WO2023065243A1 - 一种电池包控制系统的放电控制方法及充电控制方法 - Google Patents

一种电池包控制系统的放电控制方法及充电控制方法 Download PDF

Info

Publication number
WO2023065243A1
WO2023065243A1 PCT/CN2021/125410 CN2021125410W WO2023065243A1 WO 2023065243 A1 WO2023065243 A1 WO 2023065243A1 CN 2021125410 W CN2021125410 W CN 2021125410W WO 2023065243 A1 WO2023065243 A1 WO 2023065243A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery pack
voltage
battery
working circuit
management unit
Prior art date
Application number
PCT/CN2021/125410
Other languages
English (en)
French (fr)
Inventor
叶炜
曾波
孙淑婷
谢吉海
李永超
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2021/125410 priority Critical patent/WO2023065243A1/zh
Priority to CN202180062260.XA priority patent/CN116325416A/zh
Priority to JP2023541661A priority patent/JP2024503011A/ja
Priority to KR1020237024592A priority patent/KR20230123503A/ko
Priority to EP21960992.2A priority patent/EP4258507A4/en
Publication of WO2023065243A1 publication Critical patent/WO2023065243A1/zh
Priority to US18/344,099 priority patent/US20230344246A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/10Measuring sum, difference or ratio
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16566Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533
    • G01R19/16576Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533 comparing DC or AC voltage with one threshold
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/30Measuring the maximum or the minimum value of current or voltage reached in a time interval
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4285Testing apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • H02J7/007184Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage in response to battery voltage gradient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present application relates to the technical field of charge and discharge control of an energy storage system, and in particular, to a discharge control method and a charge control method of a battery pack control system.
  • lithium battery packs in energy storage systems and electric vehicles mostly adopt the form of parallel connection of multiple battery packs to meet the capacity and performance requirements of energy storage systems and electric vehicles.
  • equalizing resistors are usually used to control the equalizing current of parallel-connected battery packs.
  • the equalizing resistors are loss-type devices that consume system energy and cause energy waste.
  • the purpose of the embodiment of the present application is to provide a discharge control method and a charge control method of the battery pack control system, which are used to solve the difficulty in charging and discharging in the prior art due to the excessive pressure difference between the branch circuits where multiple battery packs are located.
  • the technical solution provided by the present application when the battery packs connected in parallel are closed, the original solution of using equalizing resistors is abandoned, and the technical defect of energy waste is also avoided.
  • An embodiment of the present application provides a discharge control method for a battery pack control system.
  • the battery pack control system includes a master battery management unit and N slave battery management units for controlling N parallel battery packs; wherein, the slave battery management unit It is used to control the battery pack to be connected to or disconnected from the working circuit, and the slave battery management unit communicates with the main battery management unit, and N is a positive integer greater than or equal to 2;
  • the discharge control method is applied to the main battery management unit, and the discharge control method includes:
  • the i-th sampling voltage is the parallel connection of the i-1 battery packs that have been connected to the working loop
  • the voltage; all i-th voltage values are respectively compared with the i-th sampling voltage to obtain N-i+1 difference values;
  • Mi difference values less than the corresponding voltage difference threshold are obtained among the N-i+1 difference values, and determined
  • the i-th battery pack with the highest voltage among the Mi battery packs corresponding to the Mi difference values sends a control command to connect the i-th battery pack to the working circuit to the slave battery management unit corresponding to the i-th battery pack; where i is greater than Or a positive integer equal to 2, Mi is an integer greater than or equal to 0;
  • the battery pack control system includes a master battery management unit and multiple slave battery management units.
  • the circuit is disconnected, and each time before the battery management unit controls the battery pack to enter the working circuit, the circulation value generated by the battery pack is predicted in advance, and the battery pack is controlled to enter the working circuit within the safe circulation value range.
  • the control method does not depend on the balance resistance, avoids energy loss, and effectively protects the batteries and relays of the battery pack connected to the circuit (the function of the relay is: through the opening and closing of the relay, the battery pack is connected to the working circuit or disconnected from the working circuit. connections) are not damaged by the impact of the circulating current.
  • the step of obtaining the Mi difference values smaller than the corresponding pressure difference threshold among the N-i+1 difference values includes:
  • the voltage difference threshold is obtained.
  • each pressure difference threshold corresponding to the N-i+1 differences is a threshold that changes dynamically in real time, and the pressure difference threshold is obtained according to the allowable discharge current and internal resistance of each battery pack, wherein the battery
  • the allowable discharge current of the pack is the allowable discharge current under the temperature and SOC value of the battery pack at the current moment or the maximum circulating current value when the relay is closed.
  • the slave battery management unit corresponding to the i-1th battery pack After the master battery management unit sends an instruction to connect the i-1th battery pack to the working circuit to the slave battery management unit corresponding to the i-1th battery pack, the slave battery management unit corresponding to the i-1th battery pack An open-circuit diagnosis will be performed on the relay of the i-1th battery pack. If there is no open-circuit fault, the slave battery management unit corresponding to the i-1th battery pack will confirm that the relay of the i-1th battery pack is closed and send a message to the master battery management unit. The instruction used to indicate that the connection between the i-1th battery pack and the working circuit is completed is judged as the i-th time after the main battery management unit receives the instruction. In the process of discharge control, each time the relay controlling the battery pack is closed, an open circuit diagnosis is performed to ensure the smooth progress of the subsequent control process.
  • the discharge control method also includes:
  • the first condition includes : Make a difference between the voltage of the battery pack not connected to the working circuit and the sampling voltage, and when the difference is within the corresponding voltage difference range, determine that the sampling current is less than the set threshold and last for the preset time;
  • U0 is the threshold tolerance of the set sampling error and over-current judgment standard.
  • the main battery management unit monitors the sampling voltage change in real time during the operation of the electric vehicle or other electrical equipment, and predicts the connection work of the remaining battery packs that are not connected to the working circuit.
  • the timing of the circuit at this time, send a control command to connect the battery pack to the working circuit to the corresponding slave battery management unit of the battery pack, so that all the battery packs with a large pressure difference can be connected to the working circuit, and avoid partial pressure caused by the pressure difference.
  • the problem that the battery pack cannot be discharged leads to insufficient output power and shortened cruising range.
  • the discharge control method also includes:
  • the sampling voltage, sampling current and the voltage of the battery pack not connected to the working loop and send a control instruction to connect the battery pack to the working loop to the battery pack that meets the second condition; wherein, the second condition includes: The voltage of the battery pack in the loop is different from the sampling voltage.
  • the sampling current is reduced by controlling the output power, and the sampling current is determined to be less than the set threshold and lasts for a preset time.
  • the main battery management unit monitors the sampling voltage change in real time during the operation of the electric vehicle or other electrical equipment, predicts and controls the connection of the remaining battery packs that are not connected to the working circuit.
  • the timing of the circuit at this time, send a control command to connect the battery pack to the working circuit to the battery management unit corresponding to the battery pack, so as to prevent the voltage difference of the battery pack from being further enlarged, improve the consistency of the battery cells, and enable the voltage All the battery packs with a large difference are connected to the working circuit to avoid the problem of insufficient output power and shortened cruising range due to the failure of some battery packs to discharge due to the pressure difference.
  • the discharge control method also includes:
  • the discharge power is allowed to be dynamically adjusted to reduce the current until the current drops to the point where the capacitive life of the relay is not damaged, and the control relay is disconnected to make the battery pack and the battery pack disconnect.
  • the working circuit is disconnected to protect the relay from being damaged when the battery pack is disconnected from the working circuit.
  • An embodiment of the present application provides a charging control method for a battery pack control system.
  • the charging control method is applied to the main battery management unit.
  • the charging control method includes:
  • N is a positive integer greater than or equal to 2;
  • the j-th sampling voltage is the parallel connection of the j-1 battery packs that have been connected to the working circuit
  • the voltage; all the jth voltage values are respectively compared with the jth sampling voltage to obtain N-j+1 differences; get Pj differences among the N-j+1 differences that are less than the corresponding voltage difference threshold, and determine
  • the jth battery pack with the smallest voltage among the Pj battery packs corresponding to the Pj difference values sends a control command to connect the jth battery pack to the working circuit to the slave battery management unit corresponding to the jth battery pack; where j is greater than or a positive integer equal to 2, Pj is an integer greater than or equal to 0;
  • the battery pack control system includes a master battery management unit and multiple slave battery management units.
  • the circuit is disconnected.
  • the circulation value generated by the battery pack is predicted in advance, and the battery pack is controlled within the safe circulation value range.
  • the working loop this control method does not depend on the balance resistance, avoids energy loss, and effectively protects the batteries and relays of the battery pack connected to the loop (the function of the relay is: through the opening and closing of the relay, the battery pack is connected to the working loop or connected to the working loop.
  • the working circuit is disconnected) not to be damaged by the shock generated by the circulating current.
  • the step of obtaining Pj differences among the N-j+1 differences that are smaller than the corresponding pressure difference threshold includes:
  • the voltage difference threshold is obtained.
  • each differential pressure threshold corresponding to the N-j+1 differences is a real-time dynamic threshold value, and the differential pressure threshold is obtained according to the allowable charging current and internal resistance of each battery pack, wherein, the battery
  • the allowable charging current of the pack is the allowable charging current under the temperature and SOC value of the battery pack at the current moment or the maximum circulating current value when the relay is closed.
  • the slave battery management unit corresponding to the j-1th battery pack After the master battery management unit sends an instruction to connect the j-1th battery pack to the working circuit to the slave battery management unit corresponding to the j-1th battery pack, the slave battery management unit corresponding to the j-1th battery pack An open-circuit diagnosis will be performed on the relay of the j-1th battery pack. If there is no open-circuit fault, the slave battery management unit corresponding to the j-1th battery pack will confirm that the relay of the j-1th battery pack is closed and send a message to the master battery management unit. The command used to indicate that the connection between the j-1th battery pack and the working circuit is completed is judged as the jth time after the main battery management unit receives the command. In the process of charging control, each time the relay controlling the battery pack is closed, an open circuit diagnosis is performed to ensure the smooth progress of the subsequent control process.
  • the sampled voltage, sampled current, and voltage of the battery pack not connected to the working loop are obtained, and the battery pack that meets the third condition is sent to the corresponding secondary battery management unit to connect the battery pack to the working loop.
  • Control instructions; wherein, the third condition includes: making a difference between the voltage of the battery packs not connected to the working circuit and the sampling voltage, and when the difference is within the corresponding voltage difference range, all battery packs connected to the working circuit Carry out rate reduction charge control until the charge rate drops to the target value.
  • all the battery packs that have been connected to the working circuit are controlled to reduce the charging rate until the charging rate drops to the target value, including:
  • the charging control method also includes:
  • the charging power is allowed to be requested again according to all the battery packs that have been connected to the working circuit.
  • the charging power is allowed to be dynamically adjusted to reduce the current.
  • the working circuit is disconnected to protect the relay from being damaged when the battery pack is disconnected from the working circuit.
  • FIG. 1 is a schematic structural diagram of a battery pack control system provided in an embodiment of the present application
  • FIG. 2 is a flow chart of the steps of a discharge control method for a battery pack control system provided in an embodiment of the present application;
  • Fig. 3 is the working flow diagram of the open circuit diagnosis provided by the embodiment of the present application.
  • FIG. 4 is a flow chart of steps of a charging control method of a battery pack control system provided in an embodiment of the present application
  • FIG. 5 is a flowchart of an open circuit diagnosis provided by another embodiment of the present application.
  • the term “and/or” is only a kind of association relationship describing associated objects, which means that there may be three kinds of relationships, such as A and/or B, which may mean: A exists alone, and A exists at the same time and B, there are three cases of B alone.
  • the character "/" in this article generally indicates that the contextual objects are an "or” relationship.
  • the term “multiple” refers to more than two (including two), similarly, “multiple groups” refers to more than two groups (including two), and “multiple pieces” refers to More than two pieces (including two pieces).
  • lithium battery packs in energy storage systems and electric vehicles mostly adopt the form of parallel connection of multiple battery packs to meet the capacity and performance requirements of energy storage systems and electric vehicles.
  • the balance resistor can be used to control the balanced current of the parallel connected battery packs, but the current sharing capability is limited, and the balanced Resistors are lossy devices that consume energy from the system.
  • the inventor has designed a discharge control method and a charge control method for the battery pack control system after in-depth research. Before entering the working loop, the circulating current value generated by the battery pack is predicted in advance, and the battery pack is controlled to be connected to the working loop within the safe circulating current value range. This control method does not depend on the balancing resistance and avoids energy loss.
  • the discharge control method and charge control method disclosed in the embodiments of the present application are suitable for controlling the charging or discharging process of multiple parallel battery packs in the case of multiple battery packs connected in parallel.
  • Multiple battery packs connected in parallel can be used, but not limited to, in electrical devices such as mobile phones, tablets, laptops, electric toys, electric tools, battery cars, electric vehicles, ships, and spacecraft.
  • electric toys may include fixed or mobile electric toys, such as game consoles, electric car toys, electric boat toys, electric airplane toys, etc.
  • spacecraft may include airplanes, rockets, space shuttles, spaceships, etc.
  • Fig. 1 is a schematic structural diagram of a battery pack control system provided by an embodiment of the present application.
  • the battery pack control system includes a master battery management unit and N slave battery management units for controlling N parallel battery packs .
  • the slave battery management unit controls the opening and closing of the relay in the battery pack to control the battery pack to be connected to or disconnected from the working circuit.
  • the slave battery management unit communicates with the master battery management unit, and N is a positive integer greater than or equal to 2.
  • the slave battery management unit can be realized by using the battery management system (Battery Mannagement Sysytem, BMS) corresponding to the battery pack; the master battery management unit can be controlled by the battery pack disconnection unit (Battery Disconnect Unit, BDU) modules, or through the battery management system of one of the battery packs.
  • BMS Battery Mannagement Sysytem
  • BDU Battery Disconnect Unit
  • FIG. 2 is a flow chart of the steps of a discharge control method of a battery pack control system.
  • the discharge control method is applied to the main battery management unit.
  • the discharge control method includes steps 100 - 300 .
  • Step 100 At the first moment, obtain the first voltage values of N parallel battery packs, determine the first battery pack with the largest first voltage value, and send the first battery pack to the slave battery management unit corresponding to the first battery pack. Access to the control instructions of the working loop.
  • Step 200 At the i-th moment, obtain the i-th voltage value of the N-i+1 battery packs not connected to the working loop, and the i-th sampling voltage, the i-th sampling voltage is the i-1 battery packs connected to the working loop The voltage of the parallel connection of battery packs; all the i-th voltage values are respectively compared with the i-th sampling voltage to obtain N-i+1 differences; among the N-i+1 differences, Mi differences that are less than the corresponding voltage difference threshold are obtained value, determine the i-th battery pack with the highest voltage among the Mi battery packs corresponding to the Mi differences, and send a control command to connect the i-th battery pack to the working circuit to the slave battery management unit corresponding to the i-th battery pack; where, i is a positive integer greater than or equal to 2, and Mi is an integer greater than or equal to 0.
  • the first moment in step 100 that is, when the BMS of the battery pack completes the self-inspection, obtains the high-voltage instruction of the vehicle controller (Vehicle Control Unit, VCU).
  • the BMS self-inspection of the battery pack includes initialization and fault judgment.
  • the master battery management unit can send a signal instructing the BMS self-inspection to the slave battery management unit. After the BMS self-inspection of all battery packs is completed, the master battery management unit will receive the entire vehicle The upper high voltage command of the controller. After the main battery management unit receives the high voltage command, that is, at the first moment, the first battery pack with the highest voltage of the battery pack is connected to the working circuit.
  • the battery pack voltage can be the cumulative sum of the voltages of the individual cells in the battery pack, or it can be the terminal voltage of the battery pack collected by the high-voltage acquisition unit.
  • the battery packs that are smaller than the corresponding voltage difference threshold that is, there are no battery packs that can be connected to the working circuit at the current moment.
  • these battery packs that are not connected to the working circuit remain disconnected from the working circuit, and the main battery management unit feedbacks
  • the high voltage on the system completes the instruction, and the main battery management unit requests the discharge power to be allowed according to the number of battery packs connected to the working circuit and outputs the power for discharge.
  • each time before the battery management unit controls the battery pack to connect to the working circuit it is judged whether there is a battery pack that satisfies the condition: the difference between the battery pack voltage value and the sampled voltage is less than the corresponding voltage difference threshold.
  • the pressure difference threshold is set as follows: the circulation value corresponding to the pressure difference threshold is within a safe circulation value range. Then, if a battery pack satisfies this condition, it can be predicted that the circulating current value generated by the battery pack is also within the safe circulating current value range.
  • the control method of this embodiment ensures that the battery pack is controlled to be connected to the working circuit within a safe circulating current value interval, and avoids the impact of the excessive circulating current value generated by the battery pack on the relay, resulting in adhesion, shortened life, or damage to the battery cell. Effectively protect the cells and relays of the battery pack connected to the loop, and this control method does not depend on the balancing resistor, avoiding energy loss.
  • the function of the relay is: through the opening and closing of the relay, the battery pack is connected to the working circuit or disconnected from the working circuit.
  • the pressure difference threshold ⁇ V in the step of obtaining Mi differences among the N-i+1 differences that are smaller than the corresponding pressure difference threshold, the pressure difference threshold ⁇ V:
  • Ri and Rj are the internal resistance of the battery pack connected to the working circuit and the internal resistance of the battery pack not connected to the working circuit, respectively.
  • T the temperature of the battery pack passes through the temperature T
  • SOC the ratio of available capacity to actual capacity
  • SOH the remaining ratio of available performance
  • Ix is the allowable discharge current of the battery pack, which takes the smaller value of y(x)map and F(x)map
  • y(x)map is the current temperature and SOC value obtained from the discharge current map of the battery management unit Allowable discharge current
  • F(x)map is the maximum circulating current value that allows the relay to close without damaging the capacitive life of the relay. Therefore, by obtaining the maximum safe circulation value that is allowed to be incorporated into the battery pack in real time through Ix, the voltage difference threshold ⁇ V that is allowed to be incorporated into the battery pack can be calculated.
  • each pressure difference threshold corresponding to the N-i+1 difference values is a real-time dynamic threshold value, and the pressure difference threshold is obtained according to the allowable discharge current and internal resistance of each battery pack, wherein,
  • the allowable discharge current of the battery pack is the allowable discharge current under the temperature and SOC value of the battery pack at the current moment or the maximum safe circulating current value when the relay is closed. Therefore, the pressure difference threshold calculated according to the maximum safe circulating current value enables the battery pack to be incorporated into the working circuit as much as possible on the premise that the battery pack is incorporated into the working circuit to generate a safe circulating current value, reducing the number of batteries that cannot be incorporated into the working circuit Package quantity.
  • the discharge control method also includes:
  • Fig. 3 is a flowchart of the open circuit diagnosis provided by the embodiment of the present application.
  • the master battery management unit sends the i-1th battery pack into the working circuit to the slave battery management unit corresponding to the i-1th battery pack.
  • the secondary battery management unit corresponding to the i-1th battery pack will perform an open circuit diagnosis on the relay of the i-1th battery pack. If there is no open circuit fault, the secondary battery management unit corresponding to the i-1th battery pack will confirm that The relay of the -1 battery pack is closed, and an instruction is sent to the main battery management unit to indicate that the i-1th battery pack is connected to the working circuit.
  • the main battery management unit receives the instruction, it is judged as the i-th time . In the process of discharge control, each time the relay controlling the battery pack is closed, an open circuit diagnosis is performed to ensure the smooth progress of the subsequent control process.
  • the discharge control method further includes: acquiring the sampling voltage, the sampling current, and the voltage of the battery pack not connected to the working circuit, and sending the A control command for connecting the battery pack to the working loop; wherein, the first condition includes: making a difference between the voltage of the battery pack not connected to the working loop and the sampling voltage, and determining the sampling current when the difference is within the corresponding voltage difference range is less than the set threshold and lasts for a preset time.
  • U0 is the threshold tolerance of the set sampling error and over-current judgment standard.
  • the main battery management unit monitors the sampling voltage change in real time during the operation of the electric vehicle, and predicts the timing of connecting the remaining battery packs that are not connected to the working circuit to the working circuit, wherein , the timing in this embodiment is: the difference between the voltage of the battery pack not connected to the working loop and the sampled voltage is within the voltage difference range, and the sampled current is less than the set threshold.
  • the discharge control method further includes: obtaining the sampling voltage, the sampling current, and the voltage of the battery pack not connected to the working circuit, and sending the battery pack that meets the second condition to connect the battery pack to the working circuit.
  • the second condition includes: making a difference between the voltage of the battery pack not connected to the working circuit and the sampling voltage, and when the difference is within the range of the voltage difference, the sampling current is reduced by controlling the output power to determine the sampling current is less than the set threshold ⁇ A and lasts for a preset time.
  • the setting of the value of ⁇ A mainly considers the following aspects: 1) the driving condition of the electric vehicle, that is, the priority is to ensure the safe driving of the vehicle; 2) the polarization internal resistance of the battery cell due to the output current.
  • I_safety refers to the current at a safe vehicle speed
  • I_Resistance refers to the current at the maximum allowable polarization voltage in dynamic regulation.
  • the main battery management unit monitors the sampling voltage change in real time during the electric vehicle discharge process, and predicts the connection time of the remaining battery packs that are not connected to the working circuit. Timing, wherein, the timing of this embodiment is: when the difference between the voltage of the battery pack not connected to the working loop and the sampling voltage is within the voltage difference range, dynamically control the output power to reduce the sampling current, and then control the sampling current so that It is less than the set threshold.
  • the discharge control method further includes: dynamically adjusting the allowable discharge power until it is connected to the working circuit When the discharge current of the battery pack drops to a level that does not damage the capacitive life of the relay, an instruction to disconnect the battery pack from the working circuit is sent to the battery management unit corresponding to the battery pack; an instruction for disconnecting the battery pack from the working circuit is received After the command is completed, the discharge power is allowed to be requested again according to all battery packs that have been connected to the working circuit.
  • the current is reduced by dynamically adjusting the allowable discharge power until the current drops to the point where the capacitive life of the relay is not damaged, and the control relay is disconnected to make the battery pack disconnect from the working circuit.
  • the circuit is disconnected to protect the relay from being damaged when the battery pack is disconnected from the working circuit.
  • FIG. 4 is a flowchart of steps of a charging control method of a battery pack control system provided in an embodiment of the present application.
  • the charging control method is applied to the main battery management unit, and the charging control method includes steps 400 - 600 .
  • Step 400 At the first moment, obtain the first voltage values of N parallel-connected battery packs, determine the first battery pack with the smallest first voltage value, and send the first battery pack to the slave battery management unit corresponding to the first battery pack.
  • Step 500 At the jth moment, obtain the jth voltage value of the N-j+1 battery packs not connected to the working loop, and the jth sampling voltage, the jth sampling voltage is the j-1 battery packs connected to the working loop The voltage of the parallel connection of battery packs; all the jth voltage values are respectively compared with the jth sampling voltage to obtain N-j+1 difference values; among the N-j+1 difference values, Pj differences smaller than the corresponding voltage difference threshold are obtained value, determine the jth battery pack with the smallest voltage among the Pj battery packs corresponding to the Pj differences, and send a control command to connect the jth battery pack to the working circuit to the slave battery management unit corresponding to the jth battery pack; where, j is a positive integer greater than or equal to 2, and Pj is an integer greater than or equal to 0.
  • the first moment in step 400 that is, when the charging request is received.
  • the first battery pack with the lowest battery pack voltage is connected to the working circuit.
  • enter step 500: at each moment (j 2, 3, 4, ...), respectively judge the voltage value of the battery pack not connected to the working circuit at the current moment and The sampled voltage difference at the current moment is smaller than the Pj battery packs corresponding to the voltage difference threshold, and the jth battery pack with the lowest voltage among the Pj battery packs is connected to the working circuit.
  • the battery packs that are smaller than the corresponding voltage difference threshold that is, there are no battery packs that can be connected to the working circuit at the current moment.
  • these battery packs that are not connected to the working circuit remain disconnected from the working circuit, and the main battery management unit feedbacks The high voltage on the system completes the instruction, and the main battery management unit requests the allowable charging power according to the number of battery packs connected to the working circuit.
  • each time before the battery management unit controls the battery pack to connect to the working circuit it is judged whether there is a battery pack that meets the condition: the difference between the voltage value of the battery pack and the sampled voltage is less than the corresponding voltage difference threshold.
  • the pressure difference threshold is set as follows: the circulation value corresponding to the pressure difference threshold is within a safe circulation value range. Then, if a battery pack satisfies this condition, it can be predicted that the circulating current value generated by the battery pack is also within the safe circulating current value range.
  • the control method of this embodiment ensures that the battery pack is controlled to be connected to the working circuit within a safe circulating current value interval, and avoids the impact of the excessive circulating current value generated by the battery pack on the relay, resulting in adhesion, shortened life, or damage to the battery cell. Effectively protect the cells and relays of the battery pack connected to the loop, and this control method does not depend on the balancing resistor, avoiding energy loss.
  • the function of the relay is: through the opening and closing of the relay, the battery pack is connected to the working circuit or disconnected from the working circuit.
  • Ri and Rj are the internal resistance of the battery pack connected to the working circuit and the internal resistance of the battery pack not connected to the working circuit, respectively.
  • T the temperature of the battery pack passes through the temperature T
  • SOC the ratio of available capacity to actual capacity
  • SOH the remaining ratio of available performance
  • Ix is the allowable charging current of the battery pack, which takes the smaller value of Y(x)map and F(x)map, and Y(x)map is the current temperature and SOC value obtained from the charging current map of the battery management unit Allowable charging current, F(x)map is the maximum circulating current value that allows the relay to close without damaging the capacitive life of the relay. Therefore, by obtaining the maximum safe circulation value that is allowed to be incorporated into the battery pack in real time through Ix, the voltage difference threshold ⁇ V that is allowed to be incorporated into the battery pack can be calculated.
  • each differential pressure threshold corresponding to the N-j+1 differences is a threshold that dynamically changes in real time, and the differential pressure threshold is obtained according to the allowable charging current and internal resistance of each battery pack, wherein,
  • the allowable charging current of the battery pack is the allowable charging current under the temperature and SOC value of the battery pack at the current moment or the maximum safe circulating current value when the relay is closed. Therefore, the pressure difference threshold calculated according to the maximum safe circulating current value enables the battery pack to be incorporated into the working circuit as much as possible on the premise that the battery pack is incorporated into the working circuit to generate a safe circulating current value, reducing the number of batteries that cannot be incorporated into the working circuit Package quantity.
  • the charging control method also includes:
  • Fig. 5 is a flowchart of the open circuit diagnosis provided by the embodiment of the present application.
  • the master battery management unit sends the j-1th battery pack into the working circuit to the slave battery management unit corresponding to the j-1th battery pack.
  • the slave battery management unit corresponding to the j-1th battery pack will perform an open circuit diagnosis on the relay of the j-1th battery pack. If there is no open circuit fault, the slave battery management unit corresponding to the j-1th battery pack will confirm that the jth
  • the relay of the -1 battery pack is closed and sends an instruction to the main battery management unit indicating that the j-1th battery pack is connected to the working circuit. After the main battery management unit receives the instruction, it is judged as the jth moment. In the process of charging control, each time the relay controlling the battery pack is closed, an open circuit diagnosis is performed to ensure the smooth progress of the subsequent control process.
  • the charging control method further includes: Obtain the sampling voltage, sampling current and the voltage of the battery pack that is not connected to the working loop, and send a control instruction for connecting the battery pack to the working loop to the battery management unit corresponding to the battery pack that meets the third condition; wherein, the third condition includes : The voltage of the battery pack not connected to the working circuit is compared with the sampling voltage. When the difference is within the corresponding voltage difference range, the charging rate reduction control is performed on all the battery packs connected to the working circuit until the charging rate is reached. down to the target value.
  • the main battery management unit monitors the sampling voltage changes in real time to predict the remaining The timing of connecting the battery pack of the working loop to the working loop, wherein the timing of this embodiment is: when the difference between the voltage of the battery pack not connected to the working loop and the sampling voltage is within the range of the voltage difference, the All the battery packs in the working circuit are controlled to reduce the charging rate until the charging rate drops to the target value. At this time, send a control command to connect the battery pack to the working circuit to the corresponding slave battery management unit of the battery pack. All the battery packs are connected to the working circuit, which solves the problem that the battery pack with too large pressure difference cannot be charged, and effectively improves the battery availability.
  • all the battery packs that have been connected to the working circuit are controlled to reduce the charging rate until the charging rate drops to the target value, including:
  • the embodiment of the present application adopts the rate-decreasing charging control with gradient descent, which improves the overall charging efficiency compared with the method of directly reducing the charging rate to a target value.
  • the charging control method further includes: dynamically adjusting the allowable charging power until it is connected to the working circuit When the charging current of the battery pack drops to a level that does not damage the capacitive life of the relay, an instruction to disconnect the battery pack from the working circuit is sent to the battery management unit corresponding to the battery pack; an instruction to disconnect the battery pack from the working circuit is received After the command is completed, the charging power is allowed to be requested again according to all the battery packs that have been connected to the working circuit.
  • the charging power is allowed to be dynamically adjusted to reduce the current until the current drops to the point where the capacitive life of the relay is not damaged, and the control relay is disconnected to make the battery pack disconnect from the working circuit.
  • the circuit is disconnected to protect the relay from being damaged when the battery pack is disconnected from the working circuit.
  • the disclosed devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some communication interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • a unit described as a separate component may or may not be physically separated, and a component displayed as a unit may or may not be a physical unit, that is, it may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional module in each embodiment of the present application may be integrated to form an independent part, each module may exist independently, or two or more modules may be integrated to form an independent part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Transportation (AREA)
  • Sustainable Energy (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Protection Of Static Devices (AREA)

Abstract

本申请提供一种电池包控制系统的放电控制方法及充电控制方法,电池包控制系统包括主电池管理单元和多个从电池管理单元,主电池管理单元用于控制从电池管理单元,从电池管理单元用于控制电池包接入工作回路或与工作回路断开连接。本申请提供的放电控制方法及充电控制方法在每次在从电池管理单元控制电池包接入工作回路之前,提前预测电池包并入产生的环流值,并且在产生安全的环流值区间内控制电池包接入工作回路,该控制方法不依赖于均衡电阻,避免了能量损耗,有效保护接入回路的电池包的电芯及继电器不因环流产生的冲击而受损。

Description

一种电池包控制系统的放电控制方法及充电控制方法 技术领域
本申请涉及储能系统的充放电控制技术领域,具体而言,涉及一种电池包控制系统的放电控制方法及充电控制方法。
背景技术
目前,储能系统和电动汽车中的锂电池包大多采用多电池包并联的形式,来满足储能系统和电动汽车的容量和性能要求。随着系统规模的增大,并联的电池包越来越多,并联后的电池包之间由于电池电压、内阻、自放电率等参数差异,会产生电流不均衡的现象,严重时会产生电流环流,影响储能系统的寿命和性能,并存在安全隐患。
在并联多个电池包时,因为多个电池包所在的支路之间存在压差,如果直接闭合,若支路间压差过大,由压差所产生的环流对继电器形成冲击导致粘连、寿命缩短或对电芯造成损害。在充电过程中,多个电池包所在的支路之间存在压差,若不闭合压差过大的支路,会导致部分支路不能充电,若采用分时闭合方式充电会导致充电时间长;在放电过程中,同样地,多个电池包所在的支路在放电时压差过大,若不闭合压差过大的支路会导致输出功率受限、续航里程降低,并且造成多支路系统支路电池包使用不均衡问题。
现有技术通常采用均衡电阻对并联的电池包进行均衡电流控制,但是,由于采用了均衡电阻,该均衡电阻属于损耗型器件,会消耗系统的能量,造成能量浪费。
发明内容
本申请实施例的目的在于提供一种电池包控制系统的放电控制方法及充电控制方法,用以解决现有技术在充放电过程中因多个电池包所在的支路间压差过大而难以将支路进行合理闭合接入工作回路的技术缺陷。并且,在本申请所提供的技术方案中,对并联的电池包进行闭合时,摒弃了原有采用均衡电阻的方案,也避免了能量浪费的技术缺陷。
本申请实施例提供的一种电池包控制系统的放电控制方法,电池包控制系统包括主电池管理单元和N个从电池管理单元,用于控制N个并联的电池包;其中,从电池管理单元用于控制电池包接入工作回路或与工作回路断开连接,从电池管理单元与主电池管理单元通信连接,N为大于或等于2的正整数;
放电控制方法应用于主电池管理单元,放电控制方法包括:
在第一时刻,获取N个并联的电池包的第一电压值,确定第一电压值最大的第一电池包,向第一电池包对应的从电池管理单元发送将第一电池包接入工作回路的控制指令;
在第i时刻,获取未接入工作回路的N-i+1个电池包的第i电压值,以及第i采样电压,第i采样电压为已接入工作回路的i-1个电池包并联的电压;所有第i电压值分别与第i采样电压做差,得到N-i+1个差值;得到N-i+1个差值中小于对应的压差阈值的Mi个差值,确定Mi个差值所对应的Mi个电池包中电压最大的第i电池包,向第i电池包对应的从电池管理单元发送将第i电池包接入工作回路的控制指令;其中,i为大于或等于2的正整数,Mi为大于或等于0的整数;
直到Mi=0时,输出允许放电的指令。
上述技术方案中,电池包控制系统包括主电池管理单元和多个从电池管理单元,主电池管理单元用于控制从电池管理单元,从电池管理单元用于控制电池包接入工作回路或与工作回路断开连接,每次在从电池管理单元控制电池包接入工作回路之前,提前预测电池包并入产生的环流值,并且在产生安全的环流值区间内控制电池包接入工作回路,该控制方法不依赖于均衡电阻,避免了能量损耗,有效保护接入回路的电池包的电芯及继电器(继电器的作用是:通过继电器的开闭实现电池包接入工作回路或与工作回路断开连接)不因环流产生的冲击而受损。
在一些可选的实施方式中,得到N-i+1个差值中小于对应的压差阈值的Mi个差值的步 骤,包括:
根据未接入工作回路的N-i+1个电池包中每一个电池包的允许放电电流,及对应的电池包的内阻,得到压差阈值。
上述技术方案中,N-i+1个差值所对应的每一个压差阈值都是实时动态变化的阈值,该压差阈值根据每一个电池包的允许放电电流和内阻得到,其中,电池包的允许放电电流为当前时刻电池包的温度和SOC值下的允许放电电流或继电器闭合的最大环流值。
在一些可选的实施方式中,还包括:
接收到用于指示第i-1电池包与工作回路连接完成的指令后,判断为第i时刻;其中,用于指示第i-1电池包与工作回路连接完成的指令由第i-1电池包对应的从电池管理单元发出。
上述技术方案中,主电池管理单元向第i-1电池包对应的从电池管理单元发送将第i-1电池包接入工作回路的指令之后,第i-1电池包对应的从电池管理单元将对第i-1电池包的继电器进行开路诊断,若无开路故障,则第i-1电池包对应的从电池管理单元确认第i-1电池包的继电器闭合完成并向主电池管理单元发送用于指示第i-1电池包与工作回路连接完成的指令,在主电池管理单元接收到该指令后,即判断为第i时刻。在放电控制的过程中,每次控制电池包的继电器闭合的同时,都进行开路诊断,确保后续控制流程顺利进行。
在一些可选的实施方式中,放电控制方法还包括:
获取采样电压、采样电流和未接入工作回路的电池包的电压,向满足第一条件的电池包对应的从电池管理单元发送将电池包接入工作回路的控制指令;其中,第一条件包括:将未接入工作回路的电池包的电压与采样电压做差,当差值在对应的压差范围之内时,确定采样电流小于设定阈值并持续预设时间;
其中,未接入工作回路的电池包的电压VBatVolt与采样电压VLINK的差值的压差范围为ΔVmin<(VBatVolt-VLINK)<ΔVmax;ΔVmin=ΔV–U0,ΔVmax=ΔV+U0,ΔV=最大环流值与内阻的乘积,U0为设置的采样误差和过流判断标准的阈值容忍度。
上述技术方案中,在放电控制的上高压完成后,电动汽车或其他用电设备在运行过程中,主电池管理单元实时监测采样电压变化,预测剩余未接入工作回路的电池包的接入工作回路的时机,在该时机向该电池包对应的从电池管理单元发送将电池包接入工作回路的控制指令,能够使压差较大的电池包全部与工作回路连接,避免因压差导致部分电池包无法进行放电导致输出功率不足及续航里程变短的问题。
在一些可选的实施方式中,放电控制方法还包括:
获取采样电压、采样电流以及未接入工作回路的电池包的电压,向满足第二条件的电池包发送将电池包接入工作回路的控制指令;其中,第二条件包括:将未接入工作回路的电池包的电压与采样电压做差,当差值在压差范围之内时,通过控制输出功率降低采样电流,确定采样电流小于设定阈值并持续预设时间。
上述技术方案,在放电控制的上高压完成后,电动汽车或其他用电设备在运行过程中,主电池管理单元实时监测采样电压变化,预测并控制剩余未接入工作回路的电池包接入工作回路的时机,在该时机向该电池包对应的从电池管理单元发送将电池包接入工作回路的控制指令,避免电池包电压差值被进一步拉大,提高电芯的一致性,能够使压差较大的电池包全部与工作回路连接,避免因压差导致部分电池包无法进行放电导致输出功率不足及续航里程变短的问题。
在一些可选的实施方式中,放电控制方法还包括:
进行动态调节允许放电功率,直至已接入工作回路的电池包的放电电流下降至不损害继电器容性寿命时,向电池包对应的从电池管理单元发送将电池包与工作回路断开连接的指令;
接收到用于指示电池包与工作回路断开完成的指令后,重新根据已接入工作回路的所有电池包请求允许放电功率。
上述技术方案,在放电过程中,在电池包与工作回路断开连接之前,通过动态调节允许放电功率实现降电流,直到电流下降至不损害继电器容性寿命时,控制继电器断开使电池包与工作回路断开连接,保护电池包与工作回路断开连接时继电器不被损害。
本申请实施例提供的一种电池包控制系统的充电控制方法,充电控制方法应用于主电池管理单元,充电控制方法包括:
在第一时刻,获取N个并联的电池包的第一电压值,确定第一电压值最小的第一电池包,向第一电池包对应的从电池管理单元发送将第一电池包接入工作回路的控制指令;其中,N为大于或等于2的正整数;
在第j时刻,获取未接入工作回路的N-j+1个电池包的第j电压值,以及第j采样电压,第j采样电压为已接入工作回路的j-1个电池包并联的电压;所有第j电压值分别与第j采样电压做差,得到N-j+1个差值;得到N-j+1个差值中小于对应的压差阈值的Pj个差值,确定Pj个差值所对应的Pj个电池包中电压最小的第j电池包,向第j电池包对应的从电池管理单元发送将第j电池包接入工作回路的控制指令;其中,j为大于或等于2的正整数,Pj为大于或等于0的整数;
直到Pj=0时,输出允许充电的指令。
上述技术方案中,电池包控制系统包括主电池管理单元和多个从电池管理单元,主电池管理单元用于控制从电池管理单元,从电池管理单元用于控制电池包接入工作回路或与工作回路断开连接,充电控制过程中每次在从电池管理单元控制电池包接入工作回路之前,提前预测电池包并入产生的环流值,并且在产生安全的环流值区间内控制电池包接入工作回路,该控制方法不依赖于均衡电阻,避免了能量损耗,有效保护接入回路的电池包的电芯及继电器(继电器的作用是:通过继电器的开闭实现电池包接入工作回路或与工作回路断开连接)不因环流产生的冲击而受损。
在一些可选的实施方式中,得到N-j+1个差值中小于对应的压差阈值的Pj个差值的步骤,包括:
根据未接入工作回路的N-j+1个电池包中每一个电池包的允许充电电流,及对应的电池包的内阻,得到压差阈值。
上述技术方案中,N-j+1个差值所对应的每一个压差阈值都是实时动态变化的阈值,该压差阈值根据每一个电池包的允许充电电流和内阻得到,其中,电池包的允许充电电流为当前时刻电池包的温度和SOC值下的允许充电电流或继电器闭合的最大环流值。
在一些可选的实施方式中,还包括:
接收到用于指示第j-1电池包与工作回路连接完成的指令后,判断为第j时刻;其中,用于指示第j-1电池包与工作回路连接完成的指令由第j-1电池包对应的从电池管理单元发出。
上述技术方案中,主电池管理单元向第j-1电池包对应的从电池管理单元发送将第j-1电池包接入工作回路的指令之后,第j-1电池包对应的从电池管理单元将对第j-1电池包的继电器进行开路诊断,若无开路故障,则第j-1电池包对应的从电池管理单元确认第j-1电池包的继电器闭合完成并向主电池管理单元发送用于指示第j-1电池包与工作回路连接完成的指令,在主电池管理单元接收到该指令后,即判断为第j时刻。在充电控制的过程中,每次控制电池包的继电器闭合的同时,都进行开路诊断,确保后续控制流程顺利进行。
在一些可选的实施方式中,获取采样电压、采样电流和未接入工作回路的电池包的电压,向满足第三条件的电池包对应的从电池管理单元发送将电池包接入工作回路的控制指令;其中,第三条件包括:将未接入工作回路的电池包的电压与采样电压做差,当差值在对应的压差范围之内时,对已接入工作回路的所有电池包进行降倍率充电控制,直到充电倍率降至目标值。
上述技术方案中,在充电控制的上高压完成后,已接入工作回路的多个并联的电池包开始充电,在充电过程中,主电池管理单元实时监测采样电压变化,预测并控制剩余未接入工作回路的电池包的接入工作回路的时机,在该时机向该电池包对应的从电池管理单元发送将电池包接入工作回路的控制指令,避免了充电过程中并入电池包产生环流导致的充电过流,能够使压差较大的电池 包全部与工作回路连接,解决了压差过大的电池包无法充电的问题,有效提高电池可用性。
在一些可选的实施方式中,对已接入工作回路的所有电池包进行降倍率充电控制,直到充电倍率降至目标值,包括:
未接入工作回路的电池包的电压VBatVolt与采样电压VLINK的差值在压差范围ΔVmin<(VBatVolt-VLINK)<ΔVmax时,以当前查表的充电倍率乘以梯度系数φi的充电倍率σi进行充电,采样电压充电至VLINK=ΔV+VBatVolt稳定时间τs,则切换下一个梯度系数;其中,ΔVmin=ΔV–U0,ΔVmax=ΔV+U0;ΔV=最大环流值与内阻的乘积,U0为设置的采样误差和过流判断标准的阈值容忍度;
重复上述步骤至σi=0.1C,采样电压充电至VLINK=ΔV+VBatVolt并稳定时间τs。
在一些可选的实施方式中,充电控制方法还包括:
进行动态调节允许充电功率,直至已接入工作回路的电池包的充电电流下降至不损害继电器容性寿命时,向电池包对应的从电池管理单元发送将电池包与工作回路断开连接的指令;
接收到用于指示电池包与工作回路断开完成的指令后,重新根据已接入工作回路的所有电池包请求允许充电功率。
上述技术方案,在充电过程中,在电池包与工作回路断开连接之前,通过动态调节允许充电功率实现降电流,直到电流下降至不损害继电器容性寿命时,控制继电器断开使电池包与工作回路断开连接,保护电池包与工作回路断开连接时继电器不被损害。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请实施例提供的一种电池包控制系统的结构示意图;
图2为本申请实施例提供的一种电池包控制系统的放电控制方法的步骤流程图;
图3为本申请实施例提供的开路诊断工作流程图;
图4为本申请实施例提供的一种电池包控制系统的充电控制方法步骤流程图;
图5为本申请另一实施例提供的开路诊断工作流程图。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实 施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
目前,储能系统和电动汽车中的锂电池包大多采用多电池包并联的形式,来满足储能系统和电动汽车的容量和性能要求。但是,多个电池包的多个电压之间存在压差,如果直接闭合电池包中的继电器实现并联,压差过大产生的环流对继电器形成冲击导致粘连、寿命缩短或对电芯造成损害。充电时压差过大将导致部分电池包不能充电;放电时压差过大将导致部分电池包不能放电,使输出功率受限,续航里程降低。
为了解决并联的电池包因压差导致部分电池包无法进行充电或放电,申请人经研究发现,可以采用均衡电阻对并联的电池包进行均衡电流控制,但是均流能力有限,并且,采用的均衡电阻属于损耗型器件,会消耗系统的能量。
基于以上考虑,为了解决采用的均衡电阻导致能量损耗的问题,发明人经过深入研究,设计了一种电池包控制系统的放电控制方法及充电控制方法,每次在从电池管理单元控制电池包接入工作回路之前,提前预测电池包并入产生的环流值,并且在产生安全的环流值区间内控制电池包接入工作回路,该控制方法不依赖于均衡电阻,避免了能量损耗。
本申请实施例公开的放电控制方法及充电控制方法,适用于多个电池包并联的情形下,对多个并联的电池包进行充电或放电过程中的控制。多个并联的电池包,可以但不限于手机、平板、笔记本电脑、电动玩具、电动工具、电瓶车、电动汽车、轮船、航天器等用电装置中。其中,电动玩具可以包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,航天器可以包括飞机、火箭、航天飞机和宇宙飞船等等。
以下实施例为了方便说明,以本申请一实施例的一种用电装置为电动汽车为例进行说明。
请参照图1,图1为本申请实施例提供的一种电池包控制系统的结构示意图,电池包控制系统包括主电池管理单元和N个从电池管理单元,用于控制N个并联的电池包。从电池管理单元通过控制电池包中继电器的开闭,来控制电池包接入工作回路或与工作回路断开连接。从电池管理单元与主电池管理单元通信连接,N为大于或等于2的正整数。
在本申请一些实施例中,从电池管理单元可利用对应电池包的电池管理系统(Battery Mannagement Sysytem,BMS)来实现;主电池管理单元可以通过电池包断路单元(Battery Disconnect Unit,BDU)的控制模块来实现,也可以通过其中一个电池包的电池管理系统来实现。
请参照图2,图2为一种电池包控制系统的放电控制方法的步骤流程图,该放电控制方法应用于主电池管理单元,该放电控制方法包括步骤100-步骤300。
步骤100:在第一时刻,获取N个并联的电池包的第一电压值,确定第一电压值最大的第一电池包,向第一电池包对应的从电池管理单元发送将第一电池包接入工作回路的控制指令。
步骤200:在第i时刻,获取未接入工作回路的N-i+1个电池包的第i电压值,以及第i采样电压,第i采样电压为已接入工作回路的i-1个电池包并联的电压;所有第i电压值分别与第i采样电压做差,得到N-i+1个差值;得到N-i+1个差值中小于对应的压差阈值的Mi个差值,确定Mi个差值所对应的Mi个电池包中电压最大的第i电池包,向第i电池包对应的从电池管理单元发送将第i电池包接入工作回路的控制指令;其中,i为大于或等于2的正整数,Mi为大于或等于0的整数。
步骤300:直到Mi=0时,输出允许放电的指令。
其中,步骤100中的第一时刻,也就是,在电池包的BMS完成自检后,获取整车控制器(Vehicle Control Unit,VCU)的上高压指令时。电池包的BMS自检包括初始化及故障判断,可以由主电池管理单元向从电池管理单元发送指示进行BMS自检的信号,所有电池包的BMS自检完成后,主电池管理单元将接收整车控制器的上高压指令。在主电池管理单元收到上高压指令后,也就是第一时刻,将电池包电压最大的第一电池包接入工作回路。电池包电压可以是电池包内的单体电芯电压累加和,也可以是通过高压采集单元采集的电池包端电压。第一电池包接入工作回路之后,进入步骤200:在(i=2、3、4、...)的每个时刻,分别判断出当前时刻未接入工作回路的电池包的电压值与当前时刻的采样电压差值小于对应的压差阈值的Mi个电池包,并将Mi个电池包中电压最大的第i电池包接入工作回路。在(i=2、3、4、...)的每个时刻,重复执行步骤200,直到:步骤300,当Mi=0时,表示当前时刻没有能够满足电池包电压值与采样电压差值小于对应的压差阈值的电池包,即当前时刻没有能够接入工作回路的电池包,此时,这些未接入工作回路的电池包保持与工作回路的断开连接状态,主电池管理单元反馈系统上高压完成指令,主电池管理单元根据已连接工作回路的电池包数请求允许放电功率并输出功率进行放电。
本申请实施例的放电控制在上高压过程中,每次在从电池管理单元控制电池包接入工作回路之前,判断是否有电池包满足条件:电池包电压值与采样电压差值小于对应的压差阈值。该压差阈值进行如下设置:压差阈值对应的环流值在安全的环流值区间内。那么,若有电池包满足该条件,就可以预判出该电池包并入产生的环流值也在安全的环流值区间内。本实施例的控制方法保证了在产生安全的环流值区间内控制电池包接入工作回路,避免电池包并入产生过大环流值对继电器形成冲击导致粘连、寿命缩短或对电芯造成损害,有效保护接入回路的电池包的电芯及继电器,并且,该控制方法不依赖于均衡电阻,避免了能量损耗。其中,继电器的作用是:通过继电器的开闭实现电池包接入工作回路或与工作回路断开连接。
在本申请一些实施例中,得到N-i+1个差值中小于对应的压差阈值的Mi个差值的步骤中,该压差阈值ΔV:
ΔV=(Ri+Rj)×Ix
Ix=Min(y(x)map,F(x)map)
其中,Ri、Rj分别为已连接工作回路的电池包的内阻和未连接工作回路的电池包的内阻。内阻的计算为R=f(x)=(αT,βSOC,δSOH),即电池包的内阻通过温度T、SOC(可用容量与实际容量的比值)和SOH(可用性能剩余的比例)的数学模型实时计算获取。Ix为电池包的允许放电电流,其取y(x)map,F(x)map中的较小值,y(x)map为从电池管理单元的放电电流map获取当前温度和SOC值下的允许放电电流,F(x)map为允许继电器闭合且不损害继电器容性寿命的最大环流值。因此,通过Ix实时获取允许并入电池包产生的最大安全环流值,则可计算出允许并入电池包的压差阈值ΔV。
本申请实施例中,N-i+1个差值所对应的每一个压差阈值都是实时动态变化的阈值,该压差阈值根据每一个电池包的允许放电电流和内阻得到,其中,电池包的允许放电电流为当前时刻电池包的温度和SOC值下的允许放电电流或继电器闭合的最大安全环流值。因此,根据最大安全环流值计算的压差阈值,使得电池包能够在并入工作回路产生安全环流值的前提下,尽可能地允许该电池包并入工作回路,减少无法并入工作回路的电池包数量。
在一些可选的实施方式中,放电控制方法还包括:
接收到用于指示第i-1电池包与工作回路连接完成的指令后,判断为第i时刻;其中,用于指示第i-1电池包与工作回路连接完成的指令由第i-1电池包对应的从电池管理单元发出。
请参照图3,图3为本申请实施例提供的开路诊断工作流程图,主电池管理单元向第i-1电池包对应的从电池管理单元发送将第i-1电池包接入工作回路的指令之后,第i-1电池包对应的从电池管理单元将对第i-1电池包的继电器进行开路诊断,若无开路故障,则第i-1电池包对应的从电池管理单元确认第i-1电池包的继电器闭合完成,并向主电池管理单元发送用于指示第i-1电池包与工作回路连接完成的指令,在主电池管理单元接收到该指令后,即判断为第i时刻。在放电控制的过程中,每次控制电池包的继电器闭合的同时,都进行开路诊断,确保后续控制流程顺利进行。
在一些可选的实施方式中,在放电控制过程中的上高压完成后,电动汽车在运行过程中,已接入工作回路的电池包随着放电,其电压下降,与未接入工作回路的电池包的电压逐渐接近,此时,放电控制方法还包括:获取采样电压、采样电流和未接入工作回路的电池包的电压,向满足第一条件的电池包对应的从电池管理单元发送将电池包接入工作回路的控制指令;其中,第一条件包括:将未接入工作回路的电池包的电压与采样电压做差,当差值在对应的压差范围之内时,确定采样电流小于设定阈值并持续预设时间。其中,未接入工作回路的电池包的电压VBatVolt与采样电压VLINK的差值的压差范围为ΔVmin<(VBatVolt-VLINK)<ΔVmax;ΔVmin=ΔV–U0,ΔVmax=ΔV+U0,ΔV=最大环流值与内阻的乘积,U0为设置的采样误差和过流判断标准的阈值容忍度。
本申请实施例,在放电控制的上高压完成后,电动汽车在运行过程中,主电池管理单元实时监测采样电压变化,预测剩余未接入工作回路的电池包的接入工作回路的时机,其中,本实施例的该时机为:未接入工作回路的电池包的电压与采样电压的差值在压差范围之内,且采样电流小于设定阈值。在该时机,向该电池包对应的从电池管理单元发送将电池包接入工作回路的控制指令,能够使压差较大的电池包全部与工作回路连接,避免因压差导致部分电池包无法进行放电导致输出功率不足及续航里程变短的问题。
在一些可选的实施方式中,在放电控制过程中的上高压完成后,电动汽车在运行过程中,已接入工作回路的电池包随着放电,其电压下降,与未接入工作回路的电池包的电压逐渐接近,此时,放电控制方法还包括:获取采样电压、采样电流以及未接入工作回路的电池包的电压,向满足第二条件的电池包发送将电池包接入工作回路的控制指令;其中,第二条件包括:将未接入工作回路的电池包的电压与采样电压做差,当差值在压差范围之内时,通过控制输出功率降低采样电流,确定采样电流小于设定阈值θA并持续预设时间。其中,θA值的设定主要考虑以下几个方面:1)电动汽车的行驶工况,即优先保证车辆安全行驶;2)电芯因输出电流产生的极化内阻。即:
θ=min(I_safety,I_Resistance),其中I_safety指安全车速下的电流;I_Resistance指动态调控中最大允许极化电压下的电流。
上述技术方案,在放电控制过程中的上高压完成后,电动汽车在行驶放电过程中,主电池管理单元实时监测采样电压变化,预测剩余的未接入工作回路的电池包的接入工作回路的时机,其中,本实施例的该时机为:未接入工作回路的电池包的电压与采样电压的差值在压差范围之内时,动态控制输出功率以降低采样电流,进而控制采样电流使其小于设定阈值。在该时机,向该电池包对应的从电池管理单元发送将电池包接入工作回路的控制指令,避免电池包电压差值被进一步拉大,提高电芯的一致性,能够使压差较大的电池包全部与工作回路连接,避免因压差较大导致部分电池包无法进行放电导致输出功率不足及续航里程变短的问题。
在一些可选的实施方式中,放电过程中,若某电池包出现故障需要断开该电池包的继电器,此时,放电控制方法还包括:进行动态调节允许放电功率,直至已接入工作回路的电池包的放电电流下降至不损害继电器容性寿命时,向电池包对应的从电池管理单元发送将电池包与工作回路断开连接的指令;接收到用于指示电池包与工作回路断开完成的指令后,重新根据已接入工作回路的所有电池包请求允许放电功率。
本申请实施例在放电过程中,电池包与工作回路断开连接之前,通过动态调节允许放电功率实现降电流,直到电流下降至不损害继电器容性寿命时,控制继电器断开使电池包与工作回路断 开连接,保护电池包与工作回路断开连接时继电器不被损害。
请参照图4,图4为本申请实施例提供的一种电池包控制系统的充电控制方法步骤流程图,充电控制方法应用于主电池管理单元,充电控制方法包括步骤400-步骤600。
步骤400:在第一时刻,获取N个并联的电池包的第一电压值,确定第一电压值最小的第一电池包,向第一电池包对应的从电池管理单元发送将第一电池包接入工作回路的控制指令;其中,N为大于或等于2的正整数。
步骤500:在第j时刻,获取未接入工作回路的N-j+1个电池包的第j电压值,以及第j采样电压,第j采样电压为已接入工作回路的j-1个电池包并联的电压;所有第j电压值分别与第j采样电压做差,得到N-j+1个差值;得到N-j+1个差值中小于对应的压差阈值的Pj个差值,确定Pj个差值所对应的Pj个电池包中电压最小的第j电池包,向第j电池包对应的从电池管理单元发送将第j电池包接入工作回路的控制指令;其中,j为大于或等于2的正整数,Pj为大于或等于0的整数。
步骤600:直到Pj=0时,输出允许充电的指令。
其中,步骤400中的第一时刻,也就是,在收到充电请求时。在第一时刻,将电池包电压最小的第一电池包接入工作回路。第一电池包接入工作回路之后,进入步骤500:在(j=2、3、4、...)的每个时刻,分别判断出当前时刻未接入工作回路的电池包的电压值与当前时刻的采样电压差值小于对应的压差阈值的Pj个电池包,并将Pj个电池包中电压最小的第j电池包接入工作回路。在(j=2、3、4、...)的每个时刻,重复执行步骤500,直到:步骤600,当Pj=0时,表示当前时刻没有能够满足电池包电压值与采样电压差值小于对应的压差阈值的电池包,即当前时刻没有能够接入工作回路的电池包,此时,这些未接入工作回路的电池包保持与工作回路的断开连接状态,主电池管理单元反馈系统上高压完成指令,主电池管理单元根据已连接工作回路的电池包数请求允许充电功率。
本申请实施例的充电控制在上高压过程中,每次在从电池管理单元控制电池包接入工作回路之前,判断是否有电池包满足条件:电池包电压值与采样电压差值小于对应的压差阈值。该压差阈值进行如下设置:压差阈值对应的环流值在安全的环流值区间内。那么,若有电池包满足该条件,就可以预判出该电池包并入产生的环流值也在安全的环流值区间内。本实施例的控制方法保证了在产生安全的环流值区间内控制电池包接入工作回路,避免电池包并入产生过大环流值对继电器形成冲击导致粘连、寿命缩短或对电芯造成损害,有效保护接入回路的电池包的电芯及继电器,并且,该控制方法不依赖于均衡电阻,避免了能量损耗。其中,继电器的作用是:通过继电器的开闭实现电池包接入工作回路或与工作回路断开连接。
在一些可选的实施方式中,得到N-j+1个差值中小于对应的压差阈值的Pj个差值的步骤,该压差阈值:
ΔV=(Ri+Rj)×Ix
Ix=Min(Y(x)map,F(x)map)
其中,Ri、Rj分别为已连接工作回路的电池包的内阻和未连接工作回路的电池包的内阻。内阻的计算为R=f(x)=(αT,βSOC,δSOH),即电池包的内阻通过温度T、SOC(可用容量与实际容量的比值)和SOH(可用性能剩余的比例)的数学模型实时计算获取。Ix为电池包的允许充电电流,其取Y(x)map,F(x)map中的较小值,Y(x)map为从电池管理单元的充电电流map获取当前温度和SOC值下的允许充电电流,F(x)map为允许继电器闭合且不损害继电器容性寿命的最大环流值。因此,通过Ix实时获取允许并入电池包产生的最大安全环流值,则可计算出允许并入电池包的压差阈值ΔV。
本申请实施例中,N-j+1个差值所对应的每一个压差阈值都是实时动态变化的阈值,该压差阈值根据每一个电池包的允许充电电流和内阻得到,其中,电池包的允许充电电流为当前时刻电池包的温度和SOC值下的允许充电电流或继电器闭合的最大安全环流值。因此,根据最大安全环流值计算的压差阈值,使得电池包能够在并入工作回路产生安全环流值的前提下,尽可能地允许该 电池包并入工作回路,减少无法并入工作回路的电池包数量。
在一些可选的实施方式中,充电控制方法还包括:
接收到用于指示第j-1电池包与工作回路连接完成的指令后,判断为第j时刻;其中,用于指示第j-1电池包与工作回路连接完成的指令由第j-1电池包对应的从电池管理单元发出。
请参照图5,图5为本申请实施例提供的开路诊断工作流程图,主电池管理单元向第j-1电池包对应的从电池管理单元发送将第j-1电池包接入工作回路的指令之后,第j-1电池包对应的从电池管理单元将对第j-1电池包的继电器进行开路诊断,若无开路故障,则第j-1电池包对应的从电池管理单元确认第j-1电池包的继电器闭合完成并向主电池管理单元发送用于指示第j-1电池包与工作回路连接完成的指令,在主电池管理单元接收到该指令后,即判断为第j时刻。在充电控制的过程中,每次控制电池包的继电器闭合的同时,都进行开路诊断,确保后续控制流程顺利进行。
在一些可选的实施方式中,在充电控制的上高压完成后,并联的多个电池包的充电过程中,已连接工作回路的电池包的电压逐渐上升,此时,充电控制方法还包括:获取采样电压、采样电流和未接入工作回路的电池包的电压,向满足第三条件的电池包对应的从电池管理单元发送将电池包接入工作回路的控制指令;其中,第三条件包括:将未接入工作回路的电池包的电压与采样电压做差,当差值在对应的压差范围之内时,对已接入工作回路的所有电池包进行降倍率充电控制,直到充电倍率降至目标值。
本申请实施例中,在充电控制的上高压完成后,已接入工作回路的多个并联的电池包开始充电,在充电过程中,主电池管理单元实时监测采样电压变化,预测剩余未接入工作回路的电池包的接入工作回路的时机,其中,本实施例的该时机为:未接入工作回路的电池包的电压与采样电压的差值在压差范围之内时,对已接入工作回路的所有电池包进行降倍率充电控制,直到充电倍率降至目标值。在该时机,向该电池包对应的从电池管理单元发送将电池包接入工作回路的控制指令,避免了充电过程中并入电池包产生环流导致的充电过流,能够使压差较大的电池包全部与工作回路连接,解决了压差过大的电池包无法充电的问题,有效提高电池可用性。
在一些可选的实施方式中,对已接入工作回路的所有电池包进行降倍率充电控制,直到充电倍率降至目标值,包括:
未接入工作回路的电池包的电压VBatVolt与采样电压VLINK的差值在压差范围ΔVmin<(VBatVolt-VLINK)<ΔVmax时,以当前查表的充电倍率乘以梯度系数φi的充电倍率σi进行充电,采样电压充电至VLINK=ΔV+VBatVolt稳定时间τs,则切换下一个梯度系数;其中,ΔVmin=ΔV–U0,ΔVmax=ΔV+U0;ΔV=最大环流值与内阻的乘积,U0为设置的采样误差和过流判断标准的阈值容忍度;
重复上述步骤至σi=0.1C,采样电压充电至VLINK=ΔV+VBatVolt并稳定时间τs。
本申请实施例在降倍率充电控制时,采用了梯度下降的降倍率充电控制,相较于直接将充电倍率降低到目标值的方式,提高了总体的充电效率。
在一些可选的实施方式中,充电过程中,若某电池包出现故障需要断开该电池包的继电器,此时,充电控制方法还包括:进行动态调节允许充电功率,直至已接入工作回路的电池包的充电电流下降至不损害继电器容性寿命时,向电池包对应的从电池管理单元发送将电池包与工作回路断开连接的指令;接收到用于指示电池包与工作回路断开完成的指令后,重新根据已接入工作回路的所有电池包请求允许充电功率。
本申请实施例在充电过程中,电池包与工作回路断开连接之前,通过动态调节允许充电功率实现降电流,直到电流下降至不损害继电器容性寿命时,控制继电器断开使电池包与工作回路断开连接,保护电池包与工作回路断开连接时继电器不被损害。
在本申请所提供的实施例中,应该理解到,所揭露装置和方法,可以通过其它的方式实现。以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,又例如,多个单元或组件可以结合或者可以集成到另一个 系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些通信接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
另外,作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
再者,在本申请各个实施例中的各功能模块可以集成在一起形成一个独立的部分,也可以是各个模块单独存在,也可以两个或两个以上模块集成形成一个独立的部分。
在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (12)

  1. 一种电池包控制系统的放电控制方法,其特征在于,所述电池包控制系统包括主电池管理单元和N个从电池管理单元,用于控制N个并联的电池包;其中,所述从电池管理单元用于控制所述电池包接入工作回路或与所述工作回路断开连接,所述从电池管理单元与所述主电池管理单元通信连接,N为大于或等于2的正整数;
    所述放电控制方法应用于主电池管理单元,所述放电控制方法包括:
    在第一时刻,获取所述N个并联的电池包的第一电压值,确定第一电压值最大的第一电池包,向第一电池包对应的从电池管理单元发送将第一电池包接入所述工作回路的控制指令;
    在第i时刻,获取未接入所述工作回路的N-i+1个电池包的第i电压值,以及第i采样电压,所述第i采样电压为已接入工作回路的i-1个电池包并联的电压;所有第i电压值分别与第i采样电压做差,得到N-i+1个差值;得到N-i+1个差值中小于对应的压差阈值的M i个差值,确定M i个差值所对应的M i个电池包中电压最大的第i电池包,向第i电池包对应的从电池管理单元发送将第i电池包接入所述工作回路的控制指令;其中,所述i为大于或等于2的正整数,所述M i为大于或等于0的整数;
    直到M i=0时,输出允许放电的指令。
  2. 如权利要求1所述的放电控制方法,其特征在于,所述得到N-i+1个差值中小于对应的压差阈值的M i个差值的步骤,包括:
    根据所述未接入所述工作回路的N-i+1个电池包中每一个电池包的允许放电电流,及对应的电池包的内阻,得到所述压差阈值。
  3. 如权利要求1所述的放电控制方法,其特征在于,还包括:
    接收到用于指示第i-1电池包与工作回路连接完成的指令后,判断为第i时刻;其中,所述用于指示第i-1电池包与工作回路连接完成的指令由第i-1电池包对应的从电池管理单元发出。
  4. 如权利要求1所述的放电控制方法,其特征在于,所述放电控制方法还包括:
    获取采样电压、采样电流和未接入工作回路的电池包的电压,向满足第一条件的电池包对应的从电池管理单元发送将电池包接入工作回路的控制指令;其中,所述第一条件包括:将未接入工作回路的电池包的电压与采样电压做差,当差值在对应的压差范围之内时,确定所述采样电流小于设定阈值并持续预设时间;
    其中,未接入工作回路的电池包的电压V BatVolt与采样电压V LINK的差值的压差范围为ΔV min<(V BatVolt-V LINK)<ΔV max;ΔV min=ΔV–U 0,ΔV max=ΔV+U 0,ΔV=最大环流值与内阻的乘积,U 0为设置的采样误差和过流判断标准的阈值容忍度。
  5. 如权利要求1所述的放电控制方法,其特征在于,所述放电控制方法还包括:
    获取采样电压、采样电流和未接入工作回路的电池包的电压,向满足第二条件的电池包发送将电池包接入工作回路的控制指令;其中,所述第二条件包括:将未接入工作回路的电池包的电压与采样电压做差,当差值在压差范围之内时,通过控制输出功率降低采样电流,确定所述采样电流小于设定阈值并持续预设时间。
  6. 如权利要求1所述的放电控制方法,其特征在于,所述放电控制方法还包括:
    进行动态调节允许放电功率,直至已接入工作回路的电池包的放电电流下降至不损害继电器容性寿命时,向电池包对应的从电池管理单元发送将电池包与工作回路断开连接的指令;
    接收到用于指示电池包与工作回路断开完成的指令后,重新根据已接入工作回路的所有电池包请求允许放电功率。
  7. 一种电池包控制系统的充电控制方法,其特征在于,所述充电控制方法应用于主电池管理单元,所述充电控制方法包括:
    在第一时刻,获取N个并联的电池包的第一电压值,确定第一电压值最小的第一电池包,向第一电池包对应的从电池管理单元发送将第一电池包接入工作回路的控制指令;其中,N为大于或等于2的正整数;
    在第j时刻,获取未接入所述工作回路的N-j+1个电池包的第j电压值,以及第j采样电压,所述第j采样电压为已接入工作回路的j-1个电池包并联的电压;所有第j电压值分别与第j采样电压做差,得到N-j+1个差值;得到N-j+1个差值中小于对应的压差阈值的P j个差值,确定P j个差值所 对应的P j个电池包中电压最小的第j电池包,向第j电池包对应的从电池管理单元发送将第j电池包接入所述工作回路的控制指令;其中,所述j为大于或等于2的正整数,所述P j为大于或等于0的整数;
    直到P j=0时,输出允许充电的指令。
  8. 如权利要求7所述的充电控制方法,其特征在于,所述得到N-j+1个差值中小于对应的压差阈值的P j个差值的步骤,包括:
    根据所述未接入所述工作回路的N-j+1个电池包中每一个电池包的允许充电电流,及对应的电池包的内阻,得到所述压差阈值。
  9. 如权利要求7所述的充电控制方法,其特征在于,还包括:
    接收到用于指示第j-1电池包与工作回路连接完成的指令后,判断为第j时刻;其中,所述用于指示第j-1电池包与工作回路连接完成的指令由第j-1电池包对应的从电池管理单元发出。
  10. 如权利要求7所述的充电控制方法,其特征在于,还包括:
    获取采样电压、采样电流和未接入工作回路的电池包的电压,向满足第三条件的电池包对应的从电池管理单元发送将电池包接入工作回路的控制指令;其中,所述第三条件包括:将未接入工作回路的电池包的电压与采样电压做差,当差值在对应的压差范围之内时,对已接入工作回路的所有电池包进行降倍率充电控制,直到充电倍率降至目标值。
  11. 如权利要求10所述的充电控制方法,其特征在于,所述对已接入工作回路的所有电池包进行降倍率充电控制,直到充电倍率降至目标值,包括:
    未接入工作回路的电池包的电压V BatVolt与采样电压V LINK的差值在压差范围ΔV min<(V BatVolt-V LINK)<ΔV max时,以当前查表的充电倍率乘以梯度系数
    Figure PCTCN2021125410-appb-100001
    的充电倍率σ i进行充电,采样电压充电至V LINK=ΔV+V BatVolt稳定时间τs,则切换下一个梯度系数;其中,ΔV min=ΔV–U 0,ΔV max=ΔV+U 0;ΔV=最大环流值与内阻的乘积,U 0为设置的采样误差和过流判断标准的阈值容忍度;
    重复上述步骤至σ i=0.1C,采样电压充电至V LINK=ΔV+V BatVolt稳定时间τs。
  12. 如权利要求7所述的充电控制方法,其特征在于,所述充电控制方法还包括:
    进行动态调节允许充电功率,直至已接入工作回路的电池包的充电电流下降至不损害继电器容性寿命时,向电池包对应的从电池管理单元发送将电池包与工作回路断开连接的指令;
    接收到用于指示电池包与工作回路断开完成的指令后,重新根据已接入工作回路的所有电池包请求允许充电功率。
PCT/CN2021/125410 2021-10-21 2021-10-21 一种电池包控制系统的放电控制方法及充电控制方法 WO2023065243A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/CN2021/125410 WO2023065243A1 (zh) 2021-10-21 2021-10-21 一种电池包控制系统的放电控制方法及充电控制方法
CN202180062260.XA CN116325416A (zh) 2021-10-21 2021-10-21 一种电池包控制系统的放电控制方法及充电控制方法
JP2023541661A JP2024503011A (ja) 2021-10-21 2021-10-21 電池パック制御システムの放電制御方法及び充電制御方法
KR1020237024592A KR20230123503A (ko) 2021-10-21 2021-10-21 배터리팩 제어시스템의 방전 제어방법 및 충전 제어방법
EP21960992.2A EP4258507A4 (en) 2021-10-21 2021-10-21 DISCHARGE CONTROL METHODS AND CHARGE CONTROL METHODS FOR A BATTERY PACK CONTROL SYSTEM
US18/344,099 US20230344246A1 (en) 2021-10-21 2023-06-29 Discharge control method and charge control method of battery pack control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/125410 WO2023065243A1 (zh) 2021-10-21 2021-10-21 一种电池包控制系统的放电控制方法及充电控制方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/344,099 Continuation US20230344246A1 (en) 2021-10-21 2023-06-29 Discharge control method and charge control method of battery pack control system

Publications (1)

Publication Number Publication Date
WO2023065243A1 true WO2023065243A1 (zh) 2023-04-27

Family

ID=86058656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/125410 WO2023065243A1 (zh) 2021-10-21 2021-10-21 一种电池包控制系统的放电控制方法及充电控制方法

Country Status (6)

Country Link
US (1) US20230344246A1 (zh)
EP (1) EP4258507A4 (zh)
JP (1) JP2024503011A (zh)
KR (1) KR20230123503A (zh)
CN (1) CN116325416A (zh)
WO (1) WO2023065243A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117175750B (zh) * 2023-11-01 2024-01-26 南通国轩新能源科技有限公司 可移动式储能充电设备的充放电控制方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104425852A (zh) * 2013-09-06 2015-03-18 苏州宝时得电动工具有限公司 控制方法、控制组件、电池系统及电动工具
CN108258748A (zh) * 2016-12-29 2018-07-06 宁德时代新能源科技股份有限公司 电池柜的上电控制方法及系统
KR20200066838A (ko) * 2018-12-03 2020-06-11 아이씨티(주) 퍼스널 모빌리티의 보조 배터리
CN112519634A (zh) * 2020-12-17 2021-03-19 浙江钱江摩托股份有限公司 一种电动车用的电池并联盒控制装置及其方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112533788B (zh) * 2018-10-26 2023-12-01 康明斯公司 处于不同荷电状态(soc)的多个电池组的电池充电和放电

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104425852A (zh) * 2013-09-06 2015-03-18 苏州宝时得电动工具有限公司 控制方法、控制组件、电池系统及电动工具
CN108258748A (zh) * 2016-12-29 2018-07-06 宁德时代新能源科技股份有限公司 电池柜的上电控制方法及系统
KR20200066838A (ko) * 2018-12-03 2020-06-11 아이씨티(주) 퍼스널 모빌리티의 보조 배터리
CN112519634A (zh) * 2020-12-17 2021-03-19 浙江钱江摩托股份有限公司 一种电动车用的电池并联盒控制装置及其方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4258507A4 *

Also Published As

Publication number Publication date
EP4258507A4 (en) 2024-05-29
EP4258507A1 (en) 2023-10-11
CN116325416A (zh) 2023-06-23
JP2024503011A (ja) 2024-01-24
US20230344246A1 (en) 2023-10-26
KR20230123503A (ko) 2023-08-23

Similar Documents

Publication Publication Date Title
JP6214540B2 (ja) バッテリーのセルブロックをスイッチングすることによってバッテリーの充放電レベルを平衡化するための方法
CN109774536B (zh) 一种基于多代理技术的模块化电池均衡系统的控制方法
US20220123576A1 (en) Method for managing charging and discharging of parallel-connected battery pack, electronic device, and electrical system
EP4210151A1 (en) Battery heating system, battery pack, and electric apparatus
JP2023514897A (ja) 充電方法、駆動用バッテリーのバッテリー管理システム及び充電ポスト
WO2010022643A1 (zh) 混合动力车动力电池的均衡充电方法及装置
WO2023065243A1 (zh) 一种电池包控制系统的放电控制方法及充电控制方法
CN112104024A (zh) 储能变换器自适应下垂控制方法及其控制系统
US11646588B2 (en) Battery system, control method of cell balance procedure, and calculation method of balance charge capacity
WO2022213338A1 (zh) 一种储能系统、储能系统的控制方法及光伏发电系统
KR102644606B1 (ko) 충전 방법 및 전력 변환 장치
CN109193863A (zh) 电池组电压均衡控制方法及电路
KR20190051483A (ko) 충전 제어 장치 및 방법
US20230029492A1 (en) Charging and discharging apparatus and battery charging method
EP4050697B1 (en) Method and apparatus for equalizing a battery module, battery module, and power management controller
EP4239828A1 (en) Charging method, charging device and charging system for power battery
CN112769209B (zh) 一种储能系统及电池模组充放电功率动态控制方法
JP2011154925A (ja) リチウムイオン組電池の充電システムおよび充電方法
CN110581576A (zh) 用于平衡电池模块之间的压差的充电电路及其充电方法
CN2922233Y (zh) 动力锂离子电池的过充电保护电路
TW202229917A (zh) 燃料電池電堆的控制系統與方法
CN114583771A (zh) 一种电池包并联控制方法、装置和设备
JP2021170883A (ja) 蓄電システム
JP2002238171A (ja) リチウムイオン電池の非散逸的管理システムおよび方法
JP7511768B2 (ja) 動力電池の充電方法、充電装置と充電システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21960992

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023541661

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2021960992

Country of ref document: EP

Effective date: 20230704

ENP Entry into the national phase

Ref document number: 20237024592

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE