the Chinese patent No. ZL201310018405.3 discloses an internal combustion wave rotor with supercharging function based on unsteady combustion and its working method. While the cycle efficiency is high and the supercharger technology is superior, the multi-channel sequential operation can realize the stable output of the airflow at the outlet of the internal combustion wave rotor.
  • ZL201621170672.8 discloses an internal combustion wave rotor gas mixture forming device, which includes a connected transition pipe section and a wave rotor inlet end section, and the upper wall surface of the wave rotor inlet end section There are several small holes, and each small hole is connected with a fuel injection branch pipe, and each fuel injection branch pipe is connected to the fuel inlet main pipe through an independent valve; two deflectors are arranged in the inner channel of the intake end of the wave rotor, and the guide The flow plate divides the inlet end section of the wave rotor into three inlet areas, and the three inlet areas are filled with mixed gas with different concentrations.
  • the purpose of the present invention is to overcome the disadvantages of the prior art that the high-pressure gas in the channel of the internal combustion wave rotor cannot be emptied in time, thus easily causing shock wave forward transmission, and to provide a structure for the isolation section of the internal combustion wave rotor to suppress the shock wave forward transmission and
  • the internal combustion wave rotor is designed to suppress the shock wave forward propagation of the internal combustion wave rotor and improve the stability of the internal combustion wave rotor.
  • An isolation section suppression shock wave forward structure for an internal combustion wave rotor of the present invention includes a wave rotor and an air intake port, a sealing disc is provided at the end of the air intake port facing the wave rotor, and the end of the wave rotor The part is in close contact with the sealing disc, and the sealing disc is provided with fan-shaped holes; the wave rotor is provided with a number of wave rotor passages; the air inlet port is provided with an isolation section sleeve, and the isolation section sleeve A pneumatic valve is arranged inside, and the pneumatic valve has two valve plates, the free ends of the two valve plates are set towards the wave rotor and are far away from each other; when the wave rotor rotates, several wave rotors The channel communicates with the isolation section sleeve through the sector holes in turn.
  • the shape of the inlet port corresponds to the shape of the fan-shaped hole.
  • the isolation segment sleeve is arranged at the front end of the air intake port, so that the wave rotor channel is first connected with the isolation segment sleeve and then connected with the air intake port when rotating.
  • valve plates are hinged, and the valve plates are provided with a limiting structure for limiting the opening degree of the pneumatic valve.
  • the limiting structure includes a positioning pin, and two limiting holes opened on the two valve plates, the limiting holes are opened along the axial direction of the wave rotor channel, and the two ends of the positioning pin are respectively Inserted in the limiting holes of the two valve plates.
  • a telescopic rod is further included, the telescopic rod is arranged along the axial direction of the wave rotor channel, and the pneumatic valve is connected to the telescopic rod.
  • pneumatic valves there are more than two pneumatic valves, and more than two pneumatic valves are connected to the same telescopic rod.
  • the pneumatic valve further includes a slider, the two valve plates are hinged to the slider, and the slider is slidably connected to the telescopic rod.
  • An internal combustion wave rotor according to the present invention includes the above-mentioned isolated section suppressing shock wave forward propagation structure.
  • the two valve plates are formed in a specific shape through the cooperation of position and angle, thereby changing the flow channel area of the isolation section sleeve. Specifically, in the direction from the isolation section sleeve to the wave rotor, the two valve plates are streamlined, and in the direction from the wave rotor channel to the isolation section sleeve, the two valve plates are in a sudden expansion type, so that the positive direction of the airflow The flow resistance is reduced, and the reverse flow resistance is increased.
  • the reverse transmission pressure is consumed by changing the flow blockage ratio and the shape of the pneumatic valve, so as to realize the suppression of the reflected shock wave, which is beneficial to the fuel intake process, and can Realize the stable operation of the internal combustion wave rotor in the state deviated from the design point.
  • the pneumatic valve controls the opening range of the pneumatic valve through the cooperation of the slider and the telescopic rod, and the cooperation of the positioning pin and the limit hole, so as to adjust the opening range of the pneumatic valve by using the way the valve plate moves relative to the positioning pin.
  • the blocking area of the sheet makes the pneumatic valve have a better suppression effect on the front propagation of the shock wave.
  • Fig. 1 is the structure schematic diagram of isolation section suppressing shock wave forward transmission structure of the present invention
  • Fig. 2 is the structural representation of air inlet port among the present invention
  • Fig. 3 is the structural representation of sealing disc among the present invention.
  • Fig. 4 is a structural schematic diagram of the medium-wave rotor of the present invention.
  • Fig. 5 is the mechanism schematic diagram of pneumatic valve among the present invention.
  • Fig. 6 is a schematic diagram of the cooperation relationship of the valve plate in the present invention.
  • Fig. 7 is a schematic diagram of the principle of shock front propagation suppression in the present invention.
  • this embodiment provides an isolation segment suppression shock wave forward structure for an internal combustion wave rotor, which specifically includes an air intake port 1 , a sealing disc 2 and a wave rotor 3 .
  • the sealing disk 2 is arranged between the air inlet port 1 and the wave rotor 3, and the sealing disk 2 is connected to one end of the air inlet port 1 close to the wave rotor 3; the wave rotor 3 and the sealing disk 2 are in close contact, Therefore, when the wave rotor 3 rotates relative to the sealing disk 2 and the intake port 1 , gas leakage in the wave rotor 3 is prevented.
  • the middle part of the air intake port 1 is hollowed out for passing gas into the wave rotor 3 .
  • the side where the inlet port 1 is connected to the sealing disc 2 is provided with a flange 11, and several threaded connection holes are provided on the flange 11 and the sealing disc 2, and through the threaded connection holes on the flange 11 and the sealing disc 2 The cooperation of the threaded connection holes realizes the connection between the flange 11 and the sealing disc 2 .
  • sealing disc 2 can be circular structure, offers fan-shaped hole 22 on sealing disc 2, and the shape of air inlet port 1 can be corresponding with the shape of fan-shaped hole 22, makes air inlet port 1 pass through fan-shaped hole 22 and The wave rotors are connected in three phases.
  • the wave rotor 3 may be a sleeve structure, that is, the wave rotor 3 includes an inner sleeve and an outer sleeve, and several rotor partitions 32 may be arranged between the inner sleeve and the outer sleeve of the wave rotor 3, Several rotor diaphragms 32 are equidistantly arranged along the circumferential direction of the wave rotor 3 . Two adjacent rotor diaphragms 32 form a wave rotor channel 31 together with the inner sleeve and the outer sleeve.
  • the movement cycle process of a wave rotor channel 31 on the wave rotor 3 is specifically: first, the wave rotor channel 31 rotates in the direction of rotation of the wave rotor 3, when the wave rotor channel 31 rotates to the first position And when starting a cycle, the wave rotor channel 31 communicates with the front end of the air inlet port 1 through the fan-shaped hole 22, and the gas in the air inlet port 1 enters in the wave rotor channel 31; then, the wave rotor channel 31 rotates to the second position, At this position, the wave rotor channel 31 communicates with the rear end of the air inlet port 1 through the fan-shaped hole 22, and the wave rotor channel 31 completes air intake between the front end and the rear end of the air inlet port 1; when the wave rotor channel 31 reaches After the second position and continued rotation, the wave rotor passage 31 is no longer connected with the intake port 1; after that, the wave rotor passage 31 rotates to the third position and starts to ignite,
  • the wave rotor channel 31 under the working condition of the design point, when the wave rotor channel 31 completes a cycle, the combustion of gas in the wave rotor channel 31 is completed, and the temperature of the wave rotor channel 31 rises considerably, much higher than the room temperature. Then, if the wave rotor 3 enters the non-design point working condition, that is, the wave rotor speed is higher than the design speed, or the air inlet port cannot enter the wave rotor channel according to the design conditions, the remaining gas in the wave rotor channel will get a certain amount of air.
  • the pressure gain of the wave rotor channel 31 makes the air pressure of the gas in the wave rotor channel 31 higher than the air pressure in the air intake port 1. When the wave rotor channel 31 is connected to the air intake port 1, the gas in the wave rotor channel 31 will flow into the air intake port 1 and interfere with The airflow in the intake port 1 flows, and then the phenomenon of shock wave forward occurs.
  • an isolation segment sleeve 4 is arranged in the air inlet port 1
  • a pneumatic valve 5 is arranged in the isolation segment sleeve 4, and the pneumatic valve 5 is used to change the air intake port 1
  • the flow resistance to the first airflow L1 in the wave rotor passage 31 and the flow resistance from the wave rotor passage 31 to the second airflow L2 in the intake port 1 thereby suppressing the shock front phenomenon.
  • the pneumatic valve 5 can have two valve plates, the free ends of the two valve plates are arranged towards the wave rotor 3, and the free ends of the two valve plates are far away from each other, forming a "V"-shaped structure, and the "V"-shaped structure
  • the opening of the wave rotor channel 31 Referring to FIG. 7 , when the wave rotor channel 31 is connected to the isolation section sleeve 4 in the intake port 1 , the wave rotor channel 31 forms a high-pressure gas zone 6 , and the intake port 1 is a low-pressure zone 7 .
  • this embodiment utilizes the adjustment of the pneumatic valve 5 to effectively reduce the reverse shock wave pressure, and at the same time has a small forward flow loss.
  • the isolation segment sleeve 4 can be arranged at the front end of the air intake port 1 .
  • the wave rotor channel 31 rotates, it first communicates with the isolation segment sleeve 4, so that the wave rotor channel 31 is always in communication with the isolation segment sleeve 4, and after the pressure in the wave rotor channel 31 is reduced, it is connected with the isolation segment sleeve 4.
  • the intake port 1 is connected, thereby suppressing the shock-front phenomenon.
  • the two valve plates may be hinged, and the valve plates are provided with a limiting structure for limiting the opening degree of the pneumatic valve.
  • valve plate is also provided with a limiting structure that can limit the opening angle of the pneumatic valve 5, preventing the air pressure in the wave rotor channel 31 from being too high, causing the pneumatic valve 5 to open too large and completely blocking the isolation section sleeve 4; at the same time, It can also prevent the two valve plates from reversing the direction of the popular type and the sudden expansion type under the action of a large pressure difference.
  • the position-limiting structure may specifically include positioning pins 51, and position-limiting holes 52 opened on the two valve plates.
  • the position-limiting holes 52 are set along the axial direction of the wave rotor passage 31, and the two ends of the positioning pins 51 respectively pass through
  • the limiting holes 52 of the two valve plates are connected with the inner side wall of the sleeve 4 of the isolation section.
  • a telescopic rod 54 can also be included, and the telescopic rod 54 can be along the axial direction of the wave rotor channel 31 Set, the pneumatic valve 5 can be connected on the telescopic rod 54.
  • the telescopic rod 54 can drive the pneumatic valve 5 to move relative to the positioning pin 51 under the drive of the motor, so that the relative position of the limiting hole 52 and the positioning pin 51 changes.
  • a rotating rod 55 may be provided on the valve plate of the pneumatic valve 5 , and a hinge hole 57 is opened on the rotating rod 55 .
  • a slide block 53 can be provided between the two valve plates, and a rotating shaft can be provided on the slide block 53. Through the cooperation of the rotating shaft and the hinge hole 57, the valve plate can be hinged on the slide block 53, thereby indirectly realizing two Valve hinge.
  • the slider 53 may also be provided with a fixing hole 56 , and the pneumatic valve 5 is connected to the telescopic rod 54 through the fixing hole 56 .
  • more than two pneumatic valves 5 can be arranged in the isolation section sleeve 4, and more than two pneumatic valves 5 can be driven by a telescopic rod 54 at the same time .
  • This embodiment also provides an internal combustion wave rotor, which includes the isolated section suppression shock wave forward structure in this embodiment.
  • the sealing plate 2 of the isolation section suppression shock wave forward structure may also be provided with a matching hole 21, and the matching hole 21 is used for connecting with the rotating shaft of the internal combustion wave rotor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Abstract

本发明公开了一种用于内燃波转子的隔离段抑制激波前传结构及内燃波转子,属于新概念的非定常燃烧领域。一种用于内燃波转子的隔离段抑制激波前传结构,包括波转子和进气端口,进气端口朝向波转子的一端设置有密封盘,波转子的端部与密封盘紧密接触,密封盘上开设有扇形孔;波转子上设有若干波转子通道;进气端口内设有隔离段套筒,隔离段套筒内设置有气动阀,气动阀具有两个阀片,两个阀片的自由端朝向波转子设置,且相互远离;波转子转动时,若干波转子通道依次通过扇形孔与隔离段套筒连通。本发明通过改变流动堵塞比和气动阀形状消耗反传压力,实现对反射激波的抑制,有利于燃料进气过程,可实现在偏离设计点状态下的内燃波转子的稳定工作。

Description

用于内燃波转子的隔离段抑制激波前传结构及内燃波转子 技术领域
本发明涉及新概念的非定常燃烧技术领域,更具体地说,涉及一种用于内燃波转子的隔离段抑制激波前传结构及内燃波转子。
背景技术
定容燃烧室由于可以在内部实现等容燃烧,具有显著降低燃气轮机的燃料消耗以及提高整体热效率的潜力,爆震发动机和内燃波转子都属于新型定容燃烧装置。内燃波转子可以实现定容燃烧室与稳流部件的结合,因此曾被用作动态压力交换器并装配于燃气轮机。集增压与燃烧一体化的内燃波转子由于工作时序的周期性以及众多燃烧通道的使用,使得它与其他压力增益燃烧室相比,可以更好地与涡轮机械等进行结合,因此具有很高的应用价值。
例如,专利号为ZL201310018405.3的中国专利公开了一种基于非定常燃烧具有增压功能的内燃波转子及其工作方法,该方案的波转子是由多个通道构成,在利用非定常燃烧热循环效率高和增压技术优势的同时,多通道时序工作可以实现内燃波转子出口气流趋于稳定输出。又例如,专利号为ZL201621170672.8的中国专利公开了一种内燃波转子混气形成装置,该装置包括相连的渡管段和波转子进气端段,所述的波转子进气端段上壁面开有若干小孔,每个小孔上均连接有燃料喷射支管,每根燃料喷射支管通过独立的阀门连接到燃料入口总管;波转子进气端段内部通道设置有两块导流板,导流板将波转子进气端段分成三个入口区,三个入口区填充不同浓度的混气。
然而,与爆震发动机类似,定容燃烧由于燃烧室内压力上升到很高水平,偏离设计点工况时,当进气端口和通道相连时,前一循环的高压燃气可能并未排空,通道内压力较之进气端高出很多,形成激波前传。因此,上述两个申请案的内燃波转子在工作过程中,容易发生激波前传现象,并影响燃料进气过程,导致内燃波转子工作不协调、其他通道提前点火,从而影响内燃波转子的正常工作。
发明内容
1.发明要解决的技术问题
本发明的目的在于克服现有技术中,内燃波转子的通道内高压燃气不能及时排空,从而易产生激波前传的不足,提供一种用于内燃波转子的隔离段抑制激波前传结构及内燃波转子,旨在抑制内燃波转子的激波前传,提高内燃波转子的稳定性。
2.技术方案
为达到上述目的,本发明提供的技术方案为:
本发明的一种用于内燃波转子的隔离段抑制激波前传结构,包括波转子和进气端口,所述进气端口朝向所述波转子的一端设置有密封盘,所述波转子的端部与所述密封盘紧密接触,所述密封盘上开设有扇形孔;所述波转子上设有若干波转子通道;所述进气端口内设有隔离段套筒,所述隔离段套筒内设置有气动阀,所述气动阀具有两个阀片,两个所述阀片的自由端朝向所述波转子设置,且相互远离;所述所述波转子转动时,若干所述波转子通道依次通过所述扇形孔与所述隔离段套筒连通。
进一步地,所述进气端口的形状与所述扇形孔的形状相对应。
进一步地,所述隔离段套筒设置在所述进气端口的前端,以使所述波转子通道在转动时先与所述隔离段套筒接通,再与所述进气端口接通。
进一步地,两个所述阀片铰接,且所述阀片上设置有用于限制所述气动阀张开程度的限位结构。
进一步地,所述限位结构包括定位销,以及两个所述阀片上开设的限位孔,所述限位孔沿着所述波转子通道的轴线方向开设,所述定位销的两端分别插设在两个阀片的限位孔内。
进一步地,还包括伸缩杆,所述伸缩杆沿着所述波转子通道的轴线方向设置,所述气动阀连接在所述伸缩杆上。
进一步地,所述气动阀设置为两个以上,两个以上的所述气动阀连接在同一所述伸缩杆上。
进一步地,所述气动阀还包括滑块,两个所述阀片与所述滑块铰接,所述滑块与所述伸缩杆滑动连接。
本发明的一种内燃波转子,包括上述的隔离段抑制激波前传结构。
3.有益效果
采用本发明提供的技术方案,与现有技术相比,具有如下有益效果:
(1)本发明的隔离段抑制激波前传结构中,两个阀片通过位置、角度的配合形成为特定形成,从而改变隔离段套筒的流道面积。具体的,从隔离段套筒到波转子的方向上,两个阀片成流线型,从波转子通道到隔离段套筒的方向上,两个阀片呈突扩型,从而使得气流的正向流动阻力减小,逆向流动阻力增大,进而利用两个阀片的配合,通过改变流动堵塞比和气动阀形状消耗反传压力,实现对反射激波的抑制,有利于燃料进气过程,可实现在偏离设计点状态下的内燃波转子的稳定工作。
(2)本发明中,气动阀通过滑块与伸缩杆的配合,以及定位销和限位孔的配合,利用阀片相对于定位销移动的方式,控制气动阀的张开范围,从而调整阀片的阻塞面积,进而使得气动阀对激波前传产生更好的抑制作用。
附图说明
图1为本发明的隔离段抑制激波前传结构的结构示意图;
图2为本发明中进气端口的结构示意图;
图3为本发明中密封盘的结构示意图;
图4为本发明中波转子的结构示意图;
图5为本发明中气动阀的机构示意图;
图6为本发明中阀片的配合关系示意图;
图7为本发明中激波前传抑制原理示意图。
具体实施方式
为进一步了解本发明的内容,结合附图和实施例对本发明作详细描述。
本说明书附图所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本发明可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应仍落在本发明所揭示的技术内容得能涵盖的范围内。同时,本说明书中所引用的如“上”、“下”、“左”、“右”、“中间”等用语,亦仅为便于叙述的明了,而非用以限定可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当亦视为本发明可实施的范畴。
参照图1,本实施方式提供了一种用于内燃波转子的隔离段抑制激波前传结构,该结构具体包括进气端口1、密封盘2和波转子3。具体的,密封盘2设置在进气端口1和波转子3之间,且密封盘2连接在进气端口1上靠近于波转子3的一端;波转子3与密封盘2之间为紧密接触,从而在波转子3相对于密封盘2和进气端口1转动时,防止波转子3内的气体泄漏。
参照图2,进气端口1的中部镂空,用于向波转子3内通入燃气。进气端口1与密封盘2连接的一侧设置有法兰11,法兰11和密封盘2上均开设有若干个螺纹连接孔,通过法兰11上的螺纹连接孔与密封盘2上的螺纹连接孔的配合,实现法兰11和密封盘2的连接。
参照图3,密封盘2可以为圆形结构,密封盘2上开设有扇形孔22,进气端口1的形状可以与扇形孔22的形状相对应,使得进气端口1能够通过扇形孔22与波转子3相连通。
参照图4,波转子3可以为套筒结构,即,波转子3包括内套筒和外套筒,波转子3的内套筒和外套筒之间可以设置有若干个转子隔板32,若干个转子隔板32沿着波转子3的周向等距设置。相邻的两个转子隔板32与内套筒和外套筒共同形成为波转子通道31。
在设计点工况下,波转子3上的一个波转子通道31的运动循环过程具体为:首先,波转 子通道31在波转子3的转动方向上转动,当波转子通道31转动至第一位置并开始一次循环时,该波转子通道31通过扇形孔22与进气端口1的前端连通,进气端口1内的气体进入波转子通道31内;然后,波转子通道31转动到达第二位置,在该位置处,该波转子通道31通过扇形孔22与进气端口1的后端连通,波转子通道31在进气端口1的前端和后端之间完成进气;当波转子通道31达到第二位置并继续转动后,波转子通道31不再与进气端口1连通;之后,波转子通道31转动至第三位置并开始点火,转动至第四位置并开始排气;最后,波转子通道31又回到第一位置处,完成一次循环。
其中,在设计点工况下,当波转子通道31完成一次循环后,波转子通道31内的燃气燃烧完成,波转子通道31的温度上升较多,远高于室温。然后,若当波转子3进入非设计点工况,即波转子转速高于设计转速,或者进气端口无法按照设计条件向波转子通道内进气时,波转子通道内残存的燃气会获得一定的压力增益,使得波转子通道31内燃气的气压高于进气端口1内的气压,当波转子通道31与进气端口1时,波转子通道31的燃气会流入进气端口1中,干扰进气端口1内的气流流动,继而发生激波前传现象。
参照图1,本实施方式为解决上述问题,在进气端口1内设置有隔离段套筒4,该隔离段套筒4内设置有气动阀5,该气动阀5用于改变进气端口1向波转子通道31内的第一气流L1的流动阻力,以及波转子通道31向进气端口1内的第二气流L2的流动阻力,从而抑制激波前传现象。
具体的,气动阀5可以具有两个阀片,两个阀片的自由端朝向波转子3设置,其两个阀片的自由端相互远离,形成“V”字形结构,该“V”字形结构的开口朝向波转子通道31。参照图7,当波转子通道31与进气端口1内的隔离段套筒4接通时,波转子通道31内形成为高压燃气的高压区6,进气端口1为低压区7。低压区7的第一气流L1经过气动阀5时,在流线型结构引导下,流动阻力变小;高压区6的第二气体L2流向气动阀5时,在突扩型结构阻挡下,产生回流,并反射激波。因此,本实施方式利用气动阀5的调节,可有效降低反传激波压力,同时具有较小的正向流动损失。
为提高激波前传的抑制效果,隔离段套筒4可以设置在进气端口1的前端。此时,当波转子通道31转动时,先与隔离段套筒4连通,使得波转子通道31总是在与隔离段套筒4连通,并使得波转子通道31内的压力下降后,再与进气端口1连通,从而抑制激波前传现象。
作为气动阀5的进一步优化方案,两个阀片之间可以为铰接,且阀片上设置有用于限制气动阀张开程度的限位结构。波转子通道31与隔离段套筒4连通后,若波转子通道31内的气压明显高于隔离段套筒4内的气压时,气动阀5的两个阀片在压差的作用下相互远离,进一步提高突扩的较大角度,提高对第二气流L2的阻塞效果;波转子通道31与隔离段套筒4 连通一段时间后,隔离段套筒4内的气压与波转子通道31内的气压持平,甚至高于波转子通道31内的气压时,气动阀5的两个阀片在压差的作用下相互靠近,提高第一气流L1的流动速度。
此外,阀片还设置有能够限制气动阀5张开角度的限位结构,防止波转子通道31内的气压过高而使得气动阀5张开过大而完全阻塞隔离段套筒4;同时,也能防止两个阀片在大压差的作用下,颠倒流行型和突扩型的方向。
具体的,该限位结构具体可以包括定位销51,以及两个阀片上开设的限位孔52,限位孔52沿着波转子通道31的轴线方向开设,定位销51的两端分别穿过在两个阀片的限位孔52,并与隔离段套筒4的内侧壁连接。当气动阀5的两个阀片角度变化时,定位销51会分别与限位孔52的前部和后部接触,实现对气动阀5两个阀片张开角度的限制。
为了进一优化对于气动阀5的两个阀片的角度调节,以及隔离段套筒4堵塞程度的调节,还可以包括有伸缩杆54,该伸缩杆54可以沿着波转子通道31的轴线方向设置,气动阀5可以连接在伸缩杆54上。调节时,伸缩杆54可以在电机的驱动下,驱使气动阀5相对于定位销51移动,使得限位孔52与定位销51的相对位置发生改变。
此外,参照图6,气动阀5的阀片上可以设置有转动杆55,转动杆55上开设有铰接孔57。两个阀片之间可以设置有滑块53,滑块53上可设置有转动轴,通过转动轴与铰接孔57的配合,以将阀片铰接在滑块53上,从而间接地实现两个阀片的铰接。滑块53还可以设置有固接孔56,并通过该固接孔56将气动阀5连接在伸缩杆54上。
为了进一步提高对波转子通道激波前传的抑制效果,参照图5,隔离段套筒4内可以设置有两个以上的气动阀5,两个以上的气动阀5可以同时由一个伸缩杆54驱动。
本实施方式还提供了一种内燃波转子,该内燃波转子包括了本实施方式中的隔离段抑制激波前传结构。此外,隔离段抑制激波前传结构的密封盘2还可以开设有配合孔21,该配合孔21用于与内燃波转子的转轴连接。
以上示意性的对本发明及其实施方式进行了描述,该描述没有限制性,附图中所示的也只是本发明的实施方式之一,实际的结构并不局限于此。所以,如果本领域的普通技术人员受其启示,在不脱离本发明创造宗旨的情况下,不经创造性的设计出与该技术方案相似的结构方式及实施例,均应属于本发明的保护范围。

Claims (9)

  1. 一种用于内燃波转子的隔离段抑制激波前传结构,包括波转子和进气端口,所述进气端口朝向所述波转子的一端设置有密封盘,所述波转子的端部与所述密封盘紧密接触,所述密封盘上开设有扇形孔;所述波转子上设有若干波转子通道;其特征在于:所述进气端口内设有隔离段套筒,所述隔离段套筒内设置有气动阀,所述气动阀具有两个阀片,两个所述阀片的自由端朝向所述波转子设置,且相互远离;所述所述波转子转动时,若干所述波转子通道依次通过所述扇形孔与所述隔离段套筒连通。
  2. 根据权利要求1所述的一种用于内燃波转子的隔离段抑制激波前传结构,其特征在于:所述进气端口的形状与所述扇形孔的形状相对应。
  3. 根据权利要求1所述的一种用于内燃波转子的隔离段抑制激波前传结构,其特征在于:所述隔离段套筒设置在所述进气端口的前端,以使所述波转子通道在转动时先与所述隔离段套筒接通,再与进气端口连通。
  4. 根据权利要求1所述的一种用于内燃波转子的隔离段抑制激波前传结构,其特征在于:两个所述阀片铰接,且所述阀片上设置有用于限制所述气动阀张开程度的限位结构。
  5. 根据权利要求4所述的一种用于内燃波转子的隔离段抑制激波前传结构,其特征在于:所述限位结构包括定位销,以及两个所述阀片上开设的限位孔,所述限位孔沿着所述波转子通道的轴线方向开设,所述定位销的两端分别穿过在两个阀片的限位孔,并与所述隔离段套筒的内侧壁连接。
  6. 根据权利要求5所述的一种用于内燃波转子的隔离段抑制激波前传结构,其特征在于:还包括伸缩杆,所述伸缩杆沿着所述波转子通道的轴线方向设置,所述气动阀连接在所述伸缩杆上。
  7. 根据权利要求6所述的一种用于内燃波转子的隔离段抑制激波前传结构,其特征在于:所述气动阀设置为两个以上,两个以上的所述气动阀连接在同一所述伸缩杆上。
  8. 根据权利要求6所述的一种用于内燃波转子的隔离段抑制激波前传结构,其特征在于:所述气动阀还包括滑块,两个所述阀片与所述滑块铰接,所述滑块与所述伸缩杆滑动连接。
  9. 一种内燃波转子,其特征在于:包括权利要求1~8中任一项所述的隔离段抑制激波前传结构。
PCT/CN2021/126332 2021-10-18 2021-10-26 用于内燃波转子的隔离段抑制激波前传结构及内燃波转子 WO2023065377A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/544,315 US11585533B2 (en) 2021-10-18 2021-12-07 Isolation section suppressing shock wave forward transmission structure for wave rotor combustor and wave rotor combustor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111208639.5 2021-10-18
CN202111208639.5A CN113833569B (zh) 2021-10-18 2021-10-18 用于内燃波转子的隔离段抑制激波前传结构及内燃波转子

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/544,315 Continuation US11585533B2 (en) 2021-10-18 2021-12-07 Isolation section suppressing shock wave forward transmission structure for wave rotor combustor and wave rotor combustor

Publications (1)

Publication Number Publication Date
WO2023065377A1 true WO2023065377A1 (zh) 2023-04-27

Family

ID=78965298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/126332 WO2023065377A1 (zh) 2021-10-18 2021-10-26 用于内燃波转子的隔离段抑制激波前传结构及内燃波转子

Country Status (2)

Country Link
CN (1) CN113833569B (zh)
WO (1) WO2023065377A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6460342B1 (en) * 1999-04-26 2002-10-08 Advanced Research & Technology Institute Wave rotor detonation engine
CN101956631A (zh) * 2010-09-30 2011-01-26 西北工业大学 一种吸气式脉冲爆震发动机进气道
CN103133138A (zh) * 2013-01-18 2013-06-05 南京航空航天大学 基于非定常燃烧具有增压功能的内燃波转子及工作方法
CN203081581U (zh) * 2013-01-18 2013-07-24 南京航空航天大学 基于非定常燃烧具有增压功能的内燃波转子
CN106438014A (zh) * 2016-08-26 2017-02-22 南京航空航天大学 一种内燃波转子强化燃烧装置
CN106499516A (zh) * 2016-10-26 2017-03-15 南京航空航天大学 一种内燃波转子混气形成装置
CN107905915A (zh) * 2017-10-23 2018-04-13 西北工业大学 一种脉冲爆震发动机压力反传抑制结构
CN108150307A (zh) * 2017-12-14 2018-06-12 西北工业大学 一种脉冲爆震发动机进气道组合式气动阀
CN112627905A (zh) * 2020-12-18 2021-04-09 巨竹由(常州)航空科技股份有限公司 一种基于叶片导流泄压的内燃波转子排气掺混装置
CN112833425A (zh) * 2021-01-05 2021-05-25 南京理工大学 用于吸气式旋转爆震燃烧室的前传激波抑制结构

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5916125A (en) * 1997-05-16 1999-06-29 Allison Engine Company, Inc. Forced purge wave rotor
CN100348847C (zh) * 2006-03-20 2007-11-14 西北工业大学 一种脉冲爆震发动机进气道气动阀
CN201614995U (zh) * 2010-02-04 2010-10-27 西北工业大学 一种吸气式脉冲爆震发动机防反流机构

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6460342B1 (en) * 1999-04-26 2002-10-08 Advanced Research & Technology Institute Wave rotor detonation engine
CN101956631A (zh) * 2010-09-30 2011-01-26 西北工业大学 一种吸气式脉冲爆震发动机进气道
CN103133138A (zh) * 2013-01-18 2013-06-05 南京航空航天大学 基于非定常燃烧具有增压功能的内燃波转子及工作方法
CN203081581U (zh) * 2013-01-18 2013-07-24 南京航空航天大学 基于非定常燃烧具有增压功能的内燃波转子
CN106438014A (zh) * 2016-08-26 2017-02-22 南京航空航天大学 一种内燃波转子强化燃烧装置
CN106499516A (zh) * 2016-10-26 2017-03-15 南京航空航天大学 一种内燃波转子混气形成装置
CN107905915A (zh) * 2017-10-23 2018-04-13 西北工业大学 一种脉冲爆震发动机压力反传抑制结构
CN108150307A (zh) * 2017-12-14 2018-06-12 西北工业大学 一种脉冲爆震发动机进气道组合式气动阀
CN112627905A (zh) * 2020-12-18 2021-04-09 巨竹由(常州)航空科技股份有限公司 一种基于叶片导流泄压的内燃波转子排气掺混装置
CN112833425A (zh) * 2021-01-05 2021-05-25 南京理工大学 用于吸气式旋转爆震燃烧室的前传激波抑制结构

Also Published As

Publication number Publication date
CN113833569B (zh) 2022-06-24
CN113833569A (zh) 2021-12-24

Similar Documents

Publication Publication Date Title
US6351934B2 (en) Forced purge wave rotor
US10662870B2 (en) Variable geometry wastegate turbine
CN102720692A (zh) 双驱并联顺序增压压气机
EP0393170A1 (en) Rotary piston engine
KR970044624A (ko) 가변 주기 가스터빈 엔진
US4286430A (en) Gas turbine engine
CN203906118U (zh) 涡轮基组合循环发动机用气体冷却系统
JPH0192531A (ja) 可変容量排気タービン過給機
CN113864083A (zh) 一种新型变循环燃气涡轮发动机
CN115263598A (zh) 一种双变涵道、宽速域、高通流变循环发动机构型
JP2008514887A (ja) スプリッタバルブ
JPH0123657B2 (zh)
WO2023065377A1 (zh) 用于内燃波转子的隔离段抑制激波前传结构及内燃波转子
JPH01227823A (ja) タービンの可変ノズル構造
US20120070326A1 (en) Compression method and means
CN203906119U (zh) 宽飞行包线飞行器涡轮基组合循环发动机
US11585533B2 (en) Isolation section suppressing shock wave forward transmission structure for wave rotor combustor and wave rotor combustor
CN115405950B (zh) 一种全环气动回流与单边进气凹腔耦合的新型燃烧室
CN113006966B (zh) 一种抑制吸气式脉冲爆震发动机反压的气动阀
US2878793A (en) Rotary internal combustion engine
CN203847273U (zh) 涡轮基组合循环发动机用风扇系统
CN113882966B (zh) 抑制吸气式脉冲爆震发动机反压的气动阀
JP3448925B2 (ja) 渦流ブロア
JP2008223752A (ja) 回転式空気機械
CN219691637U (zh) 可旋喷嘴环涡轮增压器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21961120

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE