WO2023065114A1 - Apparatus and methods to perform uplinkdata compression in nr - Google Patents

Apparatus and methods to perform uplinkdata compression in nr Download PDF

Info

Publication number
WO2023065114A1
WO2023065114A1 PCT/CN2021/124703 CN2021124703W WO2023065114A1 WO 2023065114 A1 WO2023065114 A1 WO 2023065114A1 CN 2021124703 W CN2021124703 W CN 2021124703W WO 2023065114 A1 WO2023065114 A1 WO 2023065114A1
Authority
WO
WIPO (PCT)
Prior art keywords
udc
bearer
compression
data
pdcp
Prior art date
Application number
PCT/CN2021/124703
Other languages
French (fr)
Inventor
Yuanyuan Zhang
Chia-Chun Hsu
Original Assignee
Mediatek Singapore Pte. Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mediatek Singapore Pte. Ltd. filed Critical Mediatek Singapore Pte. Ltd.
Priority to PCT/CN2021/124703 priority Critical patent/WO2023065114A1/en
Priority to CN202211156611.6A priority patent/CN115996426A/en
Priority to EP22200913.6A priority patent/EP4171112A1/en
Priority to US18/046,113 priority patent/US20230116955A1/en
Priority to TW111139429A priority patent/TW202318910A/en
Publication of WO2023065114A1 publication Critical patent/WO2023065114A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/18Performing reselection for specific purposes for allowing seamless reselection, e.g. soft reselection
    • H04W36/185Performing reselection for specific purposes for allowing seamless reselection, e.g. soft reselection using make before break
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections

Definitions

  • the disclosed embodiments relate generally to wireless communication, and, more particularly, to data for Uplink Data Compression (UDC) transaction in NR.
  • UDC Uplink Data Compression
  • Uplink data compression is a method to improve uplink capacity by compressing uplink (UL) data.
  • UDC many compression algorithms can be applied.
  • two different UDC compression algorithms are described in RFC1951 DEFLATE and RFC1950 ZLIB.
  • UDC uses dictionary-based compression method.
  • UDC is introduced in LTE with limited usage.
  • UDC configuration is not applied to split RBs.
  • NR it has not been supported in NR.
  • a method is desired to integrate UDC in NR with wide range of application, e.g. support of MRDC and split bearers.
  • the processes in NR protocol stack are different from LTE, the methods to support UDC in NR will be different from LTE.
  • UDC uplink data compression
  • a transmitting device generates uplink data compression (UDC) compressed data packets and routs the data packets to the corresponding RLC bearer when the DRB is a split bearer.
  • the receiving device stores and reorders the UDC compressed data packets. After that the receiving device decompresses those packets when delivering them to upper layer.
  • UDC uplink data compression
  • a transmitting device configures two UDC protocol stacks when a DAPS bearer is configured.
  • the transmitting device generates uplink data compression (UDC) compressed data packets and performs UDC with the target cell configuration when UL data switching is received from lower layer.
  • UDC uplink data compression
  • FIG. 1 illustrates a mobile communication network 100 with a user equipment (UE) 101 and a base station 102 supporting uplink data compression (UDC) in accordance with embodiments of the current invention.
  • UE user equipment
  • UDC uplink data compression
  • FIG. 2 illustrates a simplified block diagram of a UE 201 supporting UDC in accordance with embodiments of the current invention.
  • Figure 3 illustrates an exemplary process flow for a UE to perform UDC for a normal or split bearer in accordance with embodiments of the current invention.
  • Figure 4 illustrates an exemplary process flow for a BS to perform UL data decompression for a normal or split bearer in accordance with embodiments of the current invention.
  • Figure 5 illustrates an exemplary process flow for a UE to perform UDC for a DAPS bearer in accordance with embodiments of the current invention.
  • Figure 6 illustrates an exemplary process flow for a BS to perform UL data decompression for a DAPS bearer in accordance with embodiments of the current invention.
  • Figure 7 is a flow chart of a method to perform UDC in from transmitter perspective in accordance with one novel aspect.
  • Figure 8 is a flow chart of a method to perform UL data decompression from receiver perspective in accordance with one novel aspect.
  • FIG. 1 illustrates a mobile communication network 100 with a user equipment (UE) 101 and a base station 102 supporting uplink data compression (UDC) in accordance with embodiments of the current invention.
  • Wireless system 100 includes one or more fixed base infrastructure units forming a network distributed over a geographical region.
  • the base unit may also be referred to as an access point, an access terminal, a base station, aNode-B, an eNode-B, a gNB, or by other terminology used in the art.
  • UE 101 is configured with uplink data compression (UDC) to improve uplink capacity by compressing uplink (UL) data.
  • UDC uses dictionary-based compression method.
  • the UDC compressor keeps processed uncompressed data in its compression memory 130; at the receiver side, e.g., BS 102, the UDC decompressor also keeps processed uncompressed data in its own compression memory 140.
  • a method to perform UDC in NR which supports different MR-DC scenarios.
  • the following designs are considered: 1) procedure flow for processing compressed and uncompressed packets for both TX and RX; and 2) enable UDC for split bearer.
  • UE 101 is transmitting uplink data to be received by BS 102.
  • application layer prepares data packets to be transmitted to BS 102 over lower layers.
  • data packets are compressed by UDC, and compressed UDC packets 110 are transmitted over radio link control (RLC) layer 112.
  • the transmission mode can be RLC AM or RLC UM.
  • RLC layer packets is further transmitted over MAC layer 113 and PHY layer 114.
  • BS 102 receives the data packets over PHY layer 124, MAC layer 123, RLC layer 122, and PDCP layer 121.
  • BS 102 decompresses the compressed UDC packets 120 and deliver to higher application layer.
  • split bearer is configured for UE 101, which transmits UL data through two RLC bearers in UL.
  • PHY layer applies cyclic redundancy check (CRC) error detection and channel encoding/decoding
  • MAC layer applies Hybrid automatic repeat request (HARQ) forward error checking and ARQ error control
  • RLC layer applies ARQ which provides error correction by retransmission in AM.
  • CRC cyclic redundancy check
  • HARQ Hybrid automatic repeat request
  • RLC layer applies ARQ which provides error correction by retransmission in AM.
  • UDC layer error handling is applied through UDC checksum to maintain compression memory synchronization between TX and RX.
  • FIG. 2 illustrates a simplified block diagram of a UE 201 supporting UDC in accordance with embodiments of the current invention.
  • UE 201 has radio frequency (RF) transceiver module 213, coupled with antenna 214 receives RF signals from antenna 214, converts them to baseband signals and sends them to processor 212.
  • RF transceiver 213 also converts received baseband signals from the processor 212, converts them to RF signals, and sends out to antenna 214.
  • Processor 212 processes the received baseband signals and invokes different functional modules to perform features in UE 201.
  • Memory 211 stores program instructions 215 and data to control the operations of UE 201.
  • the program instructions and data 215, when executed by processor 212, enables UE 201 to carry out embodiments of the current invention.
  • Suitable processors include, by way of example, a special purpose processor, a digital signal processor (DSP) , a plurality of microprocessors, one or more microprocessors associated with a DSP core, a controller, a microcontroller, Application specific integrated circuits (ASICs) , Field programmable gate array (FPGAs) circuits, and other type of integrated circuit (IC) , and/or state machine.
  • DSP digital signal processor
  • ASICs Application specific integrated circuits
  • FPGAs Field programmable gate array
  • UE 201 also includes multiple function modules and circuits that carry out different tasks in accordance with embodiments of the current invention.
  • the functional modules and circuits can be implemented and configured by hardware, firmware, software, and any combination thereof.
  • a processor in associated with software may be used to implement and configure features ofUE 201.
  • the functional modules and circuits 220 comprise an application or SDAP module 221 including a UDC layer entity 222 for UDC compression and decompression, a PDCP layer entity 223 for PDCP layer functionalities including ciphering, header compression, routing and reordering, an RLC layer entity 224, a MAC layer entity 225 with HARQ, and a PHY layer entity 226 supporting CRC and channel encoding/decoding.
  • Application module 221 prepares data packets to be compressed by UDC entity 222 to be passed to PDCP entity 223, and the compressed PDCP/UDC packets are transmitted over RLC bearer, which are then transmitted over MAC layer and PHY layer.
  • Memory 211 comprises buffer 216 for storing a stream of uncompressed source packets and buffer 217 for storing a stream of UDC compressed packets.
  • memory 221 comprises a UDC compression memory/buffer 218, which acts as a first in first out (FIFO) buffer.
  • the input data of the UDC compression memory/buffer 218 is the stream of uncompressed packets, which is used for UDC checksum calculation.
  • each UDC compressed packet is attached with a checksum.
  • a receiver also maintains a UDC compression memory/buffer, which is used for deriving the checksum.
  • the compression memory is synchronized initially between UE 201 and the receiver when UDC is configured.
  • UDC is configured for a split bearer, and the PDCP entity 223 is associated with two RLC bearers/entities 224 and 234.
  • Figure 3 illustrates an exemplary process flow for a UE to perform UDC for a normal or split bearer in accordance with embodiments of the current invention.
  • the transmitting PDCP entity associates the COUNT value corresponding to TX_NEXT to this PDCP SDU, performs UL data compression of the PDCP SDU using UDC, performs integrity protection, and ciphering, set the PDCP SN of the PDCP Data PDU, increment TX_NEXT by one, and submit the resulting PDCP Data PDU to lower layer.
  • UE performs routing for the resulting PDCP Data PDU to the proper RLC entity when split bearer is configured.
  • Figure 4 illustrates an exemplary process flow for a BS to perform UL data decompression for a normal or split bearer in accordance with embodiments of the current invention.
  • the receiving PDCP entity shall determine the COUNT value of the received PDCP Data PDU. After that, it performs deciphering and integrity verification of the PDCP Data PDU. Then the receiving PDCP entity performs reordering for the stored PDCP SDUs. Finally, it performs UL data decompression when delivering the PDCP SDUs to upper layers.
  • Figure 5 illustrates an exemplary process flow for a UE to perform UDC for a DAPS bearer in accordance with embodiments of the current invention.
  • the PDCP entity is configured with two sets of UDC protocols.
  • the transmitting PDCP entity shall perform UDC of the PDCP SDU using UDC configuration of the target cell and deliver the resulting PDCP Data PDU to target cell.
  • Figure 6 illustrates an exemplary process flow for a BS to perform UL data decompression for a DAPS bearer in accordance with embodiments of the current invention.
  • the PDCP entity is configured with two sets of UDC protocols.
  • the PDCP entity is configured with two sets of UDC protocols.
  • the receiving PDCP entity performs PDCP reordering before UDC decompression.
  • the receiving PDCP entity shall perform UDC decompression of the PDCP SDU using UDC configuration of the target cell and deliver the resulting PDCP SDUs to upper layer.
  • FIG. 7 is a flow chart of a method to perform UDC in from transmitter perspective in accordance with one novel aspect.
  • a transmitting device receives data packets from upper layer e.g. application layer or SDAP layer.
  • a transmitting device generates uplink data compression (UDC) compressed data packets. Each corresponding uncompressed data packet is pushed into a UDC compression buffer.
  • the device routs and submits the the UDC compressed data packets to lower layer.
  • UDC uplink data compression
  • FIG. 8 is a flow chart of a method to perform UL data decompression from receiver perspective in accordance with one novel aspect.
  • a receiving device receives uplink data compression (UDC) compressed data packets.
  • the device stores and reorders the UDC compressed data packets.
  • the device decompresses the UDC compressed data packets when deliver the packets to upper layer.
  • UDC uplink data compression

Abstract

Methods and apparatus to integrate uplink data compression (UDC) in NR are proposed. At the TX, UDC is performs first before packets routing and UL switching. At the RX, the receiver performs reordering before decompresses each UDC packet. UDC can be performed for a DRB, a SRB, a split bearer or a DAPS bearer.

Description

APPARATUS AND METHODS TO PERFORM UPLINKDATA COMPRESSION IN NR TECHNICAL FIELD
The disclosed embodiments relate generally to wireless communication, and, more particularly, to data for Uplink Data Compression (UDC) transaction in NR.
BACKGROUND
Mobile data usage has been increasing at an exponential rate in recent year. Due to the steep increase in mobile traffic over the past years, there have been many attempts in finding new communication technologies to further improve the end-user experience and system performance of the mobile networks. The traffic growth has been mainly driven by the explosion in the number of connected devices, which are demanding more and more high-quality content that requires very high throughput rates.
Uplink data compression (UDC) is a method to improve uplink capacity by compressing uplink (UL) data. For UDC, many compression algorithms can be applied. For example, two different UDC compression algorithms are described in RFC1951 DEFLATE and RFC1950 ZLIB. UDC uses dictionary-based compression method. Up to now, UDC is introduced in LTE with limited usage. For example, UDC configuration is not applied to split RBs. However, it has not been supported in NR. In order to further improve the UE experience in NR, a method is desired to integrate UDC in NR with wide range of application, e.g. support of MRDC and split bearers. Considering the processes in NR protocol stack are different from LTE, the methods to support UDC in NR will be different from LTE.
SUMMARY
A method to integrate uplink data compression (UDC) in NR protocol stack is proposed. Specifically, At the TX, UDC is performs first before packets routing and UL switching. At the RX, the receiver performs reordering before decompresses each UDC packet.
In one embodiment, a transmitting device generates uplink data compression (UDC) compressed data packets and routs the data packets to the corresponding RLC bearer when the DRB is a split bearer. The receiving device stores and reorders the UDC compressed data packets. After that the receiving device decompresses those packets when delivering them to upper layer.
In one embodiment, a transmitting device configures two UDC protocol stacks when a DAPS bearer is configured. The transmitting device generates uplink data compression (UDC) compressed data packets and performs UDC with the target cell configuration when UL data switching is received from lower layer.
Other embodiments and advantages are described in the detailed description below. This summary does not purport to define the invention. The invention is defined by the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
The accompanying drawings, where like numerals indicate like components, illustrate embodiments of the invention.
Figure 1 illustrates a mobile communication network 100 with a user equipment (UE) 101 and a base  station 102 supporting uplink data compression (UDC) in accordance with embodiments of the current invention.
Figure 2 illustrates a simplified block diagram of a UE 201 supporting UDC in accordance with embodiments of the current invention.
Figure 3 illustrates an exemplary process flow for a UE to perform UDC for a normal or split bearer in accordance with embodiments of the current invention.
Figure 4 illustrates an exemplary process flow for a BS to perform UL data decompression for a normal or split bearer in accordance with embodiments of the current invention.
Figure 5 illustrates an exemplary process flow for a UE to perform UDC for a DAPS bearer in accordance with embodiments of the current invention.
Figure 6 illustrates an exemplary process flow for a BS to perform UL data decompression for a DAPS bearer in accordance with embodiments of the current invention.
Figure 7 is a flow chart of a method to perform UDC in from transmitter perspective in accordance with one novel aspect.
Figure 8 is a flow chart of a method to perform UL data decompression from receiver perspective in accordance with one novel aspect.
DETAILED DESCRIPTION
Reference will now be made in detail to some embodiments of the invention, examples of which are illustrated in the accompanying drawings.
Figure 1 illustrates a mobile communication network 100 with a user equipment (UE) 101 and a base station 102 supporting uplink data compression (UDC) in accordance with embodiments of the current invention. Wireless system 100 includes one or more fixed base infrastructure units forming a network distributed over a geographical region. The base unit may also be referred to as an access point, an access terminal, a base station, aNode-B, an eNode-B, a gNB, or by other terminology used in the art. UE 101 is configured with uplink data compression (UDC) to improve uplink capacity by compressing uplink (UL) data. UDC uses dictionary-based compression method. At the transmitter side, e.g., UE 101, the UDC compressor keeps processed uncompressed data in its compression memory 130; at the receiver side, e.g., BS 102, the UDC decompressor also keeps processed uncompressed data in its own compression memory 140.
In accordance with a novel aspect, a method to perform UDC in NR is proposed, which supports different MR-DC scenarios. To facilitate UDC transaction between transmitter and receiver, the following designs are considered: 1) procedure flow for processing compressed and uncompressed packets for both TX and RX; and 2) enable UDC for split bearer.
In the example of Figure 1, UE 101 is transmitting uplink data to be received by BS 102. At the TX side, application layer prepares data packets to be transmitted to BS 102 over lower layers. In PDCP layer 111, data packets are compressed by UDC, and compressed UDC packets 110 are transmitted over radio link control (RLC) layer 112. The transmission mode can be RLC AM or RLC UM. RLC layer packets is further transmitted over MAC layer 113 and PHY layer 114. At the RX side, BS 102 receives the data packets over PHY layer 124, MAC layer 123, RLC layer 122, and PDCP layer 121. BS 102 decompresses the compressed UDC packets 120  and deliver to higher application layer. In one embodiment, split bearer is configured for UE 101, which transmits UL data through two RLC bearers in UL.
Different layers apply different error handling schemes to ensure proper packet delivery. For example, PHY layer applies cyclic redundancy check (CRC) error detection and channel encoding/decoding, MAC layer applies Hybrid automatic repeat request (HARQ) forward error checking and ARQ error control, RLC layer applies ARQ which provides error correction by retransmission in AM. In PDCP layer, ifUDC is configured, then UDC layer error handling is applied through UDC checksum to maintain compression memory synchronization between TX and RX.
Figure 2 illustrates a simplified block diagram of a UE 201 supporting UDC in accordance with embodiments of the current invention. UE 201 has radio frequency (RF) transceiver module 213, coupled with antenna 214 receives RF signals from antenna 214, converts them to baseband signals and sends them to processor 212. RF transceiver 213 also converts received baseband signals from the processor 212, converts them to RF signals, and sends out to antenna 214. Processor 212 processes the received baseband signals and invokes different functional modules to perform features in UE 201. Memory 211 stores program instructions 215 and data to control the operations of UE 201. The program instructions and data 215, when executed by processor 212, enables UE 201 to carry out embodiments of the current invention. Suitable processors include, by way of example, a special purpose processor, a digital signal processor (DSP) , a plurality of microprocessors, one or more microprocessors associated with a DSP core, a controller, a microcontroller, Application specific integrated circuits (ASICs) , Field programmable gate array (FPGAs) circuits, and other type of integrated circuit (IC) , and/or state machine.
UE 201 also includes multiple function modules and circuits that carry out different tasks in accordance with embodiments of the current invention. The functional modules and circuits can be implemented and configured by hardware, firmware, software, and any combination thereof. A processor in associated with software may be used to implement and configure features ofUE 201. In one embodiment, the functional modules and circuits 220 comprise an application or SDAP module 221 including a UDC layer entity 222 for UDC compression and decompression, a PDCP layer entity 223 for PDCP layer functionalities including ciphering, header compression, routing and reordering, an RLC layer entity 224, a MAC layer entity 225 with HARQ, and a PHY layer entity 226 supporting CRC and channel encoding/decoding.
In one example, Application module 221 prepares data packets to be compressed by UDC entity 222 to be passed to PDCP entity 223, and the compressed PDCP/UDC packets are transmitted over RLC bearer, which are then transmitted over MAC layer and PHY layer. Memory 211 comprises buffer 216 for storing a stream of uncompressed source packets and buffer 217 for storing a stream of UDC compressed packets. In addition, memory 221 comprises a UDC compression memory/buffer 218, which acts as a first in first out (FIFO) buffer. The input data of the UDC compression memory/buffer 218 is the stream of uncompressed packets, which is used for UDC checksum calculation. In one advantageous aspect, each UDC compressed packet is attached with a checksum. A receiver also maintains a UDC compression memory/buffer, which is used for deriving the checksum. The compression memory is synchronized initially between UE 201 and the receiver when UDC is  configured. In one embodiment, UDC is configured for a split bearer, and the PDCP entity 223 is associated with two RLC bearers/ entities  224 and 234.
Figure 3 illustrates an exemplary process flow for a UE to perform UDC for a normal or split bearer in accordance with embodiments of the current invention. For a PDCP SDU received from upper layers, the transmitting PDCP entity associates the COUNT value corresponding to TX_NEXT to this PDCP SDU, performs UL data compression of the PDCP SDU using UDC, performs integrity protection, and ciphering, set the PDCP SN of the PDCP Data PDU, increment TX_NEXT by one, and submit the resulting PDCP Data PDU to lower layer. UE performs routing for the resulting PDCP Data PDU to the proper RLC entity when split bearer is configured.
Figure 4 illustrates an exemplary process flow for a BS to perform UL data decompression for a normal or split bearer in accordance with embodiments of the current invention. At reception of a PDCP Data PDU from lower layers, the receiving PDCP entity shall determine the COUNT value of the received PDCP Data PDU. After that, it performs deciphering and integrity verification of the PDCP Data PDU. Then the receiving PDCP entity performs reordering for the stored PDCP SDUs. Finally, it performs UL data decompression when delivering the PDCP SDUs to upper layers.
Figure 5 illustrates an exemplary process flow for a UE to perform UDC for a DAPS bearer in accordance with embodiments of the current invention. For DAPS bearers, the PDCP entity is configured with two sets of UDC protocols. When upper layers request uplink data switching, the transmitting PDCP entity shall perform UDC of the PDCP SDU using UDC configuration of the target cell and deliver the resulting PDCP Data PDU to target cell.
Figure 6 illustrates an exemplary process flow for a BS to perform UL data decompression for a DAPS bearer in accordance with embodiments of the current invention. For DAPS bearers, the PDCP entity is configured with two sets of UDC protocols. For DAPS bearers, the PDCP entity is configured with two sets of UDC protocols. The receiving PDCP entity performs PDCP reordering before UDC decompression. When upper layers request uplink data switching, the receiving PDCP entity shall perform UDC decompression of the PDCP SDU using UDC configuration of the target cell and deliver the resulting PDCP SDUs to upper layer.
Figure 7 is a flow chart of a method to perform UDC in from transmitter perspective in accordance with one novel aspect. In step 701, a transmitting device receives data packets from upper layer e.g. application layer or SDAP layer. In step 702, a transmitting device generates uplink data compression (UDC) compressed data packets. Each corresponding uncompressed data packet is pushed into a UDC compression buffer. In step 703, the device routs and submits the the UDC compressed data packets to lower layer.
Figure 8 is a flow chart of a method to perform UL data decompression from receiver perspective in accordance with one novel aspect. In step 801, a receiving device receives uplink data compression (UDC) compressed data packets. In step 802, the device stores and reorders the UDC compressed data packets. In step 803, the device decompresses the UDC compressed data packets when deliver the packets to upper layer.
Although the present invention has been described in connection with certain specific embodiments for instructional purposes, the present invention is not limited thereto. Accordingly, various modifications,  adaptations, and combinations of various features of the described embodiments can be practiced without departing from the scope of the invention as set forth in the claims.

Claims (8)

  1. A method comprising:
    generating uplink data compression (UDC) compressed data packets for a radio bearer by a transmitting device; and
    routing the resulting data packets to a RLC bearer.
  2. The method of Claim 1, wherein the radio bearer is a DRB, a SRB, or a split bearer.
  3. The method of Claim 1, wherein the radio bearer is a DAPS bearer.
  4. The method of Claim 3, wherein the transmitting device configures two sets of UDC and performs UDC with the target cell configuration when upper layers request uplink data switching.
  5. A method comprising:
    reordering uplink data compression (UDC) compressed data packets for a radio bearer by a receiving device from one or two RLC bearers; and
    decompressing the uplink data compression (UDC) compressed data packets when deliver the data packets to upper layer.
  6. The method of Claim 5, wherein the radio bearer is a DRB, a SRB, or a split bearer.
  7. The method of Claim 5, wherein the radio bearer is a DAPS bearer.
  8. The method of Claim 5, wherein the receiving device is the target cell, which performs UDC decompression with the target cell configuration when upper layers request uplink data switching.
PCT/CN2021/124703 2021-10-19 2021-10-19 Apparatus and methods to perform uplinkdata compression in nr WO2023065114A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2021/124703 WO2023065114A1 (en) 2021-10-19 2021-10-19 Apparatus and methods to perform uplinkdata compression in nr
CN202211156611.6A CN115996426A (en) 2021-10-19 2022-09-22 Method and user equipment for performing uplink data compression
EP22200913.6A EP4171112A1 (en) 2021-10-19 2022-10-11 Apparatus and methods to perform uplink data compression in nr
US18/046,113 US20230116955A1 (en) 2021-10-19 2022-10-12 Apparatus and methods to perform uplink data compression in nr
TW111139429A TW202318910A (en) 2021-10-19 2022-10-18 Apparatus and methods to perform uplink data compression

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/124703 WO2023065114A1 (en) 2021-10-19 2021-10-19 Apparatus and methods to perform uplinkdata compression in nr

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/046,113 Continuation US20230116955A1 (en) 2021-10-19 2022-10-12 Apparatus and methods to perform uplink data compression in nr

Publications (1)

Publication Number Publication Date
WO2023065114A1 true WO2023065114A1 (en) 2023-04-27

Family

ID=85994295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/124703 WO2023065114A1 (en) 2021-10-19 2021-10-19 Apparatus and methods to perform uplinkdata compression in nr

Country Status (2)

Country Link
CN (1) CN115996426A (en)
WO (1) WO2023065114A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018137716A1 (en) * 2017-01-25 2018-08-02 电信科学技术研究院 Method and device for keeping continuity of udc function
US20200137820A1 (en) * 2018-10-30 2020-04-30 Samsung Electronics Co., Ltd. Method and apparatus for reducing overhead of ethernet frame in next generation mobile communication system
CN111373791A (en) * 2017-11-24 2020-07-03 三星电子株式会社 Method and apparatus for processing data in wireless communication system
US20210014339A1 (en) * 2019-07-08 2021-01-14 Mediatek Singapore Pte. Ltd. PDCP Layer Active Protocol Stack Implementation to Reduce Handover Interruption
CN113170355A (en) * 2018-12-21 2021-07-23 联发科技股份有限公司 Uplink data compression in mobile communications

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018137716A1 (en) * 2017-01-25 2018-08-02 电信科学技术研究院 Method and device for keeping continuity of udc function
CN111373791A (en) * 2017-11-24 2020-07-03 三星电子株式会社 Method and apparatus for processing data in wireless communication system
US20200137820A1 (en) * 2018-10-30 2020-04-30 Samsung Electronics Co., Ltd. Method and apparatus for reducing overhead of ethernet frame in next generation mobile communication system
CN113170355A (en) * 2018-12-21 2021-07-23 联发科技股份有限公司 Uplink data compression in mobile communications
US20210014339A1 (en) * 2019-07-08 2021-01-14 Mediatek Singapore Pte. Ltd. PDCP Layer Active Protocol Stack Implementation to Reduce Handover Interruption

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Discussion on NR UDC configuration for split bearer", 3GPP TSG-RAN WG2 MEETING 107, R2-1910522, 16 August 2019 (2019-08-16), XP051768298 *

Also Published As

Publication number Publication date
CN115996426A (en) 2023-04-21

Similar Documents

Publication Publication Date Title
US10805430B2 (en) Evolved data compression scheme signaling
WO2019086032A1 (en) Uplink data compression transaction flow
EP1993226B1 (en) Method and related apparatus for handling re-establishment of radio link control entity in a wireless communications system
US11159981B2 (en) Congestion processing method and apparatus
US20070293173A1 (en) Method and apparatus for data framing in a wireless communications system
US20170222943A1 (en) Method and apparatus for reordering
KR20070033297A (en) Method and apparatus for handling control PDUS during re-establishing receiving sides in a wireless communications system
US20120002103A1 (en) Method and apparatus for providing quality of service for wireless video transmission using multi-band operation
US20070183328A1 (en) Method of resetting radio link control entity in a mobile communications system and related apparatus
WO2019227475A1 (en) Early packet delivery to radio link control
US20210345212A1 (en) Dual protocol for mobility enhancement
WO2019101122A1 (en) Method and device for transmitting data
US20080137574A1 (en) Method and apparatus for handling data delivery in a wireless communications system
US8811264B2 (en) Relay station, communication system, and communication method
US20080130684A1 (en) Method and apparatus for performing reordering in a wireless communications system
WO2023065114A1 (en) Apparatus and methods to perform uplinkdata compression in nr
EP4171112A1 (en) Apparatus and methods to perform uplink data compression in nr
JP6389126B2 (en) Wireless communication apparatus and transmission frame control method
CN115277608B (en) Method and apparatus for wireless communication
CN112469080B (en) Data packet processing method and related device
WO2023102938A1 (en) Wireless communication method and communication device
CN112703815B (en) Data packet reordering method, electronic equipment and storage medium
CN116017738A (en) Method and apparatus for wireless communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21960874

Country of ref document: EP

Kind code of ref document: A1