WO2023065233A1 - 晶体管外壳封装件及其制备方法、光器件、光模块及光网络系统 - Google Patents

晶体管外壳封装件及其制备方法、光器件、光模块及光网络系统 Download PDF

Info

Publication number
WO2023065233A1
WO2023065233A1 PCT/CN2021/125365 CN2021125365W WO2023065233A1 WO 2023065233 A1 WO2023065233 A1 WO 2023065233A1 CN 2021125365 W CN2021125365 W CN 2021125365W WO 2023065233 A1 WO2023065233 A1 WO 2023065233A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
lens
optical
filter
transistor
Prior art date
Application number
PCT/CN2021/125365
Other languages
English (en)
French (fr)
Inventor
曾宇杰
高飞
刘涛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202180093653.7A priority Critical patent/CN116848807A/zh
Priority to PCT/CN2021/125365 priority patent/WO2023065233A1/zh
Priority to EP21960982.3A priority patent/EP4362357A4/en
Publication of WO2023065233A1 publication Critical patent/WO2023065233A1/zh
Priority to US18/593,421 priority patent/US20240201457A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4215Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical elements being wavelength selective optical elements, e.g. variable wavelength optical modules or wavelength lockers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29361Interference filters, e.g. multilayer coatings, thin film filters, dichroic splitters or mirrors based on multilayers, WDM filters
    • G02B6/29362Serial cascade of filters or filtering operations, e.g. for a large number of channels
    • G02B6/29365Serial cascade of filters or filtering operations, e.g. for a large number of channels in a multireflection configuration, i.e. beam following a zigzag path between filters or filtering operations
    • G02B6/29367Zigzag path within a transparent optical block, e.g. filter deposited on an etalon, glass plate, wedge acting as a stable spacer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4236Fixing or mounting methods of the aligned elements
    • G02B6/4239Adhesive bonding; Encapsulation with polymer material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4236Fixing or mounting methods of the aligned elements
    • G02B6/4244Mounting of the optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4256Details of housings
    • G02B6/4262Details of housings characterised by the shape of the housing
    • G02B6/4263Details of housings characterised by the shape of the housing of the transisitor outline [TO] can type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers

Definitions

  • the present application relates to the technical field of optical devices, in particular to a transistor housing package and its preparation method, an optical device, an optical module and an optical network system.
  • the optical device is an important part of the optical module.
  • the packaging of the optical device mainly includes coaxial packaging, box (Box) packaging, chip on board (Chips on Board, COB) packaging and other forms.
  • Transistor-Outline (TO) package is the basic package structure of Coaxial-type package Optical Sub-Assembly.
  • Traditional TO packages include transmitting and receiving types.
  • laser chip Laser diode, LD
  • detector chip Photo diode, PD
  • single-fiber unidirectional devices can include Transmitting Optical Sub-Assembly (TOSA) or Receiving Optical Sub-Assembly (ROSA). Since the package of coaxial devices is relatively simple and the cost is low, passive Optical device products in the fields of optical fiber network (Passive Optical Network, PON), wireless network, and Internet Protocol (Internet Protocol, IP) are widely used.
  • TOSA Transmitting Optical Sub-Assembly
  • ROSA Receiving Optical Sub-Assembly
  • an optical device wants to realize signal transmission of more channels, more TO packages need to be integrated. Limited by the size of the traditional TO package and the ability and design of the lens, the optical device needs to increase the package size of the device, and adopt complex optical path schemes such as parallel light and relay lens, and use more external lenses and filters, etc. element. These will increase the difficulty of overall structural design and manufacturing of optical devices, resulting in high material costs and production costs, and it is difficult to meet the requirements of miniaturized module packaging protocols.
  • the present application provides a transistor housing package and its preparation method, an optical device, an optical module and an optical network system, so as to reduce the volume of the optical device and reduce the cost of the optical device.
  • the present application provides a transistor housing package, which includes a stem, a cap, a first lens, a filter component, a lens component, a first light receiving chip and a second light receiving chip.
  • the tube cap is arranged on the first side of the tube base, so that the tube base and the tube cap are fixedly connected to form an accommodating cavity
  • the first lens is arranged on the top of the tube cap and penetrates the tube cap. and collimating the first light from the housing package.
  • the above-mentioned first light is transmitted through an optical fiber.
  • the filter assembly, the lens assembly, the first light receiving chip and the second light receiving chip are arranged in the above accommodating cavity.
  • the above-mentioned first light-receiving chip and the second light-receiving chip are arranged on the first side of the stem, and are connected to pins on the stem.
  • the lens assembly includes a second lens and a third lens, the second lens is arranged on the side of the first light-receiving chip away from the stem, and the third lens is arranged on the side of the second light-receiving chip away from the stem.
  • the filter assembly is arranged on the side of the lens assembly away from the first light receiving chip and the second light receiving chip.
  • the transistor housing package uses the first lens on the tube cap to receive the first light.
  • the first lens receives the first light and collimates the first light.
  • the component splits the first light into the second light and the third light.
  • the wavelength of the second light corresponds to the working wavelength of the first light receiving chip
  • the wavelength of the third light corresponds to the working wavelength of the second light receiving chip.
  • the lens assembly is located between the filter assembly and the first light receiving chip and the second light receiving chip.
  • the second lens of the lens assembly receives the second light and converges the second light so that the second light converges to the first light receiving chip.
  • the photosensitive surface of the chip; the third lens receives the third light and converges the third light, so that the third light converges to the photosensitive surface of the second light receiving chip.
  • This solution enables at least two channels of optical signals with different wavelengths to be separated and transmitted inside the transistor housing package, and can at least realize the two-in-one transistor housing package.
  • This solution reduces the dimensionality of the package at the device level, so that a single transistor package can at least achieve double-folding, so that when the optical device is applied to a multi-channel transceiver and transmission scenario, it can reduce the number of transistor packages that need to be integrated, thereby
  • the structure of the optical device is simpler, the manufacturing process is less difficult, the cost is lower, and miniaturized packaging can be realized.
  • the second lens and the third lens may have an integrated structure. This solution can reduce the number of accessories of the transistor housing package, and facilitates the manufacture and assembly of the lens assembly.
  • the above-mentioned lens assembly may further include a fixing part, which is integrally formed with the second lens and the third lens.
  • the above-mentioned fixing part is installed on the tube base, then the second lens and the third lens are also equivalent to being installed on the tube base through the above-mentioned fixing part, and in addition, the above-mentioned filter assembly can also be installed on the above-mentioned tube base, then the lens assembly in this scheme is in addition to Can play the role of lens, also can play the role of bracket.
  • the solution simplifies the optical elements for optical path integration in the transistor shell package, and simplifies the built-in packaging of multi-channel optical path integrated optical elements in a small space of the optical device with the transistor shell package.
  • the above-mentioned lens assembly is a plastic lens assembly.
  • the solution is convenient to form the lens assembly at one time by using an injection molding process, and has light weight and low cost.
  • the first lens may be directly provided on the tube cap, and the first lens may specifically be a hemispherical lens.
  • the cost of the hemispherical lens is low, which is beneficial to reduce the cost of the package of the transistor case.
  • the filter assembly can include a first filter, a second filter and a third filter, wherein the first filter is opposite to the second lens for transmitting the second light And reflect light other than the second light, so that the first light receiving chip can receive the second light of corresponding wavelength.
  • the second optical filter is arranged between the first optical filter and the third optical filter, and is used to reflect the light reflected by the first optical filter to the third optical filter, and the third optical filter is opposite to the third lens , for transmitting the third light, so that the second light receiving chip can receive the third light of corresponding wavelength.
  • the present application also provides a method for preparing a transistor housing package, the method including the following steps: using silver glue passive patch and gold wire bonding technology to face the first light receiving device on the first side of the stem
  • the chip and the second light receiving chip are mounted and wired;
  • the lens assembly is attached to the first side of the socket by using a passive patch process.
  • the lens assembly includes a second lens and a third lens, and the second lens receives the second lens.
  • the preparation of the transistor housing package in the above first aspect can be completed by using traditional techniques and equipment. In the case of reducing the volume of the optical device and reducing the cost, the process cost of the transistor housing package is no Increase.
  • the present application also provides an optical device, which includes a tube body and at least one transistor housing package in any one of the above-mentioned embodiments.
  • the above-mentioned tube body has a tube wall and an inner cavity, and the inner cavity is used for transmitting light, and the light includes light received and emitted by the optical device.
  • the above-mentioned transistor housing package is installed on the tube wall of the tube body, and the first lens of the transistor housing package is arranged towards the inner cavity, so that the first lens can receive the first light transmitted in the inner cavity.
  • the dimensionality reduction of packaging is carried out at the device level, so that a single transistor housing package can at least realize double-in-one, so that when the coaxial packaged optical device is applied to a multi-channel transceiver transmission scenario, it can reduce the need for integrated transistor housing packaging
  • the number of components makes the structure of the optical device simpler, the manufacturing process less difficult, the cost lower, and the miniaturization package can be realized.
  • the above-mentioned optical device may further include an adapter, the adapter is installed on the tube body, and the adapter may also have a cavity, and the cavity communicates with the inner cavity of the tube body.
  • the above-mentioned adapter can be used to connect the optical fiber, so that the optical fiber communicates with the inner cavity, and the light can be transmitted between the inner cavity and the optical fiber.
  • the present application further provides an optical module, which includes a housing and the above-mentioned optical device.
  • the above-mentioned optical device is installed in the casing.
  • the housing has an optical fiber interface
  • the optical fiber interface is opposite to the adapter
  • the optical fiber interface is used to install the optical fiber
  • the optical fiber is connected to the adapter through the optical interface in turn, so that the optical fiber is connected to the inner cavity of the optical device.
  • the optical fiber is connected to the adapter through the optical fiber interface to realize the transmission of optical signals.
  • the present application also provides an optical network system
  • the optical network system includes an optical line terminal (OLT) and an optical network unit (ONU), and the optical line terminal is connected to the optical network unit through a passive optical distribution network
  • the optical line terminal includes an optical device
  • the optical network unit includes an optical device
  • the optical device is the basis for normal communication of the entire network.
  • the volume of the optical device in this solution is small, and the cost is low, which is beneficial to reduce the cost of the optical network system.
  • FIG. 1 is a schematic diagram of an exploded structure of a transistor housing package in an embodiment of the present application
  • FIG. 2 is a schematic cross-sectional structure diagram of a transistor housing package in an embodiment of the present application
  • Fig. 3 is an optical path diagram of a transistor housing package in the embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a lens assembly in an embodiment of the present application.
  • Figure 5 is a schematic diagram of convex lens imaging
  • FIG. 6 is a schematic diagram of the positional relationship between the transistor housing package and the optical fiber in the embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of the preparation process of the transistor housing package in the embodiment of the present application.
  • Fig. 8 is a schematic diagram of the preparation process of the transistor housing package in the embodiment of the present application.
  • FIG. 9 is a schematic cross-sectional structure diagram of an optical device in an embodiment of the present application.
  • Fig. 10 is a schematic cross-sectional structure diagram of an optical device in a prior art solution
  • FIG. 11 is a schematic diagram of an optical network system in an embodiment of the present application.
  • 300-optical network unit 400-passive optical distribution network.
  • the optical module usually includes an optical device, and the optical device also includes a packaging structure.
  • the packaging structure that is currently widely used and has a low cost is a transistor housing package (specifically, a coaxial package).
  • the light receiving chip or the light emitting chip It is packaged into an integral structure with original components such as mirror groups to form a transistor housing package (TO), which is convenient for preparing and forming optical devices.
  • the transistor case package can usually only realize the packaging of one chip, that is to say, the transistor case package can only transmit one way of light emitting signal transmission or light receiving signal transmission.
  • the optical device needs to have a multi-directional transmission function, so as to reduce the volume of the optical module and enrich the functions of the optical module.
  • the overall volume of the optical device is relatively large, so the application provides a transistor housing package capable of realizing two-in-one packaging and its preparation method, as well as an optical device, an optical module and an optical network system having the above-mentioned transistor housing package.
  • FIG. 1 is a schematic diagram of an exploded structure of a transistor housing package in an embodiment of the present application
  • FIG. 2 is a schematic cross-sectional structural diagram of a transistor housing package in an embodiment of the present application.
  • the transistor housing package 110 Transistor-Outline, TO
  • the transistor housing package 110 in the embodiment of the present application includes a stem 1, a cap 2, a first lens 3, a filter assembly 4, a lens assembly 5, The first light receiving chip 6 and the second light receiving chip 7 .
  • the stem 1 is used as the carrying structure of the transistor housing package 110
  • the first light receiving chip 6 and the second light receiving chip 7 are arranged on the first side of the stem 1, and are fixedly connected with pins 8, the leads
  • the pin 8 is connected with the above-mentioned first light receiving chip 6 and the second light receiving chip 7 , and is used for transmitting the signal of the transistor housing package 110 .
  • the above-mentioned first lens 3 is disposed on the top of the tube cap 2 and penetrates the above-mentioned tube cap 2 for transmitting the first light 01 incident on the transistor housing package 110 .
  • the above-mentioned first light 01 may specifically be light transmitted by an optical fiber.
  • the above-mentioned tube cap 2 is installed on the first side of the above-mentioned tube base 1, and the tube cap 2 and the tube base 1 form an accommodation cavity.
  • the receiving chip 7 is disposed in the accommodating cavity.
  • the filter assembly 4 is located on the side of the first lens 3 facing the stem 1 , that is, the side of the first lens 3 facing the first light receiving chip 6 and the second light receiving chip 7 .
  • the first light 01 incident through the first lens 3 is directed to the filter assembly 4 for light splitting, then the filter assembly 4 can divide the first light 01 into the second light 011 and the third light 012, specifically according to the second light 011 and the third light 012 have different wavelengths for splitting.
  • the lens assembly 5 is located on the side of the filter assembly 4 facing away from the first lens 3, and is used to receive the second light 011 and the third light 012 formed by the above-mentioned filter assembly 4.
  • the lens assembly 5 includes a second lens 51 and a third lens 52 , the second lens 51 receives the second light 011 , and the third lens 52 receives the third light 012 .
  • the first light receiving chip 6 is located on the side of the second lens 51 away from the filter assembly 4 , and the second lens 51 is used to collimate the second light 011 and make the second light 011 hit the first light receiving chip 6 .
  • the second light receiving chip 7 is located on the side of the third lens 52 away from the filter assembly 4, the third lens 52 is used to collimate the third light 012, and make the third light 012 irradiate to the second light receiving chip7.
  • FIG. 3 is an optical circuit diagram of a transistor housing package in an embodiment of the present application.
  • the first lens 3 on the cap 2 of the transistor housing package 110 directly receives the first light 01 transmitted by the single-mode optical fiber, and collimates it into the storage cavity inside. Then use the filter assembly 4 to split the light.
  • the first light 01 can be divided into the second light 011 and the third light 012 according to the wavelength of the light. That is to say, the wavelength of the second light 011 and the wavelength of the third light 012 The wavelengths are different.
  • the wavelength of the second light 011 corresponds to the working wavelength of the first light receiving chip 6
  • the wavelength of the third light 012 corresponds to the working wavelength of the second light receiving chip 7
  • the above-mentioned second light 011 and third light 012 are optical signals.
  • This scheme enables two optical signals with different wavelengths to be separated and transmitted inside the transistor housing package 110, and finally pass through the second lens 51 and the third optical signal in the lens assembly 5.
  • the lens 52 converges the two light rays to the corresponding photosensitive surface of the first light receiving chip 6 and the photosensitive surface of the second light receiving chip 7 to realize wavelength division multiplexing (Wavelength Division Multiplexing, WDM) optical signal reception.
  • WDM wavelength division multiplexing
  • the transistor housing package 110 in the technical solution of the present application has a first light receiving chip 6 and a second light receiving chip 7, the first light receiving chip 6 and the second light receiving chip 7 can respectively receive a beam of light, and at least the transistor can be realized Two-in-one housing package 110 .
  • the optical device in order to achieve multi-channel transmission and reception of optical signals, the optical device must integrate multiple transistor housing packages with single-receiving or single-transmitting functions.
  • the complex design of the coupling-related optical path is difficult to design, and the number of components is large, and the volume of the optical device is large.
  • the requirements for process precision and equipment are also high, there are many processes, and the production efficiency is low.
  • This solution reduces the dimensionality of packaging at the device level, so that a single transistor housing package 110 can at least realize double-folding, so that when the optical device is applied to a multi-channel transceiver transmission scene, it can reduce the number of transistor housing packages that need to be integrated. Therefore, the structure of the optical device is simpler, the manufacturing process is less difficult, the cost is lower, and miniaturized packaging can be realized.
  • the optical filter assembly 4 is used for light splitting inside the transistor housing package 110, which simplifies the complex design of multi-wavelength light splitting in the optical device, saves the space of the optical device, and reduces the external lens of the optical device and the number of external filters.
  • the conventional optical filter provided inside the transistor housing package 110 is different from the optical splitter (ODeMUX) and polarization beam splitter ( PBS) or rhomboid prism beam splitter (Block) and other multiplexer and splitter components are simpler, smaller and less expensive.
  • the volume of the optical device is smaller, and the optical path of light propagation in the optical device can be reduced. Therefore, all transistor housing packages can be designed with lens tube caps. Compared with the traditional parallel light or relay lens combination optical path scheme, a large number of external collimator lenses or relay lenses are saved, and the package size of the device is compressed. Moreover, the optical paths of the transistor casing packages at each end are coupled independently, and the coupling process is simpler. This solution saves multiple steps of patching, gluing, and coupling from the device level, reduces the overall processing difficulty, and improves production efficiency.
  • the filter assembly 4 includes three filters, respectively the first filter 41, the second filter 42 and the third filter 43, wherein,
  • the first filter 41 is opposite to the second lens 51 and used for transmitting the second light 011 and reflecting other light other than the second light 011 .
  • the wavelength of the second light 011 is the wavelength corresponding to the first light receiving chip 6 , so that the first light receiving chip 6 can receive the second light 011 .
  • the second optical filter 42 is located between the first optical filter 41 and the second optical filter 42, and the second optical filter 42 can specifically be a total reflection optical filter, which is used to reflect the reflection of the first optical filter 41 to the second optical filter.
  • the light from the second filter 42 passes to the third filter 43 .
  • the third filter 43 is opposite to the second filter 42 for transmitting the third light 012 .
  • the wavelength of the third light 012 is the wavelength corresponding to the second light receiving chip 7 , so that the second light receiving chip 7 can receive the third light 012 .
  • the wavelength of the second light 011 is smaller than the wavelength of the third light 012 , so as to facilitate splitting the first light 01 into the second light 011 and the third light 012 .
  • FIG. 4 is a schematic structural diagram of a lens assembly in an embodiment of the present application. As shown in FIG. 4 , when preparing the above-mentioned lens assembly 5 , the second lens 51 and the third lens 52 can be integrated. In this solution, the lens assembly 5 is made into an integral structure to reduce the number of components of the transistor housing package 110 , which facilitates the manufacture and assembly of the lens assembly 5 .
  • the above-mentioned lens assembly 5 may further include a fixing portion 53 , and the fixing portion 53 is integrally structured with the second lens 51 and the third lens 52 .
  • the above-mentioned second lens 51, third lens 52 and fixing part 53 can be fixed in an integrated structure by means of assembly, or the above-mentioned second lens 51, third lens 52 and fixing part 53 can also adopt a one-time molding process Prepare to form.
  • the fixing portion 53 is installed on the socket 1
  • the filter assembly 4 is installed on the fixing portion 53 .
  • the lens assembly 5 can be used as the core component of the integration of the internal optical path of the transistor housing package 110, can simultaneously play the role of converging the second light 011 and the third light 012, and can also serve as the second lens 51 and the third lens 52 and the bracket of the filter assembly 4, so that the lens assembly 5 and the filter assembly 4 are installed on the tube base 1.
  • This solution simplifies the optical components for optical path integration in the transistor housing package 110 , and simplifies the packaging of multi-channel optical path integration optical components in a small space for an optical device having the transistor housing package 110 .
  • the above-mentioned lens assembly 5 may specifically be a plastic lens assembly, that is to say, the lens assembly 5 is made of plastic.
  • the lens and the bracket of the filter assembly 4 are usually made of glass and metal materials.
  • the lens assembly 5 is made of plastic, which has the advantages of low cost, light weight, and easy molding.
  • the structural details of the lens assembly 5 can be flexibly designed according to requirements, which is convenient for installation and fixing, and it is convenient to make the second lens 51 and the second lens 51.
  • the three lenses 52 have suitable refractive indices.
  • This solution can use the process of mold injection molding to form the structures of the first mirror group, the second mirror group and the fixing part 53 at one time. It has high processing precision, good consistency and simple process, and is suitable for mass production.
  • the cost of the lens assembly 5 in this solution is relatively low, and its performance is good.
  • a first lens 3 is directly disposed on the cap 2 , and the above-mentioned first lens 3 may specifically be a hemispherical lens.
  • the hemispherical lens is a conventional lens, and the first light 01 of the optical fiber is received by the hemispherical lens and collimated.
  • the cost of the hemispherical lens is low, which is beneficial to reduce the cost of the transistor housing package 110 .
  • FIG. 5 is a schematic diagram of convex lens imaging
  • FIG. 6 is a schematic diagram of the positional relationship between a transistor housing package and an optical fiber in an embodiment of the present application.
  • the first lens 3 is integrated with the tube cap 2 as a collimating lens to form a lens tube cap.
  • the first lens 3 can move with the transistor housing package 110 as a whole, so as to ensure the transmission direction of the parallel light inside the transistor housing package 110, and then pass When the lens assembly 5 converges, the position where the final light converges can be adjusted to correct and compensate the deviation of the lens assembly 5 relative to the first light receiving chip 6 and the second light receiving chip 7 .
  • the first light receiving chip 6 and the second light receiving chip 7 can receive light.
  • the main structure and optical path scheme of the optical device with the double-in-one transistor housing package 110 can be determined according to the requirements of the optical module on the specification and package size of the optical device , and then decompose the design requirements for the package size and coupling focal length of the double-in-one transistor package 110 .
  • the high-density layout design scheme of the stem 1 and the first light-receiving chip 6 and the second light-receiving chip 7 of the double-in-one transistor housing package 110 is determined.
  • the preparation requirements of the above-mentioned single-receiving transistor shell package may specifically include working wavelength, transmission rate, number of functional pins, number and specifications of wafers such as chips, and patch bonding scheme.
  • the optical path design for the splitting and coupling of the received two-way light in the double-in-one transistor housing package is determined, and the design of the lens assembly 5 and the filter assembly 4 is completed. After that, a two-in-one transistor housing package 110 is prepared.
  • FIG. 7 is a schematic structural diagram of the preparation process of the transistor case package in the embodiment of the present application.
  • Figure 8 is a schematic diagram of the preparation process of the transistor housing package in the embodiment of the present application, as shown in Figure 7 and Figure 8, the method specifically includes the following steps:
  • Step S101 using silver glue passive patch and gold wire bonding process to mount and bond the first light receiving chip 6 and the second light receiving chip 7 on the first side of the socket 1;
  • the first light-receiving chip 6, the second light-receiving chip 7, and other functional wafers can be laid out and mounted on the stem 1 of the transistor housing package according to the designed position by using an automatic placement machine.
  • the patch is completed by bonding, baking and curing with silver glue.
  • the bonding of the functional leads between the first light receiving chip 6 , the second light receiving chip 7 , other functional wafers, the stem 1 , and the pins 8 of the transistor housing package 110 is completed by an automatic wire bonding machine.
  • Step S102 attaching the lens assembly 5 to the first side of the socket 1 by using a passive patch process
  • a charge coupled device (CCD) camera of a placement machine can be used to cooperate with the passive placement method of image template recognition to carry out the placement of the lens assembly 5, and make the center of circle of the second lens 51 coincide with the The center of circle of the photosensitive surface of the first light receiving chip 6 is aligned, and the center of circle of the third lens 52 is aligned with the center of circle of the photosensitive surface of the second light receiving chip 7 .
  • the lens assembly 5 is attached by using the on-line ultraviolet curing process of the patch process. Specifically, it can be firstly exposed by ultraviolet light, and the rapid bonding and pre-positioning between the lens assembly 5 and the tube base 1 can be completed by cooperating with ultraviolet glue, and then heat-cured and strengthened by high-temperature baking.
  • Step S103 attaching the filter assembly 4 to the fixing part 53 of the lens assembly 5 by using a passive adhesive curing process
  • Step S104 welding the tube cap 2 with the first lens 3 to the first side of the tube base 1 .
  • the tube cap 2 with the first lens 3 and the tube base 1 are concentrically sealed and welded to complete the double-in-one transistor shell package 110 encapsulation.
  • the preparation of the transistor housing package 110 in the above first aspect can be completed by using traditional techniques and equipment.
  • the process of the transistor housing package 110 There is no increase in cost.
  • FIG. 9 is a schematic cross-sectional structural view of an optical device in an embodiment of the present application.
  • the optical device includes a tube body 120 and at least one transistor housing package 110 in any of the above-mentioned embodiments.
  • the tube body 120 has a tube wall and an inner cavity
  • the transistor housing package 110 is mounted on the tube wall of the tube body 120
  • the first lens 3 of the transistor housing package 110 is disposed facing the inner cavity.
  • the inner cavity of the above-mentioned tube body 120 is used for transmitting light, that is to say, the optical fiber is connected with the inner cavity to realize the transmission of light.
  • the dimensionality reduction of the package is carried out at the device level, so that a single transistor package 110 can at least realize double-folding and one-in-one, so that when the optical device is applied to a multi-channel transceiver transmission scene, it can reduce the need for integrated transistor package packages
  • the number of components makes the structure of the optical device simpler, the manufacturing process less difficult, the cost lower, and the miniaturization package can be realized.
  • the optical device is a core device of an access network optical network system.
  • the optical devices need to be compatible with the uplink and downlink of 2.5G PON+10G PON at the same time, realizing two transmissions and two receptions, a total of four Transmission in different wavelength channels.
  • the emission wavelengths of the two emitting and two receiving devices are respectively 1577 nm and 1490 nm, and the receiving wavelengths are respectively 1270 nm and 1310 nm.
  • Fig. 10 is a schematic cross-sectional structure diagram of an optical device in a prior art solution.
  • the optical device in order to realize the above-mentioned two-emitting and two-receiving device, the optical device needs to be integrated and packaged with four transistor housing packages.
  • the four transistor housing packages are a first transistor housing package 140 , a second transistor housing package 150 , a third transistor housing package 160 and a fourth transistor housing package 170 .
  • an emission chip with an emission wavelength of 1577nm is packaged in the first transistor package 140
  • an emission chip with an emission wavelength of 1490nm is packaged in the second transistor package 150
  • a transmitter chip with an emission wavelength of 1490nm is packaged in the third transistor package 160.
  • the first transistor housing package 140, the second transistor housing package 150, the third transistor housing package 160 and the fourth transistor housing package 170 are packaged and integrated into the tube body 120 of the optical device to form a single-fiber four-way Encapsulate optical devices.
  • the optical device has a large volume and a long optical path.
  • this solution requires complex design of light splitting, multiplexing, and coupling-related optical paths, which is difficult to design.
  • a plurality of external lenses and filters are arranged inside the tube body 120 to realize light transmission. In the embodiment of the present application shown in FIG.
  • an optical device with the same function only needs to integrate three transistor housing packages
  • the three transistor housing packages are respectively the first transistor housing package 140 and the second transistor housing package 150 and the transistor package 110 in the embodiment of the present application, wherein the first transistor package 140 is packaged with an emission chip with an emission wavelength of 1577nm, and the second transistor package 150 is packaged with a chip with an emission wavelength of 1490nm transmitting chip, the first light receiving chip 6 in the transistor case package 110 in the embodiment of the present application is a receiving chip with a receiving wavelength of 1270nm, and the second light receiving chip 7 is a receiving chip with a receiving wavelength of 1310nm.
  • the optical device in this application can be dimensionally reduced into a single-fiber three-way package.
  • the volume of the optical device is smaller, and the optical distance of light propagating in the optical device can be reduced. Therefore, all transistor housing packages can adopt the design of the lens tube cap, which saves a large number of external collimating lenses or relay lenses and filters compared with the traditional parallel light or relay lens combination optical path scheme.
  • only two optical filters need to be placed outside the tube body 120 of the optical device, which further reduces the package size of the device.
  • the optical paths of the transistor casing packages at each end are coupled independently, and the coupling process is simpler. This solution saves multiple steps of patching, gluing, and coupling from the device level, reduces the overall processing difficulty, and improves production efficiency.
  • the above-mentioned optical device may further include an adapter 130 installed on the tube body 120 , and the adapter may also have a cavity communicating with the inner cavity of the tube body 120 .
  • the above-mentioned adapter 130 can be used to connect the optical fiber, so that the optical fiber communicates with the inner cavity, and the light can be transmitted between the inner cavity and the optical fiber.
  • the above-mentioned optical device may not have the adapter 130, that is to say, the optical device may be a pigtail optical device.
  • the present application does not specifically limit the type of the optical device.
  • an optical path scheme for independent coupling of each transistor housing package of the optical device may be designed first. Afterwards, the traditional coupling adhesive process of the transistor case package is used to complete the bonding and curing between the transistor case package and the tube body 120 of the optical device in the embodiment of the present application, and the second light 011 and the second light ray 011 are connected to each other through the automatic coupling algorithm to find light. The responsivity of Sanray 012 also meets the specification requirements. The rest of the emitter transistor housing package is then assembled using a conventional three-piece coupled soldering process.
  • An embodiment of the present application further provides an optical module, which includes a housing and the optical device in the foregoing embodiments.
  • the above-mentioned optical device is installed in the casing.
  • the above-mentioned optical device has an adapter
  • the housing has an optical fiber interface.
  • the above-mentioned optical fiber interface is opposite to the adapter, and the optical fiber can be connected to the adapter of the optical device through the above-mentioned optical fiber interface to realize the transmission of optical signals.
  • the housing of the above-mentioned optical module may also have a structure such as a chip on which a circuit board is arranged on the circuit board, and the pins of the above-mentioned transistor housing package are connected to the chip on the circuit board, so that the chip can process the signal sent to the transistor housing package, or Process the signal received by the transistor housing package.
  • This solution is beneficial to reduce the volume of the optical module and realize the miniaturization of the optical module.
  • the cost of the optical module can also be reduced.
  • FIG. 11 is a schematic diagram of the optical network system in the embodiment of the present application.
  • the optical network system may specifically be a passive optical network system, and the optical network system includes An optical line terminal 200 (OLT), an optical network unit 300 (ONU), and the optical line terminal 200 is connected to the optical network unit 300 through a passive optical distribution network 400, wherein the optical line terminal 200 includes an optical device, or the optical network unit 300 includes an optical device, which is the basis for normal communication of the entire network.
  • the volume of the optical device in this solution is small and the cost is low, which is beneficial to reducing the volume of the optical network system and reducing the cost of the optical network system.
  • the optical network device may specifically be an optical network terminal or an optical network unit 300, and the optical network device includes the optical device in any of the foregoing embodiments.
  • the volume of the optical device in this solution is small and the cost is low, which is beneficial to reducing the volume of the optical network device and reducing the cost of the optical network device.
  • the above passive optical network system includes at least one optical line terminal 200, a plurality of optical network units 300 and a passive optical distribution network 400 (ODN).
  • the aforementioned optical line terminal 200 and optical network unit 300 are the aforementioned optical network devices.
  • the aforementioned OLT 200 is connected to a plurality of ONUs 300 in a point-to-multipoint manner through a passive optical distribution network 400 .
  • the communication between the OLT 200 and the ONU 300 may be performed using a TDM mechanism, a WDM mechanism or a TDM/WDM hybrid mechanism.
  • the direction from the OLT 200 to the ONU 300 is defined as the downlink direction
  • the direction from the ONU 300 to the OLU 200 is defined as the uplink direction.
  • the passive optical network system may be a communication network that does not require any active device to implement data distribution between the OLT 200 and the ONU 300 .
  • the data distribution between the OLT 200 and the ONU 300 may be implemented through a passive optical device (such as an optical splitter) in the passive optical distribution network 400 .
  • the passive optical network system can be an asynchronous transfer mode passive optical network (ATM PON) system or a broadband passive optical network (BPON) system defined by the ITU-T G.983 standard, and a gigabit optical network system defined by the ITU-T G.984 series of standards.
  • ATM PON asynchronous transfer mode passive optical network
  • BPON broadband passive optical network
  • Passive optical network (GPON) system Ethernet passive optical network (EPON) defined by IEEE 802.3ah standard, wavelength division multiplexing passive optical network (WDM PON) system or next generation passive optical network (NGA PON system,
  • GPON Passive optical network
  • EPON Ethernet passive optical network
  • WDM PON wavelength division multiplexing passive optical network
  • NGA PON next generation passive optical network
  • XGPON defined by the ITU-T G.987 series standard
  • 10G EPON system defined by the IEEE 802.3av standard the TDM/WDM hybrid PON system, etc.
  • the optical line terminal 200 is usually located at a central location (for example, Central Office, CO), which can manage multiple optical network units 300 in a unified manner.
  • the optical line terminal 200 can act as an intermediary between the optical network unit 300 and an upper-layer network (not shown in the figure), and forward the data received from the upper-layer network to the optical network unit 300 as downlink data, and forward the data received from the optical network unit 300
  • the uplink data is forwarded to the upper network.
  • the specific structural configuration of the optical line terminal 200 may vary depending on the specific type of passive optical network system.
  • the optical line terminal 200 includes an optical device and a data processing module (not shown in the figure), the optical device can convert the downlink data processed by the data processing module into a downlink optical signal, and pass the passive optical distribution network 400
  • the downlink optical signal is sent to the ONU 300, and the uplink optical signal sent by the ONU 300 through the passive optical distribution network 400 is received, and the uplink data signal is converted into an electrical signal and provided to the data processing module for processing.
  • the optical network units 300 may be arranged in a distributed manner at user-side locations (such as user premises).
  • the optical network unit 300 may be a network device for communicating with the optical line terminal 200 and the user.
  • the optical network unit 300 may serve as an intermediary between the optical line terminal 200 and the user.
  • the optical network unit 300 may use
  • the downlink data received from the OLT 200 is forwarded to the user, and the data received from the user is forwarded to the OLT 200 as uplink data.
  • the specific structural configuration of the optical network unit 300 may vary depending on the specific type of the passive optical network system.
  • the optical network unit 300 includes an optical device, and the optical device is used to receive the optical line terminal 200 through the passive optical network.
  • the downlink data signal sent by the distribution network 400 is distributed, and the uplink data signal is sent to the optical line terminal 200 through the passive optical distribution network 400 .
  • the structure of the optical network unit 300 is similar to that of an optical network terminal (Optical Network Terminal, ONT), so in the solution provided by this application, the optical network unit 300 and the optical network terminal can be interchanged.
  • the passive optical distribution network 400 may be a data distribution system, which may include optical fibers, optical couplers, optical multiplexers/demultiplexers, optical splitters, and/or other devices.
  • optical fibers, optical couplers, optical multiplexers/demultiplexers, optical splitters and/or other devices may be passive optical devices, specifically, optical fibers, optical couplers, optical multiplexers/demultiplexers
  • Optical splitters, optical splitters and/or other devices may be devices that distribute data signals between the OLT 200 and the ONU 300 without power support.
  • the passive optical distribution network 400 may further include one or more processing devices, for example, optical amplifiers or relay devices (Relay devices).
  • the passive optical distribution network 400 can specifically extend from the optical line terminal 200 to multiple optical network units 300 , but can also be configured in any other point-to-multipoint structure.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Light Receiving Elements (AREA)
  • Optical Communication System (AREA)

Abstract

本申请公开了一种晶体管外壳封装件及其制备方法、光器件、光模块及光网络系统。该晶体管外壳封装件包括管座、管帽、第一透镜、滤光组件、透镜组件、第一光接收芯片和第二光接收芯片。管座和管帽固定连接形成容置腔,第一透镜设置于管帽、第一光接收芯片和第二光接收芯片设置于管座,透镜组件包括第二透镜和第三透镜,滤光组件设置于第一透镜与透镜组件之间。晶体管外壳封装件利用管帽上的第一透镜接收并准直第一光线,滤光组件将上述第一光线分为第二光线和第三光线。透镜组件位于滤光组件与第一光接收芯片和第二光接收芯片之间,第二透镜接收上述第二光线并对第二光线进行会聚;第三透镜接收上述第三光线并对第三光线进行会聚。

Description

晶体管外壳封装件及其制备方法、光器件、光模块及光网络系统 技术领域
本申请涉及光器件技术领域,特别涉及一种晶体管外壳封装件及其制备方法、光器件、光模块及光网络系统。
背景技术
光器件是光模块的重要部件,光器件的封装主要包括同轴封装、盒式(Box)封装、板上芯片(Chips on Board,COB)封装等几类形态。晶体管外壳(Transistor-Outline,TO)封装是同轴型光器件(Coaxial-type package Optical Sub-Assembly)的基础封装结构。传统的TO封装包括发射型和接收型,一般同一个TO封装里只有一个激光器芯片(Laser diode,LD)或探测器芯片(Photo diode,PD),只能进行单通道/单波长的信号接收或发射的传输。而根据同轴光器件集成的TO封装的功能、数量及组装结构不同,传统的同轴光器件主要分为单纤单向器件、单纤双向器件(Bi-directional Optical Sub-Assembly,BOSA)以及集成了更多收发端TO封装的单纤三向或单纤四向器件等类型。其中单纤单向器件可以包括光发射组件(Transmitting Optical Sub-Assembly,TOSA)或者光接收组件(Receiving Optical Sub-Assembly,ROSA),由于同轴类器件封装相对简单、成本较低,在无源光纤网络(Passive Optical Network,PON)、无线网络、网际互连协议(Internet Protocol,IP)等领域的光器件产品上有广泛的应用。
现有技术中,光器件要想实现较多通道的信号传输,需要集成较多的TO封装。受限于传统TO封装的尺寸及透镜的能力与设计,光器件需要增大器件的封装尺寸,并采用平行光、接力透镜等复杂光路方案,配合使用更多的外置透镜和滤光片等元件。这些会带来光器件整体的结构设计和制造难度上升,从而导致物料成本与生产成本居高不下,也很难满足小型化模块封装协议需求。
发明内容
本申请提供一种晶体管外壳封装件及其制备方法、光器件、光模块及光网络系统,以减小光器件的体积,降低光器件的成本。
第一方面,本申请提供了一种晶体管外壳封装件,该晶体管外壳封装件包括管座、管帽、第一透镜、滤光组件、透镜组件、第一光接收芯片和第二光接收芯片。其中,管帽设置于管座的第一侧面,使管座和管帽固定连接形成容置腔,第一透镜设置于管帽的顶部且贯穿管帽,上述第一透镜用于接收射至晶体管外壳封装件的第一光线,并对上述第一光线进行准直。具体的,上述第一光线经过光纤传输。上述滤光组件、透镜组件、第一光接收芯片和第二光接收芯片设置于上述容置腔内。具体的,上述第一光接收芯片和第二光接收芯片设置于管座的第一侧面,且与管座上的引脚连接。透镜组件包括第二透镜和第三透镜,第二透镜设置于第一光接收芯片背离管座的一侧,第三透镜设置于第二光接收芯片背离管座的一侧。滤光组件设置于透镜组件背离第一光接收芯片和第二光接收芯片的一侧。该方案中,晶体管外壳封装件利用管帽上的第一透镜接收第一光线,第一透镜接收上述第一光线并对第一光线进行准直,之后第一光线射至滤光组件,滤光组件对上述第一光线进行分 光,分为第二光线和第三光线。上述第二光线的波长对应为第一光接收芯片的工作波长,第三光线的波长对应为第二光接收芯片的工作波长。透镜组件位于滤光组件与第一光接收芯片和第二光接收芯片之间,透镜组件的第二透镜接收上述第二光线并对第二光线进行会聚,使第二光线会聚至第一光接收芯片的光敏面;第三透镜接收上述第三光线并对第三光线进行会聚,使第三光线会聚至第二光接收芯片的光敏面。
该方案使得至少两路不同波长的光信号在晶体管外壳封装件内部完成分离传输,至少可以实现晶体管外壳封装件的双收合一。该方案在器件层级进行封装的降维,使得单个晶体管外壳封装件至少可以实现双收合一,使光器件应用于多通道收发传输场景时,能够减少需要集成的晶体管外壳封装件的数量,从而使光器件结构更简单、制造工艺难度更小、成本更低,并且能够实现小型化封装。
具体设置上述透镜组件时,第二透镜和第三透镜可以为一体结构。该方案可以减少晶体管外壳封装件的配件数量,则便于对透镜组件进行制造和装配。
此外,上述透镜组件还可以包括固定部,该固定部与第二透镜和第三透镜为一体结构。上述固定部安装于管座,则第二透镜和第三透镜也相当于通过上述固定部安装于管座,此外,上述滤光组件也可以安装于上述管座,则该方案中的透镜组件除了可以起到透镜的作用,还可以起到支架的作用。该方案简化了晶体管外壳封装件中光路整合的光学元件,简化了具有该晶体管外壳封装件的光器件在小空间内置封装多通道光路整合光学元件。
具体的技术方案中,上述透镜组件为塑料透镜组件。该方案便于采用注塑工艺一次成型透镜组件,且重量较轻、成本较低。
本申请中,可以在管帽上直接设置第一透镜,且该第一透镜具体可以为半球透镜。半球透镜的成本较低,有利于降低晶体管外壳封装件的成本。
具体设置滤光组件时,可以使滤光组件包括第一滤光片、第二滤光片和第三滤光片,其中,第一滤光片与第二透镜相对,用于透射第二光线并反射第二光线以外的光线,以使得第一光接收芯片可以接收对应波长的第二光线。第二滤光片设置于第一滤光片与第三滤光片之间,用于将第一滤光片反射的光线反射至第三滤光片,第三滤光片与第三透镜相对,用于透射第三光线,以使得第二光接收芯片可以接收对应波长的第三光线。
第二方面,本申请还提供了一种晶体管外壳封装件的制备方法,该方法包括以下步骤:采用银胶无源贴片和金线键合工艺在管座的第一侧面对第一光接收芯片和第二光接收芯片进行贴片和打线;采用无源贴片工艺将透镜组件贴附于管座的第一侧面,透镜组件包括第二透镜和第三透镜,第二透镜接收第二光线并将第二光线会聚至第一光接收芯片,第三透镜接收第三光线并将第三光线会聚至第二光接收芯片;采用无源粘胶固化工艺将滤光组件贴附于透镜组件的固定部,该滤光组件将第一光线分为第二光线和第三光线;将具有第一透镜的管帽与管座焊接,该第一透镜接收并准直上述第一光线。该方案中,采用传统工艺和设备,就可以完成上述第一方面中的晶体管外壳封装件的制备,在减小了光器件的体积,降低了成本的情况下,晶体管外壳封装件的工艺成本没有增加。
第三方面,本申请还提供了一种光器件,该光器件包括管体和至少一个上述任一实施例中的晶体管外壳封装件。上述管体具有管壁和内腔,该内腔用于传输光线,该光线包括光器件接收的光线和发射的光线。上述晶体管外壳封装件安装于管体的管壁,且晶体管外壳封装件的第一透镜朝向内腔设置,以使得第一透镜能够接收在内腔内传输的第一光线。该方案中,在器件层级进行封装的降维,使得单个晶体管外壳封装件至少可以实现双收合 一,使同轴封装光器件应用于多通道收发传输场景时,能够减少需要集成的晶体管外壳封装件的数量,从而使光器件结构更简单、制造工艺难度更小、成本更低,并且能够实现小型化封装。
具体的技术方案中,上述光器件还可以包括适配器,该适配器安装于管体,该适配器也可以具有腔体,该腔体与管体的内腔连通。上述适配器可以用于连接光纤,使光纤与内腔连通,光线能够在内腔与光纤之间进行传输。
第四方面,本申请还提供了一种光模块,该光模块包括外壳和上述光器件。上述光器件安装于外壳。具体的实施例中,上述外壳具有光纤接口,上述光纤接口与适配器相对,上述光线接口用于安装光纤,光纤依次通过光线接口和适配器连接,使光纤与光器件的内腔连接。上述光纤通过光纤接口与适配器连接,以实现光信号的传输。该方案有利于减小光模块的体积,实现光模块的小型化。还可以降低光模块的成本。
第五方面,本申请还提供了一种光网络系统,该光网络系统包括光线路终端(OLT)、光网络单元(ONU),且光线路终端通过无源光分配网络与光网络单元连接,其中,光线路终端包括光器件,或者,光网络单元包括光器件,光器件是整个网络能够正常通信的基础。该方案中的光器件的体积较小,且成本较低,有利于降低光网络系统的成本。
附图说明
图1为本申请实施例中晶体管外壳封装件的一种爆炸结构示意图;
图2为本申请实施例中晶体管外壳封装件的一种剖视结构示意图;
图3为本申请实施例中晶体管外壳封装件的一种光路图;
图4为本申请实施例中透镜组件的一种结构示意图;
图5为凸透镜成像原理图;
图6为本申请实施例中晶体管外壳封装件与光纤位置关系示意图;
图7为本申请实施例中晶体管外壳封装件的制备过程结构示意图;
图8为本申请实施例中晶体管外壳封装件的制备工艺示意图;
图9为本申请实施例中光器件的一种剖视结构示意图;
图10为现有技术方案中光器件的一种剖视结构示意图;
图11为本申请实施例中光网络系统的示意图。
附图标记:
1-管座;                          2-管帽;
3-第一透镜;                      4-滤光组件;
41-第一滤光片;                   42-第二滤光片;
43-第三滤光片;                   5-透镜组件;
51-第二透镜;                     52-第三透镜;
53-固定部;                       6-第一光接收芯片;
7-第二光接收芯片;                8-引脚;
01-第一光线;                     011-第二光线;
012-第三光线;                    100-光器件;
110-晶体管外壳封装件;            120-管体;
130-适配器;                      140-第一晶体管外壳封装件;
150-第二晶体管外壳封装件;           160-第三晶体管外壳封装件;
170-第四晶体管外壳封装件;           200-光线路终端;
300-光网络单元;                     400-无源光分配网络。
具体实施方式
为了方便理解本申请实施例提供的晶体管外壳封装件及其制备方法、光器件、光模块及光网络系统,下面介绍一下其应用场景。随之技术发展,利用光信号来实现信号传输的应用已经越来越广泛,例如,在无源光纤网络(Passive Optical Network,PON)、无线网络、网际互连协议(Internet Protocol,IP)等领域都有光模块产品的应用。光模块通常包括光器件,光器件又包括封装结构,例如目前应用较为广泛且成本较低的封装结构为晶体管外壳封装件(具体可以为同轴型封装),将光接收芯片或者光发射芯片,与镜组等原件封装成一体结构,以形成晶体管外壳封装件(TO),便于制备和形成光器件。现有技术中,晶体管外壳封装件通常只能实现一个芯片的封装,也就是说,晶体管外壳封装件只能进行一路的光发射信号传输或者光接收信号传输。而目前光器件需要具有多向传输功能,以减小光模块的体积,丰富光模块的功能。现有技术中,为了实现光器件的多向传输功能,需要使得光器件组装多个晶体管外壳封装件,使得光器件的光路设计较为复杂,制造难度上升,除了导致成本较高以外,还会导致光器件的总体积较大,为此本申请提供了一种能够实现双收合一的晶体管外壳封装件及其制备方法,以及具有上述晶体管外壳封装件的光器件、光模块及光网络系统。下面将结合附图,对本申请实施例进行详细描述。
以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。
在本说明书中描述的参考“一个实施例”或“具体的实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
图1为本申请实施例中晶体管外壳封装件的一种爆炸结构示意图,图2为本申请实施例中晶体管外壳封装件的一种剖视结构示意图。如图1和图2所示,本申请实施例中的晶体管外壳封装件110(Transistor-Outline,TO)包括管座1、管帽2、第一透镜3、滤光组件4、透镜组件5、第一光接收芯片6和第二光接收芯片7。其中,管座1作为晶体管外壳封装件110的承载结构件,第一光接收芯片6和第二光接收芯片7设置于上述管座1的第一侧面,且固定连接有引脚8,该引脚8与上述第一光接收芯片6和第二光接收芯片7连接,用于传输晶体管外壳封装件110的信号。上述第一透镜3设置于管帽2的顶部且贯穿上述管帽2,用于传输射入所述晶体管外壳封装件110的第一光线01。上述第一光线01具体可以为光纤传输的光线。具体的,上述管帽2安装于上述管座1的第一侧面,管帽2与管座1形成容置腔,上述滤光组件4、透镜组件5、第一光接收芯片6和第二光接收芯片7设置于容置腔内。具体的,上述滤光组件4位于第一透镜3朝向管座1的一侧,也就是第一透镜3朝向第一光接收芯片6和第二光接收芯片7的一侧。经第一透镜3射入的第一光线01射至滤光组件4进行分光,则滤光组件4可以将第一光线01分为第二光线011和第三光线012,具体可以根据第二光线011和第三光线012的波长不同来进行分光。透 镜组件5位于滤光组件4背离第一透镜3的一侧,用于接收上述滤光组件4分光形成的第二光线011和第三光线012。透镜组件5包括第二透镜51和第三透镜52,上述第二透镜51接收上述第二光线011,上述第三透镜52接收上述第三光线012。第一光接收芯片6位于第二透镜51背离滤光组件4的一侧,第二透镜51用于对第二光线011进行准直,并使得第二光线011射至第一光接收芯片6。同样的,第二光接收芯片7位于第三透镜52背离滤光组件4的一侧,第三透镜52用于对第三光线012进行准直,并使得第三光线012射至第二光接收芯片7。
图3为本申请实施例中晶体管外壳封装件的一种光路图。请结合图2和图3,本申请技术方案中,晶体管外壳封装件110的管帽2上的第一透镜3直接接收单模光纤传输过来的第一光线01,并进行准直后进入容置腔内部。然后利用滤光组件4进行分光,具体可以根据光线的波长不同,将第一光线01分为第二光线011和第三光线012,也就是说,第二光线011的波长与第三光线012的波长不同。具体的,上述第二光线011的波长对应为第一光接收芯片6的工作波长,第三光线012的波长对应为第二光接收芯片7的工作波长。上述第二光线011和第三光线012即为光信号,该方案使得两路不同波长的光信号在晶体管外壳封装件110内部完成分离传输,最后通过透镜组件5中的第二透镜51和第三透镜52,两个光线分别会聚到对应的第一光接收芯片6的光敏面和第二光接收芯片7的光敏面,实现波分复用(Wavelength Division Multiplexing,WDM)光信号接收。本申请技术方案中的晶体管外壳封装件110具有第一光接收芯片6和第二光接收芯片7,第一光接收芯片6和第二光接收芯片7分别可以接收一束光线,至少可以实现晶体管外壳封装件110的双收合一。
传统的技术方案中,光器件要想实现光信号多通道收发传输,整合多个具有单收或者单发功能的晶体管外壳封装件,晶体管外壳封装件的数量较多,需要进行分光、合波、耦合相关光路的复杂设计,设计难度大,且元件数量较多,光器件的体积较大。此外,对于工艺精度和设备等要求也较高,工序较多,生产效率低下等问题。本方案在器件层级进行封装的降维,使得单个晶体管外壳封装件110至少可以实现双收合一,使光器件应用于多通道收发传输场景时,能够减少需要集成的晶体管外壳封装件的数量,从而使光器件结构更简单、制造工艺难度更小、成本更低,并且能够实现小型化封装。
本申请实施例在晶体管外壳封装件110内部使用滤光组件4进行分光,简化了在光器件在管壳中进行多波长分光的复杂设计,节省了光器件空间,减少了光器件的外置透镜和外置滤光片的数量。此外,本申请技术方案中,晶体管外壳封装件110内部设置的常规的滤光片,相对于在光器件的管壳中内置滤光片所使用的光分路器(ODeMUX)、偏振分光棱镜(PBS)或者斜方棱镜分光器(Block)等合波元件和分波元件更简单、体积更小且成本更低。通过双收合一技术减少了光器件包括的接收晶体管外壳封装件的数量后,光器件的体积较小,则光器件内光线传播的光程可以减小。因此,所有的晶体管外壳封装件均可采用透镜管帽的设计,相对于传统的平行光或接力透镜组合光路方案,节省了大量外置的准直透镜或者接力透镜,压缩了器件的封装尺寸,而且各端晶体管外壳封装件的光路独立耦合,耦合工艺更加简单。该方案从器件层级节省了多次贴片、粘胶、耦合的工序,整体加工难度降低,生产效率提高。
请继续参考图2和图3,具体的技术方案中,滤光组件4包括三个滤光片,分别第一滤光片41、第二滤光片42和第三滤光片43,其中,第一滤光片41与第二透镜51相对, 用于透射第二光线011并反射第二光线011以外的其它光线。第二光线011的波长为第一光接收芯片6对应的波长,则使得第一光接收芯片6可以接收第二光线011。第二滤光片42位于第一滤光片41与第二滤光片42之间,第二滤光片42具体可以为全反射滤光片,用于反射第一滤光片41反射至第二滤光片42的光线至第三滤光片43。第三滤光片43与第二滤光片42相对,用于透射第三光线012。第三光线012的波长为第二光接收芯片7对应的波长,则使得第二光接收芯片7可以接收第三光线012。具体的,上述第二光线011的波长小于第三光线012的波长,从而便于将第一光线01分光成第二光线011和第三光线012。
图4为本申请实施例中透镜组件的一种结构示意图,如图4所示,具体制备上述透镜组件5时,可以使得第二透镜51和第三透镜52为一体结构。该方案中,将透镜组件5做成一体结构,以减少晶体管外壳封装件110的配件数量,则便于对透镜组件5进行制造和装配。
请继续参考图4,上述透镜组件5还可以包括固定部53,该固定部53与第二透镜51和第三透镜52为一体结构。值得说明的是,上述第二透镜51、第三透镜52和固定部53可以采用装配的方式固定为一体结构,或者上述第二透镜51、第三透镜52和固定部53还可以采用一次成型工艺制备形成。请结合图2,上述固定部53安装于管座1,且滤光组件4安装于上述固定部53。该方案中,透镜组件5可以作为晶体管外壳封装件110内部光路整合的核心部件,可以同时起到第二光线011和第三光线012的会聚作用,还可以作为第二透镜51、第三透镜52和滤光组件4的支架,使得透镜组件5和滤光组件4安装于管座1。该方案简化了晶体管外壳封装件110中光路整合的光学元件,简化了具有该晶体管外壳封装件110的光器件在小空间内置封装多通道光路整合光学元件。
具体制备上述透镜组件5时,上述透镜组件5具体可以为塑料透镜组件,也就是说,采用塑料来制备透镜组件5。现有技术中,透镜和滤光组件4的支架等通常使用玻璃和金属材料制备。本申请技术方案中,利用塑料制备透镜组件5,具有成本低、质量轻和易成型等优点,可以根据需求灵活设计透镜组件5的结构细节,便于安装固定,且便于使第二透镜51和第三透镜52具有合适的折射率。该方案可以利用模具注塑加工的工艺,一次成型上述第一镜组、第二镜组和固定部53等结构,加工精度高、一致性好且工艺简单,适合大批量加工生产。该方案中的透镜组件5的成本较低,且性能较好。
请继续参考图1和图2,本申请技术方案中,管帽2上直接设置有第一透镜3,且上述第一透镜3具体可以为半球透镜。半球透镜为常规透镜,利用该半球透镜接收光纤的第一光线01并进行准直。半球透镜的成本较低,有利于降低晶体管外壳封装件110的成本。
图5为凸透镜成像原理图,图6为本申请实施例中晶体管外壳封装件与光纤位置关系示意图。如图5和图6所示,通过调节第一透镜3与光纤的位置关系,可以调节射至滤光组件4的光线的方向,从而使得射至第一光接收芯片6和第二光接收芯片7的光线能够准确的射至光敏面。第一透镜3作为准直透镜与管帽2集成在一起形成透镜管帽,第一透镜3可以随晶体管外壳封装件110整体移动,从而保证晶体管外壳封装件110内部平行光的传输方向,再通过透镜组件5会聚,就可以调节最终光线会聚的位置,以纠正补偿透镜组件5相对第一光接收芯片6和第二光接收芯片7偏差。例如,如图6中的(a)所示,当第一光接收芯片6和第二光接收芯片7位于透镜组件5偏右的位置时,则图6中的(a)所示的状态下,第一光接收芯片6和第二光接收芯片7可以接收到光线。如图6中的(b)所 示,当第一光接收芯片6和第二光接收芯片7位于透镜组件5正下方的位置时,则图6中的(b)所示的状态下,第一光接收芯片6和第二光接收芯片7可以接收到光线。如图6中的(c)所示,当第一光接收芯片6和第二光接收芯片7位于透镜组件5偏左的位置时,则图6中的(c)所示的状态下,第一光接收芯片6和第二光接收芯片7可以接收到光线。因此,即使在制造时各个器件之间存在偏差,也可以保证光线被第一光接收芯片6和第二光接收芯片7可以接收到光信号。该方案使双收合一的光路耦合对晶体管外壳封装件110的管帽2和第一光接收芯片6和第二光接收芯片7的贴片精度有更大的工艺容差,对设备能力要求与常规晶体管外壳封装件一致,有利于降低成本。此外,晶体管外壳封装件110的加工全流程均不需采用有源工艺,极大提高了生产效率。
在设计上述实施例中的晶体管外壳封装件110时,可以先根据光模块对光器件的规格和封装尺寸的要求,确定具有双收合一晶体管外壳封装件110的光器件的主体结构和光路方案,再分解出针对双收合一晶体管外壳封装件110的封装尺寸及耦合焦距的设计要求。根据两个需要整合的单接收晶体管外壳封装件的制备要求,确定双收合一晶体管外壳封装件110的管座1及第一光接收芯片6和第二光接收芯片7的高密布局设计方案。上述单接收晶体管外壳封装件的制备要求具体可以包括工作波长、传输速率、功能管脚数量、芯片等晶元数量和规格、贴片打线方案等。之后确定双收合一的晶体管外壳封装件中,接收的两路光线的分光和耦合的光路设计,完成透镜组件5和滤光组件4的设计。之后制备双收合一的晶体管外壳封装件110。
因此,基于相同的发明构思,本申请还提供了一种上述实施例中双收合一的晶体管外壳封装件110的制备方法,图7为本申请实施例中晶体管外壳封装件的制备过程结构示意图,图8为本申请实施例中晶体管外壳封装件的制备工艺示意图,如图7和图8所示,该方法具体包括以下步骤:
步骤S101、采用银胶无源贴片和金线键合工艺在管座1的第一侧面对第一光接收芯片6和第二光接收芯片7进行贴片和打线;
该步骤中,可以利用自动贴片机将第一光接收芯片6和第二光接收芯片7以及其它功能性晶元按设计好的位置,布局贴装到晶体管外壳封装件的管座1上,再通过银胶粘接、烘烤和固化,来完成贴片。再通过自动焊线机完成第一光接收芯片6、第二光接收芯片7、其它功能性晶元、管座1、晶体管外壳封装件110的引脚8之间的功能引线的键合。
步骤S102、采用无源贴片工艺将透镜组件5贴附于管座1的第一侧面;
该步骤中,可以采用贴片机的电荷耦合器件(charge coupled device,CCD)摄像头,配合图像模板识别的无源贴片方法,进行透镜组件5的贴片,且使第二透镜51的圆心与第一光接收芯片6的光敏面的圆心对准,使第三透镜52的圆心与第二光接收芯片7的光敏面的圆心对准。并采用贴片过程在线紫外线固化的工艺来贴附透镜组件5。具体可以先通过紫外线灯曝光,配合紫外胶完成透镜组件5和管座1之间的快速粘接预定位,再通过高温烘烤进行热固化加强。
步骤S103、采用无源粘胶固化工艺将滤光组件4贴附于透镜组件5的固定部53;
采用传统的点胶配合贴片工艺,先在透镜组件5的固定部53点胶,一般使用环氧树脂胶水进行点胶。再将滤光组件4贴装到设计的滤光组件4对应位置,然后通过高温烘烤进行热固化粘接。
步骤S104、将具有第一透镜3的管帽2焊接于管座1的第一侧面。
采用传统的电阻焊工艺,使用自动封帽机,通过无源机械定位,将具有第一透镜3的管帽2与管座1进行同心封焊,完成双收合一的晶体管外壳封装件110的封装。
该方案中,采用传统工艺和设备,就可以完成上述第一方面中的晶体管外壳封装件110的制备,在减小了光器件的体积,降低了成本的情况下,晶体管外壳封装件110的工艺成本没有增加。
基于相同的发明构思,本申请还提供了一种光器件。图9为本申请实施例中光器件的一种剖视结构示意图,如图9所示,该光器件包括管体120和至少一个上述任一实施例中的晶体管外壳封装件110。上述管体120具有管壁和内腔,上述晶体管外壳封装件110安装于上述管体120的管壁,且晶体管外壳封装件110的第一透镜3朝向内腔设置。上述管体120的内腔用于传输光线,也就是说,光纤与内腔连接,以实现光线的传输。本申请技术方案中,在器件层级进行封装的降维,使得单个晶体管外壳封装件110至少可以实现双收合一,使光器件应用于多通道收发传输场景时,能够减少需要集成的晶体管外壳封装件的数量,从而使光器件结构更简单、制造工艺难度更小、成本更低,并且能够实现小型化封装。
以应用至无源光纤网络(PON)中的光器件为例,光器件是接入网光纤网络系统的核心器件。光器件作为从2.5G PON(百兆光纤宽带)向10G PON(千兆光纤宽带)演进阶段的过渡产品,需要同时兼容2.5G PON+10G PON的上行和下行,实现两发两收共四个不同波长通道传输。具体的实施例中,两发两收光器件的发射波长分别为1577nm和1490nm,接收波长分别为1270nm和1310nm。
图10为现有技术方案中光器件的一种剖视结构示意图。如图10所示,现有技术方案中,为了实现上述两发两收光器件,光器件需要集成封装四个晶体管外壳封装件。四个晶体管外壳封装件分别为第一晶体管外壳封装件140,第二晶体管外壳封装件150、第三晶体管外壳封装件160和第四晶体管外壳封装件170。其中,第一晶体管外壳封装件140中封装有一个发射波长为1577nm的发射芯片,第二晶体管外壳封装件150中封装有一个发射波长为1490nm的发射芯片,第三晶体管外壳封装件160中封装有一个接收波长为1270nm的接收芯片,第四晶体管外壳封装件170中封装有一个接收波长为1310nm的接收芯片。将上述第一晶体管外壳封装件140,第二晶体管外壳封装件150、第三晶体管外壳封装件160和第四晶体管外壳封装件170封装集成于光器件的管体120,形成为一个单纤四向封装光器件。该光器件的体积较大,光程较长。此外,该方案需要进行分光、合波、耦合相关光路的复杂设计,设计难度大。具体的,管体120内设置有多个外置透镜和滤光片,以实现光线的传播。如图9所示的本申请实施例中,具有同样功能的光器件,只需集成三个晶体管外壳封装件,三个晶体管外壳封装件分别为第一晶体管外壳封装件140,第二晶体管外壳封装件150和本申请实施例中的晶体管外壳封装件110,其中,第一晶体管外壳封装件140中封装有一个发射波长为1577nm的发射芯片,第二晶体管外壳封装件150中封装有一个发射波长为1490nm的发射芯片,本申请实施例中的晶体管外壳封装件110中的第一光接收芯片6为接收波长为1270nm的接收芯片,第二光接收芯片7为接收波长为1310nm的接收芯片。本申请中的光器件可以降维成单纤三向封装。本实施例减少了光器件中晶体管外壳封装件的数量后,光器件的体积较小,则光器件内光线传播的光程可以减小。因此,所有的晶体管外壳封装件均可采用透镜管帽的设计,相对于传统的平行光或接力透镜组合光路方案,节省了大量外置的准直透镜或者接力透镜以及滤光片。图9所示 的实施例中,在光器件的管体120中只需外置两个滤光片即可,进一步压缩了器件的封装尺寸。而且各端晶体管外壳封装件的光路独立耦合,耦合工艺更加简单。该方案从器件层级节省了多次贴片、粘胶、耦合的工序,整体加工难度降低,生产效率提高。
具体的技术方案中,上述光器件还可以包括适配器130,该适配器安装于管体120,该适配器也可以具有腔体,该腔体与管体120的内腔连通。上述适配器130可以用于连接光纤,使光纤与内腔连通,光线能够在内腔与光纤之间进行传输。当然,在其它实施例中,上述光器件还可以不具有适配器130,也就是说光器件可以为尾纤式光器件。本申请对于光器件的类型不做具体限制。
具体设计和制备本申请实施例中光器件时,可以先设计光器件的各个晶体管外壳封装件独立耦合的光路方案。之后采用传统的晶体管外壳封装件耦合粘胶工艺,完成本申请实施例中晶体管外壳封装件与光器件的管体120之间的粘接固化,通过自动耦合算法寻光使第二光线011和第三光线012的响应度同时满足规格要求。之后将其余的发射晶体管外壳封装件采用传统三件式耦合焊接工艺完成组装。
本申请实施例还提供了一种光模块,该光模块包括外壳以及上述实施例中的光器件。上述光器件安装于外壳。具体的实施例中,上述光器件具有适配器,外壳具有光纤接口,上述光纤接口与适配器相对,则光纤可以通过上述光纤接口与光器件的适配器连接,以实现光信号的传输。上述光模块的外壳内还可以具有电路板设置于电路板的芯片等结构,上述晶体管外壳封装件的引脚与电路板上的芯片连接,使芯片能够处理发送至晶体管外壳封装件的信号,或者处理晶体管外壳封装件接收到的信号。该方案有利于减小光模块的体积,实现光模块的小型化。还可以降低光模块的成本。
本申请实施例还提供了一种光网络系统,图11为本申请实施例中光网络系统的示意图,如图11所示,该光网络系统具体可以为无源光网络系统,光网络系统包括光线路终端200(OLT)、光网络单元300(ONU),且光线路终端200通过无源光分配网络400与光网络单元300连接,其中,光线路终端200包括光器件,或者,光网络单元300包括光器件,光器件是整个网络能够正常通信的基础。该方案中的光器件的体积较小,且成本较低,有利于减小光网络系统的体积,降低光网络系统的成本。
请继续参考图11,本申请还提供了一种光网络装置,该光网络装置具体可以为光网络终端或者光网络单元300,且光网络装置包括上述任一实施例中的光器件。该方案中的光器件的体积较小,且成本较低,有利于减小光网络装置的体积,降低光网络装置的成本。
下面结合图11来说明本申请实施例中的无源光网络系统和光网络装置。具体的实施例中,上述无源光网络系统包括至少一个光线路终端200、多个光网络单元300和一个无源光分配网络400(ODN)。上述光线路终端200和光网络单元300即为上述光网络装置。上述光线路终端200通过无源光分配网络400以点到多点的形式连接到多个光网络单元300。光线路终端200和光网络单元300之间可以采用TDM机制、WDM机制或者TDM/WDM混合机制进行通信。其中,从光线路终端200到光网络单元300的方向定义为下行方向,而从光网络单元300到光线路终端200的方向为上行方向。
无源光网络系统可以是不需要任何有源器件来实现光线路终端200与光网络单元300之间的数据分发的通信网络。在具体实施例中,光线路终端200与光网络单元300之间的数据分发可以通过无源光分配网络400中的无源光器件(比如分光器)来实现。无源光网络系统可以为ITU-T G.983标准定义的异步传输模式无源光网络(ATM PON)系统或宽带无源 光网络(BPON)系统、ITU-TG.984系列标准定义的吉比特无源光网络(GPON)系统、IEEE 802.3ah标准定义的以太网无源光网络(EPON)、波分复用无源光网络(WDM PON)系统或者下一代无源光网络(NGA PON系统,比如ITU-T G.987系列标准定义的XGPON系统、IEEE 802.3av标准定义的10G EPON系统、TDM/WDM混合PON系统等)等。上述标准定义的各种无源光网络系统的全部内容通过引用结合在本申请文件中。
光线路终端200通常位于中心位置(例如,中心局Central Office,CO),其可以统一管理多个光网络单元300。光线路终端200可以充当光网络单元300与上层网络(图未示)之间的媒介,将从上层网络接收到的数据作为下行数据转发到光网络单元300,以及将从光网络单元300接收到的上行数据转发到上层网络。光线路终端200的具体结构配置可能会因无源光网络系统的具体类型而异。在一种实施例中,光线路终端200包括光器件和数据处理模块(图未示),光器件可以将经过数据处理模块处理的下行数据转换成下行光信号,并通过无源光分配网络400将下行光信号发送给光网络单元300,并且接收光网络单元300通过无源光分配网络400发送的上行光信号,并将上行数据信号转换为电信号并提供给数据处理模块进行处理。
光网络单元300可以分布式地设置在用户侧位置(比如用户驻地)。光网络单元300可以为用于与光线路终端200和用户进行通信的网络设备,具体而言,光网络单元300可以充当光线路终端200与用户之间的媒介,例如,光网络单元300可以将从光线路终端200接收到的下行数据转发到用户,以及将从用户接收到的数据作为上行数据转发到光线路终端200。光网络单元300的具体结构配置可能会因无源光网络系统的具体类型而异,在一种实施例中,光网络单元300包括光器件,光器件用于接收光线路终端200通过无源光分配网络400发送的下行数据信号,并且通过无源光分配网络400向光线路终端200发送上行数据信号。应当理解,在本申请文件中,光网络单元300的结构与光网络终端(Optical Network Terminal,ONT)相近,因此在本申请提供的方案中,光网络单元300和光网络终端之间可以互换。
无源光分配网络400可以是一个数据分发系统,其可以包括光纤、光耦合器、光合波/分波器、光分路器和/或其他设备。在一个实施例中,光纤、光耦合器、光合波/分波器、光分路器和/或其他设备可以是无源光器件,具体来说,光纤、光耦合器、光合波/分波器、光分路器和/或其他设备可以是在光线路终端200和光网络单元300之间分发数据信号是不需要电源支持的器件。另外,在其他实施例中,该无源光分配网络400还可以包括一个或多个处理设备,例如,光放大器或者中继设备(Relay device)。在如图1所示的分支结构中,无源光分配网络400具体可以从光线路终端200延伸到多个光网络单元300,但也可以配置成其他任何点到多点的结构。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的保护范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (11)

  1. 一种晶体管外壳封装件,其特征在于,包括:
    管座;
    管帽,设置于所述管座的第一侧面,所述管帽与所述管座形成容置腔;
    第一透镜,设置于所述管帽的顶部且贯穿所述管帽,用于对光纤传输的第一光线进行准直后射入所述容置腔;
    滤光组件,设置于所述容置腔中靠近所述第一透镜的一侧,所述滤光组件用于接收所述第一光线,并将所述第一光线分为第二光线和第三光线;
    透镜组件,设置于所述容置腔中且位于所述滤光组件背离所述第一透镜的一侧,所述透镜组件包括第二透镜和第三透镜,所述第二透镜接收所述第二光线并对所述第二光线进行会聚,所述第三透镜接收所述第三光线并对所述第三光线进行会聚;
    第一光接收芯片,设置于所述容置腔中且位于所述管座的所述第一侧面,用于接收所述第二光线;
    第二光接收芯片,设置于所述容置腔中且位于所述管座的所述第一侧面,用于接收所述第三光线。
  2. 如权利要求1所述的晶体管外壳封装件,其特征在于,所述第二透镜和所述第三透镜为一体结构。
  3. 如权利要求2所述的晶体管外壳封装件,其特征在于,所述透镜组件还包括固定部,所述固定部与所述第二透镜和所述第三透镜为一体结构,所述固定部安装于所述管座,所述滤光组件安装于所述固定部。
  4. 如权利要求2或3所述的晶体管外壳封装件,其特征在于,所述透镜组件为塑料透镜组件。
  5. 如权利要求1~4任一项所述的晶体管外壳封装件,其特征在于,所述第一透镜为半球透镜。
  6. 如权利要求1~5任一项所述的晶体管外壳封装件,其特征在于,所述滤光组件包括第一滤光片、第二滤光片和第三滤光片,其中,所述第一滤光片与所述第二透镜相对,用于透射所述第二光线并反射所述第二光线以外的光线,所述第二滤光片设置于所述第一滤光片与所述第三滤光片之间,用于将所述第一滤光片反射的光线反射至所述第三滤光片,所述第三滤光片与所述第三透镜相对,用于透射所述第三光线。
  7. 一种晶体管外壳封装件的制备方法,其特征在于,包括:
    采用银胶无源贴片和金线键合工艺在管座的第一侧面对第一光接收芯片和第二光接收芯片进行贴片和打线;
    采用无源贴片工艺将透镜组件贴附于所述管座的所述第一侧面,所述透镜组件包括第二透镜和第三透镜,所述第二透镜接收第二光线并将所述第二光线会聚至所述第一光接收芯片,所述第三透镜接收第三光线并将所述第三光线会聚至所述第二光接收芯片;
    采用无源粘胶固化工艺将滤光组件贴附于所述透镜组件的固定部,所述滤光组件将第一光线分为所述第二光线和所述第三光线;
    将具有第一透镜的管帽焊接于所述管座的所述第一侧面,所述第一透镜接收并准直所述第一光线。
  8. 一种光器件,其特征在于,包括管体和至少一个如权利要求1~6任一项所述的晶体管外壳封装件,所述管体具有内腔,所述内腔用于传输光线,所述晶体管外壳封装件安装于所述管体的管壁,所述第一透镜朝向所述内腔并接收所述第一光线。
  9. 如权利要求8所述的光器件,其特征在于,还包括适配器,所述适配器安装于所述管体,用于连接光纤,所述光纤与所述内腔连接,光线在所述光纤与所述内腔之间传输。
  10. 一种光模块,其特征在于,包括外壳和权利要求9所述的光器件,所述光器件安装于所述外壳,且所述外壳具有光纤接口,所述光纤接口与所述适配器相对,所述光纤通过所述光纤接口与所述适配器连接。
  11. 一种光网络系统,其特征在于,所述系统包括光线路终端和光网络单元,所述光线路终端通过无源光分配网络与所述光网络单元连接,其特征在于,所述光线路终端包括权利要求8或9所述的光器件,或者所述光网络单元包括如权利要求8或9所述的光器件。
PCT/CN2021/125365 2021-10-21 2021-10-21 晶体管外壳封装件及其制备方法、光器件、光模块及光网络系统 WO2023065233A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180093653.7A CN116848807A (zh) 2021-10-21 2021-10-21 晶体管外壳封装件及其制备方法、光器件、光模块及光网络系统
PCT/CN2021/125365 WO2023065233A1 (zh) 2021-10-21 2021-10-21 晶体管外壳封装件及其制备方法、光器件、光模块及光网络系统
EP21960982.3A EP4362357A4 (en) 2021-10-21 2021-10-21 TRANSISTOR PACKAGE AND PREPARATION METHOD THEREOF, OPTICAL DEVICE, OPTICAL MODULE AND OPTICAL NETWORK SYSTEM
US18/593,421 US20240201457A1 (en) 2021-10-21 2024-03-01 Transistor-outline package and preparation method thereof, optical sub-assembly, optical module, and optical network system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/125365 WO2023065233A1 (zh) 2021-10-21 2021-10-21 晶体管外壳封装件及其制备方法、光器件、光模块及光网络系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/593,421 Continuation US20240201457A1 (en) 2021-10-21 2024-03-01 Transistor-outline package and preparation method thereof, optical sub-assembly, optical module, and optical network system

Publications (1)

Publication Number Publication Date
WO2023065233A1 true WO2023065233A1 (zh) 2023-04-27

Family

ID=86058702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/125365 WO2023065233A1 (zh) 2021-10-21 2021-10-21 晶体管外壳封装件及其制备方法、光器件、光模块及光网络系统

Country Status (4)

Country Link
US (1) US20240201457A1 (zh)
EP (1) EP4362357A4 (zh)
CN (1) CN116848807A (zh)
WO (1) WO2023065233A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117406351A (zh) * 2023-10-31 2024-01-16 武汉昱升光电股份有限公司 一种光收发器件及光模块
WO2024192951A1 (zh) * 2023-03-23 2024-09-26 青岛海信宽带多媒体技术有限公司 光模块

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106226872A (zh) * 2016-08-30 2016-12-14 苏州海光芯创光电科技有限公司 一种多通道同轴封装结构及封装方法
CN208284784U (zh) * 2018-05-25 2018-12-25 成都光创联科技有限公司 Combo PON OLT光电器件
US20200322061A1 (en) * 2017-12-27 2020-10-08 Huawei Technologies Co., Ltd. Receiver Optical Sub-Assembly, Combo Bi-Directional Optical Sub-Assembly, Combo Optical Module, OLT, and PON System

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009081539A1 (ja) * 2007-12-26 2009-07-02 Hitachi Communication Technologies, Ltd. 光送受信モジュール
JP2010186090A (ja) * 2009-02-13 2010-08-26 Hitachi Ltd 光送受信モジュール
EP2312352B1 (en) * 2009-09-07 2018-04-18 Electronics and Telecommunications Research Institute Multi-wavelength optical transmitting and receiving modules
KR101144665B1 (ko) * 2010-09-20 2012-05-24 옵티시스 주식회사 파장 분할 다중화 및 역다중화 장치
WO2020041953A1 (zh) * 2018-08-27 2020-03-05 华为技术有限公司 光接收、组合收发组件、组合光模块、通讯装置及pon系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106226872A (zh) * 2016-08-30 2016-12-14 苏州海光芯创光电科技有限公司 一种多通道同轴封装结构及封装方法
US20200322061A1 (en) * 2017-12-27 2020-10-08 Huawei Technologies Co., Ltd. Receiver Optical Sub-Assembly, Combo Bi-Directional Optical Sub-Assembly, Combo Optical Module, OLT, and PON System
CN208284784U (zh) * 2018-05-25 2018-12-25 成都光创联科技有限公司 Combo PON OLT光电器件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4362357A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024192951A1 (zh) * 2023-03-23 2024-09-26 青岛海信宽带多媒体技术有限公司 光模块
CN117406351A (zh) * 2023-10-31 2024-01-16 武汉昱升光电股份有限公司 一种光收发器件及光模块

Also Published As

Publication number Publication date
EP4362357A4 (en) 2024-08-28
US20240201457A1 (en) 2024-06-20
CN116848807A (zh) 2023-10-03
EP4362357A1 (en) 2024-05-01

Similar Documents

Publication Publication Date Title
WO2021004387A1 (zh) 一种tosa、bosa、光模块以及光网络设备
JP7532467B2 (ja) 受光機光サブアセンブリ、コンボ双方向光サブアセンブリ、コンボ光モジュール、olt及びponシステム
CN107065083B (zh) 一种多通道光收发一体模块
US8303195B2 (en) Optical transceiver module
US8380075B2 (en) Optical transceiver module
US7917036B2 (en) Bi-directional optical module
US20240201457A1 (en) Transistor-outline package and preparation method thereof, optical sub-assembly, optical module, and optical network system
WO2017118271A1 (zh) 一种用于双链路传输的并行收发光模块和制作方法
CN110376688A (zh) 一种光模块
WO2021115129A1 (zh) 一种光模块
CN105247401A (zh) 微型双向光学次模块
CN109154703A (zh) 具有光纤耦合插座的同轴光发射次模块(tosa)
WO2020187149A1 (zh) 光模块
WO2020041953A1 (zh) 光接收、组合收发组件、组合光模块、通讯装置及pon系统
WO2019173998A1 (zh) 光接收、组合收发组件、组合光模块、olt及pon系统
US20060013541A1 (en) Optoelectronic module
US20050036730A1 (en) COB package type bi-directional transceiver module
CN107526134A (zh) 适用于光纤通讯技术领域的多波长复用结构
KR102252682B1 (ko) 다채널 광모듈 장치 및 그것의 제조 방법
US9225428B1 (en) Method and system for alignment of photodetector array to optical demultiplexer outputs
KR102471480B1 (ko) 광학 컴포넌트, 광학 모듈, 및 통신 디바이스
KR20050029083A (ko) 더블유디엠 광커플러가 내장된 트라이플렉서 광모듈
CN116346238A (zh) 一种50g无源光纤网络接收端组件
US9531476B2 (en) Optical communication module
WO2024041154A1 (zh) 晶体管外壳封装件及其制备方法、光器件、光模块及光通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21960982

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180093653.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021960982

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021960982

Country of ref document: EP

Effective date: 20240122

NENP Non-entry into the national phase

Ref country code: DE