WO2023063646A1 - 기계학습 기반 고관절 골절 진단을 위한 골밀도 도출 방법 및 이를 이용한 골밀도 도출 프로그램 - Google Patents

기계학습 기반 고관절 골절 진단을 위한 골밀도 도출 방법 및 이를 이용한 골밀도 도출 프로그램 Download PDF

Info

Publication number
WO2023063646A1
WO2023063646A1 PCT/KR2022/014999 KR2022014999W WO2023063646A1 WO 2023063646 A1 WO2023063646 A1 WO 2023063646A1 KR 2022014999 W KR2022014999 W KR 2022014999W WO 2023063646 A1 WO2023063646 A1 WO 2023063646A1
Authority
WO
WIPO (PCT)
Prior art keywords
bone density
interest
bone
image
regions
Prior art date
Application number
PCT/KR2022/014999
Other languages
English (en)
French (fr)
Inventor
김희연
채동식
Original Assignee
에이아이다이콤(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에이아이다이콤(주) filed Critical 에이아이다이콤(주)
Publication of WO2023063646A1 publication Critical patent/WO2023063646A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • G06N20/20Ensemble learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/40ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems

Definitions

  • the present invention relates to a bone density derivation method for hip fracture diagnosis based on machine learning and a bone density derivation program using the same. More specifically, the present invention extracts an X-ray image of the subject's hip joint by applying a machine learning algorithm and image processing technology, and automatically recognizes the bone trabecular pattern of the proximal femur in the extracted hip joint image. Bone density can be derived It relates to a bone density derivation method for the diagnosis of hip fracture based on machine learning and a bone density deduction program using the same.
  • hip fracture refers to a crack or break in the hip joint, which is the connection between the femur and the pelvis.
  • BMD bone mineral density
  • the subject's bone density can be measured by analyzing the amount of X-ray absorption irradiated into the bone using dual energy X-ray absorptiometry (DXA), but this DXA analysis is expensive and cortical bone It is difficult to distinguish between trabecular bone and trabecular bone, so there is a limit to accurately measuring bone density.
  • DXA dual energy X-ray absorptiometry
  • QCT quantitative computed tomography
  • a machine learning algorithm and image processing technology are applied to extract an X-ray image of the subject's hip joint, and automatically recognize the bone trabecular pattern of the proximal femur in the extracted hip joint image.
  • Bone density can be derived
  • the present invention extracts an X-ray image of the subject's hip joint by applying a machine learning algorithm and image processing technology, and automatically recognizes the bone trabecular pattern of the proximal femur in the extracted hip joint image, thereby deriving bone density based on machine learning. It is a task to be solved to provide a bone density derivation method for fracture diagnosis and a bone density derivation program using the same.
  • the present invention provides a bone density derivation method for diagnosing hip fracture based on machine learning, comprising: acquiring a hip joint image from image data obtained by X-ray imaging of a subject's hip joint region; detecting a plurality of regions of interest in order to detect a trabecular pattern of the proximal femur on the acquired hip joint image; pre-processing an image corresponding to each of the plurality of detected regions of interest; and deriving a bone mineral density of the subject based on the bone trabecular pattern detected in each of the preprocessed images corresponding to the plurality of regions of interest.
  • the plurality of regions of interest detected in the ROI detecting step may include a region where a bone trabecular pattern corresponding to the Singh Index (SI) is formed as an osteoporosis diagnosis method.
  • SI Singh Index
  • the plurality of regions of interest detected in the ROI detecting step include a principal compressive group region, a secondary tensile group region, a principal tensile group region, It may be detected to include one or more regions of interest in a group consisting of a great trochanter group region, a secondary compressive group region, and a Ward's triangle region of the thigh.
  • the machine learning algorithm detects a plurality of predetermined diagnosis points by applying a convolutional neural network (CNN) deep learning model; and detecting a plurality of regions of interest each including the plurality of detected diagnostic points.
  • CNN convolutional neural network
  • the image pre-processing step may include a process of detecting a boundary of a trabecular trabecular pattern based on a gradient or a slope extracted from an image corresponding to each of the plurality of regions of interest using a Sobel algorithm.
  • the image preprocessing step sets a specific grayscale value as a threshold value in the image corresponding to each of the plurality of regions of interest, converts image pixels having a grayscale value equal to or greater than the threshold value to black, and converts image pixels having a grayscale value equal to or less than the threshold value.
  • An image pixel having a gray scale value of is detected as a bone trabecular pattern and binarized in such a way that it is converted to white.
  • the step of deriving the bone density may include deriving an individual bone density by detecting a bone trabecular pattern in each of the preprocessed images corresponding to the plurality of regions of interest by applying a convolutional neural network (CNN) deep learning model; and deriving the final bone density of the subject by integrating individual bone density information derived through the CNN deep learning model using an ensemble deep learning model.
  • CNN convolutional neural network
  • the CNN deep learning model is a data set for supervised learning, and as bone trabecular pattern information and labels appearing on the image preprocessed through the image preprocessing step, dual energy X-ray absorptiometry (DXA) Actual subject bone density information acquired as may be input.
  • DXA dual energy X-ray absorptiometry
  • the ensemble deep learning model may use a biological parameter consisting of any one of age, height, and weight of the subject to measure the final bone density.
  • the present invention uses the hip joint image obtained in the step of acquiring the hip joint image of the above-described bone density measurement method for diagnosing hip fracture as input data, and the plurality of and a derivation algorithm that uses an image corresponding to a region of interest as output data, wherein the derivation algorithm detects a trabecular pattern on the extracted image corresponding to each of the plurality of regions of interest, and calculates the detected trabecular pattern and a biological parameter. It is possible to provide a bone density derivation program for diagnosing hip fractures, characterized in that the step of deriving the bone density based on the program is programmed to be performed automatically and installed in a computing device or a cloud server capable of online access or online computing.
  • the bone density derivation method for diagnosing hip joint fracture based on machine learning according to the present invention and the bone density derivation program using the same, by using a hip joint image obtained by a general X-ray imaging method, a conventional bone density measurement method, dual energy X-ray absorptiometry (DXA) ) or quantitative computed tomography (QCT), etc., there is no need for expensive measuring equipment, so there is an effect of reducing costs.
  • DXA dual energy X-ray absorptiometry
  • QCT quantitative computed tomography
  • a specific region of interest can be detected from a hip joint image by applying a CNN deep learning-based machine learning algorithm.
  • the entire process for deriving the bone mineral density based on the bone marrow pattern appearing in the region of interest can be quickly and accurately performed within a few seconds.
  • the hip joint image is based on the slope or gradient of the hip joint image using Sobel image processing technology.
  • the machine learning algorithm clearly recognizes the bone trabecular pattern and has the effect of improving the bone density derivation performance.
  • the bone density derivation method for diagnosing hip fracture based on machine learning and the bone density derivation program using the same according to the present invention biological parameters including the subject's age or body information are additionally used as learning data of the machine learning algorithm, The accuracy of diagnosis of hip fracture can be improved by reducing the error between the calculated BMD and the actual measured BMD.
  • FIG. 1 is a flowchart of a bone density derivation method for diagnosing hip fracture based on machine learning according to the present invention.
  • FIG. 2 illustrates a subject's hip joint image obtained in the hip joint image acquisition step of the bone density derivation method for diagnosing hip fracture based on machine learning according to the present invention.
  • FIG. 3 is a diagram illustrating positions of a plurality of regions of interest detected on a hip joint image in the bone density derivation method for diagnosing hip fracture based on machine learning according to the present invention.
  • FIG. 4 illustrates a process of pre-processing images corresponding to a plurality of regions of interest detected on a hip joint image in the bone density derivation method for diagnosing hip fracture based on machine learning according to the present invention.
  • FIG. 5 illustrates a process of deriving a subject's bone density based on bone trabecular patterns detected in a plurality of regions of interest by applying a machine learning algorithm in the bone density derivation method for diagnosing hip fracture based on machine learning according to the present invention.
  • 6 to 8 show the average value difference (MEAN ) and a graph showing the standard deviation (SD) for the mean value difference.
  • FIG. 1 is a flowchart of a bone density derivation method for diagnosing hip fracture based on machine learning according to the present invention.
  • the bone density derivation method for diagnosing hip fracture based on machine learning includes the steps of acquiring a hip joint image from image data obtained by X-raying the subject's hip joint area (S100). ; detecting a plurality of regions of interest in order to detect a trabeculae pattern of the proximal femur on the acquired hip joint image (S200); pre-processing images corresponding to the plurality of detected regions of interest (S300); and deriving a bone density of the subject based on the bone trabecular pattern detected in each of the preprocessed images corresponding to the plurality of regions of interest (S400).
  • FIG. 2 illustrates an image of a subject's hip joint obtained in the bone density derivation method for diagnosing hip fracture based on machine learning according to the present invention.
  • the bone density derivation method for diagnosing hip fractures based on machine learning diagnoses hip fractures from image data taken by X-rays of the anterior and posterior regions of the subject's hip joint and femoral neck. It is possible to acquire the hip joint image 10 for.
  • the hip joint image 10 may be acquired so that the subject's hip joint is in the center of the screen and the proximal femur is sufficiently long.
  • the present invention uses the hip joint image 20 obtained by simple radiographic examination, so that expensive measurement equipment such as dual energy X-ray absorptiometry (DXA) or quantitative computed tomography (QCT), which are existing bone density measurement methods, is not required.
  • DXA dual energy X-ray absorptiometry
  • QCT quantitative computed tomography
  • FIG. 3 is a diagram illustrating positions of a plurality of regions of interest detected on a hip joint image in the bone density derivation method for diagnosing hip fracture based on machine learning according to the present invention.
  • the region of interest detection step (S200) is a conventional osteoporosis diagnosis method on the hip joint image 10 using a machine learning algorithm. As , it is possible to automatically detect a plurality of regions of interest (ROIs) 20 including regions where the trabecular pattern P is formed corresponding to the Singh Index (SI).
  • ROIs regions of interest
  • the machine learning algorithm applies a convolutional neural network (CNN) deep learning model to obtain a bone trabecular pattern corresponding to the Singh Index (SI) in the femoral region of the hip joint image 10.
  • CNN convolutional neural network
  • SI Singh Index
  • P detecting a plurality of diagnosis points 21 in the area where it is formed; and a process of detecting a plurality of regions of interest 20 each including the plurality of detected diagnostic points 21 .
  • the plurality of regions of interest 20 are formed in a first region of interest 20a formed in a principal compressive group and a secondary tensile group in the hip joint image 10 .
  • At least one region of interest is included in a group consisting of a fifth region of interest 20e formed in the secondary compressive group and a sixth region of interest 20f formed in the Ward's triangle of the thigh. can be detected.
  • the CNN deep learning model of the machine learning algorithm corresponds to the trabecular pattern P appearing on the hip joint image 10, proximal femur.
  • the first region of interest 20a, the second region of interest 20b, and the third region of interest 20c may be selected and detected among a plurality of regions of interest 20 set in .
  • the plurality of diagnostic points 21 detected through the CNN deep learning model in the region of interest detection step (S200) are regions corresponding to the Singh Index (SI) in the proximal femur region of the hip joint image 10, respectively. can be expressed as positional coordinates.
  • each of the plurality of diagnosis points 21 may be regarded as a central point within each region of interest 20 detected on the hip joint image 10, and the plurality of detected regions of interest 20 are It can be schematized by displaying it as a figure icon such as a bounding box.
  • the machine learning algorithm applies a CNN deep learning model to the hip joint image 10 having a resolution of 300 ⁇ 300 pixels to which the mean square error is applied as a loss function.
  • the CNN deep learning model can reduce each image corresponding to the plurality of regions of interest detected on the hip joint image to have a size of 160 ⁇ 160 pixel resolution.
  • the bone trabecular pattern P included in each of the plurality of regions of interest 20 schematized in the ROI detection step (S200) is trabecular bone trabecule using a machine learning algorithm and an image processing algorithm in the image preprocessing step (S300).
  • a pattern P boundary extraction process and a binarization process may be sequentially performed.
  • FIG. 4 illustrates a process of pre-processing images corresponding to a plurality of regions of interest detected on a hip joint image in the bone density derivation method for diagnosing hip fracture based on machine learning according to the present invention.
  • a Sobel algorithm is applied as an image processing technique to detect the hip joint image 10 in the ROI detection step (S200).
  • a process of extracting the boundary lines of trabecular bone patterns P appearing on each of the original images 30 corresponding to the first ROI 20a, the second ROI 20b, and the third ROI 20c may be performed. there is.
  • the Sobel algorithm used in the edge detection process of the image preprocessing step (S300) corresponds to the first ROI 20a, the second ROI 20b, and the third ROI 20c.
  • a bone trabecular pattern (P) boundary detection process appearing in each image 30 corresponding to each may be performed.
  • the original image 30 corresponding to the first region of interest 20, the second region of interest 20b, and the third region of interest 20c detected on the hip joint image 10 is a black and white radiation image.
  • pixels constituting the image 30 corresponding to the first region of interest 20, the second region of interest 20b, and the third region of interest 20c detected on the hip joint image 10 are It may have a grayscale value that is an integer between 0 and 255 to represent brightness information of a pixel.
  • '0' represents the darkest black color
  • '255' represents the brightest white color.
  • the Sobel algorithm applied in the image preprocessing step (S300) performs differentiation in the horizontal and vertical directions, respectively, based on the grayscale value of the image pixel to obtain a pair of Sobel filter masks , and the size of a vector consisting of the horizontal and vertical differential values of the pair of Sobel filter masks is obtained, and the bone trabeculae appearing on the images corresponding to the regions of interest 20a, 20b, and 20c are obtained.
  • the edge strength of the pattern P may be extracted.
  • the boundary line of the bone trabecular pattern (P) appears thicker and brighter on the boundary-detected image 40, and the bone trabecular pattern extracted through the Sobel algorithm As the boundary line strength of (P) is smaller, the boundary line of the trabecular bone pattern (P) may appear thinner and darker on the boundary-detected image 40.
  • a binarization process may be performed by setting a grayscale value of a specific size as a threshold value.
  • the binarization process processes pixels having a grayscale value equal to or greater than the threshold value in the image corresponding to each of the plurality of regions of interest 20a, 20b, and 20c in a trabecular pattern. It is processed as a background area other than the , and converted to black, and pixels having a gray scale value of less than the threshold value are judged as a bone trabecular pattern (P) and a binarization process of converting them to white may be performed.
  • P bone trabecular pattern
  • the image 50 corresponding to each of the plurality of binarized regions of interest 20a, 20b, and 20c may be recognized as a training dataset of a machine learning algorithm in the bone density derivation step (S400), and the machine The learning algorithm can clearly and clearly recognize the bone trabecular pattern P on the binarized image 50, so that learning performance for deriving bone density can be improved.
  • FIG. 5 illustrates a process of deriving a subject's bone density based on bone trabecular patterns detected in a plurality of regions of interest by applying a machine learning algorithm in the bone density derivation method for diagnosing hip fracture based on machine learning according to the present invention.
  • Bone mineral density (BMD) of the subject can be derived by detecting the bone trabecular pattern (P) detected on the image.
  • a bone trabecular pattern (P) is detected on the image 50 corresponding to each of a plurality of regions of interest preprocessed after the image preprocessing step (S300) by applying a convolutional neural network (CNN) deep learning model.
  • CNN convolutional neural network
  • each CNN deep learning model inputs bone trabecular pattern (P) information appearing on the image 50 preprocessed through the image preprocessing step (S300) as a training dataset. and input actual bone density information for the hip joint region of the subject obtained by dual energy x-ray absorptiometry (DXA) as a label to be supervised by a regression analysis method. .
  • DXA dual energy x-ray absorptiometry
  • the CNN deep learning model used in the bone density derivation step (S400) is composed of a plurality of layers having various functions, and a convolutional layer among the layers plays a major role in extracting features of the bone trabecular pattern.
  • the CNN deep learning model is designed based on VGG-net, and a max-pooling layer is introduced to reduce the output size of the previous layer so that the maximum sub-matrix (sub-matrix) value is the maximum pooling layer. It can be selected as a representative element of the (max-pooling layer).
  • CNN deep learning model corresponds to a fully connected layer (FC) having weight coefficients optimized during the training process from the features extracted from the convolution layer and the max-pooling layer.
  • FC fully connected layer
  • a 2-layer perceptron network that performs can be composed of a bone density derivation function.
  • the machine learning algorithm applies an ensemble deep learning model instead of a generally used linear regression method to CNN deep learning models in each of the preprocessed images 50.
  • the process of deriving the final bone density for the hip joint region of the subject can be performed by integrating the individual bone trabecular pattern information derived through the method.
  • the Ensemble deep learning model applies a stacking technique to output multiple models consisting of each CNN deep learning model applied to each image 50 corresponding to the plurality of preprocessed regions of interest. By inputting again, the bone density of the subject's hip joint region can be finally calculated.
  • the Ensemble deep learning model acquires additional information based on the correlation between biological parameters composed of body information such as age, height, and weight of the subject and bone mineral density (BMD), and the range of the obtained information. It can be input into the training dataset of the Ensemble deep learning model through a normalization process that converts to a value between 0 and 1.
  • 6 to 8 show the average value difference (MEAN ) and a graph showing the standard deviation (SD) for the mean value difference.
  • the present inventors use a CNN deep learning model using the Bland-Altman Plot method based on trabecular trabecular patterns appearing on images corresponding to each of a plurality of regions of interest for 150 subjects.
  • the mean value difference between the bone density derived from and the actual bone density obtained by dual energy X-ray absorptiometry (DXA) and the standard deviation relationship for it were graphed.
  • the difference (MEAN) between the average value of the bone density derived from 150 subjects in the bone density derivation step (S400) and the average value of the actual bone density obtained by DXA is indicated by a blue horizontal line, and also for the difference between the average values Each ⁇ 1.96 standard deviation (SD) is indicated by a pair of red horizontal lines.
  • the mean value error (MEAN) was measured to be 0.035 g/cm2.
  • the mean value error (MEAN) is 0.017g/cm2. was measured as
  • the bone density derivation method for diagnosing hip fracture based on machine learning applies an image processing technology such as the Sobel algorithm to determine the trabecular pattern boundary line based on the gradient in the original image corresponding to the region of interest. If noise elements that interfere with recognition are removed or images preprocessed to be binarized are input as the training dataset of the CNN deep learning model, the learning performance of the machine learning algorithm is further improved, so that the bone density and bone density derived from the CNN deep learning model It was found that the average value error between the actual BMD decreased.
  • an image processing technology such as the Sobel algorithm to determine the trabecular pattern boundary line based on the gradient in the original image corresponding to the region of interest. If noise elements that interfere with recognition are removed or images preprocessed to be binarized are input as the training dataset of the CNN deep learning model, the learning performance of the machine learning algorithm is further improved, so that the bone density and bone density derived from the CNN deep learning model It was found that the average value error between the actual BMD decreased.
  • the present inventors derived the final bone density (BMD) using an ensemble deep learning model based on the individual bone density derived using a CNN deep learning model from images corresponding to each of a plurality of regions of interest in 150 subjects,
  • the coefficient of determination (R2) of the Pearson correlation coefficient between the final bone density of the 150 subjects derived above and the actual bone density obtained by DXA was calculated.
  • R2 of the Pearson's correlation coefficient is to 1, the higher the correlation (correlation) between the derived final bone density (BMD) and the actual bone density.
  • the Pearson correlation The coefficient of determination (R2) of the coefficient was determined to be 0.58.
  • the coefficient of determination (R2) of the Pearson correlation coefficient was measured to be 0.65.
  • the bone density derivation method for diagnosing hip fracture based on machine learning uses the biological parameter information of the subject additionally in the process of deriving the bone density of the subject as a learning dataset of the Ensemble deep learning model. By doing so, it was confirmed that the performance of the machine learning algorithm can be improved by deriving a bone density that is highly correlated with the subject's actual bone density.
  • the bone density derivation method for diagnosing hip fractures of the present invention can be programmed and installed or stored in a user computing device or a cloud server capable of computing.
  • X-ray image of the hip joint obtained in the step of acquiring the hip joint image for diagnosis of bone fracture is used as input data, and a plurality of regions of interest for detecting trabecular pattern corresponding to the Singh index are derived as output data.
  • An algorithm, wherein the derivation algorithm may be programmed to automatically perform the step of deriving the bone density by detecting trabecular pattern in the detected plurality of regions of interest.
  • the step of detecting a plurality of regions of interest as output data and the step of deriving a bone density by detecting a bone trabecular pattern appearing in each of the plurality of detected regions of interest in the derivation program are performed sequentially or step by step according to the user's selection. can be programmed.
  • the bone density derivation method for diagnosis of bone joint fracture based on machine learning corresponds to the Singh index in the proximal femur by applying a machine learning algorithm to the hip joint image obtained by the conventional X-ray imaging method in the hip joint area of the subject. Since the entire process of detecting a specific region of interest and deriving the bone density based on the bone count pattern appearing in each detected region of interest is performed within several tens of seconds, the bone density for hip fracture diagnosis can be quickly and accurately derived. .
  • the bone density derivation method for diagnosing hip fracture based on machine learning of the present invention is programmed and combined with a graphical user interface (GUI), the result performed at each step is displayed on the display screen, so that the subject and orthopedic specialist
  • GUI graphical user interface

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Software Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Artificial Intelligence (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Evolutionary Computation (AREA)
  • Surgery (AREA)
  • Optics & Photonics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Databases & Information Systems (AREA)
  • Computational Linguistics (AREA)
  • Image Analysis (AREA)
  • Physiology (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Quality & Reliability (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

본 발명은 기계학습 알고리즘과 영상 처리기술을 적용하여 엑스레이 촬영된 피검자의 고관절 이미지를 추출하고, 상기 추출된 고관절 이미지에서 대퇴골 근위부의 골소주 패턴을 자동으로 인식함으로써 골밀도를 도출할 수 있는 기계학습 기반 고관절 골절 진단을 위한 골밀도 도출 방법 및 이를 이용한 골밀도 도출 프로그램에 관한 것이다.

Description

기계학습 기반 고관절 골절 진단을 위한 골밀도 도출 방법 및 이를 이용한 골밀도 도출 프로그램
본 발명은 기계학습 기반 고관절 골절 진단을 위한 골밀도 도출 방법 및 이를 이용한 골밀도 도출 프로그램에 관한 것이다. 보다 상세하게, 본 발명은 기계학습 알고리즘과 영상 처리기술을 적용하여 엑스레이 촬영된 피검자의 고관절 이미지를 추출하고, 상기 추출된 고관절 이미지에서 대퇴골 근위부의 골소주 패턴을 자동으로 인식함으로써 골밀도를 도출할 수 있는 기계학습 기반 고관절 골절 진단을 위한 골밀도 도출 방법 및 이를 이용한 골밀도 도출 프로그램에 관한 것이다.
일반적으로, 고관절 골절(Hip fracture)은 대퇴골과 골반의 연결 부분인 고관절에 금이 가거나 부러진 상태를 의미하며, 이러한 고관절 골절은 발생 시 치료와 재활이 어려우므로 낙상 사고로 인한 심각한 부상 중 하나로 간주된다. 한편, 고관절 골절의 정밀 진단 또는 치료 계획 수립에 있어서 골다공증 질환과 밀접한 관련이 있는 골밀도(Bone mineral density; BMD)의 측정이 요구된다.
일반적으로, 피검자 골밀도는 이중에너지 X-선 흡수계측법(Dual energy X-ray absorptiometry; DXA)을 사용하여 골로 조사된 X선 흡수량을 분석하여 측정할 수 있으나 이러한 DXA 분석은 비용이 높으며, 피질골(cortical bone)과 소주골(trabecular bone)을 구별하기가 어려워서 골밀도를 정확하게 측정할 수 없다는 한계가 있다. 이외에도, 정량적 전산화 단층 촬영법(quantitative computed tomography; QCT)으로 피검자의 골밀도를 측정하는 방법이 있으나, 마찬가지로 상기 QCT 방법은 고가의 측정 장비를 필요로 하며 느린 스캔 속도로 인해 골밀도 측정에 있어 한계가 존재한다.
최근, 의학 분야에서 기계학습 알고리즘을 적용하여 방사선 사진을 기반으로 피검자의 고관절 골절 위험을 진단하기 위한 연구가 활발하게 진행되고 있다. 그러나, 선행 연구는 피검자의 골밀도를 측정하는 대신 골절을 발견하거나 골다공증을 진단하는데 중점을 두고 있으며, 일반적인 엑스레이 촬영 기법으로 획득된 방사선 사진에서 노이즈가 불가피하게 발생함에 따라 선명도가 불충분하여 골밀도를 정확하게 측정할 수 없는 문제가 있었다.
이와 같은 문제를 해결하고자, 기계학습 알고리즘과 영상 처리기술을 적용하여 엑스레이 촬영된 피검자의 고관절 이미지를 추출하고, 상기 추출된 고관절 이미지에서 대퇴골 근위부의 골소주 패턴을 자동으로 인식함으로써 골밀도를 도출할 수 있는 기계학습 기반 고관절 골절 진단을 위한 골밀도 도출 방법 및 이를 이용한 골밀도 도출 프로그램에 대한 요구가 절실한 상황이다.
본 발명은 기계학습 알고리즘과 영상 처리기술을 적용하여 엑스레이 촬영된 피검자의 고관절 이미지를 추출하고, 상기 추출된 고관절 이미지에서 대퇴골 근위부의 골소주 패턴을 자동으로 인식함으로써 골밀도를 도출할 수 있는 기계학습 기반 고관절 골절 진단을 위한 골밀도 도출 방법 및 이를 이용한 골밀도 도출 프로그램을 제공하는 것을 해결하고자 하는 과제로 한다.
상기 과제를 해결하기 위하여, 본 발명은 기계학습 기반 고관절 골절 진단을 위한 골밀도 도출 방법에 있어서, 피검자의 고관절 영역을 엑스레이로 촬영한 영상 데이터로부터 고관절 이미지를 획득하는 단계; 상기 획득된 고관절 이미지 상에서 대퇴골 근위부의 골소주 패턴을 감지하기 위하여 복수 개의 관심 영역을 검출하는 단계; 상기 검출된 복수 개의 관심 영역 각각에 대응하는 이미지를 전처리하는 단계; 및 상기 전처리된 복수 개의 관심 영역에 대응하는 이미지 각각에서 감지된 골소주 패턴을 기반으로 피검자의 골밀도를 도출하는 단계;를 포함하는 것을 특징으로 하는 고관절 골절 진단을 위한 골밀도 도출 방법을 제공할 수 있다.
또한, 상기 관심 영역 검출 단계에서 검출되는 복수 개의 관심 영역은 골다공증 진단 방법으로서 Singh 지표(Singh Index; SI)에 대응하는 골소주 패턴이 형성되는 영역을 포함할 수 있다.
그리고, 상기 관심 영역 검출 단계에서 검출되는 복수 개의 관심 영역은 일차성 압박골 군(principal compressive group) 영역, 이차성 장력골 군(secondary tensile group) 영역, 일차성 장력골 군(principal tensile group) 영역, 대 전자골 군(great trochanter group) 영역, 이차성 압박골 군(secondary compressive group) 영역 및 대퇴부의 워드 삼각부위(Ward's triangle) 영역으로 이루어지는 그룹에서 하나 이상의 관심 영역을 포함하도록 검출될 수 있다.
그리고, 상기 관심 영역 검출 단계에서 기계학습 알고리즘은 CNN(Convolutional neural network) 딥러닝 모델을 적용하여 미리 결정된 복수 개의 진단점을 검출하는 과정; 및 상기 검출된 복수 개의 진단점을 각각 포함하는 복수 개의 관심 영역을 검출하는 과정;을 포함할 수 있다.
그리고, 상기 이미지 전처리 단계는 소벨(Sobel) 알고리즘을 사용하여 상기 복수 개의 관심 영역 각각에 대응하는 이미지에서 추출된 기울기 또는 그래디언트(gradient) 기반으로 골소주 패턴의 경계를 검출하는 과정을 포함할 수 있다.
상기 이미지 전처리 단계는 상기 복수 개의 관심 영역 각각에 대응하는 이미지에서 특정 그레이스케일(grayscale) 값을 임계값으로 설정하여, 상기 임계값 이상의 그레이스케일 값을 갖는 이미지 픽셀은 검은색 변환하고 상기 임계값 이하의 그레이스케일 값을 갖는 이미지 픽셀은 골소주 패턴으로 감지하여 흰색으로 변환하는 방식으로 이진화 처리하는 과정;을 포함할 수 있다.
또한, 상기 골밀도 도출 단계는 CNN(Convolutional neural network) 딥러닝 모델을 적용하여 상기 전처리된 복수 개의 관심 영역에 대응하는 이미지 각각에서 골소주 패턴을 감지하여 개별 골밀도를 도출하는 과정; 및 앙상블(ensemble) 딥러닝 모델을 사용하여 상기 CNN 딥러닝 모델을 통하여 도출된 개별 골밀도 정보를 종합하여 피검자의 최종 골밀도를 도출하는 과정;을 포함할 수 있다.
여기서, 상기 골밀도 도출 단계에서 상기 CNN 딥러닝 모델은 지도 학습을 위한 데이터셋으로 상기 이미지 전처리 단계를 통해 전처리된 이미지 상에 나타나는 골소주 패턴 정보 및 레이블(label)로서 이중 에너지 X선 흡수 계측법(DXA)으로 획득된 실제 피검자 골밀도 정보가 입력될 수 있다.
그리고, 상기 골밀도 측정 단계에서 상기 앙상블(Ensemble) 딥러닝 모델은 최종 골밀도를 측정하기 위하여 피검자 나이, 신장 및 몸무게 중 어느 하나로 구성되는 생물학적 매개변수를 사용할 수 있다.
또한, 본 발명은 상기 과제를 해결하기 위하여, 전술한 고관절 골절 진단을 위한 골밀도 측정 방법의 고관절 이미지를 획득하는 단계에서 획득된 고괄절 이미지를 입력 데이터로 하며, 골소주 패턴을 감지하기 위한 상기 복수 개의 관심 영역에 대응하는 이미지를 출력 데이터로 하는 도출 알고리즘을 포함하고, 상기 도출 알고리즘은 상기 추출된 복수 개의 관심 영역 각각에 대응하는 이미지 상에서 골소주 패턴을 감지하고, 상기 감지된 골소주 패턴 및 생물학적 매개변수를 기반으로 골밀도를 도출하는 단계;가 자동으로 수행되도록 프로그래밍 되어, 컴퓨팅 기기 또는 온라인 접근이나 온라인 컴퓨팅이 가능한 클라우드 서버에 설치되는 것을 특징으로 하는 고관절 골절 진단을 위한 골밀도 도출 프로그램을 제공할 수 있다.
본 발명에 따른 기계학습 기반 고관절 골절 진단을 위한 골밀도 도출 방법 및 이를 이용한 골밀도 도출 프로그램에 의하면, 일반적인 엑스레이 촬영법으로 획득된 고관절 이미지를 사용함으로써, 기존 골밀도 측정 방법인 이중에너지 X-선 흡수계측법(DXA) 또는 정량적 전산화 단층 촬영법(QCT) 등과 같이 고가의 측정 장비가 요구되지 않아 비용이 절감될 수 있는 효과가 있다.
또한, 본 발명에 따른 기계학습 기반 고관절 골절 진단을 위한 골밀도 도출 방법 및 이를 이용한 골밀도 도출 프로그램에 의하면, CNN 딥러닝 기반 기계학습 알고리즘을 적용하여 고관절 이미지에서 특정 관심 영역을 검출할 수 있으며, 상기 검출된 관심 영역에 나타나는 골소수 패턴을 기반으로 골밀도를 도출하기 위한 전체 과정이 수 초 내에 신속하고 정확하게 이루어질 수 있는 효과가 있다.
또한, 본 발명에 따른 기계학습 기반 고관절 골절 진단을 위한 골밀도 도출 방법 및 이를 이용한 골밀도 도출 프로그램에 의하면, 소벨(Sobel) 영상 처리 기술을 사용하여 고관절 이미지의 기울기 또는 그래디언트(gradient) 기반으로 상기 고관절 이미지를 전처리하는 과정을 통해 기계학습 알고리즘이 골소주 패턴 선명하게 인식하여 골밀도 도출 성능이 향상될 수 있는 효과가 있다.
또한, 본 발명에 따른 기계학습 기반 고관절 골절 진단을 위한 골밀도 도출 방법 및 이를 이용한 골밀도 도출 프로그램에 의하면, 기계학습 알고리즘의 학습 데이터로서 피검자의 나이 또는 신체 정보를 포함하는 생물학적 매개변수를 추가적으로 사용하여 피검자의 도출된 골밀도와 실제 측정된 골밀도의 오차를 줄여 고관절 골절의 진단 정확성을 향상시킬 수 있다.
도 1은 본 발명에 따른 기계학습 기반 고관절 골절 진단을 위한 골밀도 도출 방법의 순서도를 도시한 것이다.
도 2는 본 발명에 따른 기계학습 기반 고관절 골절 진단을 위한 골밀도 도출 방법의 고관절 이미지 획득 단계에서 획득된 피검자의 고관절 이미지를 도시한 것이다.
도 3은 본 발명에 따른 기계학습 기반 고관절 골절 진단을 위한 골밀도 도출 방법에서 고관절 이미지 상에 검출되는 복수 개의 관심 영역의 위치를 표시하여 도시한 것이다.
도 4는 본 발명에 따른 기계학습 기반 고관절 골절 진단을 위한 골밀도 도출 방법에서 고관절 이미지 상에서 검출된 복수 개의 관심 영역에 대응하는 이미지를 전처리하는 과정을 도시한 것이다.
도 5는 본 발명에 따른 기계학습 기반 고관절 골절 진단을 위한 골밀도 도출 방법에서 기계학습 알고리즘을 적용하여 복수 개의 관심 영역에서 감지된 골소주 패턴을 기반으로 피검자의 골밀도를 도출하는 과정을 도시한 것이다.
도 6 내지 도 8은 본 발명의 기계학습 기반 고관절 골절 진단을 위한 골밀도 도출 방법에서 이미지 전처리 단계 수행 유무에 따른 복수 개의 관심 영역 각각에서 도출된 골밀도와 실제 DXA로 측정된 골밀도 사이의 평균값 차이(MEAN) 및 평균값 차이에 대한 표준 편차(SD)를 도시한 그래프이다.
도 9는 본 발명의 기계학습 기반 고관절 골절 진단을 위한 골밀도 도출 방법에서 앙상블(Ensemble) 딥러닝 모델의 생물학적 매개변수의 사용 유무에 따른 최종 도출된 골밀도와 실제 DXA로 측정된 골밀도 사이의 상관 관계를 도시한 그래프이다.
이하, 첨부된 도면들을 참조하여 본 발명의 바람직한 실시예들을 상세히 설명하기로 한다. 그러나, 본 발명은 여기서 설명된 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 실시예들은 개시된 내용이 철저하고 완전해질 수 있도록, 그리고 당업자에게 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다. 명세서 전체에 걸쳐서 동일한 참조 번호들은 동일한 구성요소들을 나타낸다.
도 1은 본 발명에 따른 기계학습 기반 고관절 골절 진단을 위한 골밀도 도출 방법의 순서도를 도시한 것이다.
도 1에 도시된 바와 같이, 본 발명에 따른 기계학습 기반 고관절 골절 진단을 위한 골밀도 도출 방법은 피검자의 고관절 영역을 엑스레이(X-ray)로 촬영한 영상 데이터로부터 고관절 이미지를 획득하는 단계(S100); 상기 획득된 고관절 이미지 상에서 대퇴골 근위부의 골소주 패턴(Trabeculae pattern)을 감지하기 위하여 복수 개의 관심 영역을 검출하는 단계(S200); 상기 검출된 복수 개의 관심 영역에 대응하는 이미지를 전처리하는 단계(S300); 및 상기 전처리된 복수 개의 관심 영역에 대응하는 이미지 각각에서 감지된 골소주 패턴을 기반으로 피검자의 골밀도를 도출하는 단계(S400);를 포함하여 수행될 수 있다.
도 2는 본 발명에 따른 기계학습 기반 고관절 골절 진단을 위한 골밀도 도출 방법에서 획득된 피검자의 고관절 이미지를 도시한 것이다.
도 2에 도시된 바와 같이, 본 발명에 따른 기계학습 기반 고관절 골절 진단을 위한 골밀도 도출 방법은 피검자의 고관절 및 대퇴 경부의 전후면 영역을 엑스레이(X-ray)로 촬영한 영상 데이터로부터 고관절 골절 진단을 위한 고관절 이미지(10)를 획득할 수 있다. 상기 고관절 이미지(10)는 피검자의 고관절이 화면의 중앙에 있으며 근위 대퇴골이 충분히 길게 보이도록 획득될 수 있다.
본 발명은 단순 방사선 검사로 획득되는 고관절 이미지(20)를 사용함으로써, 기존 골밀도 측정 방법인 이중 에너지 X-선 흡수계측법(DXA) 또는 정량적 전산화 단층 촬영법(QCT) 등과 같이 고가의 측정 장비가 요구되지 않으며, 비교적 저렴하고 간편하게 고관절 이미지(10)를 획득 가능하므로 비용이 절감될 수 있는 효과가 있다.
도 3은 본 발명에 따른 기계학습 기반 고관절 골절 진단을 위한 골밀도 도출 방법에서 고관절 이미지 상에 검출되는 복수 개의 관심 영역의 위치를 표시하여 도시한 것이다.
도 3에 도시된 바와 같이, 본 발명에 따른 기계학습 기반 고관절 골절 진단을 위한 골밀도 도출 방법에서 상기 관심 영역 검출 단계(S200)는 기계학습 알고리즘을 이용하여 상기 고관절 이미지(10) 상에서 기존 골다공증 진단 방법으로서 Singh 지표(Singh Index; SI)에 대응하여 골소주 패턴(P)이 형성되는 영역을 포함하는 복수 개의 관심 영역(Region of interest, ROI)(20)을 자동으로 검출할 수 있다.
그리고, 상기 관심 영역 검출 단계(S200)에서 기계학습 알고리즘은 CNN(Convolutional neural network) 딥러닝 모델을 적용하여 상기 고관절 이미지(10)의 대퇴골 부위에서 Singh 지표(Singh Index; SI)에 대응하는 골소주 패턴(P)이 형성되는 영역에 복수 개의 진단점(21)을 검출하는 과정; 및 상기 검출된 복수 개의 진단점(21)을 각각 포함하는 복수 개의 관심 영역(20)을 검출하는 과정;을 포함하여 수행될 수 있다.
여기서, 상기 복수 개의 관심 영역(20)은 상기 고관절 이미지(10)에서 일차성 압박골 군(principal compressive group)에 형성되는 제1 관심 영역(20a), 이차성 장력골 군(secondary tensile group)에 형성되는 제2 관심 영역(20b), 일차성 장력골 군(principal tensile group)에 형성되는 제3 관심 영역(20c), 대 전자골 군(great trochanter group)에 형성되는 제4 관심 영역(20d), 이차성 압박골 군(secondary compressive group)에 형성되는 제5 관심 영역(20e) 및 대퇴부의 워드 삼각부위(Ward's triangle)에 형성되는 제6 관심 영역(20f)으로 이루어지는 그룹에서 하나 이상의 관심 영역을 포함되도록 검출될 수 있다.
일실시예로, 도 3에 도시된 바와 같이, 상기 관심 영역 검출 단계(S200)에서 기계학습 알고리즘의 CNN 딥러닝 모델은 상기 고관절 이미지(10) 상에 나타나는 골소주 패턴(P)에 대응하여 대퇴골 근위부에 설정되는 복수 개의 관심 영역(20) 중에서 상기 제1 관심 영역(20a), 상기 제2 관심 영역(20b) 및 상기 제3 관심 영역(20c)을 각각 선택하여 검출할 수 있다.
상기 관심 영역 검출 단계(S200)에서 CNN 딥러닝 모델을 통해 검출된 상기 복수 개의 진단점(21)은 각각 상기 고관절 이미지(10)의 대퇴골 근위부 영역에서 Singh 지표(Singh Index; SI)에 대응하는 영역을 위치 좌표로 나타낼 수 있다. 또한, 상기 복수 개의 진단점(21)은 각각 상기 고관절 이미지(10) 상에 검출된 각각의 관심 영역(20) 내부의 중앙점으로 간주될 수 있으며, 상기 검출된 복수 개의 관심 영역(20)은 경계 상자와 같은 도형 아이콘으로 표시하여 도식화 처리할 수 있다.
그리고, 상기 관심 영역 검출 단계(S200)에서 기계학습 알고리즘은 평균 제곱 오차가 손실 함수(loss function)으로 적용된 300×300 픽셀 해상도 크기를 지닌 고관절 이미지(10)에 대하여 CNN 딥러닝 모델을 적용할 수 있으며, 상기 CNN 딥러닝 모델은 상기 고관절 이미지 상에 검출되는 복수 개의 관심 영역에 대응하는 각각의 이미지가 160×160 픽셀 해상도의 크기를 지니도록 축소시킬 수 있다.
이후, 상기 관심 영역 검출 단계(S200)에서 도식화 처리된 복수 개의 관심 영역(20) 각각에 포함되는 골소주 패턴(P)은 상기 이미지 전처리 단계(S300)에서 기계학습 알고리즘 및 영상 처리 알고리즘을 사용하여 골소주 패턴(P) 경계선 추출 과정 및 이진화 처리 과정이 순차적으로 수행될 수 있다.
도 4는 본 발명에 따른 기계학습 기반 고관절 골절 진단을 위한 골밀도 도출 방법에서 고관절 이미지 상에서 검출된 복수 개의 관심 영역에 대응하는 이미지를 전처리하는 과정을 도시한 것이다.
도 4에 도시된 바와 같이, 본 발명의 상기 이미지 전처리 단계(S300)는 영상 처리 기법으로서 소벨(Sobel) 알고리즘을 적용하여 상기 관심 영역 검출 단계(S200)에서 상기 고관절 이미지(10) 상에 검출되는 제1 관심 영역(20a), 제2 관심 영역(20b) 및 제3 관심 영역(20c)에 대응하는 각각의 원본 이미지(30) 상에 나타나는 골소주 패턴(P)의 경계선를 추출하는 과정을 수행할 수 있다.
여기서, 상기 이미지 전처리 단계(S300)의 경계선 검출 과정에 사용되는 소벨(Sobel) 알고리즘은 상기 제1 관심 영역(20a), 상기 제2 관심 영역(20b) 및 상기 제3 관심 영역(20c)에 대응하는 원본 이미지(30)를 구성하는 픽셀의 그레이스케일 값(grayscale value) 밝기 변화율을 의미하는 기울기(또는 '그래디언트(gradient)' 라고도 함)를 기반으로 상기 복수 개의 관심 영역(20a, 20b, 20c) 각각에 대응하는 각각의 이미지(30)에 나타나는 골소주 패턴(P) 경계 검출 과정을 수행할 수 있다.
구체적으로, 상기 고관절 이미지(10) 상에 검출되는 제1 관심 영역(20), 상기 제2 관심 영역(20b) 및 상기 제3 관심 영역(20c)에 대응하는 원본 이미지(30)는 흑백 방사선 이미지로 표현될 수 있다. 따라서, 상기 고관절 이미지(10) 상에 검출되는 제1 관심 영역(20), 상기 제2 관심 영역(20b) 및 상기 제3 관심 영역(20c)에 대응하는 이미지(30)를 구성하는 픽셀은 상기 픽셀의 밝기 정보를 나타내도록 0 내지 255 사이의 정수인 그레이스케일 값(grayscale value)을 지닐 수 있다. 여기서, 그레이스케일 값(grayscale value) 중에서 '0'은 가장 어두운 검은색을 나타내며, '255'는 가장 밝은 흰색을 나타낸다.
상기 이미지 전처리 단계(S300)에서 적용되는 소벨(Sobel) 알고리즘은 이미지 픽셀의 그레일스케일 값(grayscale value)을 기반으로 각각 가로 방향 및 세로 방향으로 미분 연산하여 한 쌍의 소벨 필터(Sobel filter) 마스크를 생성할 수 있으며, 상기 한 쌍의 소벨 필터 마스크를 각각 가로 방향 및 세로 방향으로 미분한 값으로 구성되는 벡터의 크기를 구하여 상기 관심 영역(20a, 20b, 20c)에 대응하는 이미지 상에 나타나는 골소주 패턴(P)의 경계선 세기를 추출할 수 있다.
여기서, 소벨(Sobel) 알고리즘을 통해 상기 추출된 골소주 패턴(P)의 경계선 세기가 클수록 경계 검출된 이미지(40) 상에서 골소주 패턴(P) 경계선이 굵고 밝게 나타나며, 상기 소벨 알고리즘을 통해 추출된 골소주 패턴(P)의 경계선 세기가 작을수록 상기 경계 검출된 이미지(40) 상에서 골소주 패턴(P) 경계선이 가늘고 어둡게 나타날 수 있다.
또한, 상기 이미지 전처리 단계(S300)는 소벨 알고리즘을 사용하여 골소주 패턴(P) 경계선 추출 과정을 수행한 이후 상기 복수 개의 관심 영역(20a, 20b, 20c) 각각에 대응하는 이미지 픽셀의 그레이스케일 값 중에서 특정 크기의 그레이스케일 값를 임계값으로 설정하여 이진화 처리 과정을 수행할 수 있다.
구체적으로, 상기 이미지 전처리 단계(S300)에서 이진화 처리 과정은 상기 복수 개의 관심 영역(20a, 20b, 20c) 각각에 대응하는 이미지에서 임계값 크기 이상의 그레이스케일 값(grayscale value)를 갖는 픽셀들은 골소주 패턴이 아닌 배경 영역으로 처리하여 검은색으로 변환하고, 임계값 크기 이하의 그레이스케일 값을 갖는 픽셀들은 골소주 패턴(P)으로 판단하고 이를 흰색으로 변환하는 이진화 처리 과정을 수행할 수 있다.
이와 같이, 상기 이진화 처리된 복수 개의 관심 영역(20a, 20b, 20c) 각각에 대응하는 이미지(50)는 상기 골밀도 도출 단계(S400)에서 기계학습 알고리즘의 학습 데이터셋으로 인식될 수 있으며, 상기 기계학습 알고리즘은 상기 이진화 처리된 이미지(50) 상에서 골소주 패턴(P)을 선명하고 명확하게 인식 가능하여 골밀도 도출을 위한 학습 성능이 향상될 수 있다.
도 5는 본 발명에 따른 기계학습 기반 고관절 골절 진단을 위한 골밀도 도출 방법에서 기계학습 알고리즘을 적용하여 복수 개의 관심 영역에서 감지된 골소주 패턴을 기반으로 피검자의 골밀도를 도출하는 과정을 도시한 것이다.
도 5에 도시된 바와 같이, 상기 골밀도 도출 단계(S400)는 기계학습 알고리즘을 적용하여 상기 이미지 전처리 단계(S300)에서 최종 전처리된 복수 개의 관심 영역(20a, 20b, 20c) 각각에 대응하는 이미지(50) 상에 감지된 골소주 패턴(P)을 감지하여 피검자의 골밀도(BMD; Bone mineral density)를 도출할 수 있다.
상기 골밀도 도출 단계(S400)는 CNN(Convolutional neural network) 딥러닝 모델을 적용하여 상기 이미지 전처리 과정(S300) 이후 전처리된 복수 개의 관심 영역 각각에 대응하는 이미지(50) 상에서 골소주 패턴(P)을 감지하여 개별 골밀도 정보를 도출하는 과정; 및 앙상블(Ensemble) 딥러닝 모델을 사용하여 상기 CNN 딥러닝 모델을 통하여 도출된 개별 골밀도 정보 종합하여 피검자의 최종 골밀도를 도출하는 과정;을 순차적으로 수행할 수 있다.
여기서, 상기 골밀도 도출 단계(S400)에서 각각의 CNN 딥러닝 모델은 학습 데이터셋(Dataset)으로서 상기 이미지 전처리 단계(S300)를 통해 전처리된 이미지(50) 상에 나타나는 골소주 패턴(P) 정보를 입력하고, 레이블(label)로서 이중 에너지 X-선 흡수계측법(Dual energy x-ray absorptiometry; DXA)으로 획득된 피검자 고관절 영역에 대한 실제 골밀도 정보를 입력하여 회귀 분석(Regression) 방법으로 지도 학습될 수 있다.
상기 골밀도 도출 단계(S400)에 사용되는 CNN 딥러닝 모델은 다양한 기능을 갖는 복수 개의 레이어(layer)로 구성되며, 상기 레이어 중에서 컨볼루션 레이어(convolutional layer)이 골소주 패턴의 특징을 추출하는 주요한 역할을 수행한다. 또한, 상기 CNN 딥러닝 모델은 VGG-net 기반으로 설계되며, 이전 레이어의 출력 크기를 감소하기 위하여 최대 풀링 레이어(max-pooling layer)를 도입하여 최대 sub-matrix(하위 매트릭스) 값을 최대 풀링 레이어(max-pooling layer)의 대표 요소로 선택할 수 있다.
그리고, CNN 딥러닝 모델에서 상기 컨볼루션 레이어(convolution layer) 및 최대 풀링 레이어(max-pooling layer)에서 추출한 특징으로부터 훈련 과정 중에 최적화된 중량 계수를 갖는 완전 연결 레이어(Fully connected layer; FC)에 대응하는 2-계층 퍼셉트론 네트워크(2-layer perceptron network)는 골밀도 도출 기능으로 구성될 수 있다.
그리고, 상기 골밀도 도출 단계(S400)에서 기계학습 알고리즘은 일반적으로 사용되는 선형 회귀 방법(linear regression method) 대신 앙상블(Ensemble) 딥러닝 모델을 적용하여 상기 전처리된 이미지(50) 각각에서 CNN 딥러닝 모델을 통해 도출되는 개별 골소주 패턴 정보를 종합하여 피검자 고관절 영역에 대한 최종 골밀도를 도출하는 과정을 수행할 수 있다.
여기서, 상기 앙상블(Ensemble) 딥러닝 모델은 스태킹 기법(stacking)을 적용하여 상기 전처리된 복수 개의 관심 영역에 대응하는 이미지(50)마다 적용되는 각각의 CNN 딥러닝 모델로 구성되는 다중 모델의 출력을 다시 입력함으로써 피검자 고관절 영역에 대한 골밀도를 최종적으로 산출할 수 있다.
더 나아가, 상기 앙상블(Ensemble) 딥러닝 모델은 피검자의 나이 또는 신장, 몸무게 등의 신체 정보로 구성되는 생물학적 매개변수와 골밀도(BMD)의 연관성을 기반으로 추가 정보를 획득하고, 상기 획득된 정보 범위를 0 내지 1 사이 값으로 변환하는 정규화 과정을 통해 앙상블(Ensemble) 딥러닝 모델의 학습 데이터셋으로 입력할 수 있다.
도 6 내지 도 8은 본 발명의 기계학습 기반 고관절 골절 진단을 위한 골밀도 도출 방법에서 이미지 전처리 단계 수행 유무에 따른 복수 개의 관심 영역 각각에서 도출된 골밀도와 실제 DXA로 측정된 골밀도 사이의 평균값 차이(MEAN) 및 평균값 차이에 대한 표준 편차(SD)를 도시한 그래프이다.
도 6, 도 7 및 도 8은 각각 제1 관심 영역(20a), 제2 관심 영역(20b) 및 제3 관심 영역(20c) 각각에 대응하는 이미지를 기반으로 도출된 골밀도 및 실제 골밀도의 평균값 차이 및 이에 대한 표준 편차 관계를 도시한 그래프이다.
도 6 내지 도 8에 도시된 바와 같이, 본 발명자들은 Bland-Altman Plot 방법을 이용하여 CNN 딥러닝 모델을 사용하여 150명 피검자에 대하여 복수 개의 관심 영역 각각에 대응하는 이미지 상에 나타나는 골소주 패턴을 기반으로 도출되는 골밀도와 이중에너지 X-선 흡수계측법(DXA)으로 획득된 실제 골밀도 사이의 평균값 차이 및 이에 대한 표준 편차 관계를 그래프로 나타냈다.
그리고, 상기 골밀도 도출 단계(S400)에서 150명 피검자를 대상으로 도출된 골밀도의 평균값과 DXA로 획득된 실제 골밀도의 평균값의 차이(MEAN)를 파란색 수평 라인으로 표시하였고, 또한 상기 평균값의 차이에 대한 ±1.96 표준 편차(SD)는 각각 한 쌍의 빨간색 수평 라인으로 표시하였다.
도 6(a)에 도시된 바와 같이, 150명 피검자에 대한 고관절 이미지의 제1 관심 영역(20a)에서 CNN 딥러닝 모델을 통해 도출된 골밀도의 평균값과 DXA로 획득된 실제 골밀도의 평균값의 차이(MEAN)를 살펴보면, 상기 이미지 전처리 단계(S300) 수행전 상기 제1 관심 영역(20a)에 대한 원본 이미지(30, 도 4 참조)를 사용하는 경우 평균값 오차(MEAN)가 0.035g/cm2로 측정되었다. 반면, 도 6(b)에 도시된 바와 같이, 상기 이미지 전처리 단계(S300)를 수행하여 그래디언트(gradient)를 기반으로 전처리된 이미지(50)를 사용하는 경우 평균값 오차(MEAN)가 0.017g/cm2로 측정되었다.
또한, 도 7(a)에 도시된 바와 같이, 150명 피검자에 대한 고관절 이미지의 제2 관심 영역(20b)에서 CNN 딥러닝 모델을 통해 도출된 골밀도의 평균값과 DXA로 획득된 실제 골밀도의 평균값의 차이(MEAN)를 살펴보면, 상기 이미지 전처리 단계(S300) 수행전 상기 제2 관심 영역(20b)에 대한 원본 이미지(30, 도 4 참조)를 사용하는 경우 평균값 오차(MEAN)가 0.022g/cm2로 측정되었다. 반면, 도 7(b)에 도시된 바와 같이, 상기 이미지 전처리 단계(S300)를 수행하여 그래디언트(gradient)를 기반으로 전처리된 이미지(50)를 사용하는 경우 평균값 오차(MEAN)가 0.006g/cm2로 측정되었다.
또한, 도 8(a)에 도시된 바와 같이, 150명 피검자에 대한 고관절 이미지의 제3 관심 영역(20c)에서 CNN 딥러닝 모델을 통해 도출된 골밀도의 평균값과 DXA로 획득된 실제 골밀도의 평균값의 차이(MEAN)를 살펴보면, 상기 이미지 전처리 단계(S300) 수행전 상기 제3 관심 영역(20c)에 대한 원본 이미지(50, 도 4 참조)를 사용하는 경우 평균값 오차(MEAN)가 0.03g/cm2로 측정되었다. 반면, 도 8(b)에 도시된 바와 같이, 상기 이미지 전처리 단계(S300)를 수행하여 그래디언트(gradient) 기반으로 전처리된 이미지(50)를 사용하는 경우 평균값 오차(MEAN)가 0.01g/cm2로 측정되었다.
이와 같이, 본 발명에 따른 기계학습 기반 고관절 골절 진단을 위한 골밀도 도출 방법은 소벨(Sobel) 알고리즘과 같은 영상 처리기술을 적용하여 상기 관심 영역에 대응하는 원본 이미지에서 그래디언트(gradient) 기반으로 골소주 패턴 경계선 인식에 방해가 되는 노이즈 요소를 제거하거나 또는 이진화되도록 전처리 수행된 이미지를 CNN 딥러닝 모델의 학습 데이터셋으로 입력하는 경우 기계학습 알고리즘의 학습 성능이 보다 향상되므로 상기 CNN 딥러닝 모델에서 도출한 골밀도와 실제 골밀도 사이의 평균값 오차가 감소하는 것으로 나타났다.
도 9는 본 발명의 기계학습 기반 고관절 골절 진단을 위한 골밀도 도출 방법에서 앙상블(Ensemble) 딥러닝 모델의 생물학적 매개변수의 사용 유무에 따른 최종 도출된 골밀도와 실제 DXA로 측정된 골밀도 사이의 상관 관계를 도시한 그래프이다.
본 발명자들은 150명 피검자에 복수 개의 관심 영역 각각에 대응하는 이미지에서 CNN 딥러닝 모델을 사용하여 도출된 개별 골밀도를 기반으로 앙상블(Ensemble) 딥러닝 모델을 사용하여 최종 골밀도(BMD)를 도출하였으며, 또한 상기 도출된 150명 피검자에 대한 최종 골밀도와 DXA로 획득된 실제 골밀도 사이의 피어슨 상관 계수(Pearson correlation coefficient)의 결정계수(R2)를 계산하였다. 여기서, 상기 피어슨 상관 계수의 결정계수(R2)가 1에 근사할수록 상기 도출된 최종 골밀도(BMD)와 실제 골밀도 사이의 연관성(상관관계)가 높은 것으로 이해될 수 있다.
도 9(a)에 도시된 바와 같이, 상기 골밀도 도출 단계(S400)에서 앙상블(Ensemble) 딥러닝 모델이 학습 데이터로서 피검자에 대한 나이, 신장, 체중 등 생물학적 매개변수가 입력되지 않은 경우 상기 피어슨 상관 계수의 결정계수(R2)는 0.58로 측정되었다. 반면, 도 9(b)에 도시된 바와 같이 앙상블(Ensemble) 딥러닝 모델이 학습 데이터로서 생물학적 매개변수가 입력된 경우 상기 피어슨 상관 계수의 결정계수(R2)가 0.65로 측정되었다.
이와 같이, 본 발명에 따른 기계학습 기반 고관절 골절 진단을 위한 골밀도 도출 방법은 앙상블(Ensemble) 딥러닝 모델의 학습 데이터셋으로 피검자에 대한 골밀도를 도출하는 과정에서 피검자에 대한 생물학적 매개변수 정보를 추가적으로 사용함으로써 피검자 실제 골밀도와 연관성이 높은 골밀도를 도출하여 기계학습 알고리즘의 성능을 향상시킬 수 있음을 확인하였다.
더 나아가, 본 발명의 고관절 골절 진단을 위한 골밀도 도출방법은 프로그램화되어 사용자 컴퓨팅 기기 또는 컴퓨팅이 가능한 클라우드 서버에 설치 또는 저장될 수 있으며, 이와 같은 프로그램은 전술한 고관절 골절 진단을 위한 골밀도 도출방법의 골관절 골절 진단용 고관절 이미지를 획득하는 단계에서 획득된 엑스레이(X-ray) 촬영된 고관절 이미지를 입력 데이터로 하며, 상기 Singh 지표에 대응하여 골소주 패턴을 감지하기 위한 복수 개의 관심 영역을 출력 데이터로 하는 도출 알고리즘을 포함하며, 상기 도출 알고리즘은 상기 검출된 복수 개의 관심 영역에서 골소주 패턴을 감지하여 골밀도를 도출하는 단계가 자동으로 수행되도록 프로그래밍 될 수 있다.
여기서, 복수 개의 관심 영역을 출력 데이터로 검출하는 단계와 상기 도출 프로그램에서 상기 검출된 복수 개의 관심 영역 각각에 나타나는 골소주 패턴을 감지하여 골밀도를 도출하는 단계는 순차적 또는 단계적으로 사용자의 선택에 따라 수행되도록 프로그래밍될 수 있다.
이와 같이, 본 발명에 따른 기계학습 기반 골관절 골절 진단을 위한 골밀도 도출 방법은 피검자 고관절 영역을 기존 엑스레이(X-ray) 촬영법으로 획득된 고관절 이미지에서 기계학습 알고리즘을 적용하여 대퇴골 근위부에서 Singh 지표에 대응하는 특정 관심 영역을 검출하고, 상기 검출된 각각의 관심 영역에 나타나는 골소수 패턴을 기반으로 골밀도를 도출하기 위한 전체 과정이 수 십초 내에 이루어지므로 고관절 골절 진단을 위한 골밀도 도출이 신속하고 정확하게 이루어질 수 있다.
더 나아가, 본 발명의 기계학습 기반 고관절 골절 진단을 위한 골밀도 도출 방법이 프로그램화 되어 그래픽 사용자 인터페이스(GUI)와 결합되는 경우 각각의 단계에서 수행된 결과를 디스플레이 화면에 나타냄으로서 피검자 및 정형외과 전문의 등의 제3자가 고관절 골절 진단을 위한 골밀도 도출 과정 및 진단 결과를 원활하게 파악할 수 있다.
본 명세서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술분야의 당업자는 이하에서 서술하는 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경 실시할 수 있을 것이다. 그러므로 변형된 실시가 기본적으로 본 발명의 특허청구범위의 구성요소를 포함한다면 모두 본 발명의 기술적 범주에 포함된다고 보아야 한다.

Claims (10)

  1. 기계학습 기반 고관절 골절 진단을 위한 골밀도 도출 방법에 있어서,
    피검자의 고관절 영역을 엑스레이로 촬영한 영상 데이터로부터 고관절 이미지를 획득하는 단계;
    상기 획득된 고관절 이미지 상에서 대퇴골 근위부의 골소주 패턴을 감지하기 위하여 복수 개의 관심 영역을 검출하는 단계;
    상기 검출된 복수 개의 관심 영역 각각에 대응하는 이미지를 전처리하는 단계; 및
    상기 전처리된 복수 개의 관심 영역에 대응하는 이미지 각각에서 감지된 골소주 패턴을 기반으로 피검자의 골밀도를 도출하는 단계;를 포함하는 것을 특징으로 하는 고관절 골절 진단을 위한 골밀도 도출 방법.
  2. 제1항에 있어서,
    상기 관심 영역 검출 단계에서 검출되는 복수 개의 관심 영역은 골다공증 진단 방법으로서 Singh 지표(Singh Index; SI)에 대응하는 골소주 패턴이 형성되는 영역을 포함하는 것을 특징으로 하는 고관절 골절 진단을 위한 골밀도 도출 방법.
  3. 제2항에 있어서,
    상기 관심 영역 검출 단계에서 검출되는 복수 개의 관심 영역은 일차성 압박골 군(principal compressive group) 영역, 이차성 장력골 군(secondary tensile group) 영역, 일차성 장력골 군(principal tensile group) 영역, 대 전자골 군(great trochanter group) 영역, 이차성 압박골 군(secondary compressive group) 영역 및 대퇴부의 워드 삼각부위(Ward's triangle) 영역으로 이루어지는 그룹에서 하나 이상의 관심 영역을 포함하도록 검출되는 것을 특징으로 고관절 골절 진단을 위한 골밀도 도출 방법.
  4. 제1항에 있어서,
    상기 관심 영역 검출 단계에서 기계학습 알고리즘은 CNN(Convolutional neural network) 딥러닝 모델을 적용하여 미리 결정된 복수 개의 진단점을 검출하는 과정; 및
    상기 검출된 복수 개의 진단점을 각각 포함하는 복수 개의 관심 영역을 검출하는 과정;을 포함하는 것을 특징으로 하는 고관절 골절 진단을 위한 골밀도 도출 방법.
  5. 제1항에 있어서,
    상기 이미지 전처리 단계는 소벨(Sobel) 알고리즘을 사용하여 상기 복수 개의 관심 영역 각각에 대응하는 이미지에서 추출된 기울기 또는 그래디언트(gradient) 기반으로 골소주 패턴의 경계를 검출하는 과정을 포함하는 것을 특징으로 하는 고관절 골절 진단을 위한 골밀도 도출 방법.
  6. 제1항에 있어서,
    상기 이미지 전처리 단계는 상기 복수 개의 관심 영역 각각에 대응하는 이미지에서 특정 그레이스케일(grayscale) 값을 임계값으로 설정하여, 상기 임계값 이상의 그레이스케일 값을 갖는 이미지 픽셀은 검은색 변환하고 상기 임계값 이하의 그레이스케일 값을 갖는 이미지 픽셀은 골소주 패턴으로 감지하여 흰색으로 변환하는 방식으로 이진화 처리하는 과정;을 포함하는 것을 특징으로 하는 고관절 진단을 위한 골밀도 측정 방법.
  7. 제1항에 있어서,
    상기 골밀도 도출 단계는 CNN(Convolutional neural network) 딥러닝 모델을 적용하여 상기 전처리된 복수 개의 관심 영역에 대응하는 이미지 각각에서 골소주 패턴을 감지하여 개별 골밀도를 도출하는 과정; 및
    앙상블(ensemble) 딥러닝 모델을 사용하여 상기 CNN 딥러닝 모델을 통하여 도출된 개별 골밀도 정보를 종합하여 피검자의 최종 골밀도를 도출하는 과정;을 포함하는 것을 특징으로 하는 고관절 골절 진단을 위한 골밀도 도출 방법.
  8. 제7항에 있어서,
    상기 골밀도 도출 단계에서 상기 CNN 딥러닝 모델은 지도 학습을 위한 데이터셋으로 상기 이미지 전처리 단계를 통해 전처리된 이미지 상에 나타나는 골소주 패턴 정보 및 레이블(label)로서 이중 에너지 X선 흡수 계측법(DXA)으로 획득된 실제 피검자 골밀도 정보가 입력되는 것을 특징으로 하는 고관절 골절 진단을 위한 골밀도 도출 방법.
  9. 제7항에 있어서,
    상기 골밀도 측정 단계에서 상기 앙상블(Ensemble) 딥러닝 모델은 최종 골밀도를 측정하기 위하여 피검자 나이, 신장 및 몸무게 중 어느 하나로 구성되는 생물학적 매개변수를 사용하는 것을 특징으로 하는 고관절 골절 진단을 위한 골밀도 도출 방법.
  10. 제1항 내지 제9항 중 어느 하나의 항의 고관절 골절 진단을 위한 골밀도 측정 방법의 고관절 이미지를 획득하는 단계에서 획득된 고괄절 이미지를 입력 데이터로 하며, 골소주 패턴을 감지하기 위한 상기 복수 개의 관심 영역에 대응하는 이미지를 출력 데이터로 하는 도출 알고리즘을 포함하고,
    상기 도출 알고리즘은 상기 추출된 복수 개의 관심 영역 각각에 대응하는 이미지 상에서 골소주 패턴을 감지하고, 상기 감지된 골소주 패턴 및 생물학적 매개변수를 기반으로 골밀도를 도출하는 단계;가 자동으로 수행되도록 프로그래밍 되어, 컴퓨팅 기기 또는 온라인 접근이나 온라인 컴퓨팅이 가능한 클라우드 서버에 설치되는 것을 특징으로 하는 고관절 골절 진단을 위한 골밀도 도출 프로그램.
PCT/KR2022/014999 2021-10-12 2022-10-05 기계학습 기반 고관절 골절 진단을 위한 골밀도 도출 방법 및 이를 이용한 골밀도 도출 프로그램 WO2023063646A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0134765 2021-10-12
KR1020210134765A KR102414601B1 (ko) 2021-10-12 2021-10-12 기계학습 기반 고관절 골절 진단을 위한 골밀도 도출 방법 및 이를 이용한 골밀도 도출 프로그램

Publications (1)

Publication Number Publication Date
WO2023063646A1 true WO2023063646A1 (ko) 2023-04-20

Family

ID=82399163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/014999 WO2023063646A1 (ko) 2021-10-12 2022-10-05 기계학습 기반 고관절 골절 진단을 위한 골밀도 도출 방법 및 이를 이용한 골밀도 도출 프로그램

Country Status (2)

Country Link
KR (1) KR102414601B1 (ko)
WO (1) WO2023063646A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102414601B1 (ko) * 2021-10-12 2022-07-04 에이아이다이콤 (주) 기계학습 기반 고관절 골절 진단을 위한 골밀도 도출 방법 및 이를 이용한 골밀도 도출 프로그램
KR20240050645A (ko) * 2022-10-12 2024-04-19 가톨릭대학교 산학협력단 X-ray 영상을 이용하여 CT 복원 영상 획득 및 골절을 진단하는 골절 진단 장치 및 골절 진단 방법
CN116458909B (zh) * 2023-04-10 2024-05-07 清华大学 使用锥形束dr设备测量三维骨密度分布的方法及装置
KR102578943B1 (ko) * 2023-04-12 2023-09-15 에이아이다이콤 (주) 엑스레이(X-ray) 촬영된 고관절 방사선 이미지를 이용한 기계학습 기반 골밀도 도출방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010002090A (ko) * 1999-06-11 2001-01-05 정선종 골소주 패턴을 이용한 골소주 지표 설정 방법 및 그에 따른 골밀도 측정 방법
KR20120092451A (ko) * 2011-02-11 2012-08-21 한국과학기술연구원 골밀도 측정을 이용한 환자 맞춤형 인공삽입물 설계 장치
KR20210028559A (ko) * 2019-09-04 2021-03-12 가부시키가이샤 시마쓰세사쿠쇼 화상 해석 방법, 화상 처리 장치, 골밀도 측정 장치 및 학습 모델의 작성 방법
KR20210054925A (ko) * 2019-11-06 2021-05-14 주식회사 나노포커스레이 골밀도 산출을 위한 관심영역 추출 시스템 및 방법
KR102414601B1 (ko) * 2021-10-12 2022-07-04 에이아이다이콤 (주) 기계학습 기반 고관절 골절 진단을 위한 골밀도 도출 방법 및 이를 이용한 골밀도 도출 프로그램

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102185760B1 (ko) * 2020-03-18 2020-12-03 가톨릭대학교 산학협력단 골다공증 진단 장치 및 골다공증 판단 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010002090A (ko) * 1999-06-11 2001-01-05 정선종 골소주 패턴을 이용한 골소주 지표 설정 방법 및 그에 따른 골밀도 측정 방법
KR20120092451A (ko) * 2011-02-11 2012-08-21 한국과학기술연구원 골밀도 측정을 이용한 환자 맞춤형 인공삽입물 설계 장치
KR20210028559A (ko) * 2019-09-04 2021-03-12 가부시키가이샤 시마쓰세사쿠쇼 화상 해석 방법, 화상 처리 장치, 골밀도 측정 장치 및 학습 모델의 작성 방법
KR20210054925A (ko) * 2019-11-06 2021-05-14 주식회사 나노포커스레이 골밀도 산출을 위한 관심영역 추출 시스템 및 방법
KR102414601B1 (ko) * 2021-10-12 2022-07-04 에이아이다이콤 (주) 기계학습 기반 고관절 골절 진단을 위한 골밀도 도출 방법 및 이를 이용한 골밀도 도출 프로그램

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YAMAMOTO NORIO, SUKEGAWA SHINTARO, KITAMURA AKIRA, GOTO RYOSUKE, NODA TOMOYUKI, NAKANO KEISUKE, TAKABATAKE KIYOFUMI, KAWAI HOTAKA,: "Deep Learning for Osteoporosis Classification Using Hip Radiographs and Patient Clinical Covariates", BIOMOLECULES, vol. 10, no. 11, 10 November 2020 (2020-11-10), pages 1534, XP093058775, DOI: 10.3390/biom10111534 *

Also Published As

Publication number Publication date
KR102414601B9 (ko) 2022-10-21
KR102414601B1 (ko) 2022-07-04

Similar Documents

Publication Publication Date Title
WO2023063646A1 (ko) 기계학습 기반 고관절 골절 진단을 위한 골밀도 도출 방법 및 이를 이용한 골밀도 도출 프로그램
WO2018074739A1 (ko) 뇌졸중 진단 및 예후 예측 방법 및 시스템
WO2018155898A1 (en) Method and apparatus for processing histological image captured by medical imaging device
Chiu A novel approach based on computerized image analysis for traditional Chinese medical diagnosis of the tongue
Kamil A deep learning framework to detect Covid-19 disease via chest X-ray and CT scan images.
WO2019103440A1 (ko) 피검체의 의료 영상의 판독을 지원하는 방법 및 이를 이용한 장치
JP2004032684A (ja) 医療画像において腫瘤や実質組織変形をコンピュータを用いて検出する自動化した方法と装置
KR102206621B1 (ko) 딥러닝 알고리즘을 이용한 근감소증 분석 프로그램 및 애플리케이션
US10242446B2 (en) Image processing apparatus and computer-readable recording medium
WO2023165265A1 (zh) 膝关节动张力平衡态评估方法及装置
WO2021010777A1 (ko) 관절염 심각도 정밀 분석 장치 및 방법
WO2015147595A1 (ko) 의료 영상에서 아티팩트와 병변을 구분하는 방법
WO2022139068A1 (ko) 딥러닝 기반의 폐질환 진단 보조 시스템 및 딥러닝 기반의 폐질환 진단 보조 방법
EP3858245B1 (en) Automatic recognition method for measurement point in cephalo image
JP7283878B2 (ja) 映像処理装置、映像処理方法、および映像処理プログラム
Zhang et al. Automatic background recognition and removal (ABRR) in computed radiography images
CN116228767B (zh) 基于计算机视觉的x光肺部肿块图像处理方法
JP2019536531A (ja) X線画像内の不透明度を検出する装置
Nakamura et al. Extraction of Features for Diagnosing Pneumoconiosis from Chest Radiographs Obtained with a CCD Scanner.
US8116545B2 (en) Method and system for analysis of bone density
WO2017222283A1 (ko) 영상촬영 기반의 건강상태 분석 및 건강상태 정보 제공 방법
WO2022153100A1 (en) A method for detecting breast cancer using artificial neural network
WO2017065591A1 (ko) 방사선 유효 피폭량 자동 계산 시스템 및 방법
Mohammed et al. Osteoporosis detection using convolutional neural network based on dual-energy X-ray absorptiometry images
Shakya et al. A novel SM-Net model to assess the morphological types of Sella Turcica using Lateral Cephalogram

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22881275

Country of ref document: EP

Kind code of ref document: A1