WO2023063305A1 - 燃焼状態診断システム - Google Patents

燃焼状態診断システム Download PDF

Info

Publication number
WO2023063305A1
WO2023063305A1 PCT/JP2022/037850 JP2022037850W WO2023063305A1 WO 2023063305 A1 WO2023063305 A1 WO 2023063305A1 JP 2022037850 W JP2022037850 W JP 2022037850W WO 2023063305 A1 WO2023063305 A1 WO 2023063305A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion engine
predetermined rotation
noise
timing
combustion state
Prior art date
Application number
PCT/JP2022/037850
Other languages
English (en)
French (fr)
Inventor
浩明 坪川
Original Assignee
浩明 坪川
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浩明 坪川 filed Critical 浩明 坪川
Publication of WO2023063305A1 publication Critical patent/WO2023063305A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a combustion state diagnosis system capable of diagnosing the combustion state of an internal combustion engine without a crank angle sensor and a camshaft sensor for detecting the rotation angle of the crank.
  • the output signal of the in-cylinder pressure sensor is referred to, and depending on whether or not the pressure in the combustion chamber has reached its peak, the timing at which the piston reaches top dead center is determined from the top dead center of compression. It is known to determine whether it is dead center or exhaust top dead center (see, for example, Patent Document 1).
  • crank angle signal b which is a pulse signal emitted by the crank angle sensor every time the crank angle is turned on, is referenced (see summary), and the installation of the crank angle sensor is essential. This crank angle sensor is very expensive.
  • an object of the present invention is to provide a combustion state diagnosis system capable of diagnosing the combustion state of an internal combustion engine without a crank angle sensor and a camshaft sensor for detecting the rotation angle of the crank. .
  • the internal pressure estimated to be detected after the ignition or fuel injection timing when ignition or fuel injection is performed at the timing when the crank of the target internal combustion engine reaches a predetermined rotation angle, the internal pressure estimated to be detected after the ignition or fuel injection timing.
  • Various patterns are associated with the estimated combustion state and stored for each of the plurality of predetermined rotation angles, and noise generated in the electrical system of the internal combustion engine during the ignition or fuel injection is identified.
  • a control device for controlling the internal combustion engine a storage unit that stores noise identification criteria for the internal combustion engine, a detection unit that detects the internal pressure of the internal combustion engine, and the expected rotation angle of the crank at the ignition or fuel injection timing.
  • a noise detection unit that detects noise in the electrical system of the internal combustion engine; and a determination that determines that the crank has reached the predetermined rotation angle at a noise detection timing at which noise that satisfies the noise identification standard is detected. and the storage unit, a predetermined rotation angle corresponding to the predetermined rotation angle is determined from among the plurality of predetermined rotation angles, and various patterns corresponding to the determined predetermined rotation angle are determined.
  • a diagnostic unit that determines, as the combustion state of the internal combustion engine, the combustion state linked to the pattern corresponding to the internal pressure detected by the detection unit after the noise detection timing.
  • combustion state diagnosis system of the present invention it is possible to diagnose the combustion state of an internal combustion engine without providing a crank angle sensor and a camshaft sensor for detecting the rotation angle of the crank.
  • FIG. 1 is a configuration diagram of a combustion state diagnosis system according to an embodiment of the present invention
  • 1 is an explanatory diagram of the operation of an internal combustion engine according to an embodiment of the present invention
  • FIG. Explanatory diagram of internal pressure waveform and estimated noise according to the embodiment of the present invention 1 is a flow chart of operation of a combustion state diagnosis system according to an embodiment of the present invention
  • FIG. 1 A combustion state diagnostic system 1 according to a first embodiment of the present invention will be described below with reference to FIGS. 1 to 4.
  • FIG. 1 A combustion state diagnostic system 1 according to a first embodiment of the present invention will be described below with reference to FIGS. 1 to 4.
  • FIG. 1 A combustion state diagnostic system 1 according to a first embodiment of the present invention will be described below with reference to FIGS. 1 to 4.
  • FIG. 1 A combustion state diagnostic system 1 according to a first embodiment of the present invention will be described below with reference to FIGS. 1 to 4.
  • the combustion state diagnosis system 1 is for diagnosing the combustion state of the internal combustion engine 2, and is used together with the internal combustion engine 2 as shown in FIG. Although the internal combustion engine 2 is generally composed of a plurality of cylinders, only one cylinder 21 is shown in FIG. 1 for easy understanding.
  • the internal combustion engine 2, as shown in FIG. I have it.
  • the inside of the cylinder 21 is hollow with its lower end side open, and the piston 26 inserted from the lower end side and the inner surface of the cylinder 21 form a combustion chamber 21a.
  • the ceiling of the cylinder 21 is provided with an intake valve 21b for taking air into the combustion chamber 21a and an exhaust valve 21c for discharging the exhaust from the combustion chamber 21a.
  • the fuel injection valve 22 is for injecting fuel into the combustion chamber 21 a and is attached to the ceiling of the cylinder 21 .
  • the spark plug 23 is for igniting the air-fuel mixture in the combustion chamber 21 a and is attached to the ceiling of the cylinder 21 .
  • the intake passage 24 is connected to the ceiling of the cylinder 21 via the intake valve 21b. At predetermined positions in the intake passage 24, an intake temperature sensor 24a for detecting the temperature inside the intake passage 24 and an intake pressure sensor 24b for detecting the pressure inside the intake passage 24 are provided. ing.
  • the exhaust passage 25 is connected to the ceiling of the cylinder 21 via an exhaust valve 21c.
  • a crank 28 is connected to the piston 26 via a connecting rod 27, and the crank 28 rotates as the piston 26 moves up and down.
  • the intake valve 21b is opened to take air, causing the piston 26 to move downward, and then, as shown in FIG. After reaching the bottom dead center, the piston 26 moves upward due to inertia.
  • the intake valve 21b is closed after the piston 26 has passed the bottom dead center.
  • the rotation of the crank 28 is also continued.
  • the four-stroke internal combustion engine 2 is described as an example, but a two-stroke internal combustion engine 2 may be employed.
  • the combustion state diagnosis system 1 includes a storage unit 11, a detection unit 12, an acquisition unit 13, a noise detection unit 14, a determination unit 15, and a diagnosis unit 16, as shown in FIG.
  • the storage unit 11 is estimated to be detected after the ignition or fuel injection timing.
  • Various internal pressure patterns are associated with the estimated combustion state and stored for each of the plurality of predetermined rotation angles.
  • the predetermined rotation angle corresponds to an internal pressure rising towards top dead center (preferably before ignition) of the combustion cycle of combustion engine 2 (e.g., before top dead center). Angle of several tens of degrees) is assumed (range of A in FIG. 3).
  • D is "ignition or fuel injection timing"
  • B and C correspond to "various patterns of internal pressure estimated to be detected after ignition or fuel injection timing”.
  • the various patterns are stored in association with a plurality of internal pressures that can be detected at the ignition or fuel injection timing.
  • the storage unit 11 preferably stores various patterns corresponding to the model (even the model) of the target internal combustion engine 2 (in which the combustion state diagnosis is performed).
  • the storage unit 11 stores various combinations of the internal pressure, the intake air temperature, and the intake air pressure of the internal combustion engine 2 estimated at the timing when the crank 28 reaches each predetermined rotation angle. .
  • the storage unit 11 stores various patterns of the internal pressure estimated to be detected after the ignition or fuel injection timing for each combination in association with the estimated combustion state. are doing.
  • FIG. 3 shows a misfire waveform B estimated when a misfire occurs, but as shown in FIGS. , A), a different combination of internal pressure, intake air temperature, and intake air pressure will result in a different misfire waveform B (maximum value, angle of rise/fall, etc.). Therefore, for example, in the case of a combustion state of "misfire", a misfire waveform B is stored for each combination of internal pressure, intake air temperature and intake air pressure at ignition or fuel injection timing.
  • the storage unit 11 stores a combination or the like corresponding to the target internal combustion engine 2 (in which the combustion state is diagnosed).
  • Combustion conditions to be linked may simply indicate “misfire”, “knocking”, etc., or “strength of combustion", “maximum ultimate pressure”, “pressure at top dead center”, and “heat release rate”. “, “amount of heat release”, “timing of heat release”, “rate of pressure increase”, “IMEP”, etc. may be used as the combustion state.
  • level 10 is "misfire”
  • levels 2-3 are “misfire caution”
  • levels 4-7 are “stable”
  • levels 8-9 are “knocking caution”.
  • the internal pressure detected at a predetermined timing is equal to or lower than a predetermined value, it may be associated with the combustion state, such as "misfire”, and if it is equal to or higher than a predetermined value, "knocking".
  • the storage unit 11 stores noise identification criteria for identifying noise that occurs in the electrical system of the internal combustion engine 2 during ignition or fuel injection.
  • the noise identification reference for identifying the noise D generated in the internal pressure detected by the detection unit 12 is stored.
  • the noise discrimination criterion it is conceivable to discriminate that "the noise is generated in the electrical system of the internal combustion engine 2 at the time of ignition or fuel injection" when an amplitude of a predetermined value or more is detected.
  • the detection unit 12 detects the internal pressure of the internal combustion engine 2.
  • the detection unit 12 is an in-cylinder pressure sensor, and is mounted so that a through hole is formed in the ceiling of the cylinder 21 and the detection surface of the detection unit 12 is on the plane ( In FIG. 1, it is mounted behind the spark plug 23).
  • the mounting position of the detection unit 12 is not limited to that shown in FIG.
  • the acquisition unit 13 acquires the expected rotation angle of the crank 28 of the internal combustion engine 2 at the timing of ignition by the spark plug 23 or the timing of fuel injection from the fuel injection valve 22 from the control device 100 that controls the internal combustion engine 2 .
  • the ignition timing (fuel injection timing) that should be now is XX degrees” is determined on the control device 100 side in controlling the combustion state, and the acquisition unit 13 Get the expected rotation angle.
  • the storage unit 11 Since it is not known what kind of expected rotation angle is transmitted from the control device 100, the storage unit 11 stores various patterns of internal pressure estimated to be detected after the ignition or fuel injection timing. should be associated with the estimated combustion state and stored for each of a plurality of predetermined rotation angles (at least rotation angles in the assumed range).
  • the noise detection unit 14 detects noise in the electrical system of the internal combustion engine 2 .
  • noise generated in the internal pressure (internal pressure waveform) detected by the detection unit 12 is assumed to be detected as noise in the electrical system.
  • the determination unit 15 determines that the crank 28 has reached the predetermined rotation angle at the noise detection timing when noise satisfying the noise identification standard is detected. Whether or not the noise satisfying the noise discrimination criteria is detected is determined by the noise detecting unit 14, for example, as shown in FIG. It is conceivable to determine whether or not D is detected.
  • the diagnosis unit 16 refers to the storage unit 11, determines a predetermined rotation angle corresponding to the predetermined rotation angle from among the plurality of predetermined rotation angles, and determines various patterns corresponding to the determined predetermined rotation angle. Among them, the combustion state linked to the pattern corresponding to the internal pressure detected by the detection unit 11 after the noise detection timing is determined as the combustion state of the internal combustion engine 2.
  • the transition waveform C is The internal pressure pattern is the same as that corresponding to normal combustion conditions).
  • the rotation speed of the internal combustion engine 2 can be obtained from the control device 100, for example, or from the waveform between two combustion cycles (between peak values, etc.). It is possible to obtain the transition waveform C based on the internal pressure detected at .
  • a pattern corresponding to the acquired transition waveform C is extracted, and the combustion state linked to the extracted pattern is determined as the combustion state of the internal combustion engine 2. . Even if it does not exactly match the acquired transition waveform C, it is preferable to determine it as a "corresponding pattern" if the error is within a predetermined range.
  • the noise detection timing After that, the combustion state linked to the pattern corresponding to the internal pressure detected by the detection unit 12 is determined as the combustion state of the internal combustion engine 2 .
  • the candidates for the pattern of the internal pressure estimated to be detected after the noise detection timing are narrowed down. It is possible to determine the state accurately and quickly.
  • a combination corresponding to the internal pressure detected at the noise detection timing and the acquired intake air temperature and intake pressure is determined from among the various combinations by referring to the storage unit 11. , among various patterns of internal pressure that are estimated to be detected after the noise detection timing in the determined combination, are associated with the patterns corresponding to the internal pressure detected by the detection unit 11 after the noise detection timing.
  • a combustion state is determined as the combustion state of the internal combustion engine 2 . It should be noted that it is not always possible to detect a combination that completely matches any one of the above various combinations, so if the error is within a predetermined range, it may be determined as "corresponding".
  • the control device 100 controls the combustion (fuel injection amount, fuel injection timing, ignition timing, intake air temperature, intake pressure etc.) can be appropriately controlled.
  • the expected rotation angle of the crank 28 of the internal combustion engine 2 at ignition or fuel injection timing is obtained from the control device 100 of the internal combustion engine 2 (S1).
  • a predetermined rotation angle corresponding to the predetermined rotation angle is determined from among the plurality of predetermined rotation angles, and among various patterns corresponding to the determined predetermined rotation angle,
  • the combustion state linked to the pattern corresponding to the internal pressure detected by the detection unit 11 after the noise detection timing is determined as the combustion state of the internal combustion engine 2 (S4).
  • the combustion state diagnosis system 100 determines that the crank 28 has reached the predetermined rotation angle at the timing when noise that satisfies the noise identification standard is detected, and refers to the storage unit 11. , among a plurality of predetermined rotation angles, a predetermined rotation angle corresponding to the predetermined rotation angle is determined, and among various patterns corresponding to the determined predetermined rotation angle, detection is performed by the detection unit 11 after the noise detection timing.
  • the combustion state linked to the pattern corresponding to the determined internal pressure is determined as the combustion state of the internal combustion engine 2 .
  • the control device of the internal combustion engine 2 can appropriately control the combustion of the internal combustion engine 2 at the next ignition. Moreover, since the number of sensors in the combustion state diagnosis system 1 as a whole can be reduced by not including a crank angle sensor and a camshaft sensor, the risk of sensor failure is also reduced. In addition, since the combustion state diagnostic system 1 can diagnose not only the rotation angle of the crank 28 but also the combustion state, it is not necessary to separately prepare a combustion diagnostic device. It is no longer necessary to design a control device adapted to the combustion diagnosis device.
  • control device has a function for receiving diagnostic results, it can be manufactured at a low cost because it can have a simple configuration specialized for controlling the combustion state based on the received diagnostic results. becomes possible. Furthermore, the operation of the determination unit 15 is simple, ie, "determine that the crank 28 has reached the predetermined rotation angle at the timing when noise that satisfies the noise identification criteria is detected.” It is possible to suppress the increase in cost and increase in cost.
  • the various patterns described above are stored in association with a plurality of internal pressures that can be detected at ignition or fuel injection timing. , among the various patterns corresponding to the internal pressure detected at the ignition or fuel injection timing in addition to the determined predetermined rotation angle, the internal pressure detected by the detection unit 12 after the noise detection timing.
  • the combustion state linked to the corresponding pattern is determined as the combustion state of the internal combustion engine 2 .
  • the storage unit 11 is referred to, and among the various combinations, the internal pressure detected at the noise detection timing and the intake air temperature and intake pressure obtained are A corresponding combination is determined, and among various patterns of the internal pressure that are estimated to be detected after the noise detection timing in the determined combination, the internal pressure that is detected by the detection unit 11 after the noise detection timing is determined.
  • the combustion state linked to the pattern is determined as the combustion state of the internal combustion engine 2 .
  • the intake air temperature and the intake air pressure those detected by the intake air temperature sensor 24a and the intake air pressure sensor 24b, which are always included in the internal combustion engine 2, are used.
  • the internal pressure pattern candidates estimated to be detected after the noise detection timing are further narrowed down. , it becomes possible to determine the combustion state more accurately and quickly.
  • combustion state diagnosis system of the present invention is not limited to the above-described embodiment, and various modifications and improvements are possible within the scope of the claims.
  • noise generated in the internal pressure is used to determine the timing at which the crank 28 reaches the predetermined rotation angle.
  • the current or voltage flowing through the wiring may be detected, and noise generated in the current or voltage may be used.
  • the diagnosis result of the combustion state is transmitted to the separate control device 100, but the control device 100 may be integrated with the combustion state diagnosis system 1.
  • various internal pressure patterns are stored in the storage unit 11, but the stored various patterns are obtained from the target internal combustion engine 2 itself (in which the combustion state is diagnosed). is not limited to
  • various patterns obtained from the same model/type of internal combustion engine may be stored, and the "various patterns" of the present invention may also be “various patterns obtained from the same model/type of internal combustion engine”. means to contain. However, for example, when the environment (parameters of the fuel injection valve 22, etc.) is different, various patterns obtained may also be different. It is preferable that the storage in the unit 11 and the diagnosis of the combustion state be performed under the same conditions. Also, various patterns obtained from internal combustion engines that provide substantially the same results even if the model and type are different may be stored, and these cases are also included in the scope of the present invention.
  • the intake air temperature and the intake air pressure are acquired from the intake air temperature sensor 24a and the intake air pressure sensor 24b in a wired or wireless manner.
  • the acquiring unit 13 may acquire the intake air temperature and the intake air pressure from the control device.
  • the present invention provides a program or method corresponding to the processing performed by the detection unit 12, the acquisition unit 13, the noise detection unit 14, the determination unit 15, and the diagnosis unit 16 as a controller, and a recording medium storing the program.
  • a recording medium the program is installed in a computer (arithmetic processing unit) or the like.
  • the recording medium storing the program may be a non-transitory recording medium.
  • a CD-ROM or the like can be considered as a non-transitory recording medium, but it is not limited to this.
  • combustion state diagnosis system 2 internal combustion engine 11 storage unit 12 detection unit 13 acquisition unit 14 noise detection unit 15 determination unit 16 diagnosis unit 28 crank 100 control device

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】 クランクの回転角度を検出することなく内燃機関の燃焼状態を診断することが可能な燃焼状態診断システムを提供する。 【解決手段】 記憶部11は、クランク28が所定の回転角度に達したタイミングにおいて点火が行われた場合に、点火タイミング以降に検出されると推定される内部圧力の様々なパターンを、その推定される燃焼状態と紐づけて、複数の所定の回転角度のそれぞれについて記憶すると共に、点火の際に内燃機関2の電気系統に生じるノイズを識別するためのノイズ識別基準を記憶している。診断部16は、複数の所定の回転角度のうち、予定回転角度(ノイズ検出タイミング)に対応する所定の回転角度を決定し、決定された所定の回転角度に対応する様々なパターンのうち、ノイズ検出タイミング以降に検出された内部圧力に対応するパターンに紐づけられた燃焼状態を、内燃機関2の燃焼状態として決定する。

Description

燃焼状態診断システム
 本発明は、クランクの回転角度を検出するためのクランク角センサ及びカム軸センサを備えることなく内燃機関の燃焼状態を診断することが可能な燃焼状態診断システムに関する。
 近年、少ない燃料で大きな出力が得られる高効率の内燃機関が望まれている。しかしながら、高効率の内燃機関では、僅かな外乱(空気温度・圧力等)でノッキング(強すぎる燃焼)や失火(燃焼しない)が発生してしまうため、内燃機関に筒内圧センサを設け、検出された燃焼圧力を考慮して最適な燃焼状態となるように、内燃機関の複雑な制御が行われている。
 筒内圧センサを用いた内燃機関の診断装置として、筒内圧センサの出力信号を参照して、燃焼室内圧力がピークを迎えたか否かに応じて、ピストンが上死点に到達したタイミングが圧縮上死点であるか排気上死点であるかを決定するものが知られている(例えば、特許文献1参照)。
特開2017-155597号公報
 しかしながら、上記技術では、カム角度信号を参照せずに各気筒の行程を決定することは可能であるが、ある気筒1のピストンの現在位置を知得するために内燃機関のクランクシャフトが所定角度回転する毎にクランク角センサが発するパルス信号であるクランク角信号bを参照しており(要約参照)、クランク角センサの設置は必須になっている。このクランク角センサは、非常に高価なものである。
 そこで、本発明は、クランクの回転角度を検出するためのクランク角センサ及びカム軸センサを備えることなく内燃機関の燃焼状態を診断することが可能な燃焼状態診断システムを提供することを目的としている。
 本発明は、対象となる内燃機関のクランクが所定の回転角度に達したタイミングにおいて点火又は燃料噴射が行われた場合に、上記点火又は燃料噴射タイミング以降に検出されると推定される内部圧力の様々なパターンを、その推定される燃焼状態と紐づけて、複数の上記所定の回転角度のそれぞれについて記憶すると共に、上記点火又は燃料噴射の際に上記内燃機関の電気系統に生じるノイズを識別するためのノイズ識別基準を記憶した記憶部と、上記内燃機関の内部圧力を検出する検出部と、上記点火又は燃料噴射タイミングにおける上記クランクの予定回転角度を、上記内燃機関を制御する制御装置から取得する取得部と、上記内燃機関の電気系統におけるノイズを検出するノイズ検出部と、上記ノイズ識別基準を満たすノイズが検出されたノイズ検出タイミングで上記クランクが上記予定回転角度に達したと判別する判別部と、上記記憶部を参照して、上記複数の所定の回転角度のうち、上記予定回転角度に対応する所定の回転角度を決定し、上記決定された所定の回転角度に対応する様々なパターンのうち、上記ノイズ検出タイミング以降に上記検出部により検出された内部圧力に対応するパターンに紐づけられた燃焼状態を、上記内燃機関の燃焼状態として決定する診断部と、を備えたことを特徴とする燃焼状態診断システムを提供している。
 また、本発明の別の観点によれば、上記燃焼状態診断システムに対応する燃焼状態診断プログラム及び燃焼状態診断方法を提供している。
 本発明の燃焼状態診断システムによれば、クランクの回転角度を検出するためのクランク角センサ及びカム軸センサを備えることなく内燃機関の燃焼状態を診断することが可能となる。
本発明の実施の形態による燃焼状態診断システムの構成図 本発明の実施の形態による内燃機関の動作の説明図 本発明の実施の形態による内部圧力波形及び推定ノイズの説明図 本発明の実施の形態による燃焼状態診断システムの動作のフローチャート
 以下、本発明の第1の実施の形態による燃焼状態診断システム1について、図1-図4を参照して説明する。
 燃焼状態診断システム1は、内燃機関2の燃焼状態を診断するためのものであり、図1に示すように、内燃機関2と共に使用される。内燃機関2は、複数の気筒で構成されることが一般的であるが、図1では、理解容易のため、1つの気筒21のみを図示している。
 まずは、内燃機関2の構成について説明する。
 内燃機関2は、図2に示すように、気筒21と、燃料噴射弁22と、点火プラグ23と、吸気通路24と、排気通路25と、ピストン26と、コンロッド27と、クランク28と、を備えている。
 気筒21の内部は下端側が開放された空洞となっており、下端側から挿入されたピストン26と気筒21の内面とによって燃焼室21aが形成されている。また、気筒21の天井部には、燃焼室21a内への吸気を行うための吸気弁21bと、燃焼室21a内からの排気を行うための排気弁21cと、が設けられている。
 燃料噴射弁22は、燃焼室21a内に燃料を噴射するためのものであり、気筒21の天井部に取り付けられている。
 点火プラグ23は、燃焼室21a内の混合気に点火するためのものであり、気筒21の天井部に取り付けられている。
 吸気通路24は、吸気弁21bを介して気筒21の天井部に接続されている。また、吸気通路24内の所定の位置には、吸気通路24内の温度を検出するための吸気温度センサ24aと、吸気通路24内の圧力を検出するための吸気圧力センサ24bと、が設けられている。
 排気通路25は、排気弁21cを介して気筒21の天井部に接続されている。
 ピストン26には、コンロッド27を介してクランク28が接続されており、ピストン26の上下運動に伴い、クランク28が回転される。
 詳細には、まず、図2(a)に示すように、吸気弁21bを開いて吸気が行われることで、ピストン26は下方へ移動し、続いて、図2(b)に示すように、ピストン26は、下死点まで達した後、慣性により上方へ移動する。吸気弁21bは、ピストン26が下死点を過ぎてから閉じられる。
 そして、図2(c)及び図2(d)に示すように、ピストン26が上死点付近に到達した際に点火プラグ23が点火され、混合気の爆発によりピストン26は下方へ移動する。排気弁21cは、爆発後、所定のタイミングで開かれる。
 この動作を繰り返し行うことで、クランク28の回転も継続することとなる。なお、本実施の形態では、上記した4ストロークの内燃機関2を例に説明を行うが、2ストロークの内燃機関2を採用しても良い。
 続いて、燃焼状態診断システム1の構成について説明する。
 燃焼状態診断システム1は、図1に示すように、記憶部11と、検出部12と、取得部13と、ノイズ検出部14と、判別部15と、診断部16と、を備えている。
 記憶部11は、対象となる内燃機関2のクランク28が所定の回転角度に達したタイミングにおいて点火又は燃料噴射が行われた場合に、上記点火又は燃料噴射タイミング以降に検出されると推定される内部圧力の様々なパターンを、その推定される燃焼状態と紐づけて、複数の上記所定の回転角度のそれぞれについて記憶している。
 本実施の形態では、所定の回転角度は、燃焼機関2の燃焼サイクルの上死点(点火前であることが好ましい)へ向けて上昇中の内部圧力に対応する角度(例えば、上死点前の数十度の角度)を想定している(図3のAの範囲)。
 図3では、Dが、“点火又は燃料噴射タイミング”であり、BやCが、“点火又は燃料噴射タイミング以降に検出されると推定される内部圧力の様々なパターン”に相当する。
 なお、同じ“点火又は燃料噴射タイミング”であっても、燃焼機関2の燃焼サイクルの上死点へ向けて上昇中の内部圧力は、内燃機関2のモデルやそこまでの燃焼状態によって異なってくる。
 そこで、本実施の形態では、上記様々なパターンは、上記点火又は燃料噴射タイミングに検出され得る複数の内部圧力とも紐づけて記憶されている。
 同様に、記憶部11には、対象となる(燃焼状態の診断が行われる)内燃機関2のモデル(型式まで含んでも良い)に対応した様々なパターンが記憶されることが好ましい。
 更に、本実施の形態では、記憶部11は、クランク28が各所定の回転角度に達したタイミングにおいて推定される内燃機関2の内部圧力、吸気温度及び吸気圧力の様々な組み合わせを記憶している。
 これは、本願の発明者が「内燃機関2の燃焼サイクルの中で、クランク28は、所定の内部圧力(特に、燃焼機関2の燃焼サイクルの上死点へ向けて上昇中の所定の内部圧力)で所定の回転角度となり、その所定の内部圧力は、吸気温度及び吸気圧力によって異なる」という事実を発見したことに基づいている。これらの様々な組み合わせは、様々な吸気温度及び吸気圧力の条件下で所定の回転角度における内部圧力を実験的に求めた上で、記憶部11に記憶しておけば良い。
 そして、本実施の形態では、記憶部11は、各組み合わせについて上記点火又は燃料噴射タイミング以降に検出されると推定される内部圧力の様々なパターンを、その推定される燃焼状態と紐づけて記憶している。
 これは、「点火又は燃料噴射タイミング以降に検出される内部圧力の波形は、同じ燃焼状態であっても、点火又は燃料噴射タイミングにおける内部圧力、吸気温度及び吸気圧力の組み合わせによって異なる」からである。例えば、図3では、失火が生じた場合に推定される失火波形Bが示されているが、図3(a)、(b)に示すように、点火又は燃料噴射タイミング(本実施の形態では、Aの範囲内の所定のタイミング)における内部圧力、吸気温度及び吸気圧力の組み合わせが異なれば、失火波形Bも異なるものとなる(極大値、上昇・下降の角度等)。従って、例えば、燃焼状態“失火”の場合には、点火又は燃料噴射タイミングにおける内部圧力、吸気温度及び吸気圧力の組み合わせごとに、失火波形Bを記憶しておくこととなる。
 様々な組み合わせとしては、様々な吸気温度及び吸気圧力の条件下で内部圧力を実験的に求めた上で、記憶部11に記憶しておけば良い。この際、吸気温度及び吸気圧力として、内燃機関2が必ず備えている吸気温度センサ24a及び吸気圧力センサ24bにより検出されたものを用いれば良い。
 なお、内燃機関2のモデルや型式によって、上記“内部圧力、吸気温度及び吸気圧力の組み合わせ”、“推定される内部圧力の様々なパターン”“推定される燃焼状態”は異なってくる可能性があるので、記憶部11には、対象となる(燃焼状態の診断が行われる)内燃機関2に対応した組み合わせ等が記憶されることが好ましい。
 紐づける燃焼状態としては、“失火”、“ノッキング”等を単純に示すだけでも良いし、“燃焼の強さ”、“最高到達圧力”、“上死点での圧力”、“熱発生率”、“熱発生量”、“熱発生タイミング”、“圧力上昇率”、“IMEP”等のレベルや範囲を燃焼状態としても良い。
 例えば、“燃焼の強さ”を10段階に設定した場合、レベル1を“失火”、レベル2-3を“失火注意”、レベル4-7を“安定”、レベル8-9を“ノッキング注意”、レベル10を“ノッキング”のように、ユーザや内燃機関2の制御装置(図示せず)に予め伝えておけば、“燃焼の強さ”のレベルを出力するだけで、ユーザや制御装置側で、燃焼状態に応じた対応を行うことが可能となる。
 また、必ずしも、図3に示す失火波形Bのように完全な波形をパターンとして記憶する必要はなく、点火又は燃料噴射タイミング以降の所定のタイミングで検出されると推定される内部圧力をパターンとして記憶しても良い。この場合、例えば、所定のタイミングで検出された内部圧力が所定以下であれば“失火”、所定以上であれば“ノッキング”のように燃焼状態と紐づけることが考えられる。
 更に、記憶部11は、点火又は燃料噴射の際に内燃機関2の電気系統に生じるノイズを識別するためのノイズ識別基準を記憶している。本実施の形態では、図3に示すように、検出部12により検出される内部圧力に生じるノイズDを識別するためのノイズ識別基準を記憶しているものとする。ノイズ識別基準としては、所定以上の振幅が検出された場合に、「点火又は燃料噴射の際に内燃機関2の電気系統に生じたノイズである」と識別することが考えられる。
 検出部12は、内燃機関2の内部圧力を検出する。本実施の形態では、検出部12は、筒内圧センサであり、気筒21の天井部に貫通孔を形成し、検出部12の検出面が面位置となるように取り付けられているものとする(図1では、点火プラグ23の背後に取り付けられている)。但し、検出部12の取り付け位置は、図1に示したものに限られず、例えば、気筒21からパイプ等を延出させ、当該パイプ等に取り付けても良い。
 取得部13は、点火プラグ23による点火タイミング又は燃料噴射弁22からの燃料噴射タイミングにおける内燃機関2のクランク28の予定回転角度を、内燃機関2を制御する制御装置100から取得する。
 これは、燃焼状態の制御に当たり、制御装置100側で「今あるべき点火タイミング(燃料噴射タイミング)は、○○度」と決定していることを前提としており、取得部13は、その決定された予定回転角度を取得する。
 なお、どのような予定回転角度が制御装置100から送信されてくるかは分からないので、記憶部11には、上記点火又は燃料噴射タイミング以降に検出されると推定される内部圧力の様々なパターンを、その推定される燃焼状態と紐づけて、複数の予定回転角度(少なくとも想定される範囲の回転角度)のそれぞれについて記憶しておく必要がある。
 ノイズ検出部14は、内燃機関2の電気系統におけるノイズを検出する。本実施の形態では、検出部12により検出された内部圧力(内部圧力波形)に生じるノイズを、電気系統におけるノイズとみなして検出するものとする。
 判別部15は、ノイズ識別基準を満たすノイズが検出されたノイズ検出タイミングでクランク28が予定回転角度に達したと判別する。なお、ノイズ識別基準を満たすノイズが検出されたか否かは、例えば、図3に示すように、内部圧力が上昇中の範囲Aにおいて、ノイズ検出部14により、所定以上の傾き及び振幅を有するノイズDが検出されたか否かで判断することが考えられる。
 診断部16は、記憶部11を参照して、上記複数の所定の回転角度のうち、予定回転角度に対応する所定の回転角度を決定し、決定された所定の回転角度に対応する様々なパターンのうち、ノイズ検出タイミング以降に検出部11により検出された内部圧力に対応するパターンに紐づけられた燃焼状態を、内燃機関2の燃焼状態として決定する
 詳細には、ノイズ検出タイミング以降に内部圧力を検出していくことで、図3に示すように、内部圧力の実際の推移波形Cを取得することができる(図3では、推移波形Cは、正常な燃焼状態に対応した内部圧力のパターンと同一である場合を示している)。内燃機関2の回転速度は、例えば、制御装置100から取得したり、2つの燃焼サイクル間の波形(ピーク値間等)から取得することができるので、この取得した回転速度と、ノイズ検出タイミング以降に検出された内部圧力と、に基づき推移波形Cを取得することが可能である。そして、記憶部11に記憶された様々なパターンのうち、取得した推移波形Cに対応するパターンを抽出し、抽出されたパターンに紐づけられた燃焼状態を、内燃機関2の燃焼状態として決定する。なお、取得した推移波形Cに正確に一致していなくても、所定範囲内の誤差であれば“対応するパターン”として決定することが好ましい。
 また、本実施の形態では、記憶部11を参照して、決定された所定の回転角度に加えて点火又は燃料噴射タイミングに検出された内部圧力にも対応する様々なパターンのうち、ノイズ検出タイミング以降に検出部12により検出された内部圧力に対応するパターンに紐づけられた燃焼状態を、内燃機関2の燃焼状態として決定する。
 このように、ノイズ検出タイミング(点火又は燃料噴射タイミング)に検出された内部圧力も考慮することで、ノイズ検出タイミング以降に検出されると推定される内部圧力のパターンの候補が絞られるので、燃焼状態を正確かつ迅速に決定することが可能となる。
 更に、本実施の形態では、記憶部11を参照して、上記様々な組み合わせのうち、ノイズ検出タイミングで検出された内部圧力、及び、取得された吸気温度及び吸気圧力に対応する組み合わせを決定し、決定された組み合わせでノイズ検出タイミング以降に検出されると推定される内部圧力の様々なパターンのうち、ノイズ検出タイミング以降に検出部11により検出された内部圧力に対応するパターンに紐づけられた燃焼状態を、内燃機関2の燃焼状態として決定する。なお、上記様々な組み合わせのいずれかに完全に一致する組み合わせが検出されるとは限らないので、所定以内の誤差であれば“該当する”としても良い。
 このように、ノイズ検出タイミング(点火又は燃料噴射タイミング)での組み合わせを考慮することで、ノイズ検出タイミング以降に検出されると推定される内部圧力のパターンの候補が更に絞られるので、燃焼状態をより正確かつ迅速に決定することが可能となる。
 この診断結果を内燃機関2の制御装置100に送信することで、制御装置100において、次回の点火の際の内燃機関2の燃焼(燃料噴射量、燃料噴射タイミング、点火タイミング、吸気温度、吸気圧力等)を適切に制御することが可能となる。
 続いて、燃焼状態診断システム1の動作について、図4のフローチャートを用いて説明する。
 まず、内燃機関2の制御装置100から点火又は燃料噴射タイミングにおける内燃機関2のクランク28の予定回転角度を取得する(S1)。
 続いて、ノイズ識別基準を満たすノイズが検出されたか否かを判断する(S2)。
 ノイズが検出された場合には(S2:YES)、ノイズが検出されたタイミングでクランク28が予定回転角度に達したと判別する(S3)。
 最後に、記憶部11を参照して、複数の所定の回転角度のうち、予定回転角度に対応する所定の回転角度を決定し、決定された所定の回転角度に対応する様々なパターンのうち、ノイズ検出タイミング以降に検出部11により検出された内部圧力に対応するパターンに紐づけられた燃焼状態を、内燃機関2の燃焼状態として決定する(S4)。
 以上説明したように、本実施の形態による燃焼状態診断システム100では、ノイズ識別基準を満たすノイズが検出されたタイミングでクランク28が予定回転角度に達したと判別し、記憶部11を参照して、複数の所定の回転角度のうち、予定回転角度に対応する所定の回転角度を決定し、決定された所定の回転角度に対応する様々なパターンのうち、ノイズ検出タイミング以降に検出部11により検出された内部圧力に対応するパターンに紐づけられた燃焼状態を、内燃機関2の燃焼状態として決定する。
 このような構成によれば、クランク28の回転角度を検出する必要がないので、高価なクランク角センサ及びカム軸センサを備えることなく、安価に内燃機関2の燃焼状態を診断することが可能となる。この診断結果に基づき、内燃機関2の制御装置側で、次回の点火の際の内燃機関2の燃焼を適切に制御することが可能となる。また、クランク角センサ及びカム軸センサを備えないことにより、燃焼状態診断システム1全体としてのセンサの数を減らすことができるので、センサ故障のリスクも低減される。また、燃焼状態診断システム1では、クランク28の回転角度を判別するのみならず、燃焼状態の診断まで行うことができるので、燃焼診断装置を別途準備することが不要となり、これにより、燃焼状態を制御するための制御装置を燃焼診断装置に適合させて設計する必要がなくなる。更に、制御装置に関しては、診断結果を受信するための機能を備えておけば、受信した診断結果に基づき燃焼状態を制御することに特化したシンプルな構成のもので済むので、安価に製造することが可能となる。更に、判別部15の動作は、「ノイズ識別基準を満たすノイズが検出されたタイミングでクランク28が予定回転角度に達したと判別する」という簡単なものであるため、燃焼状態診断システム1が複雑化・高コスト化することが抑制される。
 また、本実施の形態による燃焼状態診断システム1では、上記様々なパターンは、点火又は燃料噴射タイミングに検出され得る複数の内部圧力とも紐づけて記憶されており、診断部16は、記憶部11を参照して、決定された所定の回転角度に加えて点火又は燃料噴射タイミングに検出された内部圧力に対応する様々なパターンのうち、ノイズ検出タイミング以降に検出部12により検出された内部圧力に対応するパターンに紐づけられた燃焼状態を、内燃機関2の燃焼状態として決定する。
 このような構成によれば、ノイズ検出タイミング(点火又は燃料噴射タイミング)に検出された内部圧力も考慮することで、ノイズ検出タイミング以降に検出されると推定される内部圧力のパターンの候補が絞られるので、燃焼状態を正確かつ迅速に決定することが可能となる。
 また、本実施の形態による燃焼状態診断システム1では、記憶部11を参照して、上記様々な組み合わせのうち、ノイズ検出タイミングで検出された内部圧力、及び、取得された吸気温度及び吸気圧力に対応する組み合わせを決定し、決定された組み合わせでノイズ検出タイミング以降に検出されると推定される内部圧力の様々なパターンのうち、ノイズ検出タイミング以降に検出部11により検出された内部圧力に対応するパターンに紐づけられた燃焼状態を、内燃機関2の燃焼状態として決定する。この際、吸気温度及び吸気圧力として、内燃機関2が必ず備えている吸気温度センサ24a及び吸気圧力センサ24bにより検出されたものを用いる。
 このような構成によれば、ノイズ検出タイミング(点火又は燃料噴射タイミング)での組み合わせを考慮することで、ノイズ検出タイミング以降に検出されると推定される内部圧力のパターンの候補が更に絞られるので、燃焼状態をより正確かつ迅速に決定することが可能となる。
 尚、本発明の燃焼状態診断システムは、上述した実施の形態に限定されず、特許請求の範囲に記載した範囲で種々の変形や改良が可能である。
 例えば、上記実施の形態では、クランク28が予定回転角度に達したタイミングを判別するために、内部圧力(内部圧力波形)に生じるノイズを用いたが、ノイズ検出部14が内燃機関2のいずれかの配線に流れる電流又は電圧を検出し、当該電流又は電圧に生じるノイズを用いても良い。
 また、上記実施の形態では、燃焼状態の診断結果を別体の制御装置100に送信したが、制御装置100は、燃焼状態診断システム1と一体になっていても良い。
 また、上記実施の形態では、内部圧力の様々なパターンが記憶部11に記憶されたが、記憶される様々なパターンは、対象となる(燃焼状態の診断が行われる)内燃機関2そのものから得られたものには限定されない。
 例えば、同一モデル・型式の内燃機関から得られた様々なパターンが記憶されても良く、本発明の“様々なパターン”は、“同一モデル・型式の内燃機関から得られた様々なパターン”も含むことを意味している。但し、例えば、環境(燃料噴射弁22のパラメータ等)が異なる場合には得られる様々なパターンも異なってくる可能性があるため、内燃機関2内の内部圧力に影響を与える環境に関しては、記憶部11に記憶する際と、燃焼状態の診断を行う際と、で同一条件下で行われることが好ましい。また、モデル・型式が異なっても略同一の結果が得られる内燃機関から得られた様々なパターンが記憶されても良く、これらの場合も本発明の権利範囲に含まれる。
 また、上記実施の形態では、吸気温度及び吸気圧力は、吸気温度センサ24a及び吸気圧力センサ24bから有線又は無線で取得されたが、制御装置が吸気温度センサ24a及び吸気圧力センサ24bから有線又は無線で取得し、取得部13は、当該吸気温度及び吸気圧力を制御装置から取得しても良い。
 また、本発明は、コントローラとしての検出部12、取得部13、ノイズ検出部14、判別部15、及び、診断部16が行う処理に相当するプログラム又は方法や、当該プログラムを記憶した記録媒体にも応用可能である。記録媒体の場合、コンピュータ(演算処理装置)等に当該プログラムがインストールされることとなる。ここで、当該プログラムを記憶した記録媒体は、非一過性の記録媒体であっても良い。非一過性の記録媒体としては、CD-ROM等が考えられるが、それに限定されるものではない。
1          燃焼状態診断システム
2      内燃機関
11    記憶部
12    検出部
13    取得部
14    ノイズ検出部
15    判別部
16    診断部
28    クランク
100  制御装置

Claims (5)

  1.  対象となる内燃機関のクランクが所定の回転角度に達したタイミングにおいて点火又は燃料噴射が行われた場合に、前記点火又は燃料噴射タイミング以降に検出されると推定される内部圧力の様々なパターンを、その推定される燃焼状態と紐づけて、複数の前記所定の回転角度のそれぞれについて記憶すると共に、前記点火又は燃料噴射の際に前記内燃機関の電気系統に生じるノイズを識別するためのノイズ識別基準を記憶した記憶部と、
     前記内燃機関の内部圧力を検出する検出部と、
     前記点火又は燃料噴射タイミングにおける前記クランクの予定回転角度を、前記内燃機関を制御する制御装置から取得する取得部と、
     前記内燃機関の電気系統におけるノイズを検出するノイズ検出部と、
     前記ノイズ識別基準を満たすノイズが検出されたノイズ検出タイミングで前記クランクが前記予定回転角度に達したと判別する判別部と、
     前記記憶部を参照して、前記複数の所定の回転角度のうち、前記予定回転角度に対応する所定の回転角度を決定し、前記決定された所定の回転角度に対応する様々なパターンのうち、前記ノイズ検出タイミング以降に前記検出部により検出された内部圧力に対応するパターンに紐づけられた燃焼状態を、前記内燃機関の燃焼状態として決定する診断部と、
    を備えたことを特徴とする燃焼状態診断システム。
  2.  前記様々なパターンは、前記点火又は燃料噴射タイミングに検出され得る複数の内部圧力とも紐づけて記憶されており、
     前記診断部は、前記記憶部を参照して、前記決定された所定の回転角度に加えて前記点火又は燃料噴射タイミングに検出された内部圧力にも対応する様々なパターンのうち、前記ノイズ検出タイミング以降に前記検出部により検出された内部圧力に対応するパターンに紐づけられた燃焼状態を、前記内燃機関の燃焼状態として決定することを特徴とする請求項1に記載の燃焼状態診断システム。
  3.  前記取得部は、前記内燃機関の吸気温度及び吸気圧力を更に取得し、
     前記記憶部は、前記クランクが各所定の回転角度に達したタイミングにおいて推定される前記内燃機関の内部圧力、吸気温度及び吸気圧力の様々な組み合わせを記憶すると共に、各組み合わせについて前記点火又は燃料噴射タイミング以降に検出されると推定される内部圧力の様々なパターンを、その推定される燃焼状態と紐づけて記憶しており、
     前記診断部は、前記記憶部を参照して、前記様々な組み合わせのうち、前記ノイズ検出タイミングで検出された内部圧力、及び、取得された吸気温度及び吸気圧力に対応する組み合わせを決定し、前記決定された組み合わせで前記ノイズ検出タイミング以降に検出されると推定される内部圧力の様々なパターンのうち、前記ノイズ検出タイミング以降に前記検出部により検出された内部圧力に対応するパターンに紐づけられた燃焼状態を、前記内燃機関の燃焼状態として決定することを特徴とする請求項2に記載の燃焼状態診断システム。
  4.  対象となる内燃機関のクランクが所定の回転角度に達したタイミングにおいて点火又は燃料噴射が行われた場合に、前記点火又は燃料噴射タイミング以降に検出されると推定される内部圧力の様々なパターンを、その推定される燃焼状態と紐づけて、複数の前記所定の回転角度のそれぞれについて記憶すると共に、前記点火又は燃料噴射の際に前記内燃機関の電気系統に生じるノイズを識別するためのノイズ識別基準を記憶したコンピュータにインストールされるプログラムであって、
     前記内燃機関の内部圧力を検出するステップと、
     前記点火又は燃料噴射タイミングにおける前記クランクの予定回転角度を、前記内燃機関を制御する制御装置から取得するステップと、
     前記内燃機関の電気系統におけるノイズを検出するステップと、
     前記ノイズ識別基準を満たすノイズが検出されたノイズ検出タイミングで前記クランクが前記予定回転角度に達したと判別するステップと、
     前記記憶部を参照して、前記複数の所定の回転角度のうち、前記予定回転角度に対応する所定の回転角度を決定し、前記決定された所定の回転角度に対応する様々なパターンのうち、前記ノイズ検出タイミング以降に前記検出された内部圧力に対応するパターンに紐づけられた燃焼状態を、前記内燃機関の燃焼状態として決定するステップと、
    を備えたことを特徴とする燃焼状態診断プログラム。
  5.  対象となる内燃機関のクランクが所定の回転角度に達したタイミングにおいて点火又は燃料噴射が行われた場合に、前記点火又は燃料噴射タイミング以降に検出されると推定される内部圧力の様々なパターンを、その推定される燃焼状態と紐づけて、複数の前記所定の回転角度のそれぞれについて記憶すると共に、前記点火又は燃料噴射の際に前記内燃機関の電気系統に生じるノイズを識別するためのノイズ識別基準を記憶したコンピュータで実行される方法であって、
     前記内燃機関の内部圧力を検出するステップと、
     前記点火又は燃料噴射タイミングにおける前記クランクの予定回転角度を、前記内燃機関を制御する制御装置から取得するステップと、
     前記内燃機関の電気系統におけるノイズを検出するステップと、
     前記ノイズ識別基準を満たすノイズが検出されたノイズ検出タイミングで前記クランクが前記予定回転角度に達したと判別するステップと、
     前記記憶部を参照して、前記複数の所定の回転角度のうち、前記予定回転角度に対応する所定の回転角度を決定し、前記決定された所定の回転角度に対応する様々なパターンのうち、前記ノイズ検出タイミング以降に前記検出された内部圧力に対応するパターンに紐づけられた燃焼状態を、前記内燃機関の燃焼状態として決定するステップと、
    を備えたことを特徴とする燃焼状態診断方法。
PCT/JP2022/037850 2021-10-12 2022-10-11 燃焼状態診断システム WO2023063305A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021167489 2021-10-12
JP2021-167489 2021-10-12

Publications (1)

Publication Number Publication Date
WO2023063305A1 true WO2023063305A1 (ja) 2023-04-20

Family

ID=85987951

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2022/037850 WO2023063305A1 (ja) 2021-10-12 2022-10-11 燃焼状態診断システム
PCT/JP2022/037849 WO2023063304A1 (ja) 2021-10-12 2022-10-11 燃焼状態診断システム

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037849 WO2023063304A1 (ja) 2021-10-12 2022-10-11 燃焼状態診断システム

Country Status (1)

Country Link
WO (2) WO2023063305A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10103148A (ja) * 1996-09-27 1998-04-21 Kokusan Denki Co Ltd マイクロコンピュータを用いた制御方法及び制御装置
JP2007170405A (ja) * 2001-03-30 2007-07-05 Mitsubishi Heavy Ind Ltd 内燃機関の燃焼診断・制御装置及び燃焼診断・制御方法
JP2009203883A (ja) * 2008-02-27 2009-09-10 Mitsubishi Heavy Ind Ltd 内燃機関の故障原因推定方法および装置
JP2009275691A (ja) * 2008-04-16 2009-11-26 Mitsubishi Heavy Ind Ltd 内燃機関の燃焼制御方法および制御装置
JP2010106734A (ja) * 2008-10-29 2010-05-13 Isuzu Motors Ltd 内燃機関のegr制御方法及び内燃機関

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10103148A (ja) * 1996-09-27 1998-04-21 Kokusan Denki Co Ltd マイクロコンピュータを用いた制御方法及び制御装置
JP2007170405A (ja) * 2001-03-30 2007-07-05 Mitsubishi Heavy Ind Ltd 内燃機関の燃焼診断・制御装置及び燃焼診断・制御方法
JP2009203883A (ja) * 2008-02-27 2009-09-10 Mitsubishi Heavy Ind Ltd 内燃機関の故障原因推定方法および装置
JP2009275691A (ja) * 2008-04-16 2009-11-26 Mitsubishi Heavy Ind Ltd 内燃機関の燃焼制御方法および制御装置
JP2010106734A (ja) * 2008-10-29 2010-05-13 Isuzu Motors Ltd 内燃機関のegr制御方法及び内燃機関

Also Published As

Publication number Publication date
WO2023063304A1 (ja) 2023-04-20

Similar Documents

Publication Publication Date Title
US9581097B2 (en) Determination of a high pressure exhaust spring in a cylinder of an internal combustion engine
JP4052230B2 (ja) 内燃機関のノッキング判定装置
US9562470B2 (en) Valve fault detection
CN107461269B (zh) 用于确定空气燃料失衡的方法和系统
US20170101956A1 (en) Valve fault detection
JP7058932B2 (ja) コントローラを訓練するための方法
US20050217356A1 (en) Misfire detector
CN106795827A (zh) 用于跳过点火式发动机的进气诊断
RU2682176C2 (ru) Способ (варианты) и система контроля преждевременного зажигания
US9068522B2 (en) Method for diagnosing an engine
US8984933B2 (en) Method and system for control of an internal combustion engine based on engine crank angle
US20180100479A1 (en) Spark plug condition monitoring
GB2471893A (en) Detecting misfiring in an i.c. engine using in-cylinder pressure measurements
TWI402418B (zh) Inflatable control device for general purpose internal combustion engine
JP2016205388A (ja) 構成要素の状態の検出のためのノックセンサシステムおよび方法
US20150159569A1 (en) Method and apparatus for detecting combustion phase of engine by angular acceleration signal and combustion data of single cylinder
WO2015179119A1 (en) Valve fault detection
CN108350817A (zh) 发动机控制方法和发动机控制装置
WO2023063305A1 (ja) 燃焼状態診断システム
JP6156423B2 (ja) エンジンの点火装置
US20020092499A1 (en) Detonation sensing of crankshaft position
US10760514B2 (en) Methods and system for operating an engine
JP4802905B2 (ja) 内燃機関の制御装置
US20130166186A1 (en) Method and Device For Operating A Cold Start Emission Control Of An Internal Combustion Engine
CN105814297A (zh) 用于内燃机的诊断系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22881000

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE