WO2023063282A1 - Resin composition, layered product, semiconductor chip with resin composition layer, substrate on which semiconductor chip with resin composition layer is to be mounted, and semiconductor device - Google Patents

Resin composition, layered product, semiconductor chip with resin composition layer, substrate on which semiconductor chip with resin composition layer is to be mounted, and semiconductor device Download PDF

Info

Publication number
WO2023063282A1
WO2023063282A1 PCT/JP2022/037765 JP2022037765W WO2023063282A1 WO 2023063282 A1 WO2023063282 A1 WO 2023063282A1 JP 2022037765 W JP2022037765 W JP 2022037765W WO 2023063282 A1 WO2023063282 A1 WO 2023063282A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
resin composition
mass
parts
Prior art date
Application number
PCT/JP2022/037765
Other languages
French (fr)
Japanese (ja)
Inventor
孝幸 亀井
勝利 猪原
源希 杉山
健太郎 高野
剛 木田
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to JP2023554509A priority Critical patent/JPWO2023063282A1/ja
Publication of WO2023063282A1 publication Critical patent/WO2023063282A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/42Layered products comprising a layer of synthetic resin comprising condensation resins of aldehydes, e.g. with phenols, ureas or melamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F271/00Macromolecular compounds obtained by polymerising monomers on to polymers of nitrogen-containing monomers as defined in group C08F26/00
    • C08F271/02Macromolecular compounds obtained by polymerising monomers on to polymers of nitrogen-containing monomers as defined in group C08F26/00 on to polymers of monomers containing heterocyclic nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3415Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L39/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/20Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08L61/30Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic and acyclic or carbocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L93/00Compositions of natural resins; Compositions of derivatives thereof
    • C08L93/04Rosin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape

Definitions

  • the present invention relates to a resin composition, a laminate, a semiconductor chip with a resin composition layer, a substrate for mounting a semiconductor chip with a resin composition layer, and a semiconductor device. Specifically, the present invention relates to a resin composition useful as an underfill material.
  • semiconductor chips hereinafter sometimes abbreviated as “chips”
  • semiconductor chip mounting substrates hereinafter sometimes abbreviated as “substrates”
  • flip-chip mounting has attracted attention.
  • the gap between the chip and the substrate is filled with an underfill material, which is then hardened.
  • an underfill material also referred to as a pre-applied underfill material
  • one of the important characteristics required for the underfill material is to maintain insulation reliability.
  • voids bubbles
  • peeling of the cured underfill material from the chip and substrate is suppressed. There is a need.
  • Patent Document 1 describes an underfill material that uses a radically polymerizable monomer as the main resin. This patent document 1 describes the addition of a silane coupling agent for the purpose of improving the adhesion to the chip.
  • the present invention has been made in view of such problems, and includes a resin composition, a laminate, a semiconductor chip with a resin composition layer, and a semiconductor chip mounting with a resin composition layer, which are excellent in low void property and chip adhesiveness. It is an object of the present invention to provide a substrate for a semiconductor device and a semiconductor device.
  • an aminotriazine novolac resin A
  • an inorganic filler (D) contains
  • the inorganic filler (D) has a functional group (d) containing one or more selected from the group consisting of a (meth)acrylic group, a vinyl group, a styryl group, and a phenyl group (D1).
  • the compound (B) comprises a compound (B1) and a compound (B2)
  • the compound (B1) is a maleimide compound (BA-1) having a weight average molecular weight of 3,000 or more and 9,500 or less and a citraconimide compound (BB-1) having a weight average molecular weight of 3,000 or more and 9,500 or less.
  • One or more selected from the group consisting of The compound (B2) is selected from the group consisting of a maleimide compound (BA-2) having a weight average molecular weight of 300 or more and less than 3,000 and a citraconimide compound (BB-2) having a weight average molecular weight of 300 or more and less than 3,000.
  • each weight average molecular weight is a standard polystyrene-equivalent value determined by a gel permeation chromatography method.
  • the inorganic filler (D1) contains a reaction product of the compound (d1) having the functional group (d) and the inorganic filler (d2) having no functional group (d) ] The resin composition as described in . [4] [ 3]. [5] [3] or [ 4].
  • the compound (d1) having the functional group (d) contains one or more selected from the group consisting of a silane compound having a (meth)acrylic group and/or a vinyl group and a silane compound having a styryl group
  • Inorganic filler (d2) contains one or more selected from the group consisting of silica, aluminum hydroxide, alumina, boehmite, boron nitride, aluminum nitride, magnesium oxide, and magnesium hydroxide
  • [7] The resin composition according to any one of [1] to [6], wherein the inorganic filler (D) has an average particle size of 3 ⁇ m or less.
  • R 1 each independently represents a hydrogen atom, a methyl group, or an ethyl group; l, m, and n each independently represent an integer of 0 to 10; (l + m + n) indicates an integer from 1 to 20.)
  • each R 2 independently represents a hydrogen atom, a methyl group, or an ethyl group; o, p, q, r, and s each independently represents an integer of 0 to 10; , (o + p + q + r + s) represents an integer from 1 to 20.) [10]
  • the content of the compound (B1) is 45 parts by mass or more and 90 parts by mass or less with respect to a total of 100 parts by mass of the compound (B1) and the compound (B2), [1] to [9], wherein the content of the compound (B2) is 10 parts by mass or more and 55 parts by mass or less with respect to a total of 100 parts by mass of the compound (B1) and the compound (B2).
  • the maleimide compound (BA-1) consists of a maleimide compound represented by the following formula (3) and a bismaleimide compound containing a maleimide group at both ends of a structural unit represented by the following formula (4) and a molecular chain.
  • n3 represents an integer of 1 to 30.
  • R 11 represents a linear or branched alkylene group having 1 to 16 carbon atoms, or a linear or branched alkenylene group having 2 to 16 carbon atoms
  • R 12 represents 1 to 16 carbon atoms.
  • the maleimide compound (BA-2) contains one or more selected from the group consisting of a maleimide compound represented by the following formula (5) and a maleimide compound represented by the following formula (6) [1] to [11] ]
  • the resin composition according to any one of the above.
  • each R 8 independently represents a hydrogen atom, a methyl group, or an ethyl group, and each R 9 independently represents a hydrogen atom or a methyl group.
  • each R 10 independently represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or a phenyl group, and n 4 represents an integer of 1 to 10.
  • a semiconductor device comprising the semiconductor chip with a resin composition layer according to [22].
  • a resin composition a laminate, a semiconductor chip with a resin composition layer, a substrate for mounting a semiconductor chip with a resin composition layer, and a semiconductor device, which are excellent in low void property and chip adhesiveness. can.
  • this embodiment A mode for carrying out the present invention (hereinafter simply referred to as "this embodiment") will be described below.
  • the following embodiment is an example for explaining the present invention, and the present invention is not limited only to this embodiment.
  • (meth)acryloxy means both “acryloxy” and its corresponding "methacryloxy”
  • (meth)acrylonitrile means “acrylonitrile” and its corresponding "methacrylonitrile”.
  • (meth)acrylic means both “acrylic” and its corresponding "methacrylic”
  • (meth)acrylate means both “acrylate” and its corresponding "methacrylate”.
  • (meth)allyl means both “allyl” and the corresponding "methallyl”.
  • “ ⁇ ” in the present specification unless otherwise specified, means that the numerical values at both ends are included as the upper limit and the lower limit, and the unit for the upper limit and the lower limit shall be the same. .
  • the term "resin solid content” or “resin solid content in the resin composition” refers to the inorganic filler (D), curing catalyst (E), and the component excluding the solvent, and "100 parts by mass of resin solid content” means that the total of the components excluding the inorganic filler (D), the curing catalyst (E), and the solvent in the resin composition is 100 parts by mass. It means that
  • the resin composition of the present embodiment comprises an aminotriazine novolac resin (A) (hereinafter also simply referred to as “resin (A)”), a maleimide compound (BA) (hereinafter also simply referred to as “compound (BA)”) and containing one or more compounds (B) selected from the group consisting of citraconimide compounds (BB) (hereinafter also simply referred to as “compounds (BB)”) and an inorganic filler (D), wherein the inorganic
  • the filler (D) contains an inorganic filler (D1) having a functional group (d) containing one or more selected from the group consisting of a (meth)acrylic group, a vinyl group, a styryl group, and a phenyl group,
  • the compound (B) comprises a compound (B1) and a compound (B2), wherein the compound (B1) is a maleimide compound (BA-1) having a weight average molecular weight of 3,000 or more and 9,
  • the resin composition of the present embodiment is configured in this way, it is excellent in low void property and chip adhesion. Since the resin composition of the present embodiment has such properties, it is suitably used as an underfill material for flip chip mounting.
  • a resin composition having excellent low void properties and chip adhesiveness can be obtained in the present embodiment, the present inventors presume as follows. Generally, a resin composition containing a maleimide compound and/or a citraconimide compound as a main component does not provide sufficient chip adhesiveness, and voids or voids generated by heat during semiconductor chip mounting or thermal curing (during post-curing). , it is difficult to suppress peeling from the chip and substrate after curing.
  • the aminotriazine novolac resin (A) has a triazine skeleton, it can react favorably with maleimide groups and/or citraconimide groups.
  • the resin (A) can suitably control the rate of the radical polymerization reaction of the compound (B), and the resin composition containing the resin (A) and the compound (B) can be applied to the unevenness existing on the surfaces of the chip and the substrate. It can be hardened while following. Therefore, the resin composition can have an excellent anchoring effect to the semiconductor chip and the substrate, and can exhibit excellent chip adhesiveness with excellent low void property to the semiconductor chip and the substrate. Further, since the resin (A) has a novolak skeleton bonded to the triazine skeleton, it can contain many hydroxy groups and amino groups even after curing.
  • the resin composition containing the resin (A) and the compound (B) has excellent chip adhesiveness, and such a resin composition can be used during semiconductor chip mounting and heat curing (post Voids can also be favorably suppressed by heat during curing.
  • the inorganic filler (D1) contained in the resin composition of the present embodiment has a predetermined functional group (d), and this functional group (d) is reactive with the compound (B). Because of the high temperature, it is considered that a strong chemical bond is formed between the compound (B) and the inorganic filler (D1) by the heat during the semiconductor chip mounting and post-curing. As a result, it is possible to suppress voids that may occur after semiconductor chip mounting and during post-curing. can be suppressed.
  • the interaction between the resin (A) and the compound (B) and the interaction between the compound (B) and the inorganic filler (D1) work synergistically to achieve the
  • the resin composition has excellent chip adhesiveness, and by using such a resin composition, it is possible to suitably suppress voids that are normally likely to occur due to heat during semiconductor chip mounting or thermal curing (during post-curing). It is speculated that Also, from the same point of view, it is presumed that peeling of the cured product from the chip and the substrate can be suitably suppressed even after the semiconductor chip is mounted and after post-curing. However, the reason is not limited to this.
  • the resin composition of the present embodiment contains an aminotriazine novolac resin (A) from the viewpoint of obtaining excellent reactivity with the compound (B) and obtaining a resin composition having low void properties and excellent chip adhesiveness.
  • an aminotriazine novolak resin (A) any phenol-formaldehyde resin (phenol resin) having a triazine ring in the molecule may be used, and known resins can also be used.
  • Such an aminotriazine novolac resin (A) can be produced by a known method, for example, by modifying a phenolic resin with a nitrogen compound such as melamine.
  • the aminotriazine novolak resin (A) can be used singly or in an appropriate mixture of two or more.
  • the content of the aminotriazine novolak resin (A) provides excellent reactivity with the compound (B), and provides excellent low void properties and chip adhesion. It is preferably 1 to 60 parts by mass with respect to 100 parts by mass in total of the aminotriazine novolak resin (A) and the compound (B). Since excellent reactivity with the compound (B) is obtained, and even more excellent low void property and chip adhesion are obtained, the content of the aminotriazine novolak resin (A) is It is more preferably 15 to 60 parts by mass, still more preferably 15 to 50 parts by mass, and even more preferably 17 to 45 parts by mass, relative to the total 100 parts by mass with the compound (B). 20 to 40 parts by mass is even more preferable.
  • aminotriazine novolac resin (A) excellent reactivity with the compound (B) can be obtained, and further excellent low void property and chip adhesiveness can be obtained.
  • 500 is preferred, and 500 to 5,000 is more preferred.
  • a weight average molecular weight is a value of standard polystyrene conversion calculated
  • aminotriazine novolac resin (A) excellent reactivity with the compound (B) can be obtained, and even more excellent low void properties and chip adhesiveness can be obtained. It is preferably 10 to 25% by mass, more preferably 15 to 25% by mass, based on 100% by mass.
  • the aminotriazine novolac resin (A) excellent reactivity with the compound (B) can be obtained, and further excellent low void properties and chip adhesion can be obtained.
  • eq. is preferably 100 to 180 g/eq. It is more preferable that the content is 130 to 170 g/eq. is more preferable.
  • the hydroxy group equivalent means mg of potassium hydroxide required to acetylate the hydroxy groups contained in 1 g of the aminotriazine novolak resin. Specifically, it is measured according to JIS K 0070.
  • the aminotriazine novolac resin (A) is represented by the following formula (1), since it exhibits even better reactivity with the compound (B) and provides even better low void properties and chip adhesion. It preferably contains one or more selected from the group consisting of compounds and compounds represented by the following formula (2).
  • each R 1 independently represents a hydrogen atom, a methyl group, or an ethyl group. Each R 1 is preferably a hydrogen atom or a methyl group, because better reactivity with compound (B) can be obtained, and even better low void properties and chip adhesion can be obtained.
  • l, m, and n each independently represent an integer of 0 to 10; l, m, and n are each independently an integer of 1 to 6, since better reactivity with the compound (B) is obtained, and even better low void property and chip adhesion are obtained. is preferred.
  • (l+m+n) represents an integer of 1-20.
  • (l+m+n) is preferably an integer of 3 to 18 because better reactivity with compound (B) can be obtained, and even better low void property and chip adhesion can be obtained.
  • the compounds represented by the formula (1) are, for example, compounds in which the number of R 1 groups and the number thereof are different, compounds in which the numbers of l, m, and n are different, and compounds in which the number of (l + m + n) is It may be a mixture containing different compounds and the like.
  • each R 2 independently represents a hydrogen atom, a methyl group, or an ethyl group. It is preferable that each R 2 is independently a hydrogen atom or a methyl group, since more excellent reactivity with the compound (B) can be obtained, and even more excellent low void property and chip adhesiveness can be obtained.
  • . o, p, q, r, and s each independently represent an integer of 0 to 10; o, p, q, r, and s are each independently from 1 to 4, because better reactivity with the compound (B) can be obtained, and even better low void properties and chip adhesion can be obtained.
  • (o + p + q + r + s) is preferably an integer of 5 to 20 because better reactivity with compound (B) can be obtained, and even better low void property and chip adhesion can be obtained.
  • the compounds represented by the formula (2) include, for example, compounds in which the number of R 2 groups and the number thereof are different in the formula (2), compounds in which the numbers of o, p, q, r, and s are different, (o + p + q + r + s ) may be a mixture containing compounds having different numbers of .
  • the aminotriazine novolac resin (A) is represented by the formula (1), since it can obtain even better reactivity with the compound (B), and even better low void properties and chip adhesion. and a compound represented by formula (2). As such a mixture, even better reactivity with the compound (B) can be obtained, and even better low void properties and chip adhesion can be obtained.
  • the mass ratio of the compound represented by (2) (compound represented by formula (1) (parts by mass): compound represented by formula (2) (parts by mass)) is 50:50 to 90:10. and more preferably 60:40 to 85:15.
  • aminotriazine novolak resin (A) a commercially available product may be used.
  • LA-7054 trade name
  • LA-7751 trade name
  • the resin composition of the present embodiment contains one or more compounds (B) selected from the group consisting of maleimide compounds (BA) and citraconimide compounds (BB) from the viewpoint of low void properties and excellent chip adhesion.
  • Compound (B) is not particularly limited as long as it contains one or more selected from the group consisting of a maleimide group and a citraconimide group in the molecule.
  • the compound (B) preferably does not show reactivity with the flux activator (C) described below.
  • Compound (B) can be used individually by 1 type or in mixture of 2 or more types.
  • the maleimide compound (BA) has excellent reactivity with the aminotriazine novolak resin (A) and provides excellent low void properties and chip adhesion. is preferably included.
  • the maleimide compound (BA) is less likely to react with the flux activator during storage or heat treatment than the epoxy compound, and the deactivation of the flux activator is less likely to occur.
  • the compound (B) includes a compound (B1) and a compound (B2), and the compound (B1) is a maleimide compound (BA-1) having a weight average molecular weight of 3,000 or more and 9,500 or less and a weight average One or more selected from the group consisting of citraconimide compounds (BB-1) having a molecular weight of 3,000 or more and 9,500 or less, and the compound (B2) is a maleimide having a weight average molecular weight of 300 or more and less than 3,000. It is one or more selected from the group consisting of compound (BA-2) and citraconimide compound (BB-2) having a weight average molecular weight of 300 or more and less than 3,000.
  • the resin composition of the present embodiment is even more excellent in low void properties and chip adhesion.
  • the reason for this is not clear, but the inventors presume as follows. That is, by including the compound (B1) having a relatively high molecular weight in the resin composition, the stress generated during cure shrinkage during semiconductor chip mounting or thermal curing (during post-curing) is alleviated. Therefore, the effect of improving adhesiveness by using the resin (A) is further promoted.
  • the resin composition also contains a compound (B2) having a relatively low molecular weight.
  • the compound (B1) preferably contains a maleimide compound (BA-1), since it provides even better low void properties and chip adhesion.
  • the compound (B2) preferably contains a maleimide compound (BA-2) because it provides even better low void properties and chip adhesion.
  • the maleimide compound (BA-1) preferably has a weight-average molecular weight of 3,200 or more and 8,000 or less, because it provides even better low void properties and chip adhesion. It is more preferably 300 or more and 6,000 or less.
  • the weight average molecular weight is preferably 3,200 or more and 8,000 or less, since even more excellent low void properties and chip adhesiveness can be obtained. , 300 or more and 6,000 or less.
  • the weight average molecular weight of the maleimide compound (BA-2) is preferably from 350 to 2,800, preferably from 400 to 2,800, because even more excellent low void property and chip adhesiveness can be obtained. It is more preferably 500 or less.
  • the weight average molecular weight is preferably 350 or more and 2,800 or less, and 400 or more and 2 , 500 or less.
  • the maleimide compound (BA) is not particularly limited as long as it is a resin or compound having one or more maleimide groups in the molecule.
  • the maleimide compound (BA) can be used singly or in combination of two or more.
  • maleimide compounds examples include N-phenylmaleimide, N-hydroxyphenylmaleimide, bis(4-maleimidophenyl)methane, 4,4-diphenylmethanebismaleimide, bis(3,5-dimethyl-4 -maleimidophenyl)methane, bis(3-ethyl-5-methyl-4-maleimidophenyl)methane, bis(3,5-diethyl-4-maleimidophenyl)methane, phenylmethanemaleimide, o-phenylenebismaleimide, m- Phenylenebismaleimide, p-phenylenebismaleimide, 2,2-bis(4-(4-maleimidophenoxy)-phenyl)propane, 3,3-dimethyl-5,5-diethyl-4,4-diphenylmethanebismaleimide, 4 -methyl-1,3-phenylenebismaleimide, 1,6-bismaleimide
  • the compound (B) is in the form of a prepolymer obtained by polymerizing a maleimide compound, a prepolymer obtained by polymerizing a maleimide compound with another compound such as an amine compound, or the like, and the resin composition according to the present embodiment. can also be contained in
  • n3 represents an integer of 1-30.
  • R 11 represents a linear or branched alkylene group having 1 to 16 carbon atoms or a linear or branched alkenylene group having 2 to 16 carbon atoms.
  • R 12 represents a linear or branched alkylene group having 1 to 16 carbon atoms or a linear or branched alkenylene group having 2 to 16 carbon atoms.
  • Each R 13 independently represents a hydrogen atom, a linear or branched alkyl group having 1 to 16 carbon atoms, or a linear or branched alkenyl group having 2 to 16 carbon atoms.
  • Each n5 independently represents an integer of 1 or more and 10 or less. Details of the structural unit represented by formula (4) will be described later.
  • each R 8 independently represents a hydrogen atom, a methyl group, or an ethyl group.
  • Each R9 independently represents a hydrogen atom or a methyl group.
  • each R 10 independently represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or a phenyl group.
  • n4 represents an integer of 1-10.
  • R 10 is preferably a hydrogen atom.
  • each R 10 independently represents a hydrogen atom or a methyl group
  • n 2 represents an integer of 1 or more, preferably an integer of 1-10.
  • the bismaleimide compound may have a plurality of structural units represented by formula (4), in which case R 11 , R 12 and R in the plurality of structural units represented by formula (4) 13 may be the same or different.
  • R 11 , R 12 , and R 13 in the structural unit represented by formula (4) and the number of structural units represented by formula (4) in the bismaleimide compound is It may be a mixture of different compounds.
  • R 11 represents a linear or branched alkylene group having 1 to 16 carbon atoms or a linear or branched alkenylene group having 2 to 16 carbon atoms. .
  • R 11 is a linear or branched alkylene because the resin composition has a suitable viscosity when the resin composition layer is mounted on the chip, and the increase in melt viscosity during mounting can be controlled favorably. is preferably a group, more preferably a linear alkylene group.
  • the number of carbon atoms in the alkylene group is 2 to 14 because the resin composition has a more suitable viscosity when the resin composition layer is mounted on the chip, and the increase in melt viscosity during mounting can be more suitably controlled. is preferred, and 4 to 12 is more preferred.
  • Examples of linear or branched alkylene groups include methylene, ethylene, propylene, 2,2-dimethylpropylene, butylene, pentylene, hexylene, heptylene, octylene, nonylene, and decylene.
  • the number of carbon atoms in the alkenylene group is 2 to 14 because the resin composition has a more suitable viscosity when the resin composition layer is mounted on the chip, and the increase in melt viscosity during mounting can be more suitably controlled. is preferred, and 4 to 12 is more preferred.
  • Linear or branched alkenylene groups include, for example, vinylene group, 1-methylvinylene group, arylene group, propenylene group, isopropenylene group, 1-butenylene group, 2-butenylene group, 1-pentenylene group, 2 -pentenylene group, isopentylene group, cyclopentenylene group, cyclohexenylene group, dicyclopentadienylene group, and the like.
  • R 12 represents a linear or branched alkylene group having 1 to 16 carbon atoms or a linear or branched alkenylene group having 2 to 16 carbon atoms. .
  • R 12 is a linear or branched alkylene because the resin composition has a suitable viscosity when the resin composition layer is mounted on the chip, and the increase in melt viscosity during mounting can be suitably controlled. is preferably a group, more preferably a linear alkylene group.
  • the number of carbon atoms in the alkylene group is 2 to 14 because the resin composition has a more suitable viscosity when the resin composition layer is mounted on the chip, and the increase in melt viscosity during mounting can be more suitably controlled. is preferred, and 4 to 12 is more preferred.
  • the above R 11 can be referred to as the linear or branched alkylene group.
  • the number of carbon atoms in the alkenylene group is 2 to 14 because the resin composition has a more suitable viscosity when the resin composition layer is mounted on the chip, and the increase in melt viscosity during mounting can be more suitably controlled. is preferred, and 4 to 12 is more preferred.
  • the linear or branched alkenylene group the above R 11 can be referred to.
  • R 11 and R 12 may be the same or different, but from the viewpoint of easier synthesis of the bismaleimide compound, they are preferably the same. preferable.
  • each R 13 is independently a hydrogen atom, a linear or branched alkyl group having 1 to 16 carbon atoms, or a linear or branched alkyl group having 2 to 16 carbon atoms. It represents a branched alkenyl group.
  • Each of R 13 is independently a hydrogen atom or a carbon
  • a linear or branched alkyl group having a number of 1 to 16 is preferable, and among R 13 , 1 to 5 groups (R 13 ) are linear or branched alkyl groups having 1 to 16 carbon atoms.
  • R 13 are more preferably hydrogen atoms, and among R 13 , 1 to 3 groups (R 13 ) are linear or branched groups having 1 to 16 carbon atoms. More preferably, it is an alkyl group and the remaining groups (R 13 ) are hydrogen atoms.
  • the number of carbon atoms in the alkyl group is 2 to 14 because the resin composition has a more suitable viscosity when the resin composition layer is mounted on the chip, and the increase in melt viscosity during mounting can be more suitably controlled. is preferred, and 4 to 12 is more preferred.
  • Linear or branched alkyl groups include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, 1-ethylpropyl group, n-butyl group, 2-butyl group, isobutyl group, tert-butyl group, n-pentyl group, 2-pentyl group, tert-pentyl group, 2-methylbutyl group, 3-methylbutyl group, 2,2-dimethylpropyl group, n-hexyl group, 2-hexyl group, 3-hexyl group, n-heptyl, n-octyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 2-methylpentan-3-yl, and n-nonyl groups.
  • the number of carbon atoms in the alkenyl group is 2 to 14 because the resin composition has a more suitable viscosity when the resin composition layer is mounted on the chip, and the increase in melt viscosity during mounting can be more suitably controlled. is preferred, and 4 to 12 is more preferred.
  • Linear or branched alkenyl groups include, for example, vinyl group, allyl group, 4-pentenyl group, isopropenyl group, isopentenyl group, 2-heptenyl group, 2-octenyl group, and 2-nonenyl group. be done.
  • n 5 represents an integer of 1-10.
  • a bismaleimide compound has maleimide groups at both ends of its molecular chain. Both ends mean both ends in the molecular chain of the bismaleimide compound. , at the chain end of R 11 , at the chain end at the N atom of the maleimide ring, or at both ends.
  • the bismaleimide compound may have maleimide groups other than both ends of the molecular chain.
  • the maleimide group is represented by formula (8) and the N atom is bonded to the molecular chain of the bismaleimide compound.
  • the maleimide groups bonded to the bismaleimide compound may all be the same or different, but the maleimide groups at both ends of the molecular chain are preferably the same.
  • each R 11 independently represents a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms. Both R 11 are preferably hydrogen atoms from the viewpoint that they can more preferably react with the resin (A).
  • the number of carbon atoms in the alkyl group is preferably from 1 to 3, more preferably from 1 to 2, from the viewpoint of more preferably reacting with the resin (A).
  • the above R 13 can be referred to as the linear or branched alkyl group.
  • Examples of such bismaleimide compounds include maleimide compounds represented by formula (9). These can be used singly or in combination of two or more compounds having different repeating numbers of a in formula (9).
  • a represents an integer of 1-10.
  • a is an integer of 1 to 6 because the resin composition has a more suitable viscosity when the resin composition layer is mounted on the chip, and the increase in melt viscosity during mounting can be more suitably controlled. is preferred.
  • the maleimide compound represented by formula (9) may be a mixture of compounds in which a is different.
  • the maleimide compound (BA) has excellent reactivity with the resin (A), has excellent low void properties and chip adhesion, and provides a resin composition having excellent solvent solubility.
  • the maleimide compound (BA) tends to have better reactivity with the resin (A), and to have better low void properties, chip adhesion, and solvent solubility.
  • maleimide compound (BA-1) As the maleimide compound (BA-1), the above formula ( 3) and maleimide compounds represented by the above formula (4) and bismaleimide compounds containing maleimide groups at both ends of the molecular chain.
  • the maleimide compound (BA-2) As the maleimide compound (BA-2), the above formula ( 5) and one or more selected from the group consisting of the maleimide compound represented by the above formula (6).
  • maleimide compound a commercially available product may be used.
  • MIZ-001 manufactured by Nippon Kayaku Co., Ltd. (trade name, represented by the formula (9) Weight-average molecular weight: 3,900), which contains a maleimide compound and a in formula (9) is a mixture of 1 to 6 (integers).
  • the maleimide compound represented by formula (5) include BMI-70 (trade name; bis(3-ethyl-5-methyl-4-maleimidophenyl)methane manufactured by K.I. Kasei Co., Ltd., weight average molecular weight : 550).
  • Examples of the maleimide compound represented by formula (6) include MIR-3000-70MT (trade name, manufactured by Nippon Kayaku Co., Ltd., where all R 10 in formula (6) are hydrogen atoms, n 4 is 1 ⁇ 10 mixture, weight average molecular weight: 1,050).
  • Examples of the maleimide compound represented by formula (7) include BMI-2300 (trade name) manufactured by Daiwa Kasei Kogyo Co., Ltd.
  • citraconimide compound (BB) examples include, but are not limited to, o-phenylenebiscitraconimide, m-phenylenebiscitraconimide, p-phenylenebiscitraconimide, 4,4-diphenylmethanebiscitraconimide, 2,2- bis[4-(4-citraconimidophenoxy)phenyl]propane, bis(3,5-dimethyl-4-citraconimidophenyl)methane, bis(3-ethyl-5-methyl-4-citraconimidophenyl)methane, bis (3,5-diethyl-4-citraconimidophenyl)methane, 1,3-xylylenebis(citraconimide), N-[3-bis(trimethylsilyl)amino-1-propyl]citraconimide, N-[3-bis( triethyl
  • the above bismaleimide compound can be referred to.
  • the details of the structural unit represented by the formula (4) are as described above, and the citraconimide group is represented by the formula ( 8) can be referred to.
  • the citraconimide compound (BB) can be used singly or in combination of two or more.
  • the citraconimide compound (BB) is among the above-mentioned from the viewpoint of obtaining a resin composition having excellent solvent solubility, excellent low void property and chip adhesion, and excellent reactivity with the resin (A).
  • a biscitraconimide compound containing a structural unit represented by the above formula (4) and a citraconimide group at both ends of the molecular chain represented by the following formula (11) and one or more selected from the group consisting of a citraconimide compound represented by the following formula (12).
  • citraconimide compound (BB-1) As the citraconimide compound (BB-1), a more excellent reactivity with the resin (A) can be obtained, and a more excellent low void property, chip adhesion, and solvent solubility can be obtained. It is preferably a citraconimide compound represented by (10) and/or a biscitraconimide compound containing a structural unit represented by the above formula (4) and citraconimide groups at both ends of the molecular chain.
  • n6 represents an integer of 1-30.
  • citraconimide compound (BB-2) As the citraconimide compound (BB-2), a more excellent reactivity with the resin (A) can be obtained, and a more excellent low void property, chip adhesion, and solvent solubility can be obtained. It is preferably a citraconimide compound represented by (11) and/or a citraconimide compound represented by the following formula (12).
  • each R 8 independently represents a hydrogen atom, a methyl group, or an ethyl group.
  • Each R9 independently represents a hydrogen atom or a methyl group.
  • each R 10 independently represents a hydrogen atom or a methyl group, and n 4 represents an integer of 1 or more, preferably an integer of 1-10.
  • R 10 is preferably a hydrogen atom.
  • the content of the compound (B) is not particularly limited. B) with respect to 100 parts by mass in total, preferably 40 to 85 parts by mass, more preferably 50 to 85 parts by mass, even more preferably 55 to 83 parts by mass, and 60 to 80 parts by mass. Even more preferable.
  • the compound (B1) The content of is preferably 45 parts by mass or more and 90 parts by mass or less, and 45 parts by mass or more and 85 parts by mass or less with respect to a total of 100 parts by mass of the compound (B1) and the compound (B2). More preferably, it is 45 parts by mass or more and 78 parts by mass or less.
  • the content of the compound (B2) is preferably 10 parts by mass or more and 55 parts by mass or less, and 15 parts by mass or more and 55 parts by mass with respect to a total of 100 parts by mass of the compound (B1) and the compound (B2). It is more preferably 22 parts by mass or more and 55 parts by mass or less.
  • the maleimide compound (BA -1) content is preferably 45 to 90 parts by mass, preferably 45 to 85 parts by mass, with respect to the total 100 parts by mass of compound (BA-1) and compound (BA-2). is more preferable, and 45 to 78 parts by mass is even more preferable.
  • the content of the maleimide compound (BA-2) is preferably 10 to 55 parts by mass with respect to a total of 100 parts by mass of the compound (BA-1) and the compound (BA-2). It is more preferably 55 parts by mass, and even more preferably 22 to 55 parts by mass.
  • the content of the citraconimide compound (BB-1) is the compound (BB-1) and the compound (BB- 2) is preferably 45 to 90 parts by mass, more preferably 45 to 85 parts by mass, and even more preferably 45 to 78 parts by mass, based on the total 100 parts by mass of 2).
  • the content of the citraconimide compound (BB-2) is preferably 10 to 55 parts by mass with respect to a total of 100 parts by mass of the compound (BB-1) and the compound (BB-2). It is more preferably 55 parts by mass, and even more preferably 22 to 55 parts by mass.
  • the content (total amount) of the resin (A) and the compound (B) is It is preferably 30 parts by mass or more, more preferably 50 parts by mass or more, even more preferably 70 parts by mass or more, and may be 80 parts by mass or more.
  • the upper limit of the content (total amount) of the resin (A) and the compound (B) may be 100 parts by mass or less, or may be 95 parts by mass or less with respect to 100 parts by mass of the resin solid content.
  • the resin composition of the present embodiment preferably further contains a flux activator (C) in order to exhibit flux activity in flip-chip mounting.
  • the flux activator (C) is not particularly limited as long as it is an organic compound having one or more acidic sites in its molecule.
  • As the acidic site for example, a phosphoric acid group, a phenolic hydroxyl group, a carboxyl group, and a sulfonic acid group are preferable.
  • a phenolic hydroxyl group or a carboxyl group is more preferable from the viewpoint of more effectively preventing the migration and corrosion of metals such as copper.
  • the flux activator (C) can be used singly or in an appropriate mixture of two or more.
  • the flux activator (C) is not particularly limited, but preferably has an acid dissociation constant pKa of 3.8 or more and 15.0 or less in order to sufficiently remove the oxide film at the junction, and the storage stability of the varnish is improved. It is more preferably 4.0 or more and 14.0 or less from the viewpoint of compatibility between the storage stability and the flux activity of a laminate (underfill material with a supporting substrate) provided with a layer of a resin composition.
  • the weight average molecular weight or molecular weight of the flux activator (C) in the resin composition of the present embodiment is not particularly limited. From the viewpoint of preventing the flux activator (C) from volatilizing before removing the film, the weight average molecular weight or molecular weight is preferably 200 or more, more preferably 250 or more. In order to have motility as a flux activator and obtain sufficient flux activity, the weight average molecular weight or molecular weight of the flux activator (C) is preferably 8000 or less, more preferably 1000 or less. , 600 or less.
  • Examples of the flux activator (C) include, but are not limited to, abietic acid, neoabietic acid, dehydroabietic acid, pimaric acid, isopimaric acid, parastric acid, diphenolic acid, dihydroabietic acid, tetrahydroabietic acid, hydrogenation Rosin resins such as rosin esters and rosin-modified maleic acid resins; N,N'-bis(salicylidene)-1,2-propanediamine, N,N'-bis(salicylidene)-1,3-propanediamine, etc. diamine series; phenolphthalin.
  • These flux activators (C) are preferable from the viewpoint of solubility in solvents, storage stability of varnishes, and storage stability of underfill materials with supporting substrates. It is more preferable to include
  • the flux activator (C) is dehydroabietic acid, diphenolic acid, dihydroabietic acid, tetrahydroabietic acid, hydrogenated rosin ester, rosin-modified maleic acid resin. , N,N'-bis(salicylidene)-1,2-propanediamine, and N,N'-bis(salicylidene)-1,3-propanediamine. preferable.
  • these flux activators have relatively low reactivity, they hardly react with the resin (A) and the compound (B), and sufficient flux activity necessary for removing the oxide film is maintained. It is more preferable from the viewpoint of Further, the flux activator (C) is more preferably a hydrogenated rosin ester in terms of obtaining even better flux activity.
  • a commercially available product can be used as the flux activator (C).
  • rosin-based resins include Pine Crystal (registered trademark, hereinafter the same) series KR-85 (trade name, hereinafter the same), KR-612, KR-614, KE-100, KE-311, PE-590, KE-359, KE-604, KR-120, KR-140, KR-614, D-6011, and KR-50M; Marquid No. 32 (manufactured by Arakawa Chemical Industries, Ltd.) and the like.
  • the content of the flux activator (C) is not particularly limited, but from the viewpoint of ensuring insulation reliability and sufficient flux activity during mounting, It is preferably 5 to 70 parts by mass, more preferably 10 to 50 parts by mass, even more preferably 15 to 40 parts by mass, relative to 100 parts by mass of compound (B).
  • the resin composition of the present embodiment further contains an inorganic filler (D) in order to improve flame resistance, improve thermal conductivity, and reduce the coefficient of thermal expansion.
  • the inorganic filler (D) By using the inorganic filler (D), the flame resistance and thermal conductivity of a cured product such as a film formed using the resin composition of the present embodiment can be improved, and the coefficient of thermal expansion can be reduced. can.
  • the minimum melt viscosity of the resin composition can be suitably controlled.
  • the minimum melt viscosity of the resin composition is preferably 200 Pa ⁇ s or more and 30,000 Pa ⁇ s or less because it is suitable for use as an underfill material.
  • the resin composition of the present embodiment contains an inorganic filler (D1), which will be described in detail later, as the inorganic filler (D), low void properties and chip adhesiveness are improved.
  • the inorganic filler (D) is not particularly limited, but may include, for example, various known inorganic compounds.
  • the inorganic compound include, but are not limited to, natural silica, fused silica, amorphous silica, and silica such as hollow silica; aluminum compounds such as boehmite, aluminum hydroxide, alumina, and aluminum nitride; magnesium compounds such as magnesium oxide and magnesium hydroxide; calcium compounds such as calcium carbonate and calcium sulfate; Molybdenum compounds such as zinc molybdate; boron nitride; barium sulfate; talc such as natural talc and calcined talc; mica; and the like.
  • the inorganic filler (D) when it is desired to impart electrical conductivity or anisotropic electrical conductivity to the resin composition of the present embodiment, metal particles such as gold, silver, nickel, copper, tin alloys, and palladium can be used as the inorganic filler (D).
  • the inorganic filler (D) includes silica, aluminum hydroxide, alumina, boehmite, boron nitride, aluminum nitride, magnesium oxide, and magnesium hydroxide, more preferably one or more selected from the group consisting of silica, alumina, and boron nitride, more preferably silica .
  • These inorganic fillers (D) can be used singly or in admixture of two or more.
  • the inorganic filler (D) in the present embodiment is an inorganic filler having a functional group (d) containing one or more selected from the group consisting of (meth)acrylic groups, vinyl groups, styryl groups, and phenyl groups. including material (D1).
  • the “phenyl group” (“—C 6 H 5 ”) means a group directly bonded to a silicon atom or a carbon atom, for example, a phenyl group directly bonded to a nitrogen atom. It is distinguished from a group (aminophenyl group) and the like. Since the functional group (d) in such an inorganic filler (D1) is highly reactive with the compound (B), the compound (B) and the inorganic filler ( D1) is thought to form a strong chemical bond. As a result, voids that may occur after semiconductor chip mounting and during post-curing can be suppressed, and peeling of the cured product from the chip and substrate can be suitably suppressed even after semiconductor chip mounting and post-curing. It is considered possible.
  • the functional group (d) in the present embodiment is not particularly limited as long as it contains at least one selected from the group consisting of (meth)acrylic groups, vinyl groups, styryl groups, and phenyl groups. From the viewpoint of adhesiveness, it is preferable to further contain a silicon atom, and the silicon atom is a (meth) acrylic group, a vinyl group, a styryl group, and a group containing one or more selected from the group consisting of a phenyl group. Bonding is more preferred.
  • a functional group (d) in which a silicon atom is directly bonded to a group containing one or more selected from the group consisting of (meth)acrylic groups, vinyl groups, styryl groups, and phenyl groups is preferably a group containing one or more selected from the group consisting of an acryloxyalkylsilyl group, a vinylsilyl group, a styrylsilyl group, and a phenylsilyl group, consisting of a (meth)acryloxyalkylsilyl group and a vinylsilyl group; A group containing one or more selected from the group is more preferred.
  • the number of carbon atoms in the alkyl portion of the (meth)acryloxyalkylsilyl group is preferably 1-6, more preferably 1-3.
  • the inorganic filler (D1) in the present embodiment is a compound (d1) having a functional group (d) and an inorganic filler (d2) having no functional group (d) from the viewpoint of low voids and chip adhesion. preferably contains a reactant with The compound (d1) is not particularly limited as long as it can introduce a predetermined functional group to the surface of the inorganic filler (d2). Examples include (meth)acrylic, vinyl, styryl and phenyl A silane coupling agent containing at least one selected from the group consisting of As such a silane coupling agent, a silane coupling agent generally used for surface treatment of inorganic substances can be appropriately employed.
  • vinyltrimethoxysilane ⁇ -(meth)acryloxypropyltrimethoxysilane
  • other vinylsilane-based silane coupling agents silanes having a (meth)acrylic group and/or a vinyl group).
  • compounds phenylsilane-based silane coupling agents (silane compounds having a phenyl group) such as trimethoxyphenylsilane; styrylsilane-based silane coupling agents (silane compounds having a styryl group) such as styryltrimethoxysilane; .
  • phenylsilane-based silane coupling agents silane compounds having a phenyl group
  • trimethoxyphenylsilane such as trimethoxyphenylsilane
  • styrylsilane-based silane coupling agents silane compounds having a styryl group
  • silane coupling agents can be used singly or in admixture of two or
  • the compound (d1) includes a vinylsilane-based silane coupling agent (silane compound having a (meth)acrylic group and/or a vinyl group), and a styrylsilane-based silane.
  • the inorganic filler (d2) is not particularly limited, and the specific examples described above as inorganic compounds that can be contained as the inorganic filler (D) can be applied.
  • the method for preparing the reactant is not particularly limited, and various known methods for treatment with a silane coupling agent can be appropriately employed.
  • the inorganic filler (d2) is silica
  • the above treatment may be carried out in the gas phase or in the liquid phase.
  • the content of the functional group (d) in the inorganic filler (D1) is not particularly limited, but when the inorganic filler (d2) is silica, the content of the functional group (d) with respect to 100 parts by mass of silica may be 1 to 10 parts by mass.
  • the inorganic filler (d2) is silica
  • specific examples of the reactant are not limited to the following, but 0.3 ⁇ m SV-EM1 surface-treated with vinyltrimethoxysilane manufactured by Admatechs Co., Ltd. (trade name), SC1050-MLQ (trade name) surface-treated with vinyltrimethoxysilane, SC2050-MNU (trade name) surface-treated with vinyltrimethoxysilane, and surface-treated with 3-methacryloxypropyltrimethoxysilane.
  • Y50SV-AM1 (trade name) surface-treated with vinyltrimethoxysilane
  • Y50SP-AM1 (trade name) surface-treated with phenyltrimethoxysilane, and the like.
  • YA050C-MJE (trade name), Y50SV-AM1 (trade name), and Y50SP-AM1 (trade name). It preferably contains one or more selected from the group, and more preferably contains one or more selected from the group consisting of YA050C-MJE (trade name) and Y50SV-AM1 (trade name).
  • the average particle size of the inorganic filler (D) is not particularly limited. From a corresponding viewpoint, it is preferably 3 ⁇ m or less, more preferably 1 ⁇ m or less, and may be 0.1 ⁇ m or less. Although the lower limit of the average particle size is not particularly limited, it is, for example, 10 nm.
  • the "average particle size" of the inorganic filler (D) shall mean the median size of the inorganic filler (D).
  • the median diameter is the volume of particles on the larger particle size side and the volume of particles on the smaller particle size side when the particle size distribution of powder is divided into two based on a certain particle size. means a particle size such that each accounts for 50% of the total powder.
  • the average particle size (median size) of the inorganic filler (D) is measured by a wet laser diffraction/scattering method.
  • the content of the inorganic filler (D) is not particularly limited, but from the viewpoint of ensuring insulation reliability and sufficient flux activity during mounting, the aminotriazine novolac resin (A) and It is preferably 20 to 500 parts by mass, more preferably 50 to 400 parts by mass, even more preferably 70 to 300 parts by mass, based on 100 parts by mass in total with the compound (B).
  • the upper limit of the content of the inorganic filler (D) may be 250 parts by mass.
  • the content of the inorganic filler (D1) is 20 to 500 parts by mass with respect to the total 100 parts by mass of the aminotriazine novolak resin (A) and the compound (B). parts, more preferably 50 to 400 parts by mass, even more preferably 70 to 300 parts by mass.
  • the upper limit of the content of the inorganic filler (D1) may be 250 parts by mass.
  • the resin composition of the present embodiment preferably further contains a curing catalyst (E).
  • a curing catalyst (E) When the resin composition contains the curing catalyst (E), the reaction rate between the resin (A) and the compound (B) and the polymerization rate of the compound (B) can be more preferably controlled, and moderate moldability is obtained. A resin composition tends to be obtained.
  • the curing catalyst (E) is not particularly limited as long as it is a compound capable of promoting the reaction between the resin (A) and the compound (B) and the polymerization reaction of the compound (B). Curing catalyst (E) can be used individually by 1 type or in mixture of 2 or more types.
  • the curing catalyst (E) in the present embodiment is not particularly limited, but includes, for example, organic peroxides, imidazole compounds, azo compounds, and tertiary amines such as triethylamine and tributylamine and their derivatives.
  • the curing catalyst (E) is one or more selected from the group consisting of organic peroxides and imidazole compounds from the viewpoint of obtaining a good reaction rate and polymerization rate and obtaining a good curing rate. and more preferably both an organic peroxide and an imidazole compound.
  • the content of the curing catalyst (E) is not particularly limited, but from the viewpoint of obtaining a good curing speed, it is , preferably 0.05 to 10 parts by mass, more preferably 0.05 to 8 parts by mass.
  • organic peroxide in the present embodiment is a compound that releases an active substance (radical) that can promote the reaction between the resin (A) and the compound (B) and the polymerization reaction of the compound (B) by heat.
  • an organic peroxide can be used.
  • An organic peroxide can be used individually by 1 type or in mixture of 2 or more types.
  • the 10-hour half-life temperature of the organic peroxide is not particularly limited, but is preferably 100°C or higher, and more preferably 110°C or higher from the viewpoint of productivity. It is preferable that the organic peroxide satisfies the 10-hour half-life temperature in the above range, since it is possible to increase the temperature of the solvent removal step during production.
  • organic peroxides include dicumyl peroxide, di(2-tert-butylperoxyisopropyl)benzene, 1,1,3,3-tetramethylbutyl hydroperoxide, 2,5-dimethyl-2,5 - Ketone peroxides of bis(tert-butylperoxy)hexyne-3, benzoyl peroxide, di-t-butyl peroxide, methyl ethyl ketone peroxide, and cyclohexanone peroxide; 1,1-di(t-butylperoxy)cyclohexane , and peroxyketals of 2,2-di(4,4-di(t-butylperoxy)cyclohexyl)propane; tert-butyl hydroperoxide, p-menthane hydroperoxide, diisopropylbenzene hydroperoxide, cumene hydroperoxide Peroxides and hydroperoxides of t-butyl hydro
  • the content of the organic peroxide is not particularly limited, but the aminotriazine novolak resin (A) and the compound (B) are combined in order to obtain a better reaction rate and curing rate. It is preferably contained in an amount of 0.05 to 10 parts by mass, more preferably 0.05 to 8 parts by mass, based on a total of 100 parts by mass.
  • the imidazole compound is not particularly limited as long as it can promote the reaction between the resin (A) and the compound (B) and the polymerization reaction of the compound (B), and known imidazole compounds can be used.
  • An imidazole compound can be used 1 type or in mixture of 2 or more types.
  • imidazole compounds examples include 2-ethyl-4-methylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-phenylimidazole, 2,4,5-triphenylimidazole and the like. Among them, 2-ethyl-4-methylimidazole is preferred because it is easier to control the reaction speed and curing speed.
  • the content of the imidazole compound is not particularly limited. It is preferably 0.05 to 10 parts by mass, more preferably 0.05 to 8 parts by mass, based on 100 parts by mass in total.
  • the azo compound is not particularly limited as long as it can promote the reaction between the resin (A) and the compound (B) and the polymerization reaction of the compound (B), and known azo compounds can be used.
  • Azo compounds can be used singly or in combination of two or more. Examples of azo compounds include 2,2'-azobisbutyronitrile, 2,2'-azobis(2,4-dimethylvaleronitrile), and 2,2'-azobis(4-methoxy-2,4- dimethylvaleronitrile) and the like.
  • the content of the azo compound is not particularly limited. It is preferably contained in an amount of 0.05 to 10 parts by mass, more preferably 0.05 to 8 parts by mass, based on 100 parts by mass.
  • the resin composition of the present embodiment contains not only the aminotriazine novolac resin (A), the compound (B), and the inorganic filler (D), but also the above-described flux activator (C) and curing catalyst (E). Other components may be contained singly or in combination of two or more.
  • the flexibility imparting component is not particularly limited as long as it is a component capable of imparting flexibility to the layer containing the resin composition.
  • Such components include, for example, aminotriazine novolak resin (A), compound (B), flux activator (C), inorganic filler (D), and curing catalyst (E) other than polyimide, polyamideimide, Polystyrene, polyolefin, styrene-butadiene rubber (SBR), isoprene rubber (IR), butadiene rubber (BR), (meth)acrylonitrile butadiene rubber (NBR), polyurethane, polypropylene, (meth)acrylic oligomer, (meth)acrylic polymer, and thermoplastic polymer compounds such as silicone resins.
  • These flexibility-imparting components can be used singly or in admixture of two or more.
  • the resin composition of the present embodiment may contain a silane coupling agent separately from other components, that is, the inorganic filler (D1).
  • silane coupling agents include those exemplified as usable in the preparation of the inorganic filler (D1).
  • the content of the silane coupling agent is not particularly limited, it can be about 0.05 to 20 parts by mass with respect to the total of 100 parts by mass of the aminotriazine novolak resin (A) and the compound (B).
  • the resin composition of the present embodiment may contain, as other components, a wetting and dispersing agent for the purpose of further improving the manufacturability of the laminate and further improving the dispersibility of the filler.
  • the wetting and dispersing agent is not particularly limited as long as it is a wetting and dispersing agent generally used for paints and the like.
  • BYK-Chemie Japan Co., Ltd. DISPERBYK (registered trademark) -110 (trade name), -111 (trade name), -180 (trade name), -161 (trade name), BYK-W996 ( (trade name), W9010 (trade name), and W903 (trade name).
  • These wetting and dispersing agents can be used singly or in admixture of two or more.
  • a wetting and dispersing agent When a wetting and dispersing agent is used, its content is not particularly limited, but from the viewpoint of further improving the manufacturability of the laminate, it is 0.1 to 5 parts by mass with respect to 100 parts by mass of the inorganic filler (D). It is preferably 0.5 to 3 parts by mass, more preferably 0.5 to 3 parts by mass. When two or more wetting and dispersing agents are used in combination, the total amount thereof preferably satisfies the above ratio.
  • the resin composition of the present embodiment includes, as other components, other thermosetting resins or compounds different from the aminotriazine novolac resin (A) and the compound (B) (hereinafter simply referred to as "other thermosetting resins ) may be included.
  • Other thermosetting resins include, for example, cyanate ester compounds, benzoxazine compounds, aromatic primary amine compounds, epoxy compounds, phenolic compounds, modified polyphenylene ether compounds, alkenyl-substituted nadimide compounds, oxetane resins, and polymerizable and a compound having an unsaturated group. These other thermosetting resins can be used singly or in admixture of two or more.
  • one or more compounds selected from the group consisting of cyanate ester compounds, benzoxazine compounds, and aromatic primary amine compounds are used from the viewpoint of low void property and chip adhesion.
  • (F) can be included.
  • the content of the compound (F) may be 1 to 50 parts by mass, or 3 to 35 parts by mass, relative to the total of 100 parts by mass of the aminotriazine novolak resin (A), the compound (B) and the compound (F). It may be parts by mass, and may be 5 to 30 parts by mass.
  • the resin composition of the present embodiment may contain various additives for various purposes as long as the desired properties are not impaired.
  • Additives include, for example, thickeners, lubricants, defoamers, leveling agents, brighteners, flame retardants, and ion trapping agents. These additives can be used singly or in admixture of two or more.
  • the content of these additives is not particularly limited, but is usually 0.01 for each of 100 parts by mass in total of the aminotriazine novolac resin (A) and the compound (B). ⁇ 10 parts by mass.
  • the resin composition of this embodiment is excellent in low void property and chip adhesion.
  • the resin composition of the present embodiment is used as an underfill material used in the form of a laminate, preferably as a pre-applied underfill material, it is excellent in low void properties and chip adhesion, and in addition, bonding properties and insulation Excellent reliability. Since the resin composition of the present embodiment has various excellent characteristics, it is more useful as an underfill material, and further useful as a pre-applied underfill material. In addition, a laminated body is mentioned later.
  • a sheet obtained using the resin composition and a layer containing the resin composition is preferably in a semi-cured state (B stage). Details of the sheet and the resin composition layer will be described later. Since the sheet and the resin composition layer are in a semi-cured state, even more excellent low void properties and chip adhesion can be obtained.
  • the semi-cured state (B stage) means that each component contained in the sheet or resin composition layer has not actively started to react (cured), but the sheet or resin composition layer is dried.
  • the minimum melt viscosity in a semi-cured state is usually 50,000 Pa ⁇ s or less.
  • the lower limit of the lowest melt viscosity is, for example, 10 Pa ⁇ s or more.
  • the minimum melt viscosity in the semi-cured state (B stage) is preferably 200 Pa ⁇ s or more and 30,000 Pa ⁇ s or less because it is suitable for use as an underfill material.
  • the minimum melt viscosity is measured by the following method.
  • a resin piece having a thickness of about 0.4 to 0.6 mm is obtained by laminating a resin composition layer on a support substrate or the like, and this resin piece is used as a sample, and a rheometer (thermofisher Melt viscosity is measured by HAAKE MARS60 (trade name) manufactured by Scientific Co.).
  • a rheometer thermofisher Melt viscosity is measured by HAAKE MARS60 (trade name) manufactured by Scientific Co.
  • a disposable parallel plate with a plate diameter of 8 mm is used, and in the range of 40 ° C. to 300 ° C., the temperature increase rate is 10 ° C./min, the frequency is 10.0 rad / sec, and the strain is 0.1%.
  • the lowest melt viscosity means the lowest viscosity in the range from 40°C to 300°C.
  • the production method of the resin composition of the present embodiment is not particularly limited as long as the resin composition having the composition described above can be obtained.
  • the resin composition comprises, for example, an aminotriazine novolak resin (A), a compound (B), an inorganic filler (D), optionally a flux activator (C), a curing catalyst (E), It can be prepared by appropriately mixing other components. If necessary, these components may be dissolved or dispersed in an organic solvent to form a varnish.
  • a varnish can be suitably used when producing a laminated body. As for a specific manufacturing method, the method for manufacturing a laminate and Examples described later can be referred to.
  • the organic solvent is not particularly limited as long as it can suitably dissolve or disperse each component in the resin composition of the present embodiment and does not impair the effects of the resin composition of the present embodiment.
  • organic solvents include alcohols such as methanol, ethanol, and propanol; ketones such as acetone, methyl ethyl ketone (hereinafter sometimes abbreviated as "MEK”), and methyl isobutyl ketone; dimethylacetamide, and dimethylformamide.
  • amides such as; aromatic hydrocarbons such as toluene and xylene.
  • a resin sheet contains the resin composition of this embodiment.
  • the resin sheet has a supporting substrate and a resin layer disposed on one side or both sides of the supporting substrate, and the resin layer contains the resin composition of the present embodiment.
  • This resin sheet is also called a laminated resin sheet.
  • the resin layer of the resin sheet is preferably formed by coating an uncured (A-stage) resin composition on a supporting substrate and then semi-curing (B-stage) the resin composition.
  • A-stage uncured
  • B-stage semi-curing
  • the resin composition in an uncured state is in the form of a varnish, and the varnish is applied to a supporting substrate such as a copper foil using a known method such as a bar coater. ° C. in a dryer for 1 to 60 minutes for semi-curing (to B-stage) to produce a resin sheet.
  • the uncured state (A stage) refers to a state in which the resin composition is not substantially cured and is not gelled.
  • the resin composition before being applied to the supporting substrate of the resin sheet is, for example, a mixture of constituent components of the resin composition (which may or may not contain a solvent), or the mixture dissolved or dispersed in a solvent. It is in the form of varnish and is in an uncured state (A stage).
  • the supporting substrate is not particularly limited, but for example, organic films such as polyethylene film, polypropylene film, polycarbonate film, polyethylene terephthalate film, ethylenetetrafluoroethylene copolymer film, and polyimide film; release films coated with a release agent on the surface; conductor foils such as copper foil and aluminum foil; and plate-shaped ones such as glass plates, SUS plates, and FRP.
  • organic films such as polyethylene film, polypropylene film, polycarbonate film, polyethylene terephthalate film, ethylenetetrafluoroethylene copolymer film, and polyimide film
  • release films coated with a release agent on the surface such as polyethylene film, polypropylene film, polycarbonate film, polyethylene terephthalate film, ethylenetetrafluoroethylene copolymer film, and polyimide film
  • release films coated with a release agent on the surface such as polyethylene film, polypropylene film, polycarbonate film, polyethylene terephthalate film, ethylenet
  • the coating method is not particularly limited, but includes, for example, a method in which a solution obtained by dissolving the resin composition in a solvent is applied onto the supporting substrate using a bar coater, die coater, doctor blade, baker applicator, or the like.
  • a single-layer resin sheet is obtained by molding a resin composition into a sheet.
  • the method for producing the single-layer resin sheet is not particularly limited and can be carried out according to a conventional method.
  • a method of applying a solution in which a resin composition is dissolved in a solvent onto a supporting substrate and drying it, and then peeling or etching the supporting substrate from the resin sheet can be mentioned.
  • a single-layer resin sheet without using a supporting substrate can be formed by forming a sheet by, for example, supplying a solution in which a resin composition is dissolved in a solvent into a mold having a sheet-like cavity and drying it. You can also get
  • the drying conditions for removing the solvent are not particularly limited. 1 to 90 minutes at a temperature of 20 to 170° C. is preferred because it progresses.
  • the thickness of the resin layer of the resin sheet or single-layer resin sheet can be adjusted by adjusting the concentration of the solution of the resin composition and the thickness of the coating, and is not particularly limited. 0.1 to 500 .mu.m is preferred because it tends to remain.
  • a resin sheet or a single-layer resin sheet can be used, for example, as a material for forming wiring circuits on semiconductor wafers and semiconductor chip mounting substrates.
  • the laminate of the present embodiment includes a supporting base material and a resin composition layer containing the resin composition of the present embodiment laminated on the supporting base material.
  • Such a laminate can be obtained by forming the resin composition of the present embodiment as a layer on a supporting substrate.
  • a polymer film can be used as the supporting substrate, although not particularly limited.
  • polymer film materials include polyvinyl chloride, polyvinylidene chloride, polyethylene, polypropylene, polybutene, polybutadiene, ethylene-propylene copolymer, polymethylpentene, ethylene-vinyl acetate copolymer, and ethylene-vinyl alcohol.
  • vinyl-based resins such as copolymers
  • polyester-based resins such as polyethylene terephthalate, polyethylene naphthalate, and polybutylene terephthalate
  • polyurethane-based resins polyimide-based resins
  • supporting substrates include films containing these resins and the like, and release films obtained by applying a release agent to the surface of these films.
  • films containing one or more resins selected from the group consisting of polyester-based resins, polyimide-based resins, and polyamide-based resins and release films obtained by applying a release agent to the surface of these films. More preferably, it is a film containing polyethylene terephthalate, which is a type of polyester resin, or a release film obtained by applying a release agent to the surface of a film containing polyethylene terephthalate.
  • the thickness of the supporting substrate is not particularly limited. From the viewpoint of better transportability, it is preferably 10 to 100 ⁇ m.
  • the lower limit of the thickness of the supporting substrate is more preferably 10 ⁇ m or more, still more preferably 20 ⁇ m or more, further preferably 25 ⁇ m or more, from the viewpoint of ensuring a higher yield in manufacturing the laminate. is even more preferred.
  • the upper limit of the thickness of the supporting base material is 80 ⁇ m or less in view of the fact that the supporting base material does not exist as a component of the semiconductor device in the end and is peeled off in the middle of the process and the manufacturing cost of the laminate. and more preferably 50 ⁇ m or less.
  • the method of forming a layer containing the resin composition of the present embodiment, ie, a resin composition layer, to produce the laminate of the present embodiment is not particularly limited.
  • a varnish obtained by dissolving or dispersing the resin composition of the present embodiment in an organic solvent is applied to the surface of the supporting substrate, heated and / or dried under reduced pressure, and the solvent is removed to solidify the resin composition of the present embodiment to form a resin composition layer.
  • the drying conditions are not particularly limited, but the content ratio of the organic solvent to the resin composition layer is usually 10 parts by mass or less, preferably 5 parts by mass or less with respect to the total amount (100 parts by mass) of the resin composition layer. Allow to dry.
  • the conditions for achieving such drying also vary depending on the type and amount of organic solvent in the varnish.
  • a varnish containing 10 to 200 parts by mass of methyl ethyl ketone with respect to a total of 100 parts by mass of the aminotriazine novolak resin (A) and the compound (B) 2.5% under heating conditions of 90 to 160°C under 1 atmosphere. Drying for ⁇ 15 minutes is a guideline.
  • the thickness of the resin composition layer in the laminate of the present embodiment is not particularly limited, but when the resin composition layer is dried, the viewpoint of better removal of relatively low molecular weight volatile matter and the function as a laminate is preferably in the range of 5 to 500 ⁇ m, and more preferably in the range of 10 to 100 ⁇ m, from the viewpoint of achieving the above effectively and reliably.
  • a protective film may be separately laminated on the surface of the laminate opposite to the surface having the support substrate for the purpose of storage or the like.
  • the semiconductor chip with a resin composition layer of the present embodiment includes a semiconductor chip and a layer (resin composition layer) laminated on the semiconductor chip and formed using the resin composition of the present embodiment.
  • the semiconductor chip mounting substrate with the resin composition layer of the present embodiment includes a semiconductor chip mounting substrate and a layer laminated on the semiconductor chip mounting substrate and formed using the resin composition of the present embodiment. (Resin composition layer).
  • the semiconductor chip with a resin composition layer of the present embodiment is specified as comprising a semiconductor chip and a layer (resin composition layer) containing the resin composition of the present embodiment laminated on the semiconductor chip.
  • the semiconductor chip mounting substrate with a resin composition layer of the present embodiment includes a semiconductor chip mounting substrate and a layer containing the resin composition of the present embodiment laminated on the semiconductor chip mounting substrate (resin composition layer ).
  • the method for producing a semiconductor chip with a resin composition layer of the present embodiment is not particularly limited.
  • a semiconductor chip with a resin composition layer can be obtained by bonding together so that the resin composition layers of the body face each other, peeling off the support base material in the laminate, and then singulating with a dicing saw or the like.
  • the method for producing the semiconductor chip mounting substrate with the resin composition layer of the present embodiment is not particularly limited. It can be obtained by bonding the composition layers so that they face each other, and peeling off the supporting substrate in the laminate.
  • a method for bonding the laminate of the present embodiment to a semiconductor wafer or a substrate for mounting a semiconductor chip is not particularly limited, but a vacuum pressure laminator can be preferably used. In this case, it is preferable to apply pressure to the laminate of the present embodiment via an elastic body such as rubber to bond them together.
  • the lamination conditions are not particularly limited as long as they are conditions commonly used in the industry, but for example, a temperature of 50 to 140° C., a contact pressure in the range of 1 to 11 kgf/cm 2 , and an atmospheric pressure reduction of 20 hPa or less. done below.
  • the bonded laminate may be smoothed by hot pressing with a metal plate.
  • the lamination step and the smoothing step can be performed continuously by a commercially available vacuum pressure laminator.
  • the laminate attached to a semiconductor wafer or a substrate for mounting a semiconductor-mounted chip is subjected to removal of the support base material before flip-chip mounting of the chip.
  • the semiconductor device of the present embodiment includes the semiconductor chip with the resin composition layer of the present embodiment and/or the substrate for mounting the semiconductor chip with the resin composition layer of the present embodiment.
  • the method for manufacturing the semiconductor device of the present embodiment is not particularly limited, but for example, a method of mounting the semiconductor chip with the resin composition layer of the present embodiment on a substrate for mounting a semiconductor chip can be mentioned.
  • a semiconductor chip may be mounted on the substrate for mounting a semiconductor chip with a resin composition layer of the present embodiment.
  • a flip chip bonder compatible with the thermocompression bonding method is preferably used.
  • the object to which the resin composition of the present embodiment is applied while flip-chip mounting a semiconductor chip is can be a substrate other than a substrate for mounting a semiconductor chip.
  • the resin composition of the present embodiment is used to connect semiconductor chips via a junction between a semiconductor wafer and a semiconductor chip when mounting a semiconductor chip on a semiconductor wafer, or through TSV (Through Silicon Via). It is also possible to use it for the junction between each semiconductor chip of a chip stack, and the effect of this embodiment can be obtained in either case.
  • Each part by mass is based on 100 parts by mass of the total amount of aminotriazine novolac resin (A) and compound (B).
  • Example 1 As the aminotriazine novolak resin (A), Phenolite (registered trademark) LA-1356 (trade name, DIC Corporation, weight average molecular weight: 1,500, nitrogen content: 19% by mass, hydroxy group equivalent: 146 g/eq.
  • Phenolite registered trademark
  • LA-1356 trade name, DIC Corporation, weight average molecular weight: 1,500, nitrogen content: 19% by mass, hydroxy group equivalent: 146 g/eq.
  • Non-volatile content 60% by mass) 45 parts by mass (27 parts by mass in terms of non-volatile content),
  • BMI-70 bis-(3-ethyl-5-methyl-4-maleimidophenyl)methane
  • K.I Kasei Co., Ltd., weight average molecular weight 550 22.5 a mass part
  • a maleimide compound represented by formula (6) as the third compound (B) MIR-3000-70MT (trade name), Nippon Kayaku Co., Ltd., non-volatile content 70% by mass, weight average molecular weight: 1050)14.
  • This varnish was applied to a 38 ⁇ m thick polyethylene terephthalate film (TR1-38 (trade name, support base material), Unitika Ltd.) coated with a release agent on the surface, and dried at 100° C. under 1 atmosphere for 5 minutes. After heating and drying for 1 minute, a laminate having a resin composition layer with a thickness of 30 ⁇ m was obtained.
  • TR1-38 trade name, support base material
  • Unitika Ltd. polyethylene terephthalate film
  • LA-1356 (trade name, manufactured by DIC), which is an aminotriazine novolak resin (A), is a compound represented by the formula (1) (a mixture of compounds represented by the formula (1), in which is a compound in which R 1 is each independently a hydrogen atom or a methyl group, l, m, and n are each independently an integer of 1 to 6, and (l + m + n) is an integer of 3 to 18 group) and a compound represented by formula (2) (a mixture of compounds represented by formula (2), in which each R 2 is independently a hydrogen atom or a methyl group and o, p, q, r, and s are each independently an integer of 1 to 4, and (o + p + q + r + s) is an integer of 5 to 20.
  • formula (1) a mixture of compounds represented by the formula (1), in which is a compound in which R 1 is each independently a hydrogen atom or a methyl group, l, m, and n are each independently an integer of 1 to 6, and (
  • the mass ratio of the compound (mixture) represented by formula (1) to the compound (mixture) represented by formula (2) (formula (1): formula (2)) is 65 (parts by mass ): 35 (parts by mass).
  • YA050C-MJE was a reaction product of silica and 3-methacryloxypropyltrimethoxysilane. That is, YA050C-MJE was evaluated as having a functional group on the silica surface having a structure obtained by reacting at least one silanol group on the silica surface with at least one methoxy group in the following formula (13). .
  • Example 2 As the inorganic filler (D), instead of YA050C-MJE of Example 1, slurry silica (Y50SV-AM1 (trade name), Admatechs Co., Ltd., vinylsilane surface-treated silica, solid content 50% by mass, dispersion medium: A varnish was prepared in the same manner as in Example 1, except that 400 parts by mass of MEK (average particle size: 50 nm) (200 parts by mass in terms of nonvolatile matter) was used. Using this varnish, a laminate having a resin composition layer with a thickness of 30 ⁇ m was obtained in the same manner as in Example 1. Y50SV-AM1 was a reaction product of silica and vinyltrimethoxysilane.
  • YA050C-MJE was evaluated as having a functional group on the silica surface having a structure obtained by reacting at least one silanol group on the silica surface with at least one methoxy group in the following formula (14). .
  • Example 3 As the inorganic filler (D), instead of YA050C-MJE of Example 1, slurry silica (Y50SP-AM1 (trade name), Admatechs Co., Ltd., phenylsilane surface-treated silica, solid content 50% by mass, dispersion medium : MEK, average particle diameter: 50 nm) 400 parts by mass (200 parts by mass in terms of non-volatile matter) was used to prepare a varnish in the same manner as in Example 1. Using this varnish, a laminate having a resin composition layer with a thickness of 30 ⁇ m was obtained in the same manner as in Example 1. Y50SP-AM1 was a reaction product of silica and phenyltrimethoxysilane. That is, YA050C-MJE was evaluated as having a functional group on the silica surface having a structure obtained by reacting at least one silanol group on the silica surface with at least one methoxy group in the following formula (15). .
  • Example 4 The amount of YA050C-MJE used in Example 1 was changed to 200 parts by mass (100 parts by mass in terms of nonvolatile matter), and the amounts of LA-1356, BMI-70 and MIR-3000-70MT were changed to 20, respectively.
  • a varnish was prepared in the same manner as in Example 1, except that parts by mass (converted to non-volatile content), 27.3 parts by mass (converted to non-volatile content), and 12.2 parts by mass (converted to non-volatile content) were changed. Using this varnish, a laminate having a resin composition layer with a thickness of 30 ⁇ m was obtained in the same manner as in Example 1.
  • Example 1 As the inorganic filler (D), instead of YA050C-MJE of Example 1, slurry silica (YA050C-MJM (trade name), Admatechs Co., Ltd., phenylaminosilane surface-treated silica, solid content 50% by mass, dispersion medium : MEK, average particle diameter: 50 nm) 400 parts by mass (200 parts by mass in terms of non-volatile matter) was used to prepare a varnish in the same manner as in Example 1. Using this varnish, a laminate having a resin composition layer with a thickness of 30 ⁇ m was obtained in the same manner as in Example 1.
  • YA050C-MJM was a reaction product of silica and phenylaminopropyltrimethoxysilane. That is, YA050C-MJM was evaluated as having a functional group on the silica surface having a structure obtained by reacting at least one silanol group on the silica surface with at least one methoxy group in the following formula (16). .
  • Example 2 Change the amount of YA050C-MJE used in Example 1 to 200 parts by mass (100 parts by mass in terms of non-volatile content), do not use LA-1356, and use BMI-70 and MIR-3000-70MT A varnish was prepared in the same manner as in Example 1, except that the amounts were changed to 41.5 parts by mass (as non-volatile content) and 18 parts by mass (as non-volatile content), respectively. Using this varnish, a laminate having a resin composition layer with a thickness of 30 ⁇ m was obtained in the same manner as in Example 1.
  • Example 3 (Comparative Example 3) In Example 1, BMI-1000P was not used, and the amount of LA-1356, BMI-70, and MIR-3000-70MT used was 45 parts by weight (in terms of nonvolatile matter) and 38 parts by weight (nonvolatile matter A varnish was prepared in the same manner as in Example 1, except that the content was changed to 17 parts by mass (converted to non-volatile content). Using this varnish, a laminate having a resin composition layer with a thickness of 30 ⁇ m was obtained in the same manner as in Example 1.
  • Example 4 (Comparative Example 4) In Example 1, BMI-70 and MIR-3000-70MT were not used, and the amount of LA-1356 and BMI-1000P used was 40 parts by weight (in terms of non-volatile matter) and 60 parts by weight (in terms of non-volatile matter), respectively.
  • a varnish was prepared in the same manner as in Example 1, except that the Using this varnish, a laminate having a resin composition layer with a thickness of 30 ⁇ m was obtained in the same manner as in Example 1.
  • Image data of the mounted sample was acquired using an ultrasonic precision flaw detection image processing device ( ⁇ -SDS (trade name), manufactured by KJTD Co., Ltd.).
  • ⁇ -SDS ultrasonic precision flaw detection image processing device
  • the presence or absence of voids in the resin composition layer in the range of the semiconductor chip mounting portion was confirmed from the image data. If the ratio of the area occupied by the portion where voids can be confirmed is less than 10% with respect to the entire area occupied by the resin composition layer in the range of the semiconductor chip mounting portion, A is the case, and 10% or more and less than 20%. was rated as B, the case of 20% or more and less than 30% was rated as C, and the case of 30% or more was rated as D. In addition, it is evaluated that the smaller the ratio of the area occupied by the portion where voids can be confirmed, the higher the insulation reliability can be obtained. , it is evaluated that a laminate with very high insulation reliability can be obtained.
  • the obtained laminate was cut into squares of 8 mm ⁇ 8 mm.
  • the cut laminate was applied to the 15 ⁇ m copper circuit surface in the pad portion of the semiconductor chip mounting board (WALTS-KIT CC80(W)-0105JY (trade name) manufactured by Waltz Co., Ltd.). It was laminated so that the resin composition layer in was in contact with. After that, the polyethylene terephthalate film in the laminate was peeled off.
  • the cured sample (semiconductor chip / resin composition layer / semiconductor Image data is obtained using an ultrasonic precision flaw detection image processing device ( ⁇ -SDS (trade name), manufactured by KJTD Co., Ltd.), and voids in the resin composition layer in the range of the semiconductor chip mounting part. The presence or absence of was confirmed from the image data. If the ratio of the area occupied by the portion where voids can be confirmed is less than 10% with respect to the entire area occupied by the resin composition layer in the range of the semiconductor chip mounting portion, A is the case, and 10% or more and less than 20%.
  • ESPEC SPHH-201 trade name
  • the obtained laminate was cut into a square of 8 mm ⁇ 8 mm.
  • the cut laminate was applied to the 15 ⁇ m copper circuit surface in the pad portion of the semiconductor chip mounting board (WALTS-KIT CC80(W)-0105JY (trade name) manufactured by Waltz Co., Ltd.). It was laminated so that the resin composition layer in was in contact with. After that, the polyethylene terephthalate film in the laminate was peeled off.
  • ESPEC SPHH-201 (trade name)
  • the cured sample (semiconductor chip/resin composition layer/semiconductor chip mounting substrate) was polished using a rotary polishing device (device name: MetaServ (registered trademark) 3000 (trade name), manufactured by Buehler) to remove only the semiconductor chip. It was removed to obtain a laminate (A) of the resin composition layer and the substrate for mounting a semiconductor chip.
  • the surface of the resin composition layer was visually observed, and the state of peeling was confirmed based on whether or not the wiring layer derived from the semiconductor chip was adhered to the surface. When the wiring layer remains entirely on the resin composition layer side, it is indicated as A because no peeling has occurred.
  • the resin composition of the present embodiment has low void properties and excellent chip adhesiveness, it can be used as a material for laminates, semiconductor chips with resin composition layers, substrates for mounting semiconductor chips with resin composition layers, and semiconductor devices. It is preferably used.
  • the resin composition is suitable as an underfill material, and more suitable as a pre-applied underfill material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided is a resin composition comprising an amino triazine novolac resin (A), at least one compound (B) selected from the group consisting of a maleimide compound (BA) and a citraconimide compound (BB), and an inorganic filler (D), in which the inorganic filler (D) comprises an inorganic filler (D1) having at least one functional group (d) selected from the group consisting of a (meth)acryl group, a vinyl group, a styryl group and a phenyl group, the compound (B) comprises a compound (B1) and a compound (B2), the compound (B1) comprises at least one compound selected from the group consisting of a maleimide compound (BA-1) having a weight average molecular weight of 3,000 to 9,500 inclusive and a citraconimide compound (BB-1) having a weight average molecular weight of 3,000 to 9,500 inclusive, the compound (B2) comprises at least one compound selected from the group consisting of a maleimide compound (BA-2) having a weight average molecular weight of 300 or more and less than 3,000 and a citraconimide compound (BB-2) having a weight average molecular weight of 300 or more and less than 3,000, and each of the weight average molecular weights is a value determined in terms of an equivalent polystyrene molecular weight by a gel permeation chromatography method.

Description

樹脂組成物、積層体、樹脂組成物層付き半導体チップ、樹脂組成物層付き半導体チップ搭載用基板、及び半導体装置Resin composition, laminate, semiconductor chip with resin composition layer, substrate for mounting semiconductor chip with resin composition layer, and semiconductor device
 本発明は、樹脂組成物、積層体、樹脂組成物層付き半導体チップ、樹脂組成物層付き半導体チップ搭載用基板、及び半導体装置に関する。詳しくは、本発明は、アンダーフィル材として有用な樹脂組成物に関する。 The present invention relates to a resin composition, a laminate, a semiconductor chip with a resin composition layer, a substrate for mounting a semiconductor chip with a resin composition layer, and a semiconductor device. Specifically, the present invention relates to a resin composition useful as an underfill material.
 近年、半導体装置の小型化、及び高性能化に伴い、半導体チップ(以下、「チップ」と略す場合がある。)を半導体チップ搭載用基板(以下、「基板」と略す場合がある。)に搭載する方法として、フリップチップ実装が注目されている。フリップチップ実装においては、チップと基板とを接合した後、チップと基板との間隙にアンダーフィル材を充填し、硬化させる工法が一般的である。また、チップ又は基板にアンダーフィル材(プリアプライドアンダーフィル材ともいう)を充填した後、チップと、アンダーフィル材と、基板とを接合させる工法もある。 In recent years, semiconductor chips (hereinafter sometimes abbreviated as "chips") have been replaced with semiconductor chip mounting substrates (hereinafter sometimes abbreviated as "substrates") along with miniaturization and higher performance of semiconductor devices. As a mounting method, flip-chip mounting has attracted attention. In flip-chip mounting, after bonding a chip and a substrate, the gap between the chip and the substrate is filled with an underfill material, which is then hardened. There is also a method of filling a chip or a substrate with an underfill material (also referred to as a pre-applied underfill material) and then bonding the chip, the underfill material, and the substrate.
 フリップチップ実装において、アンダーフィル材に求められる重要な特性としては、絶縁信頼性を保持することが挙げられる。そのためには、半導体装置を製造する工程において、アンダーフィル材と、チップ及び基板との間にボイド(気泡)が生じることなく、また、チップ及び基板からのアンダーフィル材硬化物の剥離を抑制する必要がある。 In flip-chip mounting, one of the important characteristics required for the underfill material is to maintain insulation reliability. For this purpose, in the process of manufacturing a semiconductor device, voids (bubbles) are not generated between the underfill material and the chip and substrate, and peeling of the cured underfill material from the chip and substrate is suppressed. There is a need.
 特許文献1には、主樹脂にラジカル重合性モノマーを使用したアンダーフィル材が記載されている。この特許文献1には、チップとの接着性向上を目的にしたシランカップリング剤の配合についての記載がある。 Patent Document 1 describes an underfill material that uses a radically polymerizable monomer as the main resin. This patent document 1 describes the addition of a silane coupling agent for the purpose of improving the adhesion to the chip.
特表2015-503220号公報Japanese Patent Publication No. 2015-503220
 しかし、一般的にラジカル重合性モノマーは硬化が速いため、シランカップリング剤の反応部位が、チップ表面のシラノール基と十分な数の結合を形成する前に硬化する。そのため、特許文献1に記載のアンダーフィル材では、樹脂組成物と、チップ及びプリント配線板などの基板との十分な密着性及び接着性が得られず、結果としてボイドが生ずる傾向にある。また、樹脂組成物がチップ及び基板の表面に存在する凹凸に埋まる前に硬化するため、特許文献1に記載のアンダーフィル材では、接着性に有用となるアンカー効果が十分に得られないという問題もある。 However, since radically polymerizable monomers generally cure quickly, the reaction sites of the silane coupling agent cure before forming a sufficient number of bonds with the silanol groups on the chip surface. Therefore, with the underfill material described in Patent Document 1, sufficient adhesion and adhesiveness cannot be obtained between the resin composition and substrates such as chips and printed wiring boards, and voids tend to occur as a result. In addition, since the resin composition cures before being embedded in the unevenness existing on the surfaces of the chip and the substrate, the underfill material described in Patent Document 1 cannot provide a sufficient anchor effect useful for adhesiveness. There is also
 本発明は、このような課題に鑑みてなされたものであり、低ボイド性及びチップ接着性に優れる、樹脂組成物、積層体、樹脂組成物層付き半導体チップ、樹脂組成物層付き半導体チップ搭載用基板、及び半導体装置を提供することにある。 The present invention has been made in view of such problems, and includes a resin composition, a laminate, a semiconductor chip with a resin composition layer, and a semiconductor chip mounting with a resin composition layer, which are excellent in low void property and chip adhesiveness. It is an object of the present invention to provide a substrate for a semiconductor device and a semiconductor device.
 本発明者らは、従来技術が有する上記課題を解決するために鋭意検討した結果、特定の成分を含む樹脂組成物が、前記課題を解決できることを見出し、本発明を完成するに至った。 As a result of intensive studies aimed at solving the above problems of the prior art, the present inventors have found that a resin composition containing specific components can solve the above problems, and have completed the present invention.
 すなわち、本発明は以下の内容を含む。
[1]
 アミノトリアジンノボラック樹脂(A)と、
 マレイミド化合物(BA)及びシトラコンイミド化合物(BB)からなる群より選択される1種以上の化合物(B)と、
 無機充填材(D)と、
 を含有し、
 前記無機充填材(D)が、(メタ)アクリル基、ビニル基、スチリル基、及びフェニル基からなる群より選択される1種以上を含む官能基(d)を有する無機充填材(D1)を含み、
 前記化合物(B)が、化合物(B1)と、化合物(B2)と、を含み、
 前記化合物(B1)が、重量平均分子量が3,000以上9,500以下のマレイミド化合物(BA-1)及び重量平均分子量が3,000以上9,500以下のシトラコンイミド化合物(BB-1)からなる群より選択される1種以上であり、
 前記化合物(B2)が、重量平均分子量が300以上3,000未満のマレイミド化合物(BA-2)及び重量平均分子量が300以上3,000未満のシトラコンイミド化合物(BB-2)からなる群より選択される1種以上であり、
 各前記重量平均分子量は、ゲルパーミエーションクロマトグラフィー法により求められる標準ポリスチレン換算の値である、樹脂組成物。
[2]
 前記官能基(d)が、ケイ素原子をさらに含む、[1]に記載の樹脂組成物。
[3]
 前記無機充填材(D1)が、前記官能基(d)を有する化合物(d1)と当該官能基(d)を有しない無機充填材(d2)との反応物を含む、[1]又は[2]に記載の樹脂組成物。
[4]
 前記官能基(d)を有する化合物(d1)が、(メタ)アクリル基及び/又はビニル基を有するシラン化合物、並びにスチリル基を有するシラン化合物からなる群より選択される1種以上を含む、[3]に記載の樹脂組成物。
[5]
 前記無機充填材(d2)が、シリカ、水酸化アルミニウム、アルミナ、ベーマイト、窒化ホウ素、窒化アルミニウム、酸化マグネシウム、及び水酸化マグネシウムからなる群より選択される1種以上を含む、[3]又は[4]に記載の樹脂組成物。
[6]
 前記官能基(d)を有する化合物(d1)が、(メタ)アクリル基及び/又はビニル基を有するシラン化合物、並びにスチリル基を有するシラン化合物からなる群より選択される1種以上を含み、前記無機充填材(d2)が、シリカ、水酸化アルミニウム、アルミナ、ベーマイト、窒化ホウ素、窒化アルミニウム、酸化マグネシウム、及び水酸化マグネシウムからなる群より選択される1種以上を含む、[3]~[5]のいずれかに記載の樹脂組成物。
[7]
 前記無機充填材(D)の平均粒子径が、3μm以下である、[1]~[6]のいずれかに記載の樹脂組成物。
[8]
 前記無機充填材(D)の含有量が、前記アミノトリアジンノボラック樹脂(A)と前記化合物(B)との合計100質量部に対して、20~500質量部である、[1]~[7]のいずれかに記載の樹脂組成物。
[9]
 前記アミノトリアジンノボラック樹脂(A)が、下記式(1)で表される化合物及び下記式(2)で表される化合物からなる群より選択される1種以上を含む、[1]~[8]のいずれかに記載の樹脂組成物。
Figure JPOXMLDOC01-appb-C000007
 (式(1)中、R1は、各々独立に、水素原子、メチル基、又はエチル基を示し、l、m、及びnは、各々独立に、0~10の整数を示し、(l+m+n)は、1~20の整数を示す。)
Figure JPOXMLDOC01-appb-C000008
 (式(2)中、R2は、各々独立に、水素原子、メチル基、又はエチル基を示し、o、p、q、r、及びsは、各々独立に、0~10の整数を示し、(o+p+q+r+s)は、1~20の整数を示す。)
[10]
 前記化合物(B1)の含有量が、前記化合物(B1)と前記化合物(B2)との合計100質量部に対して、45質量部以上90質量部以下であり、
 前記化合物(B2)の含有量が、前記化合物(B1)と前記化合物(B2)との合計100質量部に対して、10質量部以上55質量部以下である、[1]~[9]のいずれかに記載の樹脂組成物。
[11]
 前記マレイミド化合物(BA-1)が、下記式(3)で表されるマレイミド化合物及び下記式(4)で表される構成単位と分子鎖の両末端にマレイミド基とを含むビスマレイミド化合物からなる群より選択される一種以上を含む、[1]~[10]のいずれかに記載の樹脂組成物。
Figure JPOXMLDOC01-appb-C000009
(式中、nは1~30の整数を示す。)
Figure JPOXMLDOC01-appb-C000010
(式中、R11は炭素数1~16の直鎖状若しくは分岐状のアルキレン基、又は炭素数2~16の直鎖状若しくは分岐状のアルケニレン基を示し、R12は炭素数1~16の直鎖状若しくは分岐状のアルキレン基、又は炭素数2~16の直鎖状若しくは分岐状のアルケニレン基を示し、R13は各々独立に、水素原子、炭素数1~16の直鎖状若しくは分岐状のアルキル基、又は炭素数2~16の直鎖状若しくは分岐状のアルケニル基を示し、nは1以上10以下の整数を示す。)
[12]
 前記マレイミド化合物(BA-2)が、下記式(5)で表されるマレイミド化合物及び下記式(6)で表されるマレイミド化合物からなる群より選択される一種以上を含む[1]~[11]のいずれかに記載の樹脂組成物。
Figure JPOXMLDOC01-appb-C000011
(式中、Rは各々独立に、水素原子、メチル基、又はエチル基を示し、Rは各々独立に、水素原子又はメチル基を示す。)
Figure JPOXMLDOC01-appb-C000012
(式中、R10は各々独立に、水素原子、炭素数1~5のアルキル基、又はフェニル基を示し、nは1~10の整数を示す。)
[13]
 フラックス活性剤(C)をさらに含む、[1]~[12]のいずれかに記載の樹脂組成物。
[14]
 前記フラックス活性剤(C)が、ロジン系樹脂を含む、[13]に記載の樹脂組成物。
[15]
 硬化触媒(E)をさらに含む、[1]~[14]のいずれかに記載の樹脂組成物。
[16]
 前記硬化触媒(E)が、有機過酸化物及びイミダゾール化合物からなる群より選択される1種以上を含む、[15]に記載の樹脂組成物。
[17]
 前記アミノトリアジンノボラック樹脂(A)の含有量が、前記アミノトリアジンノボラック樹脂(A)と前記化合物(B)との合計100質量部に対して、1~60質量部である、[1]~[16]のいずれかに記載の樹脂組成物。
[18]
 前記化合物(B)の含有量が、前記アミノトリアジンノボラック樹脂(A)と前記化合物(B)との合計100質量部に対して、40~85質量部である、[1]~[17]のいずれかに記載の樹脂組成物。
[19]
 アンダーフィル材用である、[1]~[18]のいずれかに記載の樹脂組成物。
[20]
 支持基材と、
 前記支持基材上に積層され、かつ、[1]~[19]のいずれかに記載の樹脂組成物を含む樹脂組成物層と、
 を備える、積層体。
[21]
 前記樹脂組成物層の厚さが、5~500μmの範囲である、[20]に記載の積層体。
[22]
 半導体チップと、
 前記半導体チップに積層され、かつ、[1]~[19]のいずれかに記載の樹脂組成物を用いて形成された層と、
 を備える、樹脂組成物層付き半導体チップ。
[23]
 半導体チップ搭載用基板と、
 前記半導体チップ搭載用基板に積層され、かつ、[1]~[19]のいずれかに記載の樹脂組成物を用いて形成された層と、
 を備える、樹脂組成物層付き半導体チップ搭載用基板。
[24]
 [22]に記載の樹脂組成物層付き半導体チップを備える、半導体装置。
[25]
 [23]に記載の樹脂組成物層付き半導体チップ搭載用基板を備える、半導体装置。
That is, the present invention includes the following contents.
[1]
an aminotriazine novolac resin (A);
one or more compounds (B) selected from the group consisting of maleimide compounds (BA) and citraconimide compounds (BB);
an inorganic filler (D);
contains
The inorganic filler (D) has a functional group (d) containing one or more selected from the group consisting of a (meth)acrylic group, a vinyl group, a styryl group, and a phenyl group (D1). including
The compound (B) comprises a compound (B1) and a compound (B2),
The compound (B1) is a maleimide compound (BA-1) having a weight average molecular weight of 3,000 or more and 9,500 or less and a citraconimide compound (BB-1) having a weight average molecular weight of 3,000 or more and 9,500 or less. One or more selected from the group consisting of
The compound (B2) is selected from the group consisting of a maleimide compound (BA-2) having a weight average molecular weight of 300 or more and less than 3,000 and a citraconimide compound (BB-2) having a weight average molecular weight of 300 or more and less than 3,000. is one or more of the
The resin composition, wherein each weight average molecular weight is a standard polystyrene-equivalent value determined by a gel permeation chromatography method.
[2]
The resin composition according to [1], wherein the functional group (d) further contains a silicon atom.
[3]
[1] or [2, wherein the inorganic filler (D1) contains a reaction product of the compound (d1) having the functional group (d) and the inorganic filler (d2) having no functional group (d) ] The resin composition as described in .
[4]
[ 3].
[5]
[3] or [ 4].
[6]
The compound (d1) having the functional group (d) contains one or more selected from the group consisting of a silane compound having a (meth)acrylic group and/or a vinyl group and a silane compound having a styryl group, Inorganic filler (d2) contains one or more selected from the group consisting of silica, aluminum hydroxide, alumina, boehmite, boron nitride, aluminum nitride, magnesium oxide, and magnesium hydroxide [3] to [5 ] The resin composition according to any one of the above.
[7]
The resin composition according to any one of [1] to [6], wherein the inorganic filler (D) has an average particle size of 3 μm or less.
[8]
[1] to [7, wherein the content of the inorganic filler (D) is 20 to 500 parts by mass with respect to a total of 100 parts by mass of the aminotriazine novolac resin (A) and the compound (B). ] The resin composition according to any one of the above.
[9]
[1] to [8], wherein the aminotriazine novolak resin (A) contains one or more selected from the group consisting of a compound represented by the following formula (1) and a compound represented by the following formula (2) ] The resin composition according to any one of the above.
Figure JPOXMLDOC01-appb-C000007
(In formula (1), R 1 each independently represents a hydrogen atom, a methyl group, or an ethyl group; l, m, and n each independently represent an integer of 0 to 10; (l + m + n) indicates an integer from 1 to 20.)
Figure JPOXMLDOC01-appb-C000008
(In formula (2), each R 2 independently represents a hydrogen atom, a methyl group, or an ethyl group; o, p, q, r, and s each independently represents an integer of 0 to 10; , (o + p + q + r + s) represents an integer from 1 to 20.)
[10]
The content of the compound (B1) is 45 parts by mass or more and 90 parts by mass or less with respect to a total of 100 parts by mass of the compound (B1) and the compound (B2),
[1] to [9], wherein the content of the compound (B2) is 10 parts by mass or more and 55 parts by mass or less with respect to a total of 100 parts by mass of the compound (B1) and the compound (B2). The resin composition according to any one of the above.
[11]
The maleimide compound (BA-1) consists of a maleimide compound represented by the following formula (3) and a bismaleimide compound containing a maleimide group at both ends of a structural unit represented by the following formula (4) and a molecular chain. The resin composition according to any one of [1] to [10], containing one or more selected from the group.
Figure JPOXMLDOC01-appb-C000009
(In the formula, n3 represents an integer of 1 to 30.)
Figure JPOXMLDOC01-appb-C000010
(In the formula, R 11 represents a linear or branched alkylene group having 1 to 16 carbon atoms, or a linear or branched alkenylene group having 2 to 16 carbon atoms, and R 12 represents 1 to 16 carbon atoms. A linear or branched alkylene group, or a linear or branched alkenylene group having 2 to 16 carbon atoms, and each R 13 is independently a hydrogen atom, a linear or branched chain having 1 to 16 carbon atoms, or A branched alkyl group, or a linear or branched alkenyl group having 2 to 16 carbon atoms, and n5 is an integer of 1 or more and 10 or less.)
[12]
The maleimide compound (BA-2) contains one or more selected from the group consisting of a maleimide compound represented by the following formula (5) and a maleimide compound represented by the following formula (6) [1] to [11] ] The resin composition according to any one of the above.
Figure JPOXMLDOC01-appb-C000011
(In the formula, each R 8 independently represents a hydrogen atom, a methyl group, or an ethyl group, and each R 9 independently represents a hydrogen atom or a methyl group.)
Figure JPOXMLDOC01-appb-C000012
(In the formula, each R 10 independently represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or a phenyl group, and n 4 represents an integer of 1 to 10.)
[13]
The resin composition according to any one of [1] to [12], further comprising a flux activator (C).
[14]
The resin composition according to [13], wherein the flux activator (C) contains a rosin-based resin.
[15]
The resin composition according to any one of [1] to [14], further comprising a curing catalyst (E).
[16]
The resin composition according to [15], wherein the curing catalyst (E) contains one or more selected from the group consisting of organic peroxides and imidazole compounds.
[17]
[1]-[ 16], the resin composition according to any one of the above.
[18]
[1] to [17], wherein the content of the compound (B) is 40 to 85 parts by mass with respect to a total of 100 parts by mass of the aminotriazine novolac resin (A) and the compound (B). The resin composition according to any one of the above.
[19]
The resin composition according to any one of [1] to [18], which is used as an underfill material.
[20]
a supporting substrate;
a resin composition layer laminated on the supporting substrate and containing the resin composition according to any one of [1] to [19];
A laminate.
[21]
The laminate according to [20], wherein the thickness of the resin composition layer is in the range of 5 to 500 μm.
[22]
a semiconductor chip;
a layer laminated on the semiconductor chip and formed using the resin composition according to any one of [1] to [19];
A semiconductor chip with a resin composition layer.
[23]
a substrate for mounting a semiconductor chip;
a layer laminated on the semiconductor chip mounting substrate and formed using the resin composition according to any one of [1] to [19];
A substrate for mounting a semiconductor chip with a resin composition layer.
[24]
A semiconductor device comprising the semiconductor chip with a resin composition layer according to [22].
[25]
A semiconductor device comprising the substrate for mounting a semiconductor chip with a resin composition layer according to [23].
 本発明によれば、低ボイド性及びチップ接着性に優れる、樹脂組成物、積層体、樹脂組成物層付き半導体チップ、樹脂組成物層付き半導体チップ搭載用基板、及び半導体装置を提供することができる。 According to the present invention, it is possible to provide a resin composition, a laminate, a semiconductor chip with a resin composition layer, a substrate for mounting a semiconductor chip with a resin composition layer, and a semiconductor device, which are excellent in low void property and chip adhesiveness. can.
 以下、本発明を実施するための形態(以下、単に「本実施形態」という。)について説明する。なお、以下の本実施形態は、本発明を説明するための例示であり、本発明は本実施形態のみに限定されない。 A mode for carrying out the present invention (hereinafter simply referred to as "this embodiment") will be described below. In addition, the following embodiment is an example for explaining the present invention, and the present invention is not limited only to this embodiment.
 なお、本実施形態において、「(メタ)アクリロキシ」とは「アクリロキシ」及びそれに対応する「メタクリロキシ」の両方を意味し、「(メタ)アクリロニトリル」とは「アクリロニトリル」及びそれに対応する「メタアクリロニトリル」の両方を意味し、「(メタ)アクリル」とは「アクリル」及びそれに対応する「メタクリル」の両方を意味し、「(メタ)アクリレート」とは「アクリレート」及びそれに対応する「メタクリレート」の両方を意味し、「(メタ)アリル」とは「アリル」及びそれに対応する「メタアリル」の両方を意味する。
 また、本明細書における「~」とは、特に断りがない場合、その両端の数値を上限値、及び下限値として含む意味であり、当該上限値及び下限値で単位は同一であるものとする。
In the present embodiment, "(meth)acryloxy" means both "acryloxy" and its corresponding "methacryloxy", and "(meth)acrylonitrile" means "acrylonitrile" and its corresponding "methacrylonitrile". and "(meth)acrylic" means both "acrylic" and its corresponding "methacrylic", and "(meth)acrylate" means both "acrylate" and its corresponding "methacrylate". and "(meth)allyl" means both "allyl" and the corresponding "methallyl".
In addition, "~" in the present specification, unless otherwise specified, means that the numerical values at both ends are included as the upper limit and the lower limit, and the unit for the upper limit and the lower limit shall be the same. .
 また、本実施形態において、「樹脂固形分」又は「樹脂組成物中の樹脂固形分」とは、特に断りのない限り、樹脂組成物における、無機充填材(D)、硬化触媒(E)、及び溶剤を除いた成分をいい、「樹脂固形分100質量部」とは、樹脂組成物における、無機充填材(D)、硬化触媒(E)、及び溶剤を除いた成分の合計が100質量部であることをいう。 Further, in the present embodiment, unless otherwise specified, the term "resin solid content" or "resin solid content in the resin composition" refers to the inorganic filler (D), curing catalyst (E), and the component excluding the solvent, and "100 parts by mass of resin solid content" means that the total of the components excluding the inorganic filler (D), the curing catalyst (E), and the solvent in the resin composition is 100 parts by mass. It means that
[樹脂組成物]
 本実施形態の樹脂組成物は、アミノトリアジンノボラック樹脂(A)(以下、単に「樹脂(A)」とも称する)と、マレイミド化合物(BA)(以下、単に「化合物(BA)」とも称する)及びシトラコンイミド化合物(BB)(以下、単に「化合物(BB)」とも称する)からなる群より選択される1種以上の化合物(B)と、無機充填材(D)と、を含有し、前記無機充填材(D)が、(メタ)アクリル基、ビニル基、スチリル基、及びフェニル基からなる群より選択される1種以上を含む官能基(d)を有する無機充填材(D1)を含み、前記化合物(B)が、化合物(B1)と、化合物(B2)と、を含み、前記化合物(B1)が、重量平均分子量が3,000以上9,500以下のマレイミド化合物(BA-1)及び重量平均分子量が3,000以上9,500以下のシトラコンイミド化合物(BB-1)からなる群より選択される1種以上であり、前記化合物(B2)が、重量平均分子量が300以上3,000未満のマレイミド化合物(BA-2)及び重量平均分子量が300以上3,000未満のシトラコンイミド化合物(BB-2)からなる群より選択される1種以上であり、各前記重量平均分子量は、ゲルパーミエーションクロマトグラフィー法により求められる標準ポリスチレン換算の値である。本実施形態の樹脂組成物は、このように構成されているため、低ボイド性及びチップ接着性に優れるものとなる。本実施形態の樹脂組成物は、このような性能を有するため、フリップチップ実装に使用されるアンダーフィル材として好適に用いられる。
[Resin composition]
The resin composition of the present embodiment comprises an aminotriazine novolac resin (A) (hereinafter also simply referred to as "resin (A)"), a maleimide compound (BA) (hereinafter also simply referred to as "compound (BA)") and containing one or more compounds (B) selected from the group consisting of citraconimide compounds (BB) (hereinafter also simply referred to as “compounds (BB)”) and an inorganic filler (D), wherein the inorganic The filler (D) contains an inorganic filler (D1) having a functional group (d) containing one or more selected from the group consisting of a (meth)acrylic group, a vinyl group, a styryl group, and a phenyl group, The compound (B) comprises a compound (B1) and a compound (B2), wherein the compound (B1) is a maleimide compound (BA-1) having a weight average molecular weight of 3,000 or more and 9,500 or less, and It is one or more selected from the group consisting of citraconimide compounds (BB-1) having a weight average molecular weight of 3,000 or more and 9,500 or less, and the compound (B2) has a weight average molecular weight of 300 or more and 3,000. less than maleimide compound (BA-2) and a citraconimide compound (BB-2) having a weight average molecular weight of 300 or more and less than 3,000, wherein each weight average molecular weight is gel It is a standard polystyrene-equivalent value obtained by permeation chromatography. Since the resin composition of the present embodiment is configured in this way, it is excellent in low void property and chip adhesion. Since the resin composition of the present embodiment has such properties, it is suitably used as an underfill material for flip chip mounting.
 本実施形態において、低ボイド性及びチップ接着性に優れる樹脂組成物が得られる理由について定かではないが、本発明者らは次のように推定している。
 通常、マレイミド化合物及び/又はシトラコンイミド化合物を主成分とした樹脂組成物では、十分なチップ接着性が得られず、半導体チップ実装時や熱硬化時(ポストキュア時)の熱によって発生するボイドや、硬化後におけるチップ及び基板からの剥離を抑制することが難しい。
 ここで、アミノトリアジンノボラック樹脂(A)は、トリアジン骨格を有することから、マレイミド基及び/又はシトラコンイミド基と良好に反応することができる。そのため、樹脂(A)は、化合物(B)のラジカル重合反応の速度を好適に制御でき、樹脂(A)と化合物(B)を含む樹脂組成物は、チップ及び基板の表面に存在する凹凸に追従しながら硬化することができる。そのため、当該樹脂組成物は半導体チップ及び基板に対して優れたアンカー効果を有することが可能となり、半導体チップ及び基板に対して低ボイド性に優れ、良好なチップ接着性を発現することができる。また、樹脂(A)は、トリアジン骨格にノボラック骨格が結合しているので、硬化後においても、にヒドロキシ基やアミノ基を多く含むことができる。そのため、硬化後においても、これらの基と、チップ表面のシラノール基とにおいて良好な化学結合を生じ、前述のアンカー効果に加えて、上記のように生じた化学結合により、より一層優れたチップ接着性を発現する。このような効果は、トリアジン骨格のないノボラック樹脂では実用性の点から十分ではない。
 上記観点から、樹脂(A)と化合物(B)とを含む樹脂組成物は、優れたチップ接着性を有し、このような樹脂組成物によれば、半導体チップ実装時や熱硬化時(ポストキュア時)の熱によってもボイドを好適に抑制できる。また、半導体チップ実装後、及びポストキュア後においても、チップ及び基板からの硬化物の剥離を好適に抑制することができると考えられる。
 加えて、本実施形態の樹脂組成物に含まれる無機充填材(D1)は、所定の官能基(d)を有しており、この官能基(d)は化合物(B)との反応性が高いため、半導体チップ実装後、及びポストキュア時の熱によって化合物(B)と無機充填材(D1)との間に強固な化学結合が形成されるものと考えられる。その結果、半導体チップ実装後、及びポストキュア時に発生し得るボイドを抑制することができ、また、半導体チップ実装後、及びポストキュア後においても、チップ及び基板からの硬化物の剥離を効果的に抑制することができると考えられる。
 上記のとおり、樹脂(A)と化合物(B)との間の相互作用、及び化合物(B)と無機充填材(D1)との間の相互作用が相乗的に働くことで、本実施形態の樹脂組成物は、優れたチップ接着性を有し、このような樹脂組成物を用いることにより、半導体チップ実装時や熱硬化時(ポストキュア時)の熱によって通常生じやすいボイドを好適に抑制できると推察される。また、同様の観点から、半導体チップ実装後、及びポストキュア後においても、チップ及び基板からの硬化物の剥離を好適に抑制することができると推察される。
 ただし、理由はこれに限定されない。
Although it is not clear why a resin composition having excellent low void properties and chip adhesiveness can be obtained in the present embodiment, the present inventors presume as follows.
Generally, a resin composition containing a maleimide compound and/or a citraconimide compound as a main component does not provide sufficient chip adhesiveness, and voids or voids generated by heat during semiconductor chip mounting or thermal curing (during post-curing). , it is difficult to suppress peeling from the chip and substrate after curing.
Here, since the aminotriazine novolac resin (A) has a triazine skeleton, it can react favorably with maleimide groups and/or citraconimide groups. Therefore, the resin (A) can suitably control the rate of the radical polymerization reaction of the compound (B), and the resin composition containing the resin (A) and the compound (B) can be applied to the unevenness existing on the surfaces of the chip and the substrate. It can be hardened while following. Therefore, the resin composition can have an excellent anchoring effect to the semiconductor chip and the substrate, and can exhibit excellent chip adhesiveness with excellent low void property to the semiconductor chip and the substrate. Further, since the resin (A) has a novolak skeleton bonded to the triazine skeleton, it can contain many hydroxy groups and amino groups even after curing. Therefore, even after curing, good chemical bonding occurs between these groups and the silanol groups on the chip surface, and in addition to the above-described anchoring effect, the chemical bond generated as described above contributes to even better chip adhesion. express sexuality. Such an effect is not sufficient for a novolac resin having no triazine skeleton from the viewpoint of practical use.
From the above point of view, the resin composition containing the resin (A) and the compound (B) has excellent chip adhesiveness, and such a resin composition can be used during semiconductor chip mounting and heat curing (post Voids can also be favorably suppressed by heat during curing. In addition, it is considered that peeling of the cured product from the chip and substrate can be suitably suppressed even after the semiconductor chip is mounted and after post-curing.
In addition, the inorganic filler (D1) contained in the resin composition of the present embodiment has a predetermined functional group (d), and this functional group (d) is reactive with the compound (B). Because of the high temperature, it is considered that a strong chemical bond is formed between the compound (B) and the inorganic filler (D1) by the heat during the semiconductor chip mounting and post-curing. As a result, it is possible to suppress voids that may occur after semiconductor chip mounting and during post-curing. can be suppressed.
As described above, the interaction between the resin (A) and the compound (B) and the interaction between the compound (B) and the inorganic filler (D1) work synergistically to achieve the The resin composition has excellent chip adhesiveness, and by using such a resin composition, it is possible to suitably suppress voids that are normally likely to occur due to heat during semiconductor chip mounting or thermal curing (during post-curing). It is speculated that Also, from the same point of view, it is presumed that peeling of the cured product from the chip and the substrate can be suitably suppressed even after the semiconductor chip is mounted and after post-curing.
However, the reason is not limited to this.
 〔アミノトリアジンノボラック樹脂(A)〕
 本実施形態の樹脂組成物は、化合物(B)と優れた反応性が得られ、低ボイド性及びチップ接着性に優れた樹脂組成物が得られる観点から、アミノトリアジンノボラック樹脂(A)を含む。アミノトリアジンノボラック樹脂(A)としては、分子内にトリアジン環を有するフェノールホルムアルデヒド樹脂(フェノール樹脂)であればよく、公知の樹脂を用いることもできる。このようなアミノトリアジンノボラック樹脂(A)は、公知の方法により製造でき、例えば、フェノール樹脂をメラミン等の窒素化合物で変性することで得られる。アミノトリアジンノボラック樹脂(A)は、1種を単独で又は2種以上を適宜混合して使用することができる。
[Aminotriazine novolak resin (A)]
The resin composition of the present embodiment contains an aminotriazine novolac resin (A) from the viewpoint of obtaining excellent reactivity with the compound (B) and obtaining a resin composition having low void properties and excellent chip adhesiveness. . As the aminotriazine novolak resin (A), any phenol-formaldehyde resin (phenol resin) having a triazine ring in the molecule may be used, and known resins can also be used. Such an aminotriazine novolac resin (A) can be produced by a known method, for example, by modifying a phenolic resin with a nitrogen compound such as melamine. The aminotriazine novolak resin (A) can be used singly or in an appropriate mixture of two or more.
 本実施形態の樹脂組成物において、アミノトリアジンノボラック樹脂(A)の含有量は、化合物(B)と優れた反応性が得られ、より優れた低ボイド性及びチップ接着性が得られることから、アミノトリアジンノボラック樹脂(A)と化合物(B)の合計100質量部に対して、1~60質量部であることが好ましい。化合物(B)と優れた反応性が得られ、より一層優れた低ボイド性及びチップ接着性が得られることから、アミノトリアジンノボラック樹脂(A)の含有量は、アミノトリアジンノボラック樹脂(A)と化合物(B)との合計100質量部に対して、15~60質量部であることがより好ましく、15~50質量部であることがさらに好ましく、17~45質量部であることが一層好ましく、20~40質量部であることがより一層好ましい。 In the resin composition of the present embodiment, the content of the aminotriazine novolak resin (A) provides excellent reactivity with the compound (B), and provides excellent low void properties and chip adhesion. It is preferably 1 to 60 parts by mass with respect to 100 parts by mass in total of the aminotriazine novolak resin (A) and the compound (B). Since excellent reactivity with the compound (B) is obtained, and even more excellent low void property and chip adhesion are obtained, the content of the aminotriazine novolak resin (A) is It is more preferably 15 to 60 parts by mass, still more preferably 15 to 50 parts by mass, and even more preferably 17 to 45 parts by mass, relative to the total 100 parts by mass with the compound (B). 20 to 40 parts by mass is even more preferable.
 アミノトリアジンノボラック樹脂(A)としては、化合物(B)と優れた反応性が得られ、より一層優れた低ボイド性及びチップ接着性が得られることから、その重量平均分子量は、300~9,500であることが好ましく、500~5,000であることがより好ましい。なお、本明細書において、重量平均分子量は、GPC(ゲルパーミエーションクロマトグラフィー)法により求められる標準ポリスチレン換算の値である。 As the aminotriazine novolac resin (A), excellent reactivity with the compound (B) can be obtained, and further excellent low void property and chip adhesiveness can be obtained. 500 is preferred, and 500 to 5,000 is more preferred. In addition, in this specification, a weight average molecular weight is a value of standard polystyrene conversion calculated|required by GPC (gel permeation chromatography) method.
 アミノトリアジンノボラック樹脂(A)としては、化合物(B)と優れた反応性が得られ、より一層優れた低ボイド性及びチップ接着性が得られることから、その窒素含有量は、アミノトリアジンノボラック樹脂100質量%中に、10~25質量%であることが好ましく、15~25質量%であることがより好ましい。 As the aminotriazine novolac resin (A), excellent reactivity with the compound (B) can be obtained, and even more excellent low void properties and chip adhesiveness can be obtained. It is preferably 10 to 25% by mass, more preferably 15 to 25% by mass, based on 100% by mass.
 アミノトリアジンノボラック樹脂(A)としては、化合物(B)と優れた反応性が得られ、より一層優れた低ボイド性及びチップ接着性が得られることから、そのヒドロキシ基当量は、80~200g/eq.であることが好ましく、100~180g/eq.であることがより好ましく、化合物(B)とのより一層優れた反応性、及びより一層優れた低ボイド性と共に、更に一層優れたチップ接着性が得られることから、130~170g/eq.であることがさらに好ましい。なお、本実施形態において、ヒドロキシ基当量とは、アミノトリアジンノボラック樹脂1g中に含まれるヒドロキシ基をアセチル化するために要する水酸化カリウムのmg数を示す。具体的には、JIS K 0070に従って、測定される。 As the aminotriazine novolac resin (A), excellent reactivity with the compound (B) can be obtained, and further excellent low void properties and chip adhesion can be obtained. eq. is preferably 100 to 180 g/eq. It is more preferable that the content is 130 to 170 g/eq. is more preferable. In the present embodiment, the hydroxy group equivalent means mg of potassium hydroxide required to acetylate the hydroxy groups contained in 1 g of the aminotriazine novolak resin. Specifically, it is measured according to JIS K 0070.
 アミノトリアジンノボラック樹脂(A)としては、化合物(B)と更に優れた反応性が得られ、更に一層優れた低ボイド性及びチップ接着性が得られることから、下記式(1)で表される化合物及び下記式(2)で表される化合物からなる群より選択される1種以上を含むことが好ましい。 The aminotriazine novolac resin (A) is represented by the following formula (1), since it exhibits even better reactivity with the compound (B) and provides even better low void properties and chip adhesion. It preferably contains one or more selected from the group consisting of compounds and compounds represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 式(1)中、R1は、各々独立に、水素原子、メチル基、又はエチル基を示す。化合物(B)と一層優れた反応性が得られ、より一層優れた低ボイド性及びチップ接着性が得られることから、R1は、各々独立に、水素原子又はメチル基であることが好ましい。l、m、及びnは、各々独立に、0~10の整数を示す。化合物(B)と一層優れた反応性が得られ、より一層優れた低ボイド性及びチップ接着性が得られることから、l、m、及びnは、各々独立に、1~6の整数であることが好ましい。(l+m+n)は、1~20の整数を示す。化合物(B)と一層優れた反応性が得られ、より一層優れた低ボイド性及びチップ接着性が得られることから、(l+m+n)は、3~18の整数であることが好ましい。なお、式(1)で表される化合物は、例えば、式(1)において、R1の基やその数が異なる化合物、l、m、及びnの数が異なる化合物、(l+m+n)の数が異なる化合物などを含む混合物であってもよい。 In formula (1), each R 1 independently represents a hydrogen atom, a methyl group, or an ethyl group. Each R 1 is preferably a hydrogen atom or a methyl group, because better reactivity with compound (B) can be obtained, and even better low void properties and chip adhesion can be obtained. l, m, and n each independently represent an integer of 0 to 10; l, m, and n are each independently an integer of 1 to 6, since better reactivity with the compound (B) is obtained, and even better low void property and chip adhesion are obtained. is preferred. (l+m+n) represents an integer of 1-20. (l+m+n) is preferably an integer of 3 to 18 because better reactivity with compound (B) can be obtained, and even better low void property and chip adhesion can be obtained. The compounds represented by the formula (1) are, for example, compounds in which the number of R 1 groups and the number thereof are different, compounds in which the numbers of l, m, and n are different, and compounds in which the number of (l + m + n) is It may be a mixture containing different compounds and the like.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 式(2)中、R2は、各々独立に、水素原子、メチル基、又はエチル基を示す。化合物(B)と一層優れた反応性が得られ、より一層優れた低ボイド性及びチップ接着性が得られることから、R2は、各々独立に、水素原子、又はメチル基であることが好ましい。o、p、q、r、及びsは、各々独立に、0~10の整数を示す。化合物(B)と一層優れた反応性が得られ、より一層優れた低ボイド性及びチップ接着性が得られることから、o、p、q、r、及びsは、各々独立に、1~4の整数であることが好ましい。(o+p+q+r+s)は、1~20の整数を示す。化合物(B)と一層優れた反応性が得られ、より一層優れた低ボイド性及びチップ接着性が得られることから、(o+p+q+r+s)は、5~20の整数であることが好ましい。なお、式(2)で表される化合物は、例えば、式(2)において、R2の基やその数が異なる化合物、o、p、q、r、及びsの数が異なる化合物、(o+p+q+r+s)の数が異なる化合物などを含む混合物であってもよい。 In formula (2), each R 2 independently represents a hydrogen atom, a methyl group, or an ethyl group. It is preferable that each R 2 is independently a hydrogen atom or a methyl group, since more excellent reactivity with the compound (B) can be obtained, and even more excellent low void property and chip adhesiveness can be obtained. . o, p, q, r, and s each independently represent an integer of 0 to 10; o, p, q, r, and s are each independently from 1 to 4, because better reactivity with the compound (B) can be obtained, and even better low void properties and chip adhesion can be obtained. is preferably an integer of (o+p+q+r+s) represents an integer of 1-20. (o + p + q + r + s) is preferably an integer of 5 to 20 because better reactivity with compound (B) can be obtained, and even better low void property and chip adhesion can be obtained. The compounds represented by the formula (2) include, for example, compounds in which the number of R 2 groups and the number thereof are different in the formula (2), compounds in which the numbers of o, p, q, r, and s are different, (o + p + q + r + s ) may be a mixture containing compounds having different numbers of .
 化合物(B)とより一層優れた反応性が得られ、更により一層優れた低ボイド性及びチップ接着性が得られることから、アミノトリアジンノボラック樹脂(A)としては、式(1)で表される化合物と式(2)で表される化合物との混合物であることがより好ましい。このような混合物としては、化合物(B)とより一層優れた反応性が得られ、更に一層優れた低ボイド性及びチップ接着性が得られることから、式(1)で表される化合物と式(2)で表される化合物との質量比(式(1)で表される化合物(質量部):式(2)で表される化合物(質量部))が、50:50~90:10であることが好ましく、60:40~85:15であることがより好ましい。 The aminotriazine novolac resin (A) is represented by the formula (1), since it can obtain even better reactivity with the compound (B), and even better low void properties and chip adhesion. and a compound represented by formula (2). As such a mixture, even better reactivity with the compound (B) can be obtained, and even better low void properties and chip adhesion can be obtained. The mass ratio of the compound represented by (2) (compound represented by formula (1) (parts by mass): compound represented by formula (2) (parts by mass)) is 50:50 to 90:10. and more preferably 60:40 to 85:15.
 アミノトリアジンノボラック樹脂(A)としては、市販品を用いてもよく、例えば、DIC(株)製のLA-1356(商品名)、LA-3018-50P(商品名)、LA-7052(商品名)、LA-7054(商品名)、LA-7751(商品名)が挙げられる。 As the aminotriazine novolak resin (A), a commercially available product may be used. ), LA-7054 (trade name), and LA-7751 (trade name).
 〔化合物(B)〕
 本実施形態の樹脂組成物は、低ボイド性及び優れたチップ接着性の観点から、マレイミド化合物(BA)及びシトラコンイミド化合物(BB)からなる群より選択される1種以上の化合物(B)を含む。化合物(B)は、分子内に、マレイミド基及びシトラコンイミド基からなる群より選択される1種以上を含むものであれば特に限定されない。化合物(B)としては、後述のフラックス活性剤(C)と反応性を示さないことが好ましい。化合物(B)は、1種を単独で又は2種以上を混合して使用することができる。
[Compound (B)]
The resin composition of the present embodiment contains one or more compounds (B) selected from the group consisting of maleimide compounds (BA) and citraconimide compounds (BB) from the viewpoint of low void properties and excellent chip adhesion. include. Compound (B) is not particularly limited as long as it contains one or more selected from the group consisting of a maleimide group and a citraconimide group in the molecule. The compound (B) preferably does not show reactivity with the flux activator (C) described below. Compound (B) can be used individually by 1 type or in mixture of 2 or more types.
 本実施形態に係る化合物(B)としては、アミノトリアジンノボラック樹脂(A)とより優れた反応性を有し、より優れた低ボイド性及びチップ接着性が得られる点から、マレイミド化合物(BA)を含むことが好ましい。また、マレイミド化合物(BA)は、エポキシ化合物と比較して、保管時や加熱処理によるフラックス活性剤との反応が著しく進行しにくく、フラックスの活性剤の失活が発生しにくい。 As the compound (B) according to the present embodiment, the maleimide compound (BA) has excellent reactivity with the aminotriazine novolak resin (A) and provides excellent low void properties and chip adhesion. is preferably included. In addition, the maleimide compound (BA) is less likely to react with the flux activator during storage or heat treatment than the epoxy compound, and the deactivation of the flux activator is less likely to occur.
 化合物(B)は、化合物(B1)と、化合物(B2)と、を含み、化合物(B1)は、重量平均分子量が3,000以上9,500以下のマレイミド化合物(BA-1)及び重量平均分子量が3,000以上9,500以下のシトラコンイミド化合物(BB-1)からなる群より選択される1種以上であり、化合物(B2)が、重量平均分子量が300以上3,000未満のマレイミド化合物(BA-2)及び重量平均分子量が300以上3,000未満のシトラコンイミド化合物(BB-2)からなる群より選択される1種以上である。 The compound (B) includes a compound (B1) and a compound (B2), and the compound (B1) is a maleimide compound (BA-1) having a weight average molecular weight of 3,000 or more and 9,500 or less and a weight average One or more selected from the group consisting of citraconimide compounds (BB-1) having a molecular weight of 3,000 or more and 9,500 or less, and the compound (B2) is a maleimide having a weight average molecular weight of 300 or more and less than 3,000. It is one or more selected from the group consisting of compound (BA-2) and citraconimide compound (BB-2) having a weight average molecular weight of 300 or more and less than 3,000.
 本実施形態の樹脂組成物は、化合物(B)として、化合物(B1)及び(B2)を含むことで、低ボイド性及びチップ接着性により一層優れるものとなる。この理由について定かではないが、本発明者らは次のように推定している。
 即ち、樹脂組成物が、比較的高分子量である化合物(B1)を含むことにより、半導体チップ実装時又は熱硬化時(ポストキュア時)の硬化収縮の際に発生する応力が緩和される。そのため、樹脂(A)を用いることによる接着性向上の効果がより一層促進される。また、樹脂組成物は、比較的低分子量である化合物(B2)も含む。そのため、半導体チップ実装時又は熱硬化時(ポストキュア時)に架橋密度を向上させることができ、樹脂(A)及び化合物(B1)を含むことによる応力緩和により発現する接着性を一層促進させることができると推察している。ただし、理由はこれに限定されない。
By containing the compounds (B1) and (B2) as the compound (B), the resin composition of the present embodiment is even more excellent in low void properties and chip adhesion. The reason for this is not clear, but the inventors presume as follows.
That is, by including the compound (B1) having a relatively high molecular weight in the resin composition, the stress generated during cure shrinkage during semiconductor chip mounting or thermal curing (during post-curing) is alleviated. Therefore, the effect of improving adhesiveness by using the resin (A) is further promoted. The resin composition also contains a compound (B2) having a relatively low molecular weight. Therefore, it is possible to improve the cross-linking density during semiconductor chip mounting or thermal curing (during post-curing), and further promote the adhesiveness developed by stress relaxation due to the inclusion of the resin (A) and the compound (B1). It is assumed that However, the reason is not limited to this.
 化合物(B1)としては、より一層優れた低ボイド性及びチップ接着性が得られることから、マレイミド化合物(BA-1)を含むことが好ましい。 The compound (B1) preferably contains a maleimide compound (BA-1), since it provides even better low void properties and chip adhesion.
 化合物(B2)としては、より一層優れた低ボイド性及びチップ接着性が得られることから、マレイミド化合物(BA-2)を含むことが好ましい。 The compound (B2) preferably contains a maleimide compound (BA-2) because it provides even better low void properties and chip adhesion.
 マレイミド化合物(BA-1)としては、更により一層優れた低ボイド性及びチップ接着性が得られることから、その重量平均分子量は、3,200以上8,000以下であることが好ましく、3,300以上6,000以下であることがより好ましい。 The maleimide compound (BA-1) preferably has a weight-average molecular weight of 3,200 or more and 8,000 or less, because it provides even better low void properties and chip adhesion. It is more preferably 300 or more and 6,000 or less.
 シトラコンイミド化合物(BB-1)としては、更により一層優れた低ボイド性及びチップ接着性が得られることから、その重量平均分子量は、3,200以上8,000以下であることが好ましく、3,300以上6,000以下であることがより好ましい。 As the citraconimide compound (BB-1), the weight average molecular weight is preferably 3,200 or more and 8,000 or less, since even more excellent low void properties and chip adhesiveness can be obtained. , 300 or more and 6,000 or less.
 マレイミド化合物(BA-2)としては、更により一層優れた低ボイド性及びチップ接着性が得られることから、その重量平均分子量は、350以上2,800以下であることが好ましく、400以上2,500以下であることがより好ましい。 The weight average molecular weight of the maleimide compound (BA-2) is preferably from 350 to 2,800, preferably from 400 to 2,800, because even more excellent low void property and chip adhesiveness can be obtained. It is more preferably 500 or less.
 シトラコンイミド化合物(BB-2)としては、更により一層優れた低ボイド性及びチップ接着性が得られることから、その重量平均分子量は、350以上2,800以下であることが好ましく、400以上2,500以下であることがより好ましい。 As the citraconimide compound (BB-2), the weight average molecular weight is preferably 350 or more and 2,800 or less, and 400 or more and 2 , 500 or less.
 (マレイミド化合物(BA))
 マレイミド化合物(BA)としては、分子中に1個以上のマレイミド基を有する樹脂又は化合物であれば、特に限定されない。マレイミド化合物(BA)は、1種又は2種以上を混合して使用することができる。
 このようなマレイミド化合物(BA)としては、例えば、N-フェニルマレイミド、N-ヒドロキシフェニルマレイミド、ビス(4-マレイミドフェニル)メタン、4,4-ジフェニルメタンビスマレイミド、ビス(3,5-ジメチル-4-マレイミドフェニル)メタン、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、ビス(3,5-ジエチル-4-マレイミドフェニル)メタン、フェニルメタンマレイミド、o-フェニレンビスマレイミド、m-フェニレンビスマレイミド、p-フェニレンビスマレイミド、2,2-ビス(4-(4-マレイミドフェノキシ)-フェニル)プロパン、3,3-ジメチル-5,5-ジエチル-4,4-ジフェニルメタンビスマレイミド、4-メチル-1,3-フェニレンビスマレイミド、1,6-ビスマレイミド-(2,2,4-トリメチル)ヘキサン、4,4-ジフェニルエーテルビスマレイミド、4,4-ジフェニルスルフォンビスマレイミド、1,3-ビス(3-マレイミドフェノキシ)ベンゼン、1,3-ビス(4-マレイミドフェノキシ)ベンゼン、ポリフェニルメタンマレイミド、ノボラック型マレイミド化合物、ビフェニルアラルキル型マレイミド化合物、2,2-ビス(4-(4-マレイミドフェノキシ)フェニル)プロパン、1,2-ビス(マレイミド)エタン、1,4-ビス(マレイミド)ブタン、1,6-ビス(マレイミド)ヘキサン、N,N’-1,3-フェニレンジマレイミド、N,N’-1,4-フェニレンジマレイミド、N-フェニルマレイミド、下記式(3)で表されるマレイミド化合物、下記式(4)で表される構成単位と分子鎖の両末端にマレイミド基とを含むビスマレイミド化合物、下記式(5)で表されるマレイミド化合物、下記式(6)で表されるマレイミド化合物、及び下記式(7)で表されるマレイミド化合物などが挙げられる。化合物(B)としては、マレイミド化合物を重合して得られるプレポリマー、及びマレイミド化合物をアミン化合物等の他の化合物と重合して得られるプレポリマー等の形で、本実施形態に係る樹脂組成物に含有させることもできる。
(Maleimide compound (BA))
The maleimide compound (BA) is not particularly limited as long as it is a resin or compound having one or more maleimide groups in the molecule. The maleimide compound (BA) can be used singly or in combination of two or more.
Examples of such maleimide compounds (BA) include N-phenylmaleimide, N-hydroxyphenylmaleimide, bis(4-maleimidophenyl)methane, 4,4-diphenylmethanebismaleimide, bis(3,5-dimethyl-4 -maleimidophenyl)methane, bis(3-ethyl-5-methyl-4-maleimidophenyl)methane, bis(3,5-diethyl-4-maleimidophenyl)methane, phenylmethanemaleimide, o-phenylenebismaleimide, m- Phenylenebismaleimide, p-phenylenebismaleimide, 2,2-bis(4-(4-maleimidophenoxy)-phenyl)propane, 3,3-dimethyl-5,5-diethyl-4,4-diphenylmethanebismaleimide, 4 -methyl-1,3-phenylenebismaleimide, 1,6-bismaleimide-(2,2,4-trimethyl)hexane, 4,4-diphenyletherbismaleimide, 4,4-diphenylsulfonebismaleimide, 1,3- Bis(3-maleimidophenoxy)benzene, 1,3-bis(4-maleimidophenoxy)benzene, polyphenylmethane maleimide, novolac-type maleimide compound, biphenylaralkyl-type maleimide compound, 2,2-bis(4-(4-maleimide) phenoxy)phenyl)propane, 1,2-bis(maleimido)ethane, 1,4-bis(maleimido)butane, 1,6-bis(maleimido)hexane, N,N'-1,3-phenylenedimaleimide, N , N′-1,4-phenylenedimaleimide, N-phenylmaleimide, a maleimide compound represented by the following formula (3), a structural unit represented by the following formula (4) and a maleimide group at both ends of the molecular chain a bismaleimide compound containing, a maleimide compound represented by the following formula (5), a maleimide compound represented by the following formula (6), and a maleimide compound represented by the following formula (7). The compound (B) is in the form of a prepolymer obtained by polymerizing a maleimide compound, a prepolymer obtained by polymerizing a maleimide compound with another compound such as an amine compound, or the like, and the resin composition according to the present embodiment. can also be contained in
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 式(3)中、nは、1~30の整数を示す。 In formula (3), n3 represents an integer of 1-30.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 式(4)中、R11は炭素数1~16の直鎖状若しくは分岐状のアルキレン基、又は炭素数2~16の直鎖状若しくは分岐状のアルケニレン基を示す。R12は炭素数1~16の直鎖状若しくは分岐状のアルキレン基、又は炭素数2~16の直鎖状若しくは分岐状のアルケニレン基を示す。R13は、各々独立に、水素原子、炭素数1~16の直鎖状若しくは分岐状のアルキル基、又は炭素数2~16の直鎖状若しくは分岐状のアルケニル基を示す。nは、各々独立に、1以上10以下の整数を示す。
 なお、式(4)で表される構成単位の詳細については、後述する。
In formula (4), R 11 represents a linear or branched alkylene group having 1 to 16 carbon atoms or a linear or branched alkenylene group having 2 to 16 carbon atoms. R 12 represents a linear or branched alkylene group having 1 to 16 carbon atoms or a linear or branched alkenylene group having 2 to 16 carbon atoms. Each R 13 independently represents a hydrogen atom, a linear or branched alkyl group having 1 to 16 carbon atoms, or a linear or branched alkenyl group having 2 to 16 carbon atoms. Each n5 independently represents an integer of 1 or more and 10 or less.
Details of the structural unit represented by formula (4) will be described later.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 式(5)中、Rは、各々独立に、水素原子、メチル基、又はエチル基を示す。Rは、各々独立に、水素原子又はメチル基を示す。 In formula (5), each R 8 independently represents a hydrogen atom, a methyl group, or an ethyl group. Each R9 independently represents a hydrogen atom or a methyl group.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 式(6)中、R10は、各々独立に、水素原子、炭素数1~5のアルキル基、又はフェニル基を示す。nは、1~10の整数を示す。R10は、水素原子であることが好ましい。 In formula (6), each R 10 independently represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or a phenyl group. n4 represents an integer of 1-10. R 10 is preferably a hydrogen atom.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 式(7)中、R10は、各々独立に、水素原子又はメチル基を示し、nは、1以上の整数を示し、好ましくは1~10の整数を示す。 In formula (7), each R 10 independently represents a hydrogen atom or a methyl group, and n 2 represents an integer of 1 or more, preferably an integer of 1-10.
 次いで、式(4)で表される構成単位と分子鎖の両末端にマレイミド基とを含むビスマレイミド化合物の構造について説明する。
 ビスマレイミド化合物は、複数の式(4)で表される構成単位を有していてもよく、この場合、複数の式(4)で表される構成単位中のR11、R12、及びR13は、それぞれ同一であっても、異なっていてよい。また、ビスマレイミド化合物は、式(4)で表される構成単位中のR11、R12、及びR13、並びにビスマレイミド化合物中の式(4)の構成単位の数のうちの少なくとも1つが異なる化合物の混合物であってもよい。
 式(4)で表される構成単位において、R11は、炭素数1~16の直鎖状若しくは分岐状のアルキレン基、又は炭素数2~16の直鎖状若しくは分岐状のアルケニレン基を示す。R11としては、チップに対する樹脂組成物層の実装時において、樹脂組成物が好適な粘度を有し、実装時における溶融粘度の上昇が好適に制御できる点から、直鎖状若しくは分岐状のアルキレン基であることが好ましく、直鎖状のアルキレン基であることがより好ましい。
Next, the structure of the bismaleimide compound containing the structural unit represented by formula (4) and maleimide groups at both ends of the molecular chain will be described.
The bismaleimide compound may have a plurality of structural units represented by formula (4), in which case R 11 , R 12 and R in the plurality of structural units represented by formula (4) 13 may be the same or different. In the bismaleimide compound, at least one of R 11 , R 12 , and R 13 in the structural unit represented by formula (4) and the number of structural units represented by formula (4) in the bismaleimide compound is It may be a mixture of different compounds.
In the structural unit represented by formula (4), R 11 represents a linear or branched alkylene group having 1 to 16 carbon atoms or a linear or branched alkenylene group having 2 to 16 carbon atoms. . R 11 is a linear or branched alkylene because the resin composition has a suitable viscosity when the resin composition layer is mounted on the chip, and the increase in melt viscosity during mounting can be controlled favorably. is preferably a group, more preferably a linear alkylene group.
 アルキレン基の炭素数としては、チップに対する樹脂組成物層の実装時において、樹脂組成物がより好適な粘度を有し、実装時における溶融粘度の上昇がより好適に制御できる点から、2~14であることが好ましく、4~12であることがより好ましい。
 直鎖状若しくは分岐状のアルキレン基としては、例えば、メチレン基、エチレン基、プロピレン基、2,2-ジメチルプロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ヘプチレン基、オクチレン基、ノニレン基、デシレン基、ドデシレン基、ウンデシレン基、トリデシレン基、テトラデシレン基、ペンタデシレン基、ヘキサデシレン基、ネオペンチレン基、ジメチルブチレン基、メチルヘキシレン基、エチルヘキシレン基、ジメチルヘキシレン基、トリメチルヘキシレン基、メチルヘプチレン基、ジメチルヘプチレン基、トリメチルヘプチレン基、テトラメチルヘプチレン基、エチルヘプチレン基、メチルオクチレン基、メチルノニレン基、メチルデシレン基、メチルドデシレン基、メチルウンデシレン基、メチルトリデシレン基、メチルテトラデシレン基、及びメチルペンタデシレン基が挙げられる。
The number of carbon atoms in the alkylene group is 2 to 14 because the resin composition has a more suitable viscosity when the resin composition layer is mounted on the chip, and the increase in melt viscosity during mounting can be more suitably controlled. is preferred, and 4 to 12 is more preferred.
Examples of linear or branched alkylene groups include methylene, ethylene, propylene, 2,2-dimethylpropylene, butylene, pentylene, hexylene, heptylene, octylene, nonylene, and decylene. group, dodecylene group, undecylene group, tridecylene group, tetradecylene group, pentadecylene group, hexadecylene group, neopentylene group, dimethylbutylene group, methylhexylene group, ethylhexylene group, dimethylhexylene group, trimethylhexylene group, methylheptylene group, dimethylheptylene group, trimethylheptylene group, tetramethylheptylene group, ethylheptylene group, methyloctylene group, methylnonylene group, methyldecylene group, methyldodecylene group, methylundecylene group, methyltridecylene group, methyltetradecylene group , and methylpentadecylene groups.
 アルケニレン基の炭素数としては、チップに対する樹脂組成物層の実装時において、樹脂組成物がより好適な粘度を有し、実装時における溶融粘度の上昇がより好適に制御できる点から、2~14であることが好ましく、4~12であることがより好ましい。
 直鎖状若しくは分岐状のアルケニレン基としては、例えば、ビニレン基、1-メチルビニレン基、アリレン基、プロペニレン基、イソプロペニレン基、1-ブテニレン基、2-ブテニレン基、1-ペンテニレン基、2-ペンテニレン基、イソペンチレン基、シクロペンテニレン基、シクロヘキセニレン基、及びジシクロペンタジエニレン基等が挙げられる。
The number of carbon atoms in the alkenylene group is 2 to 14 because the resin composition has a more suitable viscosity when the resin composition layer is mounted on the chip, and the increase in melt viscosity during mounting can be more suitably controlled. is preferred, and 4 to 12 is more preferred.
Linear or branched alkenylene groups include, for example, vinylene group, 1-methylvinylene group, arylene group, propenylene group, isopropenylene group, 1-butenylene group, 2-butenylene group, 1-pentenylene group, 2 -pentenylene group, isopentylene group, cyclopentenylene group, cyclohexenylene group, dicyclopentadienylene group, and the like.
 式(4)で表される構成単位において、R12は、炭素数1~16の直鎖状若しくは分岐状のアルキレン基、又は炭素数2~16の直鎖状若しくは分岐状のアルケニレン基を示す。R12としては、チップに対する樹脂組成物層の実装時において、樹脂組成物が好適な粘度を有し、実装時における溶融粘度の上昇が好適に制御できる点から、直鎖状若しくは分岐状のアルキレン基であることが好ましく、直鎖状のアルキレン基であることがより好ましい。 In the structural unit represented by formula (4), R 12 represents a linear or branched alkylene group having 1 to 16 carbon atoms or a linear or branched alkenylene group having 2 to 16 carbon atoms. . R 12 is a linear or branched alkylene because the resin composition has a suitable viscosity when the resin composition layer is mounted on the chip, and the increase in melt viscosity during mounting can be suitably controlled. is preferably a group, more preferably a linear alkylene group.
 アルキレン基の炭素数としては、チップに対する樹脂組成物層の実装時において、樹脂組成物がより好適な粘度を有し、実装時における溶融粘度の上昇がより好適に制御できる点から、2~14であることが好ましく、4~12であることがより好ましい。
 直鎖状若しくは分岐状のアルキレン基としては、前記のR11が参照できる。
The number of carbon atoms in the alkylene group is 2 to 14 because the resin composition has a more suitable viscosity when the resin composition layer is mounted on the chip, and the increase in melt viscosity during mounting can be more suitably controlled. is preferred, and 4 to 12 is more preferred.
The above R 11 can be referred to as the linear or branched alkylene group.
 アルケニレン基の炭素数としては、チップに対する樹脂組成物層の実装時において、樹脂組成物がより好適な粘度を有し、実装時における溶融粘度の上昇がより好適に制御できる点から、2~14であることが好ましく、4~12であることがより好ましい。
 直鎖状若しくは分岐状のアルケニレン基としては、前記のR11が参照できる。
The number of carbon atoms in the alkenylene group is 2 to 14 because the resin composition has a more suitable viscosity when the resin composition layer is mounted on the chip, and the increase in melt viscosity during mounting can be more suitably controlled. is preferred, and 4 to 12 is more preferred.
As the linear or branched alkenylene group, the above R 11 can be referred to.
 式(4)で表される構成単位において、R11と、R12とは、同一であっても異なっていてもよいが、ビスマレイミド化合物をより容易に合成できる点から、同一であることが好ましい。 In the structural unit represented by formula (4), R 11 and R 12 may be the same or different, but from the viewpoint of easier synthesis of the bismaleimide compound, they are preferably the same. preferable.
 式(4)で表される構成単位において、R13は、各々独立に、水素原子、炭素数1~16の直鎖状若しくは分岐状のアルキル基、又は炭素数2~16の直鎖状若しくは分岐状のアルケニル基を示す。R13は、チップに対する樹脂組成物層の実装時において、樹脂組成物が好適な粘度を有し、実装時における溶融粘度の上昇が好適に制御できる点から、各々独立に、水素原子、又は炭素数1~16の直鎖状若しくは分岐状のアルキル基であることが好ましく、R13のうち、1~5個の基(R13)が炭素数1~16の直鎖状若しくは分岐状のアルキル基であり、残りの基(R13)が水素原子であることがより好ましく、R13のうち、1~3個の基(R13)が炭素数1~16の直鎖状若しくは分岐状のアルキル基であり、残りの基(R13)が水素原子であることが更に好ましい。 In the structural unit represented by formula (4), each R 13 is independently a hydrogen atom, a linear or branched alkyl group having 1 to 16 carbon atoms, or a linear or branched alkyl group having 2 to 16 carbon atoms. It represents a branched alkenyl group. Each of R 13 is independently a hydrogen atom or a carbon A linear or branched alkyl group having a number of 1 to 16 is preferable, and among R 13 , 1 to 5 groups (R 13 ) are linear or branched alkyl groups having 1 to 16 carbon atoms. and the remaining groups (R 13 ) are more preferably hydrogen atoms, and among R 13 , 1 to 3 groups (R 13 ) are linear or branched groups having 1 to 16 carbon atoms. More preferably, it is an alkyl group and the remaining groups (R 13 ) are hydrogen atoms.
 アルキル基の炭素数としては、チップに対する樹脂組成物層の実装時において、樹脂組成物がより好適な粘度を有し、実装時における溶融粘度の上昇がより好適に制御できる点から、2~14であることが好ましく、4~12であることがより好ましい。
 直鎖状若しくは分岐状のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、1-エチルプロピル基、n-ブチル基、2-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、2-ペンチル基、tert-ペンチル基、2-メチルブチル基、3-メチルブチル基、2,2-ジメチルプロピル基、n-ヘキシル基、2-ヘキシル基、3-ヘキシル基、n-へプチル基、n-オクチル基、2-メチルペンチル基、3-メチルペンチル基、4-メチルペンチル基、2-メチルペンタン-3-イル基、及びn-ノニル基が挙げられる。
The number of carbon atoms in the alkyl group is 2 to 14 because the resin composition has a more suitable viscosity when the resin composition layer is mounted on the chip, and the increase in melt viscosity during mounting can be more suitably controlled. is preferred, and 4 to 12 is more preferred.
Linear or branched alkyl groups include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, 1-ethylpropyl group, n-butyl group, 2-butyl group, isobutyl group, tert-butyl group, n-pentyl group, 2-pentyl group, tert-pentyl group, 2-methylbutyl group, 3-methylbutyl group, 2,2-dimethylpropyl group, n-hexyl group, 2-hexyl group, 3-hexyl group, n-heptyl, n-octyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 2-methylpentan-3-yl, and n-nonyl groups.
 アルケニル基の炭素数としては、チップに対する樹脂組成物層の実装時において、樹脂組成物がより好適な粘度を有し、実装時における溶融粘度の上昇がより好適に制御できる点から、2~14であることが好ましく、4~12であることがより好ましい。
 直鎖状若しくは分岐状のアルケニル基としては、例えば、ビニル基、アリル基、4-ペンテニル基、イソプロペニル基、イソペンテニル基、2-ヘプテニル基、2-オクテニル基、及び2-ノネニル基が挙げられる。
The number of carbon atoms in the alkenyl group is 2 to 14 because the resin composition has a more suitable viscosity when the resin composition layer is mounted on the chip, and the increase in melt viscosity during mounting can be more suitably controlled. is preferred, and 4 to 12 is more preferred.
Linear or branched alkenyl groups include, for example, vinyl group, allyl group, 4-pentenyl group, isopropenyl group, isopentenyl group, 2-heptenyl group, 2-octenyl group, and 2-nonenyl group. be done.
 式(4)で表される構成単位において、n5は、1~10の整数を示す。 In the structural unit represented by formula (4), n 5 represents an integer of 1-10.
 ビスマレイミド化合物は、分子鎖の両末端にマレイミド基を有する。両末端とは、ビスマレイミド化合物の分子鎖において両方の末端を意味し、例えば、式(4)で表される構成単位が、ビスマレイミド化合物の分子鎖の末端にある場合には、マレイミド基は、R11の分子鎖の末端に有するか、マレイミド環のN原子における分子鎖の末端に有するか、又は両方の末端に有することを意味する。ビスマレイミド化合物は、分子鎖の両末端以外に、マレイミド基を有していてもよい。
 マレイミド基は、式(8)で表され、N原子がビスマレイミド化合物の分子鎖に結合している。また、ビスマレイミド化合物に結合されるマレイミド基は、全て同一であっても異なっていてもよいが、分子鎖の両末端のマレイミド基は同一であることが好ましい。
A bismaleimide compound has maleimide groups at both ends of its molecular chain. Both ends mean both ends in the molecular chain of the bismaleimide compound. , at the chain end of R 11 , at the chain end at the N atom of the maleimide ring, or at both ends. The bismaleimide compound may have maleimide groups other than both ends of the molecular chain.
The maleimide group is represented by formula (8) and the N atom is bonded to the molecular chain of the bismaleimide compound. In addition, the maleimide groups bonded to the bismaleimide compound may all be the same or different, but the maleimide groups at both ends of the molecular chain are preferably the same.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 式(8)中、R11は、各々独立に、水素原子、又は炭素数1~4の直鎖状若しくは分岐状のアルキル基を示す。R11は、より好適に樹脂(A)と反応できる点から、両方ともに水素原子であることが好ましい。
 アルキル基の炭素数としては、より好適に樹脂(A)と反応できる点から、1~3であることが好ましく、1~2であることがより好ましい。
 直鎖状若しくは分岐状のアルキル基としては、前記のR13が参照できる。
In formula (8), each R 11 independently represents a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms. Both R 11 are preferably hydrogen atoms from the viewpoint that they can more preferably react with the resin (A).
The number of carbon atoms in the alkyl group is preferably from 1 to 3, more preferably from 1 to 2, from the viewpoint of more preferably reacting with the resin (A).
The above R 13 can be referred to as the linear or branched alkyl group.
 このようなビスマレイミド化合物としては、例えば、式(9)で表されるマレイミド化合物が挙げられる。これらは、1種単独で、あるいは式(9)中のaの繰り返し数が異なる2種以上の化合物を適宜混合して使用することも可能である。 Examples of such bismaleimide compounds include maleimide compounds represented by formula (9). These can be used singly or in combination of two or more compounds having different repeating numbers of a in formula (9).
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 式(9)中、aは、1~10の整数を示す。aは、チップに対する樹脂組成物層の実装時において、樹脂組成物がより好適な粘度を有し、実装時における溶融粘度の上昇がより好適に制御できる点から、1~6の整数であることが好ましい。式(9)で表されるマレイミド化合物は、aが異なる化合物の混合物であってもよい。 In formula (9), a represents an integer of 1-10. a is an integer of 1 to 6 because the resin composition has a more suitable viscosity when the resin composition layer is mounted on the chip, and the increase in melt viscosity during mounting can be more suitably controlled. is preferred. The maleimide compound represented by formula (9) may be a mixture of compounds in which a is different.
 樹脂(A)と更に優れた反応性が得られ、低ボイド性及びチップ接着性に一層優れ、溶媒溶解性に優れる樹脂組成物が得られる点から、マレイミド化合物(BA)は、上述した中でも、2,2’-ビス(4-(4-マレイミドフェノキシ)フェニル)プロパン、1,2-ビス(マレイミド)エタン、1,4-ビス(マレイミド)ブタン、1,6-ビス(マレイミド)ヘキサン、N,N’-1,3-フェニレンジマレイミド、N,N’-1,4-フェニレンジマレイミド、N-フェニルマレイミド、上記式(3)で表されるマレイミド化合物、上記式(4)で表される構成単位と分子鎖の両末端にマレイミド基とを含むビスマレイミド化合物、上記式(5)で表されるマレイミド化合物、上記式(6)で表されるマレイミド化合物、及び上記式(7)で表されるマレイミド化合物からなる群より選択される1種以上を含有することが好ましく、2,2’-ビス(4-(4-マレイミドフェノキシ)フェニル)プロパン、上記式(3)で表されるマレイミド化合物、上記式(4)で表される構成単位と分子鎖の両末端にマレイミド基とを含むビスマレイミド化合物、上記式(5)で表されるマレイミド化合物、上記式(6)で表されるマレイミド化合物、及び上記式(7)で表されるマレイミド化合物からなる群より選択される1種以上を含有することがより好ましい。更に、マレイミド化合物(BA)は、樹脂(A)と一層優れた反応性が得られ、一層優れた低ボイド性、チップ接着性、及び溶剤溶解性が得られる傾向にある点から、上記式(3)で表されるマレイミド化合物、上記式(4)で表される構成単位と分子鎖の両末端にマレイミド基とを含むビスマレイミド化合物、上記式(5)で表されるマレイミド化合物、及び上記式(6)で表されるマレイミド化合物からなる群より選択される1種以上を含むことがより更に好ましい。 The maleimide compound (BA) has excellent reactivity with the resin (A), has excellent low void properties and chip adhesion, and provides a resin composition having excellent solvent solubility. 2,2′-bis(4-(4-maleimidophenoxy)phenyl)propane, 1,2-bis(maleimido)ethane, 1,4-bis(maleimido)butane, 1,6-bis(maleimido)hexane, N , N′-1,3-phenylenedimaleimide, N,N′-1,4-phenylenedimaleimide, N-phenylmaleimide, the maleimide compound represented by the above formula (3), the above formula (4) A bismaleimide compound containing a structural unit and a maleimide group at both ends of the molecular chain, a maleimide compound represented by the above formula (5), a maleimide compound represented by the above formula (6), and a maleimide compound represented by the above formula (7) It is preferable to contain one or more selected from the group consisting of maleimide compounds represented by 2,2'-bis(4-(4-maleimidophenoxy)phenyl)propane, represented by the above formula (3) A maleimide compound, a bismaleimide compound containing maleimide groups at both ends of a structural unit represented by the above formula (4) and a maleimide group represented by the above formula (5), a maleimide compound represented by the above formula (6) and maleimide compounds represented by the above formula (7). Furthermore, the maleimide compound (BA) tends to have better reactivity with the resin (A), and to have better low void properties, chip adhesion, and solvent solubility. 3) a maleimide compound represented by formula (4) above, a bismaleimide compound containing maleimide groups at both ends of the structural unit represented by formula (4) above, a maleimide compound represented by formula (5) above, and the above It is even more preferable to contain one or more selected from the group consisting of maleimide compounds represented by formula (6).
 マレイミド化合物(BA-1)としては、樹脂(A)とより一層優れた反応性が得られ、より一層優れた低ボイド性、チップ接着性、及び溶媒溶解性が得られることから、上記式(3)で表されるマレイミド化合物及び上記式(4)で表される構成単位と分子鎖の両末端にマレイミド基とを含むビスマレイミド化合物からなる群より選択される一種以上を含むことが好ましい。 As the maleimide compound (BA-1), the above formula ( 3) and maleimide compounds represented by the above formula (4) and bismaleimide compounds containing maleimide groups at both ends of the molecular chain.
 マレイミド化合物(BA-2)としては、樹脂(A)とより一層優れた反応性が得られ、より一層優れた低ボイド性、チップ接着性、及び溶媒溶解性が得られることから、上記式(5)で表されるマレイミド化合物及び上記式(6)で表されるマレイミド化合物からなる群より選択される一種以上を含むことが好ましい。 As the maleimide compound (BA-2), the above formula ( 5) and one or more selected from the group consisting of the maleimide compound represented by the above formula (6).
 マレイミド化合物としては、市販品を用いてもよく、2,2’-ビス(4-(4-マレイミドフェノキシ)フェニル)プロパンとしては、例えば、ケイ・アイ化成(株)製BMI-80(商品名)が挙げられる。式(3)で表されるマレイミド化合物としては、例えば、ケイ・アイ化成(株)製BMI-1000P(商品名、式(3)中のn3=14(平均値)、重量平均分子量:3,700)、ケイ・アイ化成(株)製BMI-650P(商品名、式(3)中のn3=9(平均値))、ケイ・アイ化成(株)製BMI-250P(商品名、式(3)中のn3=3~8(平均値))、ケイ・アイ化成(株)製CUA-4(商品名、式(3)中のn3=1)等が挙げられる。式(4)で表される構成単位と分子鎖の両末端にマレイミド基とを含むビスマレイミド化合物としては、日本化薬(株)製MIZ-001(商品名、式(9)で表されるマレイミド化合物を含み、式(9)中のaは1~6(整数)の混合物である、重量平均分子量:3,900)が挙げられる。式(5)で表されるマレイミド化合物としては、例えば、ケイ・アイ化成(株)製BMI-70(商品名;ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、重量平均分子量:550)が挙げられる。式(6)で表されるマレイミド化合物としては、例えば、日本化薬(株)製MIR-3000-70MT(商品名、式(6)中のR10が全て水素原子であり、n4が1~10の混合物である、重量平均分子量:1,050)が挙げられる。式(7)で表されるマレイミド化合物としては、例えば、大和化成工業(株)製BMI-2300(商品名)が挙げられる。 As the maleimide compound, a commercially available product may be used. ). As the maleimide compound represented by formula (3), for example, BMI-1000P (trade name, n 3 in formula (3) = 14 (average value), weight average molecular weight: 3 , 700), K-I Kasei Co., Ltd. BMI-650P (trade name, n 3 = 9 (average value) in formula (3)), K-I Kasei Co., Ltd. BMI-250P (trade name, n 3 =3 to 8 (average value) in formula (3)), CUA-4 (trade name, n 3 =1 in formula (3)) manufactured by K.I Kasei Co., Ltd., and the like. As the bismaleimide compound containing maleimide groups at both ends of the structural unit represented by the formula (4) and the molecular chain, MIZ-001 manufactured by Nippon Kayaku Co., Ltd. (trade name, represented by the formula (9) Weight-average molecular weight: 3,900), which contains a maleimide compound and a in formula (9) is a mixture of 1 to 6 (integers). Examples of the maleimide compound represented by formula (5) include BMI-70 (trade name; bis(3-ethyl-5-methyl-4-maleimidophenyl)methane manufactured by K.I. Kasei Co., Ltd., weight average molecular weight : 550). Examples of the maleimide compound represented by formula (6) include MIR-3000-70MT (trade name, manufactured by Nippon Kayaku Co., Ltd., where all R 10 in formula (6) are hydrogen atoms, n 4 is 1 ~10 mixture, weight average molecular weight: 1,050). Examples of the maleimide compound represented by formula (7) include BMI-2300 (trade name) manufactured by Daiwa Kasei Kogyo Co., Ltd.
 (シトラコンイミド化合物(BB))
 シトラコンイミド化合物(BB)としては、特に限定されないが、例えば、o-フェニレンビスシトラコンイミド、m-フェニレンビスシトラコンイミド、p-フェニレンビスシトラコンイミド、4,4-ジフェニルメタンビスシトラコンイミド、2,2-ビス[4-(4-シトラコンイミドフェノキシ)フェニル]プロパン、ビス(3,5-ジメチル-4-シトラコンイミドフェニル)メタン、ビス(3-エチル-5-メチル-4-シトラコンイミドフェニル)メタン、ビス(3,5-ジエチル-4-シトラコンイミドフェニル)メタン、1,3-キシリレンビス(シトラコンイミド)、N-[3-ビス(トリメチルシリル)アミノ-1-プロピル]シトラコンイミド、N-[3-ビス(トリエチルシリル)アミノ-1-プロピル]シトラコンイミド、N-[3-ビス(トリフェニルシリル)アミノ-1-プロピル]シトラコンイミド、N,N’-(m-フェニレンジメチレン)ジシトラコンイミド、及びN-[3-(メチリデンスクシンイミドメチル)ベンジル]シトラコンイミド、下記式(10)で表されるシトラコンイミド化合物、上記式(4)で表される構成単位と分子鎖の両末端にシトラコンイミド基とを含むビスシトラコンイミド化合物、下記式(11)で表されるシトラコンイミド化合物、及び下記式(12)で表されるシトラコンイミド化合物が挙げられる。なお、ビスシトラコンイミド化合物は、上記のビスマレイミド化合物を参照できる。式(4)で表される構成単位の詳細については上記のとおりであり、シトラコンイミド基については、上記式(8)において、R11の少なくとも1つの基がメチル基であること以外、式(8)の構造を参照できる。シトラコンイミド化合物(BB)は、1種又は2種以上を混合して使用することができる。
(Citraconimide compound (BB))
Examples of the citraconimide compound (BB) include, but are not limited to, o-phenylenebiscitraconimide, m-phenylenebiscitraconimide, p-phenylenebiscitraconimide, 4,4-diphenylmethanebiscitraconimide, 2,2- bis[4-(4-citraconimidophenoxy)phenyl]propane, bis(3,5-dimethyl-4-citraconimidophenyl)methane, bis(3-ethyl-5-methyl-4-citraconimidophenyl)methane, bis (3,5-diethyl-4-citraconimidophenyl)methane, 1,3-xylylenebis(citraconimide), N-[3-bis(trimethylsilyl)amino-1-propyl]citraconimide, N-[3-bis( triethylsilyl)amino-1-propyl]citraconimide, N-[3-bis(triphenylsilyl)amino-1-propyl]citraconimide, N,N'-(m-phenylenedimethylene)dicitraconimide, and N -[3-(methylidenesuccinimidemethyl)benzyl]citraconimide, a citraconimide compound represented by the following formula (10), a structural unit represented by the above formula (4) and a citraconimide group at both ends of the molecular chain A biscitraconimide compound containing, a citraconimide compound represented by the following formula (11), and a citraconimide compound represented by the following formula (12). As for the biscitraconimide compound, the above bismaleimide compound can be referred to. The details of the structural unit represented by the formula (4) are as described above, and the citraconimide group is represented by the formula ( 8) can be referred to. The citraconimide compound (BB) can be used singly or in combination of two or more.
 樹脂(A)と更に優れた反応性が得られ、低ボイド性及びチップ接着性に一層優れ、溶媒溶解性に優れる樹脂組成物が得られる点から、シトラコンイミド化合物(BB)は、上述した中でも、下記式(10)で表されるシトラコンイミド化合物、上記式(4)で表される構成単位と分子鎖の両末端にシトラコンイミド基とを含むビスシトラコンイミド化合物、下記式(11)で表されるシトラコンイミド化合物、及び下記式(12)で表されるシトラコンイミド化合物からなる群より選択される1種以上を含むことが好ましい。 The citraconimide compound (BB) is among the above-mentioned from the viewpoint of obtaining a resin composition having excellent solvent solubility, excellent low void property and chip adhesion, and excellent reactivity with the resin (A). , a citraconimide compound represented by the following formula (10), a biscitraconimide compound containing a structural unit represented by the above formula (4) and a citraconimide group at both ends of the molecular chain, represented by the following formula (11) and one or more selected from the group consisting of a citraconimide compound represented by the following formula (12).
 シトラコンイミド化合物(BB-1)としては、樹脂(A)とより一層優れた反応性が得られ、より一層優れた低ボイド性、チップ接着性、及び溶媒溶解性が得られることから、下記式(10)で表されるシトラコンイミド化合物及び/又は上記式(4)で表される構成単位と分子鎖の両末端にシトラコンイミド基とを含むビスシトラコンイミド化合物であることが好ましい。 As the citraconimide compound (BB-1), a more excellent reactivity with the resin (A) can be obtained, and a more excellent low void property, chip adhesion, and solvent solubility can be obtained. It is preferably a citraconimide compound represented by (10) and/or a biscitraconimide compound containing a structural unit represented by the above formula (4) and citraconimide groups at both ends of the molecular chain.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 式(10)中、nは、1~30の整数を示す。 In formula (10), n6 represents an integer of 1-30.
 シトラコンイミド化合物(BB-2)としては、樹脂(A)とより一層優れた反応性が得られ、より一層優れた低ボイド性、チップ接着性、及び溶媒溶解性が得られることから、下記式(11)で表されるシトラコンイミド化合物及び/又は下記式(12)で表されるシトラコンイミド化合物であることが好ましい。 As the citraconimide compound (BB-2), a more excellent reactivity with the resin (A) can be obtained, and a more excellent low void property, chip adhesion, and solvent solubility can be obtained. It is preferably a citraconimide compound represented by (11) and/or a citraconimide compound represented by the following formula (12).
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 式(11)中、Rは、各々独立に、水素原子、メチル基、又はエチル基を示す。Rは、各々独立に、水素原子又はメチル基を示す。 In formula (11), each R 8 independently represents a hydrogen atom, a methyl group, or an ethyl group. Each R9 independently represents a hydrogen atom or a methyl group.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 式(12)中、R10は、各々独立に、水素原子又はメチル基を示し、nは、1以上の整数を示し、好ましくは1~10の整数を示す。R10は、水素原子であることが好ましい。 In formula (12), each R 10 independently represents a hydrogen atom or a methyl group, and n 4 represents an integer of 1 or more, preferably an integer of 1-10. R 10 is preferably a hydrogen atom.
 本実施形態の樹脂組成物において、化合物(B)の含有量は、特に限定されないが、より一層優れた低ボイド性及びチップ接着性が得られることから、アミノトリアジンノボラック樹脂(A)と化合物(B)との合計100質量部に対して、40~85質量部であることが好ましく、50~85質量部がより好ましく、55~83質量部がさらに好ましく、60~80質量部であることがより一層好ましい。 In the resin composition of the present embodiment, the content of the compound (B) is not particularly limited. B) with respect to 100 parts by mass in total, preferably 40 to 85 parts by mass, more preferably 50 to 85 parts by mass, even more preferably 55 to 83 parts by mass, and 60 to 80 parts by mass. Even more preferable.
 本実施形態の樹脂組成物において、樹脂(A)とより一層優れた反応性が得られ、より一層優れた低ボイド性、チップ接着性、及び溶媒溶解性が得られることから、化合物(B1)の含有量は、化合物(B1)と化合物(B2)との合計100質量部に対して、45質量部以上90質量部以下であることが好ましく、45質量部以上85質量部以下であることがより好ましく、45質量部以上78質量部以下であることが更に好ましいい。また、化合物(B2)の含有量は、化合物(B1)と化合物(B2)との合計100質量部に対して、10質量部以上55質量部以下であることが好ましく、15質量部以上55質量部以下であることがより好ましく、22質量部以上55質量部以下であることが更に好ましい。 In the resin composition of the present embodiment, even more excellent reactivity with the resin (A) is obtained, and even more excellent low void property, chip adhesiveness, and solvent solubility are obtained, so the compound (B1) The content of is preferably 45 parts by mass or more and 90 parts by mass or less, and 45 parts by mass or more and 85 parts by mass or less with respect to a total of 100 parts by mass of the compound (B1) and the compound (B2). More preferably, it is 45 parts by mass or more and 78 parts by mass or less. In addition, the content of the compound (B2) is preferably 10 parts by mass or more and 55 parts by mass or less, and 15 parts by mass or more and 55 parts by mass with respect to a total of 100 parts by mass of the compound (B1) and the compound (B2). It is more preferably 22 parts by mass or more and 55 parts by mass or less.
 本実施形態の樹脂組成物において、樹脂(A)とより一層優れた反応性が得られ、より一層優れた低ボイド性、チップ接着性、及び溶媒溶解性が得られることから、マレイミド化合物(BA-1)の含有量は、化合物(BA-1)と化合物(BA-2)との合計100質量部に対して、45~90質量部であることが好ましく、45~85質量部であることがより好ましく、45~78質量部であることが更に好ましい。また、マレイミド化合物(BA-2)の含有量は、化合物(BA-1)と化合物(BA-2)との合計100質量部に対して、10~55質量部であることが好ましく、15~55質量部であることがより好ましく、22~55質量部であることが更に好ましい。 In the resin composition of the present embodiment, more excellent reactivity with the resin (A) is obtained, and more excellent low void property, chip adhesion, and solvent solubility are obtained, so the maleimide compound (BA -1) content is preferably 45 to 90 parts by mass, preferably 45 to 85 parts by mass, with respect to the total 100 parts by mass of compound (BA-1) and compound (BA-2). is more preferable, and 45 to 78 parts by mass is even more preferable. In addition, the content of the maleimide compound (BA-2) is preferably 10 to 55 parts by mass with respect to a total of 100 parts by mass of the compound (BA-1) and the compound (BA-2). It is more preferably 55 parts by mass, and even more preferably 22 to 55 parts by mass.
 本実施形態の樹脂組成物において、より一層優れた低ボイド性及びチップ接着性が得られることから、シトラコンイミド化合物(BB-1)の含有量は、化合物(BB-1)と化合物(BB-2)との合計100質量部に対して、45~90質量部であることが好ましく、45質量部~85質量部であることがより好ましく、45~78質量部であることが更に好ましい。また、シトラコンイミド化合物(BB-2)の含有量は、化合物(BB-1)と化合物(BB-2)との合計100質量部に対して、10~55質量部であることが好ましく、15~55質量部であることがより好ましく、22~55質量部であることが更に好ましい。 In the resin composition of the present embodiment, since even more excellent low void property and chip adhesiveness are obtained, the content of the citraconimide compound (BB-1) is the compound (BB-1) and the compound (BB- 2) is preferably 45 to 90 parts by mass, more preferably 45 to 85 parts by mass, and even more preferably 45 to 78 parts by mass, based on the total 100 parts by mass of 2). Further, the content of the citraconimide compound (BB-2) is preferably 10 to 55 parts by mass with respect to a total of 100 parts by mass of the compound (BB-1) and the compound (BB-2). It is more preferably 55 parts by mass, and even more preferably 22 to 55 parts by mass.
 本実施形態の樹脂組成物において、より優れた低ボイド性及びチップ接着性が得られる点から、樹脂(A)及び化合物(B)の含有量(総量)は、樹脂固形分100質量部に対して、30質量部以上であることが好ましく、50質量部以上であることがより好ましく、70質量部以上であることが更に好ましく、80質量部以上であってもよい。樹脂(A)及び化合物(B)の含有量(総量)の上限値は、樹脂固形分100質量部に対して、100質量部以下であってもよく、95質量部以下であってもよい。 In the resin composition of the present embodiment, the content (total amount) of the resin (A) and the compound (B) is It is preferably 30 parts by mass or more, more preferably 50 parts by mass or more, even more preferably 70 parts by mass or more, and may be 80 parts by mass or more. The upper limit of the content (total amount) of the resin (A) and the compound (B) may be 100 parts by mass or less, or may be 95 parts by mass or less with respect to 100 parts by mass of the resin solid content.
 〔フラックス活性剤(C)〕
 本実施形態の樹脂組成物には、フリップチップ実装においてフラックス活性を発現させるため、フラックス活性剤(C)をさらに含むことが好ましい。フラックス活性剤(C)は、分子中に1個以上の酸性部位を有する有機化合物であれば、特に限定されない。酸性部位としては、例えば、リン酸基、フェノール性水酸基、カルボキシル基、及びスルホン酸基が好ましく、本実施形態の樹脂組成物をアンダーフィル材として用いた半導体装置において、接合部を構成するはんだや銅等の金属のマイグレーション、及び腐食をより有効に防止する観点から、フェノール性水酸基又はカルボキシル基がより好ましい。フラックス活性剤(C)は、1種を単独で又は2種以上を適宜混合して使用することができる。
[Flux activator (C)]
The resin composition of the present embodiment preferably further contains a flux activator (C) in order to exhibit flux activity in flip-chip mounting. The flux activator (C) is not particularly limited as long as it is an organic compound having one or more acidic sites in its molecule. As the acidic site, for example, a phosphoric acid group, a phenolic hydroxyl group, a carboxyl group, and a sulfonic acid group are preferable. A phenolic hydroxyl group or a carboxyl group is more preferable from the viewpoint of more effectively preventing the migration and corrosion of metals such as copper. The flux activator (C) can be used singly or in an appropriate mixture of two or more.
 フラックス活性剤(C)は、特に限定されないが、接合部の酸化膜の除去を十分行うために、酸解離定数pKaが、3.8以上15.0以下であることが好ましく、ワニスの保存安定性と樹脂組成物の層を備える積層体(支持基材付きアンダーフィル材)の保存安定性とフラックス活性の両立の観点から、4.0以上14.0以下であることがより好ましい。 The flux activator (C) is not particularly limited, but preferably has an acid dissociation constant pKa of 3.8 or more and 15.0 or less in order to sufficiently remove the oxide film at the junction, and the storage stability of the varnish is improved. It is more preferably 4.0 or more and 14.0 or less from the viewpoint of compatibility between the storage stability and the flux activity of a laminate (underfill material with a supporting substrate) provided with a layer of a resin composition.
 本実施形態の樹脂組成物におけるフラックス活性剤(C)の重量平均分子量又は分子量は、特に限定されないが、フリップチップ実装中においてフラックス活性が発現する前に揮発してしまうこと、すなわち接合部の酸化膜を除去する前にフラックス活性剤(C)が揮発してしまうことを防ぐ観点から、重量平均分子量又は分子量は200以上であることが好ましく、250以上であることがより好ましい。フラックス活性剤としての運動性を有し、十分なフラックス活性を得るためには、フラックス活性剤(C)の重量平均分子量又は分子量は8000以下であることが好ましく、1000以下であることがより好ましく、600以下であることが更に好ましい。 The weight average molecular weight or molecular weight of the flux activator (C) in the resin composition of the present embodiment is not particularly limited. From the viewpoint of preventing the flux activator (C) from volatilizing before removing the film, the weight average molecular weight or molecular weight is preferably 200 or more, more preferably 250 or more. In order to have motility as a flux activator and obtain sufficient flux activity, the weight average molecular weight or molecular weight of the flux activator (C) is preferably 8000 or less, more preferably 1000 or less. , 600 or less.
 フラックス活性剤(C)としては、特に限定されないが、例えば、アビエチン酸、ネオアビエチン酸、デヒドロアビエチン酸、ピマール酸、イソピマール酸、パラストリン酸、ジフェノール酸、ジヒドロアビエチン酸、テトラヒドロアビエチン酸、水添ロジンエステル、及びロジン変性マレイン酸樹脂等のロジン系樹脂;N,N’-ビス(サリチリデン)-1,2-プロパンジアミン、及びN,N’-ビス(サリチリデン)-1,3-プロパンジアミン等のジアミン系;フェノールフタリンが挙げられる。これらのフラックス活性剤(C)は、溶媒への溶解性、ワニスの保存安定性と支持基材付きアンダーフィル材の保存安定性に優れる点から好ましく、フラックス活性剤(C)は、ロジン系樹脂を含むことがより好ましい。 Examples of the flux activator (C) include, but are not limited to, abietic acid, neoabietic acid, dehydroabietic acid, pimaric acid, isopimaric acid, parastric acid, diphenolic acid, dihydroabietic acid, tetrahydroabietic acid, hydrogenation Rosin resins such as rosin esters and rosin-modified maleic acid resins; N,N'-bis(salicylidene)-1,2-propanediamine, N,N'-bis(salicylidene)-1,3-propanediamine, etc. diamine series; phenolphthalin. These flux activators (C) are preferable from the viewpoint of solubility in solvents, storage stability of varnishes, and storage stability of underfill materials with supporting substrates. It is more preferable to include
 これらの中でも、化合物(B)による失活を防ぐ観点から、フラックス活性剤(C)は、デヒドロアビエチン酸、ジフェノール酸、ジヒドロアビエチン酸、テトラヒドロアビエチン酸、水添ロジンエステル、ロジン変性マレイン酸樹脂、N,N’-ビス(サリチリデン)-1,2-プロパンジアミン、及びN,N’-ビス(サリチリデン)-1,3-プロパンジアミンからなる群より選択される1種以上を含むことがより好ましい。また、これらのフラックス活性剤は、比較的反応性が低いことから、樹脂(A)及び化合物(B)との反応がほとんど起こらず、酸化膜の除去に必要となる十分なフラックス活性が維持される観点から更に好ましい。さらに、より一層優れたフラックス活性が得られる点から、フラックス活性剤(C)は、水添ロジンエステルであることが、より更に好ましい。 Among them, from the viewpoint of preventing deactivation by the compound (B), the flux activator (C) is dehydroabietic acid, diphenolic acid, dihydroabietic acid, tetrahydroabietic acid, hydrogenated rosin ester, rosin-modified maleic acid resin. , N,N'-bis(salicylidene)-1,2-propanediamine, and N,N'-bis(salicylidene)-1,3-propanediamine. preferable. In addition, since these flux activators have relatively low reactivity, they hardly react with the resin (A) and the compound (B), and sufficient flux activity necessary for removing the oxide film is maintained. It is more preferable from the viewpoint of Further, the flux activator (C) is more preferably a hydrogenated rosin ester in terms of obtaining even better flux activity.
 フラックス活性剤(C)は、市販品を用いることができる。ロジン系樹脂としては、例えば、パインクリスタル(登録商標、以下同じ)シリーズのKR-85(商品名、以下同じ)、KR-612、KR-614、KE-100、KE-311、PE-590、KE-359、KE-604、KR-120、KR-140、KR-614、D-6011、及びKR-50M;マルキードNo32(以上、荒川化学工業株式会社製)等が挙げられる。 A commercially available product can be used as the flux activator (C). Examples of rosin-based resins include Pine Crystal (registered trademark, hereinafter the same) series KR-85 (trade name, hereinafter the same), KR-612, KR-614, KE-100, KE-311, PE-590, KE-359, KE-604, KR-120, KR-140, KR-614, D-6011, and KR-50M; Marquid No. 32 (manufactured by Arakawa Chemical Industries, Ltd.) and the like.
 本実施形態の樹脂組成物において、フラックス活性剤(C)の含有量は、特に限定されないが、絶縁信頼性、及び実装時に十分なフラックス活性を確保する観点から、アミノトリアジンノボラック樹脂(A)と化合物(B)の合計100質量部に対して、5~70質量部であることが好ましく、10~50質量部であることがより好ましく、15~40質量部であることが更に好ましい。 In the resin composition of the present embodiment, the content of the flux activator (C) is not particularly limited, but from the viewpoint of ensuring insulation reliability and sufficient flux activity during mounting, It is preferably 5 to 70 parts by mass, more preferably 10 to 50 parts by mass, even more preferably 15 to 40 parts by mass, relative to 100 parts by mass of compound (B).
 〔無機充填材(D)〕
 本実施形態の樹脂組成物は、耐燃性の向上、熱伝導率の向上、及び熱膨張率の低減のため、無機充填材(D)を更に含む。無機充填材(D)を使用することにより、本実施形態の樹脂組成物を用いて形成されるフィルム等の硬化物の耐燃性、及び熱伝導率を向上させ、熱膨張率を低減することができる。更に、樹脂組成物の最低溶融粘度を好適にコントロールすることができる。アンダーフィル材用として好適であることから、樹脂組成物の最低溶融粘度は、200Pa・s以上30,000Pa・s以下であることが好ましい。とりわけ、本実施形態の樹脂組成物においては、無機充填材(D)として後に詳述する無機充填材(D1)を含むため、低ボイド性及びチップ接着性が向上する。
[Inorganic filler (D)]
The resin composition of the present embodiment further contains an inorganic filler (D) in order to improve flame resistance, improve thermal conductivity, and reduce the coefficient of thermal expansion. By using the inorganic filler (D), the flame resistance and thermal conductivity of a cured product such as a film formed using the resin composition of the present embodiment can be improved, and the coefficient of thermal expansion can be reduced. can. Furthermore, the minimum melt viscosity of the resin composition can be suitably controlled. The minimum melt viscosity of the resin composition is preferably 200 Pa·s or more and 30,000 Pa·s or less because it is suitable for use as an underfill material. In particular, since the resin composition of the present embodiment contains an inorganic filler (D1), which will be described in detail later, as the inorganic filler (D), low void properties and chip adhesiveness are improved.
 無機充填材(D)としては、特に限定されないが、例えば、種々公知の無機化合物を含むことができ、当該無機化合物としては、以下に限定されないが、例えば、天然シリカ、溶融シリカ、アモルファスシリカ、及び中空シリカ等のシリカ;ベーマイト、水酸化アルミニウム、アルミナ、及び窒化アルミニウム等のアルミニウム化合物;酸化マグネシウム、及び水酸化マグネシウム等のマグネシウム化合物;炭酸カルシウム、及び硫酸カルシウム等のカルシウム化合物;酸化モリブデン、及びモリブデン酸亜鉛等のモリブデン化合物;窒化ホウ素;硫酸バリウム;天然タルク、及び焼成タルク等のタルク;マイカ;短繊維状ガラス、球状ガラス、及び微粉末ガラス(例えば、Eガラス、Tガラス、Dガラス)等のガラスが挙げられる。また、本実施形態の樹脂組成物に導電性又は異方導電性を付与したい場合には、無機充填材(D)として、例えば、金、銀、ニッケル、銅、錫合金、パラジウム等の金属粒子を使用してもよい。
 これらの中でも、樹脂組成物の耐燃性の向上及び熱膨張率の低減の観点から、無機充填材(D)としては、シリカ、水酸化アルミニウム、アルミナ、ベーマイト、窒化ホウ素、窒化アルミニウム、酸化マグネシウム、及び水酸化マグネシウムからなる群より選択される1種以上を含むことが好ましく、シリカ、アルミナ、及び窒化ホウ素からなる群より選択される1種以上を含むことがより好ましく、その中でもシリカが更に好ましい。
 これらの無機充填材(D)は、1種を単独で又は2種以上を適宜混合して使用することができる。
The inorganic filler (D) is not particularly limited, but may include, for example, various known inorganic compounds. Examples of the inorganic compound include, but are not limited to, natural silica, fused silica, amorphous silica, and silica such as hollow silica; aluminum compounds such as boehmite, aluminum hydroxide, alumina, and aluminum nitride; magnesium compounds such as magnesium oxide and magnesium hydroxide; calcium compounds such as calcium carbonate and calcium sulfate; Molybdenum compounds such as zinc molybdate; boron nitride; barium sulfate; talc such as natural talc and calcined talc; mica; and the like. Further, when it is desired to impart electrical conductivity or anisotropic electrical conductivity to the resin composition of the present embodiment, metal particles such as gold, silver, nickel, copper, tin alloys, and palladium can be used as the inorganic filler (D). may be used.
Among these, from the viewpoint of improving the flame resistance of the resin composition and reducing the coefficient of thermal expansion, the inorganic filler (D) includes silica, aluminum hydroxide, alumina, boehmite, boron nitride, aluminum nitride, magnesium oxide, and magnesium hydroxide, more preferably one or more selected from the group consisting of silica, alumina, and boron nitride, more preferably silica .
These inorganic fillers (D) can be used singly or in admixture of two or more.
 無機充填材(D)の中でも、上述した具体例に係る無機化合物自体の表面には、本来、(メタ)アクリル基、ビニル基、スチリル基、又はフェニル基といった官能基が存在しない。一方、本実施形態における無機充填材(D)は、(メタ)アクリル基、ビニル基、スチリル基、及びフェニル基からなる群より選択される1種以上を含む官能基(d)を有する無機充填材(D1)を含む。なお、本実施形態において、「フェニル基」(「-C」)とは、ケイ素原子又は炭素原子に直接結合しているものを意味し、例えば、窒素原子に直接結合しているフェニル基(アミノフェニル基)等とは異なるものとして区別する。このような無機充填材(D1)における官能基(d)は、化合物(B)との反応性が高いため、半導体チップ実装後、及びポストキュア時の熱によって化合物(B)と無機充填材(D1)との間に強固な化学結合が形成されるものと考えられる。その結果、半導体チップ実装後、及びポストキュア時に発生し得るボイドを抑制することができ、また、半導体チップ実装後、及びポストキュア後においても、チップ及び基板からの硬化物の剥離を好適に抑制することができると考えられる。 Among the inorganic fillers (D), functional groups such as (meth)acrylic groups, vinyl groups, styryl groups, or phenyl groups do not originally exist on the surfaces of the inorganic compounds themselves according to the above specific examples. On the other hand, the inorganic filler (D) in the present embodiment is an inorganic filler having a functional group (d) containing one or more selected from the group consisting of (meth)acrylic groups, vinyl groups, styryl groups, and phenyl groups. including material (D1). In the present embodiment, the “phenyl group” (“—C 6 H 5 ”) means a group directly bonded to a silicon atom or a carbon atom, for example, a phenyl group directly bonded to a nitrogen atom. It is distinguished from a group (aminophenyl group) and the like. Since the functional group (d) in such an inorganic filler (D1) is highly reactive with the compound (B), the compound (B) and the inorganic filler ( D1) is thought to form a strong chemical bond. As a result, voids that may occur after semiconductor chip mounting and during post-curing can be suppressed, and peeling of the cured product from the chip and substrate can be suitably suppressed even after semiconductor chip mounting and post-curing. It is considered possible.
 本実施形態における官能基(d)は、(メタ)アクリル基、ビニル基、スチリル基、及びフェニル基からなる群より選択される少なくとも1種を含む限り、特に限定されないが、低ボイド性及びチップ接着性の観点から、ケイ素原子をさらに含むことが好ましく、当該ケイ素原子は、(メタ)アクリル基、ビニル基、スチリル基、及びフェニル基からなる群より選択される1種以上を含む基と直接結合していることがより好ましい。そのようなケイ素原子が(メタ)アクリル基、ビニル基、スチリル基、及びフェニル基からなる群より選択される1種以上を含む基と直接結合している官能基(d)としては、(メタ)アクリロキシアルキルシリル基、ビニルシリル基、スチリルシリル基、及びフェニルシリル基からなる群より選択される1種以上を含む基であることが好ましく、(メタ)アクリロキシアルキルシリル基及びビニルシリル基からなる群より選択される1種以上を含む基であることがより好ましい。(メタ)アクリロキシアルキルシリル基における、アルキル部分の炭素数は、1~6であることが好ましく、1~3であることがより好ましい。 The functional group (d) in the present embodiment is not particularly limited as long as it contains at least one selected from the group consisting of (meth)acrylic groups, vinyl groups, styryl groups, and phenyl groups. From the viewpoint of adhesiveness, it is preferable to further contain a silicon atom, and the silicon atom is a (meth) acrylic group, a vinyl group, a styryl group, and a group containing one or more selected from the group consisting of a phenyl group. Bonding is more preferred. As such a functional group (d) in which a silicon atom is directly bonded to a group containing one or more selected from the group consisting of (meth)acrylic groups, vinyl groups, styryl groups, and phenyl groups, ) is preferably a group containing one or more selected from the group consisting of an acryloxyalkylsilyl group, a vinylsilyl group, a styrylsilyl group, and a phenylsilyl group, consisting of a (meth)acryloxyalkylsilyl group and a vinylsilyl group; A group containing one or more selected from the group is more preferred. The number of carbon atoms in the alkyl portion of the (meth)acryloxyalkylsilyl group is preferably 1-6, more preferably 1-3.
 本実施形態における無機充填材(D1)は、低ボイド性及びチップ接着性の観点から、官能基(d)を有する化合物(d1)と当該官能基(d)を有しない無機充填材(d2)との反応物を含むことが好ましい。
 化合物(d1)としては、無機充填材(d2)の表面に所定の官能基を導入できるものであれば、特に限定されないが、例えば、(メタ)アクリル基、ビニル基、スチリル基、及びフェニル基からなる群より選択される少なくとも1種を含むシランカップリング剤を挙げることができる。そのようなシランカップリング剤としては、一般に無機物の表面処理に使用されているシランカップリング剤を適宜採用できる。その具体例としては、以下に限定されないが、ビニルトリメトキシシラン及びγ-(メタ)アクリロキシプロピルトリメトキシシラン等のビニルシラン系シランカップリング剤((メタ)アクリル基及び/又はビニル基を有するシラン化合物);トリメトキシフェニルシラン等のフェニルシラン系シランカップリング剤(フェニル基を有するシラン化合物);スチリルトリメトキシシラン等のスチリルシラン系シランカップリング剤(スチリル基を有するシラン化合物)等が挙げられる。これらのシランカップリング剤は、1種を単独で又は2種以上を適宜混合して使用することができる。上記した中でも、低ボイド性及びチップ接着性の観点から、化合物(d1)としては、ビニルシラン系シランカップリング剤((メタ)アクリル基及び/又はビニル基を有するシラン化合物)、並びにスチリルシラン系シランカップリング剤(スチリル基を有するシラン化合物)からなる群より選択される1種以上を含むことが好ましく、ビニルシラン系シランカップリング剤を含むことがより好ましく、ビニルトリアルコキシシラン及びγ-(メタ)アクリロキシプロピルトリアルコキシシランからなる群より選択される1種以上を含むことが更に好ましく、ビニルトリメトキシシラン及びγ-(メタ)アクリロキシプロピルトリメトキシシランからなる群より選択される1種以上を含むことが一層好ましい。
 無機充填材(d2)としては、特に限定されず、無機充填材(D)として含み得る無機化合物として前述した具体例を適用することができるが、低ボイド性及びチップ接着性の観点から、シリカ、水酸化アルミニウム、アルミナ、ベーマイト、窒化ホウ素、窒化アルミニウム、酸化マグネシウム、及び水酸化マグネシウムからなる群より選択される1種以上を含むことが好ましく、シリカを含むことがより好ましい。
 上記反応物の調製方法としては、特に限定されず、シランカップリング剤による処理として種々公知の方法を適宜採用することができる。例えば、無機充填材(d2)がシリカである場合、上記処理は気相で実施してもよいし、液相で実施してもよい。
 なお、無機充填材(D1)における官能基(d)の含有量は特に限定されないが、無機充填材(d2)がシリカである場合、シリカ100質量部に対し、官能基(d)の含有量は1~10質量部であってもよい。
The inorganic filler (D1) in the present embodiment is a compound (d1) having a functional group (d) and an inorganic filler (d2) having no functional group (d) from the viewpoint of low voids and chip adhesion. preferably contains a reactant with
The compound (d1) is not particularly limited as long as it can introduce a predetermined functional group to the surface of the inorganic filler (d2). Examples include (meth)acrylic, vinyl, styryl and phenyl A silane coupling agent containing at least one selected from the group consisting of As such a silane coupling agent, a silane coupling agent generally used for surface treatment of inorganic substances can be appropriately employed. Specific examples thereof include, but are not limited to, vinyltrimethoxysilane, γ-(meth)acryloxypropyltrimethoxysilane, and other vinylsilane-based silane coupling agents (silanes having a (meth)acrylic group and/or a vinyl group). compounds); phenylsilane-based silane coupling agents (silane compounds having a phenyl group) such as trimethoxyphenylsilane; styrylsilane-based silane coupling agents (silane compounds having a styryl group) such as styryltrimethoxysilane; . These silane coupling agents can be used singly or in admixture of two or more. Among the above, from the viewpoint of low void property and chip adhesion, the compound (d1) includes a vinylsilane-based silane coupling agent (silane compound having a (meth)acrylic group and/or a vinyl group), and a styrylsilane-based silane. It preferably contains one or more selected from the group consisting of coupling agents (silane compounds having a styryl group), more preferably contains a vinylsilane-based silane coupling agent, vinyltrialkoxysilane and γ-(meth) It further preferably contains one or more selected from the group consisting of acryloxypropyltrialkoxysilane, and one or more selected from the group consisting of vinyltrimethoxysilane and γ-(meth)acryloxypropyltrimethoxysilane. It is more preferable to include
The inorganic filler (d2) is not particularly limited, and the specific examples described above as inorganic compounds that can be contained as the inorganic filler (D) can be applied. , aluminum hydroxide, alumina, boehmite, boron nitride, aluminum nitride, magnesium oxide, and magnesium hydroxide, and more preferably silica.
The method for preparing the reactant is not particularly limited, and various known methods for treatment with a silane coupling agent can be appropriately employed. For example, when the inorganic filler (d2) is silica, the above treatment may be carried out in the gas phase or in the liquid phase.
The content of the functional group (d) in the inorganic filler (D1) is not particularly limited, but when the inorganic filler (d2) is silica, the content of the functional group (d) with respect to 100 parts by mass of silica may be 1 to 10 parts by mass.
 なお、無機充填材(d2)がシリカである場合、上記反応物の具体例としては、以下に限定されないが、(株)アドマテックス製のビニルトリメトキシシランで表面処理された0.3μmSV-EM1(商品名)、ビニルトリメトキシシランで表面処理されたSC1050-MLQ(商品名)、ビニルトリメトキシシランで表面処理されたSC2050-MNU(商品名)、3-メタクリロキシプロピルトリメトキシシランで表面処理されたYA050C-MJE(商品名)、ビニルトリメトキシシランで表面処理されたY50SV-AM1(商品名)、フェニルトリメトキシシランで表面処理されたY50SP-AM1(商品名)等が挙げられる。上記した中でも、低ボイド性及びチップ接着性の観点から、上記反応物の市販品としては、YA050C-MJE(商品名)、Y50SV-AM1(商品名)、及びY50SP-AM1(商品名)からなる群より選択される1種以上を含むことが好ましく、YA050C-MJE(商品名)及びY50SV-AM1(商品名)からなる群より選択される1種以上を含むことがより好ましい。 When the inorganic filler (d2) is silica, specific examples of the reactant are not limited to the following, but 0.3 μm SV-EM1 surface-treated with vinyltrimethoxysilane manufactured by Admatechs Co., Ltd. (trade name), SC1050-MLQ (trade name) surface-treated with vinyltrimethoxysilane, SC2050-MNU (trade name) surface-treated with vinyltrimethoxysilane, and surface-treated with 3-methacryloxypropyltrimethoxysilane. Y50SV-AM1 (trade name) surface-treated with vinyltrimethoxysilane, Y50SP-AM1 (trade name) surface-treated with phenyltrimethoxysilane, and the like. Among the above, from the viewpoint of low void property and chip adhesion, commercial products of the above reactants are YA050C-MJE (trade name), Y50SV-AM1 (trade name), and Y50SP-AM1 (trade name). It preferably contains one or more selected from the group, and more preferably contains one or more selected from the group consisting of YA050C-MJE (trade name) and Y50SV-AM1 (trade name).
 無機充填材(D)の平均粒子径は、特に限定されないが、本実施形態の樹脂組成物をアンダーフィル材として用いる場合、チップに配列される電極の狭ピッチ化や電極間の狭ギャップ化に対応する観点からは、3μm以下が好ましく、1μm以下がより好ましく、0.1μm以下であってもよい。その平均粒子径の下限値は、特に限定されないが、例えば、10nmである。なお、本実施形態において、無機充填材(D)の「平均粒子径」とは、無機充填材(D)のメジアン径を意味するものとする。ここでメジアン径とは、ある粒径を基準として粉体の粒度分布を2つに分けた場合に、より粒径が大きい側の粒子の体積と、より粒径が小さい側の粒子の体積とが、全粉体の夫々50%を占めるような粒径を意味する。無機充填材(D)の平均粒子径(メジアン径)は、湿式レーザー回折・散乱法により測定される。 The average particle size of the inorganic filler (D) is not particularly limited. From a corresponding viewpoint, it is preferably 3 μm or less, more preferably 1 μm or less, and may be 0.1 μm or less. Although the lower limit of the average particle size is not particularly limited, it is, for example, 10 nm. In addition, in this embodiment, the "average particle size" of the inorganic filler (D) shall mean the median size of the inorganic filler (D). Here, the median diameter is the volume of particles on the larger particle size side and the volume of particles on the smaller particle size side when the particle size distribution of powder is divided into two based on a certain particle size. means a particle size such that each accounts for 50% of the total powder. The average particle size (median size) of the inorganic filler (D) is measured by a wet laser diffraction/scattering method.
 本実施形態の樹脂組成物において、無機充填材(D)の含有量は、特に限定されないが、絶縁信頼性、及び実装時に十分なフラックス活性を確保する観点から、アミノトリアジンノボラック樹脂(A)と化合物(B)との合計100質量部に対して、20~500質量部であることが好ましく、50~400質量部であることがより好ましく、70~300質量部であることが更に好ましい。無機充填材(D)の含有量の上限は、250質量部であってもよい。また、低ボイド性及びチップ接着性の観点から、無機充填材(D1)の含有量は、アミノトリアジンノボラック樹脂(A)と化合物(B)との合計100質量部に対して、20~500質量部であることが好ましく、50~400質量部であることがより好ましく、70~300質量部であることが更に好ましい。無機充填材(D1)の含有量の上限は、250質量部であってもよい。 In the resin composition of the present embodiment, the content of the inorganic filler (D) is not particularly limited, but from the viewpoint of ensuring insulation reliability and sufficient flux activity during mounting, the aminotriazine novolac resin (A) and It is preferably 20 to 500 parts by mass, more preferably 50 to 400 parts by mass, even more preferably 70 to 300 parts by mass, based on 100 parts by mass in total with the compound (B). The upper limit of the content of the inorganic filler (D) may be 250 parts by mass. In addition, from the viewpoint of low void property and chip adhesion, the content of the inorganic filler (D1) is 20 to 500 parts by mass with respect to the total 100 parts by mass of the aminotriazine novolak resin (A) and the compound (B). parts, more preferably 50 to 400 parts by mass, even more preferably 70 to 300 parts by mass. The upper limit of the content of the inorganic filler (D1) may be 250 parts by mass.
 〔硬化触媒(E)〕
 本実施形態の樹脂組成物は、硬化触媒(E)をさらに含むことが好ましい。樹脂組成物が硬化触媒(E)を含む場合、樹脂(A)と化合物(B)との反応速度、及び化合物(B)の重合速度をより好適に制御でき、また、適度な成形性を有する樹脂組成物が得られる傾向にある。硬化触媒(E)は、樹脂(A)と化合物(B)との反応、及び化合物(B)の重合反応を促進できる化合物であれば、特に限定されない。硬化触媒(E)は、1種を単独で又は2種以上を混合して使用することができる。
[Curing catalyst (E)]
The resin composition of the present embodiment preferably further contains a curing catalyst (E). When the resin composition contains the curing catalyst (E), the reaction rate between the resin (A) and the compound (B) and the polymerization rate of the compound (B) can be more preferably controlled, and moderate moldability is obtained. A resin composition tends to be obtained. The curing catalyst (E) is not particularly limited as long as it is a compound capable of promoting the reaction between the resin (A) and the compound (B) and the polymerization reaction of the compound (B). Curing catalyst (E) can be used individually by 1 type or in mixture of 2 or more types.
 本実施形態における硬化触媒(E)としては、特に限定されないが、例えば、有機過酸化物、イミダゾール化合物、アゾ化合物、並びにトリエチルアミン及びトリブチルアミン並びにそれらの誘導体等の第3級アミンが挙げられる。これらの中でも、良好な反応速度、及び重合速度が得られ、良好な硬化速度が得られる観点から、硬化触媒(E)は、有機過酸化物及びイミダゾール化合物からなる群より選択される1種以上を含むことが好ましく、有機過酸化物及びイミダゾール化合物の両方を含むことがより好ましい。 The curing catalyst (E) in the present embodiment is not particularly limited, but includes, for example, organic peroxides, imidazole compounds, azo compounds, and tertiary amines such as triethylamine and tributylamine and their derivatives. Among these, the curing catalyst (E) is one or more selected from the group consisting of organic peroxides and imidazole compounds from the viewpoint of obtaining a good reaction rate and polymerization rate and obtaining a good curing rate. and more preferably both an organic peroxide and an imidazole compound.
 本実施形態において、硬化触媒(E)の含有量は、特に限定されないが、良好な硬化速度が得られる点から、アミノトリアジンノボラック樹脂(A)と化合物(B)の合計100質量部に対して、0.05~10質量部であることが好ましく、0.05~8質量部であることがより好ましい。 In the present embodiment, the content of the curing catalyst (E) is not particularly limited, but from the viewpoint of obtaining a good curing speed, it is , preferably 0.05 to 10 parts by mass, more preferably 0.05 to 8 parts by mass.
 (有機過酸化物)
 本実施形態における有機過酸化物は、熱により、樹脂(A)と化合物(B)との反応、及び化合物(B)の重合反応を促進させることができる活性物質(ラジカル)を放出する化合物であれば特に限定されず、公知の有機過酸化物を用いることができる。有機過酸化物は、1種を単独で又は2種以上を混合して使用することができる。
(organic peroxide)
The organic peroxide in the present embodiment is a compound that releases an active substance (radical) that can promote the reaction between the resin (A) and the compound (B) and the polymerization reaction of the compound (B) by heat. There is no particular limitation, and known organic peroxides can be used. An organic peroxide can be used individually by 1 type or in mixture of 2 or more types.
 本実施形態において、有機過酸化物の10時間半減期温度は、特に限定されないが、100℃以上であることが好ましく、製造性の観点から、110℃以上であることがより好ましい。製造時の溶媒除去工程の高温化を図ることができるため、有機過酸化物は、前記の範囲の10時間半減期温度を満たすことが好ましい。 In the present embodiment, the 10-hour half-life temperature of the organic peroxide is not particularly limited, but is preferably 100°C or higher, and more preferably 110°C or higher from the viewpoint of productivity. It is preferable that the organic peroxide satisfies the 10-hour half-life temperature in the above range, since it is possible to increase the temperature of the solvent removal step during production.
 有機過酸化物としては、例えば、ジクミルパーオキサイド、ジ(2-tert-ブチルペルオキシイソプロピル)ベンゼン、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、2,5-ジメチル-2,5-ビス(tert-ブチルペルオキシ)ヘキシン-3、ベンゾイルパーオキサイド、ジ-t-ブチルパーオキシド、メチルエチルケトンパーオキサイド、及びシクロヘキサノンパーオキサイドのケトンパーオキサイド;1,1-ジ(t-ブチルパーオキシ)シクロヘキサン、及び2,2-ジ(4,4-ジ(t-ブチルパーオキシ)シクロヘキシル)プロパンのパーオキシケタール;tert―ブチルハイドロパーオキサイド、p-メンタンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、クメンハイドロパーオキサイド、及びt-ブチルハイドロパーオキサイドのハイドロパーオキサイド;ジ(2-t-ブチルパーオキシイソプロピル)ベンゼン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、t-ブチルクミルパーオキサイド、ジ-t-へキシルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン-3、α, α’-ジ(t-ブチルパーオキシ)ジイソプロピルベンゼン、及びジ-t-ブチルパーオキサイドのジアルキルパーオキサイド;ジベンゾイルパーオキサイド、及びジ(4-メチルベンゾイル)パーオキサイドのジアシルパーオキサイド;ジ-n-プロピルパーオキシジカーボネート、及びジイソプロピルパーオキシジカーボネートのパーオキシジカーボネート;2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、t-へキシルパーオキシベンゾエート、t-ブチルパーオキシベンゾエート、及びt-ブチルパーオキシ-2-エチルヘキサノネートのパーオキシエステル等が挙げられる。より良好な反応速度及び硬化速度が得られる点から、ジクミルパーオキサイド、ジ(2-tert-ブチルペルオキシイソプロピル)ベンゼン、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、2,5-ジメチル-2,5-ビス(tert-ブチルペルオキシ)ヘキシン-3、α, α’-ジ(t-ブチルパーオキシ)ジイソプロピルベンゼン、及びtert―ブチルハイドロパーオキサイドからなる群より選択される1種以上が、好ましい。 Examples of organic peroxides include dicumyl peroxide, di(2-tert-butylperoxyisopropyl)benzene, 1,1,3,3-tetramethylbutyl hydroperoxide, 2,5-dimethyl-2,5 - Ketone peroxides of bis(tert-butylperoxy)hexyne-3, benzoyl peroxide, di-t-butyl peroxide, methyl ethyl ketone peroxide, and cyclohexanone peroxide; 1,1-di(t-butylperoxy)cyclohexane , and peroxyketals of 2,2-di(4,4-di(t-butylperoxy)cyclohexyl)propane; tert-butyl hydroperoxide, p-menthane hydroperoxide, diisopropylbenzene hydroperoxide, cumene hydroperoxide Peroxides and hydroperoxides of t-butyl hydroperoxide; di(2-t-butylperoxyisopropyl)benzene, 2,5-dimethyl-2,5-di(t-butylperoxy)hexane, t- Butylcumyl peroxide, di-t-hexyl peroxide, 2,5-dimethyl-2,5-di(t-butylperoxy)hexyne-3, α,α'-di(t-butylperoxy)diisopropyl dialkyl peroxide of benzene and di-t-butyl peroxide; dibenzoyl peroxide and diacyl peroxide of di(4-methylbenzoyl) peroxide; di-n-propylperoxydicarbonate and diisopropylperoxydicarbonate Peroxydicarbonates of carbonates; 2,5-dimethyl-2,5-di(benzoylperoxy)hexane, t-hexylperoxybenzoate, t-butylperoxybenzoate, and t-butylperoxy-2-ethyl Peroxyester of hexanonate and the like can be mentioned. Dicumyl peroxide, di(2-tert-butylperoxyisopropyl)benzene, 1,1,3,3-tetramethylbutyl hydroperoxide, 2,5- one or more selected from the group consisting of dimethyl-2,5-bis(tert-butylperoxy)hexyne-3, α,α'-di(t-butylperoxy)diisopropylbenzene, and tert-butyl hydroperoxide is preferred.
 本実施形態の樹脂組成物において、有機過酸化物の含有量は、特に限定されないが、より一層良好な反応速度及び硬化速度が得られる点から、アミノトリアジンノボラック樹脂(A)と化合物(B)の合計100質量部に対して、0.05質量部~10質量部で含むことが好ましく、0.05質量部~8質量部で含むことがより好ましい。 In the resin composition of the present embodiment, the content of the organic peroxide is not particularly limited, but the aminotriazine novolak resin (A) and the compound (B) are combined in order to obtain a better reaction rate and curing rate. It is preferably contained in an amount of 0.05 to 10 parts by mass, more preferably 0.05 to 8 parts by mass, based on a total of 100 parts by mass.
 (イミダゾール化合物)
 イミダゾール化合物は、樹脂(A)と化合物(B)との反応、及び化合物(B)の重合反応を促進できれば、特に限定されず、公知のイミダゾール化合物を用いることができる。イミダゾール化合物は、1種又は2種以上を混合して使用することができる。
(Imidazole compound)
The imidazole compound is not particularly limited as long as it can promote the reaction between the resin (A) and the compound (B) and the polymerization reaction of the compound (B), and known imidazole compounds can be used. An imidazole compound can be used 1 type or in mixture of 2 or more types.
 イミダゾール化合物としては、例えば、2-エチル-4-メチルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、2,4,5-トリフェニルイミダゾール等が挙げられる。中でも、反応速度及び硬化速度の調整がより容易である点から、2-エチル-4-メチルイミダゾールが好ましい。 Examples of imidazole compounds include 2-ethyl-4-methylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-phenylimidazole, 2,4,5-triphenylimidazole and the like. Among them, 2-ethyl-4-methylimidazole is preferred because it is easier to control the reaction speed and curing speed.
 本実施形態の樹脂組成物において、イミダゾール化合物の含有量は、特に限定されないが、反応速度及び硬化速度の調整がより一層容易になる点から、アミノトリアジンノボラック樹脂(A)と化合物(B)の合計100質量部に対して、0.05質量部~10質量部であることが好ましく、0.05質量部~8質量部であることがより好ましい。 In the resin composition of the present embodiment, the content of the imidazole compound is not particularly limited. It is preferably 0.05 to 10 parts by mass, more preferably 0.05 to 8 parts by mass, based on 100 parts by mass in total.
 (アゾ化合物)
 アゾ化合物は、樹脂(A)と化合物(B)との反応、及び化合物(B)の重合反応を促進できれば、特に限定されず、公知のアゾ化合物を用いることができる。アゾ化合物は、1種又は2種以上を混合して使用することができる。
 アゾ化合物としては、例えば、2,2'-アゾビスブチロニトリル、2,2'-アゾビス(2,4-ジメチルバレロニトリル)、及び2,2'-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)等が挙げられる。
(azo compound)
The azo compound is not particularly limited as long as it can promote the reaction between the resin (A) and the compound (B) and the polymerization reaction of the compound (B), and known azo compounds can be used. Azo compounds can be used singly or in combination of two or more.
Examples of azo compounds include 2,2'-azobisbutyronitrile, 2,2'-azobis(2,4-dimethylvaleronitrile), and 2,2'-azobis(4-methoxy-2,4- dimethylvaleronitrile) and the like.
 本実施形態の樹脂組成物において、アゾ化合物の含有量は、特に限定されないが、より一層良好な反応速度及び硬化速度が得られる点から、アミノトリアジンノボラック樹脂(A)と化合物(B)の合計100質量部に対して、0.05~10質量部含むことが好ましく、0.05~8質量部含むことがより好ましい。 In the resin composition of the present embodiment, the content of the azo compound is not particularly limited. It is preferably contained in an amount of 0.05 to 10 parts by mass, more preferably 0.05 to 8 parts by mass, based on 100 parts by mass.
 〔その他の成分〕
 本実施形態の樹脂組成物は、アミノトリアジンノボラック樹脂(A)、化合物(B)、無機充填材(D)の他、上述した、フラックス活性剤(C)、硬化触媒(E)だけでなく、その他の成分を、1種を単独で又は2種以上含んでいてもよい。
[Other ingredients]
The resin composition of the present embodiment contains not only the aminotriazine novolac resin (A), the compound (B), and the inorganic filler (D), but also the above-described flux activator (C) and curing catalyst (E). Other components may be contained singly or in combination of two or more.
 その他の成分としては、特に限定されないが、例えば、可撓性付与成分が挙げられる。可撓性付与成分は、樹脂組成物を含む層に対して可撓性を付与できるような成分であれば、特に限定されない。このような成分としては、例えば、アミノトリアジンノボラック樹脂(A)、化合物(B)、フラックス活性剤(C)、無機充填材(D)、及び硬化触媒(E)以外の、ポリイミド、ポリアミドイミド、ポリスチレン、ポリオレフィン、スチレン-ブタジエンゴム(SBR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、(メタ)アクリロニトリルブタジエンゴム(NBR)、ポリウレタン、ポリプロピレン、(メタ)アクリルオリゴマー、(メタ)アクリルポリマー、及びシリコーン樹脂等の熱可塑性の高分子化合物が挙げられる。これらの可撓性付与成分は、1種を単独で又は2種以上を適宜混合して使用することができる。 Examples of other components include, but are not limited to, flexibility-imparting components. The flexibility imparting component is not particularly limited as long as it is a component capable of imparting flexibility to the layer containing the resin composition. Such components include, for example, aminotriazine novolak resin (A), compound (B), flux activator (C), inorganic filler (D), and curing catalyst (E) other than polyimide, polyamideimide, Polystyrene, polyolefin, styrene-butadiene rubber (SBR), isoprene rubber (IR), butadiene rubber (BR), (meth)acrylonitrile butadiene rubber (NBR), polyurethane, polypropylene, (meth)acrylic oligomer, (meth)acrylic polymer, and thermoplastic polymer compounds such as silicone resins. These flexibility-imparting components can be used singly or in admixture of two or more.
 本実施形態の樹脂組成物は、その他の成分、すなわち、無機充填材(D1)とは別体として、シランカップリング剤を含んでいてもよい。そのようなシランカップリング剤としては、無機充填材(D1)の調製に使用できるものとして例示したものが挙げられる。シランカップリング剤の含有量としては、特に限定されないが、アミノトリアジンノボラック樹脂(A)と化合物(B)の合計100質量部に対して、0.05~20質量部程度とすることができる。 The resin composition of the present embodiment may contain a silane coupling agent separately from other components, that is, the inorganic filler (D1). Examples of such silane coupling agents include those exemplified as usable in the preparation of the inorganic filler (D1). Although the content of the silane coupling agent is not particularly limited, it can be about 0.05 to 20 parts by mass with respect to the total of 100 parts by mass of the aminotriazine novolak resin (A) and the compound (B).
 本実施形態の樹脂組成物は、その他の成分として、積層体の製造性の一層の向上及び充填材の一層の分散性向上等の目的として、湿潤分散剤を含んでもよい。湿潤分散剤としては、一般に塗料等に使用されている湿潤分散剤であれば、特に限定されない。例えば、ビックケミー・ジャパン(株)製のDISPERBYK(登録商標)-110(商品名)、同-111(商品名)、同-180(商品名)、同-161(商品名)、BYK-W996(商品名)、同-W9010(商品名)、及び同-W903(商品名)が挙げられる。これらの湿潤分散剤は、1種を単独で又は2種以上を適宜混合して使用することができる。
 湿潤分散剤を使用する場合、その含有量は、特に限定されないが、積層体の製造性の一層向上の観点からは、無機充填材(D)100質量部に対して、0.1~5質量部とすることが好ましく、0.5~3質量部とすることがより好ましい。なお、2種以上の湿潤分散剤を併用する場合には、これらの合計量が前記比率を満たすことが好ましい。
The resin composition of the present embodiment may contain, as other components, a wetting and dispersing agent for the purpose of further improving the manufacturability of the laminate and further improving the dispersibility of the filler. The wetting and dispersing agent is not particularly limited as long as it is a wetting and dispersing agent generally used for paints and the like. For example, BYK-Chemie Japan Co., Ltd. DISPERBYK (registered trademark) -110 (trade name), -111 (trade name), -180 (trade name), -161 (trade name), BYK-W996 ( (trade name), W9010 (trade name), and W903 (trade name). These wetting and dispersing agents can be used singly or in admixture of two or more.
When a wetting and dispersing agent is used, its content is not particularly limited, but from the viewpoint of further improving the manufacturability of the laminate, it is 0.1 to 5 parts by mass with respect to 100 parts by mass of the inorganic filler (D). It is preferably 0.5 to 3 parts by mass, more preferably 0.5 to 3 parts by mass. When two or more wetting and dispersing agents are used in combination, the total amount thereof preferably satisfies the above ratio.
 本実施形態の樹脂組成物は、その他の成分として、アミノトリアジンノボラック樹脂(A)及び化合物(B)とは異なる、その他の熱硬化性の樹脂又は化合物(以下、単に「その他の熱硬化性樹脂」ともいう。)を含んでいてもよい。その他の熱硬化性樹脂としては、例えば、シアン酸エステル化合物、ベンゾオキサジン化合物、芳香族第一級アミン化合物、エポキシ化合物、フェノール化合物、変性ポリフェニレンエーテル化合物、アルケニル置換ナジイミド化合物、オキセタン樹脂、及び重合可能な不飽和基を有する化合物が挙げられる。これらのその他の熱硬化性樹脂は、1種を単独で又は2種以上を適宜混合して使用することができる。本実施形態においては、低ボイド性及びチップ接着性の観点から、上記した中でも、シアン酸エステル化合物、ベンゾオキサジン化合物、及び芳香族第一級アミン化合物からなる群より選択される1種以上の化合物(F)を含むことができる。化合物(F)の含有量としては、アミノトリアジンノボラック樹脂(A)、化合物(B)及び化合物(F)の合計100質量部に対して、1~50質量部であってもよく、3~35質量部であってもよく、5~30質量部であってもよい。 The resin composition of the present embodiment includes, as other components, other thermosetting resins or compounds different from the aminotriazine novolac resin (A) and the compound (B) (hereinafter simply referred to as "other thermosetting resins ) may be included. Other thermosetting resins include, for example, cyanate ester compounds, benzoxazine compounds, aromatic primary amine compounds, epoxy compounds, phenolic compounds, modified polyphenylene ether compounds, alkenyl-substituted nadimide compounds, oxetane resins, and polymerizable and a compound having an unsaturated group. These other thermosetting resins can be used singly or in admixture of two or more. In the present embodiment, one or more compounds selected from the group consisting of cyanate ester compounds, benzoxazine compounds, and aromatic primary amine compounds are used from the viewpoint of low void property and chip adhesion. (F) can be included. The content of the compound (F) may be 1 to 50 parts by mass, or 3 to 35 parts by mass, relative to the total of 100 parts by mass of the aminotriazine novolak resin (A), the compound (B) and the compound (F). It may be parts by mass, and may be 5 to 30 parts by mass.
 その他の成分として、本実施形態の樹脂組成物には、所望とする特性が損なわれない範囲において、種々の目的により、各種の添加剤を含有していてもよい。添加剤としては、例えば、増粘剤、滑剤、消泡剤、レベリング剤、光沢剤、難燃剤、及びイオントラップ剤が挙げられる。これらの添加剤は、1種を単独で又は2種以上を適宜混合して使用することができる。
 本実施形態の樹脂組成物において、これらの添加剤の含有量は、特に限定されないが、通常、アミノトリアジンノボラック樹脂(A)と化合物(B)の合計100質量部に対して、それぞれ0.01~10質量部である。
As other components, the resin composition of the present embodiment may contain various additives for various purposes as long as the desired properties are not impaired. Additives include, for example, thickeners, lubricants, defoamers, leveling agents, brighteners, flame retardants, and ion trapping agents. These additives can be used singly or in admixture of two or more.
In the resin composition of the present embodiment, the content of these additives is not particularly limited, but is usually 0.01 for each of 100 parts by mass in total of the aminotriazine novolac resin (A) and the compound (B). ~10 parts by mass.
 〔樹脂組成物の好適な用途〕
 本実施形態の樹脂組成物は、低ボイド性及びチップ接着性に優れる。本実施形態の樹脂組成物を、積層体の形態で使用するアンダーフィル材、好適にはプリアプライドアンダーフィル材として用いた場合、低ボイド性及びチップ接着性に優れ、加えて、接合性及び絶縁信頼性にも優れる。本実施形態の樹脂組成物は、各種の優れた特徴を有することから、アンダーフィル材としてより有用であり、プリアプライドアンダーフィル材として更に有用である。なお、積層体については、後述する。
[Preferred uses of the resin composition]
The resin composition of this embodiment is excellent in low void property and chip adhesion. When the resin composition of the present embodiment is used as an underfill material used in the form of a laminate, preferably as a pre-applied underfill material, it is excellent in low void properties and chip adhesion, and in addition, bonding properties and insulation Excellent reliability. Since the resin composition of the present embodiment has various excellent characteristics, it is more useful as an underfill material, and further useful as a pre-applied underfill material. In addition, a laminated body is mentioned later.
 本実施形態の樹脂組成物は、アンダーフィル材として好適であり、プリアプライドアンダーフィル材用としてより好適であることから、樹脂組成物を用いて得られるシート、及び樹脂組成物を含む層(単に「樹脂組成物層」とも称する)は、半硬化状態(Bステージ)であることが好ましい。なお、シート及び樹脂組成物層の詳細については、後述する。シート及び樹脂組成物層が半硬化状態であることにより、より一層優れた、低ボイド性及びチップ接着性を得ることができる。本実施形態において、半硬化状態(Bステージ)とは、シート又は樹脂組成物層中に含まれる各成分が、積極的に反応(硬化)を始めてはいないが、シート又は樹脂組成物層が乾燥状態、すなわち、粘着性がない程度まで、加熱して溶媒を揮発させている状態を称し、加熱しなくても硬化せずに溶媒が揮発したのみの状態も含まれる。本実施形態において、半硬化状態(Bステージ)の最低溶融粘度は、通常、50,000Pa・s以下である。最低溶融粘度の下限は、例えば、10Pa・s以上である。アンダーフィル材用として好適であることから、半硬化状態(Bステージ)の最低溶融粘度は、200Pa・s以上30,000Pa・s以下であることが好ましい。なお、本実施形態において、最低溶融粘度は、次の方法で測定される。すなわち、ラミネータを用いて、樹脂組成物層を支持基材等に積層することにより厚み0.4~0.6mm程度の樹脂片を得て、この樹脂片をサンプルとして使用し、レオメータ(サーモフィッシャーサイエンティフィック社製HAAKE MARS60(商品名))により、溶融粘度を測定する。測定には、プレート径8mmのディスポーサブルパラレルプレートを使用し、40℃~300℃の範囲において、昇温速度10℃/分、周波数10.0rad/秒、及び歪0.1%の条件下で、樹脂片の溶融粘度を測定する。最低溶融粘度は、40℃から300℃までの範囲において、粘度が最も下がった時の粘度を意味する。 Since the resin composition of the present embodiment is suitable as an underfill material and more suitable as a pre-applied underfill material, a sheet obtained using the resin composition and a layer containing the resin composition (simply (also referred to as a "resin composition layer") is preferably in a semi-cured state (B stage). Details of the sheet and the resin composition layer will be described later. Since the sheet and the resin composition layer are in a semi-cured state, even more excellent low void properties and chip adhesion can be obtained. In the present embodiment, the semi-cured state (B stage) means that each component contained in the sheet or resin composition layer has not actively started to react (cured), but the sheet or resin composition layer is dried. It refers to a state in which the solvent is volatilized by heating to the extent that the adhesive is no longer present, and includes a state in which the solvent is volatilized without curing without heating. In this embodiment, the minimum melt viscosity in a semi-cured state (B stage) is usually 50,000 Pa·s or less. The lower limit of the lowest melt viscosity is, for example, 10 Pa·s or more. The minimum melt viscosity in the semi-cured state (B stage) is preferably 200 Pa·s or more and 30,000 Pa·s or less because it is suitable for use as an underfill material. In addition, in this embodiment, the minimum melt viscosity is measured by the following method. That is, using a laminator, a resin piece having a thickness of about 0.4 to 0.6 mm is obtained by laminating a resin composition layer on a support substrate or the like, and this resin piece is used as a sample, and a rheometer (thermofisher Melt viscosity is measured by HAAKE MARS60 (trade name) manufactured by Scientific Co.). For measurement, a disposable parallel plate with a plate diameter of 8 mm is used, and in the range of 40 ° C. to 300 ° C., the temperature increase rate is 10 ° C./min, the frequency is 10.0 rad / sec, and the strain is 0.1%. Measure the melt viscosity of the resin pieces. The lowest melt viscosity means the lowest viscosity in the range from 40°C to 300°C.
〔樹脂組成物の製造方法〕
 本実施形態の樹脂組成物は、前述した組成を有するものが得られる限り、製造方法は特に限定されない。樹脂組成物は、例えば、アミノトリアジンノボラック樹脂(A)と、化合物(B)と、無機充填材(D)と、必要に応じて、フラックス活性剤(C)と、硬化触媒(E)と、その他の成分とを、適宜混合することにより調製できる。必要に応じて、これらの成分を有機溶媒に溶解又は分散させたワニスの形態としてもよい。ワニスは、積層体を作製する際に好適に使用することができる。具体的な製造方法については、後述の積層体の製造方法、及び実施例を参考にできる。
[Method for producing resin composition]
The production method of the resin composition of the present embodiment is not particularly limited as long as the resin composition having the composition described above can be obtained. The resin composition comprises, for example, an aminotriazine novolak resin (A), a compound (B), an inorganic filler (D), optionally a flux activator (C), a curing catalyst (E), It can be prepared by appropriately mixing other components. If necessary, these components may be dissolved or dispersed in an organic solvent to form a varnish. A varnish can be suitably used when producing a laminated body. As for a specific manufacturing method, the method for manufacturing a laminate and Examples described later can be referred to.
 有機溶媒は、本実施形態の樹脂組成物における各成分を各々好適に溶解又は分散させることができ、かつ、本実施形態の樹脂組成物の効果を損なわないものであれば特に限定されない。有機溶媒としては、例えば、メタノール、エタノール、及びプロパノール等のアルコール類;アセトン、メチルエチルケトン(以下、「MEK」と略す場合がある。)、及びメチルイソブチルケトン等のケトン類;ジメチルアセトアミド、及びジメチルホルムアミド等のアミド類;トルエン、及びキシレン等の芳香族炭化水素類が挙げられる。これらの有機溶媒は、1種を単独で又は2種以上を適宜混合して使用することができる。 The organic solvent is not particularly limited as long as it can suitably dissolve or disperse each component in the resin composition of the present embodiment and does not impair the effects of the resin composition of the present embodiment. Examples of organic solvents include alcohols such as methanol, ethanol, and propanol; ketones such as acetone, methyl ethyl ketone (hereinafter sometimes abbreviated as "MEK"), and methyl isobutyl ketone; dimethylacetamide, and dimethylformamide. amides such as; aromatic hydrocarbons such as toluene and xylene. These organic solvents can be used singly or in admixture of two or more.
[樹脂シート]
 樹脂シートは、本実施形態の樹脂組成物を含む。具体的には、樹脂シートは、支持基材と、支持基材の片面又は両面に配された樹脂層と、を有し、樹脂層が、本実施形態の樹脂組成物を含む。この樹脂シートを積層樹脂シートとも称す。樹脂シートに係る樹脂層は、未硬化状態(Aステージ)の樹脂組成物を支持基材に塗布後、半硬化状態(Bステージ)にさせたものであることが好ましい。このような樹脂シートの製造方法としては、一般にBステージ化の樹脂層及び支持基材の複合体を製造する方法が好ましい。具体的には、未硬化状態(Aステージ)の樹脂組成物をワニスの形態として、バーコーターなど公知の方法を用いて、このワニスを銅箔などの支持基材に塗布した後、100~200℃の乾燥機中で、1~60分で加熱させる方法などにより半硬化(Bステージ化)させ、樹脂シートを製造する方法などが挙げられる。
 なお、本実施形態において、未硬化状態(Aステージ)とは、樹脂組成物がほぼ硬化しておらず、ゲル化していない状態を称する。樹脂シートに係る支持基材に塗布する前の樹脂組成物は、例えば、樹脂組成物の構成成分の混合物(溶媒を含んでも含まなくてもよい)、又は該混合物を溶媒に溶解又は分散させたワニスの形態であり、未硬化状態(Aステージ)である。
[Resin sheet]
A resin sheet contains the resin composition of this embodiment. Specifically, the resin sheet has a supporting substrate and a resin layer disposed on one side or both sides of the supporting substrate, and the resin layer contains the resin composition of the present embodiment. This resin sheet is also called a laminated resin sheet. The resin layer of the resin sheet is preferably formed by coating an uncured (A-stage) resin composition on a supporting substrate and then semi-curing (B-stage) the resin composition. As a method for producing such a resin sheet, a method for producing a composite of a B-stage resin layer and a supporting substrate is generally preferred. Specifically, the resin composition in an uncured state (A stage) is in the form of a varnish, and the varnish is applied to a supporting substrate such as a copper foil using a known method such as a bar coater. ° C. in a dryer for 1 to 60 minutes for semi-curing (to B-stage) to produce a resin sheet.
In addition, in this embodiment, the uncured state (A stage) refers to a state in which the resin composition is not substantially cured and is not gelled. The resin composition before being applied to the supporting substrate of the resin sheet is, for example, a mixture of constituent components of the resin composition (which may or may not contain a solvent), or the mixture dissolved or dispersed in a solvent. It is in the form of varnish and is in an uncured state (A stage).
 支持基材としては、特に限定されないが、例えば、ポリエチレンフィルム、ポリプロピレンフィルム、ポリカーボネートフィルム、ポリエチレンテレフタレートフィルム、及びエチレンテトラフルオロエチレン共重合体フィルム、並びにポリイミドフィルム等の有機系のフィルム;これらのフィルムの表面に離型剤を塗布した離型フィルム;銅箔、及びアルミニウム箔等の導体箔;ガラス板、SUS板、及びFRP等の板状のものが挙げられる。 The supporting substrate is not particularly limited, but for example, organic films such as polyethylene film, polypropylene film, polycarbonate film, polyethylene terephthalate film, ethylenetetrafluoroethylene copolymer film, and polyimide film; release films coated with a release agent on the surface; conductor foils such as copper foil and aluminum foil; and plate-shaped ones such as glass plates, SUS plates, and FRP.
 塗布方法としては、特に限定されないが、例えば、樹脂組成物を溶媒に溶解させた溶液を、バーコーター、ダイコーター、ドクターブレード、及びベーカーアプリケーター等で支持基材上に塗布する方法が挙げられる。 The coating method is not particularly limited, but includes, for example, a method in which a solution obtained by dissolving the resin composition in a solvent is applied onto the supporting substrate using a bar coater, die coater, doctor blade, baker applicator, or the like.
 樹脂シートのうち、単層樹脂シートは、樹脂組成物をシート状に成形して得られる。単層樹脂シートの製造方法は、常法に従って行うことができ、特に限定されない。例えば、樹脂シートの製法において、樹脂組成物を溶媒に溶解させた溶液を支持基材上に塗布して乾燥させた後に、樹脂シートから支持基材を剥離又はエッチングする方法が挙げられる。なお、樹脂組成物を溶媒に溶解させた溶液を、シート状のキャビティを有する金型内に供給し乾燥する等してシート状に成形することで、支持基材を用いることなく単層樹脂シートを得ることもできる。 Among resin sheets, a single-layer resin sheet is obtained by molding a resin composition into a sheet. The method for producing the single-layer resin sheet is not particularly limited and can be carried out according to a conventional method. For example, in the method for producing a resin sheet, a method of applying a solution in which a resin composition is dissolved in a solvent onto a supporting substrate and drying it, and then peeling or etching the supporting substrate from the resin sheet can be mentioned. In addition, a single-layer resin sheet without using a supporting substrate can be formed by forming a sheet by, for example, supplying a solution in which a resin composition is dissolved in a solvent into a mold having a sheet-like cavity and drying it. You can also get
 樹脂シート又は単層樹脂シートの作製において、溶媒を除去する際の乾燥条件は、特に限定されないが、低温であると樹脂組成物中に溶媒が残り易く、高温であると樹脂組成物の硬化が進行することから、20~170℃の温度で1~90分間が好ましい。 In the preparation of the resin sheet or single-layer resin sheet, the drying conditions for removing the solvent are not particularly limited. 1 to 90 minutes at a temperature of 20 to 170° C. is preferred because it progresses.
 樹脂シート又は単層樹脂シートの樹脂層の厚みは、樹脂組成物の溶液の濃度と塗布の厚みにより調整することができ、特に限定されないが、一般的には塗布の厚みが厚くなると乾燥時に溶媒が残り易くなることから、0.1~500μmが好ましい。 The thickness of the resin layer of the resin sheet or single-layer resin sheet can be adjusted by adjusting the concentration of the solution of the resin composition and the thickness of the coating, and is not particularly limited. 0.1 to 500 .mu.m is preferred because it tends to remain.
 樹脂シート又は単層樹脂シートは、例えば、半導体ウェハ及び半導体チップ搭載用基板における配線回路形成の際の材料として使用することができる。 A resin sheet or a single-layer resin sheet can be used, for example, as a material for forming wiring circuits on semiconductor wafers and semiconductor chip mounting substrates.
[積層体]
 本実施形態の樹脂組成物を支持基材上に塗布することにより、低ボイド性及びチップ接着性に優れる、樹脂組成物を含む層を有する積層体を得ることができる。すなわち、本実施形態の積層体は、支持基材と、支持基材上に積層された本実施形態の樹脂組成物を含む樹脂組成物層と、を備える。このような積層体は、本実施形態の樹脂組成物が、支持基材に層として形成されることで得ることができる。支持基材としては、特に限定されないが、高分子フィルムを使用することができる。高分子フィルムの材質としては、例えば、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリエチレン、ポリプロピレン、ポリブテン、ポリブタジエン、エチレン-プロピレン共重合体、ポリメチルペンテン、エチレン-酢酸ビニル共重合体、及びエチレン-ビニルアルコール共重合体などのビニル系樹脂;ポリエチレンテレフタレート、ポリエチレンナフタレート、及びポリブチレンテレフタレート等のポリエステル系樹脂;ポリウレタン系樹脂;ポリイミド系樹脂;ポリアミド系樹脂等が挙げられる。支持基材としては、これらの樹脂等を含有するフィルム、並びにこれらのフィルムの表面に離型剤を塗布した離型フィルムが挙げられる。これらの中でも、ポリエステル系樹脂、ポリイミド系樹脂、及びポリアミド系樹脂からなる群より選択される1種以上の樹脂を含有するフィルム、並びにこれらのフィルムの表面に離型剤を塗布した離型フィルムが好ましく、ポリエステル系樹脂の一種である、ポリエチレンテレフタレートを含有するフィルム、又はポリエチレンテレフタレートを含有するフィルムの表面に離型剤を塗布した離型フィルムがより好ましい。
[Laminate]
By applying the resin composition of the present embodiment onto a supporting substrate, it is possible to obtain a laminate having a layer containing the resin composition, which is excellent in low void properties and chip adhesion. That is, the laminate of the present embodiment includes a supporting base material and a resin composition layer containing the resin composition of the present embodiment laminated on the supporting base material. Such a laminate can be obtained by forming the resin composition of the present embodiment as a layer on a supporting substrate. A polymer film can be used as the supporting substrate, although not particularly limited. Examples of polymer film materials include polyvinyl chloride, polyvinylidene chloride, polyethylene, polypropylene, polybutene, polybutadiene, ethylene-propylene copolymer, polymethylpentene, ethylene-vinyl acetate copolymer, and ethylene-vinyl alcohol. vinyl-based resins such as copolymers; polyester-based resins such as polyethylene terephthalate, polyethylene naphthalate, and polybutylene terephthalate; polyurethane-based resins; polyimide-based resins; Examples of supporting substrates include films containing these resins and the like, and release films obtained by applying a release agent to the surface of these films. Among these, films containing one or more resins selected from the group consisting of polyester-based resins, polyimide-based resins, and polyamide-based resins, and release films obtained by applying a release agent to the surface of these films. More preferably, it is a film containing polyethylene terephthalate, which is a type of polyester resin, or a release film obtained by applying a release agent to the surface of a film containing polyethylene terephthalate.
 支持基材の厚さは、特に限定されないが、積層体の製造がより容易である点、例えば、支持基材に樹脂組成物を塗布する場合の塗布厚のより良好な安定性と、積層体のより良好な搬送性の点から、10~100μmであることが好ましい。支持基材の厚さの下限としては、積層体を製造する際の歩留りをより確保できる点から、10μm以上であることがより好ましくは、20μm以上であることが更に好ましく、25μm以上であることが更により好ましい。支持基材の厚さの上限としては、支持基材が最終的に半導体装置の構成部材として存在することなく、工程の途中で剥離される点と、積層体の製造コストの点から、80μm以下であることがより好ましく、50μm以下であることが更に好ましい。 The thickness of the supporting substrate is not particularly limited. From the viewpoint of better transportability, it is preferably 10 to 100 μm. The lower limit of the thickness of the supporting substrate is more preferably 10 μm or more, still more preferably 20 μm or more, further preferably 25 μm or more, from the viewpoint of ensuring a higher yield in manufacturing the laminate. is even more preferred. The upper limit of the thickness of the supporting base material is 80 μm or less in view of the fact that the supporting base material does not exist as a component of the semiconductor device in the end and is peeled off in the middle of the process and the manufacturing cost of the laminate. and more preferably 50 μm or less.
 支持基材上に、本実施形態の樹脂組成物を含む層、すなわち、樹脂組成物層を形成して本実施形態の積層体を製造する方法としては、特に限定されない。そのような製造方法としては、例えば、本実施形態の樹脂組成物を有機溶媒に溶解又は分散させたワニスを、支持基材の表面に塗布し、加熱、及び/又は減圧下で乾燥し、溶媒を除去して本実施形態の樹脂組成物を固化させ、樹脂組成物層を形成する手法が挙げられる。乾燥条件は、特に限定されないが、樹脂組成物層に対する有機溶媒の含有比率が、樹脂組成物層の総量(100質量部)に対して、通常10質量部以下、好ましくは5質量部以下となるように乾燥させる。かかる乾燥を達成する条件は、ワニス中の有機溶媒の種類と配合量によっても異なる。例えば、アミノトリアジンノボラック樹脂(A)と化合物(B)の合計100質量部に対して、10~200質量部のメチルエチルケトンを含むワニスの場合、1気圧下で90~160℃の加熱条件下で2~15分の乾燥が目安となる。本実施形態の積層体における樹脂組成物層の厚さは、特に限定されないが、樹脂組成物層の乾燥時に、比較的低分子量の揮発分をより良好に除去する観点、及び積層体としての機能をより有効かつ確実に奏する観点から、5~500μmの範囲が好適であり、10~100μmの範囲がより好ましい。本実施形態の積層体の製造を行ったあと、保管等の目的で、別途、保護フィルムを積層体の支持基材のある面とは反対側の面に積層してもよい。 The method of forming a layer containing the resin composition of the present embodiment, ie, a resin composition layer, to produce the laminate of the present embodiment is not particularly limited. As such a production method, for example, a varnish obtained by dissolving or dispersing the resin composition of the present embodiment in an organic solvent is applied to the surface of the supporting substrate, heated and / or dried under reduced pressure, and the solvent is removed to solidify the resin composition of the present embodiment to form a resin composition layer. The drying conditions are not particularly limited, but the content ratio of the organic solvent to the resin composition layer is usually 10 parts by mass or less, preferably 5 parts by mass or less with respect to the total amount (100 parts by mass) of the resin composition layer. Allow to dry. The conditions for achieving such drying also vary depending on the type and amount of organic solvent in the varnish. For example, in the case of a varnish containing 10 to 200 parts by mass of methyl ethyl ketone with respect to a total of 100 parts by mass of the aminotriazine novolak resin (A) and the compound (B), 2.5% under heating conditions of 90 to 160°C under 1 atmosphere. Drying for ~15 minutes is a guideline. The thickness of the resin composition layer in the laminate of the present embodiment is not particularly limited, but when the resin composition layer is dried, the viewpoint of better removal of relatively low molecular weight volatile matter and the function as a laminate is preferably in the range of 5 to 500 μm, and more preferably in the range of 10 to 100 μm, from the viewpoint of achieving the above effectively and reliably. After manufacturing the laminate of the present embodiment, a protective film may be separately laminated on the surface of the laminate opposite to the surface having the support substrate for the purpose of storage or the like.
[樹脂組成物層付き半導体チップ、及び樹脂組成物層付き半導体チップ搭載用基板]
 本実施形態の樹脂組成物層付き半導体チップは、半導体チップと、半導体チップに積層され、かつ、本実施形態の樹脂組成物を用いて形成された層(樹脂組成物層)と、を備える。
 また、本実施形態の樹脂組成物層付き半導体チップ搭載用基板は、半導体チップ搭載用基板と、半導体チップ搭載用基板に積層され、かつ、本実施形態の樹脂組成物を用いて形成された層(樹脂組成物層)と、を備える。
 なお、本実施形態の樹脂組成物層付き半導体チップは、半導体チップと、その半導体チップに積層された本実施形態の樹脂組成物を含む層(樹脂組成物層)とを備えるものとして特定することもできる。また、本実施形態の樹脂組成物層付き半導体チップ搭載用基板は、半導体チップ搭載用基板と、その半導体チップ搭載用基板に積層された本実施形態の樹脂組成物を含む層(樹脂組成物層)とを備えるものとして特定することもできる。
[Semiconductor chip with resin composition layer and substrate for mounting semiconductor chip with resin composition layer]
The semiconductor chip with a resin composition layer of the present embodiment includes a semiconductor chip and a layer (resin composition layer) laminated on the semiconductor chip and formed using the resin composition of the present embodiment.
Further, the semiconductor chip mounting substrate with the resin composition layer of the present embodiment includes a semiconductor chip mounting substrate and a layer laminated on the semiconductor chip mounting substrate and formed using the resin composition of the present embodiment. (Resin composition layer).
The semiconductor chip with a resin composition layer of the present embodiment is specified as comprising a semiconductor chip and a layer (resin composition layer) containing the resin composition of the present embodiment laminated on the semiconductor chip. can also Further, the semiconductor chip mounting substrate with a resin composition layer of the present embodiment includes a semiconductor chip mounting substrate and a layer containing the resin composition of the present embodiment laminated on the semiconductor chip mounting substrate (resin composition layer ).
 本実施形態の樹脂組成物層付き半導体チップを作製する方法は、特に限定されないが、例えば、半導体ウェハの電極が形成された面、すなわち基板との接合が行われる面に、本実施形態の積層体の樹脂組成物層が対向するように貼り合わせ、積層体における支持基材を剥離し、その後、ダイシングソー等による個片化を行うことで、樹脂組成物層付き半導体チップを得ることができる。また、本実施形態の樹脂組成物層付き半導体チップ搭載用基板を作製する方法は、特に限定されないが、例えば、半導体チップ搭載用基板のチップ搭載側の面に、本実施形態の積層体の樹脂組成物層が対向するよう貼り合わせ、積層体における支持基材を剥離することで得られる。 The method for producing a semiconductor chip with a resin composition layer of the present embodiment is not particularly limited. A semiconductor chip with a resin composition layer can be obtained by bonding together so that the resin composition layers of the body face each other, peeling off the support base material in the laminate, and then singulating with a dicing saw or the like. . The method for producing the semiconductor chip mounting substrate with the resin composition layer of the present embodiment is not particularly limited. It can be obtained by bonding the composition layers so that they face each other, and peeling off the supporting substrate in the laminate.
 本実施形態の積層体を半導体ウェハ又は半導体チップ搭載用基板に貼り合わせる方法としては、特に限定されないが、真空加圧式ラミネータを好適に使用することができる。この場合、本実施形態の積層体に対してゴム等の弾性体を介して加圧し、貼り合わせる方法が好ましい。ラミネート条件としては、当業界で一般に使用されている条件であれば、特に限定されないが、例えば、50~140℃の温度、1~11kgf/cm2の範囲の接触圧力、並びに20hPa以下の雰囲気減圧下で行われる。ラミネート工程の後に、金属板による熱プレスにより、貼り合わされた積層体の平滑化を行ってもよい。ラミネート工程、及び平滑化工程は、市販されている真空加圧式ラミネータによって連続的に行うことができる。半導体ウェハ又は半導体搭チップ載用基板に貼り付けられた積層体は、いずれの場合もチップのフリップチップ実装前までに支持基材の除去が行われる。 A method for bonding the laminate of the present embodiment to a semiconductor wafer or a substrate for mounting a semiconductor chip is not particularly limited, but a vacuum pressure laminator can be preferably used. In this case, it is preferable to apply pressure to the laminate of the present embodiment via an elastic body such as rubber to bond them together. The lamination conditions are not particularly limited as long as they are conditions commonly used in the industry, but for example, a temperature of 50 to 140° C., a contact pressure in the range of 1 to 11 kgf/cm 2 , and an atmospheric pressure reduction of 20 hPa or less. done below. After the lamination step, the bonded laminate may be smoothed by hot pressing with a metal plate. The lamination step and the smoothing step can be performed continuously by a commercially available vacuum pressure laminator. In any case, the laminate attached to a semiconductor wafer or a substrate for mounting a semiconductor-mounted chip is subjected to removal of the support base material before flip-chip mounting of the chip.
[半導体装置]
 本実施形態の半導体装置は、本実施形態の樹脂組成物層付き半導体チップ及び/又は本実施形態の樹脂組成物層付き半導体チップ搭載用基板を備える。本実施形態の半導体装置を製造する方法は、特に限定されないが、例えば、本実施形態の樹脂組成物層付き半導体チップを半導体チップ搭載用基板に搭載する手法が挙げられる。また、本実施形態の樹脂組成物層付き半導体チップ搭載用基板に、半導体チップを搭載してもよい。樹脂組成物層付き半導体チップを半導体チップ搭載用基板に搭載する方法、及び半導体チップを樹脂組成物層付き半導体チップ搭載用基板に搭載する方法では、熱圧着工法に対応したフリップチップボンダを好適に使用することができる。また、本実施形態では半導体チップを半導体チップ搭載用基板にフリップチップ実装する場合を便宜的に説明しているが、半導体チップをフリップチップ実装しつつ、本実施形態の樹脂組成物を適用する対象は、半導体チップ搭載用基板以外とすることも可能である。例えば、本実施形態の樹脂組成物は、半導体ウェハ上へ半導体チップを搭載する際の半導体ウェハと半導体チップとの接合部や、TSV(Through Silicon Via)等を経由して半導体チップ間接続を行うチップ積層体の、各半導体チップ間の接合部に使用することも可能であり、いずれの場合も本実施形態の効果を得ることができる。
[Semiconductor device]
The semiconductor device of the present embodiment includes the semiconductor chip with the resin composition layer of the present embodiment and/or the substrate for mounting the semiconductor chip with the resin composition layer of the present embodiment. The method for manufacturing the semiconductor device of the present embodiment is not particularly limited, but for example, a method of mounting the semiconductor chip with the resin composition layer of the present embodiment on a substrate for mounting a semiconductor chip can be mentioned. A semiconductor chip may be mounted on the substrate for mounting a semiconductor chip with a resin composition layer of the present embodiment. In the method of mounting a semiconductor chip with a resin composition layer on a semiconductor chip mounting substrate and the method of mounting a semiconductor chip on a semiconductor chip mounting substrate with a resin composition layer, a flip chip bonder compatible with the thermocompression bonding method is preferably used. can be used. In addition, in the present embodiment, the case of flip-chip mounting a semiconductor chip on a substrate for mounting a semiconductor chip is described for convenience, but the object to which the resin composition of the present embodiment is applied while flip-chip mounting a semiconductor chip is can be a substrate other than a substrate for mounting a semiconductor chip. For example, the resin composition of the present embodiment is used to connect semiconductor chips via a junction between a semiconductor wafer and a semiconductor chip when mounting a semiconductor chip on a semiconductor wafer, or through TSV (Through Silicon Via). It is also possible to use it for the junction between each semiconductor chip of a chip stack, and the effect of this embodiment can be obtained in either case.
 以下、本実施形態を実施例及び比較例を用いてより具体的に説明する。本実施形態は、以下の実施例によって何ら限定されるものではない。
 各質量部数は、アミノトリアジンノボラック樹脂(A)及び化合物(B)の総量100質量部を基準とする数値とした。
Hereinafter, the present embodiment will be described more specifically using examples and comparative examples. This embodiment is not limited at all by the following examples.
Each part by mass is based on 100 parts by mass of the total amount of aminotriazine novolac resin (A) and compound (B).
[樹脂組成物及び積層体の作製]
 (実施例1)
 アミノトリアジンノボラック樹脂(A)としてフェノライト(登録商標)LA-1356(商品名、DIC(株)、重量平均分子量:1,500、窒素含有量:19質量%、ヒドロキシ基当量:146g/eq.、不揮発分:60質量%)45質量部(不揮発分換算で27質量部)と、
 第1の化合物(B)として式(3)で表されるマレイミド化合物(BMI-1000P(商品名)、ケイ・アイ化成(株)、式(3)中、n3=14(平均値)、重量平均分子量:3,700)40.5質量部と、
 第2の化合物(B)としてビス-(3-エチル-5-メチル-4-マレイミドフェニル)メタン(BMI-70(商品名)、ケイ・アイ化成(株)、重量平均分子量550)22.5質量部と、
 第3の化合物(B)として式(6)で表されるマレイミド化合物(MIR-3000-70MT(商品名)、日本化薬(株)、不揮発分70質量%、重量平均分子量:1050)14.3質量部(不揮発分換算で10質量部)と、
 フラックス活性剤(C)として水添ロジンエステル(パインクリスタル(登録商標)KR-140(商品名)、荒川化学工業(株)、酸解離定数pKa:4.7、重量平均分子量:521)25質量部と、
 無機充填材(D)としてスラリーシリカ(YA050C-MJE(商品名)、(株)アドマテックス、メタクリルシラン表面処理シリカ、固形分50質量%、分散媒:MEK、平均粒子径:50nm)400質量部(不揮発分換算で200質量部)と、
 第1の硬化触媒(E)としてイミダゾール化合物である2-エチル-4-メチルイミダゾール(2E4MZ、四国化成工業(株)、不揮発分50質量%)2質量部(不揮発分換算で1質量部)と、
 第2の硬化触媒(E)として有機過酸化物であるα,α’-ジ(t-ブチルパーオキシ)ジイソプロピルベンゼン(パーブチル(登録商標)P、日本油脂(株)、10時間半減期温度:119.20℃)4質量部と、
 を混合し、60℃の湯浴中で高速攪拌装置を用いて40分間撹拌し、その後、MEKを添加することで固形分濃度が60質量%のワニスを得た。このワニスを、表面に離型剤がコートされた厚さ38μmのポリエチレンテレフタレートフィルム(TR1-38(商品名、支持基材)、ユニチカ(株))に塗布し、1気圧下、100℃で5分間加熱乾燥して、樹脂組成物層の厚さが30μmである積層体を得た。
 なお、アミノトリアジンノボラック樹脂(A)であるLA-1356(商品名、DIC製)は、式(1)で表される化合物(式(1)で表される化合物の混合物であり、その混合物中には、Rが、各々独立に、水素原子又はメチル基であり、l、m、nが、各々独立に、1~6の整数であり、(l+m+n)が3~18の整数である化合物群が含まれる)と、式(2)で表される化合物(式(2)で表される化合物の混合物であり、その混合物中には、R2が、各々独立に、水素原子又はメチル基であり、o、p、q、r、及びsが、各々独立に、1~4の整数であり、(o+p+q+r+s)が5~20の整数である化合物群が含まれる)と、の混合物であり、混合物中、式(1)で表される化合物(混合物)と式(2)で表される化合物(混合物)との質量比(式(1):式(2))は、65(質量部):35(質量部)であった。
 また、YA050C-MJEは、シリカと3-メタクリロキシプロピルトリメトキシシランとの反応物であった。すなわち、YA050C-MJEは、シリカの表面の少なくとも1つのシラノール基と下記式(13)における少なくとも1つのメトキシ基との反応により得られる構造を有する官能基を、シリカ表面に有するものと評価された。
[Preparation of resin composition and laminate]
(Example 1)
As the aminotriazine novolak resin (A), Phenolite (registered trademark) LA-1356 (trade name, DIC Corporation, weight average molecular weight: 1,500, nitrogen content: 19% by mass, hydroxy group equivalent: 146 g/eq. , Non-volatile content: 60% by mass) 45 parts by mass (27 parts by mass in terms of non-volatile content),
As the first compound (B), a maleimide compound represented by the formula (3) (BMI-1000P (trade name), K-I Kasei Co., Ltd., in formula (3), n3 = 14 (average value), weight Average molecular weight: 3,700) 40.5 parts by mass,
As the second compound (B), bis-(3-ethyl-5-methyl-4-maleimidophenyl)methane (BMI-70 (trade name), K.I Kasei Co., Ltd., weight average molecular weight 550) 22.5 a mass part;
A maleimide compound represented by formula (6) as the third compound (B) (MIR-3000-70MT (trade name), Nippon Kayaku Co., Ltd., non-volatile content 70% by mass, weight average molecular weight: 1050)14. 3 parts by mass (10 parts by mass in terms of non-volatile content),
Hydrogenated rosin ester (Pine Crystal (registered trademark) KR-140 (trade name), Arakawa Chemical Industries, Ltd., acid dissociation constant pKa: 4.7, weight average molecular weight: 521) as a flux activator (C) 25 mass Department and
Slurry silica (YA050C-MJE (trade name), Admatechs Co., Ltd., methacrylsilane surface-treated silica, solid content 50% by mass, dispersion medium: MEK, average particle size: 50 nm) as an inorganic filler (D) 400 parts by mass (200 parts by mass in terms of non-volatile content),
2-ethyl-4-methylimidazole (2E4MZ, Shikoku Kasei Kogyo Co., Ltd., non-volatile content 50% by mass) which is an imidazole compound as the first curing catalyst (E) 2 parts by mass (1 part by mass in terms of non-volatile content) ,
α,α'-di(t-butylperoxy)diisopropylbenzene (Perbutyl (registered trademark) P, NOF Corporation, 10-hour half-life temperature: 119.20 ° C.) 4 parts by mass,
and stirred for 40 minutes using a high-speed stirrer in a hot water bath at 60° C., and then MEK was added to obtain a varnish with a solid content concentration of 60% by mass. This varnish was applied to a 38 μm thick polyethylene terephthalate film (TR1-38 (trade name, support base material), Unitika Ltd.) coated with a release agent on the surface, and dried at 100° C. under 1 atmosphere for 5 minutes. After heating and drying for 1 minute, a laminate having a resin composition layer with a thickness of 30 μm was obtained.
Incidentally, LA-1356 (trade name, manufactured by DIC), which is an aminotriazine novolak resin (A), is a compound represented by the formula (1) (a mixture of compounds represented by the formula (1), in which is a compound in which R 1 is each independently a hydrogen atom or a methyl group, l, m, and n are each independently an integer of 1 to 6, and (l + m + n) is an integer of 3 to 18 group) and a compound represented by formula (2) (a mixture of compounds represented by formula (2), in which each R 2 is independently a hydrogen atom or a methyl group and o, p, q, r, and s are each independently an integer of 1 to 4, and (o + p + q + r + s) is an integer of 5 to 20. , in the mixture, the mass ratio of the compound (mixture) represented by formula (1) to the compound (mixture) represented by formula (2) (formula (1): formula (2)) is 65 (parts by mass ): 35 (parts by mass).
Also, YA050C-MJE was a reaction product of silica and 3-methacryloxypropyltrimethoxysilane. That is, YA050C-MJE was evaluated as having a functional group on the silica surface having a structure obtained by reacting at least one silanol group on the silica surface with at least one methoxy group in the following formula (13). .
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 (実施例2)
 無機充填材(D)として、実施例1のYA050C-MJEに代えて、スラリーシリカ(Y50SV-AM1(商品名)、(株)アドマテックス、ビニルシラン表面処理シリカ、固形分50質量%、分散媒:MEK、平均粒子径:50nm)400質量部(不揮発分換算で200質量部)を使用したこと以外は、実施例1と同様にしてワニスを調製した。このワニスを用いて、実施例1と同様にして、樹脂組成物層の厚さが30μmである積層体を得た。
 なお、Y50SV-AM1は、シリカとビニルトリメトキシシランとの反応物であった。すなわち、YA050C-MJEは、シリカの表面の少なくとも1つのシラノール基と下記式(14)における少なくとも1つのメトキシ基との反応により得られる構造を有する官能基を、シリカ表面に有するものと評価された。
(Example 2)
As the inorganic filler (D), instead of YA050C-MJE of Example 1, slurry silica (Y50SV-AM1 (trade name), Admatechs Co., Ltd., vinylsilane surface-treated silica, solid content 50% by mass, dispersion medium: A varnish was prepared in the same manner as in Example 1, except that 400 parts by mass of MEK (average particle size: 50 nm) (200 parts by mass in terms of nonvolatile matter) was used. Using this varnish, a laminate having a resin composition layer with a thickness of 30 μm was obtained in the same manner as in Example 1.
Y50SV-AM1 was a reaction product of silica and vinyltrimethoxysilane. That is, YA050C-MJE was evaluated as having a functional group on the silica surface having a structure obtained by reacting at least one silanol group on the silica surface with at least one methoxy group in the following formula (14). .
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 (実施例3)
 無機充填材(D)として、実施例1のYA050C-MJEに代えて、スラリーシリカ(Y50SP-AM1(商品名)、(株)アドマテックス、フェニルシラン表面処理シリカ、固形分50質量%、分散媒:MEK、平均粒子径:50nm)400質量部(不揮発分換算で200質量部)を使用したこと以外は、実施例1と同様にしてワニスを調製した。このワニスを用いて、実施例1と同様にして、樹脂組成物層の厚さが30μmである積層体を得た。
 なお、Y50SP-AM1は、シリカとフェニルトリメトキシシランとの反応物であった。すなわち、YA050C-MJEは、シリカの表面の少なくとも1つのシラノール基と下記式(15)における少なくとも1つのメトキシ基との反応により得られる構造を有する官能基を、シリカ表面に有するものと評価された。
(Example 3)
As the inorganic filler (D), instead of YA050C-MJE of Example 1, slurry silica (Y50SP-AM1 (trade name), Admatechs Co., Ltd., phenylsilane surface-treated silica, solid content 50% by mass, dispersion medium : MEK, average particle diameter: 50 nm) 400 parts by mass (200 parts by mass in terms of non-volatile matter) was used to prepare a varnish in the same manner as in Example 1. Using this varnish, a laminate having a resin composition layer with a thickness of 30 μm was obtained in the same manner as in Example 1.
Y50SP-AM1 was a reaction product of silica and phenyltrimethoxysilane. That is, YA050C-MJE was evaluated as having a functional group on the silica surface having a structure obtained by reacting at least one silanol group on the silica surface with at least one methoxy group in the following formula (15). .
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 (実施例4)
 実施例1におけるYA050C-MJEの使用量を200質量部(不揮発分換算で100質量部)に変更し、かつ、LA-1356、BMI-70及びMIR-3000-70MTの使用量を、それぞれ、20質量部(不揮発分換算)、27.3質量部(不揮発分換算)及び12.2質量部(不揮発分換算)に変更したこと以外は、実施例1と同様にしてワニスを調製した。このワニスを用いて、実施例1と同様にして、樹脂組成物層の厚さが30μmである積層体を得た。
(Example 4)
The amount of YA050C-MJE used in Example 1 was changed to 200 parts by mass (100 parts by mass in terms of nonvolatile matter), and the amounts of LA-1356, BMI-70 and MIR-3000-70MT were changed to 20, respectively. A varnish was prepared in the same manner as in Example 1, except that parts by mass (converted to non-volatile content), 27.3 parts by mass (converted to non-volatile content), and 12.2 parts by mass (converted to non-volatile content) were changed. Using this varnish, a laminate having a resin composition layer with a thickness of 30 μm was obtained in the same manner as in Example 1.
 (比較例1)
 無機充填材(D)として、実施例1のYA050C-MJEに代えて、スラリーシリカ(YA050C-MJM(商品名)、(株)アドマテックス、フェニルアミノシラン表面処理シリカ、固形分50質量%、分散媒:MEK、平均粒子径:50nm)400質量部(不揮発分換算で200質量部)を使用したこと以外は、実施例1と同様にしてワニスを調製した。このワニスを用いて、実施例1と同様にして、樹脂組成物層の厚さが30μmである積層体を得た。
 なお、YA050C-MJMは、シリカとフェニルアミノプロピルトリメトキシシランとの反応物であった。すなわち、YA050C-MJMは、シリカの表面の少なくとも1つのシラノール基と下記式(16)における少なくとも1つのメトキシ基との反応により得られる構造を有する官能基を、シリカ表面に有するものと評価された。
(Comparative example 1)
As the inorganic filler (D), instead of YA050C-MJE of Example 1, slurry silica (YA050C-MJM (trade name), Admatechs Co., Ltd., phenylaminosilane surface-treated silica, solid content 50% by mass, dispersion medium : MEK, average particle diameter: 50 nm) 400 parts by mass (200 parts by mass in terms of non-volatile matter) was used to prepare a varnish in the same manner as in Example 1. Using this varnish, a laminate having a resin composition layer with a thickness of 30 μm was obtained in the same manner as in Example 1.
YA050C-MJM was a reaction product of silica and phenylaminopropyltrimethoxysilane. That is, YA050C-MJM was evaluated as having a functional group on the silica surface having a structure obtained by reacting at least one silanol group on the silica surface with at least one methoxy group in the following formula (16). .
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 (比較例2)
 実施例1におけるYA050C-MJEの使用量を200質量部(不揮発分換算で100質量部)に変更し、かつ、LA-1356を使用せず、かつ、BMI-70及びMIR-3000-70MTの使用量を、それぞれ、41.5質量部(不揮発分換算)及び18質量部(不揮発分換算)に変更したこと以外は、実施例1と同様にしてワニスを調製した。このワニスを用いて、実施例1と同様にして、樹脂組成物層の厚さが30μmである積層体を得た。
(Comparative example 2)
Change the amount of YA050C-MJE used in Example 1 to 200 parts by mass (100 parts by mass in terms of non-volatile content), do not use LA-1356, and use BMI-70 and MIR-3000-70MT A varnish was prepared in the same manner as in Example 1, except that the amounts were changed to 41.5 parts by mass (as non-volatile content) and 18 parts by mass (as non-volatile content), respectively. Using this varnish, a laminate having a resin composition layer with a thickness of 30 μm was obtained in the same manner as in Example 1.
(比較例3)
 実施例1において、BMI-1000Pを使用せず、かつ、LA-1356、BMI-70、及びMIR-3000-70MTの使用量を、それぞれ45質量部(不揮発分換算)、38質量部(不揮発分換算)、及び17質量部(不揮発分換算)に変更したこと以外は、実施例1と同様にしてワニスを調製した。このワニスを用いて、実施例1と同様にして、樹脂組成物層の厚さが30μmである積層体を得た。
(Comparative Example 3)
In Example 1, BMI-1000P was not used, and the amount of LA-1356, BMI-70, and MIR-3000-70MT used was 45 parts by weight (in terms of nonvolatile matter) and 38 parts by weight (nonvolatile matter A varnish was prepared in the same manner as in Example 1, except that the content was changed to 17 parts by mass (converted to non-volatile content). Using this varnish, a laminate having a resin composition layer with a thickness of 30 μm was obtained in the same manner as in Example 1.
(比較例4)
 実施例1において、BMI-70及びMIR-3000-70MTを使用せず、かつ、LA-1356及びBMI-1000Pの使用量をそれぞれ40質量部(不揮発分換算)及び60質量部(不揮発分換算)に変更したこと以外は、実施例1と同様にしてワニスを調製した。このワニスを用いて、実施例1と同様にして、樹脂組成物層の厚さが30μmである積層体を得た。
(Comparative Example 4)
In Example 1, BMI-70 and MIR-3000-70MT were not used, and the amount of LA-1356 and BMI-1000P used was 40 parts by weight (in terms of non-volatile matter) and 60 parts by weight (in terms of non-volatile matter), respectively. A varnish was prepared in the same manner as in Example 1, except that the Using this varnish, a laminate having a resin composition layer with a thickness of 30 μm was obtained in the same manner as in Example 1.
[積層体の評価]
 実施例1~4、及び比較例1~2で得られた積層体を用いて、次の評価を行った。それらの結果を表1に示す。
 (1)半導体チップ実装後のボイドの評価
 得られた積層体を8mm×8mmの正方形に切断した。切断された積層体は、半導体チップ搭載用基板((株)ウォルツ製WALTS-KIT CC80(W)―0105JY(商品名))のパッド部分における15μmの銅回路面に対して、切断後の積層体における樹脂組成物層が接するように積層した。その後、積層体におけるポリエチレンテレフタレートフィルムを剥離した。次いで、フリップチップボンダ(LFB-2301(商品名)、(株)新川)を用いて、ステージ温度85℃、ボンドヘッド温度120℃、荷重100N、及び時間1秒の条件で、銅とはんだで構成されるCuピラーを電極に持つ半導体チップ上に、樹脂組成物層の剥離面が接するように配置して熱圧着した後に、ボンドヘッド温度260℃、荷重50N、及び時間4秒の条件で更に熱圧着して実装を行った。実装後のサンプル(半導体チップ/樹脂組成物層/半導体チップ搭載用基板)を超音波精密探傷画像処理装置(μ-SDS(商品名)、(株)KJTD製)を用いて画像データを取得し、半導体チップ実装部の範囲における樹脂組成物層のボイドの有無を該画像データから確認した。
 ボイドが確認できた部分が占める面積の割合が、半導体チップ実装部の範囲における樹脂組成物層が占める面積の全体に対して、10%未満の場合をAとし、10%以上20%未満の場合をBとし、20%以上30%未満の場合をCとし、30%以上の場合をDとして評価した。なお、ボイドが確認できた部分が占める面積の割合が小さいほど、絶縁信頼性が高い積層体が得られると評価され、特にボイドが確認できた部分が占める面積の割合が10%未満であると、絶縁信頼性が非常に高い積層体が得られると評価される。
[Evaluation of laminate]
Using the laminates obtained in Examples 1 to 4 and Comparative Examples 1 and 2, the following evaluations were performed. Those results are shown in Table 1.
(1) Evaluation of Voids after Semiconductor Chip Mounting The obtained laminate was cut into squares of 8 mm×8 mm. The cut laminate was applied to the 15 μm copper circuit surface in the pad portion of the semiconductor chip mounting board (WALTS-KIT CC80(W)-0105JY (trade name) manufactured by Waltz Co., Ltd.). It was laminated so that the resin composition layer in was in contact with. After that, the polyethylene terephthalate film in the laminate was peeled off. Then, using a flip-chip bonder (LFB-2301 (trade name), Shinkawa Co., Ltd.), under the conditions of a stage temperature of 85 ° C., a bond head temperature of 120 ° C., a load of 100 N, and a time of 1 second, it is composed of copper and solder. On a semiconductor chip having a Cu pillar as an electrode, placed so that the peeled surface of the resin composition layer is in contact and thermocompression bonded, then further heated under the conditions of a bond head temperature of 260 ° C., a load of 50 N, and a time of 4 seconds. Mounted by crimping. Image data of the mounted sample (semiconductor chip/resin composition layer/substrate for mounting semiconductor chip) was acquired using an ultrasonic precision flaw detection image processing device (μ-SDS (trade name), manufactured by KJTD Co., Ltd.). , the presence or absence of voids in the resin composition layer in the range of the semiconductor chip mounting portion was confirmed from the image data.
If the ratio of the area occupied by the portion where voids can be confirmed is less than 10% with respect to the entire area occupied by the resin composition layer in the range of the semiconductor chip mounting portion, A is the case, and 10% or more and less than 20%. was rated as B, the case of 20% or more and less than 30% was rated as C, and the case of 30% or more was rated as D. In addition, it is evaluated that the smaller the ratio of the area occupied by the portion where voids can be confirmed, the higher the insulation reliability can be obtained. , it is evaluated that a laminate with very high insulation reliability can be obtained.
 (2)熱硬化後のボイドの評価
 得られた積層体を8mm×8mmの正方形に切断した。切断された積層体は、半導体チップ搭載用基板((株)ウォルツ製WALTS-KIT CC80(W)―0105JY(商品名))のパッド部分における15μmの銅回路面に対して、切断後の積層体における樹脂組成物層が接するように積層した。その後、積層体におけるポリエチレンテレフタレートフィルムを剥離した。次いで、フリップチップボンダ(LFB-2301(商品名)、(株)新川)を用いて、ステージ温度85℃、ボンドヘッド温度120℃、荷重100N、及び時間1秒の条件で、銅とはんだで構成されるCuピラーを電極に持つ半導体チップ上に、樹脂組成物層の剥離面が接するように配置して熱圧着した後に、ボンドヘッド温度260℃、荷重50N、及び時間4秒の条件で更に熱圧着して実装を行った。実装後、防爆乾燥機(ESPEC製SPHH-201(商品名))を用いて、温度180℃にて2時間加熱処理し硬化させた後、硬化後のサンプル(半導体チップ/樹脂組成物層/半導体チップ搭載用基板)を超音波精密探傷画像処理装置(μ-SDS(商品名)、(株)KJTD製)を用いて画像データを取得し、半導体チップ実装部の範囲における樹脂組成物層のボイドの有無を該画像データから確認した。
 ボイドが確認できた部分が占める面積の割合が、半導体チップ実装部の範囲における樹脂組成物層が占める面積の全体に対して、10%未満の場合をAとし、10%以上20%未満の場合をBとし、20%以上30%未満の場合をCとし、30%以上の場合をDとして評価した。なお、ボイドが確認できた部分が占める面積の割合が小さいほど、絶縁信頼性が高い積層体が得られると評価され、特にボイドが確認できた部分が占める面積の割合が10%未満であると、絶縁信頼性が非常に高い積層体が得られると評価される。
(2) Evaluation of Voids after Thermal Curing The obtained laminate was cut into squares of 8 mm×8 mm. The cut laminate was applied to the 15 μm copper circuit surface in the pad portion of the semiconductor chip mounting board (WALTS-KIT CC80(W)-0105JY (trade name) manufactured by Waltz Co., Ltd.). It was laminated so that the resin composition layer in was in contact with. After that, the polyethylene terephthalate film in the laminate was peeled off. Then, using a flip-chip bonder (LFB-2301 (trade name), Shinkawa Co., Ltd.), under the conditions of a stage temperature of 85 ° C., a bond head temperature of 120 ° C., a load of 100 N, and a time of 1 second, it is composed of copper and solder. On a semiconductor chip having a Cu pillar as an electrode, placed so that the peeled surface of the resin composition layer is in contact and thermocompression bonded, then further heated under the conditions of a bond head temperature of 260 ° C., a load of 50 N, and a time of 4 seconds. Mounted by crimping. After mounting, using an explosion-proof dryer (ESPEC SPHH-201 (trade name)), after curing by heat treatment at a temperature of 180 ° C. for 2 hours, the cured sample (semiconductor chip / resin composition layer / semiconductor Image data is obtained using an ultrasonic precision flaw detection image processing device (μ-SDS (trade name), manufactured by KJTD Co., Ltd.), and voids in the resin composition layer in the range of the semiconductor chip mounting part. The presence or absence of was confirmed from the image data.
If the ratio of the area occupied by the portion where voids can be confirmed is less than 10% with respect to the entire area occupied by the resin composition layer in the range of the semiconductor chip mounting portion, A is the case, and 10% or more and less than 20%. was rated as B, the case of 20% or more and less than 30% was rated as C, and the case of 30% or more was rated as D. In addition, it is evaluated that the smaller the ratio of the area occupied by the portion where voids can be confirmed, the higher the insulation reliability can be obtained. , it is evaluated that a laminate with very high insulation reliability can be obtained.
 (3)熱硬化後のチップ接着性の評価
 得られた積層体を8mm×8mmの正方形に切断した。切断された積層体は、半導体チップ搭載用基板((株)ウォルツ製WALTS-KIT CC80(W)―0105JY(商品名))のパッド部分における15μmの銅回路面に対して、切断後の積層体における樹脂組成物層が接するように積層した。その後、積層体におけるポリエチレンテレフタレートフィルムを剥離した。次いで、フリップチップボンダ(LFB-2301(商品名)、(株)新川)を用いて、ステージ温度85℃、ボンドヘッド温度120℃、荷重100N、及び時間1秒の条件で、銅とはんだで構成されるCuピラーを電極に持つ半導体チップ上に、樹脂組成物層の剥離面が接するように配置して熱圧着した後に、ボンドヘッド温度260℃、荷重50N、及び時間4秒の条件で更に熱圧着して実装を行った。実装後、防爆乾燥機(ESPEC製SPHH-201(商品名))にて温度180℃にて2時間加熱処理し硬化させた。硬化後のサンプル(半導体チップ/樹脂組成物層/半導体チップ搭載用基板)を回転式研磨装置(装置名:MetaServ(登録商標)3000(商品名)、ビューラー社製)を用いて半導体チップのみを除去し、樹脂組成物層と半導体チップ搭載用基板との積層体(A)を得た。積層体(A)において、樹脂組成物層の表面を目視にて観察し、半導体チップ由来の配線層が該表面に付着されているか否かで、剥離の状況を確認した。
 前記配線層が全面的に樹脂組成物層側に残った場合は剥離が発生していないとしてAと表記し、前記配線層が一部欠けている場合は剥離が少し発生しているとしてBと表記し、半導体チップ除去作業中に半導体チップが欠落した場合、剥離が発生しているとしてCと表記した。なお、評価がAの場合、半導体チップが樹脂組成物層から欠落せず、チップ接着性が非常に優れていることから、絶縁信頼性が非常に高い積層体と評価される。評価がBの場合、本チップ接着性の評価では一部剥離が発生しているが、半導体装置としては問題なく稼働することから、チップ接着性は良好であり、絶縁信頼性は高い積層体と評価される。
 また、表1において、半導体チップ実装後において、半導体チップと樹脂組成物層との間にボイドが多く、半導体チップと樹脂組成物層とが接着していない部分が多いことによって、チップ接着性が測定できない場合、「E」と記載した。
(3) Evaluation of Chip Adhesion after Thermal Curing The obtained laminate was cut into a square of 8 mm×8 mm. The cut laminate was applied to the 15 μm copper circuit surface in the pad portion of the semiconductor chip mounting board (WALTS-KIT CC80(W)-0105JY (trade name) manufactured by Waltz Co., Ltd.). It was laminated so that the resin composition layer in was in contact with. After that, the polyethylene terephthalate film in the laminate was peeled off. Then, using a flip-chip bonder (LFB-2301 (trade name), Shinkawa Co., Ltd.), under the conditions of a stage temperature of 85 ° C., a bond head temperature of 120 ° C., a load of 100 N, and a time of 1 second, it is composed of copper and solder. On a semiconductor chip having a Cu pillar as an electrode, placed so that the peeled surface of the resin composition layer is in contact and thermocompression bonded, then further heated under the conditions of a bond head temperature of 260 ° C., a load of 50 N, and a time of 4 seconds. Mounted by crimping. After mounting, it was cured by heat treatment at 180° C. for 2 hours in an explosion-proof dryer (ESPEC SPHH-201 (trade name)). The cured sample (semiconductor chip/resin composition layer/semiconductor chip mounting substrate) was polished using a rotary polishing device (device name: MetaServ (registered trademark) 3000 (trade name), manufactured by Buehler) to remove only the semiconductor chip. It was removed to obtain a laminate (A) of the resin composition layer and the substrate for mounting a semiconductor chip. In the laminate (A), the surface of the resin composition layer was visually observed, and the state of peeling was confirmed based on whether or not the wiring layer derived from the semiconductor chip was adhered to the surface.
When the wiring layer remains entirely on the resin composition layer side, it is indicated as A because no peeling has occurred. When the semiconductor chip was chipped off during the semiconductor chip removal work, it was indicated as C, indicating that peeling had occurred. When the evaluation is A, the semiconductor chip does not fall off from the resin composition layer, and the chip adhesion is very excellent, so the laminate is evaluated as having very high insulation reliability. In the case where the evaluation is B, in this evaluation of chip adhesion, some peeling occurred, but since the semiconductor device operates without problems, the chip adhesion is good and the insulation reliability is high. evaluated.
In addition, in Table 1, after the semiconductor chip is mounted, there are many voids between the semiconductor chip and the resin composition layer, and there are many parts where the semiconductor chip and the resin composition layer are not bonded. If it cannot be measured, it is written as "E".
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
 本出願は、2021年10月15日出願の日本特許出願(特願2021-169227号)及び2022年2月24日出願の日本特許出願(特願2022-026578号)に基づくものであり、それらの内容はここに参照として取り込まれる。 This application is based on a Japanese patent application (Japanese Patent Application No. 2021-169227) filed on October 15, 2021 and a Japanese patent application (Japanese Patent Application No. 2022-026578) filed on February 24, 2022. The contents of are incorporated herein by reference.
 本実施形態の樹脂組成物は、低ボイド性、及びチップ接着性に優れることから、積層体、樹脂組成物層付き半導体チップ、樹脂組成物層付き半導体チップ搭載用基板、及び半導体装置の材料として好適に用いられる。樹脂組成物は、アンダーフィル材として好適であり、プリアプライドアンダーフィル材としてより好適である。 Since the resin composition of the present embodiment has low void properties and excellent chip adhesiveness, it can be used as a material for laminates, semiconductor chips with resin composition layers, substrates for mounting semiconductor chips with resin composition layers, and semiconductor devices. It is preferably used. The resin composition is suitable as an underfill material, and more suitable as a pre-applied underfill material.

Claims (25)

  1.  アミノトリアジンノボラック樹脂(A)と、
     マレイミド化合物(BA)及びシトラコンイミド化合物(BB)からなる群より選択される1種以上の化合物(B)と、
     無機充填材(D)と、
     を含有し、
     前記無機充填材(D)が、(メタ)アクリル基、ビニル基、スチリル基、及びフェニル基からなる群より選択される1種以上を含む官能基(d)を有する無機充填材(D1)を含み、
     前記化合物(B)が、化合物(B1)と、化合物(B2)と、を含み、
     前記化合物(B1)が、重量平均分子量が3,000以上9,500以下のマレイミド化合物(BA-1)及び重量平均分子量が3,000以上9,500以下のシトラコンイミド化合物(BB-1)からなる群より選択される1種以上であり、
     前記化合物(B2)が、重量平均分子量が300以上3,000未満のマレイミド化合物(BA-2)及び重量平均分子量が300以上3,000未満のシトラコンイミド化合物(BB-2)からなる群より選択される1種以上であり、
     各前記重量平均分子量は、ゲルパーミエーションクロマトグラフィー法により求められる標準ポリスチレン換算の値である、樹脂組成物。
    an aminotriazine novolac resin (A);
    one or more compounds (B) selected from the group consisting of maleimide compounds (BA) and citraconimide compounds (BB);
    an inorganic filler (D);
    contains
    The inorganic filler (D) has a functional group (d) containing one or more selected from the group consisting of a (meth)acrylic group, a vinyl group, a styryl group, and a phenyl group (D1). including
    The compound (B) comprises a compound (B1) and a compound (B2),
    The compound (B1) is a maleimide compound (BA-1) having a weight average molecular weight of 3,000 or more and 9,500 or less and a citraconimide compound (BB-1) having a weight average molecular weight of 3,000 or more and 9,500 or less. One or more selected from the group consisting of
    The compound (B2) is selected from the group consisting of a maleimide compound (BA-2) having a weight average molecular weight of 300 or more and less than 3,000 and a citraconimide compound (BB-2) having a weight average molecular weight of 300 or more and less than 3,000. is one or more of the
    The resin composition, wherein each weight average molecular weight is a standard polystyrene-equivalent value determined by a gel permeation chromatography method.
  2.  前記官能基(d)が、ケイ素原子をさらに含む、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the functional group (d) further contains a silicon atom.
  3.  前記無機充填材(D1)が、前記官能基(d)を有する化合物(d1)と当該官能基(d)を有しない無機充填材(d2)との反応物を含む、請求項1に記載の樹脂組成物。 2. The inorganic filler according to claim 1, wherein the inorganic filler (D1) comprises a reaction product of the compound (d1) having the functional group (d) and the inorganic filler (d2) having no functional group (d). Resin composition.
  4.  前記官能基(d)を有する化合物(d1)が、(メタ)アクリル基及び/又はビニル基を有するシラン化合物、並びにスチリル基を有するシラン化合物からなる群より選択される1種以上を含む、請求項3に記載の樹脂組成物。 wherein the compound (d1) having the functional group (d) contains one or more selected from the group consisting of a silane compound having a (meth)acrylic group and/or a vinyl group and a silane compound having a styryl group; Item 4. The resin composition according to item 3.
  5.  前記無機充填材(d2)が、シリカ、水酸化アルミニウム、アルミナ、ベーマイト、窒化ホウ素、窒化アルミニウム、酸化マグネシウム、及び水酸化マグネシウムからなる群より選択される1種以上を含む、請求項3に記載の樹脂組成物。 4. The inorganic filler (d2) according to claim 3, comprising one or more selected from the group consisting of silica, aluminum hydroxide, alumina, boehmite, boron nitride, aluminum nitride, magnesium oxide, and magnesium hydroxide. of the resin composition.
  6.  前記官能基(d)を有する化合物(d1)が、(メタ)アクリル基及び/又はビニル基を有するシラン化合物、並びにスチリル基を有するシラン化合物からなる群より選択される1種以上を含み、前記無機充填材(d2)が、シリカ、水酸化アルミニウム、アルミナ、ベーマイト、窒化ホウ素、窒化アルミニウム、酸化マグネシウム、及び水酸化マグネシウムからなる群より選択される1種以上を含む、請求項3に記載の樹脂組成物。 The compound (d1) having the functional group (d) contains one or more selected from the group consisting of a silane compound having a (meth)acrylic group and/or a vinyl group and a silane compound having a styryl group, 4. The inorganic filler (d2) according to claim 3, comprising one or more selected from the group consisting of silica, aluminum hydroxide, alumina, boehmite, boron nitride, aluminum nitride, magnesium oxide, and magnesium hydroxide. Resin composition.
  7.  前記無機充填材(D)の平均粒子径が、3μm以下である、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the inorganic filler (D) has an average particle size of 3 µm or less.
  8.  前記無機充填材(D)の含有量が、前記アミノトリアジンノボラック樹脂(A)と前記化合物(B)との合計100質量部に対して、20~500質量部である、請求項1に記載の樹脂組成物。 The content of the inorganic filler (D) is 20 to 500 parts by mass with respect to a total of 100 parts by mass of the aminotriazine novolak resin (A) and the compound (B). Resin composition.
  9.  前記アミノトリアジンノボラック樹脂(A)が、下記式(1)で表される化合物及び下記式(2)で表される化合物からなる群より選択される1種以上を含む、請求項1に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
     (式(1)中、R1は、各々独立に、水素原子、メチル基、又はエチル基を示し、l、m、及びnは、各々独立に、0~10の整数を示し、(l+m+n)は、1~20の整数を示す。)
    Figure JPOXMLDOC01-appb-C000002
     (式(2)中、R2は、各々独立に、水素原子、メチル基、又はエチル基を示し、o、p、q、r、及びsは、各々独立に、0~10の整数を示し、(o+p+q+r+s)は、1~20の整数を示す。)
    2. The aminotriazine novolac resin (A) according to claim 1, wherein the aminotriazine novolac resin (A) contains one or more selected from the group consisting of compounds represented by the following formula (1) and compounds represented by the following formula (2). Resin composition.
    Figure JPOXMLDOC01-appb-C000001
    (In formula (1), R 1 each independently represents a hydrogen atom, a methyl group, or an ethyl group; l, m, and n each independently represent an integer of 0 to 10; (l + m + n) indicates an integer from 1 to 20.)
    Figure JPOXMLDOC01-appb-C000002
    (In formula (2), each R 2 independently represents a hydrogen atom, a methyl group, or an ethyl group; o, p, q, r, and s each independently represents an integer of 0 to 10; , (o + p + q + r + s) represents an integer from 1 to 20.)
  10.  前記化合物(B1)の含有量が、前記化合物(B1)と前記化合物(B2)との合計100質量部に対して、45質量部以上90質量部以下であり、
     前記化合物(B2)の含有量が、前記化合物(B1)と前記化合物(B2)との合計100質量部に対して、10質量部以上55質量部以下である、請求項1に記載の樹脂組成物。
    The content of the compound (B1) is 45 parts by mass or more and 90 parts by mass or less with respect to a total of 100 parts by mass of the compound (B1) and the compound (B2),
    The resin composition according to claim 1, wherein the content of the compound (B2) is 10 parts by mass or more and 55 parts by mass or less with respect to a total of 100 parts by mass of the compound (B1) and the compound (B2). thing.
  11.  前記マレイミド化合物(BA-1)が、下記式(3)で表されるマレイミド化合物及び下記式(4)で表される構成単位と分子鎖の両末端にマレイミド基とを含むビスマレイミド化合物からなる群より選択される一種以上を含む、請求項1に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003
    (式中、nは1~30の整数を示す。)
    Figure JPOXMLDOC01-appb-C000004
    (式中、R11は炭素数1~16の直鎖状若しくは分岐状のアルキレン基、又は炭素数2~16の直鎖状若しくは分岐状のアルケニレン基を示し、R12は炭素数1~16の直鎖状若しくは分岐状のアルキレン基、又は炭素数2~16の直鎖状若しくは分岐状のアルケニレン基を示し、R13は各々独立に、水素原子、炭素数1~16の直鎖状若しくは分岐状のアルキル基、又は炭素数2~16の直鎖状若しくは分岐状のアルケニル基を示し、nは1以上10以下の整数を示す。)
    The maleimide compound (BA-1) consists of a maleimide compound represented by the following formula (3) and a bismaleimide compound containing a maleimide group at both ends of a structural unit represented by the following formula (4) and a molecular chain. The resin composition according to claim 1, comprising one or more selected from the group.
    Figure JPOXMLDOC01-appb-C000003
    (In the formula, n3 represents an integer of 1 to 30.)
    Figure JPOXMLDOC01-appb-C000004
    (In the formula, R 11 represents a linear or branched alkylene group having 1 to 16 carbon atoms, or a linear or branched alkenylene group having 2 to 16 carbon atoms, and R 12 represents 1 to 16 carbon atoms. A linear or branched alkylene group, or a linear or branched alkenylene group having 2 to 16 carbon atoms, and each R 13 is independently a hydrogen atom, a linear or branched chain having 1 to 16 carbon atoms, or A branched alkyl group, or a linear or branched alkenyl group having 2 to 16 carbon atoms, and n5 is an integer of 1 or more and 10 or less.)
  12.  前記マレイミド化合物(BA-2)が、下記式(5)で表されるマレイミド化合物及び下記式(6)で表されるマレイミド化合物からなる群より選択される一種以上を含む、請求項1に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000005
    (式中、Rは各々独立に、水素原子、メチル基、又はエチル基を示し、Rは各々独立に、水素原子又はメチル基を示す。)
    Figure JPOXMLDOC01-appb-C000006
    (式中、R10は各々独立に、水素原子、炭素数1~5のアルキル基、又はフェニル基を示し、nは1~10の整数を示す。)
    The maleimide compound (BA-2) according to claim 1, wherein the maleimide compound (BA-2) contains one or more selected from the group consisting of a maleimide compound represented by the following formula (5) and a maleimide compound represented by the following formula (6). of the resin composition.
    Figure JPOXMLDOC01-appb-C000005
    (In the formula, each R 8 independently represents a hydrogen atom, a methyl group, or an ethyl group, and each R 9 independently represents a hydrogen atom or a methyl group.)
    Figure JPOXMLDOC01-appb-C000006
    (In the formula, each R 10 independently represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or a phenyl group, and n 4 represents an integer of 1 to 10.)
  13.  フラックス活性剤(C)をさらに含む、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, further comprising a flux activator (C).
  14.  前記フラックス活性剤(C)が、ロジン系樹脂を含む、請求項13に記載の樹脂組成物。 The resin composition according to claim 13, wherein the flux activator (C) contains a rosin-based resin.
  15.  硬化触媒(E)をさらに含む、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, further comprising a curing catalyst (E).
  16.  前記硬化触媒(E)が、有機過酸化物及びイミダゾール化合物からなる群より選択される1種以上を含む、請求項15に記載の樹脂組成物。 The resin composition according to claim 15, wherein the curing catalyst (E) contains one or more selected from the group consisting of organic peroxides and imidazole compounds.
  17.  前記アミノトリアジンノボラック樹脂(A)の含有量が、前記アミノトリアジンノボラック樹脂(A)と前記化合物(B)との合計100質量部に対して、1~60質量部である、請求項1に記載の樹脂組成物。 2. The content of said aminotriazine novolak resin (A) is 1 to 60 parts by mass with respect to a total of 100 parts by mass of said aminotriazine novolac resin (A) and said compound (B). of the resin composition.
  18.  前記化合物(B)の含有量が、前記アミノトリアジンノボラック樹脂(A)と前記化合物(B)との合計100質量部に対して、40~85質量部である、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the content of said compound (B) is 40 to 85 parts by mass with respect to a total of 100 parts by mass of said aminotriazine novolak resin (A) and said compound (B). thing.
  19.  アンダーフィル材用である、請求項1~18のいずれか一項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 18, which is used as an underfill material.
  20.  支持基材と、
     前記支持基材上に積層され、かつ、請求項1~18のいずれか一項に記載の樹脂組成物を含む樹脂組成物層と、
     を備える、積層体。
    a supporting substrate;
    A resin composition layer laminated on the supporting substrate and containing the resin composition according to any one of claims 1 to 18;
    A laminate.
  21.  前記樹脂組成物層の厚さが、5~500μmの範囲である、請求項20に記載の積層体。 The laminate according to claim 20, wherein the resin composition layer has a thickness in the range of 5 to 500 µm.
  22.  半導体チップと、
     前記半導体チップに積層され、かつ、請求項1~18のいずれか一項に記載の樹脂組成物を用いて形成された層と、
     を備える、樹脂組成物層付き半導体チップ。
    a semiconductor chip;
    A layer laminated on the semiconductor chip and formed using the resin composition according to any one of claims 1 to 18;
    A semiconductor chip with a resin composition layer.
  23.  半導体チップ搭載用基板と、
     前記半導体チップ搭載用基板に積層され、かつ、請求項1~18のいずれか一項に記載の樹脂組成物を用いて形成された層と、
     を備える、樹脂組成物層付き半導体チップ搭載用基板。
    a substrate for mounting a semiconductor chip;
    A layer laminated on the semiconductor chip mounting substrate and formed using the resin composition according to any one of claims 1 to 18,
    A substrate for mounting a semiconductor chip with a resin composition layer.
  24.  請求項22に記載の樹脂組成物層付き半導体チップを備える、半導体装置。 A semiconductor device comprising the semiconductor chip with the resin composition layer according to claim 22.
  25.  請求項23に記載の樹脂組成物層付き半導体チップ搭載用基板を備える、半導体装置。 A semiconductor device comprising the substrate for mounting a semiconductor chip with the resin composition layer according to claim 23.
PCT/JP2022/037765 2021-10-15 2022-10-11 Resin composition, layered product, semiconductor chip with resin composition layer, substrate on which semiconductor chip with resin composition layer is to be mounted, and semiconductor device WO2023063282A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023554509A JPWO2023063282A1 (en) 2021-10-15 2022-10-11

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-169227 2021-10-15
JP2021169227 2021-10-15
JP2022-026578 2022-02-24
JP2022026578 2022-02-24

Publications (1)

Publication Number Publication Date
WO2023063282A1 true WO2023063282A1 (en) 2023-04-20

Family

ID=85987761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037765 WO2023063282A1 (en) 2021-10-15 2022-10-11 Resin composition, layered product, semiconductor chip with resin composition layer, substrate on which semiconductor chip with resin composition layer is to be mounted, and semiconductor device

Country Status (3)

Country Link
JP (1) JPWO2023063282A1 (en)
TW (1) TW202328333A (en)
WO (1) WO2023063282A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108524A1 (en) * 2010-03-02 2011-09-09 三菱瓦斯化学株式会社 Resin composition, prepreg, and laminated sheet
WO2011126070A1 (en) * 2010-04-08 2011-10-13 三菱瓦斯化学株式会社 Resin composition, prepreg and laminate
US20150065608A1 (en) * 2013-09-03 2015-03-05 Samsung Electro-Mechanics Co., Ltd. Insulating resin composition for printed circuit board and products manufactured by using the same
WO2016117237A1 (en) * 2015-01-21 2016-07-28 太陽インキ製造株式会社 Thermosetting resin composition, dry film, cured product and printed wiring board
JP2016222838A (en) * 2015-06-02 2016-12-28 日立化成株式会社 Thermosetting resin composition, prepreg, laminate and printed wiring board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108524A1 (en) * 2010-03-02 2011-09-09 三菱瓦斯化学株式会社 Resin composition, prepreg, and laminated sheet
WO2011126070A1 (en) * 2010-04-08 2011-10-13 三菱瓦斯化学株式会社 Resin composition, prepreg and laminate
US20150065608A1 (en) * 2013-09-03 2015-03-05 Samsung Electro-Mechanics Co., Ltd. Insulating resin composition for printed circuit board and products manufactured by using the same
WO2016117237A1 (en) * 2015-01-21 2016-07-28 太陽インキ製造株式会社 Thermosetting resin composition, dry film, cured product and printed wiring board
JP2016222838A (en) * 2015-06-02 2016-12-28 日立化成株式会社 Thermosetting resin composition, prepreg, laminate and printed wiring board

Also Published As

Publication number Publication date
TW202328333A (en) 2023-07-16
JPWO2023063282A1 (en) 2023-04-20

Similar Documents

Publication Publication Date Title
JP7253151B2 (en) Resin composition, laminate, semiconductor wafer with resin composition layer, substrate for mounting semiconductor with resin composition layer, and semiconductor device
TW200426200A (en) B-stageable die attach adhesives
JP6930670B2 (en) Resin composition, resin sheet, laminate, semiconductor wafer with resin composition layer, semiconductor mounting substrate with resin composition layer, and semiconductor device
TWI740953B (en) Resin composition, laminate, semiconductor wafer with resin composition layer, semiconductor mounting substrate with resin composition layer, and semiconductor device
TWI770028B (en) Resin composition, laminate, semiconductor wafer with resin composition layer, semiconductor mounting substrate with resin composition layer, and semiconductor device
JP7515788B2 (en) Film, laminate, semiconductor wafer with film layer, semiconductor mounting substrate with film layer, and semiconductor device
WO2023063282A1 (en) Resin composition, layered product, semiconductor chip with resin composition layer, substrate on which semiconductor chip with resin composition layer is to be mounted, and semiconductor device
WO2023063277A1 (en) Resin composition, laminate, semiconductor chip having resin composition layer, substrate for mounting semiconductor chip having resin composition layer, and semiconductor device
JP7565016B2 (en) Film, laminate, semiconductor wafer with film layer, semiconductor mounting substrate with film layer, and semiconductor device
JP2023122842A (en) Resin composition, laminate, semiconductor chip with resin composition layer, substrate to be equipped with semiconductor chip with resin composition layer, and semiconductor device
JP2024015839A (en) Resin composition, laminate, semiconductor chip with resin composition layer, substrate for mounting semiconductor chip with resin composition layer, and semiconductor device
JP7515787B2 (en) Film, laminate, semiconductor wafer with film layer, semiconductor mounting substrate with film layer, and semiconductor device
JP2023122840A (en) Resin composition, laminate, semiconductor chip with resin composition layer, substrate to be equipped with semiconductor chip with resin composition layer, and semiconductor device
WO2023063280A1 (en) Film underfill material, resin composition for film underfill material, method for manufacturing semiconductor chip with resin composition layer using film underfill material, method for manufacturing substrate for mounting semiconductor chip with resin composition layer, and method for manufacturing semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22880977

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023554509

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22880977

Country of ref document: EP

Kind code of ref document: A1