WO2020041953A1 - 光接收、组合收发组件、组合光模块、通讯装置及pon系统 - Google Patents

光接收、组合收发组件、组合光模块、通讯装置及pon系统 Download PDF

Info

Publication number
WO2020041953A1
WO2020041953A1 PCT/CN2018/102564 CN2018102564W WO2020041953A1 WO 2020041953 A1 WO2020041953 A1 WO 2020041953A1 CN 2018102564 W CN2018102564 W CN 2018102564W WO 2020041953 A1 WO2020041953 A1 WO 2020041953A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical
wavelength
signal
film
Prior art date
Application number
PCT/CN2018/102564
Other languages
English (en)
French (fr)
Inventor
卫张
刘鹏
徐爱民
李希光
康竞然
凌魏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201880094466.9A priority Critical patent/CN112272927A/zh
Priority to EP18931622.7A priority patent/EP3800810A4/en
Priority to PCT/CN2018/102564 priority patent/WO2020041953A1/zh
Priority to KR1020217003136A priority patent/KR20210024169A/ko
Priority to JP2021506570A priority patent/JP2021533672A/ja
Publication of WO2020041953A1 publication Critical patent/WO2020041953A1/zh
Priority to US17/158,738 priority patent/US20210149129A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2589Bidirectional transmission
    • H04B10/25891Transmission components
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0009Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4213Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical elements being polarisation selective optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/506Multiwavelength transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/67Optical arrangements in the receiver
    • H04B10/671Optical arrangements in the receiver for controlling the input optical signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring

Definitions

  • the present application relates to the field of optical communication technologies, and in particular, to a light receiving component, a combination transceiver component, a combination optical module, a communication device, and a passive optical network system.
  • Optical communication networks used in access network scenarios mainly exist in the form of passive optical networks (PONs). Under the overall situation of optical networks being fully popularized, the deployment of a large number of PON networks requires an equally large number.
  • Communication equipment, related communication equipment such as optical line terminals (Optical Line Terminal, OLT) are mainly composed of optical modules and single boards and chassis on which optical modules are placed.
  • OLT optical Line Terminal
  • an optical module in optical line terminal 01 Corresponds to an optical distribution network (Optical Distribution Network, ODN) 02 and serves a certain number of Optical Network Units (ONUs) 03.
  • ODN optical distribution network
  • ONUs Optical Network Units
  • an optical distribution network 02 corresponds to x optical network units 03 (ONU1 ⁇ ONUx).
  • Each optical network unit 03 can represent a user.
  • the optical modules in the optical line terminal 01 and the optical network unit 03 are responsible for the photoelectric conversion and transmission of network signals. The basis for normal communication of the entire network.
  • PON Ethernet passive optical networks
  • GPON Gig-bit passive optical networks
  • the supported rate is 2.5Gbit / s or 1.25Gbit / s.
  • 10G-EPON and 10G-GPON also known as XGPON
  • the supported rate is 10Gbit / s.
  • the following description uses GPON as an example.
  • the EPON scenario can be similarly considered.
  • the optical line terminal in GPON uses 1490 nanometers for transmission and 1310 nanometers for reception
  • the optical line terminal in XGPON uses 1577 nanometers for transmission and 1270 nanometers for reception.
  • WDM wavelength division multiplexing
  • the embodiments of the present application provide a light receiving component, a light transmitting component, a combined transmitting and receiving component, a combined optical module, a communication device, and a passive optical network system.
  • the construction cost is further increased. Low, machine room space occupation is reduced, construction wiring is simple, management and maintenance are convenient.
  • the present application provides a light-receiving component including a light-receiving casing, the light-receiving casing is packaged with a first light receiver, a second light receiver, and a first glass slide, and the first glass slide Relative to the light receiving paths of the first and second light receivers, the first glass slide includes a light incident surface and a light emitting surface, and the first light receiver and the second light receiver are connected with The light exit surface of the first glass slide is oppositely disposed; a light splitting film is provided on the light exit surface of the first glass slide, and the first light splitting film is located on a light receiving path of the first light receiver.
  • the first spectroscopic film is capable of transmitting a light signal of a first wavelength and reflecting a light signal of a second wavelength; a light reflecting surface of the first glass sheet is partially provided with a first reflecting film; the light signal of the first wavelength and the first wavelength An optical signal of two wavelengths is incident into the first glass through the light incident surface, and is refracted inside the first glass and is incident on the first spectroscopic film.
  • the optical signal of the first wavelength is transmitted through the The first light splitting film enters the first light receiver, and the light signal of the second wavelength is dependent on After it said first splitting film and the first reflection film emitted by said light emitting surface, into the second light receiver.
  • the light receiving component provided in the embodiment of the present application uses a first glass plate, a first reflection film is provided on a light incident surface of the first glass plate, and a first light splitting film is provided on a light emitting surface.
  • a glass slide is disposed obliquely with respect to the light receiving paths of the first light receiver and the second light receiver. Therefore, after the light signal of the first wavelength and the light signal of the second wavelength enter the first glass slide in the light receiving direction A light signal of a first wavelength can be transmitted through a first light-splitting film and enter a first light receiver, and the light signal of the second wavelength is reflected by the first light-splitting film and the first reflection film in sequence and is transmitted by the The light emitting surface exits and enters the second light receiver.
  • the emission position of the optical signal of the second wavelength can be separated from the emission position of the optical signal of the first wavelength by a certain distance, so as to meet the installation distance requirements of the first optical receiver and the second optical receiver, thereby achieving different Wavelength optical signal receiving in partial waves.
  • the first light receiver, the second light receiver, and the first glass are all packaged in the same light receiving housing, and the first light-splitting film on the first glass plays the role of wave splitting, the wave splitting is realized.
  • the built-in device makes the construction cost lower, the space occupied by the machine room reduced, the construction wiring simple, and the management and maintenance convenient.
  • a second reflective film is further provided on the light exit surface of the first glass slide, the second reflective film is disposed to avoid the light receiving path of the second light receiver, and the second reflection The film is located between the light receiving path of the first light receiver and the light receiving path of the second light receiver. After the light signal of the second wavelength is reflected by the first light splitting film, it The first reflective film reflects between the second reflective film and exits from the light emitting surface, and enters the second light receiver. Thereby, signal reception can be satisfied when the installation distance between the first optical receiver and the second optical receiver is far.
  • an incident angle at which the optical signal of the first wavelength and the optical signal of the second wavelength enters the first glass slide is less than or equal to 12 °.
  • an incident angle of the optical signal of the first wavelength and the optical signal of the second wavelength to the first glass slide is 8 ° -12 °. Therefore, not only the spectral isolation is ensured, but also the loss of the optical signal of the second wavelength is small.
  • an incident angle at which the optical signal of the first wavelength and the optical signal of the second wavelength enters the first glass is 8 °.
  • the thickness of the first glass slide is 0.2-2 mm. Therefore, the production of the first slide is difficult and the cost is low, and the overall size can easily meet the SFP + package size requirements.
  • the thickness of the first glass slide is 1.6 mm.
  • a first condenser lens is provided between the light exit surface of the first glass slide and the first light receiver, and the first condenser lens is disposed at the first light receiving
  • a second condenser lens is provided between the light exit surface of the first glass slide and the second light receiver, and the second condenser lens is disposed on the second light receiver.
  • the receiver's light receiving path Thereby, the reception efficiency of the first optical receiver and the second optical receiver can be improved, and the optical loss can be reduced.
  • an antireflection coating is disposed on the light exit surface of the first glass slide.
  • the light receiving housing is a coaxial tube housing
  • the coaxial tube housing includes a tube base and a tube cap
  • the first light receiver and the second light receiver are both disposed on the On the tube base, the first glass sheet forms a light transmission window of the tube cap. Therefore, it is compatible with the existing TO packaging process, avoiding the production of specially-made complex shells, and reducing the manufacturing cost.
  • the light receiving casing is a packaging box
  • the packaging box is formed with a light transmitting window
  • the first light receiver, the second light receiver, and the first glass slide are all It is arranged in the packaging box, and the light incident surface of the first glass slide is opposite to the light transmission window of the packaging box. Therefore, the inclination angle and position of the first glass slide can be fine-tuned by using the active coupling method, so that the setting position of the first glass slide is more accurate, and the receiving efficiency of the light receiving component is higher.
  • the present application provides a light transmitting component, the light transmitting component includes a light transmitting housing, and a first optical transmitter, a second optical transmitter, and a second glass package enclosed in the light transmitting housing.
  • a second glass slide is disposed obliquely with respect to a path of a light transmitting direction of the first optical transmitter and the second optical transmitter, and the second glass includes a light incident surface and a light emitting surface.
  • the light incident surface is opposite to the first light transmitter and the second light transmitter, a second light-splitting film is provided on the light incident surface of the second glass, and the light emitting surface of the second glass is partially provided.
  • a third reflective film, the second spectroscopic film is located on a transmission path of the first optical transmitter and on a reflective path of the third reflective film, and the second spectroscopic film is capable of making a light signal of a third wavelength Transmitted and capable of reflecting a light signal of a fourth wavelength, the light signal of a third wavelength emitted by the first optical transmitter passes through the second light-splitting film and enters the second glass slide, and the second glass slide After internal refraction, it is emitted from the light-emitting surface of the second glass, and is emitted by the second light.
  • the light signal of the fourth wavelength sent by the transmitter enters the inside of the second glass, and is reflected by the second reflection film and the second spectroscopic film in sequence, and is emitted from the light-emitting surface of the second glass.
  • an emission position of the optical signal of the third wavelength coincides with an emission position of the optical signal of the fourth wavelength.
  • a fourth reflective film is further provided on the light incident surface of the second glass slide, and the fourth reflective film avoids the light transmitting path and the first optical transmitter of the first optical transmitter.
  • the optical transmission paths of the two optical transmitters are set, and the fourth reflection film is located between the optical transmission path of the first optical transmitter and the optical transmission path of the second optical transmitter, and the optical signal of the fourth wavelength enters the optical transmission path.
  • After the inside of the second glass slide it is sequentially reflected between the third reflective film and the fourth reflective film, and then enters the second spectroscopic film, and the fourth wavelength light signal is received by the second spectroscopic film. After reflection, the light exits from the second glass slide. Thereby, signal transmission can be satisfied when the installation distance between the first optical transmitter and the second optical transmitter is far.
  • the light transmitting housing is a coaxial tube housing
  • the coaxial tube housing includes a tube base and a tube cap
  • the first optical transmitter and the second optical transmitter are both provided.
  • the second glass slide forms a light transmitting window of the tube cap.
  • the light transmitting housing is a packaging box
  • the packaging box is formed with a light transmitting window
  • the first light transmitter, the second light transmitter, and the second glass slide are all arranged in the box.
  • a light emitting surface of the second glass slide is opposite to a light transmission window of the packaging box. Therefore, the inclination angle and position of the second glass slide can be fine-tuned by using active coupling, so that the setting position of the second glass slide is more accurate, and the transmission efficiency of the light transmitting component is higher.
  • the present application provides a combined transceiver component, including:
  • the light receiving component is a light receiving component according to any one of the technical solutions of the first aspect.
  • the combined transmitting and receiving component further includes a combined package housing, wherein the combined package housing is provided with an optical transmission channel, the optical transmission channel is provided with a demultiplexer, and the combined package housing A light receiving port, a light transmitting port, and an optical fiber connection port which are in communication with the optical transmission channel are provided thereon; the light receiving component is packaged at the light receiving port; An optical signal of one wavelength and an optical signal of a second wavelength are reflected to the light receiving port.
  • an optical transmitting component is encapsulated at the optical transmitting port, and the optical transmitting component is the optical transmitting component in any one of the technical solutions of the second aspect.
  • the combined package housing is provided with a first optical transmission port and a second optical transmission port, and a third optical transmitter is encapsulated in the first optical transmission port, and the first The two optical transmitting ports are packaged with a fourth optical transmitter, and the optical transmission channel is provided with a combiner.
  • the combiner can convert the optical signal of the third wavelength from the third optical transmitter and the first optical signal from the fourth optical transmitter. Four-wavelength optical signals are combined and sent to the fiber connection port.
  • the multiplexer is a glass-type multiplexer, and an optical signal of a third wavelength emitted by the third optical transmitter passes through the glass-type multiplexer and enters the optical signal.
  • An optical fiber connection port, and an optical signal of a fourth wavelength emitted by the fourth optical transmitter is reflected by the glass combiner and enters the optical fiber connection port.
  • a collimating lens is provided at the optical fiber connection port.
  • the present application provides a combined transceiver component, including:
  • the optical transmitting component is an optical transmitting component in any one of the technical solutions of the second aspect.
  • the present application provides a combined transceiver component, including:
  • a light-receiving component which is the light-receiving component in any one of the technical solutions of the first aspect
  • the optical transmitting component is an optical transmitting component in any one of the technical solutions of the second aspect.
  • the combined transceiving module provided in the embodiment of the present application uses a first glass plate, a first reflective film is provided on a light incident surface of the first glass plate, and a first light splitting film is provided on a light emitting surface.
  • a glass slide is disposed obliquely with respect to the light receiving paths of the first light receiver and the second light receiver. Therefore, after the light signal of the first wavelength and the light signal of the second wavelength enter the first glass slide in the light receiving direction A light signal of a first wavelength can be transmitted through a first light-splitting film and enter a first light receiver, and the light signal of the second wavelength is reflected by the first light-splitting film and the first reflection film in sequence and is transmitted by the The light emitting surface exits and enters the second light receiver.
  • the emission position of the optical signal of the second wavelength can be separated from the emission position of the optical signal of the first wavelength by a certain distance, so as to meet the installation distance requirements of the first optical receiver and the second optical receiver, thereby achieving different Wavelength optical signal receiving in partial waves.
  • the structure of the light-splitting film and the reflection film on the first glass slide is simple, the production cost is low, and mass production is possible.
  • the first glass slide occupies a small volume, the packaging structure is more compact, and it is easy to realize the SFP + package size requirements.
  • the present application provides a combined optical module, including the light receiving component in the first aspect, or the light transmitting component in the second aspect, or the electronic component and the third aspect, the fourth aspect, and the fifth aspect.
  • the electronic component is electrically connected to the light receiving component and the light transmitting component in the combination transmitting and receiving component, respectively.
  • the present application provides a communication device including the combined optical module in the technical solution of the sixth aspect.
  • the communication device is an optical line terminal or an optical network unit.
  • the optical line terminal further includes a board and a chassis for placing a combined optical module.
  • the present application provides a passive optical network system, including:
  • An optical line terminal which is an optical line terminal in any one of the technical solutions of the seventh aspect
  • Optical distribution network which is connected to the optical line terminal
  • Multiple optical network units multiple optical network units are connected to the optical distribution network.
  • At least a part of the optical network unit of the plurality of optical network units is a GPON optical module, and at least a part of the optical network unit is an XGPON optical module;
  • optical modules of at least a part of the optical network units in the multiple optical network units are EPON optical modules, and the optical modules of at least a part of the optical network units are 10G-EPON optical modules; or
  • the optical module of at least a part of the plurality of optical network units is a combined optical module in the technical solution of the sixth aspect.
  • each optical module in the multiple optical network units may include at least one of a GPON optical module, an XGPON optical module, a 25G-GPON optical module, and a 50G-GPON optical module.
  • Two types; or each optical module in the multiple optical network units may include at least two of an EPON optical module, a 10G-EPON optical module, a 25G-EPON optical module, and a 50G-EPON optical module.
  • the combination optical module can support any two of GPON, XGPON, 25G GPON, 50G GPON, or any two of EPON, 10GEPON, 25G EPON, and 50G EPON at the same time.
  • the light receiving component uses a first glass plate
  • a first reflection film is provided on a light incident surface of the first glass plate
  • a first light-splitting film is disposed on the light-emitting surface
  • the first glass plate is disposed obliquely relative to the light receiving paths of the first and second light receivers, so that the light signal of the first wavelength and the light of the second wavelength
  • the light signal of the first wavelength can be transmitted through the first light splitting film and enter the first light receiver, and the light signal of the second wavelength is sequentially passed through the first light splitting film.
  • the emission position of the optical signal of the second wavelength can be separated from the emission position of the optical signal of the first wavelength by a certain distance, so as to meet the installation distance requirements of the first optical receiver and the second optical receiver, thereby achieving different Wavelength optical signal receiving in partial waves.
  • the structure of the light-splitting film and the reflection film on the first glass slide is simple, the production cost is low, and mass production is possible.
  • the first glass slide occupies a small volume, the packaging structure is more compact, and it is easy to realize the SFP + package size requirements.
  • FIG. 1 is a network device configuration diagram of a passive optical network
  • FIG. 2 is a network structure diagram when a GPON optical module and an XGPON optical module coexist and the WDM module is external;
  • FIG. 3 is a schematic diagram of a packaging structure of a typical optical transceiver component
  • FIG. 4 is a schematic diagram of a packaging structure of a typical optical transmitting component
  • FIG. 5 is a schematic diagram of a packaging structure of a typical light receiving component
  • FIG. 6 is a schematic structural diagram of a light receiving component
  • FIG. 7 is a schematic structural diagram when a light receiving component is packaged in a coaxial tube and shell according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram when a light receiving component is packaged with a packaging box according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a combined transmitting and receiving component according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram when an optical transmitting component is packaged in a coaxial tube and shell according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of an optical transmitting component according to an embodiment of the present application when the packaging box is used for packaging;
  • FIG. 12 is a schematic structural diagram of another implementation manner of a combination transmitting and receiving component according to an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a light receiving component according to an embodiment of the present application when receiving optical signals of three wavelengths;
  • FIG. 14 is a schematic structural diagram when an optical transmitting component sends optical signals of three wavelengths according to an embodiment of the present application.
  • the embodiments of the present application relate to a light receiving component, a light transmitting component, a combination transmitting and receiving component, a combination optical module, and a passive optical network system.
  • a light receiving component a light transmitting component
  • a combination transmitting and receiving component a combination optical module
  • a passive optical network system a passive optical network system
  • Passive optical network refers to the optical fiber distribution network (ODN) between the OLT and the ONU, without any active electronic equipment.
  • ODN Optical Distribution Network
  • Wavelength division multiplexing combines two or more optical carrier signals (carrying various information) with different wavelengths at the transmitting end through a multiplexer (also known as a multiplexer).
  • a multiplexer also known as a multiplexer
  • This technology of transmitting two or more optical signals of different wavelengths in the same fiber at the same time is called wavelength division multiplexing.
  • Optical transmission module referred to as an optical module, which includes two parts: a bi-directional optical sub-assembly (BOSA) and an electronic sub-assembly (ESA).
  • BOSA bi-directional optical sub-assembly
  • ESA electronic sub-assembly
  • the pins of the optical transceiver module are electrically connected to the peripheral electronic components (ESA), and then inserted into the optical module housing to form an optical transmission module.
  • Optical Transceiver Assembly (Bi-directional Optical Sub-assembly, BOSA): It mainly includes Optical Transmitting Optical Sub-assembly (TOSA) and Optical Receiving Optical Sub-assembly (ROSA).
  • TOSA Optical Transmitting Optical Sub-assembly
  • ROSA Optical Receiving Optical Sub-assembly
  • TOSA Optical transmission subassembly
  • ROSA Receiving Optical Sub-assembly
  • the important component in the optical module is the optical transceiver assembly (BOSA), which can be used to send and receive optical signals.
  • a typical BOSA structure is shown in Figure 3. It includes a housing 05, a light transmitting assembly (TOSA) 06 embedded in the housing 05, and a receiving optical sub-assembly (ROSA) 07 installed in the housing.
  • the function of the light transmitting component 06 is to convert an electrical signal into an optical signal and input to the optical fiber 091 for transmission
  • the function of the light receiving component 07 is to receive the optical signal incoming from the optical fiber and convert the electrical signal.
  • a demultiplexer 08 needs to be placed in the metal casing to separate the two types of wavelengths.
  • the function of the demultiplexer is to transmit light of some wavelengths while reflecting other Wavelength of light.
  • the light transmission path is shown by the solid line arrow in FIG. 3, and the light emitted by the light transmission component 06 is transmitted straight through the demultiplexer 08, and then enters the optical fiber 091 for transmission; the light receiving path is shown by the dotted arrow in FIG.
  • the incoming optical signal is reflected when it passes through the demultiplexer 08, and the light receiving component 07 is located on the reflected optical path, thereby realizing the reception of the optical signal.
  • FIG. 4 is a package structure diagram of TOSA.
  • TOSA mainly includes a metal base with a pin (Header) 061, a cap (Cap) 062, and a photodiode provided on the base. (photodiode (PD) 063), carrier (Submount) 064, laser diode (LD) 065, heat sink (Sink) 066, and window (Window) 067.
  • the pin 068 on the socket is connected to the signal electrode on the laser diode 065 by using a gold wire, so that an external electrical signal can be transmitted to the laser diode 065 for electro-optical conversion.
  • FIG. 5 is a package structure diagram of ROSA.
  • the ROSA mainly includes a metal head with a pin 071, a cap 072, and a trans-impedance amplifier (TIA). 073, a submount 074, a photodiode 075, a capacitor 076, and a spherical lens 077.
  • the signal after photoelectric conversion of the photodiode 075 can be output through the pin 078 on the socket.
  • the WDM module can be built into the optical module.
  • An optical module that can support any two different transmission rates can be called a combo optical module.
  • a combo optical module can support any two of GPON, XGPON, 25G, GPON, and 50GPON at the same time.
  • the foregoing combined optical module may also be referred to as an optical module.
  • the optical line terminal in GPON uses a wavelength of 1490 nanometers for transmission, the wavelength of 1310 nanometers for reception, the optical line terminal in XGPON uses a wavelength of 1577 nanometers for transmission, and the wavelength of 1270 nanometers for reception,
  • the combination transceiver module it is necessary to receive and send these two sets of wavelengths of optical signals through a certain structural design to achieve coexistence.
  • WDM modules combiners or demultiplexers
  • FIG. 6 is a schematic structural diagram of a light receiving component.
  • the light receiving component includes a first coaxial tube shell 031, a first coaxial tube shell 031 is provided with a light inlet 0311, and the first coaxial tube shell 031 is inside.
  • the first optical splitter 032, the first optical receiver 033, the second optical receiver 034, and the optical lens group 035 are packaged.
  • the first optical receiver 033 can receive the optical signal of the first wavelength
  • the second optical receiver 034 can Receiving an optical signal of a second wavelength, the light entering through the light entrance 0311 can enter the first demultiplexer 032.
  • the first demultiplexer 032 is used to transmit the optical signal of the first wavelength and reflect the optical signal of the second wavelength.
  • An optical receiver 033 is disposed on the transmitted light path of the first demultiplexer 032.
  • An optical lens group 035 is disposed on the reflected light path of the first demultiplexer 032.
  • the optical lens group 035 is used to reflect the first demultiplexer 032.
  • the optical signal of the second wavelength is directed to the second optical receiver 034.
  • the light receiving component realizes light splitting through the optical lens group 035.
  • the optical lens group 035 itself is difficult to manufacture, has high cost, requires high processing technology, and is difficult to mass produce.
  • the volume of the optical lens group 035 is relatively large, and it is difficult to achieve SFP + (Small Form-factor Pluggables) package size requirements.
  • an embodiment of the present application provides a light receiving assembly including a light receiving housing 1.
  • the light receiving housing 1 is packaged with a first light receiver 2 and a second light receiver.
  • the first glass slide 4 is inclined relative to the light receiving path X1 of the first light receiver 2 and the light receiving path X2 of the second light receiver 3 (that is, the first glass slide 4 An angle ⁇ is formed between Y1 and Y2, and the angle ⁇ is greater than 0 ° and less than 90 °), the first glass slide 4 includes a light incident surface 41 and a light exit surface 42, and the first light receiver 2
  • the second light receiver 3 is disposed opposite to the light exit surface 42 of the first glass slide 4.
  • the light exit surface 42 of the first glass slide 4 is provided with a first light splitting film 43.
  • the first light-splitting film 43 can transmit a light signal of a first wavelength and reflect a light signal of a second wavelength; the light incident surface 41 of the first glass plate 4 is partially provided There is a first reflection film 44.
  • the light signal of the first wavelength and the light signal of the second wavelength are incident on the first glass 4 by the light incident surface 41, and inside the first glass 4. After the radiation, the light is transmitted to the first light-splitting film 43.
  • the light signal of the first wavelength is transmitted through the first light-splitting film 43 and enters the first light receiver 2.
  • the light signal of the second wavelength is sequentially
  • the first light-splitting film 43 and the first reflection film 44 are reflected by the light-exiting surface 42 and enter the second light receiver 3.
  • the first light-splitting film 43 is disposed on the light-receiving path of the first light receiver 2, so that a light signal of a first wavelength can pass through the first light-splitting film 43 and enter the first light receiver 2.
  • the first reflection film 44 avoids the light incident position of the light signal on the light incident surface 41, so that the light signal can enter the first glass 4 from the light incident surface 41.
  • the second reflection film 45 avoids the light receiving path of the second light receiver 3, so that a light signal of a second wavelength can be emitted from the light emitting surface 42 and enter the second light receiver 3.
  • a first reflective film 44 is provided on the light incident surface 41 of the first glass plate 4, and a first light splitting surface is provided on the light emitting surface 42.
  • the film 43 and the second reflective film 45 are arranged obliquely with respect to the light receiving direction, so that a light signal of a first wavelength and a light signal of a second wavelength enter the first glass 4 in the light receiving direction.
  • the light signal of the first wavelength can be transmitted through the first light-splitting film 43 and enter the first light receiver 2.
  • the light signal of the second wavelength is reflected by the first light-splitting film 43 and the first reflection film 44 in this order and then emitted by the light.
  • the surface 42 emerges and enters the second light receiver 3. Therefore, the emission position of the optical signal of the second wavelength can be separated from the emission position of the optical signal of the first wavelength by a certain distance, so that the partial wave reception of the optical signals of different wavelengths can be realized.
  • the structure of disposing the light-splitting film and the reflection film on the first glass slide 4 is simple, the production cost is low, and mass production can be carried out.
  • the first glass slide 4 occupies a small volume, the packaging structure is more compact, and it is easy to realize the SFP + package size requirements. .
  • a second reflective film 45 can also be provided on the light exit surface 42 of the first glass 4, and the second reflective film 45 can be avoided.
  • the light receiving path of the second light receiver 3 is set, and the second reflection film 45 is located between the light receiving path of the first light receiver 2 and the light receiving path of the second light receiver 3 After the light signal of the second wavelength is reflected by the first spectroscopic film 43, it is sequentially reflected multiple times between the first reflective film 44 and the second reflective film 45 to open a certain distance, and finally It is emitted from the light emitting surface 42 and enters the second light receiver 3.
  • the light signal of the second wavelength may be sequentially reflected by the first reflective film 44, reflected by the second reflective film 45, and reflected by the first reflective film 44.
  • Emission that is, the light signal of the second wavelength is reflected twice by the first reflection film 44 and once by the second reflection film 45.
  • the optical signal of the second wavelength may be reflected four times by the first reflection film 44 and three times by the second reflection film 45. It can be understood that the number of times that the optical signal of the second wavelength is reflected by the first reflective film 44 is greater than the number of times that it is reflected by the second reflective film 45.
  • the received signal usually uses an optical signal with a wavelength of 1310 ⁇ 20 nm and an optical signal with a wavelength of 1270 ⁇ 10 nm, the wavelengths of the two signals are relatively close.
  • the Fresnel reflection principle it can be known that when the incident angle of the incident light is larger, the separation band is broadened, and the center wavelength shift caused by the change of the incident angle is also larger. Therefore, in the case of the center wavelength shift, the similar wavelength of 1310 Optical signals with a wavelength of ⁇ 20 nm and optical signals with a wavelength of 1270 ⁇ 10 nm are prone to crosstalk.
  • the incident angle of the incident light may be appropriately reduced, that is, the incident angle ⁇ of the optical signal of the first wavelength and the optical signal of the second wavelength into the first glass slide 4 is set to less than 12 °.
  • the incident angle ⁇ is too small, the reflection angle when the light signal of the second wavelength is reflected between the first reflection film 44 and the second reflection film 45 is small, and the light signal of the second wavelength requires more reflections Open enough distance to meet the installation distance requirement between the first optical receiver 2 and the second optical receiver 3, and more reflections cause larger signal loss. Therefore, the incident angle ⁇ can be set to 8 ° -12 °.
  • the incident angle ⁇ is set within the above range, not only the spectral isolation is ensured, but also the loss of the optical signal of the second wavelength can be controlled within 0.3dB.
  • the thickness of the first glass slide 4 can be selected from 0.2 to 2 mm. In an embodiment of the present application, the thickness of the first glass slide 4 can be 1.6 mm. Therefore, the manufacturing difficulty is low, the cost is low, and the whole The size can also easily meet the package size requirements of SFP +.
  • a first condenser lens 51 may be disposed between the light emitting surface 42 of the first glass slide 4 and the first light receiver 2, and the first condenser lens 51 is disposed on the first On the light receiving path of the light receiver 2, the first condenser lens 51 is used for converging a light signal of a first wavelength to the first light receiver 2, and the light exit surface 42 of the first glass plate 4 and A second condenser lens 52 may be disposed between the second light receivers 3, and the second condenser lens 52 is disposed on a light receiving path of the second light receiver 3. The second condenser lens 52 is used for For converging the optical signal of the second wavelength to the second optical receiver 3. Thereby, the reception efficiency of the first optical receiver 2 and the second optical receiver 3 can be improved, and the optical loss can be reduced.
  • an anti-reflection coating (not shown in the figure) may be further provided on the light-emitting surface 42 of the first glass slide 4, thereby reducing the intensity of the reflected optical signal and increasing the intensity of the transmitted optical signal.
  • the above-mentioned light receiving component may be packaged by means of a coaxial tube housing.
  • the light receiving housing 1 is a coaxial tube housing, and the coaxial tube
  • the shell includes a tube base 11 and a tube cap 12, the first light receiver 2 and the second light receiver 3 are both disposed on the tube base 11, and the first glass slide 4 forms a transparent of the tube cap 12. Light window. Therefore, it is compatible with the existing TO packaging process, avoiding the production of specially-made complex shells, and reducing the manufacturing cost.
  • the above-mentioned light receiving component may also be packaged in a box packaging manner.
  • the light receiving housing 1 is a packaging box
  • the packaging box is formed with
  • the light transmitting window 13, the first light receiver 2, the second light receiver 3, and the first glass slide 4 are all disposed in the packaging box, and the light incident surface of the first glass slide 4 41 is opposite to the transparent window 13 of the packaging box.
  • the position can be adjusted relative to the packaging box.
  • the inclination angle and position of the first glass slide 4 can be fine-tuned using active coupling so that the first glass slide 4
  • the setting position of 4 is more precise, and the receiving efficiency of the light receiving component is higher.
  • an embodiment of the present application further provides a combined transceiver component, including:
  • the combined package housing 100 is provided with a light transmission channel 101 therein, the optical transmission channel 101 is provided with a demultiplexer 102 therein, and the combined package housing 100 is provided with the optical transmission Optical receiving port 103, optical transmitting port 104, and optical fiber connecting port 105 connected by channel 101;
  • a light-receiving component 106 which is the light-receiving component described in any one of the above embodiments, and the light-receiving component 106 is packaged at the light-receiving port 103;
  • the demultiplexer 102 can reflect the optical signal of the first wavelength and the optical signal of the second wavelength that the optical fiber connection port 105 enters to the optical receiving port 103.
  • the optical signal of the first wavelength and the optical signal of the second wavelength transmitted by the optical fiber connection port 105 are reflected when passing through the demultiplexer 102, and the light receiving component is located on the reflected optical path, thereby achieving Reception of optical signals.
  • the light receiving module adopts the first glass plate 4
  • the first reflection film 44 is provided on the light incident surface 41 of the first glass plate 4, and the first light splitting film 43,
  • the two reflecting films 45 are disposed obliquely with respect to the light receiving direction.
  • the first A light signal with a wavelength can be transmitted through the first light-splitting film 43 and enters the first light receiver 2.
  • the light signal with a second wavelength is reflected by the first light-splitting film 43 and the first reflection film 44 in this order and is emitted from the light-emitting surface 42. Enter the second light receiver 3. Therefore, the emission position of the optical signal of the second wavelength can be separated from the emission position of the optical signal of the first wavelength by a certain distance, so that the partial wave reception of the optical signals of different wavelengths can be realized.
  • the structure of disposing the light-splitting film and the reflection film on the first glass slide 4 is simple, the production cost is low, and mass production can be carried out.
  • the first glass slide 4 occupies a small volume, the packaging structure is more compact, and it is easy to realize the SFP + package size requirements. .
  • the packaging structure may be as shown in FIG. 9.
  • the optical transmission channel 101 is connected between the optical transmission port 104 and the optical fiber connection port 105, and the optical receiving channel 101 a is further provided between the optical receiving port 103 and the optical transmission channel 101.
  • the device 102 is disposed at the junction of the optical transmission channel 101 and the light receiving channel 101a.
  • the optical path structure is simple and conforms to the existing manufacturing process of the BOSA housing, thereby improving the manufacturing efficiency.
  • a collimating lens may be provided at the fiber connection port 105.
  • the optical transmitting port 104 is one
  • the optical transmitting component 107 is packaged at the optical transmitting port 104
  • the third wavelength The optical signal and the optical signal of the fourth wavelength are transmitted in a straight line when passing through the demultiplexer 102, and then enter the optical fiber connection port 105 for transmission.
  • an isolator 108 may be provided in the optical transmission channel 101 between the optical transmitting component 107 and the demultiplexer 102.
  • the structure of the light transmitting component 107 may be as shown in FIG. 10.
  • the light transmitting component includes a light transmitting housing 6 and a first optical transmitter 71, a second optical transmitter 72, and a Two glass slides 8, the second glass slide 8 is inclined with respect to the light transmission path Y3 of the first optical transmitter 71 and the light transmission path Y4 of the second optical transmitter 72 (that is, the second glass slide 8 with Y3 and Y4 (The angle ⁇ is formed between them, and the angle ⁇ is greater than 0 ° and less than 90 °), the second glass slide 8 includes a light incident surface 81 and a light exit surface 82, and the light incident surface 81 of the second glass 8 and The first optical transmitter 71 and the second optical transmitter 72 are oppositely disposed.
  • a second light-splitting film 83 is provided on the light incident surface 81 of the second glass 8, and a light emitting surface 82 of the second glass 8
  • a third reflective film 84 is disposed on the second light-splitting film 83, and the second light-splitting film 83 is located on the transmission path of the first light transmitter 71 and on the reflection path of the third reflection film 84.
  • a light signal of a third wavelength can be transmitted, and a light signal of a fourth wavelength can be reflected, and a light signal of a third wavelength emitted by the first optical transmitter 71 passes through the light signal.
  • the dichroic film 83 enters the second glass 8 after transmitting, and is refracted inside the second glass 8 and is emitted from the light exit surface 82 of the second glass 8.
  • the light signal enters the inside of the second glass slide 8 and is reflected by the third reflection film 84 and the second spectroscopic film 83 in this order, and is emitted from the light exit surface 82 of the second glass slide 8.
  • the emission position of the optical signal of the third wavelength coincides with the emission position of the optical signal of the fourth wavelength.
  • the optical transmitting component encapsulates two optical transmitters into the same optical transmitting housing 6, and a second glass plate 8 for combining waves is provided inside the optical transmitting housing 6 so that light of a third wavelength
  • the signal and the optical signal of the fourth wavelength are multiplexed and transmitted at the same position.
  • a fourth reflective film 85 may also be added on the light incident surface of the second glass slide 8, and the fourth reflective film 85 Avoid setting the optical transmission path of the first optical transmitter 71 and the optical transmission path of the second optical transmitter 72, and the fourth reflective film 85 is located on the optical transmission path of the first optical transmitter 71 and the second light
  • the optical signal of the fourth wavelength enters the inside of the second glass slide 8
  • a first collimating lens 91 may be disposed between the light-emitting surface of the second glass plate 8 and the first optical transmitter 71, and the first collimating lens 91 is configured to convert a third wavelength The light signal becomes parallel light.
  • a second collimating lens 92 is provided between the light exit surface 82 of the second glass slide 8 and the second light transmitter 72. The second collimating lens 92 is used for The light signal of the fourth wavelength becomes parallel light. Thereby, the transmission direction of the optical signal can be corrected, and the optical loss can be reduced.
  • an anti-reflection coating (not shown in the figure) may be further provided on the light incident surface 41 of the first glass slide 4, thereby reducing the intensity of the reflected optical signal and increasing the intensity of the transmitted optical signal.
  • the light transmitting housing 6 may be a coaxial tube housing.
  • the coaxial tube housing includes a tube base 61 and a tube cap 62.
  • the first optical transmitter 71 and the second optical transmitter 72 are both
  • the second glass slide 8 is disposed on the tube base 61 and forms a light transmission window of the tube cap 62. Therefore, it is compatible with the existing TO packaging process, avoiding the production of specially-made complex shells, and reducing the manufacturing cost.
  • the above-mentioned light-transmitting component may also be packaged in a box packaging manner.
  • the light-transmitting housing 6 may also be a packaging box.
  • the packaging box is formed with a light-transmitting window 63, and the first light-transmitting box is formed.
  • the transmitter 71, the second optical transmitter 72, and the second glass slide 8 are all disposed in the packaging box.
  • the light-emitting surface of the second glass slide 8 is opposite to the light transmission window 63 of the packaging box.
  • the position can be adjusted relative to the packaging box. Specifically, the inclination angle and position of the second glass slide 8 can be fine-tuned by using active coupling, so that the second glass slide 8
  • the setting position of 8 is more accurate, and the transmission efficiency of the light transmitting component is higher.
  • the optical transmitting component includes a third optical transmitting port.
  • the third optical transmitter 73 is packaged in the first optical transmitting port 104a
  • the fourth optical transmitter 74 is packaged in the second optical transmitting port. 104b.
  • the multiplexer 75 is disposed on the optical transmission channel 101.
  • the multiplexer 75 can convert the optical signal of the third wavelength from the third optical transmitter 73 and the optical signal of the fourth wavelength from the fourth optical transmitter 74.
  • the optical signals are combined and sent to the optical fiber connection port 105. This structure can also realize the combined transmission of the optical signal of the third wavelength and the optical signal of the fourth wavelength at the same position.
  • the combiner 75 may be a glass-type combiner 75, a third optical transmitter 73 is opposite to the optical fiber connection port 105, and a sending direction of the fourth optical transmitter 74 is the same as
  • the transmission direction of the third optical transmitter 73 is vertical, and the optical signal of the third wavelength emitted by the third optical transmitter 73 passes through the glass combiner 75 and enters the optical fiber connection port 105.
  • the optical signal of the fourth wavelength emitted by the fourth optical transmitter 74 is reflected by the glass combiner 75 and enters the optical fiber connection port 105.
  • the incident light signal includes three, four, five, and other light signals of different wavelengths
  • the light receiving component solution of the present application is also applicable, and only the light receiver and the light splitting film need to be added accordingly.
  • the quantity For example, when the incident light signal includes a light signal of a first wavelength, a light signal of a second wavelength, and a light signal of a fifth wavelength, as shown in FIG. 13, a third light splitting film 46 and a third light receiver 3 may be added.
  • the third light-splitting film 46 is disposed on the light-exiting surface 42 of the first glass slide 4 and is located at the light signal emitting position of the second wavelength, and the first light-splitting film 43 can transmit the light signal of the first wavelength, and The light signal of the second wavelength and the light signal of the fifth wavelength can be reflected, and the third light-splitting film 46 can transmit the light signal of the second wavelength and reflect the light signal of the fifth wavelength.
  • the optical signal of the first wavelength can be transmitted through the first spectroscopic film 43 and enter the first optical receiver 2.
  • the optical signal of the second wavelength and the optical signal of the fifth wavelength It can be reflected by the first light-splitting film 43 and sequentially reflected between the first reflection film 44 and the second reflection film 45 and enter the third light-splitting film 46, wherein a light signal of the second wavelength can be transmitted through the third light-splitting film 46 and Entering the second optical receiver 3, the optical signal of the fifth wavelength may be The third sub-reflecting film 46 to the first reflecting film 44, and is reflected by the first reflecting film 44 to the light exit surface 42, enters the third light receiver 3 '.
  • a fifth reflective film 47 may be added to the light emitting surface 42, and the fifth reflective film 47 avoids the second light receiver 3. Between the light receiving path of the third light receiver 3 'and the light receiving path of the third light receiver 3' and the light receiving path of the third light receiver 3 'and the light signal of the fifth wavelength After multiple reflections between the first reflection film 44 and the fifth reflection film 47, the light is emitted from the light emitting surface 42 and enters the third light receiver 3 '.
  • a third condenser lens 53 may be further provided between the light emitting surface 42 of the first glass slide 4 and the third light receiver 3 ', and the third condenser lens 53 is used for converging the optical signal of the fifth wavelength to The third optical receiver 3 'is described.
  • the optical transmitting component scheme of the present application is also applicable.
  • a fifth optical transmitter 76 may be added.
  • the fifth optical transmitter 76 is used for
  • a sixth reflective film 85 can also be provided on the light incident surface 81 of the second glass slide 8 and the sixth reflective film 85 can avoid the exit path of the second optical transmitter 72.
  • the light signal of the wavelength passes through the reflection of the third reflection film 84 and the sixth reflection film 85 in this order and enters the second light splitting film 83.
  • the second light splitting film 83 After being reflected by the second light splitting film 83, it is emitted from the light emitting surface 82 of the second glass plate 8, and The emission position of the optical signal of the sixth wavelength, the emission position of the optical signal of the third wavelength, and the emission position of the optical signal of the fourth wavelength coincide.
  • the multiplexed transmission of the three-wavelength optical signals is realized.
  • a third collimating lens 93 may be further provided between the light exit surface 82 of the second glass slide 8 and the fifth optical transmitter 76.
  • the light signal of the sixth wavelength is changed into parallel light.
  • the combined transceiver module in any of the above embodiments is electrically connected to a peripheral electronic component (ESA), and then installed into the optical module housing to form a combined optical module.
  • ESA peripheral electronic component
  • the above-mentioned combined optical module is connected to a single board and placed in a chassis to form an optical line terminal.
  • the above-mentioned combined optical module can be used in an optical network unit to form an optical network unit that can simultaneously support optical signals of two wavelengths.
  • the passive optical network system includes:
  • Optical distribution network which is connected to the optical line terminal
  • Multiple optical network units multiple optical network units are connected to the optical distribution network.
  • the combined optical module, optical transmission module, and passive optical network system provided in the embodiments of the present application, because the light receiving component is adopted, the first glass slide 4 is used, and the light incident surface 41 of the first glass slide 4 is provided.
  • the first reflecting film 44 and the light emitting surface 42 are provided with a first light-splitting film 43 and a second reflecting film 45, and the first glass plate 4 is disposed obliquely with respect to the light receiving direction. After the light signals of two wavelengths are incident on the first glass 4 in the light receiving direction, the light signals of the first wavelength can be transmitted through the first spectroscopic film 43 and enter the first light receiver 2.
  • the light signals of the second wavelength are sequentially received by the first A light splitting film 43 and a first reflecting film 44 are reflected by the light emitting surface 42 and enter the second light receiver 3 after being reflected. Therefore, the emission position of the optical signal of the second wavelength can be separated from the emission position of the optical signal of the first wavelength by a certain distance, so that the partial wave reception of the optical signals of different wavelengths can be realized.
  • the structure of disposing the light-splitting film and the reflection film on the first glass slide 4 is simple, the production cost is low, and mass production can be performed.
  • the first glass slide 4 occupies a small volume, the packaging structure is more compact, and it is easy to realize the SFP + package size requirements .
  • At least a part of the optical network units of the multiple optical network units may be GPON optical modules, and at least a part of the optical network units may be XGPON optical modules; or
  • optical modules of at least a part of the optical network units in the multiple optical network units may be EPON optical modules, and the optical modules of at least a part of the optical network units may be 10G-EPON optical modules, or
  • the optical module of at least a part of the optical network units in the multiple optical network units is the above-mentioned combined optical module.

Abstract

本申请实施例提供一种光接收、组合收发组件、组合光模块、通讯装置及PON系统,涉及光通信技术领域,该光接收组件包括光接收壳体,所述光接收壳体封装有第一光接收器、第二光接收器以及第一玻片,所述第一玻片相对于光接收方向倾斜设置,所述第一玻片包括入光面和出光面,所述第一光接收器和第二光接收器与所述第一玻片的出光面相对,所述第一玻片的出光面上设有第一分光膜,所述第一玻片的入光面设有第一反射膜,所述第一分光膜能够透射第一波长的光信号并反射第二波长的光信号。

Description

光接收、组合收发组件、组合光模块、通讯装置及PON系统 技术领域
本申请涉及光通信技术领域,尤其涉及一种光接收组件、组合收发组件、组合光模块、通讯装置及无源光网络系统。
背景技术
随着现代社会的发展、信息量的爆炸增长、尤其是大数据时代的来临,对网络吞吐能力的需求不断提高。光传输凭借其独有的超高带宽,低电磁干扰等特性,逐渐成为现代通信的主流方案,尤其是现阶段新建的网络,以光纤到户为代表的接入网,正在大规模的部署。
应用于接入网场景的光通信网主要以无源光网络(Passive Optical Network,PON)的形式存在,在光网络全面普及的整体形势之下,大量PON网络的铺设,需要用到数量同样巨大的通信设备,相关的通信设备如光线路终端(Optical Line Terminal,OLT)主要由光模块及放置光模块的单板及机框组成,如图1所示,光线路终端01内的一个光模块对应一个光纤分布网络(Optica l distribution network,ODN)02,并服务一定数目的光网络单元(Optical Network Unit,ONU)03,图1中一个光纤分布网络02对应x个光网络单元03(ONU1~ONUx),每个光网络单元03可以表示一个用户,作为光网络中的关键构成,光线路终端01及光网络单元03设备里面的光模块担负着将网络信号进行光电转换及传输的任务,是整个网络能够正常通信的基础。
目前,大规模部署的PON网络,包括以太网无源光网络EPON(Ethernet Passive Optical Network,EPON)和G比特无源光网络(Gig-bit Passive Optical Network,GPON)两种,这两类光网络,所支持的速率为2.5Gbit/s或1.25Gbit/s,随着网络带宽升级,下一代将要部署的网络为10G-EPON及10G-GPON(也可以称为XGPON),支持的速率为10Gbit/s。下面以GPON为例来进行描述,EPON场景可以类似考虑。对于光信号的波长方面,GPON中的光线路终端采用1490纳米发送,1310纳米接收,XGPON中的光线路终端采用1577纳米发送,1270纳米接收,假设在目前的GPON网络上,进行10G升级,不太可能重新组建一个ODN网络,因而需要在现有网络上进行业务拓展,势必存在这种场景:在用户侧,有些想要升级到XGPON,有些不愿意升级,那么就会出现图2所示的情况,在同一个光纤分布网络02下面,同时存在GPON、XGPON两种业务,如图2所示,一部分光网络单元03内的光模块为GPON光模块,另一部分光网络单元03内的光模块为XGPON光模块,这就牵涉到了XGPON与原来大规模的GPON光组件共存的问题。而在光线路终端01一侧,同样需要这两种OLT光模块,即GPON光模块和XGPON光模块,这样的组网环境通过波分复用(wavelength division multiplexing,WDM)模块04对GPON和XGPON进行上下行波长的合波和复用,而在实际的应用中,若如图2所示将WDM模块04外置,则会使得建设成本高,机房空间占用大,施工和布线复杂,管理和维护困难。
发明内容
本申请的实施例提供光接收组件、光发送组件、组合收发组件、组合光模块、通讯装置及无源光网络系统,在实现上下行波长的合波和复用的前提下,使建设成本更低、机房空间占用减小、施工布线简单、管理和维护方便。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,本申请提供一种光接收组件,包括光接收壳体,所述光接收壳体封装有第一光接收器、第二光接收器以及第一玻片,所述第一玻片相对于所述第一光接收器和第二光接收器的光接收路径倾斜设置,所述第一玻片包括入光面和出光面,所述第一光接收器和第二光接收器与所述第一玻片的出光面相对设置;所述第一玻片的出光面上设有第一分光膜,所述第一分光膜位于所述第一光接收器的光接收路径上,所述第一分光膜能够透射第一波长的光信号并反射第二波长的光信号;所述第一玻片的入光面局部设有第一反射膜;所述第一波长的光信号和第二波长的光信号由所述入光面射入第一玻片内部,在所述第一玻片内部折射后射至所述第一分光膜,所述第一波长的光信号透射通过所述第一分光膜并进入所述第一光接收器,所述第二波长的光信号依次被所述第一分光膜和所述第一反射膜反射后由所述出光面射出,进入所述第二光接收器。
本申请实施例提供的光接收组件,由于采用了第一玻片,并在第一玻片的入光面上设置了第一反射膜,以及在出光面上设置了第一分光膜,且第一玻片相对于第一光接收器和第二光接收器的光接收路径倾斜设置,由此,第一波长的光信号和第二波长的光信号沿光接收方向射入第一玻片后,第一波长的光信号可透射通过第一分光膜并进入第一光接收器,所述第二波长的光信号依次被所述第一分光膜和所述第一反射膜反射后由所述出光面射出,进入所述第二光接收器。由此,可使第二波长的光信号的出射位置与第一波长的光信号的出射位置拉开一定距离,以满足第一光接收器和第二光接收器的安装间距要求,从而实现不同波长光信号的分波接收。并且由于第一光接收器、第二光接收器以及第一玻片均封装于同一个光接收壳体,而第一玻片上的第一分光膜起到了分波的作用,因此实现了分波装置的内置,使得建设成本更低、机房空间占用减小、施工布线简单、管理和维护方便。
在可能的实现方式中,第一玻片的出光面上还设有第二反射膜,所述第二反射膜避开所述第二光接收器的光接收路径设置,且所述第二反射膜位于所述第一光接收器的光接收路径和所述第二光接收器的光接收路径之间,所述第二波长的光信号被所述第一分光膜反射后,依次在所述第一反射膜和所述第二反射膜之间反射并由所述出光面射出,进入所述第二光接收器。由此,可满足第一光接收器和第二光接收器之间的安装间距较远时的信号接收。
在可能的实现方式中,所述第一波长的光信号和第二波长的光信号射入所述第一玻片的入射角小于或等于12°。由此,可保证分光隔离度。
在可能的实现方式中,所述第一波长的光信号和第二波长的光信号射入所述第一玻片的入射角为8°-12°。由此,既保证了分光隔离度,也使得第二波长的光信号的损耗较小。
在可能的实现方式中,所述第一波长的光信号和第二波长的光信号射入所述第一 玻片的入射角为8°。
在可能的实现方式中,所述第一玻片的厚度为0.2-2毫米。由此,第一玻片制作难度小、成本低,整体尺寸上也可轻松满足SFP+的封装尺寸要求。
在可能的实现方式中,所述第一玻片的厚度为1.6毫米。
在可能的实现方式中,所述第一玻片的出光面与所述第一光接收器之间设有第一聚光透镜,且所述第一聚光透镜设置于所述第一光接收器的光接收路径上,所述第一玻片的出光面与所述第二光接收器之间设有第二聚光透镜,且所述第二聚光透镜设置于所述第二光接收器的光接收路径上。由此,可提高第一光接收器和第二光接收器的接收效率,减少光损耗。
在可能的实现方式中,第一玻片的出光面上设置有增透膜。
在可能的实现方式中,所述光接收壳体为同轴管壳,所述同轴管壳包括管座和管帽,所述第一光接收器和第二光接收器均设置于所述管座上,所述第一玻片形成所述管帽的透光窗。由此,可兼容现有的TO封装工艺,避免制作特制的复杂外壳,降低了制作成本。
在可能的实现方式中,所述光接收壳体为封装盒,所述封装盒形成有透光窗,所述第一光接收器、所述第二光接收器以及所述第一玻片均设置于所述封装盒内,所述第一玻片的入光面与所述封装盒的透光窗相对。由此,可利用有源耦合方式来微调第一玻片的倾斜角度和位置,使得第一玻片的设置位置更精确,光接收组件的接收效率更高。
第二方面,本申请提供一种光发送组件,所述光发送组件包括光发送壳体以及封装于光发送壳体的第一光发送器、第二光发送器以及第二玻片,所述第二玻片相对于所述第一光发送器和所述第二光发送器的光发送方向路径倾斜设置,所述第二玻片包括入光面和出光面,所述第二玻片的入光面与所述第一光发送器和第二光发送器相对设置,所述第二玻片的入光面上设有第二分光膜,所述第二玻片的出光面局部设有第三反射膜,所述第二分光膜位于所述第一光发送器的发送路径上且位于所述第三反射膜的反射路径上,所述第二分光膜能够使第三波长的光信号透射,并能够使第四波长的光信号反射,由所述第一光发送器发出的第三波长的光信号经过所述第二分光膜透射后进入第二玻片内部,在第二玻片内部折射后由第二玻片的出光面射出,由所述第二光发送器发出的第四波长的光信号进入所述第二玻片内部,并依次经所述第二反射膜和所述第二分光膜的反射后由所述第二玻片的出光面射出,且所述第三波长的光信号的射出位置与所述第四波长的光信号的射出位置重合。
在第二方面可能的实现方式中,所述第二玻片的入光面上还设有第四反射膜,所述第四反射膜避开所述第一光发送器的光发送路径和第二光发送器的光发送路径设置,且所述第四反射膜位于第一光发送器的光发送路径和第二光发送器的光发送路径之间,所述第四波长的光信号进入所述第二玻片内部后,依次在所述第三反射膜和所述第四反射膜之间反射后进入所述第二分光膜,所述第四波长的光信号被所述第二分光膜反射后由所述第二玻片的出光面射出。由此,可满足第一光发送器和第二光发送器之间的安装间距较远时的信号发送。
在第二方面可能的实现方式中,所述光发送壳体为同轴管壳,所述同轴管壳包括 管座和管帽,所述第一光发送器和第二光发送器均设置于所述管座上,所述第二玻片形成所述管帽的透光窗。
在第二方面可能的实现方式中,所述光发送壳体为封装盒,所述封装盒形成有透光窗,第一光发送器、第二光发送器以及第二玻片均设置于所述封装盒内,所述第二玻片的出光面与所述封装盒的透光窗相对。由此,可利用有源耦合来微调第二玻片的倾斜角度和位置,使得第二玻片的设置位置更精确,光发送组件的发送效率更高。
第三方面,本申请提供一种组合收发组件,包括:
光接收组件,光接收组件为上述第一方面的任一技术方案中的光接收组件。
在第三方面可能的实现方式中,组合收发组件还包括组合封装壳体,所述组合封装壳体内设有光传输通道,所述光传输通道内设有分波器,所述组合封装壳体上设有与所述光传输通道连通的光接收端口、光发送端口和光纤连接端口;所述光接收组件封装于所述光接收端口处;所述分波器能够将光纤连接端口进入的第一波长的光信号和第二波长的光信号反射至所述光接收端口。
在第三方面可能的实现方式中,所述光发送端口处封装有光发送组件,所述光发送组件为上述第二方面的任一技术方案中的光发送组件。
在第三方面可能的实现方式中,所述组合封装壳体上设有第一光发送端口和第二光发送端口,于所述第一光发送端口封装有第三光发送器,所述第二光发送端口封装有第四光发送器,所述光传输通道设有合波器,合波器能够将第三光发送器发出的第三波长的光信号和第四光发送器发出的第四波长的光信号合并发送至所述光纤连接端口。
在第三方面可能的实现方式中,合波器为玻片式合波器,所述第三光发送器发出的第三波长的光信号经过所述玻片式合波器透射后进入所述光纤连接端口,所述第四光发送器发出的第四波长的光信号被所述玻片式合波器反射后进入所述光纤连接端口。
在第三方面可能的实现方式中,光纤连接端口处设置有准直透镜。
第四方面,本申请提供一种组合收发组件,包括:
光发送组件,光发送组件为上述第二方面的任一技术方案中的光发送组件。
第五方面,本申请提供一种组合收发组件,包括:
光接收组件,光接收组件为上述第一方面的任一技术方案中的光接收组件;
光发送组件,光发送组件为上述第二方面的任一技术方案中的光发送组件。
本申请实施例提供的组合收发组件,由于采用了第一玻片,并在第一玻片的入光面上设置了第一反射膜,以及在出光面上设置了第一分光膜,且第一玻片相对于第一光接收器和第二光接收器的光接收路径倾斜设置,由此,第一波长的光信号和第二波长的光信号沿光接收方向射入第一玻片后,第一波长的光信号可透射通过第一分光膜并进入第一光接收器,所述第二波长的光信号依次被所述第一分光膜和所述第一反射膜反射后由所述出光面射出,进入所述第二光接收器。由此,可使第二波长的光信号的出射位置与第一波长的光信号的出射位置拉开一定距离,以满足第一光接收器和第二光接收器的安装间距要求,从而实现不同波长光信号的分波接收。并且由于在第一玻片上设置分光膜和反射膜的结构简单,制作成本低,可以量产,且第一玻片占用的 体积小,封装结构更紧凑,容易实现SFP+的封装尺寸要求。
第六方面,本申请提供一种组合光模块,包括第一方面中的光接收组件,或者,包括第二方面中的光发送组件,或者包括电子组件和第三方面、第四方面、第五方面的任一技术方案中的组合收发组件,电子组件分别与组合收发组件中的光接收组件和光发送组件电连接。
第七方面,本申请提供一种通讯装置,包括第六方面的技术方案中的组合光模块。
在第七方面可能的实现方式中,通讯装置为光线路终端或光网络单元。
在第七方面可能的实现方式中,光线路终端还包括用于放置组合光模块的单板及机框。
第八方面,本申请提供一种无源光网络系统,包括:
光线路终端,光线路终端为第七方面的任一技术方案中的光线路终端;
光分布网络,光分布网络与光线路终端连接;
多个光网络单元,多个光网络单元与光分布网络连接。
在第八方面可能的实现方式中,多个光网络单元中至少一部分光网络单元的光模块为GPON光模块,至少一部分光网络单元的光模块为XGPON光模块;或
多个光网络单元中至少一部分光网络单元的光模块为EPON光模块,至少一部分光网络单元的光模块为10G-EPON光模块;或
多个光网络单元中至少一部分光网络单元的光模块为第六方面的技术方案中的组合光模块。
可以理解的是,当光网络单元采用非组合光模块时,多个光网络单元中的各个光模块可以包括GPON光模块、XGPON光模块、25G-GPON光模块和50G-GPON光模块中的至少两种;或者,多个光网络单元中的各个光模块可以包括EPON光模块、10G-EPON光模块、25G-EPON光模块和50G-EPON光模块中的至少两种。当光网络单元采用组合光模块时,组合光模块可以同时支持GPON、XGPON、25G GPON、50G GPON中的任意两种,或者同时支持EPON、10GEPON、25G EPON、50G EPON中的任意两种。
本申请实施例提供的组合光模块、通讯装置以及无源光网络系统,由于光接收组件采用了第一玻片,并在第一玻片的入光面上设置了第一反射膜,以及在出光面上设置了第一分光膜,且第一玻片相对于第一光接收器和第二光接收器的光接收路径倾斜设置,由此,第一波长的光信号和第二波长的光信号沿光接收方向射入第一玻片后,第一波长的光信号可透射通过第一分光膜并进入第一光接收器,所述第二波长的光信号依次被所述第一分光膜和所述第一反射膜反射后由所述出光面射出,进入所述第二光接收器。由此,可使第二波长的光信号的出射位置与第一波长的光信号的出射位置拉开一定距离,以满足第一光接收器和第二光接收器的安装间距要求,从而实现不同波长光信号的分波接收。并且由于在第一玻片上设置分光膜和反射膜的结构简单,制作成本低,可以量产,且第一玻片占用的体积小,封装结构更紧凑,容易实现SFP+的封装尺寸要求。
附图说明
图1为无源光网络的网络设备配置图;
图2为GPON光模块和XGPON光模块共存且WDM模块外置时的组网结构图;
图3为典型的光收发组件的封装结构示意图;
图4为典型的光发送组件的封装结构示意图;
图5为典型的光接收组件的封装结构示意图;
图6为一种光接收组件的结构示意图;
图7为本申请实施例光接收组件采用同轴管壳封装时的结构示意图;
图8为本申请实施例光接收组件采用封装盒封装时的结构示意图;
图9为本申请实施例组合收发组件的结构示意图;
图10为本申请实施例光发送组件采用同轴管壳封装时的结构示意图;
图11为本申请实施例光发送组件采用封装盒封装时的结构示意图;
图12为本申请实施例组合收发组件的另一种实现方式的结构示意图;
图13为本申请实施例光接收组件接收三种波长的光信号时的结构示意图;
图14为本申请实施例光发送组件发送三种波长的光信号时的结构示意图。
具体实施方式
本申请实施例涉及光接收组件、光发送组件、组合收发组件、组合光模块及无源光网络系统,以下对上述实施例涉及到的概念进行简单说明:
无源光网络(Passive Optical Network,PON):无源光网络是指在OLT和ONU之间是光纤分布网络(ODN),没有任何有源电子设备。
光纤分布网络(Optical distribution network,ODN):ODN是基于PON设备的光纤到户光缆网络。其作用是为OLT和ONU之间提供光传输通道。
波分复用(wavelength division multiplexing,WDM):波分复用是将两种或多种不同波长的光载波信号(携带各种信息)在发送端经复用器(亦称合波器)汇合在一起,并耦合到光线路的同一根光纤中进行传输的技术;在接收端,经解复用器(亦称分波器或称去复用器)将各种波长的光载波分离,然后由光接收机作进一步处理以恢复原信号。这种在同一根光纤中同时传输两个或众多不同波长光信号的技术,称为波分复用。
光传输模块:简称光模块,包括光收发组件(Bi-directional Optical sub-assembly,BOSA)及电子组件(Electrical Subassembly,ESA)两大部分。将光收发组件的管脚与外围的电子组件(ESA)进行电连接,然后装入光模块壳体,即构成了光传输模块。
光收发组件(Bi-directional Optical sub-assembly,BOSA):主要包括光发送组件(Transmitting Optical sub-assembly,TOSA)和光接收组件(Receiving Optical sub-assembly,ROSA)。
光发送组件(Transmitting Optical sub-assembly,TOSA):TOSA的作用是将电信号转化为光信号,并输入光纤进行传输。
光接收组件(Receiving Optical sub-assembly,ROSA):ROSA的作用是接收由光纤传入的光信号,并对其进行电信号转化。
光模块中重要的部件为光收发组件(BOSA),可借助其实现光信号的发送及接收。典型的BOSA结构如图3所示,包括外壳05、嵌入外壳05设置的光发送组件(Transmitting Optical sub-assembly,TOSA)06、光接收组件(Receiving Optical  sub-assembly,ROSA)07、设置在外壳05内的分波器08、以及连接在外壳05端部的光纤连接插芯09和光纤091。其中,光发送组件06的作用是将电信号转化为光信号,并输入光纤091进行传输,光接收组件07的作用是接收由光纤传入的光信号,并对其进行电信号转化,一般情况下,由于发送和接收的光的波长不同,因此需要在金属外壳内放置分波器08,将这两类波长进行分离,分波器的功能是:透射某些波长的光,而同时反射其他波长的光。光发送路径如图3中实线箭头所示,光发送组件06发出的光经过分波器08时直线透射,然后进入光纤091传输;光接收路径如图3中虚线箭头所示,光纤091传入的光信号经过分波器08时发生反射,光接收组件07正好位于反射光路上,从而实现光信号的接收。
对于单独的TOSA以及ROSA,由于发送机(激光二极管)、接收机(光电二极管)等器件的材料特性,对环境中的水汽、氧气等存在敏感性,如果曝露在相应的气体中,随着时间的推移,可能发生器件性能劣化,从而导致故障。因此,一般采用同轴管壳(Transistor-Outline can,TO CAN)的形式进行封装,在生产过程中采用气密的工艺,具体做法是:在纯氮环境下,将管帽与管座进行焊接。
具体地,如图4所示,图4为TOSA的封装结构图,TOSA主要包括带管脚的金属材料的管座(Header)061、管帽(Cap)062、设置于管座上的光电二极管(photo diode,PD)063、载体(Submount)064、激光二极管(Laser diode,LD)065、热沉(Heat Sink)066以及视窗(Window)067。管座上的管脚068,利用金线与激光二极管065上的信号电极进行连接,这样就可以将外部的电信号传输到激光二极管065上进行电光转化。
如图5所示,图5为ROSA的封装结构图,ROSA主要包括带管脚的金属材料的管座(Header)071、管帽(Cap)072、跨阻放大器(Trans-impedance amplifier,TIA)073、载体(Submount)074、光电二极管(Photodiode)075、电容076以及球面透镜077。光电二极管075光电转化后的信号可通过管座上的管脚078输出。
由于WDM模块外置的结构会使得建设成本高,机房空间占用大,施工和布线复杂,管理和维护困难,因此,可以将WDM模块内置到光模块里。
下面以GPON为例来进行描述,EPON场景可以类似考虑。
可同时支持任意两种不同传输速率的光模块可以被称为组合(Combo)光模块,例如,在一个例子中,组合光模块可以同时支持GPON、XGPON、25G GPON、50G GPON中的任意两种,或者同时支持EPON、10GEPON、25G EPON、50G EPON中的任意两种。可以理解的是,上述组合光模块也可以称为光模块。
对于使用光信号的波长方面,GPON中的光线路终端采用1490纳米的波长进行发送,1310纳米的波长进行接收,XGPON中的光线路终端采用1577纳米的波长进行发送,1270纳米的波长进行接收,那么在组合收发组件里面,需要将这两组波长的光信号接收和发送,通过一定的结构设计,实现共存,这就需要用到一系列的WDM模块(合波器或分波器)来进行两种波长光的汇合及分离,同时要考虑,在接收机面前,需要用到特定的窄带滤波片,进一步滤除可能的其他杂散光,如1270纳米接收机前,可以放置一个只能通过1270波段的0度滤波片,1310接收机前,可以放置一个只能通过1310波段的0度滤波片。
图6所示为一种光接收组件的结构示意图,该光接收组件包括第一同轴管壳031, 第一同轴管壳031上设有入光口0311,第一同轴管壳031内封装有第一分波器032、第一光接收器033、第二光接收器034以及光学镜片组035,第一光接收器033能够接收第一波长的光信号,第二光接收器034能够接收第二波长的光信号,由入光口0311进入的光能够进入第一分波器032,第一分波器032用于透射第一波长的光信号且反射第二波长的光信号,第一光接收器033设置于第一分波器032的透射光路上,光学镜片组035设置于第一分波器032的反射光路上,光学镜片组035用于将第一分波器032反射的所述第二波长的光信号导向第二光接收器034。
该光接收组件通过光学镜片组035来实现分光,虽然可以实现相对小尺寸的封装,但光学镜片组035自身的制作难度大、成本高、加工工艺要求高,难以量产。且光学镜片组035的体积也相对较大,难以实现SFP+(Small Form-factor Pluggables,小体积可插拔)的封装尺寸要求。
为解决上述问题,如图7所示,本申请实施例提供了一种光接收组件,包括光接收壳体1,所述光接收壳体1封装有第一光接收器2、第二光接收器3以及第一玻片4,所述第一玻片4相对于第一光接收器2的光接收路径X1和第二光接收器3的光接收路径X2倾斜设置(即第一玻片4与Y1和Y2之间形成夹角β,且该夹角β大于0°且小于90°),所述第一玻片4包括入光面41和出光面42,所述第一光接收器2和第二光接收器3与所述第一玻片4的出光面42相对设置,所述第一玻片4的出光面42上设有第一分光膜43,第一分光膜43位于所述第一光接收器2的光接收路径上,所述第一分光膜43能够透射第一波长的光信号并反射第二波长的光信号;所述第一玻片4的入光面41局部设有第一反射膜44,所述第一波长的光信号和第二波长的光信号由所述入光面41射入第一玻片4内部,在所述第一玻片4内部折射后射至所述第一分光膜43,所述第一波长的光信号透射通过所述第一分光膜43并进入所述第一光接收器2,所述第二波长的光信号依次被第一分光膜43和第一反射膜44反射后由所述出光面42射出,进入所述第二光接收器3。其中,第一分光膜43设置在第一光接收器2的光接收路径上,以使得第一波长的光信号能够经由第一分光膜43透射后进入第一光接收器2。第一反射膜44避开光信号在入光面41上的入光位置,使得光信号能够由入光面41射入第一玻片4内部。第二反射膜45避开第二光接收器3的光接收路径,使得第二波长的光信号能够由出光面42射出后进入第二光接收器3。
本申请实施例提供的光接收组件,由于采用了第一玻片4,并在第一玻片4的入光面41上设置了第一反射膜44,以及出光面42上设置了第一分光膜43、第二反射膜45,且第一玻片4相对于光接收方向倾斜设置,由此,第一波长的光信号和第二波长的光信号沿光接收方向射入第一玻片4后,第一波长的光信号可透射通过第一分光膜43并进入第一光接收器2,第二波长的光信号依次被第一分光膜43和第一反射膜44反射后由所述出光面42射出,进入所述第二光接收器3。由此,可使第二波长的光信号的出射位置与第一波长的光信号的出射位置拉开一定距离,从而可实现不同波长光信号的分波接收。并且由于在第一玻片4上设置分光膜和反射膜的结构简单,制作成本低,可以量产,且第一玻片4占用的体积小,封装结构更紧凑,容易实现SFP+的封装尺寸要求。
当第一光接收器2和第二光接收器3之间的安装间距较远时,还可在第一玻片4 的出光面42上设置第二反射膜45,第二反射膜45避开所述第二光接收器3的光接收路径设置,且所述第二反射膜45位于所述第一光接收器2的光接收路径和所述第二光接收器3的光接收路径之间,所述第二波长的光信号被所述第一分光膜43反射后,依次在所述第一反射膜44和所述第二反射膜45之间多次反射以拉开一定距离,并最终由所述出光面42射出,进入所述第二光接收器3。例如,第二波长的光信号被所述第一分光膜43反射后,可以依次被第一反射膜44反射、被第二反射膜45反射、被第一反射膜44反射后,由出光面42射出,也就是,第二波长的光信号被第一反射膜44反射两次,被第二反射膜45反射一次。或者,也可以如图8所示,第二波长的光信号被第一反射膜44反射4次,被第二反射膜45反射3次。可以理解的是,第二波长的光信号被第一反射膜44反射的次数比被第二反射膜45反射的次数多1次。
具体地,由于接收信号通常采用1310±20纳米波长的光信号和1270±10纳米波长的光信号,两种信号的波长较为接近。根据菲涅尔反射原理可知,当入射光的入射角越大,则隔离带展宽越宽,入射角度变化产生的中心波长漂移也越大,因此在中心波长发生漂移的情况下,波长相近的1310±20纳米波长的光信号和1270±10纳米波长的光信号容易发生串扰。为了解决上述问题,可适当减小入射光的入射角,即将第一波长的光信号和第二波长的光信号射入所述第一玻片4的入射角α设置为小于12°。另外,若入射角α过小,第二波长的光信号在第一反射膜44和第二反射膜45之间反射时的反射角较小,第二波长的光信号需要更多次的反射才能拉开足够的距离,以满足第一光接收器2和第二光接收器3之间的安装间距要求,更多次的反射使得信号损耗较大。因此,可将入射角α设置为8°-12°,当入射角α设置为上述范围内时,既保证了分光隔离度,第二波长的光信号的损耗也可以控制在0.3dB内。
其中,第一玻片4的厚度可以选择为0.2-2毫米,在本申请的一种实施例中,第一玻片4的厚度可以为1.6毫米,由此,制作难度小、成本低,整体尺寸上也可轻松满足SFP+的封装尺寸要求。
如图7所示,所述第一玻片4的出光面42与所述第一光接收器2之间可设置第一聚光透镜51,且第一聚光透镜51设置于所述第一光接收器2的光接收路径上,所述第一聚光透镜51用于将第一波长的光信号汇聚至所述第一光接收器2,所述第一玻片4的出光面42与所述第二光接收器3之间可设有第二聚光透镜52,且第二聚光透镜52设置于第二光接收器3的光接收路径上,所述第二聚光透镜52用于将第二波长的光信号汇聚至所述第二光接收器3。由此,可提高第一光接收器2和第二光接收器3的接收效率,减少光损耗。
为了使光信号的透射强度增加,第一玻片4的出光面42上还可设置增透膜(图中未示出),从而减少反射光信号的强度,增加透射光信号的强度。
在本申请的一种实施例中,上述光接收组件可以通过同轴管壳的方式来封装,具体地,如图7所示,光接收壳体1为同轴管壳,所述同轴管壳包括管座11和管帽12,所述第一光接收器2和第二光接收器3均设置于所述管座11上,所述第一玻片4形成所述管帽12的透光窗。由此,可兼容现有的TO封装工艺,避免制作特制的复杂外壳,降低了制作成本。
在本申请的另一种实施例中,上述光接收组件还可以采用盒体封装的方式来封装, 具体地,如图8所示,光接收壳体1为封装盒,所述封装盒形成有透光窗13,所述第一光接收器2、所述第二光接收器3以及所述第一玻片4均设置于所述封装盒内,所述第一玻片4的入光面41与所述封装盒的透光窗13相对。该结构中由于第一玻片4设置于封装盒内,因此可相对于封装盒调整位置,具体地,可利用有源耦合来微调第一玻片4的倾斜角度和位置,使得第一玻片4的设置位置更精确,光接收组件的接收效率更高。
如图9所示,本申请实施例还提供了一种组合收发组件,包括:
组合封装壳体100,所述组合封装壳体100内设有光传输通道101,所述光传输通道101内设有分波器102,所述组合封装壳体100上设有与所述光传输通道101连通的光接收端口103、光发送端口104和光纤连接端口105;
光接收组件106,所述光接收组件106为上述任一实施例所述的光接收组件,所述光接收组件106封装于所述光接收端口103处;
分波器102能够将光纤连接端口105进入的第一波长的光信号和第二波长的光信号反射至所述光接收端口103。
本申请实施例提供的组合收发组件,光纤连接端口105传入的第一波长的光信号和第二波长的光信号经过分波器102时发生反射,光接收组件正好位于反射光路上,从而实现光信号的接收。由于光接收组件采用了由于采用了第一玻片4,并在第一玻片4的入光面41上设置了第一反射膜44,以及出光面42上设置了第一分光膜43、第二反射膜45,且第一玻片4相对于光接收方向倾斜设置,由此,第一波长的光信号和第二波长的光信号沿光接收方向射入第一玻片4后,第一波长的光信号可透射通过第一分光膜43并进入第一光接收器2,第二波长的光信号依次被第一分光膜43和第一反射膜44反射后由所述出光面42射出,进入所述第二光接收器3。由此,可使第二波长的光信号的出射位置与第一波长的光信号的出射位置拉开一定距离,从而可实现不同波长光信号的分波接收。并且由于在第一玻片4上设置分光膜和反射膜的结构简单,制作成本低,可以量产,且第一玻片4占用的体积小,封装结构更紧凑,容易实现SFP+的封装尺寸要求。
具体地,封装结构可以如图9所示,光传输通道101连接于光发送端口104和光纤连接端口105之间,光接收端口103和光传输通道101之间还设有光接收通道101a,分波器102设置于光传输通道101和光接收通道101a的交接处。该光路结构简单,且符合现有的BOSA壳体的制作工艺,从而提升了制作效率。另外,为了使光路准直,光纤连接端口105处可设置准直透镜。
在本申请组合收发组件的一种实施例中,如图9所示,光发送端口104为一个,光发送组件107封装于所述光发送端口104处,光发送组件107发出的第三波长的光信号和第四波长的光信号经过分波器102时直线透射,然后进入光纤连接端口105传输。
为了降低网络中反射光对光发送组件性能的影响。如图9所示,光发送组件107与分波器102之间的光传输通道101内可以设置隔离器108。
其中,光发送组件107的结构可以如图10所示,所述光发送组件包括光发送壳体6以及封装于光发送壳体6的第一光发送器71、第二光发送器72以及第二玻片8,所 述第二玻片8相对于第一光发送器71的光发送路径Y3和第二光发送器72的光发送路径Y4倾斜设置(即第二玻片8与Y3和Y4之间形成夹角γ,且夹角γ大于0°且小于90°),所述第二玻片8包括入光面81和出光面82,所述第二玻片8的入光面81与所述第一光发送器71和第二光发送器72相对设置,所述第二玻片8的入光面81上设有第二分光膜83,所述第二玻片8的出光面82上设有第三反射膜84,所述第二分光膜83位于所述第一光发送器71的发送路径上且位于所述第三反射膜84的反射路径上,所述第二分光膜83能够使第三波长的光信号透射,并能够使第四波长的光信号反射,由所述第一光发送器71发出的第三波长的光信号经过所述第二分光膜83透射后进入第二玻片8内部,在第二玻片8内部折射后由第二玻片8的出光面82射出,由所述第二光发送器72发出的第四波长的光信号进入所述第二玻片8内部,并依次经所述第三反射膜84和所述第二分光膜83的反射后由所述第二玻片8的出光面82射出,且所述第三波长的光信号的射出位置与所述第四波长的光信号的射出位置重合。由此,光发送组件将两个光发送器封装到了同一个光发送壳体6内部,并在光发送壳体6内部设置有用于合波的第二玻片8,以使第三波长的光信号和第四波长的光信号在同一位置合波发送。该结构可以适用于现有的BOSA封装结构,因此,不需要制作特制的壳体,从而节省了制作成本,简化了封装工艺,且能够符合现有的光模块尺寸的标准要求。并且该结构简单,光路短,耦合的难度低。
当第一光发送器71和第二光发送器72之间的安装间距较远时,还可在第二玻片8的入光面上增加第四反射膜85,所述第四反射膜85避开所述第一光发送器71的光发送路径和第二光发送器72的光发送路径设置,且所述第四反射膜85位于第一光发送器71的光发送路径和第二光发送器72的光发送路径之间,所述第四波长的光信号进入所述第二玻片8内部后,依次在所述第三反射膜84和所述第四反射膜85之间多次反射后进入所述第二分光膜83,所述第四波长的光信号被所述第二分光膜83反射后由所述第二玻片8的出光面82射出。
如图10所示,所述第二玻片8的出光面与所述第一光发送器71之间可设置第一准直透镜91,所述第一准直透镜91用于将第三波长的光信号变为平行光,所述第二玻片8的出光面82与所述第二光发送器72之间设有第二准直透镜92,所述第二准直透镜92用于将第四波长的光信号变为平行光。由此,可矫正光信号的传输方向,减少光损耗。
为了使光信号的透射强度增加,第一玻片4的入光面41上还可设置增透膜(图中未示出),从而减少反射光信号的强度,增加透射光信号的强度。
具体地,如图10所示,光发送壳体6可以为同轴管壳,同轴管壳包括管座61和管帽62,所述第一光发送器71和第二光发送器72均设置于所述管座61上,所述第二玻片8形成管帽62的透光窗。由此,可兼容现有的TO封装工艺,避免制作特制的复杂外壳,降低了制作成本。
上述光发送组件还可以采用盒体封装的方式来封装,具体地,如图11所示,光发送壳体6还可以为封装盒,所述封装盒形成有透光窗63,第一光发送器71、第二光发送器72以及第二玻片8均设置于所述封装盒内,所述第二玻片8的出光面与所述封装盒的透光窗63相对。该结构中由于第二玻片8设置于封装盒内,因此可相对于封装盒 调整位置,具体地,可利用有源耦合来微调第二玻片8的倾斜角度和位置,使得第二玻片8的设置位置更精确,光发送组件的发送效率更高。
在本申请组合收发组件的另一种实施例中,如图12所示,光发送端口为两个,分别为第一光发送端口104a和第二光发送端口104b,光发送组件包括第三光发送器73、第四光发送器74以及合波器75,第三光发送器73封装于所述第一光发送端口104a,所述第四光发送器74封装于所述第二光发送端口104b,所述合波器75设置于所述光传输通道101,合波器75能够将第三光发送器73发出的第三波长的光信号和第四光发送器74发出的第四波长的光信号合并发送至所述光纤连接端口105。该结构也可实现第三波长的光信号和第四波长的光信号在同一位置的合波发送。
具体地,如图12所示,合波器75可以为玻片式合波器75,第三光发送器73与所述光纤连接端口105相对,所述第四光发送器74的发送方向与所述第三光发送器73的发送方向垂直,所述第三光发送器73发出的第三波长的光信号经过所述玻片式合波器75透射后进入所述光纤连接端口105,所述第四光发送器74发出的第四波长的光信号被所述玻片式合波器75反射后进入所述光纤连接端口105。
需要说明的是,当入射的光信号包括三个、四个、五个等等不同波长的光信号时,本申请的光接收组件方案同样适用,只需相应地增加光接收器和分光膜的数量即可。例如,当入射的光信号包括第一波长的光信号、第二波长的光信号和第五波长的光信号时,如图13所示,可增加第三分光膜46和第三光接收器3',其中,第三分光膜46设置于第一玻片4的出光面42上且位于第二波长的光信号的射出位置处,第一分光膜43能够使第一波长的光信号透射,并能够使第二波长的光信号和第五波长的光信号反射,第三分光膜46能够使第二波长的光信号透射并能够使第五波长的光信号反射,由此,三种波长的光信号沿光接收方向射入第一玻片4后,第一波长的光信号可透射通过第一分光膜43并进入第一光接收器2,第二波长的光信号和第五波长的光信号可被第一分光膜43反射并依次在第一反射膜44和第二反射膜45之间反射后进入第三分光膜46,其中,第二波长的光信号可透射通过第三分光膜46并进入第二光接收器3,第五波长的光信号可被第三分光膜46反射至第一反射膜44,并被第一反射膜44反射至出光面42射出,进入第三光接收器3'。
当第二光接收器3和第三光接收器3'之间的间距较远时,还可在出光面42上增加第五反射膜47,第五反射膜47避让开第二光接收器3的光接收路径与第三光接收器3'的光接收路径,并位于第二光接收器3的光接收路径与第三光接收器3'的光接收路径之间,第五波长的光信号在第一反射膜44和第五反射膜47之间多次反射后由出光面42射出,进入第三光接收器3'。
还可在第一玻片4的出光面42与所述第三光接收器3'之间设置第三聚光透镜53,第三聚光透镜53用于将第五波长的光信号汇聚至所述第三光接收器3'。
同样,当发送的光信号包括三个、四个、五个等等不同波长的光信号时,本申请的光发送组件方案同样适用。例如,当需要发送第三波长的光信号、第四波长的光信号和第六波长的光信号时,如图14所示,可增加第五光发送器76,第五光发送器76用于发送第六波长的光信号,还可在第二玻片8的入光面81上设置第六反射膜85,并使第六反射膜85避开第二光发送器72的出射路径,第六波长的光信号依次经过第 三反射膜84和第六反射膜85的反射后进入第二分光膜83,经第二分光膜83反射后由所述第二玻片8的出光面82射出,且第六波长的光信号的射出位置、第三波长的光信号的射出位置以及所述第四波长的光信号的射出位置重合。从而实现三个波长光信号的合波发送。
为了矫正第六波长的光信号的传输方向,还可在所述第二玻片8的出光面82与第五光发送器76之间设置第三准直透镜93,第三准直透镜93用于将第六波长的光信号变为平行光。
将上述任一实施例中的组合收发组件与外围的电子组件(ESA)进行电连接,然后装入光模块壳体,即构成了组合光模块。
将上述组合光模块连接单板并放置于机框内则构成了光线路终端。
同样,可将上述组合光模块用于光网络单元中,构成一种可同时支持两种波长的光信号的光网络单元。
将上述光线路终端应用于无源光网络系统时,无源光网络系统包括:
上述光线路终端;
光分布网络,光分布网络与光线路终端连接;
多个光网络单元,多个光网络单元与光分布网络连接。
本申请实施例提供的组合光模块、光传输模块以及无源光网络系统,由于光接收组件采用了由于采用了第一玻片4,并在第一玻片4的入光面41上设置了第一反射膜44,以及出光面42上设置了第一分光膜43、第二反射膜45,且第一玻片4相对于光接收方向倾斜设置,由此,第一波长的光信号和第二波长的光信号沿光接收方向射入第一玻片4后,第一波长的光信号可透射通过第一分光膜43并进入第一光接收器2,第二波长的光信号依次被第一分光膜43和第一反射膜44反射后由所述出光面42射出,进入所述第二光接收器3。由此,可使第二波长的光信号的出射位置与第一波长的光信号的出射位置拉开一定距离,从而可实现不同波长光信号的分波接收。并且由于在第一玻片4上设置分光膜和反射膜的结构简单,制作成本低,可以量产,且第一玻片4占用的体积小,封装结构更紧凑,容易实现SFP+的封装尺寸要求。
其中,多个光网络单元中至少一部分光网络单元的光模块可以为GPON光模块,至少一部分光网络单元的光模块可以为XGPON光模块;或
多个光网络单元中至少一部分光网络单元的光模块可以为EPON光模块,至少一部分光网络单元的光模块可以为10G-EPON光模块,或
多个光网络单元中至少一部分光网络单元的光模块为上述组合光模块。
在本说明书的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (17)

  1. 一种光接收组件,其特征在于,包括光接收壳体,所述光接收壳体封装有第一光接收器、第二光接收器以及第一玻片;
    所述第一玻片相对于所述第一光接收器和第二光接收器的光接收路径倾斜设置,
    所述第一玻片包括入光面和出光面,所述第一光接收器和第二光接收器与所述第一玻片的出光面相对设置;
    所述第一玻片的出光面上设有第一分光膜,所述第一分光膜位于所述第一光接收器的光接收路径上,所述第一分光膜能够透射第一波长的光信号并反射第二波长的光信号;
    所述第一玻片的入光面局部设有第一反射膜;
    所述第一波长的光信号和第二波长的光信号由所述入光面射入第一玻片内部,在所述第一玻片内部折射后射至所述第一分光膜,所述第一波长的光信号透射通过所述第一分光膜并进入所述第一光接收器,所述第二波长的光信号依次被所述第一分光膜和所述第一反射膜反射后由所述出光面射出,进入所述第二光接收器。
  2. 根据权利要求1所述的光接收组件,其特征在于,所述第一玻片的出光面上还设有第二反射膜,所述第二反射膜避开所述第二光接收器的光接收路径设置,且所述第二反射膜位于所述第一光接收器的光接收路径和所述第二光接收器的光接收路径之间,所述第二波长的光信号被所述第一分光膜反射后,依次在所述第一反射膜和所述第二反射膜之间反射并由所述出光面射出,进入所述第二光接收器。
  3. 根据权利要求1或2所述的光接收组件,其特征在于,所述第一波长的光信号和第二波长的光信号射入所述第一玻片的入射角小于或等于12°。
  4. 根据权利要求1~3中任一项所述的光接收组件,其特征在于,所述第一玻片的出光面与所述第一光接收器之间设有第一聚光透镜,且所述第一聚光透镜设置于所述第一光接收器的光接收路径上,所述第一玻片的出光面与所述第二光接收器之间设有第二聚光透镜,且所述第二聚光透镜设置于所述第二光接收器的光接收路径上。
  5. 根据权利要求1~4中任一项所述的光接收组件,其特征在于,所述光接收壳体为同轴管壳,所述同轴管壳包括管座和管帽,所述第一光接收器和第二光接收器均设置于所述管座上,所述第一玻片形成所述管帽的透光窗。
  6. 根据权利要求1~4中任一项所述的光接收组件,其特征在于,所述光接收壳体为封装盒,所述封装盒形成有透光窗,所述第一光接收器、所述第二光接收器以及所述第一玻片均设置于所述封装盒内,所述第一玻片的入光面与所述封装盒的透光窗相对。
  7. 一种组合收发组件,其特征在于,包括:
    组合封装壳体,所述组合封装壳体内设有光传输通道,所述光传输通道内设有分波器,所述组合封装壳体上设有与所述光传输通道连通的光接收端口、光发送端口和光纤连接端口;
    光接收组件,所述光接收组件为权利要求1-6中任一项所述的光接收组件,所述光接收组件封装于所述光接收端口处;
    所述分波器能够将光纤连接端口进入的第一波长的光信号和第二波长的光信号反 射至所述光接收端口。
  8. 根据权利要求7所述的组合收发组件,其特征在于,还包括光发送组件,所述光发送组件封装于所述光发送端口处,所述光发送组件包括光发送壳体以及封装于光发送壳体的第一光发送器、第二光发送器以及第二玻片,所述第二玻片相对于所述第一光发送器和所述第二光发送器的光发送路径倾斜设置,所述第二玻片包括入光面和出光面,所述第二玻片的入光面与所述第一光发送器和第二光发送器相对设置,所述第二玻片的入光面上设有第二分光膜,所述第二玻片的出光面局部设有第三反射膜,所述第二分光膜位于所述第一光发送器的发送路径上且位于所述第三反射膜的反射路径上,所述第二分光膜能够使第三波长的光信号透射,并能够使第四波长的光信号反射,
    由所述第一光发送器发出的第三波长的光信号经过所述第二分光膜透射后进入第二玻片内部,在第二玻片内部折射后由第二玻片的出光面射出,由所述第二光发送器发出的第四波长的光信号进入所述第二玻片内部,并依次经所述第三反射膜和所述第二分光膜的反射后由所述第二玻片的出光面射出,且所述第三波长的光信号的射出位置与所述第四波长的光信号的射出位置重合。
  9. 根据权利要求8所述的组合收发组件,其特征在于,所述第二玻片的入光面上还设有第四反射膜,所述第四反射膜避开所述第一光发送器的光发送路径和第二光发送器的光发送路径设置,且所述第四反射膜位于第一光发送器的光发送路径和第二光发送器的光发送路径之间,所述第四波长的光信号进入所述第二玻片内部后,依次在所述第三反射膜和所述第四反射膜之间反射后进入所述第二分光膜,所述第四波长的光信号被所述第二分光膜反射后由所述第二玻片的出光面射出。
  10. 根据权利要求7~9中任一项所述的组合收发组件,其特征在于,所述光发送壳体为同轴管壳,所述同轴管壳包括管座和管帽,所述第一光发送器和第二光发送器均设置于所述管座上,所述第二玻片形成所述管帽的透光窗。
  11. 根据权利要求7所述的组合收发组件,其特征在于,还包括光发送组件,所述光发送组件包括第三光发送器、第四光发送器以及合波器,所述组合封装壳体上设有第一光发送端口和第二光发送端口,所述第三光发送器封装于所述第一光发送端口,所述第四光发送器封装于所述第二光发送端口,所述合波器设置于所述光传输通道,合波器能够将第三光发送器发出的第三波长的光信号和第四光发送器发出的第四波长的光信号合并发送至所述光纤连接端口。
  12. 根据权利要求11所述的组合收发组件,其特征在于,所述合波器为玻片式合波器,所述第三光发送器发出的第三波长的光信号经过所述玻片式合波器透射后进入所述光纤连接端口,所述第四光发送器发出的第四波长的光信号被所述玻片式合波器反射后进入所述光纤连接端口。
  13. 一种组合光模块,其特征在于,包括权利要求1至6中任一项所述的光接收组件,或者,包括权利要求7至12中任一项所述的组合收发组件。
  14. 一种通讯装置,其特征在于,包括权利要求13所述的组合光模块。
  15. 根据权利要求14所述的通讯装置,其特征在于,所述通讯装置为光线路终端或光网络单元。
  16. 一种无源光网络系统,其特征在于,包括:
    光线路终端,所述光线路终端包括权利要求13所述的组合光模块;
    光分布网络,所述光分布网络与所述光线路终端连接;
    多个光网络单元,多个所述光网络单元与所述光分布网络连接。
  17. 根据权利要求16所述的无源光网络系统,其特征在于,
    多个所述光网络单元中至少一部分光网络单元的光模块为GPON光模块,至少一部分光网络单元的光模块为XGPON光模块;或
    多个所述光网络单元中至少一部分光网络单元的光模块为EPON光模块,至少一部分光网络单元的光模块为10G-EPON光模块;或
    多个光网络单元中至少一部分光网络单元的光模块为权利要求13中所述的组合光模块。
PCT/CN2018/102564 2018-08-27 2018-08-27 光接收、组合收发组件、组合光模块、通讯装置及pon系统 WO2020041953A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201880094466.9A CN112272927A (zh) 2018-08-27 2018-08-27 光接收、组合收发组件、组合光模块、通讯装置及pon系统
EP18931622.7A EP3800810A4 (en) 2018-08-27 2018-08-27 COMPONENTS FOR LIGHT RECEPTION AND COMBINED TRANSMISSION RECEIVING, COMBINED OPTICAL MODULE, COMMUNICATION DEVICE AND PON SYSTEM
PCT/CN2018/102564 WO2020041953A1 (zh) 2018-08-27 2018-08-27 光接收、组合收发组件、组合光模块、通讯装置及pon系统
KR1020217003136A KR20210024169A (ko) 2018-08-27 2018-08-27 수신기 광 서브어셈블리, 콤보 송수신기 서브어셈블리, 콤보 광 모듈, 통신 장치 및 pon 시스템
JP2021506570A JP2021533672A (ja) 2018-08-27 2018-08-27 受信器の光サブアセンブリ、コンボ・トランシーバサブアセンブリ、コンボ光モジュール、通信機器、及びponシステム
US17/158,738 US20210149129A1 (en) 2018-08-27 2021-01-26 Receiver Optical Subassembly, Combo Transceiver Subassembly, Combo Optical Module, Communications Apparatus, and PON System

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/102564 WO2020041953A1 (zh) 2018-08-27 2018-08-27 光接收、组合收发组件、组合光模块、通讯装置及pon系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/158,738 Continuation US20210149129A1 (en) 2018-08-27 2021-01-26 Receiver Optical Subassembly, Combo Transceiver Subassembly, Combo Optical Module, Communications Apparatus, and PON System

Publications (1)

Publication Number Publication Date
WO2020041953A1 true WO2020041953A1 (zh) 2020-03-05

Family

ID=69642707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/102564 WO2020041953A1 (zh) 2018-08-27 2018-08-27 光接收、组合收发组件、组合光模块、通讯装置及pon系统

Country Status (6)

Country Link
US (1) US20210149129A1 (zh)
EP (1) EP3800810A4 (zh)
JP (1) JP2021533672A (zh)
KR (1) KR20210024169A (zh)
CN (1) CN112272927A (zh)
WO (1) WO2020041953A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024051288A1 (zh) * 2022-09-09 2024-03-14 华为技术有限公司 双向光组件以及光模块

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7121289B2 (ja) * 2019-02-05 2022-08-18 日本電信電話株式会社 波長選択型光受信装置
WO2020194857A1 (ja) * 2019-03-27 2020-10-01 日本電気株式会社 一芯双方向光送受信サブアセンブリ
WO2022267829A1 (zh) * 2021-06-23 2022-12-29 青岛海信宽带多媒体技术有限公司 一种光模块

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2694632Y (zh) * 2004-04-16 2005-04-20 昂纳信息技术(深圳)有限公司 高隔离度的波分复用/解复用器
CN101458370A (zh) * 2007-10-12 2009-06-17 日立通讯技术株式会社 光模块
CN104079356A (zh) * 2013-03-28 2014-10-01 福州高意通讯有限公司 一种波分复用解复用光学结构
CN105594143A (zh) * 2014-05-12 2016-05-18 华为技术有限公司 一种光网络单元onu注册的方法、装置及系统
CN106788754A (zh) * 2016-11-30 2017-05-31 武汉光迅科技股份有限公司 一种用于高速光模块的光分波合波器光口装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7088518B2 (en) * 2002-12-03 2006-08-08 Finisar Corporation Bidirectional optical device
JP2004361502A (ja) * 2003-06-02 2004-12-24 Sumitomo Electric Ind Ltd 光送受信モジュール
JP2009105106A (ja) * 2007-10-22 2009-05-14 Hitachi Ltd 光送受信モジュール
JP4982469B2 (ja) * 2008-10-31 2012-07-25 株式会社日立製作所 光モジュール
JP2013201473A (ja) * 2012-03-23 2013-10-03 Sumitomo Electric Ind Ltd 光受信モジュール
JP2014095843A (ja) * 2012-11-12 2014-05-22 Sumitomo Electric Ind Ltd 光合分波器およびその製造方法ならびに光通信モジュール
JP2015173384A (ja) * 2014-03-12 2015-10-01 富士通テレコムネットワークス株式会社 通信システム、加入者側装置、局側装置および無瞬断切替方法
JP2016006479A (ja) * 2014-05-28 2016-01-14 日立金属株式会社 光送信モジュール
CN104808299A (zh) * 2015-05-08 2015-07-29 福州宏旭科技有限公司 一种用于光纤通讯的多波长组件
KR20160145956A (ko) * 2015-06-11 2016-12-21 주식회사 지피 파장 다중화 광수신 모듈
WO2018068206A1 (zh) * 2016-10-11 2018-04-19 华为技术有限公司 一种光收发组件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2694632Y (zh) * 2004-04-16 2005-04-20 昂纳信息技术(深圳)有限公司 高隔离度的波分复用/解复用器
CN101458370A (zh) * 2007-10-12 2009-06-17 日立通讯技术株式会社 光模块
CN104079356A (zh) * 2013-03-28 2014-10-01 福州高意通讯有限公司 一种波分复用解复用光学结构
CN105594143A (zh) * 2014-05-12 2016-05-18 华为技术有限公司 一种光网络单元onu注册的方法、装置及系统
CN106788754A (zh) * 2016-11-30 2017-05-31 武汉光迅科技股份有限公司 一种用于高速光模块的光分波合波器光口装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3800810A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024051288A1 (zh) * 2022-09-09 2024-03-14 华为技术有限公司 双向光组件以及光模块

Also Published As

Publication number Publication date
KR20210024169A (ko) 2021-03-04
JP2021533672A (ja) 2021-12-02
US20210149129A1 (en) 2021-05-20
EP3800810A1 (en) 2021-04-07
EP3800810A4 (en) 2021-07-21
CN112272927A (zh) 2021-01-26

Similar Documents

Publication Publication Date Title
CN109982169B (zh) 光接收、组合收发组件、组合光模块、olt及pon系统
WO2021004387A1 (zh) 一种tosa、bosa、光模块以及光网络设备
WO2020041953A1 (zh) 光接收、组合收发组件、组合光模块、通讯装置及pon系统
WO2019105113A1 (zh) 光收发器件
CN111313969B (zh) 一种光模块
CN111869136B (zh) 光接收、组合收发组件、组合光模块、olt及pon系统
CN110954999A (zh) 一种光收发器件
CN114647030A (zh) 一种用于pon olt系统的硅基光电子的收发集成芯片
CN113727219A (zh) 一种光器件、光网络设备及光网络系统
US20160291267A1 (en) Coupling of photodetector array to optical demultiplexer outputs with index matched material
JP5662568B2 (ja) 光学ネットワークのための反射型半導体光増幅器
CN212647059U (zh) 光组件及其光通信模块
CN220775833U (zh) 一种光收发组件、光模块以及光通信设备
CN219780149U (zh) 一种光发射组件、光收发模块以及光通信设备
WO2024041154A1 (zh) 晶体管外壳封装件及其制备方法、光器件、光模块及光通信系统
KR20140021483A (ko) 광송신기 및 이를 포함한 광송수신기
CN220154691U (zh) 一种光组件、光模块、通信设备及光网络
CN216083189U (zh) 一种应用于Combo Pon OLT光模块的混合集成光收发器件
CN219644037U (zh) 光器件、光线路终端及无源光纤网络系统
WO2022142694A1 (zh) 发送光组件、双向光组件、光模块、及光通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18931622

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018931622

Country of ref document: EP

Effective date: 20201231

ENP Entry into the national phase

Ref document number: 20217003136

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021506570

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE