WO2023065061A1 - 触觉反馈装置及其驱动方法、电子设备 - Google Patents

触觉反馈装置及其驱动方法、电子设备 Download PDF

Info

Publication number
WO2023065061A1
WO2023065061A1 PCT/CN2021/124313 CN2021124313W WO2023065061A1 WO 2023065061 A1 WO2023065061 A1 WO 2023065061A1 CN 2021124313 W CN2021124313 W CN 2021124313W WO 2023065061 A1 WO2023065061 A1 WO 2023065061A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving
strip
electrode
tactile feedback
shaped
Prior art date
Application number
PCT/CN2021/124313
Other languages
English (en)
French (fr)
Inventor
刘晓彤
王迎姿
陈右儒
Original Assignee
京东方科技集团股份有限公司
北京京东方技术开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方技术开发有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2021/124313 priority Critical patent/WO2023065061A1/zh
Priority to EP21960823.9A priority patent/EP4345580A1/en
Priority to CN202180002955.9A priority patent/CN116324687A/zh
Publication of WO2023065061A1 publication Critical patent/WO2023065061A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user

Definitions

  • the present disclosure relates to the technical field of tactile feedback, and in particular, to a tactile feedback device, a driving method thereof, and an electronic device.
  • the tactile feedback device can realize tactile reproduction based on the lamination effect, and improve the tactile experience of electronic equipment.
  • the tactile feedback device can only achieve the maximum amplitude in a specific vibration shape, and the amplitude of other vibration shapes is relatively small, which limits the adjustment of the tactile experience.
  • the purpose of the present disclosure is to overcome the shortcomings of the above-mentioned prior art, provide a tactile feedback device and its driving method, and electronic equipment, and improve the amplitude of the tactile feedback device under various vibration modes.
  • a tactile feedback device including a tactile feedback substrate and a controller
  • the tactile feedback substrate includes a base substrate, a first electrode layer, a piezoelectric layer and a second electrode layer stacked in sequence; the overlapping parts of the first electrode layer and the second electrode layer form a plurality of Electrode pairs arranged in sequence along the row direction; the electrode pairs extend along the column direction;
  • the controller is configured to be able to determine one of the driving modes as the target driving mode among a plurality of driving modes; wherein, in any one of the driving modes, the electrode pairs are combined to form A plurality of sequentially adjacent drive units, each of which includes sequentially adjacent and identical number of electrode pairs; in different drive modes, the number of electrode pairs in the drive units is different ;
  • the controller is further configured to drive one or more of the driving units in the target driving mode.
  • one of the first electrode layer and the second electrode layer is provided with a plurality of strip-shaped electrodes arranged in sequence along the row direction, and the other is provided with each of the strip-shaped electrodes. a common electrode where the electrodes overlap;
  • any one of the strip electrodes and the common electrode forms an electrode pair.
  • the strip-shaped electrodes include a plurality of strip-shaped sub-electrodes arranged in sequence along the column direction, and each of the strip-shaped sub-electrodes is electrically connected to the controller independently.
  • the first electrode layer includes a plurality of first strip-shaped electrodes arranged in sequence along the row direction;
  • the second electrode layer includes a plurality of second strip-shaped electrodes arranged in sequence along the row direction and corresponding to each of the first strip-shaped electrodes;
  • the first strip electrodes and the corresponding second strip electrodes overlap each other;
  • the first strip electrode and the corresponding second strip electrode form the electrode pair.
  • the orthographic projection of the first strip-shaped electrode on the piezoelectric layer coincides with the orthographic projection of the corresponding second strip-shaped electrode on the piezoelectric layer.
  • the first strip-shaped electrode includes a plurality of strip-shaped sub-electrodes arranged in sequence along the column direction, and each of the strip-shaped sub-electrodes is electrically connected to the controller independently; and / or,
  • the second strip-shaped electrode includes a plurality of strip-shaped sub-electrodes arranged in sequence along the column direction, and each of the strip-shaped sub-electrodes is electrically connected to the controller independently.
  • an electronic device including the above-mentioned tactile feedback device.
  • a driving method of a tactile feedback device which is used to drive the above-mentioned tactile feedback device; the driving method of the tactile feedback device includes:
  • driving the one or more driving units in the target driving mode includes:
  • a first drive signal is applied to each of the electrode groups of the even-numbered drive unit; a second drive signal is applied to each of the electrode groups of the odd-numbered drive unit; the first drive signal is the The inversion signal of the second driving signal.
  • the first electrode layer includes a plurality of first strip-shaped electrodes arranged in sequence along the row direction;
  • the first strip-shaped electrodes are in one-to-one correspondence with a plurality of second strip-shaped electrodes; the first strip-shaped electrodes and the corresponding second strip-shaped electrodes overlap each other; the first strip-shaped electrodes and the corresponding The second strip electrode forms the electrode pair;
  • Loading the first drive signal to each of the electrode groups of the even-numbered drive unit includes:
  • Loading the second driving signal to each of the electrode groups of the odd-numbered driving unit includes:
  • driving the one or more driving units in the target driving mode includes:
  • one of the first electrode layer and the second electrode layer is provided with a plurality of strip-shaped electrodes arranged in sequence along the row direction, and the other is provided with each of the strip-shaped electrodes.
  • loading the driving signal to each of the electrode groups of the even-numbered driving unit includes: loading a common voltage signal to the common electrode, loading a voltage signal to each of the strip-shaped electrodes in the even-numbered driving unit. driving voltage signal;
  • Loading the driving signal to each of the electrode groups of the odd-numbered driving unit includes: applying a common voltage signal to the common electrode, and applying a driving voltage to each of the strip-shaped electrodes in the odd-numbered driving unit Signal.
  • FIG. 1 is a schematic structural diagram of a tactile feedback device in an embodiment of the present disclosure.
  • FIG. 2 is a schematic structural diagram of an electrode group of a tactile feedback substrate in an embodiment of the present disclosure.
  • FIG. 3 is a schematic structural diagram of a plurality of driving units composed of an electrode group in a driving mode in an embodiment of the present disclosure.
  • FIG. 4 is a schematic cross-sectional structure diagram of a tactile feedback substrate in an embodiment of the present disclosure.
  • FIG. 5 is a schematic cross-sectional structure diagram of a tactile feedback substrate in an embodiment of the present disclosure.
  • FIG. 6 is a schematic cross-sectional structure diagram of a tactile feedback substrate in an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a drive unit corresponding to a tactile feedback substrate under a mode shape in an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a driving unit corresponding to a tactile feedback substrate under a mode shape in an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a driving unit corresponding to a tactile feedback substrate under a mode shape in an embodiment of the present disclosure.
  • FIG. 10 is a schematic cross-sectional structural view of an electrode group of a tactile feedback substrate in an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of a partial structure of an arrangement of electrode groups in an embodiment of the present disclosure.
  • Fig. 12 is a schematic diagram of a partial structure of an arrangement of electrode groups in an embodiment of the present disclosure.
  • FIG. 13 is a schematic flowchart of a driving method of a tactile feedback device in an embodiment of the present disclosure.
  • Example embodiments will now be described more fully with reference to the accompanying drawings.
  • Example embodiments may, however, be embodied in many forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concept of example embodiments to those skilled in the art.
  • the same reference numerals in the drawings denote the same or similar structures, and thus their detailed descriptions will be omitted.
  • the drawings are merely schematic illustrations of the present disclosure and are not necessarily drawn to scale.
  • Haptic feedback substrates usually need to be able to realize a variety of different vibration shapes to provide different tactile experiences. Different mode shapes have different requirements on the width of the electrodes on the tactile feedback substrate.
  • the tactile feedback substrate usually takes one of the mode shapes as the basic mode shape, and the electrodes are arranged according to the optimal mode of the basic mode shape.
  • the tactile feedback substrate utilizes the electrodes provided on it to realize other mode shapes than the basic mode shape.
  • the electrodes provided on the tactile feedback substrate do not match the requirements of other mode shapes for the electrodes, which will cause the vibration amplitude of the tactile feedback substrate to be small when realizing other mode shapes. This reduces the richness of the tactile experience and restricts the user's tactile experience.
  • the present disclosure can provide a sensory feedback device and a driving method thereof.
  • the tactile feedback device includes a tactile feedback substrate PNL and a controller CTR that cooperate with each other.
  • the tactile feedback substrate PNL includes a base substrate BP, a first electrode layer EP1 , a piezoelectric layer PE and a second electrode layer EP2 which are sequentially stacked; the first electrode The overlapping portions of the layer EP1 and the second electrode layer EP2 form a plurality of electrode pairs EE arranged sequentially along the row direction H1.
  • the piezoelectric layer PE will generate periodic deformation, and then transmit vibration to the base substrate BP.
  • the controller CTR is configured to be able to determine one of the drive modes as the target drive mode among multiple drive modes; wherein, in any one of the drive modes, see FIG. 3 and FIG. 7 to FIG. 9, the electrode pair EE is combined to form a plurality of drive units DE that are sequentially adjacent along the row direction H1, and each of the drive units DE includes the electrode pairs EE that are sequentially adjacent and have the same number; In different driving modes, the number of the electrode pairs EE in the driving unit DE is different;
  • the controller CTR is further configured to drive one or more of the drive units DE in the target drive mode.
  • each electrode pair EE in the driven driving unit DE can be driven by the controller CTR, so that the piezoelectric layer PE drives the tactile feedback substrate PNL to vibrate in response to the electric field between the electrode pairs EE, thereby forming a tactile sensation.
  • the tactile feedback device can determine the target driving mode according to the mode shape required for the tactile feedback substrate PNL; in the target driving mode, the controller CTR can drive a driving unit DE as a whole, so that the driving unit DE The width matches the mode shape of the tactile feedback substrate PNL, so that the tactile feedback substrate PNL obtains the maximum amplitude under the mode shape.
  • the controller CTR can change the driving mode, and then change the driven driving unit DE, so that the width of the changed driving unit DE is the same as the changed width of the driving unit DE.
  • the vibration shape matches.
  • the tactile feedback device of the present disclosure can change the width of the drive unit DE according to the mode shape required to be realized by the tactile feedback substrate PNL, thereby enabling the vibration amplitude of the tactile feedback substrate PNL to be improved under different vibration modes, thereby improving the vibration amplitude. Adjust the range to make the tactile experience more delicate.
  • the tactile feedback substrate PNL may be provided with a plurality of electrode pairs EE, and the electrode pairs EE may extend along the column direction H2 to be distributed in a stripe shape as a whole.
  • Each electrode pair EE may be arranged sequentially along the row direction H1. In one embodiment of the present disclosure, each electrode pair EE may be arranged in sequence at equal intervals along the row direction H1 .
  • the row direction H1 and the column direction H2 are two directions parallel to the plane of the tactile feedback substrate PNL and perpendicular to each other.
  • the base substrate BP may be rectangular, and one of the row direction H1 and the column direction H2 is parallel to the long side direction of the base substrate BP, and the other is parallel to the short side direction of the base substrate BP. edge direction.
  • the row direction H1 is parallel to the long side direction of the base substrate BP
  • the column direction H2 is parallel to the short side direction of the base substrate BP.
  • the tactile feedback substrate PNL is further provided with bonding pads and driving wires, the electrodes in the first electrode layer and the second electrode layer are connected to the bonding pads through the driving wires, and the bonding pads are connected to each other through the driving wires.
  • the fixed pad is used for electrical connection with the controller. In this way, the controller is electrically connected to the electrodes in the first electrode layer and the second electrode layer, so as to apply a driving signal to each electrode group EE.
  • the tactile feedback substrate PNL is designed to realize a variety of different mode shapes, for example, realize a variety of preset mode shapes or realize various mode shapes within a range of mode shapes.
  • Each mode shape that can be realized by the haptic feedback substrate PNL can be defined as a set of mode shapes of the haptic feedback substrate PNL.
  • the mode shape to be achieved by the haptic feedback substrate PNL is defined as the target mode shape. It can be understood that each mode shape has different requirements on the width of the electrodes.
  • an electrode that best matches a mode shape may be defined as a reference electrode corresponding to the mode shape.
  • the tactile feedback substrate PNL When the tactile feedback substrate PNL arranges electrodes according to a reference electrode of a vibration mode, the tactile feedback substrate PNL can achieve the maximum amplitude under the vibration mode, which in turn makes the vibration mode have a better tactile experience and wider tactile adjustment magnitude.
  • the reference electrode that best matches the target mode shape is defined as the target reference electrode.
  • the tactile feedback substrate PNL When the electrode of the tactile feedback substrate PNL is the target reference electrode, the tactile feedback substrate PNL can maximize the amplitude of the target mode shape.
  • the tactile feedback substrate PNL of the present disclosure may have multiple reference frequencies and reference dimensions corresponding to each reference frequency.
  • the reference frequency is a frequency of a voltage capable of making the vibration frequency of the piezoelectric layer PE equal to the natural frequency of the tactile feedback substrate PNL.
  • the vibration frequency of the piezoelectric layer PE is a natural frequency (such as a first-order natural frequency) of the tactile feedback substrate PNL, which can make the tactile feedback substrate PNL at the natural frequency Vibrates downward to generate resonance; half of the wavelength of the transverse wave transmitted by the resonance is the reference dimension corresponding to the reference frequency.
  • the reference dimension is half the wavelength of the transverse wave transmitted when the tactile feedback substrate PNL vibrates at a certain natural frequency.
  • different mode shapes of the haptic feedback substrate PNL may correspond to different reference frequencies, that is, one mode shape represents the vibration of the haptic feedback substrate PNL at a reference frequency.
  • the width of the reference electrode corresponding to a mode shape may be equal to the reference size corresponding to the reference frequency corresponding to the mode shape.
  • the controller CTR may provide a corresponding driving mode for each mode shape in the mode shape set.
  • the controller CTR drives the haptic feedback substrate PNL according to a driving mode
  • the haptic feedback substrate PNL can realize the mode shape corresponding to the driving mode.
  • each driving mode that can be provided by the controller CTR can be defined as a set of driving modes of the controller CTR.
  • the controller CTR may select a driving mode corresponding to the target mode shape from the driving mode set as the target driving mode.
  • the controller CTR drives the haptic feedback substrate PNL according to the target driving mode, the haptic feedback substrate PNL can realize the target mode shape and maximize the amplitude.
  • the electrode pair EE it is possible to make the electrode pair EE have a smaller width (dimension in the row direction).
  • a plurality of adjacent electrode pairs EE can be combined into a driving unit DE, and then the driving unit DE is used to simulate a reference electrode.
  • the dashed line ZL shows the surface topography of the tactile feedback substrate PNL under different mode shapes.
  • the tactile feedback substrate PNL has different vibration shapes and opening sizes during vibration; correspondingly, different mode shapes require different widths of electrodes.
  • the controller CTR can readjust the number of electrode pairs EE in the driving unit DE so that the width of the driving unit DE matches the mode shape of the haptic feedback substrate PNL , so that the tactile feedback substrate PNL can reach the maximum amplitude under these mode shapes.
  • the number of electrode pairs EE in the driving unit DE is different, so that the reference electrodes simulated by the driving unit DE in different driving modes are different.
  • the width of the reference electrode corresponding to the target mode shape of the tactile feedback substrate PNL is small, the number of electrode pairs EE included in the drive unit DE in the target driving mode is also small; when the target mode shape of the tactile feedback substrate PNL corresponds to When the width of the reference electrode is larger, the number of electrode pairs EE included in the driving unit DE in the target driving mode is also larger.
  • the width of the electrode pair EE (the dimension in the row direction H1) is S1
  • the spacing between adjacent electrode pairs EE is S2
  • the arrangement pitch (Pitch) of the electrode pair EE is P
  • the arrangement pitch P of the electrode pair EE the width S1 of the electrode pair EE+the spacing S2 between adjacent electrode pairs EE.
  • the distance between the electrode pairs EE can be relatively small, for example not greater than 2 millimeters, especially between 0.5 and 1.5 millimeters. In this way, the electrode pair EE can be more flexibly combined to form different driving units DE, and then the PNL can obtain the maximum amplitude under more mode shapes. It can be understood that the distance between the electrode pairs EE in the present disclosure can also be in other ranges, and can be selected and confirmed according to the mode shape required to be realized by the touch feedback substrate PNL, so as to meet the requirements of the touch feedback substrate PNL. of each vibration mode.
  • the width of the driving unit DE in the target driving mode may be equal to or substantially equal to the width of the target reference electrode.
  • the controller CTR can use the driving mode corresponding to the target mode shape as the target driving mode, and the target driving mode
  • the driving unit DE in the mode is the target driving unit, and the width of the target driving unit is equal to the width of the target reference electrode. In this way, the target driving unit can be used to simulate the target reference electrode, so that the tactile feedback substrate PNL can maximize the target mode shape.
  • the tactile feedback substrate PNL will vibrate during operation, and the vibration will form peaks and valleys on the surface of the array substrate, and these peaks and valleys can be used as nodes of the tactile feedback substrate.
  • the number A of nodes formed by the tactile feedback substrate PNL is fixed, which is basically equal to the number of driving units that can be combined in this driving mode.
  • the length L of the tactile feedback substrate PNL can be reasonably adjusted so that in each driving mode, L is substantially equal to an integer multiple of the width WD of the driving unit DE.
  • L m*WD, m is a positive integer; in different driving modes, the size of WD is different, and the size of m is different.
  • L m*WD+x, m is a positive integer, and x is an adjustable size; wherein, in different driving modes, the size of WD is different, the size of m is different, and x can be the same or can be Are not the same. Further, in the same driving mode, x is greater than 0 and not greater than half of WD.
  • the width WD of the driving unit DE is not greater than 15 millimeters. In this way, a lamination effect can be effectively formed between the tactile feedback substrate PNL and the user's finger, thereby ensuring a good tactile experience for the user.
  • the controller CTR when the controller CTR drives according to the target driving mode, it can not only make the width of the target driving unit equal to the width of the target reference electrode; but also make the frequency of the driving signal applied to the target driving unit , is equal to the reference frequency corresponding to the target mode shape, for example, an AC signal with a frequency of the reference frequency is applied to each electrode pair EE on the drive unit DE.
  • the tactile feedback substrate PNL is designed to be able to realize three different vibration shapes such as the first vibration shape, the second vibration shape and the third vibration shape.
  • the width of the reference electrode corresponding to the first mode shape is W1; the width of the reference electrode corresponding to the second mode shape is W2; the width of the reference electrode corresponding to the third mode shape is W3.
  • the first electrode layer EP1 and the second electrode layer EP2 form a plurality of electrode pairs EE arranged at equal intervals along the row direction H1, the width of each electrode pair EE is S1, and the adjacent electrode pair EE The spacing between them is S2; then the spacing P of the electrode pair EE is S1+S2.
  • the controller CTR is configured to select a drive mode from among a first drive mode corresponding to the first mode shape, a second drive mode corresponding to the second mode shape, and a third drive mode corresponding to the third mode shape as target drive mode.
  • the frequency of the voltage applied by the controller CTR to the driving unit DE may be equal to the reference frequency corresponding to the first mode shape.
  • the frequency of the voltage applied by the controller CTR to the driving unit DE may be equal to the reference frequency corresponding to the second mode shape.
  • the frequency of the voltage applied by the controller CTR to the driving unit DE may be equal to the reference frequency corresponding to the third mode shape. Wherein, n1, n2 and n3 are different.
  • the tactile feedback substrate PNL can be designed to realize more different mode shapes, and the controller CTR can correspondingly set the driving mode corresponding to each mode shape, so as to Each mode shape can reach the maximum amplitude.
  • FIG. 10 shows only 12 adjacent electrode pairs EE among the numerous electrode pairs EE of the tactile feedback substrate PNL, which are respectively marked as electrode pair EE1 -electrode pair EE12 .
  • the structure and principle of the tactile feedback device of the present disclosure will be further explained and illustrated by taking the driving units to which the 12 electrode pairs EE belong in different driving modes as examples.
  • each drive unit DE contains two Electrode pair EE.
  • the electrode pair EE1 and the electrode pair EE2 can form a driving unit DE
  • the electrode pair EE3 and the electrode pair EE4 can form a driving unit DE
  • the electrode pair EE11 and the electrode pair EE12 can form a driving unit DE.
  • each driving unit DE includes three electrode pairs EE.
  • electrode pair EE1, electrode pair EE2 and electrode pair EE3 can form a driving unit DE
  • electrode pair EE4 can form a driving unit DE
  • electrode pair EE5 and electrode pair EE6 can form a driving unit DE
  • electrode pair EE7, electrode pair EE8 and electrode pair EE9 can form
  • the electrode pair EE10, the electrode pair EE11 and the electrode pair EE12 can form a driving unit DE.
  • each driving unit DE includes four electrode pairs EE.
  • the electrode pair EE1, the electrode pair EE2, the electrode pair EE3 and the electrode pair EE4 can form a driving unit DE
  • the electrode pair EE5, the electrode pair EE6, the electrode pair EE7 and the electrode pair EE8 can form a driving unit DE
  • the electrode pair EE9 The electrode pair EE10, the electrode pair EE11 and the electrode pair EE12 can form a driving unit DE.
  • multiple driving modes may be preset in the controller CTR, for example, a set of driving modes may be built in.
  • the controller CTR may receive a mode selection signal from an external circuit (such as a microprocessor of an electronic device), and select one of a plurality of driving modes as a target driving mode according to the mode selection signal.
  • the controller CTR may be preset with a mode algorithm configured to determine the mode shape information according to the mode selection signal from an external circuit, and then calculate the target driving mode according to the mode shape information. In this way, the controller CTR can calculate different driving modes according to different mode shape information, therefore, it is equivalent to determining one driving mode among multiple driving modes according to the mode shape information as the target driving mode.
  • the mode shape information is information related to the mode shape required to be realized by the tactile feedback substrate PNL, for example, it may include the width of the reference electrode required to realize the mode shape, the driving signal required to realize the mode shape One or more of frequency etc.
  • the above-mentioned width of the reference electrode, frequency of the driving signal, etc. may also be encoded, and a corresponding mapping table is set in the controller CTR.
  • the information that enables the controller CTR to directly or indirectly obtain the width of the reference electrode required for the target mode shape is the mode shape information in the present disclosure.
  • the tactile feedback device can be driven according to the driving method shown in step S110 to step S120:
  • Step S110 determining one of the driving modes from a plurality of driving modes as the target driving mode
  • Step S120 driving one or more of the driving units DE in the target driving mode; wherein, driving any one of the driving units DE includes applying the same driving signal to each of the electrode groups EE of the driving unit DE.
  • the controller CTR when the controller CTR drives the tactile feedback substrate PNL, it may drive some of the driving units DE, and may also drive each of the driving units DE.
  • the driving signals loaded on the two adjacent driving units DE may be different, especially may be inverse phase driving signals.
  • step S120 may include: applying a first driving signal to each of the electrode groups EE of the even-numbered driving units DE; Each of the electrode groups EE is loaded with a second driving signal; the first driving signal is an inversion signal of the second driving signal.
  • each driving unit DE can be driven so that the mode shape of the tactile feedback substrate PNL has a large amplitude.
  • step S120 may include:
  • these driven driving units DE may be defined as working driving units; the controller CTR may only drive the working driving units without driving other driving units.
  • one of the first electrode layer EP1 and the second electrode layer EP2 is provided with a plurality of strip-shaped electrodes EP0 arranged in sequence along the row direction H1, and the other is provided with each of the A common electrode COM that overlaps the strip-shaped electrodes EPO; any one of the strip-shaped electrodes EPO and the common electrode COM forms an electrode pair EE.
  • the first electrode layer EP1 includes a plurality of first strip-shaped electrodes EP01 (as strip-shaped electrodes EP0) arranged in sequence along the row direction H1; The strip electrode EP01 overlaps the common electrode COM. Then the first strip electrode EP01 and the common electrode COM form an electrode pair EE.
  • the second electrode layer EP2 includes a plurality of second strip-shaped electrodes EP02 (as strip-shaped electrodes EP0) arranged in sequence along the row direction H1; the first electrode layer EP1 is provided with The common electrode COM where the two strip electrodes EP02 overlap. Then the second strip electrode EP02 and the common electrode COM form an electrode pair EE.
  • the driving signal when driving the tactile feedback substrate PNL, can be applied to each of the electrode groups EE of the even-numbered driving unit DE, or the driving signal can be applied to the odd-numbered Each of the electrode groups EE of the driving unit DE is loaded with the driving signal.
  • the driving signal may include a driving voltage signal and a common voltage signal; the driving voltage signal may be applied to the strip electrode EPO of the working driving unit, and the common voltage signal may be applied to the common electrode COM.
  • the driving voltage signal may be an alternating voltage signal or a pulse voltage signal; the common voltage signal is a constant voltage signal.
  • the driving voltage signal may also be a constant voltage signal, and the common voltage signal may be an alternating voltage signal or a pulse voltage signal.
  • the controller CTR can load the common voltage signal to the common electrode COM when driving the tactile feedback substrate PNL, which makes the voltage of the common electrode COM of each electrode pair EE the same. Therefore, in each driving mode, the controller CTR can only determine the strip electrodes EP0 of each electrode pair EE in the driving unit DE. In other words, in any driving mode, the controller CTR can determine the driving unit DE to which the strip-shaped electrode EP0 belongs according to each strip-shaped electrode EP0 , and then apply a corresponding driving voltage signal to the strip-shaped electrode EP0 .
  • the controller CTR when the controller CTR drives the tactile feedback substrate PNL, it can drive each electrode pair EE at the same time, that is, two different driving signals are used to drive each electrode pair EE.
  • the controller CTR can apply three different voltages to the electrode pair EE, that is, the common voltage signal applied to the common electrode COM, the first driving voltage signal applied to each strip-shaped electrode EP0 of the even-numbered driving unit DE, and the first driving voltage signal applied to the strip electrode EP0 of the even-numbered driving unit DE.
  • the first driving voltage signal and the common voltage signal form a group of driving signals; in the odd-numbered driving unit DE, the second driving voltage signal and the common voltage signal form another group of driving signals.
  • the first driving voltage signal and the second driving voltage signal may be alternating voltage signals or pulse voltage signals; the common voltage signal is a constant voltage signal.
  • the first electrode layer EP1 includes a plurality of first strip-shaped electrodes EP01 arranged in sequence along the row direction H1;
  • the first strip-shaped electrodes EP01 correspond to a plurality of second strip-shaped electrodes EP02; the corresponding first strip-shaped electrodes EP01 and the second strip-shaped electrodes EP02 overlap each other; the first strip-shaped electrodes EP01 and the corresponding second strip electrode EP02 form the electrode pair EE.
  • the electrode pair EE of the present disclosure may be an electrode pair including the first strip-shaped electrode EP01 and the second strip-shaped electrode EP02 overlapping each other.
  • the orthographic projections of the first strip-shaped electrode EP01 and the second strip-shaped electrode EP02 on the piezoelectric layer PE completely coincide.
  • the controller CTR can drive each driving unit DE, and make the electric fields formed by two adjacent driving units DE have opposite directions.
  • a first driving voltage signal may be applied to each of the first strip-shaped electrodes EP01 in the even-numbered driving units DE
  • a first driving voltage signal may be applied to each of the even-numbered driving units DE.
  • the second strip electrode EP02 is loaded with a second driving voltage signal. Load the second driving voltage signal to each of the first strip-shaped electrodes EP01 in the odd-numbered drive unit DE, and load the second drive voltage signal to each of the second strip-shaped electrodes EP02 in the odd-numbered drive unit DE.
  • the first driving voltage signal In this way, the driving signals loaded by two adjacent driving units DE remain opposite.
  • the first driving voltage signal and the second driving voltage signal may be alternating voltage signals or pulse voltage signals.
  • the controller CTR when the controller CTR drives the tactile feedback substrate PNL, it can also selectively drive part of the driving units DE.
  • the working driving unit may be each even-numbered driving unit DE or each odd-numbered driving unit DE.
  • the controller CTR drives the tactile feedback substrate PNL, it can only drive the even-numbered driving unit DE or the odd-numbered driving unit DE.
  • the first driving voltage signal can be applied to the first strip-shaped electrode EP01 of the working driving unit
  • the second driving voltage signal can be applied to the second strip-shaped electrode EP02 of the working driving unit.
  • step S120 a first driving voltage signal is applied to each of the first strip-shaped electrodes EP01 in the even-numbered driving units DE, and a first driving voltage signal is applied to the even-numbered
  • Each of the second strip electrodes EP02 in each of the driving units DE is loaded with a second driving voltage signal.
  • the second drive voltage signal is applied to each of the first strip-shaped electrodes EP01 in the odd-numbered drive units DE, and the second drive voltage signal is applied to each of the second strip-shaped electrodes in the odd-numbered drive units DE.
  • EP02 loads the first driving voltage signal.
  • the strip-shaped electrode EP0 (for example, the first strip-shaped electrode EP01 and/or the second strip-shaped electrode EP02 ) can be divided into a plurality of strip-shaped sub-electrodes EP0sub, and each strip-shaped sub-electrode EP0sub All are independently electrically connected to the controller CTR.
  • each strip-shaped sub-electrode EPOsub is electrically connected to its respective bonding pad (not shown in the figure) through a driving wire LN.
  • each strip-shaped sub-electrode EPOsub of the strip-shaped electrode EPO simulates the strip-shaped electrode EPO.
  • the strip-shaped sub-electrode at the specific position can be shielded by the controller CTR; the driver is driving the tactile feedback substrate PNL When , no driving signal is applied to the strip-shaped sub-electrode at the defect.
  • the strip-shaped sub-electrode EP0sub can be shielded by the CRT; when the controller CTR sends a driving signal, the strip-shaped sub-electrode EP0sub is not Send a signal.
  • the base substrate BP may be a base substrate of an inorganic material, or may be a base substrate of an organic material.
  • the material of the base substrate may be glass materials such as soda-lime glass, quartz glass, and sapphire glass.
  • the material of the base substrate can be polymethyl methacrylate (Polymethyl methacrylate, PMMA), polyvinyl alcohol (Polyvinyl alcohol, PVA), polyvinyl phenol (Polyvinyl phenol, PVP ), polyethersulfone (Polyether sulfone, PES), polyimide, polyamide, polyacetal, polycarbonate (Polycarbonate, PC), polyethylene terephthalate (Polyethylene terephthalate, PET), poly Polyethylene naphthalate (PEN) or combinations thereof.
  • the base substrate may also be a substrate with specific functions, such as a display panel, a touch panel, a touch display panel, a color filter substrate, a glass cover, and the like.
  • the material of the piezoelectric layer PE may be an inorganic piezoelectric material, an organic piezoelectric material or a composite piezoelectric material.
  • the material of the piezoelectric layer PE may include one of PZT (lead zirconate titanate piezoelectric ceramic), PVDF (vinylidene fluoride), ZnO (zinc oxide) and the like.
  • the materials of the first electrode layer EP1 and the second electrode layer EP2 can be selected from conductive materials, such as metals, conductive metal oxides, conductive polymers, conductive composite materials or combinations thereof.
  • the metal may be selected from platinum, gold, silver, aluminum, chromium, nickel, copper, molybdenum, titanium, magnesium, calcium, barium, sodium, palladium, iron, manganese or combinations thereof.
  • the conductive metal oxide may be selected from indium oxide, tin oxide, indium tin oxide, fluorine-doped tin oxide, aluminum-doped zinc oxide, gallium-doped zinc oxide, or combinations thereof.
  • the conductive polymer can be selected from polyaniline, polypyrrole, polythiophene, polyacetylene, poly(3,4-ethylenedioxythiophene)/polystyrenesulfonic acid (PEDOT/PSS) or combinations thereof Dopants such as acids (such as hydrochloric acid, sulfuric acid, sulfonic acid, etc.), Lewis acids (such as phosphorus fluoride, arsenic fluoride, ferric chloride, etc.), halogens, and alkali metals may also be added to the conductive polymer.
  • the conductive composite material may be selected from conductive composite materials dispersed with carbon black, graphite powder, metal microparticles and the like.
  • the materials of the first electrode layer EP1 and the second electrode layer EP2 may include one of Mo (molybdenum), Pt (platinum), and ITO (indium tin oxide).
  • the controller CTR may be bonded to the tactile feedback substrate PNL.
  • the controller CTR may include a circuit board bound to the tactile feedback substrate PNL and a driver chip located on the circuit board, and the driver chip drives each electrode group EE through the circuit board.
  • Embodiments of the present disclosure further provide an electronic device, which includes any tactile feedback device described in the above embodiments of the tactile feedback device.
  • the electronic device may be a vehicle display screen, a mobile phone screen or other types of electronic devices. Since the electronic device has any one of the tactile feedback devices described in the implementation manners of the tactile feedback device, it has the same beneficial effect, and the present disclosure will not repeat them here.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

一种触觉反馈装置及其驱动方法、电子设备,属于触觉再现技术领域。触觉反馈装置包括触觉反馈基板(PNL)和控制器(CTR)。触觉反馈基板(PNL)包括依次层叠设置的衬底基板(BP)、第一电极层(EP1)、压电层(PE)和第二电极层(EP2);第一电极层(EP1)和第二电极层(EP2)的相互交叠的部分形成多个沿行方向依次排列的电极对(EE)。控制器(CTR)被配置为,能够在多种驱动模式中确定一种作为目标驱动模式;其中,在任意一种驱动模式中,电极对(EE)组合出依次相邻的多个驱动单元(DE),每个驱动单元(DE)包括相邻且数量相同的电极对(EE);在不同的驱动模式下,驱动单元(DE)中的电极对(EE)的数量不同;控制器(CTR)还被配置为,驱动目标驱动模式的一个或者多个驱动单元(DE)。该触觉反馈装置能够提高在多种不同振型下的振幅。

Description

触觉反馈装置及其驱动方法、电子设备 技术领域
本公开涉及触觉反馈技术领域,具体而言,涉及一种触觉反馈装置及其驱动方法、电子设备。
背景技术
触觉反馈装置可以基于压膜效应实现触觉再现,提高电子设备的触觉体验。在现有技术中,触觉反馈装置只能在特定的振型实现最大振幅,其他振型的振幅比较小,则限制了触觉体验的调节。
需要说明的是,在上述背景技术部分公开的信息仅用于加强对本公开的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
本公开的目的在于克服上述现有技术的不足,提供一种触觉反馈装置及其驱动方法、电子设备,提高触觉反馈装置在多种不同振型下的振幅。
根据本公开的第一个方面,提供一种触觉反馈装置,包括触觉反馈基板和控制器;
所述触觉反馈基板包括依次层叠设置的衬底基板、第一电极层、压电层和第二电极层;所述第一电极层和所述第二电极层的相互交叠的部分形成多个沿行方向依次排列的电极对;所述电极对沿列方向延伸;
所述控制器被配置为,能够在多种驱动模式中确定一种所述驱动模式作为目标驱动模式;其中,在任意一种所述驱动模式中,所述电极对组合出沿所述行方向依次相邻的多个驱动单元,每个所述驱动单元包括依次相邻且数量相同的所述电极对;在不同的所述驱动模式下,所述驱动单元中的所述电极对的数量不同;
所述控制器还被配置为,驱动所述目标驱动模式的一个或者多个所述驱动单元。
根据本公开的一种实施方式,所述第一电极层和所述第二电极层中的 一个设置有沿所述行方向依次排列的多个条形电极,另一个设置与各个所述条形电极交叠的公共电极;
任意一个所述条形电极与所述公共电极组成一个所述电极对。
根据本公开的一种实施方式,所述条形电极包括沿所述列方向依次排列的多个条形子电极,各个所述条形子电极各自独立地与所述控制器电连接。
根据本公开的一种实施方式,所述第一电极层包括沿所述行方向依次排列的多个第一条形电极;
所述第二电极层包括沿所述行方向依次排列且与各个所述第一条形电极一一对应的多个第二条形电极;
所述第一条形电极和对应的所述第二条形电极相互交叠;
所述第一条形电极和对应的所述第二条形电极组成所述电极对。
根据本公开的一种实施方式,所述第一条形电极在所述压电层上的正投影,与对应的所述第二条形电极在所述压电层上的正投影重合。
根据本公开的一种实施方式,所述第一条形电极包括沿所述列方向依次排列的多个条形子电极,各个所述条形子电极各自独立地与所述控制器电连接;和/或,
所述第二条形电极包括沿所述列方向依次排列的多个条形子电极,各个所述条形子电极各自独立地与所述控制器电连接。
根据本公开的第二个方面,提供一种电子设备,包括上述的触觉反馈装置。
根据本公开的第三个方面,提供一种触觉反馈装置的驱动方法,用于驱动上述触觉反馈装置;所述触觉反馈装置的驱动方法包括:
从多种所述驱动模式中确定一种所述驱动模式作为目标驱动模式;
驱动所述目标驱动模式的一个或者多个所述驱动单元;其中,驱动任意一个所述驱动单元包括,向该驱动单元的各个所述电极组加载相同的驱动信号。
根据本公开的一种实施方式,驱动所述目标驱动模式的一个或者多个所述驱动单元包括:
向第偶数个所述驱动单元的各个所述电极组加载第一驱动信号;向第 奇数个所述驱动单元的各个所述电极组加载第二驱动信号;所述第一驱动信号为所述第二驱动信号的反相信号。
根据本公开的一种实施方式,所述第一电极层包括沿所述行方向依次排列的多个第一条形电极;所述第二电极层包括沿所述行方向依次排列且与各个所述第一条形电极一一对应的多个第二条形电极;所述第一条形电极和对应的所述第二条形电极相互交叠;所述第一条形电极和对应的所述第二条形电极组成所述电极对;
向第偶数个所述驱动单元的各个所述电极组加载第一驱动信号包括:
向第偶数个所述驱动单元中的各个所述第一条形电极加载第一驱动电压信号,向第偶数个所述驱动单元中的各个所述第二条形电极加载第二驱动电压信号;
向第奇数个所述驱动单元的各个所述电极组加载第二驱动信号包括:
向第奇数个所述驱动单元中的各个所述第一条形电极加载所述第二驱动电压信号,向第奇数个所述驱动单元中的各个所述第二条形电极加载所述第一驱动电压信号。
根据本公开的一种实施方式,驱动所述目标驱动模式的一个或者多个所述驱动单元包括:
向第偶数个所述驱动单元的各个所述电极组加载所述驱动信号,或者,向第奇数个所述驱动单元的各个所述电极组加载所述驱动信号。
根据本公开的一种实施方式,所述第一电极层和所述第二电极层中的一个设置有沿所述行方向依次排列的多个条形电极,另一个设置与各个所述条形电极交叠的公共电极;任意一个所述条形电极与所述公共电极组成一个所述电极对;
其中,向第偶数个所述驱动单元的各个所述电极组加载所述驱动信号包括:向所述公共电极加载公共电压信号,向第偶数个所述驱动单元中的各个所述条形电极加载驱动电压信号;
向第奇数个所述驱动单元的各个所述电极组加载所述驱动信号包括:向所述公共电极加载公共电压信号,向第奇数个所述驱动单元中的各个所述条形电极加载驱动电压信号。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开一种实施方式中,触觉反馈装置的结构示意图。
图2为本公开一种实施方式中,触觉反馈基板的电极组的结构示意图。
图3为本公开一种实施方式中,电极组在一种驱动模式下组成出多个驱动单元的结构示意图。
图4为本公开一种实施方式中,触觉反馈基板的剖视结构示意图。
图5为本公开一种实施方式中,触觉反馈基板的剖视结构示意图。
图6为本公开一种实施方式中,触觉反馈基板的剖视结构示意图。
图7为本公开一种实施方式中,触觉反馈基板在一种振型下对应的驱动单元结构示意图。
图8为本公开一种实施方式中,触觉反馈基板在一种振型下对应的驱动单元结构示意图。
图9为本公开一种实施方式中,触觉反馈基板在一种振型下对应的驱动单元结构示意图。
图10为本公开一种实施方式中,触觉反馈基板的电极组的剖视结构示意图。
图11为本公开一种实施方式中,电极组排布方式的局部结构示意图。
图12为本公开一种实施方式中,电极组排布方式的局部结构示意图。
图13为本公开一种实施方式中,触觉反馈装置的驱动方法的流程示意图示意图。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本公开将全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。此外,附图仅为本公开的示意性图解,并非一定是按比例绘制。
虽然本说明书中使用相对性的用语,例如“上”“下”来描述图标的一个组件对于另一组件的相对关系,但是这些术语用于本说明书中仅出于方便,例如根据附图中所述的示例的方向。能理解的是,如果将图标的装置翻转使其上下颠倒,则所叙述在“上”的组件将会成为在“下”的组件。当某结构在其它结构“上”时,有可能是指某结构一体形成于其它结构上,或指某结构“直接”设置在其它结构上,或指某结构通过另一结构“间接”设置在其它结构上。
用语“一个”、“一”、“该”、“所述”和“至少一个”用以表示存在一个或多个要素/组成部分/等;用语“包括”和“具有”用以表示开放式的包括在内的意思并且是指除了列出的要素/组成部分/等之外还可存在另外的要素/组成部分/等;用语“第一”、“第二”和“第三”等仅作为标记使用,不是对其对象的数量限制。
触觉反馈基板通常需要能够实现多种不同的振型,以提供不同的触觉体验。不同的振型对触觉反馈基板上的电极的宽度的要求不同。在相关技术中,触觉反馈基板通常将其中一种振型作为基础振型,并根据基础振型的最优方式来设置电极。触觉反馈基板利用其所设置的电极,来实现基础振型以外的其他振型。然而,触觉反馈基板上所设置的电极与其他振型对电极的要求并不匹配,这会导致触觉反馈基板在实现其他振型时振动幅度很小。这降低了触觉体验的丰富程度,制约了用户的触觉体验。
本公开可以提供一种觉反馈装置及其驱动方法。参见图1,触觉反馈装置包括相互配合的触觉反馈基板PNL和控制器CTR。
在本公开中,参见图4~图6,所述触觉反馈基板PNL包括依次层叠设置的衬底基板BP、第一电极层EP1、压电层PE和第二电极层EP2;所 述第一电极层EP1和所述第二电极层EP2的相互交叠的部分形成多个沿行方向H1依次排列的电极对EE。当在第一电极层EP1和第二电极层EP2之间加载交流电压时,压电层PE将会产生周期性形变,进而向衬底基板BP传递振动。
在本公开中,所述控制器CTR被配置为,能够在多种驱动模式中确定一种所述驱动模式作为目标驱动模式;其中,在任意一种所述驱动模式中,参见图3和图7~图9,所述电极对EE组合出沿所述行方向H1依次相邻的多个驱动单元DE,每个所述驱动单元DE包括依次相邻且数量相同的所述电极对EE;在不同的所述驱动模式下,所述驱动单元DE中的所述电极对EE的数量不同;
所述控制器CTR还被配置为,驱动所述目标驱动模式的一个或者多个所述驱动单元DE。这样,被驱动的驱动单元DE中的各个电极对EE可以被控制器CTR驱动,以使得压电层PE响应电极对EE之间的电场而带动触觉反馈基板PNL振动,进而形成触觉。
本公开提供的触觉反馈装置能够根据触觉反馈基板PNL所需实现的振型来确定目标驱动模式;在目标驱动模式下,控制器CTR可以将一个驱动单元DE作为整体进行驱动,使得驱动单元DE的宽度与触觉反馈基板PNL的振型相匹配,进而使得触觉反馈基板PNL在该振型下获得最大振幅。参见图7~图9,当触觉反馈基板PNL所需实现的振型改变时,控制器CTR可以改变驱动模式,进而改变被驱动的驱动单元DE,使得改变后的驱动单元DE的宽度与改变后的振型相匹配。这样,本公开的触觉反馈装置可以根据触觉反馈基板PNL所需实现的振型来改变驱动单元DE的宽度,进而能够使得触觉反馈基板PNL在不同的振型下的振幅得到提升,可以提高振幅的调整范围,使得触觉感受更为细腻。
下面,结合附图对本公开提供的触觉反馈装置的结构、原理和效果做进一步地解释和说明。
在本公开的实施方式中,参见图2,触觉反馈基板PNL可以设置有多个电极对EE,电极对EE可以沿列方向H2延伸以在整体上呈条形分布。各个电极对EE可以沿行方向H1依次排列。在本公开的一种实施方式中,各个电极对EE可以沿行方向H1等间隔依次排列。
在本公开中,行方向H1和列方向H2为平行于触觉反馈基板PNL平面且相互垂直的两个方向。在本公开的一种实施方式中,衬底基板BP可以呈矩形,则行方向H1和列方向H2中的一个平行于衬底基板BP的长边方向,另一个平行于衬底基板BP的短边方向。举例而言,行方向H1平行于衬底基板BP的长边方向,列方向H2平行于衬底基板BP的短边方向。
在本公开的一种实施方式中,触觉反馈基板PNL还设置有绑定焊盘和驱动走线,第一电极层和第二电极层中的电极通过驱动走线与绑定焊盘连接,绑定焊盘用于与控制器电连接。这样,控制器与第一电极层和第二电极层中的电极电连接,以便向各个电极组EE加载驱动信号。
在本公开中,触觉反馈基板PNL被设计为用于实现多种不同的振型,例如实现多种预先设定的振型或者实现一个振型范围内的各个振型。可以将触觉反馈基板PNL所能够实现的各个振型定义为该触觉反馈基板PNL的振型集合。在每次驱动触觉反馈基板PNL时,将触觉反馈基板PNL将要达成的振型定义为目标振型。可以理解的是,每一种振型对电极的宽度的要求均不相同。在本公开中,可以将与一种振型最匹配的电极定义为该振型对应的参考电极。当触觉反馈基板PNL按照一种振型的参考电极来布设电极时,该触觉反馈基板PNL可以在该振型下实现最大振幅,进而使得该振型具有更优的触觉体验和更宽的触觉调节幅度。在本公开中,将与目标振型最匹配的参考电极,定义为目标参考电极。当触觉反馈基板PNL的电极为目标参考电极时,该触觉反馈基板PNL可以使得目标振型的振幅最大。
本公开的触觉反馈基板PNL可以具有多个参考频率和各个参考频率对应的参考尺寸。其中,参考频率为,能够使得压电层PE的振动频率为触觉反馈基板PNL的固有频率的电压的频率。当驱动电极对EE的驱动信号的频率为一个参考频率时,压电层PE的振动频率为触觉反馈基板PNL的一个固有频率(例如一阶固有频率),这能够使得触觉反馈基板PNL在固有频率下振动而产生共振;该共振所传导的横波的波长的一半,为该参考频率对应的参考尺寸。换言之,参考尺寸为所述触觉反馈基板PNL在其某一个固有频率下振动时所传导的横波的波长的一半。
在本公开的一些实施方式中,触觉反馈基板PNL不同的振型可以与 不同的参考频率相对应,即一种振型表示触觉反馈基板PNL在一种参考频率下的振动。一种振型对应的参考电极的宽度,可以等于该振型对应的参考频率所对应的参考尺寸。
在本公开的一些实施方式中,控制器CTR可以为振型集合中的每一种振型提供对应的驱动模式。当控制器CTR按照一种驱动模式来驱动触觉反馈基板PNL时,该触觉反馈基板PNL可以实现该驱动模式对应的振型。在本公开中,可以将控制器CTR所能够提供的各个驱动模式,定义为该控制器CTR的驱动模式集合。
在本公开的一种实施方式中,控制器CTR可以从驱动模式集合中选择出与目标振型相对应的驱动模式,作为目标驱动模式。当控制器CTR按照目标驱动模式驱动触觉反馈基板PNL时,该触觉反馈基板PNL可以实现目标振型且实现振幅的最大化。
在本公开中,可以使得电极对EE具有较小的宽度(沿行方向上的尺寸)。这样,参见图3,可以将多个相邻的电极对EE组合成驱动单元DE,进而利用驱动单元DE模拟参考电极。图7~图9中,用虚线ZL示意了触觉反馈基板PNL在不同的振型下的表面形貌。参见图7~图9,在不同的振型下,触觉反馈基板PNL的振动形貌不同,其振动时的开口大小不同;相应的,不同的振型下对电极的宽度的要求不同。在本公开中,当触觉反馈基板PNL需要改变振型时,控制器CTR可以重新调整驱动单元DE中的电极对EE的数量,以使得驱动单元DE的宽度与触觉反馈基板PNL的振型相匹配,进而使得触觉反馈基板PNL在这些振型下均能够达到最大振幅。换言之,在不同的驱动模式下,驱动单元DE中的电极对EE的数量不同,这样可以使得不同驱动模式下的驱动单元DE所模拟的参考电极不同。当触觉反馈基板PNL的目标振型对应的参考电极的宽度较小时,则目标驱动模式中的驱动单元DE所包含的电极对EE的数量也较少;当触觉反馈基板PNL的目标振型对应的参考电极的宽度较大时,则目标驱动模式中的驱动单元DE所包含的电极对EE的数量也较多。
在本公开中,参见图11,电极对EE的宽度(行方向H1上的尺寸)为S1,相邻电极对EE之间的间距为S2,电极对EE的设置间距(Pitch)为P,则电极对EE的设置间距P=电极对EE的宽度S1+相邻电极对EE之 间的间距S2。在本公开的一些实施方式中,可以使得驱动单元DE的宽度WD=nP;其中,n为驱动单元DE中的电极对EE的数量,为正整数;P为电极对EE的设置间距。可以理解的是,在不同的驱动模式下,驱动单元DE中的电极对EE的数量不同(即n不同)。在一些实施方式中,电极对EE的设置间距可以较小,例如不大于2毫米,尤其是可以在0.5~1.5毫米之间。这样,可以使得电极对EE更灵活地组合出不同的驱动单元DE,进而使得PNL能够在更多的振型下获得最大振幅。可以理解的是,本公开的电极对EE的设置间距也可以在其他范围内,可以根据触控反馈基板PNL所需实现的振型进行选择和确认,以能够满足触控反馈基板PNL所需实现的各个振型为准。
在本公开的一种实施方式中,参见图7~图9,目标驱动模式的驱动单元DE的宽度,可以等于或者基本等于目标参考电极的宽度。换言之,为了使得触觉反馈基板PNL在目标振型的振幅最大,则触觉反馈基板PNL需要采用目标参考电极进行驱动;控制器CTR可以将与目标振型对应的驱动模式作为目标驱动模式,该目标驱动模式中的驱动单元DE为目标驱动单元,目标驱动单元的宽度等于目标参考电极的宽度。这样,目标驱动单元可以用于模拟目标参考电极,进而使得触觉反馈基板PNL可以实现目标振型的最大化。
触觉反馈基板PNL在工作时将会振动,振动使得阵列基板表面形成峰和谷,这些峰和谷可以作为触觉反馈基板的节点。其中,在一种驱动模式下,触觉反馈基板PNL所形成的节点的数量A是固定的,基本等于该驱动模式下所能够组合出的驱动单元的数量。其中,每个驱动单元所包括的电极对的数量越少,则该驱动单元的宽度越小,该驱动模式下触觉反馈基板PNL所能够形成的节点数量越多。在一些实施方式中,可以通过对触觉反馈基板PNL的长度L进行合理的调整,使得在各个驱动模式下,L基本等于驱动单元DE的宽度WD的整数倍。在本公开的一种实施方式中,L=m*WD,m为正整数;在不同的驱动模式下,WD的大小不同,m的大小不同。在另外一些实施方式中,L=m*WD+x,m为正整数,x为可调尺寸;其中,在不同的驱动模式下,WD的大小不同,m的大小不同,x可以相同也可以不相同。进一步地,在同一种驱动模式下,x大于0且不大 于WD的一半。
在本公开的一种实施方式中,在各个驱动模式下,驱动单元DE的宽度WD不大于15毫米。如此,触觉反馈基板PNL与用户手指之间能够有效地形成压膜效应,进而保证用户获得良好的触觉体验。在本公开的一种实施方式中,控制器CTR按照目标驱动模式进行驱动时,不仅可以使得目标驱动单元的宽度等于目标参考电极的宽度;而且可以使得加载至目标驱动单元上的驱动信号的频率,等于目标振型对应的参考频率,例如向驱动单元DE上的各个电极对EE加载频率为参考频率的交流信号。
举例而言,在本公开的一种实施方式中,触觉反馈基板PNL被设计为能够实现第一振型、第二振型和第三振型等三种不同的振型。其中,第一振型对应的参考电极的宽度为W1;第二振型对应的参考电极的宽度为W2;第三振型对应的参考电极的宽度为W3。则在触觉反馈基板PNL上,第一电极层EP1和第二电极层EP2形成沿行方向H1依次等间距排列的多个电极对EE,每个电极对EE的宽度为S1,相邻电极对EE之间的间距为S2;则电极对EE的设置间距P为S1+S2。
控制器CTR被配置为,从与第一振型对应的第一驱动模式、与第二振型对应的第二驱动模式和与第三振型对应的第三驱动模式中,选择一种驱动模式作为目标驱动模式。
在第一驱动模式中,驱动单元DE为第一驱动单元,第一驱动单元包括n1个依次相邻的电极对EE;则第一驱动单元DE的宽度WD1=n1*P=n1*(S1+S2)。n1为正整数。在第一驱动模式中,控制器CTR加载至驱动单元DE上的电压的频率,可以等于第一振型对应的参考频率。
在第二驱动模式中,驱动单元DE为第二驱动单元,第二驱动单元包括n2个依次相邻的电极对EE;则第二驱动单元DE的宽度WD2=n2*P=n2*(S1+S2)。n2为正整数。在第二驱动模式中,控制器CTR加载至驱动单元DE上的电压的频率,可以等于第二振型对应的参考频率。
在第三驱动模式中,驱动单元DE为第三驱动单元,第三驱动单元包括n3个依次相邻的电极对EE;则第二驱动单元DE的宽度WD3=n3*P=n3*(S1+S2)。n3为正整数。在第三驱动模式中,控制器CTR加载至驱动单元DE上的电压的频率,可以等于第三振型对应的参考频率。其中,n1、 n2和n3不相同。
可以理解的是,在本公开的其他实施方式中,触觉反馈基板PNL可以被设计为能够实现更多不同的振型,则控制器CTR可以相应的设置与各个振型相对应的驱动模式,以使得各个振型均能够达到最大振幅。
图10在触觉反馈基板PNL的众多电极对EE中,仅仅示出了相邻的12个,分别标记为电极对EE1~电极对EE12。如下,以该12个电极对EE在不同驱动模式下所归属的驱动单元为示例,对本公开的触觉反馈装置的结构和原理做进一步地解释和说明。
在该示例中,当触觉反馈基板PNL需要实现的目标振型的开口尺寸为2P(P=S1+S2)时,则控制器CTR所确定的目标驱动模式中,每个驱动单元DE包含两个电极对EE。例如,电极对EE1和电极对EE2可以组成一个驱动单元DE,电极对EE3和电极对EE4可以组成一个驱动单元DE,以此类推,电极对EE11和电极对EE12可以组成一个驱动单元DE。
当触觉反馈基板PNL需要实现的目标振型的开口尺寸为3P(P=S1+S2)时,则控制器CTR所确定的目标驱动模式中,每个驱动单元DE包含三个电极对EE。例如,电极对EE1、电极对EE2和电极对EE3可以组成一个驱动单元DE,电极对EE4、电极对EE5和电极对EE6可以组成一个驱动单元DE,电极对EE7、电极对EE8和电极对EE9可以组成一个驱动单元DE,电极对EE10、电极对EE11和电极对EE12可以组成一个驱动单元DE。
当触觉反馈基板PNL需要实现的目标振型的开口尺寸为4P(P=S1+S2)时,则控制器CTR所确定的目标驱动模式中,每个驱动单元DE包含四个电极对EE。例如,电极对EE1、电极对EE2、电极对EE3和电极对EE4可以组成一个驱动单元DE,电极对EE5、电极对EE6、电极对EE7和电极对EE8可以组成一个驱动单元DE,电极对EE9、电极对EE10、电极对EE11和电极对EE12可以组成一个驱动单元DE。
在本公开的一种实施方式中,控制器CTR中可以预先设置有多个驱动模式,例如可以内置有驱动模式集合。控制器CTR可以接收来自外部电路(例如电子设备的微处理器)的模式选择信号,并根据该模式选择信号而从多个驱动模式中选择一个作为目标驱动模式。
在另外的一种实施方式中,控制器CTR可以预设有模式算法,其被配置为能够根据来自外部电路的模式选择信号确定振型信息,然后根据振型信息来计算出目标驱动模式。这样,该控制器CTR可以根据不同的振型信息来计算出不同的驱动模式,因此,其相当于根据振型信息在多种驱动模式中确定一种驱动模式作为目标驱动模式。
可选地,振型信息为与触觉反馈基板PNL所需实现的振型相关的信息,例如可以包括为了实现该振型所需的参考电极的宽度、为了实现该振型而所需的驱动信号频率等中的一种或者多种。当然的,在一些实施方式中,上述的参考电极的宽度、驱动信号频率等也可以被编码,并在控制器CTR中设置相应的映射表。在本公开中,这些能够使得控制器CTR直接或者间接获得目标振型所需的参考电极的宽度的信息,均为本公开中的振型信息。
在本公开中,参见图13,触觉反馈装置可以按照步骤S110~步骤S120所示的驱动方法来驱动:
步骤S110,从多种所述驱动模式中确定一种所述驱动模式作为目标驱动模式;
步骤S120,驱动所述目标驱动模式的一个或者多个所述驱动单元DE;其中,驱动任意一个所述驱动单元DE包括,向该驱动单元DE的各个所述电极组EE加载相同的驱动信号。
在本公开中,控制器CTR在驱动触觉反馈基板PNL时,可以驱动部分驱动单元DE,也可以驱动各个驱动单元DE。当相邻的两个驱动单元DE被驱动时,相邻的两个驱动单元DE上所加载的驱动信号可以不同,尤其是可以为反相的驱动信号。
举例而言,在本公开的一种实施方式中,步骤S120可以包括:向第偶数个所述驱动单元DE的各个所述电极组EE加载第一驱动信号;向第奇数个所述驱动单元DE的各个所述电极组EE加载第二驱动信号;所述第一驱动信号为所述第二驱动信号的反相信号。在该实施方式中,各个驱动单元DE均可以被驱动,以使得触觉反馈基板PNL的振型具有大的振幅。
再举例而言,在本公开的另一种实施方式中,步骤S120可以包括:
向第偶数个所述驱动单元DE的各个所述电极组EE加载所述驱动信 号,或者,向第奇数个所述驱动单元DE的各个所述电极组EE加载所述驱动信号。在该实施方式中,仅第偶数个驱动单元DE或者第奇数个驱动单元DE被驱动,即仅有一半的驱动单元被驱动。在本公开中,可以将这些被驱动的驱动单元DE定义为工作驱动单元;控制器CTR可以仅仅驱动工作驱动单元,而不驱动其他驱动单元。在本公开的其他实施方式中,除了通过驱动单元DE所处的奇数偶数位置外来确定工作驱动单元外,还可以通过其他方式来确定工作驱动单元,例如从每三个驱动单元DE中选择一个作为工作驱动单元,或者从每三个驱动单元DE中选择一个作为工作驱动单元,本公开对这些方式不做限定。
在一些实施方式中,参见图4和图5,第一电极层EP1和第二电极层EP2中的一个设置有沿行方向H1依次排列的多个条形电极EP0,另一个设置与各个所述条形电极EP0交叠的公共电极COM;任意一个所述条形电极EP0与所述公共电极COM组成一个所述电极对EE。
举例而言,参见图5,所述第一电极层EP1包括沿行方向H1依次排列的多个第一条形电极EP01(作为条形电极EP0);第二电极层EP2设置有与各个第一条形电极EP01交叠的公共电极COM。则第一条形电极EP01与公共电极COM组成电极对EE。
再举例而言,参见图4,所述第二电极层EP2包括沿行方向H1依次排列的多个第二条形电极EP02(作为条形电极EP0);第一电极层EP1设置有与各个第二条形电极EP02交叠的公共电极COM。则第二条形电极EP02与公共电极COM组成电极对EE。
在本公开的一种实施方式中,在驱动该触觉反馈基板PNL时,可以向第偶数个所述驱动单元DE的各个所述电极组EE加载所述驱动信号,或者,向第奇数个所述驱动单元DE的各个所述电极组EE加载所述驱动信号。驱动信号可以包括驱动电压信号和公共电压信号;可以向工作驱动单元的条形电极EP0加载驱动电压信号,且向公共电极COM加载公共电压信号。在本公开的一种实施方式中,驱动电压信号可以为交变电压信号、或者脉冲电压信号;公共电压信号为恒压信号。当然的,在本公开的其他实施方式中,驱动电压信号也可以为恒压信号,且公共电压信号可以为交变电压信号或者脉冲电压信号。
这样,在触觉反馈基板PNL设置有公共电极COM时,控制器CTR在驱动触觉反馈基板PNL时可以向公共电极COM加载公共电压信号,这使得各个电极对EE的公共电极COM的电压相同。因此,控制器CTR在各个驱动模式中,可以仅仅确定驱动单元DE中的各个电极对EE的条形电极EP0。换言之,在任意一种驱动模式中,控制器CTR可以根据各个条形电极EP0来确定该条形电极EP0所属的驱动单元DE,进而向该条形电极EP0加载相应的驱动电压信号。
在本公开的另外一种实施方式中,控制器CTR在驱动触觉反馈基板PNL时,可以同时驱动各个电极对EE,即采用两种不同的驱动信号来实现对各个电极对EE的驱动。控制器CTR可以向电极对EE加载三种不同的电压,即加载至公共电极COM的公共电压信号、加载至第偶数个驱动单元DE的各个条形电极EP0的第一驱动电压信号、加载至第奇数个驱动单元DE的各个条形电极EP0的第二驱动电压信号;其中,第一驱动电压信号和第二驱动电压信号可以为反相信号。这样,第偶数个驱动单元DE中,第一驱动电压信号和公共电压信号构成一组驱动信号;第奇数个驱动单元DE中,第二驱动电压信号和公共电压信号构成另一组驱动信号。进一步地,第一驱动电压信号和第二驱动电压信号可以为交变电压信号、或者脉冲电压信号;公共电压信号为恒压信号。
在本公开的一些实施方式中,所述第一电极层EP1包括沿行方向H1依次排列的多个第一条形电极EP01;所述第二电极层EP2包括沿行方向H1依次排列且与各个第一条形电极EP01一一对应的多个第二条形电极EP02;相对应的所述第一条形电极EP01和所述第二条形电极EP02相互交叠;所述第一条形电极EP01和对应的所述第二条形电极EP02组成所述电极对EE。换言之,本公开的电极对EE可以为电极对,电极对包括相互交叠的第一条形电极EP01和第二条形电极EP02。
在本公开的一种实施方式中,第一条形电极EP01和第二条形电极EP02在压电层PE的正投影完全重合。
在本公开的一种实施方式中,控制器CTR可以驱动各个驱动单元DE,并使得相邻两个驱动单元DE所形成的电场方向相反。例如,在步骤S120中,可以向第偶数个所述驱动单元DE中的各个所述第一条形电极EP01 加载第一驱动电压信号,向第偶数个所述驱动单元DE中的各个所述第二条形电极EP02加载第二驱动电压信号。向第奇数个所述驱动单元DE中的各个所述第一条形电极EP01加载所述第二驱动电压信号,向第奇数个所述驱动单元DE中的各个所述第二条形电极EP02加载所述第一驱动电压信号。这样,相邻两个驱动单元DE所加载的驱动信号保持相反。进一步地,第一驱动电压信号和第二驱动电压信号可以为交变电压信号、或者脉冲电压信号。
在本公开的另一种实施方式中,控制器CTR在驱动触觉反馈基板PNL时,还可以选择性地驱动部分驱动单元DE。作为一种示例,工作驱动单元可以为各个第偶数个驱动单元DE或者各个第奇数个驱动单元DE。换言之,控制器CTR在驱动触觉反馈基板PNL时,可以仅仅驱动第偶数个驱动单元DE或者第奇数个驱动单元DE。在驱动工作驱动单元时,可以向工作驱动单元的第一条形电极EP01加载第一驱动电压信号,向工作驱动单元的第二条形电极EP02加载第二驱动电压信号。
再举例而言,在本公开的一种实施方式中,在步骤S120中,向第偶数个所述驱动单元DE中的各个所述第一条形电极EP01加载第一驱动电压信号,向第偶数个所述驱动单元DE中的各个所述第二条形电极EP02加载第二驱动电压信号。或者,向第奇数个所述驱动单元DE中的各个所述第一条形电极EP01加载所述第二驱动电压信号,向第奇数个所述驱动单元DE中的各个所述第二条形电极EP02加载所述第一驱动电压信号。
在一些实施方式中,参见图12,条形电极EP0(例如第一条形电极EP01和/或第二条形电极EP02)可以被分为多个条形子电极EP0sub,各个条形子电极EP0sub均与控制器CTR各自独立地电连接。示例性地,参见图12,各个条形子电极EP0sub通过驱动走线LN与各自的绑定焊盘(图中未示出)电连接。
在正常情况下,在驱动条形电极EP0时,可以向条形电极EP0的各个条形子电极EP0sub加载相同的电压,以使得各个条形子电极EP0sub模拟条形电极EP0。当发现压电层PE存在缺陷时,例如压电层PE在某一特定位置存在短路缺陷时,则该特定位置处的条形子电极可以被控制器CTR所屏蔽;驱动器在驱动触觉反馈基板PNL时,不向该缺陷处的条形子电 极加载驱动信号。具体的,当任意一个条形子电极EP0sub所覆盖的压电层PE存在缺陷是,该条形子电极EP0sub可以被CRT所屏蔽;控制器CTR发送驱动信号时,不向该条形子电极EP0sub发送信号。
在一些实施方式中,衬底基板BP可以为无机材料的衬底基板,也可以为有机材料的衬底基板。举例而言,在本公开的一种实施方式中,衬底基板的材料可以为钠钙玻璃(soda-lime glass)、石英玻璃、蓝宝石玻璃等玻璃材料。在本公开的另一种实施方式中,衬底基板的材料可以为聚甲基丙烯酸甲酯(Polymethyl methacrylate,PMMA)、聚乙烯醇(Polyvinyl alcohol,PVA)、聚乙烯基苯酚(Polyvinyl phenol,PVP)、聚醚砜(Polyether sulfone,PES)、聚酰亚胺、聚酰胺、聚缩醛、聚碳酸酯(Poly carbonate,PC)、聚对苯二甲酸乙二酯(Polyethylene terephthalate,PET)、聚萘二甲酸乙二酯(Polyethylene naphthalate,PEN)或其组合。
当然的,在本公开的其他实施方式中,衬底基板也可以为具有特定功能的基板,例如可以为显示面板、触控面板、触控显示面板、彩膜基板、玻璃盖板等等。
在本公开的一些实施方式中,压电层PE的材料可以为无机压电材料、有机压电材料或者复合压电材料。在本公开的一种实施方式中,压电层PE的材料可以包括PZT(锆钛酸铅压电陶瓷)、PVDF(偏聚氟乙烯)、ZnO(氧化锌)等中的一种。
可选地,第一电极层EP1和第二电极层EP2材料可以选自导电材料,例如可以选择金属、导电性金属氧化物、导电性高分子、导电性复合材料或其组合。示例性的,金属可以选自铂、金、银、铝、铬、镍、铜、钼、钛、镁、钙、钡、钠、钯、铁、锰或其组合。示例性的,导电性金属氧化物可以选自氧化铟、氧化锡、铟锡氧化物、掺氟的氧化锡、掺铝的氧化锌、掺镓的氧化锌或其组合。示例性的,导电性高分子可以选自聚苯胺、聚吡咯、聚噻吩、聚乙炔、聚(3,4-伸乙基二氧噻吩)/聚苯乙烯磺酸(PEDOT/PSS)或其组合,导电性高分子中还可以添加有酸(例如盐酸、硫酸、磺酸等)、路易斯酸(例如氟化磷、氟化砷、氯化铁等)、卤素、碱金属等掺杂剂。示例性的,导电性复合材料可以选自分散有碳黑、石墨粉、金属微粒子等的导电性复合材料。在本公开的一种实施方式中,第一电极层EP1和第二 电极层EP2的材料可以包括Mo(钼)、Pt(铂)、ITO(氧化铟锡)中的一种。
可选地,控制器CTR可以与触觉反馈基板PNL绑定连接。在本公开的一种实施方式中,控制器CTR可以包括与触觉反馈基板PNL绑定的电路板和位于电路板上的驱动芯片,驱动芯片通过电路板驱动各个电极组EE。
本公开实施方式还提供一种电子设备,该电子设备包括上述触觉反馈装置实施方式所描述的任意一种触觉反馈装置。该电子设备可以为车载显示屏、手机屏幕或者其他类型的电子设备。由于该电子设备具有上述触觉反馈装置实施方式所描述的任意一种触觉反馈装置,因此具有相同的有益效果,本公开在此不再赘述。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由所附的权利要求指出。

Claims (12)

  1. 一种触觉反馈装置,包括触觉反馈基板和控制器;
    所述触觉反馈基板包括依次层叠设置的衬底基板、第一电极层、压电层和第二电极层;所述第一电极层和所述第二电极层的相互交叠的部分形成多个沿行方向依次排列的电极对;所述电极对沿列方向延伸;
    所述控制器被配置为,能够在多种驱动模式中确定一种所述驱动模式作为目标驱动模式;其中,在任意一种所述驱动模式中,所述电极对组合出沿所述行方向依次相邻的多个驱动单元,每个所述驱动单元包括依次相邻且数量相同的所述电极对;在不同的所述驱动模式下,所述驱动单元中的所述电极对的数量不同;
    所述控制器还被配置为,驱动所述目标驱动模式的一个或者多个所述驱动单元。
  2. 根据权利要求1所述的触觉反馈装置,其中,所述第一电极层和所述第二电极层中的一个设置有沿所述行方向依次排列的多个条形电极,另一个设置与各个所述条形电极交叠的公共电极;
    任意一个所述条形电极与所述公共电极组成一个所述电极对。
  3. 根据权利要求2所述的触觉反馈装置,其中,所述条形电极包括沿所述列方向依次排列的多个条形子电极,各个所述条形子电极各自独立地与所述控制器电连接。
  4. 根据权利要求1所述的触觉反馈装置,其中,所述第一电极层包括沿所述行方向依次排列的多个第一条形电极;
    所述第二电极层包括沿所述行方向依次排列且与各个所述第一条形电极一一对应的多个第二条形电极;
    所述第一条形电极和对应的所述第二条形电极相互交叠;
    所述第一条形电极和对应的所述第二条形电极组成所述电极对。
  5. 根据权利要求4所述的触觉反馈装置,其中,所述第一条形电极在所述压电层上的正投影,与对应的所述第二条形电极在所述压电层上的正投影重合。
  6. 根据权利要求4或者5所述的触觉反馈装置,其中,所述第一条形电极包括沿所述列方向依次排列的多个条形子电极,各个所述条形子电 极各自独立地与所述控制器电连接;和/或,
    所述第二条形电极包括沿所述列方向依次排列的多个条形子电极,各个所述条形子电极各自独立地与所述控制器电连接。
  7. 一种电子设备,包括如权利要求1~6任意一项所述的触觉反馈装置。
  8. 一种触觉反馈装置的驱动方法,用于驱动如权利要求1~6任意一项所述触觉反馈装置;所述触觉反馈装置的驱动方法包括:
    从多种所述驱动模式中确定一种所述驱动模式作为目标驱动模式;
    驱动所述目标驱动模式的一个或者多个所述驱动单元;其中,驱动任意一个所述驱动单元包括,向该驱动单元的各个所述电极组加载相同的驱动信号。
  9. 根据权利要求8所述的触觉反馈装置的驱动方法,其中,驱动所述目标驱动模式的一个或者多个所述驱动单元包括:
    向第偶数个所述驱动单元的各个所述电极组加载第一驱动信号;向第奇数个所述驱动单元的各个所述电极组加载第二驱动信号;所述第一驱动信号为所述第二驱动信号的反相信号。
  10. 根据权利要求9所述的触觉反馈装置的驱动方法,其中,所述第一电极层包括沿所述行方向依次排列的多个第一条形电极;所述第二电极层包括沿所述行方向依次排列且与各个所述第一条形电极一一对应的多个第二条形电极;所述第一条形电极和对应的所述第二条形电极相互交叠;所述第一条形电极和对应的所述第二条形电极组成所述电极对;
    向第偶数个所述驱动单元的各个所述电极组加载第一驱动信号包括:
    向第偶数个所述驱动单元中的各个所述第一条形电极加载第一驱动电压信号,向第偶数个所述驱动单元中的各个所述第二条形电极加载第二驱动电压信号;
    向第奇数个所述驱动单元的各个所述电极组加载第二驱动信号包括:
    向第奇数个所述驱动单元中的各个所述第一条形电极加载所述第二驱动电压信号,向第奇数个所述驱动单元中的各个所述第二条形电极加载所述第一驱动电压信号。
  11. 根据权利要求8所述的触觉反馈装置的驱动方法,其中,驱动所 述目标驱动模式的一个或者多个所述驱动单元包括:
    向第偶数个所述驱动单元的各个所述电极组加载所述驱动信号,或者,向第奇数个所述驱动单元的各个所述电极组加载所述驱动信号。
  12. 根据权利要求11所述的触觉反馈装置的驱动方法,其中,所述第一电极层和所述第二电极层中的一个设置有沿所述行方向依次排列的多个条形电极,另一个设置与各个所述条形电极交叠的公共电极;任意一个所述条形电极与所述公共电极组成一个所述电极对;
    其中,向第偶数个所述驱动单元的各个所述电极组加载所述驱动信号包括:向所述公共电极加载公共电压信号,向第偶数个所述驱动单元中的各个所述条形电极加载驱动电压信号;
    向第奇数个所述驱动单元的各个所述电极组加载所述驱动信号包括:向所述公共电极加载公共电压信号,向第奇数个所述驱动单元中的各个所述条形电极加载驱动电压信号。
PCT/CN2021/124313 2021-10-18 2021-10-18 触觉反馈装置及其驱动方法、电子设备 WO2023065061A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2021/124313 WO2023065061A1 (zh) 2021-10-18 2021-10-18 触觉反馈装置及其驱动方法、电子设备
EP21960823.9A EP4345580A1 (en) 2021-10-18 2021-10-18 Tactile feedback apparatus and driving method therefor, and electronic device
CN202180002955.9A CN116324687A (zh) 2021-10-18 2021-10-18 触觉反馈装置及其驱动方法、电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/124313 WO2023065061A1 (zh) 2021-10-18 2021-10-18 触觉反馈装置及其驱动方法、电子设备

Publications (1)

Publication Number Publication Date
WO2023065061A1 true WO2023065061A1 (zh) 2023-04-27

Family

ID=86057807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/124313 WO2023065061A1 (zh) 2021-10-18 2021-10-18 触觉反馈装置及其驱动方法、电子设备

Country Status (3)

Country Link
EP (1) EP4345580A1 (zh)
CN (1) CN116324687A (zh)
WO (1) WO2023065061A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080024459A1 (en) * 2006-07-31 2008-01-31 Sony Corporation Apparatus and method for touch screen interaction based on tactile feedback and pressure measurement
US20120306790A1 (en) * 2011-06-02 2012-12-06 Electronics And Telecommunications Research Institute Film type apparatus for providing haptic feedback and touch screen including the same
US20160018893A1 (en) * 2013-03-04 2016-01-21 University Of Ulsan Foundation For Industry Cooperation Haptic feedback screen using piezoelectric polymer
CN105739762A (zh) * 2016-01-25 2016-07-06 京东方科技集团股份有限公司 触觉反馈装置及方法、触摸显示面板、触摸显示装置
CN111488790A (zh) * 2019-01-28 2020-08-04 三星电子株式会社 指纹识别触摸传感器和包括指纹识别触摸传感器的电子装置
US20200257364A1 (en) * 2019-02-11 2020-08-13 Volvo Car Corporation Facilitating interaction with a vehicle touchscreen using haptic feedback
CN112799500A (zh) * 2019-11-13 2021-05-14 南昌欧菲显示科技有限公司 触觉反馈模组、触摸屏及电子装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080024459A1 (en) * 2006-07-31 2008-01-31 Sony Corporation Apparatus and method for touch screen interaction based on tactile feedback and pressure measurement
US20120306790A1 (en) * 2011-06-02 2012-12-06 Electronics And Telecommunications Research Institute Film type apparatus for providing haptic feedback and touch screen including the same
US20160018893A1 (en) * 2013-03-04 2016-01-21 University Of Ulsan Foundation For Industry Cooperation Haptic feedback screen using piezoelectric polymer
CN105739762A (zh) * 2016-01-25 2016-07-06 京东方科技集团股份有限公司 触觉反馈装置及方法、触摸显示面板、触摸显示装置
CN111488790A (zh) * 2019-01-28 2020-08-04 三星电子株式会社 指纹识别触摸传感器和包括指纹识别触摸传感器的电子装置
US20200257364A1 (en) * 2019-02-11 2020-08-13 Volvo Car Corporation Facilitating interaction with a vehicle touchscreen using haptic feedback
CN112799500A (zh) * 2019-11-13 2021-05-14 南昌欧菲显示科技有限公司 触觉反馈模组、触摸屏及电子装置

Also Published As

Publication number Publication date
EP4345580A1 (en) 2024-04-03
CN116324687A (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
CN108845710B (zh) 触控面板及其驱动方法、触控装置
TWI424341B (zh) 觸控顯示結構及包含該觸控顯示結構之觸控顯示裝置
KR102477813B1 (ko) 터치 패널 및 그것을 포함하는 표시 장치
US20090021354A1 (en) Input device
CN106200162B (zh) 一种阵列基板、显示面板及显示装置
JP6401695B2 (ja) 接触感応素子、接触感応素子の駆動方法、及び接触感応素子を含む表示装置
TW201101137A (en) Touch panel with matrix type tactile feedback
CN1680907A (zh) 触摸面板输入装置
US20210295003A1 (en) Ultrasonic module, ultrasonic sensor and display screen
CN105892757A (zh) 一种内嵌式触摸屏及显示装置
CN1801067A (zh) 显示设备及其驱动方法
CN106775088A (zh) 触控装置
KR20170047057A (ko) 디스플레이 장치
CN108073324A (zh) 触摸检测装置以及具备触摸检测装置的显示装置
CN102841721B (zh) 触摸面板
KR20150045312A (ko) 터치 패널
CN106227387B (zh) 触控显示面板和触控显示装置
TWI603240B (zh) 觸控面板
KR20140008229A (ko) 다중 동작부를 갖는 필름형 촉각 전달 장치
WO2023065061A1 (zh) 触觉反馈装置及其驱动方法、电子设备
CN207541604U (zh) 触摸屏及触控显示器
WO2015085701A1 (zh) 一种触摸显示装置
CN205318349U (zh) 触觉反馈装置、触摸显示面板及触摸显示装置
CN115250626B (zh) 一种触觉反馈基板、触觉反馈装置及触觉反馈方法
TWM588282U (zh) 具有觸覺反饋面板的觸控模組及顯示裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21960823

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021960823

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021960823

Country of ref document: EP

Effective date: 20231227

NENP Non-entry into the national phase

Ref country code: DE