WO2023063035A1 - Processing device for multi-core shielded cable - Google Patents

Processing device for multi-core shielded cable Download PDF

Info

Publication number
WO2023063035A1
WO2023063035A1 PCT/JP2022/035096 JP2022035096W WO2023063035A1 WO 2023063035 A1 WO2023063035 A1 WO 2023063035A1 JP 2022035096 W JP2022035096 W JP 2022035096W WO 2023063035 A1 WO2023063035 A1 WO 2023063035A1
Authority
WO
WIPO (PCT)
Prior art keywords
shielded cable
core
wire
drain
multicore
Prior art date
Application number
PCT/JP2022/035096
Other languages
French (fr)
Japanese (ja)
Inventor
丈彦 江崎
浩昭 白井
守弘 岡田
Original Assignee
新明和工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新明和工業株式会社 filed Critical 新明和工業株式会社
Publication of WO2023063035A1 publication Critical patent/WO2023063035A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G1/00Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines
    • H02G1/12Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for removing insulation or armouring from cables, e.g. from the end thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G1/00Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines
    • H02G1/14Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for joining or terminating cables
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/82Recycling of waste of electrical or electronic equipment [WEEE]

Definitions

  • the present invention relates to a processing device for multicore shielded cables having drain wires and core wires.
  • the device disclosed in Patent Document 1 has two core wire position detection mechanisms, a tracing mechanism and a color sensor. Therefore, the device disclosed in Patent Document 1 has a complicated configuration.
  • the present invention has been made in view of such a point, and its object is to provide a multi-core shielded cable having a drain wire and a core wire, in which the rotational position of the drain wire can be adjusted with a simpler structure. It is to provide a processing device.
  • a processing apparatus for a multicore shielded cable holds a multicore shielded cable in which a drain wire and a core wire are exposed from a sheath along a predetermined axis, and rotates the multicore shielded cable around the axis.
  • an image acquisition device capable of acquiring an image of the drain line and the core line held by the holding device; and a lightness distribution in the image acquired by the image acquisition device,
  • a discriminating device that discriminates the drain wire, and a control device that controls the holding device based on the discrimination by the discriminating device and moves the drain wire to a predetermined rotational position about the axis.
  • the drain wire can be determined using the brightness distribution in the image acquired by the image acquisition device. Therefore, regarding the multicore shielded cable having the drain wire and the core wire, the rotational position of the drain wire can be adjusted with a simpler configuration.
  • the holding devices are capable of holding the multicore shielded cables and rotating them around the axis. It includes a first retainer and a second retainer arranged side by side.
  • a processing device for a multicore shielded cable includes a cutting device for forming a cut at a predetermined cutting position along the axis of the sheath, and at least one of the first holding device and the second holding device.
  • the first holding device holds the sheath on the distal end side of the multicore shielded cable from the cutting position.
  • the second holding device holds the sheath on the root side of the multicore shielded cable from the cutting position.
  • the control device causes the first holding device and the second holding device to hold the multicore shielded cable, and controls the cutting device in a state in which the multicore shielded cable is held to form the cut in the sheath. to form
  • the control device controls the moving device to expose a portion of the drain wire and the core wire after the cut is formed in the sheath and to expose the other portion of the drain wire and the core wire.
  • a semi-strip is performed to pull out the sheath on the distal side so that the sheath on the distal side remains partially.
  • the control device causes the image acquisition device to acquire images of the drain line and the core line after the semi-stripping.
  • the multi-core shielded cable processing device it is possible to prevent the drain wires from being separated and becoming difficult to discriminate when the discriminating device discriminates the drain wires.
  • the control device drives at least one of the first holding device and the second holding device in the semi-strip to move the distal end side of the cable.
  • the sheath is rotated with respect to the sheath on the root side to untwist the drain wire and the core wire.
  • the drain wire can be easily identified by untwisting the drain wire and the core wire.
  • the first holding device and the second holding device rotate in synchronization when the drain wire is moved to the predetermined rotational position.
  • the first gripping member and the second rotating gripping member grip the tip side and the root side of the multicore shielded cable and rotate synchronously, so that the multicore shielded cable rotates.
  • the axis of the is hard to shake, and the rotation is stable. Therefore, the certainty of adjusting the rotational position of the drain wire is also improved.
  • the multi-core shielded cable processing device is arranged radially outward of the multi-core shielded cable held by the holding device, and the drain It further comprises a gripping member for non-rotatably securing or rotatably releasing the wire and said core wire, and a drive for driving said gripping member.
  • the control device controls the driving device to fix the drain wire and the core wire to the holding member after the drain wire is moved to the predetermined rotational position. Further, the control device controls the moving device to rotate the distal end side sheath while controlling the first holding device to rotate the distal end side sheath in a state where the drain wire and the core wire are fixed. Detach the sheath from the multicore shielded cable.
  • the sheath on the tip side can be removed from the multi-core shielded cable while untwisting the drain wire and the core wire. Moreover, at that time, the drain wire and the core wire are fixed by the holding member so as not to be rotatable, so that the drain wire is held at a predetermined rotational position.
  • the multi-core shielded cable processing device moves the gripping member in a direction opposite to the direction corresponding to the predetermined rotational position when viewed in the axial direction. It further comprises a separating device that allows the The gripping member has a gap at the predetermined rotational position in a state in which the drain wire and the core wire are non-rotatably fixed.
  • the control device separates the core wire and the drain wire by controlling the separating device and moving the gripping member after separating the sheath on the distal end side from the multicore shielded cable.
  • the core wire is bent in the direction opposite to the direction corresponding to the rotational position of the drain wire by the gripping member, and the drain wire is not bent because it passes through the gap of the gripping device. Thereby, the drain line and the core line can be separated.
  • the multicore shielded cable is bent in a U shape so that both ends face the same direction, and the drain wire and the core are bent at both ends. Exposed lines.
  • the processing apparatus for a multicore shielded cable further includes a conveying device that conveys the multicore shielded cable in a conveying direction that intersects with the axis and sequentially transfers both ends of the multicore shielded cable to the holding device.
  • the multi-core shielded cable processing device it is possible to continuously adjust the rotational positions of the drain wires at both ends of the multi-core shielded cable.
  • the control device rotates one end of the multicore shielded cable in a first rotation direction to rotate the drain wire at the one end to the predetermined position.
  • the other end is rotated in a second rotational direction opposite to the first rotational direction to move the drain wire of the other end to the predetermined rotational position.
  • both ends of the multicore shielded cable are rotated in opposite directions, so that twisting of the U-bent multicore shielded cable can be suppressed.
  • the image acquisition device is provided in a direction corresponding to the predetermined rotational position with respect to the axis when viewed in the axial direction.
  • the control device reverses the rotation direction when the rotation angle of the multicore shielded cable reaches a predetermined angle of 90 degrees or more and the drain wire is not detected.
  • the image acquisition device is provided in the direction corresponding to the predetermined rotational position with respect to the axis. Therefore, the drain wire may not enter the image acquisition area of the image acquisition device before the rotation of the multicore shielded cable. If the drain wire is not detected even when the rotation angle of the multicore shielded cable reaches 90 degrees or more, if the rotation is continued as it is, the final rotation angle exceeds 180 degrees. However, if the direction of rotation is reversed, the final rotation angle will be within 180 degrees. Therefore, it is possible to reduce the angle at which the ends of the multicore shielded cable are rotated. As a result, twisting of the U-bent multicore shielded cable can be suppressed. However, if the multicore shielded cable is rotated in reverse, the time required to determine the position of the drain wire often increases. The angle may be appropriately set.
  • the rotation position about the axis in the image acquired by the image acquisition device is a first region set within a predetermined range in the circumferential direction. , and a second region set in a predetermined range in the circumferential direction so as to partially overlap the first region.
  • the predetermined rotational position is the overlapping portion of the first area and the second area.
  • the drain wire is rotated in a predetermined manner by the sum of simple image processing of detection of the drain wire in the first region and detection of the drain wire in the second region. can be stopped in position.
  • an outer region is set outside the first region and the second region.
  • the control device is configured to control the holding device to rotate the multicore shielded cable by a predetermined angle when the drain wire is detected in the outer region.
  • the predetermined angle is set to an angle at which the drain line reaches only up to this side of the predetermined rotational position.
  • the multicore shielded cable processing apparatus the multicore shielded cable is rotated by a predetermined angle in the outer region, so that the drain wire can be brought closer to the predetermined rotation position more quickly. Moreover, the multicore shielded cable is once positioned in the first area or the second area before reaching the predetermined rotational position. Therefore, from there, the drain wire can be stopped at a predetermined rotational position by the control described above.
  • the control device when the drain wire is detected in both the first region or the second region and the outer region, exists in the outer region, and the holding device rotates the multicore shielded cable.
  • the drain wire when the drain wire is detected in both the first region or the second region and the outer region, the drain wire is regarded as existing in the outer region. , the drain wire can be brought closer to a predetermined rotational position.
  • the image acquisition device includes: a light source that generates light to irradiate the drain line and the core line; and an image acquisition unit that acquires light reflected by the drain line and the core line.
  • the image acquisition device acquires the reflected light of the light it emits. Therefore, detection of the drain line is less susceptible to external light.
  • the light generated by the light source is infrared light.
  • the light emitted by itself is infrared light, so the detection of the drain wire is less susceptible to external visible light.
  • the image acquisition unit is off the optical axis of specularly reflected light from the drain line and the core line of the light generated by the light source. is provided as follows.
  • the multicore shielded cable processing device it is possible to reduce the possibility of erroneous detection of the drain wire due to strong specular reflection of the core wire.
  • the rotation position of the drain wire can be adjusted with a simpler configuration for the multicore shielded cable having the drain wire and the core wire.
  • FIG. 1 is a schematic cross-sectional view of a multicore shielded cable
  • FIG. FIG. 2 is a schematic plan view of a processing device for multicore shielded cables
  • FIG. 4 is a schematic perspective view of a station that separates a drain wire from a plurality of core wires
  • 1 is a block diagram of a processing device for a multicore shielded cable
  • FIG. 4 is a flow chart showing a process from holding a multicore shielded cable to separating core wires.
  • FIG. 4 is a schematic perspective view of the processing equipment during the semi-stripping process
  • FIG. 4 is a schematic perspective view of the processing equipment during the adjustment process
  • 1 is a schematic perspective view of the processing equipment during the entire stripping process;
  • FIG. 4 is a schematic front view of the processing equipment during the separation process;
  • FIG. 4 is a schematic diagram of an image obtained by an image acquisition device;
  • FIG. 4 is a schematic front view of the multicore shielded cable, showing division of the rotation area;
  • 4 is a flow chart showing an example of an adjustment process;
  • FIG. 1 is a schematic cross-sectional view of a multicore shielded cable 1 according to one example.
  • the multicore shielded cable 1 has a sheath 2 , a drain wire 3 and a plurality of core wires 4 inserted through the sheath 2 , and a shield 5 .
  • a multicore shielded cable 1 is an electric wire in which a drain wire 3 , a plurality of core wires 4 and a shield 5 are covered with a sheath 2 .
  • a plurality of core lines 4 are used, for example, as signal lines for transmitting electrical signals.
  • Each of the plurality of core wires 4 has a core wire 4a and an insulator covering 4b covering the core wire 4a.
  • the shield 5 is a conductor that shields the core wire 4 from external noise.
  • a shield 5 covers the outside of the plurality of core wires 4 .
  • Drain wire 3 is electrically connected to shield 5 .
  • the drain line 3 is grounded, thereby grounding the shield 5 .
  • the drain wire 3 is composed of a plurality of thin conductor strands and is not covered with an insulator. Although not shown, the drain wire 3 and a plurality of core wires 4 are twisted together inside the shield 5 .
  • the shield 5 is covered by an insulating sheath 2 .
  • FIG. 2 is a schematic plan view of a processing device 10 (hereinafter simply referred to as the processing device 10) for the multicore shielded cable 1 according to one embodiment.
  • the processing apparatus 10 includes a plurality of stations St each provided with a device for processing the multicore shielded cable 1, and a transfer apparatus 20 for transporting the multicore shielded cable 1 to the plurality of stations St. , is equipped with The conveying device 20 conveys the multicore shielded cable 1 in a predetermined conveying direction.
  • the conveying direction of the multicore shielded cable 1 is also referred to as the left-right direction.
  • a plurality of stations St are arranged in the horizontal direction along the transport path of the multicore shielded cable 1 .
  • each station St as seen from the transport device 20 is hereinafter referred to as the forward direction and denoted by symbol F.
  • F, Rr, L, R, U, and D represent front, back, left, right, up and down, respectively.
  • the conveying device 20 conveys the multicore shielded cable 1 from right to left.
  • the right side is the upstream side in the conveying direction of the multicore shielded cable 1 .
  • the left side is the downstream side in the conveying direction of the multicore shielded cable 1 .
  • these directions are for convenience of explanation, and do not limit the installation mode of the processing apparatus 10 in any way.
  • the front may change depending on the station St.
  • the multicore shielded cable 1 is bent in a U shape so that both ends face the same direction. Both ends of the multicore shielded cable 1 here face forward, ie, toward each station St.
  • the left end and right end of the multicore shielded cable 1 are hereinafter denoted by 1L and 1R, respectively.
  • the carrier device 20 includes a carrier clamp 21 that holds the multicore shielded cable 1 as described above.
  • the conveying device 20 further includes a clamp moving device 22 that moves the conveying clamp 21 in the left-right direction.
  • FIG. 3 is a schematic perspective view of a station St that separates the drain wire 3 and a plurality of core wires 4.
  • the processing of the multicore shielded cable 1 performed at each station St is not particularly limited, but in the present embodiment, at the station St of FIG. Adjustment of the rotational position of the drain wire 3 (hereinafter also referred to as an adjustment step) and separation of the drain wire 3 and the plurality of core wires 4 are performed by rotating in the direction.
  • the processing device 10 includes a holding device 30, a moving device 40 (see FIG. 4), a cutting device 50, an image acquiring device 60, and a core line separating device 70. I have.
  • the holding device 30 is a device that holds the multicore shielded cable 1 along a predetermined axis Ax and rotates the multicore shielded cable 1 around the axis Ax.
  • the axis Ax here extends substantially horizontally in the front-rear direction.
  • the axis Ax and the transport direction of the multicore shielded cable 1 by the transport device 20 intersect (orthogonal here).
  • the conveying device 20 is configured to convey the multicore shielded cable 1 in the conveying direction intersecting the axis Ax, and sequentially transfer both ends 1L and 1R of the multicore shielded cable 1 to the holding device 30 . As shown in FIG.
  • the holding device 30 comprises a first rotary clamp 31 , a second rotary clamp 32 and a fixed clamp 33 .
  • the first rotating clamp 31 and the second rotating clamp 32 are configured to hold the multicore shielded cable 1 and rotate it around the axis Ax.
  • the first rotating clamp 31 and the second rotating clamp 32 are arranged along the axis Ax and are arranged in the front-rear direction.
  • the front-rear direction is the axial direction of the holding device 30 .
  • the first rotary clamp 31 is arranged forward of the second rotary clamp 32 here.
  • the first rotating clamp 31 is a clamp that holds the sheath 2F on the distal side of the cut 2a after the cut 2a is formed in the sheath 2 (see FIG. 6).
  • the second rotating clamp 32 is a clamp that holds the sheath 2R on the root side of the cut 2a after the cut 2a is formed in the sheath 2 (also see FIG. 6).
  • the fixed clamp 33 is provided between the first rotary clamp 31 and the second rotary clamp 32, and non-rotatably grips the proximal sheath 2R when closed (see FIG. 6).
  • the fixed clamp 33 is separated from the proximal sheath 2R when opened.
  • the first rotating clamp 31, the second rotating clamp 32, and the fixed clamp 33 are all driven toward or away from the axis Ax by an actuator (not shown).
  • the actuator is, for example, an air cylinder. However, the type of actuator is not particularly limited.
  • the first rotating clamp 31 is configured to be able to control the rotating direction, rotating angle, and rotating speed of the held multicore shielded cable 1 .
  • the first rotary clamp 31 has, for example, a servomotor and gears (not shown). However, the configuration of the first rotary clamp 31 is not limited to the above.
  • the second rotating clamp 32 is also configured to be able to control the rotating direction, rotating angle, and rotating speed of the held multicore shielded cable 1 .
  • the moving device 40 moves at least one of the first rotating clamp 31 and the second rotating clamp 32 in the front-rear direction, thereby bringing the first rotating clamp 31 and the second rotating clamp 32 closer to or away from each other.
  • the moving device 40 moves the first rotary clamp 31 in the front-rear direction.
  • the moving device 40 may move the second rotating clamp 32 in the front-rear direction, or may move both the first rotating clamp 31 and the second rotating clamp 32 in the front-rear direction.
  • the moving device 40 includes, for example, a stepping motor (not shown), a ball screw, and a guide rail.
  • the cutting device 50 is a device that forms a cut 2a in the sheath 2. As shown in FIG. 3, the cutting device 50 forms a cut 2a at a predetermined position along the axis Ax of the sheath 2 (hereinafter also referred to as cutting position Pc).
  • the first rotating clamp 31 is provided forward of the cutting position Pc and holds the sheath 2 on the distal end side of the multicore shielded cable 1 from the cutting position Pc.
  • the second rotating clamp 32 is provided behind the cutting position Pc and holds the sheath 2 on the root side of the multicore shielded cable 1 relative to the cutting position Pc.
  • the first rotary clamp 31 holds the sheath 2F on the distal side of the cut 2a.
  • the second rotating clamp 32 holds the sheath 2R on the root side of the cut 2a.
  • the cutting device 50 here includes a plurality of cutting blades 51 arranged so as to surround the axis Ax of the holding device 30 .
  • the cutting device 50 is configured to rotate a plurality of cutting blades 51 around the axis Ax.
  • the cutting device 50 forms a cut 2a in the sheath 2 by bringing the cutting blade 51 closer to the axis Ax and rotating the cutting blade 51 with the multicore shielded cable 1 sandwiched therebetween.
  • the processing device 10 controls the moving device 40 to partially pull out the sheath 2F on the tip side of the cut 2a, thereby separating the drain wire 3 and the core wire. 4 are exposed from the sheath 2.
  • the image acquisition device 60 captures an image of the drain wire 3 and the core wire 4 held by the holding device 30 (the drain wire 3 and the core wire 4 held by the holding device 30 and exposed from the sheath 2). is configured to be able to obtain
  • image acquisition device 60 is a camera with a light source.
  • the image acquisition device 60 includes a light source 61 that generates light to irradiate the drain line 3 and the core line 4, and an image acquisition unit 62 that acquires reflected light from the light generated by the light source 61 by the drain line 3 and the core line 4. , is equipped with
  • the image acquisition device 60 is provided in the 0 o'clock direction (above) with respect to the axis line Ax when viewed in the front-rear direction.
  • the 0 o'clock position is a predetermined rotational position (hereinafter also referred to as a stop position 200, see FIG. 11) for moving the drain wire 3 in the step of adjusting the rotational position of the drain wire 3. be.
  • the image acquisition device 60 can accurately reflect the stop position 200 of the drain wire 3 in the image as the position in the left-right direction.
  • the image acquisition device 60 is provided with an inclination such that the optical axis L1 of the light source 61 is inclined in the front-rear direction. As shown in FIG.
  • the angle between the vertical direction and the optical axis L1 is ⁇ .
  • the angle ⁇ is preferably an angle of 15 degrees or less.
  • the inclination of the optical axis L1 is set so that specularly reflected light from the drain line 3 and the core line 4 of the light generated by the light source 61 does not directly irradiate the image acquisition section 62 . Therefore, the inclination ⁇ of the optical axis L1 is not particularly limited. All you have to do is For example, if the axis of the image acquisition unit 62 is set to be inclined with respect to the optical axis L1, the optical axis L1 may be set vertically.
  • the light generated by the light source 61 is infrared light.
  • the image acquisition unit 62 is configured to detect infrared light. By using infrared light as the light emitted by the light source 61 and the light detected by the image acquisition unit 62, the influence of natural light not emitted by the light source 61 can be reduced.
  • the core wire separating device 70 includes a pair of chucks 71 that open and close, a chuck opening/closing device 72, and a chuck moving device 73. As shown in FIG. 3 , the pair of chucks 71 are arranged radially outward of the multicore shielded cable 1 held by the holding device 30 . A pair of chucks 71 are provided here on the left and right sides of the axis Ax. Each of the pair of chucks 71 has a gripping arm 71a extending in the vertical direction, and a projecting portion 71b connected to the upper end of the gripping arm 71a and extending substantially horizontally toward the axis Ax. A pair of chucks 71 with gripping arms 71 a are provided so as to surround the multicore shielded cable 1 .
  • the chuck opening/closing device 72 is a driving device that drives and opens and closes the pair of chucks 71 .
  • the chuck opening/closing device 72 moves the pair of chucks 71 in the horizontal direction.
  • the chuck opening/closing device 72 has, for example, an air cylinder.
  • the configuration of the chuck opening/closing device 72 is not limited.
  • a pair of chucks 71 non-rotatably fix the drain wire 3 and the core wire 4 or rotatably release them.
  • the pair of chucks 71 are located on the tip side of the multicore shielded cable 1 from the imaging range of the image acquisition device 60 , or at least in front of the rear end of the imaging range of the image acquisition device 60 .
  • the image acquisition device 60 can capture an image of the root side of the multicore shielded cable 1 rather than the chuck 71 .
  • the pair of chucks 71 have a gap at the 0 o'clock position when the drain wire 3 and the core wire 4 are non-rotatably fixed. Even when the pair of chucks 71 fix the drain wire 3 and the core wire 4, the pair of protrusions 71b are separated from each other to form a gap therebetween.
  • the chuck moving device 73 moves the chuck 71 in the direction (upward) opposite to the direction (upward) corresponding to the stop position 200 of the drain wire 3 (0 o'clock position here, see FIG. 11) when viewed in the direction of the axis Ax.
  • the direction in which the chuck 71 is moved is also referred to as the bending direction of the core wire 4 or simply the bending direction.
  • the bending direction of the core wire 4 is the 6 o'clock direction (downward) when viewed in the direction of the axis Ax.
  • the bending direction of the core wire 4 is obliquely forward and downward.
  • the chuck moving device 73 has, for example, an air cylinder.
  • the configuration of the chuck moving device 73 is not limited.
  • the processing device 10 may include a device for heating the drain wire 3 by covering it with a heat-shrinkable tube, a terminal crimping device, etc., but the description thereof will be omitted.
  • the processing by the apparatus shown in FIG. 3 is first performed on the left end 1L, which is the forward end in the transport direction of the U-bent multicore shielded cable 1 .
  • the multicore shielded cable 1 is moved leftward by the conveying device 20, and the right end 1R of the multicore shielded cable 1 is subjected to the same processing.
  • the left end 1L of the multicore shielded cable 1 may be processed in the next station St. .
  • FIG. 4 is a block diagram of the processing device 10.
  • the processing device 10 includes a discrimination control device 80 that discriminates the drain line 3 based on the image of the image acquisition device 60 and controls the operation of each section.
  • the determination control device 80 includes a determination device 90 and a control device 100 .
  • the discrimination device 90 and the control device 100 are realized by one piece of hardware as the discrimination control device 80 .
  • the determination device 90 and the control device 100 may be realized by a plurality of interconnected hardware. As shown in FIG.
  • the determination control device 80 includes a transport clamp 21, a clamp moving device 22, a first rotating clamp 31, a second rotating clamp 32, a fixed clamp 33, a moving device 40, a cutting device 50, and an image acquisition device. 60, chuck opening/closing device 72, and chuck moving device 73 to control their operations.
  • the configurations of the determination device 90 and the control device 100 are not particularly limited.
  • the determination device 90 and the control device 100 may include, for example, a central processing unit (hereinafter referred to as a CPU), a ROM storing programs executed by the CPU, and a RAM.
  • a CPU central processing unit
  • ROM storing programs executed by the CPU
  • RAM random access memory
  • Each unit of the determination device 90 and the control device 100 may be configured by software or may be configured by hardware. Also, each unit may be a processor or a circuit.
  • Discrimination device 90 and control device 100 may be, for example, a programmable controller, a computer, or the like.
  • the discrimination device 90 discriminates the drain line 3 based on the brightness distribution in the image acquired by the image acquisition device 60 .
  • the discriminating device 90 determines that the drain line 3 exists in the region when a predetermined number or more of pixels having brightness higher than a predetermined threshold value exist in the region.
  • the image acquired by the image acquisition device 60 is divided into a plurality of virtual regions.
  • the drain wire 3 is made of a conductor element wire and has metallic luster. Therefore, if the drain line 3 exists in the region, the number of pixels whose lightness (intensity of reflected light) exceeds the threshold is equal to or greater than a predetermined number (threshold).
  • the multiple core wires 4 are covered with a covering 4b.
  • the discriminating device 90 discriminates between the drain wire 3 and the core wire 4 by such a method.
  • the discriminating device 90 includes a threshold registering section 91 and a discriminating section 92 .
  • the threshold registration unit 91 registers a brightness threshold and a threshold for the number of pixels having brightness exceeding the threshold.
  • the discrimination unit 92 discriminates the drain line 3 using the two thresholds registered in the threshold registration unit 91 .
  • the determination of the drain line 3 by the determination device 90 may be performed based on the distribution of brightness in the image acquired by the image acquisition device 60, and the method is not limited to the above.
  • the control device 100 includes a conveyance control unit 101, a holding control unit 102, a rotation control unit 103, a cutting control unit 104, a pull-out control unit 105, an image acquisition control unit 106, A grip control unit 107 , a separation control unit 108 and a rotation setting unit 109 are provided.
  • the control device 100 may have other control units, but illustration and description thereof are omitted here.
  • the transport control unit 101 controls the transport clamp 21 and clamp moving device 22 of the transport device 20 .
  • the holding control unit 102 controls opening and closing operations of the first rotary clamp 31 , the second rotary clamp 32 and the fixed clamp 33 .
  • the rotation control unit 103 controls rotation operations of the first rotary clamp 31 and the second rotary clamp 32 .
  • the rotation control unit 103 controls the rotation angle and the rotation speed determined by the rotation setting unit 109. to control the operation of the first rotary clamp 31 and the second rotary clamp 32 based on.
  • the rotation control unit 103 includes a rotation angle control unit 103A that controls the rotation angles of the first rotation clamp 31 and the second rotation clamp 32, and a rotation speed control unit 103B that controls the rotation speed. I have.
  • the cutting control unit 104 controls the operation of the cutting device 50 .
  • the pull-out control unit 105 controls the operation of the moving device 40 .
  • the image acquisition control unit 106 controls the image acquisition device 60 to acquire images of the drain wire 3 and the core wire 4 .
  • the image acquisition control unit 106 controls the light source 61 of the image acquisition device 60 to emit infrared light, and controls the image acquisition unit 62 to acquire an image.
  • the grip control unit 107 controls the operation of the chuck opening/closing device 72 of the core wire separating device 70 .
  • the separation control unit 108 controls the operation of the chuck moving device 73 of the core wire separating device 70 .
  • the rotation setting unit 109 determines the operations of the first rotary clamp 31 and the second rotary clamp 32 in the adjustment process. As shown in FIG. 4, the rotation setting unit 109 includes a position recognition unit 109A, a rotation angle determination unit 109B, and a rotation speed determination unit 109C. Although the details will be described later, the position recognizing unit 109A recognizes in which region of the plurality of virtual regions on the screen acquired by the image acquisition device 60 the drain line 3 exists. For example, when the drain line 3 exists across two regions, the position recognizing unit 109A recognizes in which region the drain line 3 exists based on a predetermined rule to be described later.
  • Rotation angle determination unit 109B and rotation speed determination unit 109C determine the rotation angle and rotation speed of first rotary clamp 31 and second rotary clamp 32, respectively, based on the region recognized by position recognition unit 109A where drain wire 3 exists. decide.
  • the rotation angle and rotation speed determined by the rotation angle determination unit 109B and the rotation speed determination unit 109C are the rotation angle and rotation speed predetermined according to the region.
  • FIG. 5 is a flow chart showing the process from holding the multicore shielded cable 1 to separating the core wire 4 .
  • the control device 100 causes the first rotating clamp 31 and the second rotating clamp 32 to hold the multicore shielded cable 1 .
  • Step S ⁇ b>01 is a step of transferring the multicore shielded cable 1 from the conveying device 20 to the holding device 30 .
  • the fixing clamp 33 also grips the multicore shielded cable 1 .
  • the control device 100 controls the cutting device 50 while the multicore shielded cable 1 is held by the holding device 30 to form a cut 2a in the sheath 2.
  • the cutting device 50 forms a cut 2a (see FIG. 6) at a predetermined cutting position Pc along the axis Ax of the sheath 2.
  • the first rotating clamp 31 holds the sheath 2F on the distal side of the cut 2a.
  • the second rotary clamp 32 and fixed clamp 33 hold the sheath 2R on the root side of the cut 2a.
  • FIG. 6 is a schematic perspective view of the processing apparatus 10 during the semi-stripping process. As shown in FIG. 6, the semi-strip is formed so that part of the drain wire 3 and the core wire 4 is exposed, and the other part of the drain wire 3 and the core wire 4 remains with the sheath 2F on the tip side. This is the step of pulling out the sheath 2F on the distal end side.
  • the sheath 2F on the distal end side remains at the distal end portions of the drain wire 3 and the core wire 4 .
  • the drain wire 3 and the core wire 4 are exposed from the sheath 2 by semi-stripping, and the holding device 30 holds the multicore shielded cable 1 with the drain wire 3 and the core wire 4 exposed from the sheath 2.
  • the semi-stripping process may be performed, for example, at another station St before the multicore shielded cable 1 is held by the holding device 30 .
  • the holding device 30 may hold the multicore shielded cable 1 in which the drain wire 3 and the core wire 4 are already exposed from the sheath 2 .
  • the control device 100 drives the first rotating clamp 31 to rotate the sheath 2F on the distal end side with respect to the sheath 2R on the root side, thereby twisting the drain wire 3 and the core wire 4.
  • the first rotating clamp 31 moves to the tip side of the multicore shielded cable 1 while rotating in the direction of untwisting the drain wire 3 and the core wire 4 .
  • the sheath 2F on the distal end side is partially pulled out, and the twists of the drain wire 3 and the core wire 4 are untwisted.
  • the rotation and movement of the first rotary clamp 31 are stopped before the sheath 2F on the distal end side is completely detached from the drain wire 3 and core wire 4 .
  • control device 100 rotates the first rotating clamp 31 in untwisting, but rotates the second rotating clamp 32 or both the first rotating clamp 31 and the second rotating clamp 32.
  • the control device 100 may be configured to drive at least one of the first rotating clamp 31 and the second rotating clamp 32 to rotate the sheath 2F on the distal side with respect to the sheath 2R on the root side.
  • the processing apparatus 10 moves the second rotating clamp 32 or both the first rotating clamp 31 and the second rotating clamp 32 in the front-rear direction so that the first rotating clamp 31 and the second rotating clamp 32 move in the front-rear direction.
  • the rotating clamp 32 may be separated.
  • the control device 100 After semi-stripping including untwisting in step S03, the control device 100 causes the image acquisition device 60 to acquire images of the drain wire 3 and the core wire 4 in the adjustment process of step S04.
  • the discrimination device 90 discriminates the drain line 3 based on the brightness distribution of the image acquired by the image acquisition device 60 .
  • the control device 100 controls the holding device 30 based on the determination by the determination device 90 to move the drain wire 3 to a predetermined stop position 200 around the axis Ax, here the 0 o'clock position.
  • FIG. 7 is a schematic perspective view of processing apparatus 10 during the adjustment process. As shown in FIG. 7 , the first rotating clamp 31 and the second rotating clamp 32 rotate synchronously when moving the drain wire 3 to the stop position 200 .
  • Fixation of the multicore shielded cable 1 by the fixing clamp 33 is released before the multicore shielded cable 1 is rotated. As shown in FIG. 7, the adjustment process moves the drain line 3 to a stop position 200 set at the 0 o'clock position. Further details of the adjustment process will be described later.
  • the controller 100 controls the chuck opening/closing device 72 to fix the drain wire 3 and the core wire 4 to the pair of chucks 71 in step S05. Thereby, the drain wire 3 and the core wire 4 on the root side of the chuck 71 are fixed so as not to rotate.
  • the control device 100 also controls the fixing clamp 33 and makes the fixing clamp 33 also grip the multicore shielded cable 1 .
  • the control device 100 controls the first rotary clamp 31 to rotate the sheath 2F on the distal end side while the drain wire 3 and the core wire 4 are fixed by the gripping step of step S05. At the same time, the control device 100 controls the moving device 40 to detach the sheath 2F on the distal end side from the multicore shielded cable 1 (step S06).
  • the process of step S06 is also referred to as a full strip process.
  • FIG. 8 is a schematic perspective view of processing apparatus 10 during the entire stripping process. As with the semi-stripping process, the full-stripping process includes an untwisting process, as shown in FIG.
  • the sheath 2F on the distal end side is completely detached from the multicore shielded cable 1 by all the strips including untwisting.
  • the portion of the drain wire 3 and the core wire 4 covered by the sheath 2F on the distal end side is untwisted.
  • the rotational positions of the drain wire 3 and the core wire 4 adjusted in step S04 are maintained.
  • the image acquisition device 60 acquires an image of a portion of the drain wire 3 and the core wire 4 that is non-rotatably fixed by the chuck 71 .
  • FIG. 9 is a schematic front view of processing apparatus 10 during the separation process. As shown in FIG. 9, this causes the processing device 10 to bend the core wire 4 and separate it from the drain wire 3 .
  • the control device 100 sequentially processes both ends 1L and 1R of the multicore shielded cable 1 while controlling the transport device 20 to intermittently transport the multicore shielded cable 1 in the transport direction. That is, the multicore shielded cable 1 as described above is held, the drain wire 3 and the core wire 4 are exposed, the drain wire 3 is moved to a predetermined rotational position (stop position 200), and the sheath 2F on the distal end side is closed. The process of pulling out and separating the core wire 4 is sequentially performed on both ends 1L and 1R of the multicore shielded cable 1.
  • FIG. 10 is a schematic diagram of an image obtained by the image acquisition device 60. As shown in FIG. In FIG. 10, illustration of the core wire 4 is omitted.
  • FIG. 11 is a schematic front view of the multicore shielded cable 1, showing sections of the rotation area. Note that the position of the drain line 3 in FIG. 10 does not match the position of the drain line 3 in FIG. As shown in FIG. 11, here, the rotational position around the axis Ax viewed toward the front (the position that does not depend on the state of the multicore shielded cable 1) is rotated clockwise with the 0 o'clock position being 0 degrees.
  • the 3 o'clock position is the 90 degree position.
  • the left-right direction and the rotation direction in the following description refer to directions when viewed forward unless otherwise specified. However, such representation of the rotational position is only for convenience of explanation.
  • the image The drain line 3 is reflected on the screen of the acquisition device 60 .
  • the discriminating device 90 discriminates the drain line 3 from the distribution of brightness (intensity of reflected infrared light) in the image.
  • the rotational position around the axis Ax in the image acquired by the image acquisition device 60 is divided into a plurality of virtual regions. As shown in FIG. 11 , the rotational position about the axis Ax is set in a predetermined circumferential range that partially overlaps the left low speed region 200L, which is set in a predetermined range in the circumferential direction, and the left low speed region 200L. and a right low speed region 200R.
  • the left low speed region 200L is a region from the left side to the right side of the 0 degree position and includes the 0 degree position. In the left low speed region 200L, the region on the right side of the 0 degree position is smaller than the region on the left side.
  • the right low speed region 200R is set symmetrically with the left low speed region 200L.
  • the stop position 200 of the drain line 3, which is set at approximately the 0 degree position, is, more specifically, the overlapping portion of the left low speed region 200L and the right low speed region 200R.
  • the control device 100 makes the rotational speed of the holding device 30 lower than before.
  • Control device 100 stops rotation of multicore shielded cable 1 by holding device 30 when drain wire 3 is detected in both left low speed region 200L and right low speed region 200R.
  • the stop position 200 has slight variations depending on the direction of rotation and the thickness of the drain wire 3 .
  • the threshold may be different for each region.
  • the threshold may be the area of the drain line 3 detected within the region.
  • a high speed region 210 is set outside the left low speed region 200L and the right low speed region 200R.
  • the high speed area 210 is further divided into a plurality of areas.
  • the high speed region 210 includes a left first high speed region 211L immediately outside (to the left of) the left low speed region 200L, a left second high speed region 212L immediately outside and adjacent to the left first high speed region 211L, and a left third high speed region 213L immediately outside and adjacent to the left second high speed region 212L.
  • the high speed region 210 further includes a first right high speed region 211R immediately outside (to the right of) the right low speed region 200R and a second right high speed region 212R immediately outside and adjacent to the first right high speed region 211R.
  • the high-speed area 210 also includes an area from the 90-degree position to the 270-degree position that is not captured by the image acquisition device 60 .
  • the area from the 90-degree position to the 270-degree position will also be referred to as the back side area 214 .
  • the above multiple areas are set so that their boundaries partially overlap. This prevents the occurrence of a portion where the drain line 3 is not detected. Specifically, the left low speed region 200L and the left first high speed region 211L partially overlap, the left first high speed region 211L and the left second high speed region 212L partially overlap, and the left second high speed region 212L and the third high-speed area 213L on the left partly overlap. The same applies to the area on the right side of the 0 degree position.
  • the set predetermined It is configured to rotate the multicore shielded cable 1 by an angle.
  • the predetermined angle is set for each high speed region.
  • the predetermined angle is set larger (at least the same as that of the inner region) in the outer high-speed region.
  • the rotation angle corresponding to the second high-speed area 212L on the left side is set to be greater than the rotation angle corresponding to the first high-speed area 211L on the left side.
  • the rotation angle corresponding to the left third high speed region 213L is set to be greater than or equal to the rotation angle corresponding to the left second high speed region 212L.
  • the rotation angle corresponding to the back side area 214 is set here to be the same as the rotation angle corresponding to the left and right third high speed areas 213L and 213R. However, the rotation angle corresponding to the back side area 214 may be set larger than the rotation angle corresponding to the left and right third high speed areas 213L and 213R.
  • the multicore shielded cable 1 When the drain wire 3 is detected in the high speed region 210, the multicore shielded cable 1 is rotated by the rotation angle set for each high speed region without stopping halfway.
  • the rotation speed of the multicore shielded cable 1 in the high speed region 210 is set higher than the rotation speed of the multicore shielded cable 1 in the left low speed region 200L and the right low speed region 200R.
  • the rotation angle corresponding to each high-speed region is set to an angle that allows the drain wire 3 to reach only before the stop position 200 even if the multicore shielded cable 1 is rotated by the angle.
  • the rotation angle corresponding to each high-speed region is the inner high-speed region or the low-speed region 200L or 200R on the front side of the stop position 200.
  • the angle is set such that the drain line 3 does not reach the terminal.
  • the multicore shielded cable 1 is once positioned in the low speed region 200L or 200R on the front side of the stop position 200, and then moves at low speed until it reaches the stop position 200.
  • the control device 100 detects that the drain line 3 is in the first high speed region 211L.
  • the multi-core shielded cable 1 is rotated assuming that it exists in 211R.
  • the processing apparatus 10 thereby shortens the time until the drain line 3 reaches the stop position 200 .
  • the rotation angle corresponding to each high-speed region is set to such an angle that the drain wire 3 does not reach the stop position 200 even if the multicore shielded cable 1 is rotated by an angle corresponding to the outer region. .
  • the first rotating clamp 31 and the second rotating clamp 32 grip the tip end side and the root side of the multicore shielded cable 1 and rotate synchronously.
  • the axis of rotation of the multicore shielded cable 1 is less likely to sway, and the rotation of the multicore shielded cable 1 is stabilized. Therefore, the certainty of position adjustment of the drain wire 3 is also improved.
  • the multicore shielded cable 1 is bent in a U shape so that both ends 1L and 1R face the same direction, and both ends 1L and 1R are rotated in the circumferential direction in the adjustment process. Therefore, in the present embodiment, the control device 100 rotates the left end 1L of the multicore shielded cable 1 in the first rotation direction (for example, clockwise when viewed from the front) to move the drain wire 3 of the left end 1L to the stop position 200. When it is moved, the right end 1R is rotated in a second direction opposite to the first direction (for example, counterclockwise when viewed from the front) to move the drain wire 3 at the right end 1R to the stop position 200. . The processing device 10 rotates both ends 1L and 1R of the multicore shielded cable 1 in opposite directions in the adjusting process. This suppresses twisting of the multicore shielded cable 1 .
  • control is performed so that the angle at which the multicore shielded cable 1 is rotated is 180 degrees or less in the adjustment process.
  • both ends 1L and 1R of the multicore shielded cable 1 bent in a U shape are rotated, so that the multicore shielded cable 1 tends to be twisted when the angle of rotation increases. Therefore, the maximum angle for rotating the multicore shielded cable 1 in the adjustment process is 180 degrees.
  • the angle for determining whether to rotate the multicore shielded cable 1 in the reverse direction may be appropriately set to an angle of 90 degrees or more. The angle is preferably, for example, 90 degrees or more and 120 degrees or less.
  • the control device 100 rotates the multicore shielded cable 1 clockwise. .
  • the angle at which the multicore shielded cable 1 is rotated can be 90 degrees or less.
  • the control device 100 reverses the multicore shielded cable 1. Rotate clockwise.
  • the control device 100 first rotates the multicore shielded cable 1 in a predetermined direction (for example, clockwise). If the drain wire 3 is not detected even when the rotation angle of the multicore shielded cable 1 reaches 90 degrees or more, the control device 100 reverses the rotation direction. For example, when the initial direction is clockwise, if the drain wire 3 is in the region between the 180-degree position and the 270-degree position (the region to the left of the 180-degree position), the drain wire 3 is rotated by 90 degrees or less.
  • the drain wire 3 can be positioned at the stop position 200 by rotating the multicore shielded cable 1 clockwise by an angle of 180 degrees or less.
  • the drain line 3 will not be detected even if the rotation angle exceeds 90 degrees.
  • the multicore shielded cable 1 is rotated counterclockwise, returned to the initial rotation position, and then rotated further counterclockwise.
  • the drain wire 3 can be positioned at the stop position 200 with a rotation of 180 degrees or less.
  • FIG. 12 is a flow chart showing an example of the adjustment process.
  • the rotation angle in the back side area 214 and the left and right third high speed areas 213L and 213R is 30 degrees.
  • the rotation angle in the left and right second high speed regions 212L and 212R is 12 degrees.
  • the rotation angle in the left and right first high speed regions 211L and 211R is 9 degrees.
  • step S11 it is determined whether or not the drain line 3 is detected in the left region 200L, 211L, 212L, or 213L. If the drain wire 3 is detected in the left region 200L, 211L, 212L, or 213L (if the result of step S11 is YES), clockwise is selected as the rotation direction of the multicore shielded cable 1 in step S12. . In step S13 following step S12, it is determined whether or not the drain line 3 has been detected in the left third high speed region 213L.
  • step S13 If the drain wire 3 is detected in the left third high-speed region 213L (if the result of step S13 is YES), the multicore shielded cable 1 is rotated 30 degrees clockwise in step S14. If the drain line 3 is not detected in the left third high speed region 213L (the result of step S13 is NO), it is determined in step S15 whether the drain line 3 is detected in the left second high speed region 212L. be done. If the drain wire 3 is detected in the second high-speed area 212L on the left side (if the result of step S15 is YES), the multicore shielded cable 1 is rotated clockwise by 12 degrees in step S16.
  • step S17 If the drain line 3 is not detected in the second high-speed area 212L on the left side (if the result of step S15 is NO), it is determined in step S17 whether the drain line 3 is detected in the first high-speed area 211L on the left side. be done. If the drain wire 3 is detected in the left first high speed area 211L (if the result of step S17 is YES), the multicore shielded cable 1 is rotated clockwise by 9 degrees in step S18.
  • step S19 the multicore shielded cable 1 is rotated clockwise at low speed.
  • step S20 it is determined whether the drain line 3 has reached the stop position 200 or not. The low-speed rotation of the multicore shielded cable 1 in step S19 is continued until the drain wire 3 reaches the stop position 200 (until the result of step S20 becomes YES).
  • step S13 As shown in FIG. 12, after the multicore shielded cable 1 is rotated 30 degrees clockwise in step S14, it is determined again in step S13 whether or not the drain wire 3 is detected in the left third high-speed region 213L. be done.
  • step S14 when the drain line 3 passes through the left third high-speed region 213L, the result of the second step S13 is NO.
  • step S16 after the multicore shielded cable 1 is rotated 12 degrees clockwise in step S16, it is determined again in step S15 whether the drain wire 3 has been detected in the left second high speed region 212L.
  • step S17 After the multicore shielded cable 1 is rotated clockwise by 9 degrees in step S18, it is determined again in step S17 whether or not the drain wire 3 has been detected in the left first high speed region 211L.
  • step S21 it is determined in step S21 whether the drain line 3 has been detected in the right region 200R, 211R, 212R, or 213R. If the drain wire 3 is detected in the right region 200R, 211R, 212R, or 213R (if the result of step S21 is YES), counterclockwise is selected as the rotation direction of the multicore shielded cable 1 in step S22. be. After that, except for the rotating direction of the multi-core shielded cable 1, it is the same as the case of clockwise rotation. Therefore, illustration and description of subsequent steps are omitted.
  • step S21 determines that the drain line 3 exists in the back side region 214.
  • clockwise rotation is selected as the direction of rotation of the multicore shielded cable 1 in step S23.
  • the initial rotation direction selected in step S23 may be counterclockwise.
  • step S24 the multicore shielded cable 1 is rotated clockwise by 30 degrees.
  • step S25 following step S24, it is determined whether or not the drain line 3 has been detected. If the result of step S25 is YES (drain line 3 is detected), then step S13 is performed. Thereafter, the same steps as when the drain line 3 is detected in the left region 200L, 211L, 212L, or 213L are performed.
  • step S26 it is determined whether the number of times of non-detection of the drain line 3 (excluding non-detection in step S21) has reached three. be judged. If the result of step S26 is NO (if the number of non-detections of the drain wire 3 is less than 3), again in step S24, the multicore shielded cable 1 is rotated clockwise by 30 degrees. In this loop, if the drain line 3 is detected within three times (in other words, if it is not detected within two times), step S13 is performed. In this case, the angle by which the multicore shielded cable 1 has been rotated clockwise is 90 degrees (30 degrees ⁇ 3 times) or less. Therefore, the rotation angle of the multicore shielded cable 1 until the drain wire 3 reaches the stop position 200 is within 180 degrees clockwise.
  • step S27 the multi-core shielded cable 1 rotates counterclockwise (that is, reverse rotation) 90 It is rotated by degrees and returned to the rotational position at the start of the adjustment process.
  • step S28 counterclockwise rotation is selected as the direction of rotation of the multicore shielded cable 1.
  • FIG. The subsequent steps are the same as those after step S24 (clockwise), except for the rotation direction of the multicore shielded cable 1 .
  • the drain line 3 is detected within three times unless there is a special problem such as the drain line 3 being lost. Therefore, the rotation angle of the multicore shielded cable 1 until the drain wire 3 reaches the stop position 200 is within 180 degrees counterclockwise.
  • the right end 1R of the multicore shielded cable 1 is rotated in a direction opposite to the direction of rotation of the left end 1L.
  • the drain line 3 at the right end 1R moves to or near the stop position 200 by rotating the right end 1R symmetrically with the left end 1L. Therefore, the right end 1R of the multi-core shielded cable 1 is first rotated by the same angle in the direction opposite to the rotation of the left end 1L in the treatment of the left end 1L. After that, the drain line 3 at the right end 1R can be moved to the stop position 200 by performing the same control as shown in FIG. In the case of the right end 1R, the drain wire 3 has moved to or near the stop position 200 in the initial movement. Therefore, in many cases, the adjustment process can be completed in less time than the left end 1L.
  • the adjustment process described above is merely an example, and the adjustment process is not particularly limited.
  • the rotation angle of the multi-core shielded cable 1 set in each high-speed region is merely a preferred example.
  • a processing apparatus 10 for a multicore shielded cable 1 holds the multicore shielded cable 1 in which the drain wire 3 and the core wire 4 are exposed from the sheath 2 along a predetermined axis Ax, and 1 around the axis Ax, an image acquisition device 60 capable of acquiring an image of the drain wire 3 and the core wire 4 held by the holding device 30, and an image acquired by the image acquisition device 60
  • a discriminating device 90 discriminating the drain wire 3 based on the lightness distribution in the inside, and a holding device 30 is controlled based on the discrimination by the discriminating device 90, and the drain wire 3 is placed at a predetermined stop position 200 around the axis line Ax.
  • the drain wire 3 having the exposed conductor element wire and the core wire 4 covered with the coating 4b utilizes the difference in overall brightness (intensity of reflected light) between the drain wire 3 and the core wire 4. can be determined. Therefore, as far as the multicore shielded cable 1 having the drain wire 3 and the core wire 4 is concerned, the rotational position of the drain wire 3 can be adjusted with a very simple configuration.
  • the holding device 30 includes a first rotary clamp 31 and a second rotary clamp which are arranged along the axis Ax and are capable of holding the multicore shielded cable 1 and rotating it around the axis Ax. 32.
  • the processing device 10 moves the cutting device 50 that forms the cut 2a at a predetermined cutting position Pc along the axis Ax of the sheath 2, the first rotating clamp 31 and the second rotating clamp 32 in the direction of the axis Ax, or and a moving device 40 for separating.
  • the first rotating clamp 31 holds the sheath 2 on the tip side of the multicore shielded cable 1 from the cutting position Pc.
  • the second rotating clamp 32 holds the sheath 2 on the root side of the multicore shielded cable 1 from the cutting position Pc.
  • the control device 100 causes the first rotating clamp 31 and the second rotating clamp 32 to hold the multicore shielded cable 1 , controls the cutting device 50 while the multicore shielded cable 1 is held, and cuts the sheath 2 . 2a is formed. After the cut 2 a is formed in the sheath 2 , the control device 100 controls the moving device 40 to expose a part of the drain wire 3 and the core wire 4 and remove the other part of the drain wire 3 and the core wire 4 . A semi-strip is performed to pull out the sheath 2F on the tip side so that the sheath 2F on the tip side remains partially.
  • the control device 100 After semi-stripping, the control device 100 causes the image acquisition device 60 to acquire images of the drain wire 3 and the core wire 4 . According to the processing apparatus 10, the drain wire 3 and the core wire 4 remain inserted in the sheath 2 on the distal end side, so the drain wire 3 is less likely to come apart. Therefore, when discriminating the drain wires 3 by the discriminating device 90, it is possible to prevent the drain wires 3 from being separated and becoming difficult to discriminate.
  • control device 100 is configured to rotate the sheath 2F on the distal end side with respect to the sheath 2R on the root side in the semi-strip to untwist the drain wire 3 and the core wire 4 .
  • the processing apparatus 10 by untwisting the drain wire 3 and the core wire 4, it is possible to easily identify the drain wire 3 in the adjustment process.
  • the cycle time for processing the multicore shielded cable 1 is shortened by simultaneously performing the semi-stripping of the sheath 2 and the untwisting of the drain wire 3 and the core wire 4 .
  • the first rotating clamp 31 and the second rotating clamp 32 rotate synchronously when moving the drain wire 3 to the stop position 200 .
  • the first rotating clamp 31 and the second rotating clamp 32 grip the tip side and the base side of the multicore shielded cable 1 and rotate synchronously, so that the rotation of the multicore shielded cable 1 is reduced. Rotation is stable because the axis is less likely to shake. Therefore, the certainty of position adjustment of the drain wire 3 is also improved.
  • the processing device 10 is arranged radially outward of the multicore shielded cable 1 held by the holding device 30, and fixes the drain wire 3 and the core wire 4 so as not to rotate or rotates.
  • a plurality of chucks 71 that can be released and a chuck opening/closing device 72 that drives the plurality of chucks 71 are provided.
  • the controller 100 controls the chuck opening/closing device 72 to fix the drain wire 3 and the core wire 4 to the plurality of chucks 71 .
  • control device 100 controls the first rotating clamp 31 to rotate the distal sheath 2F while the drain wire 3 and the core wire 4 are fixed, and controls the moving device 40 to rotate the distal sheath 2F.
  • 2F is separated from the multicore shielded cable 1.
  • the sheath 2F on the distal end side can be detached from the multicore shielded cable 1 while untwisting the drain wire 3 and the core wire 4.
  • FIG. 1 since the drain wire 3 and the core wire 4 are non-rotatably fixed by the chuck 71, the drain wire 3 is held at the stop position 200 despite the rotation of the sheath 2F on the distal end side.
  • the processing apparatus 10 moves the chuck 71 in the opposite direction (6 o'clock direction in this embodiment) to the direction corresponding to the stop position 200 (0 o'clock direction in this embodiment) when viewed in the direction of the axis Ax.
  • a moving device 73 is provided.
  • the chuck 71 has a gap at the stop position 200 when the drain wire 3 and the core wire 4 are non-rotatably fixed.
  • the control device 100 separates the core wire 4 and the drain wire 3 by controlling the chuck moving device 73 to move the chuck 71 after detaching the sheath 2F on the distal end side from the multicore shielded cable 1 .
  • the core wire 4 is bent in the bending direction opposite to the direction corresponding to the stop position 200, and the drain wire 3 passes through the gap of the chuck 71 and is not bent. Thereby, the drain line 3 and the core line 4 can be separated.
  • the separated drain wire 3 may be subjected to a different treatment than the core wire 4, such as covering with a heat-shrinkable tube.
  • the multicore shielded cable 1 is bent in a U shape so that both ends 1L and 1R face the same direction, and the drain wire 3 and the core wire 4 are exposed at both ends 1L and 1R.
  • the processing device 10 conveys the multicore shielded cable 1 in the conveying direction (here, left and right direction) intersecting the axis Ax of the holding device 30, and sequentially delivers both ends 1L and 1R of the multicore shielded cable 1 to the holding device 30.
  • a transport device 20 is further provided. According to the processing apparatus 10, both ends 1L and 1R of the multicore shielded cable 1 can be processed continuously.
  • the control device 100 rotates one end (for example, the left end 1L) of the multicore shielded cable 1 in the first rotation direction to move the drain wire 3 at the one end to the stop position 200, and For example, the right end 1R) is rotated in a second rotation direction opposite to the first rotation direction to move the drain wire 3 at the other end to the stop position 200.
  • FIG. According to the processing device 10, both ends 1L and 1R of the multicore shielded cable 1 are rotated in opposite directions, so that twisting of the multicore shielded cable 1 bent into a U shape can be suppressed.
  • the image acquisition device 60 is provided in a direction corresponding to the stop position 200 with respect to the axis Ax (here, the 0 o'clock direction) when viewed in the direction of the axis Ax. If the drain wire 3 is not detected even if the rotation angle of the multicore shielded cable 1 reaches a predetermined angle of 90 degrees or more (90 degrees in this embodiment, preferably 120 degrees or less), the control device 100 stops the rotation. reverse direction. In such a processing device 10, the drain wire 3 may not enter the image acquisition area of the image acquisition device 60 before the multicore shielded cable 1 is rotated. That is, the drain line 3 may be hidden behind the back side region 214 in some cases.
  • the angle for determining whether to rotate the multicore shielded cable 1 in the reverse direction may be appropriately set to an angle of 90 degrees or more in consideration of the average cycle time.
  • the rotational position around the axis Ax in the image acquired by the image acquisition device 60 is such that the left low speed region 200L set in a predetermined range in the circumferential direction partially overlaps the left low speed region 200L. and a right low speed region 200R set to a predetermined range of directions.
  • the stop position 200 is an overlapping portion between the left low speed area 200L and the right low speed area 200R.
  • Control device 100 stops rotation of multicore shielded cable 1 by holding device 30 when drain wire 3 is detected in both left low speed region 200L and right low speed region 200R.
  • the drain line can be easily detected by summing simple image processing of detection of the drain line 3 in the left low speed area 200L and detection of the drain line 3 in the right low speed area 200R. It can be stopped at the stop position 200 .
  • a high speed region 210 is set outside the left low speed region 200L and the right low speed region 200R.
  • the control device 100 is configured to control the holding device 30 to rotate the multicore shielded cable 1 by a predetermined angle when the drain wire 3 is detected in the high speed area 210 .
  • the predetermined angle is set such that the drain wire 3 reaches only a point short of the stop position 200 .
  • the multicore shielded cable 1 is rotated by a predetermined angle in the high speed region 210, so the drain wire 3 can be brought closer to the stop position 200 more quickly.
  • the multicore shielded cable 1 once decelerates in the left low speed region 200L or the right low speed region 200R.
  • the drain line 3 can be stopped at the stop position 200 by the control described above. Movement in the high-speed region 210 can shorten the time required for the adjustment process. Note that the multicore shielded cable 1 may temporarily stop in the left low speed region 200L or the right low speed region 200R before reaching the stop position 200. FIG.
  • the control device 100 regards the drain line 3 as existing in the high speed area 210.
  • the holding device 30 rotates the multicore shielded cable 1 .
  • the processing device 10 when the drain line 3 is detected in both the left low speed area 200L or the right low speed area 200R and the high speed area 210, it is assumed that the drain line 3 exists in the high speed area 210. Furthermore, the drain wire 3 can be brought closer to the stop position 200 more quickly.
  • the image acquisition device 60 acquires the light source 61 that generates light to irradiate the drain line 3 and the core line 4, and the light generated by the light source 61 reflected by the drain line 3 and the core line 4. and an image acquisition unit 62 .
  • the image acquisition device 60 acquires the reflected light of the light emitted by itself. Therefore, the detection of the drain line 3 is less likely to be affected by external light.
  • the light generated by the light source 61 is infrared light. Therefore, detection of the drain line is not particularly susceptible to external visible light.
  • the image acquisition unit 62 is provided so as to be off the optical axis L2 of the specularly reflected light from the drain line 3 and the core line 4 of the light generated by the light source 61 . According to such a processing apparatus 10, even when specularly reflected light from the core wire 4 is strong due to reasons such as the coating 4b being glossy, the possibility of erroneously detecting the drain wire 3 can be reduced.
  • the position of the drain wire 3 is adjusted after semi-stripping the sheath 2, and then the full stripping of the sheath 2 is performed.
  • the position of the drain wire 3 may be adjusted after the sheath 2 is completely stripped.
  • the untwisting of the drain wire 3 and the core wire 4 in the strip of the sheath 2 may not be performed.
  • the drain wire 3 and the core wire 4 do not need to be non-rotatably fixed by the chuck 71 during untwisting at the time of all stripping.
  • a member for non-rotatably fixing the drain wire 3 and the core wire 4 may be a dedicated gripping member instead of the chuck 71 for separating the core wire 4 .
  • each station St is not particularly limited. For example, the steps described above may be performed across multiple stations St. Other steps than those described above may be further performed in one station St. Moreover, the apparatus for performing one step may be divided into a plurality of units, or the apparatus for performing a plurality of steps may be integrated into one unit. There are no particular restrictions on how each device is integrated or divided as long as it performs its function.
  • the multicore shielded cable 1 was intermittently rotated in the high speed region 210 and continuously rotated in the low speed regions 200L and 200R.
  • the multicore shielded cable 1 may be rotated continuously in both the high speed region and the low speed region.
  • the rotation speed of the multicore shielded cable 1 in the high speed region may be higher than that in the low speed region.
  • the rotational speed of the multicore shielded cable 1 may be the same regardless of the area.
  • the multicore shielded cable 1 does not have to be bent in a U shape.
  • one end of the multicore shielded cable 1 may be processed after the processing of the other end is completed (for example, after the terminals are crimped).
  • the rotation angle of the multicore shielded cable 1 in the adjustment process may exceed 180 degrees.
  • the image acquisition device is not limited to having a light source or detecting infrared light.

Abstract

A processing device 10 for a multi-core shielded cable 1 according to the present invention is provided with: a retaining device 30 which retains, along the prescribed axis Ax, the multi-core shielded cable 1 in which a drain line 3 and core lines 4 are exposed from a sheath 2, and which rotates the multi-core shielded cable 1 about the axis Ax; an image acquisition device 60 capable of acquiring an image of the drain line 3 and the core lines 4 which are in a state of being retained by the retaining device 30; an identification device 90 which identifies the drain line 3 on the basis of the brightness distribution in the image acquired by the image acquisition device 60; and a control device 100 which controls the retaining device 30 on the basis of identification by the identification device 90, and which moves the drain line 3 to a predetermined rotation position 200 about the axis Ax.

Description

多芯シールドケーブルの処理装置Processing equipment for multi-core shielded cables
 本発明は、ドレイン線とコア線とを有する多芯シールドケーブルの処理装置に関する。 The present invention relates to a processing device for multicore shielded cables having drain wires and core wires.
 多芯ケーブルの複数のケーブルを判別し、多芯ケーブルの周方向の特定位置に特定のケーブルを位置付ける方法が従来から提案されている。例えば特許文献1には、回転可能なトレース機構によって複数の芯線の位置を測定し、規定された回転位置に複数の芯線を回転移動させた後に、カラーセンサによって特定位置の芯線の色を検出する装置が開示されている。特許文献1に開示された装置では、カラーセンサによる芯線の色の検出前に、複数の芯線の回転位置が芯線の色とは無関係に位置合わせされている。特許文献1に開示された装置によれば、芯線の色の検出後は、検出された芯線の色に応じた回転角だけ多芯ケーブルを回転させることにより、複数の芯線の回転位置を調整することができる。 Conventionally, there have been proposed methods for identifying multiple cables in a multi-core cable and positioning a specific cable at a specific position in the circumferential direction of the multi-core cable. For example, in Patent Document 1, the positions of a plurality of core wires are measured by a rotatable tracing mechanism, and after rotating the plurality of core wires to a specified rotational position, the color of the core wire at a specific position is detected by a color sensor. An apparatus is disclosed. In the device disclosed in Patent Literature 1, the rotational positions of a plurality of core wires are aligned independently of the color of the core wires before the colors of the core wires are detected by the color sensor. According to the device disclosed in Patent Document 1, after detecting the core wire color, the multicore cable is rotated by a rotation angle corresponding to the detected core wire color, thereby adjusting the rotational positions of the plurality of core wires. be able to.
特開平2-246716号公報JP-A-2-246716
 特許文献1に開示されている装置は、トレース機構およびカラーセンサという2つの芯線の位置検出機構を備えている。そのため、特許文献1に開示されている装置は、構成が複雑である。 The device disclosed in Patent Document 1 has two core wire position detection mechanisms, a tracing mechanism and a color sensor. Therefore, the device disclosed in Patent Document 1 has a complicated configuration.
 本発明はかかる点に鑑みてなされたものであり、その目的は、ドレイン線とコア線とを有する多芯シールドケーブルに関して、より簡易な構成でドレイン線の回転位置を調整できる多芯シールドケーブルの処理装置を提供することである。 The present invention has been made in view of such a point, and its object is to provide a multi-core shielded cable having a drain wire and a core wire, in which the rotational position of the drain wire can be adjusted with a simpler structure. It is to provide a processing device.
 本発明に係る多芯シールドケーブルの処理装置は、ドレイン線とコア線とがシースから露出した多芯シールドケーブルを所定の軸線に沿って保持するとともに、前記多芯シールドケーブルを前記軸線周りに回転させる保持装置と、前記保持装置に保持された状態の前記ドレイン線および前記コア線の画像を取得可能な画像取得装置と、前記画像取得装置によって取得された画像内の明度の分布に基づいて、前記ドレイン線を判別する判別装置と、前記判別装置の判別に基づいて前記保持装置を制御し、前記軸線周りの予め定められた回転位置に前記ドレイン線を移動させる制御装置と、を備える。 A processing apparatus for a multicore shielded cable according to the present invention holds a multicore shielded cable in which a drain wire and a core wire are exposed from a sheath along a predetermined axis, and rotates the multicore shielded cable around the axis. an image acquisition device capable of acquiring an image of the drain line and the core line held by the holding device; and a lightness distribution in the image acquired by the image acquisition device, A discriminating device that discriminates the drain wire, and a control device that controls the holding device based on the discrimination by the discriminating device and moves the drain wire to a predetermined rotational position about the axis.
 上記多芯シールドケーブルの処理装置によれば、画像取得装置によって取得される画像内の明度の分布を利用して、ドレイン線を判別することができる。そのため、ドレイン線とコア線とを有する多芯シールドケーブルに関して、より簡易な構成でドレイン線の回転位置を調整できる。 According to the multi-core shielded cable processing device, the drain wire can be determined using the brightness distribution in the image acquired by the image acquisition device. Therefore, regarding the multicore shielded cable having the drain wire and the core wire, the rotational position of the drain wire can be adjusted with a simpler configuration.
 本発明に係る多芯シールドケーブルの処理装置の好ましい一態様によれば、前記保持装置は、それぞれ前記多芯シールドケーブルを保持して前記軸線周りに回転させることが可能であって前記軸線に沿って配置された第1保持装置と第2保持装置とを含んでいる。多芯シールドケーブルの処理装置は、前記シースの前記軸線に沿った所定の切込位置に切れ目を形成する切込装置と、前記第1保持装置および前記第2保持装置のうちの少なくとも一方を前記軸線方向に移動させることにより前記第1保持装置と前記第2保持装置とを接近または離反させる移動装置と、をさらに備えている。前記第1保持装置は、前記切込位置よりも前記多芯シールドケーブルの先端側で前記シースを保持する。前記第2保持装置は、前記切込位置よりも前記多芯シールドケーブルの根元側で前記シースを保持する。前記制御装置は、前記第1保持装置および前記第2保持装置に前記多芯シールドケーブルを保持させ、前記多芯シールドケーブルが保持された状態で前記切込装置を制御して前記シースに前記切れ目を形成する。前記制御装置は、前記シースに前記切れ目が形成された後に、前記移動装置を制御して、前記ドレイン線および前記コア線の一部が露出し、かつ、前記ドレイン線および前記コア線の他の一部に先端側のシースが残るように先端側のシースを引き抜くセミストリップを行う。前記制御装置は、前記セミストリップの後に、前記画像取得装置に前記ドレイン線および前記コア線の画像を取得させる。 According to a preferred aspect of the processing apparatus for multicore shielded cables according to the present invention, the holding devices are capable of holding the multicore shielded cables and rotating them around the axis. It includes a first retainer and a second retainer arranged side by side. A processing device for a multicore shielded cable includes a cutting device for forming a cut at a predetermined cutting position along the axis of the sheath, and at least one of the first holding device and the second holding device. A moving device for moving the first retaining device and the second retaining device closer to or away from each other by axial movement. The first holding device holds the sheath on the distal end side of the multicore shielded cable from the cutting position. The second holding device holds the sheath on the root side of the multicore shielded cable from the cutting position. The control device causes the first holding device and the second holding device to hold the multicore shielded cable, and controls the cutting device in a state in which the multicore shielded cable is held to form the cut in the sheath. to form The control device controls the moving device to expose a portion of the drain wire and the core wire after the cut is formed in the sheath and to expose the other portion of the drain wire and the core wire. A semi-strip is performed to pull out the sheath on the distal side so that the sheath on the distal side remains partially. The control device causes the image acquisition device to acquire images of the drain line and the core line after the semi-stripping.
 上記多芯シールドケーブルの処理装置によれば、判別装置によるドレイン線の判別時に、ドレイン線がばらけて判別しにくくなるのを防ぐことができる。 According to the multi-core shielded cable processing device, it is possible to prevent the drain wires from being separated and becoming difficult to discriminate when the discriminating device discriminates the drain wires.
 上記多芯シールドケーブルの処理装置の好ましい一態様によれば、前記制御装置は、前記セミストリップにおいて、前記第1保持装置および前記第2保持装置のうちの少なくとも一方を駆動させて前記先端側のシースを根元側のシースに対して回転させ、前記ドレイン線と前記コア線との撚りをほどく。 According to a preferred aspect of the processing apparatus for multicore shielded cables, the control device drives at least one of the first holding device and the second holding device in the semi-strip to move the distal end side of the cable. The sheath is rotated with respect to the sheath on the root side to untwist the drain wire and the core wire.
 上記多芯シールドケーブルの処理装置によれば、ドレイン線とコア線との撚りをほどくことにより、ドレイン線の判別を容易に実施することができる。 According to the multi-core shielded cable processing device, the drain wire can be easily identified by untwisting the drain wire and the core wire.
 上記多芯シールドケーブルの処理装置の好ましい一態様によれば、前記第1保持装置および前記第2保持装置は、前記予め定められた回転位置に前記ドレイン線を移動させる際に同期して回転する。 According to a preferred aspect of the multicore shielded cable processing apparatus, the first holding device and the second holding device rotate in synchronization when the drain wire is moved to the predetermined rotational position. .
 上記多芯シールドケーブルの処理装置によれば、第1把持部材と第2回転把持部材とが多芯シールドケーブルの先端側と根元側とを把持して同期回転するため、多芯シールドケーブルの回転の軸がぶれにくく、回転が安定する。そのため、ドレイン線の回転位置調整の確実性も向上する。 According to the multicore shielded cable processing apparatus, the first gripping member and the second rotating gripping member grip the tip side and the root side of the multicore shielded cable and rotate synchronously, so that the multicore shielded cable rotates. The axis of the is hard to shake, and the rotation is stable. Therefore, the certainty of adjusting the rotational position of the drain wire is also improved.
 上記多芯シールドケーブルの処理装置の好ましい一態様によれば、多芯シールドケーブルの処理装置は、前記保持装置によって保持された状態の前記多芯シールドケーブルの径方向外方に配置され、前記ドレイン線および前記コア線を回転不能に固定し、または、回転可能に解放する把持部材と、前記把持部材を駆動する駆動装置と、をさらに備えている。前記制御装置は、前記予め定められた回転位置に前記ドレイン線が移動された後に、前記駆動装置を制御して前記把持部材に前記ドレイン線および前記コア線を固定させる。さらに前記制御装置は、前記ドレイン線および前記コア線が固定された状態で、前記第1保持装置を制御して前記先端側のシースを回転させながら、前記移動装置を制御して前記先端側のシースを前記多芯シールドケーブルから離脱させる。 According to a preferred aspect of the multi-core shielded cable processing device, the multi-core shielded cable processing device is arranged radially outward of the multi-core shielded cable held by the holding device, and the drain It further comprises a gripping member for non-rotatably securing or rotatably releasing the wire and said core wire, and a drive for driving said gripping member. The control device controls the driving device to fix the drain wire and the core wire to the holding member after the drain wire is moved to the predetermined rotational position. Further, the control device controls the moving device to rotate the distal end side sheath while controlling the first holding device to rotate the distal end side sheath in a state where the drain wire and the core wire are fixed. Detach the sheath from the multicore shielded cable.
 上記多芯シールドケーブルの処理装置によれば、ドレイン線とコア線との撚りをほどきながら先端側のシースを多芯シールドケーブルから離脱させることができる。かつ、そのとき、ドレイン線およびコア線が把持部材により回転不能に固定されているため、ドレイン線は、予め定められた回転位置に保持される。 According to the multi-core shielded cable processing device, the sheath on the tip side can be removed from the multi-core shielded cable while untwisting the drain wire and the core wire. Moreover, at that time, the drain wire and the core wire are fixed by the holding member so as not to be rotatable, so that the drain wire is held at a predetermined rotational position.
 上記多芯シールドケーブルの処理装置の好ましい一態様によれば、多芯シールドケーブルの処理装置は、前記軸線方向視において前記予め定められた回転位置に対応する方向の逆方向に前記把持部材を移動させる分離装置をさらに備えている。前記把持部材は、前記ドレイン線および前記コア線を回転不能に固定した状態において、前記予め定められた回転位置に隙間を有している。前記制御装置は、前記先端側のシースを前記多芯シールドケーブルから離脱させた後に、前記分離装置を制御して前記把持部材を移動させることにより、前記コア線と前記ドレイン線とを分離する。 According to a preferred aspect of the multi-core shielded cable processing device, the multi-core shielded cable processing device moves the gripping member in a direction opposite to the direction corresponding to the predetermined rotational position when viewed in the axial direction. It further comprises a separating device that allows the The gripping member has a gap at the predetermined rotational position in a state in which the drain wire and the core wire are non-rotatably fixed. The control device separates the core wire and the drain wire by controlling the separating device and moving the gripping member after separating the sheath on the distal end side from the multicore shielded cable.
 上記多芯シールドケーブルの処理装置によれば、コア線は、把持部材によってドレイン線の回転位置に対応する方向の逆方向に曲げられ、ドレイン線は、把持装置の隙間を通るため曲げられない。これにより、ドレイン線とコア線とを分離することができる。 According to the multi-core shielded cable processing device, the core wire is bent in the direction opposite to the direction corresponding to the rotational position of the drain wire by the gripping member, and the drain wire is not bent because it passes through the gap of the gripping device. Thereby, the drain line and the core line can be separated.
 本発明に係る多芯シールドケーブルの処理装置の好ましい一態様によれば、前記多芯シールドケーブルは、両端が同じ方向を向くようにU字状に曲げられるとともに、両端において前記ドレイン線および前記コア線が露出している。多芯シールドケーブルの処理装置は、前記軸線に交差する搬送方向に前記多芯シールドケーブルを搬送し、前記保持装置に前記多芯シールドケーブルの両端を順次受け渡す搬送装置をさらに備えている。 According to a preferred aspect of the processing apparatus for a multicore shielded cable according to the present invention, the multicore shielded cable is bent in a U shape so that both ends face the same direction, and the drain wire and the core are bent at both ends. Exposed lines. The processing apparatus for a multicore shielded cable further includes a conveying device that conveys the multicore shielded cable in a conveying direction that intersects with the axis and sequentially transfers both ends of the multicore shielded cable to the holding device.
 上記多芯シールドケーブルの処理装置によれば、多芯シールドケーブルの両端のドレイン線の回転位置調整を連続的に行うことができる。 According to the multi-core shielded cable processing device, it is possible to continuously adjust the rotational positions of the drain wires at both ends of the multi-core shielded cable.
 上記多芯シールドケーブルの処理装置の好ましい一態様によれば、前記制御装置は、前記多芯シールドケーブルの一端を第1の回転方向に回転させて前記一端の前記ドレイン線を前記予め定められた回転位置に移動し、他端を前記第1の回転方向とは逆の第2の回転方向に回転させて前記他端の前記ドレイン線を前記予め定められた回転位置に移動する。 According to a preferred aspect of the multicore shielded cable processing apparatus, the control device rotates one end of the multicore shielded cable in a first rotation direction to rotate the drain wire at the one end to the predetermined position. The other end is rotated in a second rotational direction opposite to the first rotational direction to move the drain wire of the other end to the predetermined rotational position.
 上記多芯シールドケーブルの処理装置によれば、多芯シールドケーブルの両端を互いに逆方向に回転させるため、U字に曲げられた多芯シールドケーブルの捩れを抑制できる。 According to the multicore shielded cable processing apparatus, both ends of the multicore shielded cable are rotated in opposite directions, so that twisting of the U-bent multicore shielded cable can be suppressed.
 上記多芯シールドケーブルの処理装置の好ましい一態様によれば、前記画像取得装置は、前記軸線方向視において、前記軸線に対して前記予め定められた回転位置に対応する方向に設けられている。前記制御装置は、前記多芯シールドケーブルの回転角が90度以上の所定角度に達して前記ドレイン線が検出されない場合、回転方向を逆転させる。 According to a preferred aspect of the multicore shielded cable processing device, the image acquisition device is provided in a direction corresponding to the predetermined rotational position with respect to the axis when viewed in the axial direction. The control device reverses the rotation direction when the rotation angle of the multicore shielded cable reaches a predetermined angle of 90 degrees or more and the drain wire is not detected.
 上記多芯シールドケーブルの処理装置によれば、画像取得装置は、軸線に対して、予め定められた回転位置に対応する方向に設けられている。そのため、多芯シールドケーブルの回転の前には、ドレイン線が画像取得装置の画像取得領域内に入らない場合がある。多芯シールドケーブルの回転角が90度以上となってもドレイン線が検出されない場合、そのまま回転を続けると、最終的な回転角は180度を越える。しかし、回転方向を逆転させると、最終的な回転角は180度以内となる。そのため、多芯シールドケーブルの端部を回転させる角度を小さくすることができる。これにより、U字に曲げられた多芯シールドケーブルの捩れを抑制できる。ただし、多芯シールドケーブルを逆回転させると、ドレイン線の位置を決めるのに要する時間が増加する場合が多いため、多芯シールドケーブルを逆回転させるかどうかを判断する角度は、90度以上の角度で適宜に設定されてもよい。 According to the multicore shielded cable processing device, the image acquisition device is provided in the direction corresponding to the predetermined rotational position with respect to the axis. Therefore, the drain wire may not enter the image acquisition area of the image acquisition device before the rotation of the multicore shielded cable. If the drain wire is not detected even when the rotation angle of the multicore shielded cable reaches 90 degrees or more, if the rotation is continued as it is, the final rotation angle exceeds 180 degrees. However, if the direction of rotation is reversed, the final rotation angle will be within 180 degrees. Therefore, it is possible to reduce the angle at which the ends of the multicore shielded cable are rotated. As a result, twisting of the U-bent multicore shielded cable can be suppressed. However, if the multicore shielded cable is rotated in reverse, the time required to determine the position of the drain wire often increases. The angle may be appropriately set.
 本発明に係る多芯シールドケーブルの処理装置の好ましい一態様によれば、前記画像取得装置によって取得される画像における前記軸線周りの回転位置は、周方向の所定範囲に設定された第1領域と、前記第1領域と一部が重なるような周方向の所定範囲に設定された第2領域と、を含んでいる。前記予め定められた回転位置は、前記第1領域と前記第2領域との重なり部分である。前記制御装置は、前記第1領域および前記第2領域の両方に前記ドレイン線が検出されると、前記保持装置による前記多芯シールドケーブルの回転を停止させる。 According to a preferred aspect of the multicore shielded cable processing apparatus of the present invention, the rotation position about the axis in the image acquired by the image acquisition device is a first region set within a predetermined range in the circumferential direction. , and a second region set in a predetermined range in the circumferential direction so as to partially overlap the first region. The predetermined rotational position is the overlapping portion of the first area and the second area. The control device stops rotation of the multicore shielded cable by the holding device when the drain wires are detected in both the first region and the second region.
 上記多芯シールドケーブルの処理装置によれば、第1領域でのドレイン線の検出、および、第2領域でのドレイン線の検出、という簡単な画像処理の和によってドレイン線を予め定められた回転位置に停止させることができる。 According to the multi-core shielded cable processing device, the drain wire is rotated in a predetermined manner by the sum of simple image processing of detection of the drain wire in the first region and detection of the drain wire in the second region. can be stopped in position.
 上記多芯シールドケーブルの処理装置の好ましい一態様によれば、前記第1領域および前記第2領域の外側には、外側領域が設定されている。前記制御装置は、前記外側領域に前記ドレイン線が検出されると、前記保持装置を制御して所定の角度だけ前記多芯シールドケーブルを回転させるように構成されている。前記所定の角度は、前記ドレイン線が前記予め定められた回転位置よりも手前までしか到達しない角度に設定されている。 According to a preferred aspect of the multicore shielded cable processing apparatus, an outer region is set outside the first region and the second region. The control device is configured to control the holding device to rotate the multicore shielded cable by a predetermined angle when the drain wire is detected in the outer region. The predetermined angle is set to an angle at which the drain line reaches only up to this side of the predetermined rotational position.
 上記多芯シールドケーブルの処理装置によれば、外側領域では所定の角度だけ多芯シールドケーブルが回転されるため、より迅速にドレイン線を予め定められた回転位置に近づけることができる。かつ、多芯シールドケーブルは、予め定められた回転位置に到達する前に、第1領域または第2領域にいったん位置付けられる。そのため、そこからは、前述した制御により、ドレイン線を予め定められた回転位置に停止させることができる。 According to the multicore shielded cable processing apparatus, the multicore shielded cable is rotated by a predetermined angle in the outer region, so that the drain wire can be brought closer to the predetermined rotation position more quickly. Moreover, the multicore shielded cable is once positioned in the first area or the second area before reaching the predetermined rotational position. Therefore, from there, the drain wire can be stopped at a predetermined rotational position by the control described above.
 上記多芯シールドケーブルの処理装置の好ましい一態様によれば、前記制御装置は、前記第1領域または前記第2領域と前記外側領域との両方に前記ドレイン線が検出されると、前記ドレイン線が前記外側領域に存在するものとみなして、前記保持装置に前記多芯シールドケーブルを回転させる。 According to a preferred aspect of the multicore shielded cable processing apparatus, the control device, when the drain wire is detected in both the first region or the second region and the outer region, exists in the outer region, and the holding device rotates the multicore shielded cable.
 上記多芯シールドケーブルの処理装置によれば、第1領域または第2領域と外側領域との両方にドレイン線が検出された場合、ドレイン線が外側領域に存在するものとみなされるため、さらに迅速にドレイン線を予め定められた回転位置に近づけることができる。 According to the multi-core shielded cable processing apparatus, when the drain wire is detected in both the first region or the second region and the outer region, the drain wire is regarded as existing in the outer region. , the drain wire can be brought closer to a predetermined rotational position.
 本発明に係る多芯シールドケーブルの処理装置の好ましい一態様によれば、前記画像取得装置は、前記ドレイン線および前記コア線に照射する光を生成する光源と、前記光源によって生成された光の前記ドレイン線および前記コア線による反射光を取得する画像取得部と、を備えている。 According to a preferred aspect of the multi-core shielded cable processing apparatus according to the present invention, the image acquisition device includes: a light source that generates light to irradiate the drain line and the core line; and an image acquisition unit that acquires light reflected by the drain line and the core line.
 上記多芯シールドケーブルの処理装置によれば、画像取得装置は、自らが照射する光の反射光を取得する。そのため、ドレイン線の検出が外部の光の影響を受けにくい。 According to the multicore shielded cable processing device, the image acquisition device acquires the reflected light of the light it emits. Therefore, detection of the drain line is less susceptible to external light.
 本発明に係る多芯シールドケーブルの処理装置の好ましい一態様によれば、前記光源によって生成される光は、赤外光である。 According to a preferred aspect of the multicore shielded cable processing apparatus of the present invention, the light generated by the light source is infrared light.
 上記多芯シールドケーブルの処理装置によれば、自らが照射する光が赤外光であるため、ドレイン線の検出が外部の可視光線の影響を受けにくい。 According to the multi-core shielded cable processing device, the light emitted by itself is infrared light, so the detection of the drain wire is less susceptible to external visible light.
 本発明に係る多芯シールドケーブルの処理装置の好ましい一態様によれば、前記画像取得部は、前記光源によって生成される光の前記ドレイン線および前記コア線による正反射光の光軸上から外れるように設けられている。 According to a preferred aspect of the multicore shielded cable processing apparatus according to the present invention, the image acquisition unit is off the optical axis of specularly reflected light from the drain line and the core line of the light generated by the light source. is provided as follows.
 上記多芯シールドケーブルの処理装置によれば、コア線の正反射光が強いことに起因するドレイン線の誤検知の可能性を低減することができる。 According to the multicore shielded cable processing device, it is possible to reduce the possibility of erroneous detection of the drain wire due to strong specular reflection of the core wire.
 本発明に係る多芯シールドケーブルの処理装置によれば、ドレイン線とコア線とを有する多芯シールドケーブルに関して、より簡易な構成でドレイン線の回転位置を調整できる。 According to the multicore shielded cable processing apparatus of the present invention, the rotation position of the drain wire can be adjusted with a simpler configuration for the multicore shielded cable having the drain wire and the core wire.
多芯シールドケーブルの模式的な断面図である。1 is a schematic cross-sectional view of a multicore shielded cable; FIG. 多芯シールドケーブルの処理装置の模式的な平面図である。FIG. 2 is a schematic plan view of a processing device for multicore shielded cables; ドレイン線と複数のコア線との分離を行うステーションの模式的な斜視図である。FIG. 4 is a schematic perspective view of a station that separates a drain wire from a plurality of core wires; 多芯シールドケーブルの処理装置のブロック図である。1 is a block diagram of a processing device for a multicore shielded cable; FIG. 多芯シールドケーブルの保持からコア線の分離までのプロセスを示すフローチャートである。4 is a flow chart showing a process from holding a multicore shielded cable to separating core wires. セミストリップ工程中の処理装置の模式的な斜視図である。FIG. 4 is a schematic perspective view of the processing equipment during the semi-stripping process; 調整工程中の処理装置の模式的な斜視図である。FIG. 4 is a schematic perspective view of the processing equipment during the adjustment process; 全ストリップ工程中の処理装置の模式的な斜視図である。1 is a schematic perspective view of the processing equipment during the entire stripping process; FIG. 分離工程中の処理装置の模式的な正面図である。FIG. 4 is a schematic front view of the processing equipment during the separation process; 画像取得装置による画像の模式図である。FIG. 4 is a schematic diagram of an image obtained by an image acquisition device; 多芯シールドケーブルの模式的な正面図であって、回転領域の区分を示す図である。FIG. 4 is a schematic front view of the multicore shielded cable, showing division of the rotation area; 調整工程の一例を示すフローチャートである。4 is a flow chart showing an example of an adjustment process;
 [多芯シールドケーブルの処理装置の概要]
 以下、図面を参照しながら、本発明の実施の形態について説明する。まず、ここでの線処理の対象である多芯シールドケーブル1について図1を参照しながら説明する。図1は、一例に係る多芯シールドケーブル1の模式的な断面図である。図1に示すように、多芯シールドケーブル1は、シース2と、シース2に挿通されたドレイン線3および複数のコア線4と、シールド5と、を有している。多芯シールドケーブル1は、ドレイン線3と複数のコア線4とシールド5とがシース2によって覆われた電線である。複数のコア線4は、例えば、電気信号を伝達する信号線として使用される。複数のコア線4は、それぞれ、芯線4aと芯線4aを覆う絶縁体の被覆4bとを有している。シールド5は、コア線4を外部のノイズから遮蔽する導体である。シールド5は、複数のコア線4の外側を覆っている。ドレイン線3は、シールド5に電気的に接続されている。ドレイン線3は接地され、これによりシールド5が接地される。ドレイン線3は、複数の細い導体素線からなり、絶縁体による被覆はされていない。図示は省略するが、ドレイン線3と複数のコア線4とはシールド5の内部において撚り合わされている。シールド5は、絶縁体のシース2によって覆われている。コア線4の本数は特に限定されない。
[Overview of Multicore Shielded Cable Processing Device]
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings. First, the multi-core shielded cable 1 to be processed here will be described with reference to FIG. FIG. 1 is a schematic cross-sectional view of a multicore shielded cable 1 according to one example. As shown in FIG. 1 , the multicore shielded cable 1 has a sheath 2 , a drain wire 3 and a plurality of core wires 4 inserted through the sheath 2 , and a shield 5 . A multicore shielded cable 1 is an electric wire in which a drain wire 3 , a plurality of core wires 4 and a shield 5 are covered with a sheath 2 . A plurality of core lines 4 are used, for example, as signal lines for transmitting electrical signals. Each of the plurality of core wires 4 has a core wire 4a and an insulator covering 4b covering the core wire 4a. The shield 5 is a conductor that shields the core wire 4 from external noise. A shield 5 covers the outside of the plurality of core wires 4 . Drain wire 3 is electrically connected to shield 5 . The drain line 3 is grounded, thereby grounding the shield 5 . The drain wire 3 is composed of a plurality of thin conductor strands and is not covered with an insulator. Although not shown, the drain wire 3 and a plurality of core wires 4 are twisted together inside the shield 5 . The shield 5 is covered by an insulating sheath 2 . The number of core wires 4 is not particularly limited.
 図2は、一実施形態に係る多芯シールドケーブル1の処理装置10(以下、単に処理装置10とも呼ぶ)の模式的な平面図である。図2に示すように、処理装置10は、多芯シールドケーブル1の処理を行う装置がそれぞれ設けられた複数のステーションStと、多芯シールドケーブル1を複数のステーションStに搬送する搬送装置20と、を備えている。搬送装置20は、所定の搬送方向に多芯シールドケーブル1を搬送する。以下では、多芯シールドケーブル1の搬送方向を左右方向とも呼ぶ。複数のステーションStは、多芯シールドケーブル1の搬送経路に沿って左右方向に並んでいる。搬送装置20から見た各ステーションStの方向を以下では、前方と呼び、符号Fで表す。左方および右方は、前方に向かって見た左方および右方とする。図面において、F、Rr、L、R、U、Dはそれぞれ、前後左右上下を表す。ここでは、搬送装置20は、多芯シールドケーブル1を右方から左方に向かって搬送する。右方は、多芯シールドケーブル1の搬送方向の上流側である。左方は、多芯シールドケーブル1の搬送方向の下流側である。ただし、これらの方向は説明の都合上のものであり、処理装置10の設置態様等を何ら限定するものではない。例えば、搬送装置20の移動経路は直線でなくてもよいため、ステーションStによって前方が変わることもあり得る。 FIG. 2 is a schematic plan view of a processing device 10 (hereinafter simply referred to as the processing device 10) for the multicore shielded cable 1 according to one embodiment. As shown in FIG. 2, the processing apparatus 10 includes a plurality of stations St each provided with a device for processing the multicore shielded cable 1, and a transfer apparatus 20 for transporting the multicore shielded cable 1 to the plurality of stations St. , is equipped with The conveying device 20 conveys the multicore shielded cable 1 in a predetermined conveying direction. Hereinafter, the conveying direction of the multicore shielded cable 1 is also referred to as the left-right direction. A plurality of stations St are arranged in the horizontal direction along the transport path of the multicore shielded cable 1 . The direction of each station St as seen from the transport device 20 is hereinafter referred to as the forward direction and denoted by symbol F. As shown in FIG. Left and right refer to left and right as viewed forward. In the drawings, F, Rr, L, R, U, and D represent front, back, left, right, up and down, respectively. Here, the conveying device 20 conveys the multicore shielded cable 1 from right to left. The right side is the upstream side in the conveying direction of the multicore shielded cable 1 . The left side is the downstream side in the conveying direction of the multicore shielded cable 1 . However, these directions are for convenience of explanation, and do not limit the installation mode of the processing apparatus 10 in any way. For example, since the movement path of the transport device 20 does not have to be straight, the front may change depending on the station St.
 図2に示すように、本実施形態では、多芯シールドケーブル1は、両端が同じ方向を向くようにU字状に曲げられている。多芯シールドケーブル1の両端は、ここでは、前方、すなわち各ステーションStの方に向いている。以下、多芯シールドケーブル1の左端および右端を、それぞれ符号1Lおよび1Rで表す。図2に示すように、搬送装置20は、多芯シールドケーブル1を上記したように把持する搬送クランプ21を備えている。搬送装置20は、さらに、搬送クランプ21を左右方向に移動させるクランプ移動装置22を備えている。 As shown in FIG. 2, in this embodiment, the multicore shielded cable 1 is bent in a U shape so that both ends face the same direction. Both ends of the multicore shielded cable 1 here face forward, ie, toward each station St. The left end and right end of the multicore shielded cable 1 are hereinafter denoted by 1L and 1R, respectively. As shown in FIG. 2, the carrier device 20 includes a carrier clamp 21 that holds the multicore shielded cable 1 as described above. The conveying device 20 further includes a clamp moving device 22 that moves the conveying clamp 21 in the left-right direction.
 図3は、ドレイン線3と複数のコア線4との分離を行うステーションStの模式的な斜視図である。各ステーションStにおいて行われる多芯シールドケーブル1の処理は特に限定されないが、本実施形態では、図3のステーションStにおいて、シース2に対する切れ目の形成、シース2の引き抜き、多芯シールドケーブル1を周方向に回転させることによるドレイン線3の回転位置の調整(以下、調整工程とも呼ぶ)、および、ドレイン線3と複数のコア線4との分離が行われる。図2および図3に示すように、処理装置10は、保持装置30と、移動装置40(図4参照)と、切込装置50と、画像取得装置60と、コア線分離装置70と、を備えている。 FIG. 3 is a schematic perspective view of a station St that separates the drain wire 3 and a plurality of core wires 4. FIG. The processing of the multicore shielded cable 1 performed at each station St is not particularly limited, but in the present embodiment, at the station St of FIG. Adjustment of the rotational position of the drain wire 3 (hereinafter also referred to as an adjustment step) and separation of the drain wire 3 and the plurality of core wires 4 are performed by rotating in the direction. As shown in FIGS. 2 and 3, the processing device 10 includes a holding device 30, a moving device 40 (see FIG. 4), a cutting device 50, an image acquiring device 60, and a core line separating device 70. I have.
 保持装置30は、多芯シールドケーブル1を所定の軸線Axに沿って保持するとともに、多芯シールドケーブル1を軸線Ax周りに回転させる装置である。軸線Axは、ここでは、前後方向に略水平に延びている。軸線Axと搬送装置20による多芯シールドケーブル1の搬送方向とは交差(ここでは直交)している。搬送装置20は、軸線Axに交差する搬送方向に多芯シールドケーブル1を搬送し、保持装置30に多芯シールドケーブル1の両端1Lおよび1Rを順次受け渡すように構成されている。図3に示すように、保持装置30は、第1回転クランプ31と、第2回転クランプ32と、固定クランプ33と、を備えている。第1回転クランプ31および第2回転クランプ32は、それぞれ多芯シールドケーブル1を保持して軸線Ax周りに回転させることが可能に構成されている。第1回転クランプ31および第2回転クランプ32は、軸線Axに沿って配置されており、前後方向に並んでいる。前後方向は、保持装置30の軸線方向である。 The holding device 30 is a device that holds the multicore shielded cable 1 along a predetermined axis Ax and rotates the multicore shielded cable 1 around the axis Ax. The axis Ax here extends substantially horizontally in the front-rear direction. The axis Ax and the transport direction of the multicore shielded cable 1 by the transport device 20 intersect (orthogonal here). The conveying device 20 is configured to convey the multicore shielded cable 1 in the conveying direction intersecting the axis Ax, and sequentially transfer both ends 1L and 1R of the multicore shielded cable 1 to the holding device 30 . As shown in FIG. 3 , the holding device 30 comprises a first rotary clamp 31 , a second rotary clamp 32 and a fixed clamp 33 . The first rotating clamp 31 and the second rotating clamp 32 are configured to hold the multicore shielded cable 1 and rotate it around the axis Ax. The first rotating clamp 31 and the second rotating clamp 32 are arranged along the axis Ax and are arranged in the front-rear direction. The front-rear direction is the axial direction of the holding device 30 .
 第1回転クランプ31は、ここでは、第2回転クランプ32よりも前方に配置されている。詳しくは後述するが、第1回転クランプ31は、シース2に切れ目2aが形成された後には、切れ目2aよりも先端側のシース2Fを保持するクランプである(図6参照)。第2回転クランプ32は、シース2に切れ目2aが形成された後には、切れ目2aよりも根元側のシース2Rを保持するクランプである(同じく図6参照)。固定クランプ33は、第1回転クランプ31と第2回転クランプ32との間に設けられ、閉じたときには根元側のシース2Rを回転不能に把持する(図6参照)。固定クランプ33は、開いたときには根元側のシース2Rから離れる。第1回転クランプ31、第2回転クランプ32、および固定クランプ33は、いずれも、図示しないアクチュエータにより軸線Axに接近または離反するように駆動される。アクチュエータは、例えば、エアシリンダである。ただし、アクチュエータの種類は特に限定されない。 The first rotary clamp 31 is arranged forward of the second rotary clamp 32 here. Although details will be described later, the first rotating clamp 31 is a clamp that holds the sheath 2F on the distal side of the cut 2a after the cut 2a is formed in the sheath 2 (see FIG. 6). The second rotating clamp 32 is a clamp that holds the sheath 2R on the root side of the cut 2a after the cut 2a is formed in the sheath 2 (also see FIG. 6). The fixed clamp 33 is provided between the first rotary clamp 31 and the second rotary clamp 32, and non-rotatably grips the proximal sheath 2R when closed (see FIG. 6). The fixed clamp 33 is separated from the proximal sheath 2R when opened. The first rotating clamp 31, the second rotating clamp 32, and the fixed clamp 33 are all driven toward or away from the axis Ax by an actuator (not shown). The actuator is, for example, an air cylinder. However, the type of actuator is not particularly limited.
 第1回転クランプ31は、保持した多芯シールドケーブル1の回転方向、回転角、および回転速度を制御可能に構成されている。第1回転クランプ31は、例えば、図示しないサーボモータおよびギアを備えている。ただし、第1回転クランプ31の構成は、上記に限定されるわけではない。第2回転クランプ32も、保持した多芯シールドケーブル1の回転方向、回転角、および回転速度を制御可能に構成されている。 The first rotating clamp 31 is configured to be able to control the rotating direction, rotating angle, and rotating speed of the held multicore shielded cable 1 . The first rotary clamp 31 has, for example, a servomotor and gears (not shown). However, the configuration of the first rotary clamp 31 is not limited to the above. The second rotating clamp 32 is also configured to be able to control the rotating direction, rotating angle, and rotating speed of the held multicore shielded cable 1 .
 移動装置40は、第1回転クランプ31および第2回転クランプ32のうちの少なくとも一方を前後方向に移動させることにより、第1回転クランプ31と第2回転クランプ32とを接近または離反させる。本実施形態では、移動装置40は、第1回転クランプ31を前後方向に移動させる。ただし、移動装置40は、第2回転クランプ32を前後方向に移動させてもよく、第1回転クランプ31および第2回転クランプ32の両方を前後方向に移動させてもよい。移動装置40は、例えば、図示しないステッピングモータと、ボールねじと、ガイドレールと、を備えている。 The moving device 40 moves at least one of the first rotating clamp 31 and the second rotating clamp 32 in the front-rear direction, thereby bringing the first rotating clamp 31 and the second rotating clamp 32 closer to or away from each other. In this embodiment, the moving device 40 moves the first rotary clamp 31 in the front-rear direction. However, the moving device 40 may move the second rotating clamp 32 in the front-rear direction, or may move both the first rotating clamp 31 and the second rotating clamp 32 in the front-rear direction. The moving device 40 includes, for example, a stepping motor (not shown), a ball screw, and a guide rail.
 切込装置50は、シース2に切れ目2aを形成する装置である。図3に示すように、切込装置50は、シース2の軸線Axに沿った所定位置(以下、切込位置Pcとも呼ぶ)に切れ目2aを形成する。第1回転クランプ31は、切込位置Pcよりも前方に設けられ、切込位置Pcよりも多芯シールドケーブル1の先端側でシース2を保持する。第2回転クランプ32は、切込位置Pcよりも後方に設けられ、切込位置Pcよりも多芯シールドケーブル1の根元側でシース2を保持する。その結果、第1回転クランプ31は、シース2に切れ目2aが形成された後には、切れ目2aよりも先端側のシース2Fを保持する。また、第2回転クランプ32は、シース2に切れ目2aが形成された後には、切れ目2aよりも根元側のシース2Rを保持する。 The cutting device 50 is a device that forms a cut 2a in the sheath 2. As shown in FIG. 3, the cutting device 50 forms a cut 2a at a predetermined position along the axis Ax of the sheath 2 (hereinafter also referred to as cutting position Pc). The first rotating clamp 31 is provided forward of the cutting position Pc and holds the sheath 2 on the distal end side of the multicore shielded cable 1 from the cutting position Pc. The second rotating clamp 32 is provided behind the cutting position Pc and holds the sheath 2 on the root side of the multicore shielded cable 1 relative to the cutting position Pc. As a result, after the cut 2a is formed in the sheath 2, the first rotary clamp 31 holds the sheath 2F on the distal side of the cut 2a. Further, after the cut 2a is formed in the sheath 2, the second rotating clamp 32 holds the sheath 2R on the root side of the cut 2a.
 図3に示すように、切込装置50は、ここでは、保持装置30の軸線Axを取り囲むように配置された複数の切込刃51を備えている。切込装置50は、複数の切込刃51を軸線Ax周りに回転させるように構成されている。切込装置50は、切込刃51を軸線Axに接近させ、切込刃51で多芯シールドケーブル1を挟んで回転することによって、シース2に切れ目2aを形成する。詳しくは後述するが、処理装置10は、シース2に切れ目2aが形成された後、移動装置40を制御して切れ目2aよりも先端側のシース2Fを部分的に引き抜き、ドレイン線3とコア線4とをシース2から露出させる。 As shown in FIG. 3 , the cutting device 50 here includes a plurality of cutting blades 51 arranged so as to surround the axis Ax of the holding device 30 . The cutting device 50 is configured to rotate a plurality of cutting blades 51 around the axis Ax. The cutting device 50 forms a cut 2a in the sheath 2 by bringing the cutting blade 51 closer to the axis Ax and rotating the cutting blade 51 with the multicore shielded cable 1 sandwiched therebetween. Although the details will be described later, after the cut 2a is formed in the sheath 2, the processing device 10 controls the moving device 40 to partially pull out the sheath 2F on the tip side of the cut 2a, thereby separating the drain wire 3 and the core wire. 4 are exposed from the sheath 2.
 画像取得装置60は、保持装置30に保持された状態のドレイン線3およびコア線4(保持装置30に保持され、かつ、シース2から露出された状態のドレイン線3およびコア線4)の画像を取得可能に構成されている。本実施形態では、画像取得装置60は、光源付きのカメラである。画像取得装置60は、ドレイン線3およびコア線4に照射する光を生成する光源61と、光源61によって生成された光のドレイン線3およびコア線4による反射光を取得する画像取得部62と、を備えている。 The image acquisition device 60 captures an image of the drain wire 3 and the core wire 4 held by the holding device 30 (the drain wire 3 and the core wire 4 held by the holding device 30 and exposed from the sheath 2). is configured to be able to obtain In this embodiment, image acquisition device 60 is a camera with a light source. The image acquisition device 60 includes a light source 61 that generates light to irradiate the drain line 3 and the core line 4, and an image acquisition unit 62 that acquires reflected light from the light generated by the light source 61 by the drain line 3 and the core line 4. , is equipped with
 前後方向視において、画像取得装置60は、軸線Axに対して、0時の方向(上方)に設けられている。詳しくは後述するが、0時の位置は、ドレイン線3の回転位置の調整工程においてドレイン線3を移動させるように予め定められた回転位置(以下、停止位置200とも呼ぶ、図11参照)である。かかる配置により、画像取得装置60は、ドレイン線3の停止位置200を、左右方向の位置として正確に画像に反映することができる。さらに、図3に示すように、画像取得装置60は、光源61の光軸L1が前後方向に傾くように傾いて設けられている。図3に示すように、鉛直方向と光軸L1との間の角度はθである。角度θは、好ましくは、15度以下の角度である。この光軸L1の傾きは、光源61によって生成される光のドレイン線3およびコア線4による正反射光が画像取得部62に直接照射されないように設定されたものである。従って、光軸L1の傾きθが特に限定されるわけではなく、画像取得部62が、光源61によって生成される光のドレイン線3およびコア線4による正反射光の光軸L2上から外れていればよい。例えば、画像取得部62の軸線が光軸L1に対して傾いて設定されていれば、光軸L1は、鉛直に設定されていてもよい。 The image acquisition device 60 is provided in the 0 o'clock direction (above) with respect to the axis line Ax when viewed in the front-rear direction. Although details will be described later, the 0 o'clock position is a predetermined rotational position (hereinafter also referred to as a stop position 200, see FIG. 11) for moving the drain wire 3 in the step of adjusting the rotational position of the drain wire 3. be. With this arrangement, the image acquisition device 60 can accurately reflect the stop position 200 of the drain wire 3 in the image as the position in the left-right direction. Furthermore, as shown in FIG. 3, the image acquisition device 60 is provided with an inclination such that the optical axis L1 of the light source 61 is inclined in the front-rear direction. As shown in FIG. 3, the angle between the vertical direction and the optical axis L1 is θ. The angle θ is preferably an angle of 15 degrees or less. The inclination of the optical axis L1 is set so that specularly reflected light from the drain line 3 and the core line 4 of the light generated by the light source 61 does not directly irradiate the image acquisition section 62 . Therefore, the inclination θ of the optical axis L1 is not particularly limited. All you have to do is For example, if the axis of the image acquisition unit 62 is set to be inclined with respect to the optical axis L1, the optical axis L1 may be set vertically.
 本実施形態では、光源61によって生成される光は、赤外光である。画像取得部62は、赤外光を検知可能に構成されている。光源61が照射する光、および、画像取得部62で検知する光を赤外光とすることにより、光源61が照射したのではない自然光の影響を低減することができる。 In this embodiment, the light generated by the light source 61 is infrared light. The image acquisition unit 62 is configured to detect infrared light. By using infrared light as the light emitted by the light source 61 and the light detected by the image acquisition unit 62, the influence of natural light not emitted by the light source 61 can be reduced.
 コア線分離装置70は、開閉する一対のチャック71と、チャック開閉装置72と、チャック移動装置73と、を備えている。図3に示すように、一対のチャック71は、保持装置30によって保持された状態の多芯シールドケーブル1の径方向外方に配置されている。一対のチャック71は、ここでは、軸線Axの左方および右方に設けられている。一対のチャック71は、それぞれ、上下方向に延びる把持アーム71aと、把持アーム71aの上端部に接続され軸線Axの方に向かって略水平に延びる突出部71bと、を備えている。把持アーム71a一対のチャック71は、多芯シールドケーブル1を取り囲むように設けられている。 The core wire separating device 70 includes a pair of chucks 71 that open and close, a chuck opening/closing device 72, and a chuck moving device 73. As shown in FIG. 3 , the pair of chucks 71 are arranged radially outward of the multicore shielded cable 1 held by the holding device 30 . A pair of chucks 71 are provided here on the left and right sides of the axis Ax. Each of the pair of chucks 71 has a gripping arm 71a extending in the vertical direction, and a projecting portion 71b connected to the upper end of the gripping arm 71a and extending substantially horizontally toward the axis Ax. A pair of chucks 71 with gripping arms 71 a are provided so as to surround the multicore shielded cable 1 .
 チャック開閉装置72は、一対のチャック71を駆動して開閉させる駆動装置である。チャック開閉装置72は、一対のチャック71をそれぞれ左右方向に移動させる。チャック開閉装置72は、例えば、エアシリンダを備えている。ただし、チャック開閉装置72の構成は限定されない。チャック開閉装置72の駆動によって一対のチャック71が閉じると、一対の把持アーム71aが外側に位置するコア線4を把持する。これにより、ドレイン線3およびコア線4は、回転不能に固定される。一対のチャック71は、開いたときには、ドレイン線3および複数のコア線4から離れる。一対のチャック71は、ドレイン線3およびコア線4を回転不能に固定し、または、回転可能に解放する。前後方向に関して、一対のチャック71は、画像取得装置60の撮像範囲よりも多芯シールドケーブル1の先端側、または、少なくとも画像取得装置60の撮像範囲の後端よりも前方に位置している。かかるチャック71の配置により、画像取得装置60は、チャック71よりも多芯シールドケーブル1の根元側を撮像可能である。 The chuck opening/closing device 72 is a driving device that drives and opens and closes the pair of chucks 71 . The chuck opening/closing device 72 moves the pair of chucks 71 in the horizontal direction. The chuck opening/closing device 72 has, for example, an air cylinder. However, the configuration of the chuck opening/closing device 72 is not limited. When the chuck opening/closing device 72 is driven to close the pair of chucks 71, the pair of gripping arms 71a grip the core wire 4 located outside. Thereby, the drain wire 3 and the core wire 4 are non-rotatably fixed. The pair of chucks 71 are separated from the drain wire 3 and the plurality of core wires 4 when opened. A pair of chucks 71 non-rotatably fix the drain wire 3 and the core wire 4 or rotatably release them. With respect to the front-rear direction, the pair of chucks 71 are located on the tip side of the multicore shielded cable 1 from the imaging range of the image acquisition device 60 , or at least in front of the rear end of the imaging range of the image acquisition device 60 . With this arrangement of the chuck 71 , the image acquisition device 60 can capture an image of the root side of the multicore shielded cable 1 rather than the chuck 71 .
 一対のチャック71は、ドレイン線3およびコア線4を回転不能に固定した状態において、0時の位置に隙間を有している。一対のチャック71がドレイン線3およびコア線4を固定した状態においても、一対の突出部71bは、互いに離れており、その間に隙間を形成する。チャック移動装置73は、軸線Ax方向視において、ドレイン線3の停止位置200(ここでは0時の位置、図11参照)に対応する方向(上方)の逆方向にチャック71を移動させる。以下、このチャック71が移動される方向をコア線4の曲げ方向、または単に曲げ方向とも呼ぶ。コア線4の曲げ方向は、ここでは、軸線Ax方向視における6時の方向(下方)である。本実施形態では、コア線4の曲げ方向は、前斜め下方である。チャック移動装置73は、例えば、エアシリンダを備えている。ただし、チャック移動装置73の構成は限定されない。チャック71が曲げ方向に移動することにより、複数のコア線4はチャック71に引っ掛けられ、曲げ方向に曲げられる。ドレイン線3は、一対の突出部71bの間の隙間を通過し、取り残される。これにより、ドレイン線3と複数のコア線4とが分離される。 The pair of chucks 71 have a gap at the 0 o'clock position when the drain wire 3 and the core wire 4 are non-rotatably fixed. Even when the pair of chucks 71 fix the drain wire 3 and the core wire 4, the pair of protrusions 71b are separated from each other to form a gap therebetween. The chuck moving device 73 moves the chuck 71 in the direction (upward) opposite to the direction (upward) corresponding to the stop position 200 of the drain wire 3 (0 o'clock position here, see FIG. 11) when viewed in the direction of the axis Ax. Hereinafter, the direction in which the chuck 71 is moved is also referred to as the bending direction of the core wire 4 or simply the bending direction. Here, the bending direction of the core wire 4 is the 6 o'clock direction (downward) when viewed in the direction of the axis Ax. In this embodiment, the bending direction of the core wire 4 is obliquely forward and downward. The chuck moving device 73 has, for example, an air cylinder. However, the configuration of the chuck moving device 73 is not limited. By moving the chuck 71 in the bending direction, the plurality of core wires 4 are hooked on the chuck 71 and bent in the bending direction. The drain wire 3 passes through the gap between the pair of protrusions 71b and is left behind. Thereby, the drain line 3 and the plurality of core lines 4 are separated.
 処理装置10は、上記の他にドレイン線3に熱収縮チューブを被せて加熱する装置や、端子圧着装置などを備えていてもよいが、説明は省略する。図3に示された装置による処理は、U字に曲げられた多芯シールドケーブル1の搬送方向前方側の端部である左端1Lに対して、まず行われる。その後、多芯シールドケーブル1は搬送装置20によって左方に移動され、多芯シールドケーブル1の右端1Rに対して同様の処理が行われる。多芯シールドケーブル1の右端1Rに対して図3の装置による処理が行われているとき、多芯シールドケーブル1の左端1Lに対しては、次のステーションStにおける処理が行われていてもよい。 In addition to the above, the processing device 10 may include a device for heating the drain wire 3 by covering it with a heat-shrinkable tube, a terminal crimping device, etc., but the description thereof will be omitted. The processing by the apparatus shown in FIG. 3 is first performed on the left end 1L, which is the forward end in the transport direction of the U-bent multicore shielded cable 1 . After that, the multicore shielded cable 1 is moved leftward by the conveying device 20, and the right end 1R of the multicore shielded cable 1 is subjected to the same processing. When the right end 1R of the multicore shielded cable 1 is being processed by the apparatus of FIG. 3, the left end 1L of the multicore shielded cable 1 may be processed in the next station St. .
 図4は、処理装置10のブロック図である。図4に示すように、本実施形態に係る処理装置10は、画像取得装置60の画像に基づいてドレイン線3を判別するとともに、各部の動作を制御する判別制御装置80を備えている。判別制御装置80は、判別装置90と、制御装置100と、を備えている。本実施形態では、判別装置90と制御装置100とは、判別制御装置80として、1つのハードウェアによって実現されている。ただし、判別装置90と制御装置100とは、相互接続された複数のハードウェアによって実現されていてもよい。図4に示すように、判別制御装置80は、搬送クランプ21、クランプ移動装置22、第1回転クランプ31、第2回転クランプ32、固定クランプ33、移動装置40、切込装置50、画像取得装置60、チャック開閉装置72、およびチャック移動装置73に接続され、それらの動作を制御している。 FIG. 4 is a block diagram of the processing device 10. As shown in FIG. As shown in FIG. 4, the processing device 10 according to the present embodiment includes a discrimination control device 80 that discriminates the drain line 3 based on the image of the image acquisition device 60 and controls the operation of each section. The determination control device 80 includes a determination device 90 and a control device 100 . In this embodiment, the discrimination device 90 and the control device 100 are realized by one piece of hardware as the discrimination control device 80 . However, the determination device 90 and the control device 100 may be realized by a plurality of interconnected hardware. As shown in FIG. 4, the determination control device 80 includes a transport clamp 21, a clamp moving device 22, a first rotating clamp 31, a second rotating clamp 32, a fixed clamp 33, a moving device 40, a cutting device 50, and an image acquisition device. 60, chuck opening/closing device 72, and chuck moving device 73 to control their operations.
 判別装置90および制御装置100の構成は特に限定されない。判別装置90および制御装置100は、例えば、中央演算処理装置(以下、CPUという)と、CPUが実行するプログラムなどが格納されたROMと、RAMなどを備えていてもよい。判別装置90および制御装置100の各部は、ソフトウェアによって構成されていてもよいし、ハードウェアによって構成されていてもよい。また、各部は、プロセッサであってもよいし、回路であってもよい。判別装置90および制御装置100は、例えば、プログラマブルコントローラやコンピュータなどであってもよい。 The configurations of the determination device 90 and the control device 100 are not particularly limited. The determination device 90 and the control device 100 may include, for example, a central processing unit (hereinafter referred to as a CPU), a ROM storing programs executed by the CPU, and a RAM. Each unit of the determination device 90 and the control device 100 may be configured by software or may be configured by hardware. Also, each unit may be a processor or a circuit. Discrimination device 90 and control device 100 may be, for example, a programmable controller, a computer, or the like.
 判別装置90は、画像取得装置60によって取得された画像内の明度の分布に基づいて、ドレイン線3を判別する。ここでは、判別装置90は、予め定められた閾値よりも明度の大きい画素が領域内に所定数以上存在する場合に、その領域内にドレイン線3が存在すると判定する。詳しくは後述するが、画像取得装置60によって取得される画像は、複数の仮想的な領域に分割されている。ドレイン線3は、導体素線からなっており、金属光沢を有する。そのため、ドレイン線3が領域内に存在すれば、明度(反射光の強度)が閾値を越える画素の数は、所定数量(閾値)以上となる。それに対して、複数のコア線4は、被覆4bに覆われている。そのため、コア線4が領域内に存在しても、明度(反射光の強度)が閾値を越える画素の数は、閾値には達しない。コア線4による反射光の強度が閾値よりも大きい画素があったとしても、その数は少ない。判別装置90は、かかる方法により、ドレイン線3とコア線4とを区別している。図4に示すように、本実施形態では、判別装置90は、閾値登録部91と、判別部92と、を備えている。閾値登録部91には、明度の閾値と、当該閾値を越える明度を有する画素の数量の閾値とが登録されている。判別部92は、閾値登録部91に登録された2つの閾値を用いて、ドレイン線3を判別する。なお、判別装置90によるドレイン線3の判別は、画像取得装置60によって取得された画像内の明度の分布に基づいてされればよく、その方法は上記には限定されない。 The discrimination device 90 discriminates the drain line 3 based on the brightness distribution in the image acquired by the image acquisition device 60 . Here, the discriminating device 90 determines that the drain line 3 exists in the region when a predetermined number or more of pixels having brightness higher than a predetermined threshold value exist in the region. Although details will be described later, the image acquired by the image acquisition device 60 is divided into a plurality of virtual regions. The drain wire 3 is made of a conductor element wire and has metallic luster. Therefore, if the drain line 3 exists in the region, the number of pixels whose lightness (intensity of reflected light) exceeds the threshold is equal to or greater than a predetermined number (threshold). On the other hand, the multiple core wires 4 are covered with a covering 4b. Therefore, even if the core line 4 exists in the region, the number of pixels whose lightness (intensity of reflected light) exceeds the threshold does not reach the threshold. Even if there are pixels where the intensity of the light reflected by the core line 4 is greater than the threshold, the number of pixels is small. The discriminating device 90 discriminates between the drain wire 3 and the core wire 4 by such a method. As shown in FIG. 4 , in this embodiment, the discriminating device 90 includes a threshold registering section 91 and a discriminating section 92 . The threshold registration unit 91 registers a brightness threshold and a threshold for the number of pixels having brightness exceeding the threshold. The discrimination unit 92 discriminates the drain line 3 using the two thresholds registered in the threshold registration unit 91 . The determination of the drain line 3 by the determination device 90 may be performed based on the distribution of brightness in the image acquired by the image acquisition device 60, and the method is not limited to the above.
 図4に示すように、制御装置100は、搬送制御部101と、保持制御部102と、回転制御部103と、切込制御部104と、引き抜き制御部105と、画像取得制御部106と、把持制御部107と、分離制御部108と、回転設定部109と、を備えている。制御装置100は、他の制御部を備えていてもよいが、ここでは図示および説明を省略する。 As shown in FIG. 4, the control device 100 includes a conveyance control unit 101, a holding control unit 102, a rotation control unit 103, a cutting control unit 104, a pull-out control unit 105, an image acquisition control unit 106, A grip control unit 107 , a separation control unit 108 and a rotation setting unit 109 are provided. The control device 100 may have other control units, but illustration and description thereof are omitted here.
 搬送制御部101は、搬送装置20の搬送クランプ21およびクランプ移動装置22を制御する。保持制御部102は、第1回転クランプ31、第2回転クランプ32、および固定クランプ33の開閉動作を制御する。回転制御部103は、第1回転クランプ31および第2回転クランプ32の回転動作を制御する。特に、回転制御部103は、ドレイン線3の回転位置を調整するために第1回転クランプ31および第2回転クランプ32を回転させる際には、回転設定部109によって決定された回転角および回転速度に基づいて第1回転クランプ31および第2回転クランプ32の動作を制御する。図4に示すように、回転制御部103は、第1回転クランプ31および第2回転クランプ32の回転角を制御する回転角制御部103Aと、回転速度を制御する回転速度制御部103Bと、を備えている。 The transport control unit 101 controls the transport clamp 21 and clamp moving device 22 of the transport device 20 . The holding control unit 102 controls opening and closing operations of the first rotary clamp 31 , the second rotary clamp 32 and the fixed clamp 33 . The rotation control unit 103 controls rotation operations of the first rotary clamp 31 and the second rotary clamp 32 . In particular, when rotating the first rotary clamp 31 and the second rotary clamp 32 to adjust the rotational position of the drain wire 3, the rotation control unit 103 controls the rotation angle and the rotation speed determined by the rotation setting unit 109. to control the operation of the first rotary clamp 31 and the second rotary clamp 32 based on. As shown in FIG. 4, the rotation control unit 103 includes a rotation angle control unit 103A that controls the rotation angles of the first rotation clamp 31 and the second rotation clamp 32, and a rotation speed control unit 103B that controls the rotation speed. I have.
 切込制御部104は、切込装置50の動作を制御する。引き抜き制御部105は、移動装置40の動作を制御する。画像取得制御部106は、画像取得装置60を制御して、ドレイン線3およびコア線4の画像を取得させる。画像取得制御部106は、画像取得装置60の光源61を制御して赤外光を照射させるとともに、画像取得部62を制御して画像を取得させる。把持制御部107は、コア線分離装置70のチャック開閉装置72の動作を制御する。分離制御部108は、コア線分離装置70のチャック移動装置73の動作を制御する。 The cutting control unit 104 controls the operation of the cutting device 50 . The pull-out control unit 105 controls the operation of the moving device 40 . The image acquisition control unit 106 controls the image acquisition device 60 to acquire images of the drain wire 3 and the core wire 4 . The image acquisition control unit 106 controls the light source 61 of the image acquisition device 60 to emit infrared light, and controls the image acquisition unit 62 to acquire an image. The grip control unit 107 controls the operation of the chuck opening/closing device 72 of the core wire separating device 70 . The separation control unit 108 controls the operation of the chuck moving device 73 of the core wire separating device 70 .
 回転設定部109は、調整工程における第1回転クランプ31および第2回転クランプ32の動作を決定する。図4に示すように、回転設定部109は、位置認定部109Aと、回転角決定部109Bと、回転速度決定部109Cと、を備えている。詳しくは後述するが、位置認定部109Aは、画像取得装置60によって取得された画面における複数の仮想的な領域のうちのどの領域にドレイン線3が存在するかを認定する。位置認定部109Aは、例えば、2つの領域にまたがってドレイン線3が存在する場合に、後述する予め定められたルールに基づいてどの領域にドレイン線3が存在するかを認定する。回転角決定部109Bおよび回転速度決定部109Cは、ドレイン線3が存在すると位置認定部109Aが認定した領域に基づいて、第1回転クランプ31および第2回転クランプ32の回転角および回転速度をそれぞれ決定する。ここでは、回転角決定部109Bおよび回転速度決定部109Cが決定する回転角および回転速度は、領域に応じて予め定められた回転角および回転速度である。 The rotation setting unit 109 determines the operations of the first rotary clamp 31 and the second rotary clamp 32 in the adjustment process. As shown in FIG. 4, the rotation setting unit 109 includes a position recognition unit 109A, a rotation angle determination unit 109B, and a rotation speed determination unit 109C. Although the details will be described later, the position recognizing unit 109A recognizes in which region of the plurality of virtual regions on the screen acquired by the image acquisition device 60 the drain line 3 exists. For example, when the drain line 3 exists across two regions, the position recognizing unit 109A recognizes in which region the drain line 3 exists based on a predetermined rule to be described later. Rotation angle determination unit 109B and rotation speed determination unit 109C determine the rotation angle and rotation speed of first rotary clamp 31 and second rotary clamp 32, respectively, based on the region recognized by position recognition unit 109A where drain wire 3 exists. decide. Here, the rotation angle and rotation speed determined by the rotation angle determination unit 109B and the rotation speed determination unit 109C are the rotation angle and rotation speed predetermined according to the region.
 制御装置100による制御の詳細の説明は、プロセスの説明において行う。 A detailed description of the control by the control device 100 will be given in the description of the process.
 [コア線の分離プロセス]
 以下では、ドレイン線3とコア線4とを分離するまでのプロセスの詳細を説明する。図5は、多芯シールドケーブル1の保持からコア線4の分離までのプロセスを示すフローチャートである。図5に示すように、コア線4の分離までのプロセスのステップS01では、制御装置100は、第1回転クランプ31および第2回転クランプ32に多芯シールドケーブル1を保持させる。ステップS01は、搬送装置20から保持装置30に多芯シールドケーブル1を受け渡すステップである。ステップS01では、固定クランプ33も、多芯シールドケーブル1を把持する。
[Core wire separation process]
The details of the process up to the separation of the drain line 3 and the core line 4 will be described below. FIG. 5 is a flow chart showing the process from holding the multicore shielded cable 1 to separating the core wire 4 . As shown in FIG. 5 , in step S<b>01 of the process up to separation of the core wire 4 , the control device 100 causes the first rotating clamp 31 and the second rotating clamp 32 to hold the multicore shielded cable 1 . Step S<b>01 is a step of transferring the multicore shielded cable 1 from the conveying device 20 to the holding device 30 . In step S<b>01 , the fixing clamp 33 also grips the multicore shielded cable 1 .
 続くステップS02では、制御装置100は、多芯シールドケーブル1が保持装置30によって保持された状態で切込装置50を制御し、シース2に切れ目2aを形成する。図3に示すように、切込装置50は、シース2の軸線Axに沿った所定の切込位置Pcに切れ目2a(図6参照)を形成する。その結果、第1回転クランプ31は、切れ目2aよりも先端側のシース2Fを保持する。第2回転クランプ32および固定クランプ33は、切れ目2aよりも根元側のシース2Rを保持する。 In the subsequent step S02, the control device 100 controls the cutting device 50 while the multicore shielded cable 1 is held by the holding device 30 to form a cut 2a in the sheath 2. As shown in FIG. 3, the cutting device 50 forms a cut 2a (see FIG. 6) at a predetermined cutting position Pc along the axis Ax of the sheath 2. As shown in FIG. As a result, the first rotating clamp 31 holds the sheath 2F on the distal side of the cut 2a. The second rotary clamp 32 and fixed clamp 33 hold the sheath 2R on the root side of the cut 2a.
 ステップS02でシース2に切れ目2aが形成された後、ステップS03において、制御装置100は、移動装置40を制御して、先端側のシース2Fを部分的に引き抜く。以下、この工程をセミストリップ工程とも呼ぶ。図6は、セミストリップ工程中の処理装置10の模式的な斜視図である。図6に示すように、セミストリップは、ドレイン線3およびコア線4の一部が露出し、かつ、ドレイン線3およびコア線4の他の一部に先端側のシース2Fが残るように、先端側のシース2Fを引き抜く工程である。ここでは、ドレイン線3およびコア線4の先端部に先端側のシース2Fが残る。 After the cut 2a is formed in the sheath 2 in step S02, in step S03, the control device 100 controls the moving device 40 to partially pull out the sheath 2F on the distal end side. Hereinafter, this process is also called a semi-strip process. FIG. 6 is a schematic perspective view of the processing apparatus 10 during the semi-stripping process. As shown in FIG. 6, the semi-strip is formed so that part of the drain wire 3 and the core wire 4 is exposed, and the other part of the drain wire 3 and the core wire 4 remains with the sheath 2F on the tip side. This is the step of pulling out the sheath 2F on the distal end side. Here, the sheath 2F on the distal end side remains at the distal end portions of the drain wire 3 and the core wire 4 .
 図6に示すように、セミストリップにより、ドレイン線3およびコア線4はシース2から露出し、保持装置30は、ドレイン線3とコア線4とがシース2から露出した多芯シールドケーブル1を保持することとなる。ただし、セミストリップ工程は、多芯シールドケーブル1を保持装置30に保持させる前に、例えば他のステーションStで行われていてもよい。その場合、保持装置30は、既にドレイン線3とコア線4とがシース2から露出している多芯シールドケーブル1を保持するのでもよい。 As shown in FIG. 6, the drain wire 3 and the core wire 4 are exposed from the sheath 2 by semi-stripping, and the holding device 30 holds the multicore shielded cable 1 with the drain wire 3 and the core wire 4 exposed from the sheath 2. will be retained. However, the semi-stripping process may be performed, for example, at another station St before the multicore shielded cable 1 is held by the holding device 30 . In that case, the holding device 30 may hold the multicore shielded cable 1 in which the drain wire 3 and the core wire 4 are already exposed from the sheath 2 .
 本実施形態では、制御装置100は、セミストリップにおいて、第1回転クランプ31を駆動させて先端側のシース2Fを根元側のシース2Rに対して回転させ、ドレイン線3とコア線4との撚りをほどくように構成されている(以下、撚り戻しとも呼ぶ、図5のステップS03参照)。セミストリップおよび撚り戻し工程において、第1回転クランプ31は、ドレイン線3およびコア線4の撚りをほどく方向に回転しながら多芯シールドケーブル1の先端側に移動する。これにより、先端側のシース2Fが部分的に抜けるとともに、ドレイン線3およびコア線4の撚りが撚り戻される。第1回転クランプ31の回転および移動は、先端側のシース2Fがドレイン線3およびコア線4から完全に離脱する前に停止される。 In this embodiment, in the semi-strip, the control device 100 drives the first rotating clamp 31 to rotate the sheath 2F on the distal end side with respect to the sheath 2R on the root side, thereby twisting the drain wire 3 and the core wire 4. (hereinafter also referred to as untwisting, see step S03 in FIG. 5). In the semi-stripping and untwisting process, the first rotating clamp 31 moves to the tip side of the multicore shielded cable 1 while rotating in the direction of untwisting the drain wire 3 and the core wire 4 . As a result, the sheath 2F on the distal end side is partially pulled out, and the twists of the drain wire 3 and the core wire 4 are untwisted. The rotation and movement of the first rotary clamp 31 are stopped before the sheath 2F on the distal end side is completely detached from the drain wire 3 and core wire 4 .
 なお、本実施形態では、制御装置100は、撚り戻しにおいて、第1回転クランプ31を回転させたが、第2回転クランプ32、または第1回転クランプ31および第2回転クランプ32の両方を回転させてもよい。制御装置100は、第1回転クランプ31および第2回転クランプ32のうちの少なくとも一方を駆動させて先端側のシース2Fを根元側のシース2Rに対して回転させるように構成されていればよい。セミストリップに関しても同様であり、処理装置10は、第2回転クランプ32、または第1回転クランプ31および第2回転クランプ32の両方を前後方向に移動させることにより、第1回転クランプ31と第2回転クランプ32とを離反させてもよい。 In this embodiment, the control device 100 rotates the first rotating clamp 31 in untwisting, but rotates the second rotating clamp 32 or both the first rotating clamp 31 and the second rotating clamp 32. may The control device 100 may be configured to drive at least one of the first rotating clamp 31 and the second rotating clamp 32 to rotate the sheath 2F on the distal side with respect to the sheath 2R on the root side. The same is true for the semi-strip, and the processing apparatus 10 moves the second rotating clamp 32 or both the first rotating clamp 31 and the second rotating clamp 32 in the front-rear direction so that the first rotating clamp 31 and the second rotating clamp 32 move in the front-rear direction. The rotating clamp 32 may be separated.
 ステップS03の撚り戻しを含むセミストリップの後、ステップS04の調整工程において、制御装置100は、画像取得装置60にドレイン線3およびコア線4の画像を取得させる。ステップS04では、判別装置90は、画像取得装置60によって取得された画像の明度の分布に基づいて、ドレイン線3を判別する。制御装置100は、判別装置90の判別に基づいて保持装置30を制御し、軸線Ax周りの予め定められた停止位置200、ここでは0時の位置にドレイン線3を移動させる。図7は、調整工程中の処理装置10の模式的な斜視図である。図7に示すように、第1回転クランプ31および第2回転クランプ32は、停止位置200にドレイン線3を移動させる際、同期して回転する。固定クランプ33による多芯シールドケーブル1の固定は、多芯シールドケーブル1を回転させる前に解除されている。図7に示すように、調整工程により、ドレイン線3は、0時の位置に設定された停止位置200に移動される。調整工程のさらに詳細については後述する。 After semi-stripping including untwisting in step S03, the control device 100 causes the image acquisition device 60 to acquire images of the drain wire 3 and the core wire 4 in the adjustment process of step S04. In step S<b>04 , the discrimination device 90 discriminates the drain line 3 based on the brightness distribution of the image acquired by the image acquisition device 60 . The control device 100 controls the holding device 30 based on the determination by the determination device 90 to move the drain wire 3 to a predetermined stop position 200 around the axis Ax, here the 0 o'clock position. FIG. 7 is a schematic perspective view of processing apparatus 10 during the adjustment process. As shown in FIG. 7 , the first rotating clamp 31 and the second rotating clamp 32 rotate synchronously when moving the drain wire 3 to the stop position 200 . Fixation of the multicore shielded cable 1 by the fixing clamp 33 is released before the multicore shielded cable 1 is rotated. As shown in FIG. 7, the adjustment process moves the drain line 3 to a stop position 200 set at the 0 o'clock position. Further details of the adjustment process will be described later.
 ステップS04で停止位置200にドレイン線3が移動された後、ステップS05において、制御装置100は、チャック開閉装置72を制御して、一対のチャック71にドレイン線3およびコア線4を固定させる。これにより、チャック71よりも根元側のドレイン線3およびコア線4が回転不能に固定される。ステップS05では、制御装置100は、固定クランプ33の制御も行い、固定クランプ33にも多芯シールドケーブル1を把持させる。 After the drain wire 3 is moved to the stop position 200 in step S04, the controller 100 controls the chuck opening/closing device 72 to fix the drain wire 3 and the core wire 4 to the pair of chucks 71 in step S05. Thereby, the drain wire 3 and the core wire 4 on the root side of the chuck 71 are fixed so as not to rotate. In step S<b>05 , the control device 100 also controls the fixing clamp 33 and makes the fixing clamp 33 also grip the multicore shielded cable 1 .
 制御装置100は、ステップS05の把持工程によってドレイン線3およびコア線4が固定された状態で、第1回転クランプ31を制御して、先端側のシース2Fを回転させる。同時に、制御装置100は、移動装置40を制御して、先端側のシース2Fを多芯シールドケーブル1から離脱させる(ステップS06)。以下、ステップS06の工程を全ストリップ工程とも呼ぶ。図8は、全ストリップ工程中の処理装置10の模式的な斜視図である。図8に示すように、セミストリップ工程と同様に、全ストリップ工程は、撚り戻し工程を含んでいる。撚り戻しを含む全ストリップにより、先端側のシース2Fが多芯シールドケーブル1から完全に離脱する。また、ドレイン線3およびコア線4のうち、それまで先端側のシース2Fが被さっていた部分の撚りがほどかれる。ただし、チャック71よりも根元側のドレイン線3およびコア線4は、チャック71により回転不能に固定されているため、ステップS04において調整されたドレイン線3およびコア線4の回転位置は維持される。なお、画像取得装置60は、ドレイン線3およびコア線4のうち、チャック71により回転不能に固定される部分の画像を取得している。 The control device 100 controls the first rotary clamp 31 to rotate the sheath 2F on the distal end side while the drain wire 3 and the core wire 4 are fixed by the gripping step of step S05. At the same time, the control device 100 controls the moving device 40 to detach the sheath 2F on the distal end side from the multicore shielded cable 1 (step S06). Hereinafter, the process of step S06 is also referred to as a full strip process. FIG. 8 is a schematic perspective view of processing apparatus 10 during the entire stripping process. As with the semi-stripping process, the full-stripping process includes an untwisting process, as shown in FIG. The sheath 2F on the distal end side is completely detached from the multicore shielded cable 1 by all the strips including untwisting. In addition, the portion of the drain wire 3 and the core wire 4 covered by the sheath 2F on the distal end side is untwisted. However, since the drain wire 3 and the core wire 4 on the root side of the chuck 71 are non-rotatably fixed by the chuck 71, the rotational positions of the drain wire 3 and the core wire 4 adjusted in step S04 are maintained. . Note that the image acquisition device 60 acquires an image of a portion of the drain wire 3 and the core wire 4 that is non-rotatably fixed by the chuck 71 .
 制御装置100は、ステップS06において先端側のシース2Fを多芯シールドケーブル1から離脱させた後に、チャック移動装置73を制御して、チャック71を曲げ方向に移動させる(ステップS07)。図9は、分離工程中の処理装置10の模式的な正面図である。図9に示すように、これにより、処理装置10は、コア線4を曲げ、ドレイン線3と分離する。 After detaching the sheath 2F on the distal end side from the multicore shielded cable 1 in step S06, the control device 100 controls the chuck moving device 73 to move the chuck 71 in the bending direction (step S07). FIG. 9 is a schematic front view of processing apparatus 10 during the separation process. As shown in FIG. 9, this causes the processing device 10 to bend the core wire 4 and separate it from the drain wire 3 .
 制御装置100は、搬送装置20を制御して多芯シールドケーブル1を搬送方向に間欠的に搬送しながら、多芯シールドケーブル1の両端1Lおよび1Rを順次処理する。すなわち、上記したような、多芯シールドケーブル1を保持し、ドレイン線3およびコア線4を露出させ、ドレイン線3を所定の回転位置(停止位置200)に移動させ、先端側のシース2Fを引き抜き、コア線4を分離する処理を、多芯シールドケーブル1の両端1Lおよび1Rに対して順次行う。 The control device 100 sequentially processes both ends 1L and 1R of the multicore shielded cable 1 while controlling the transport device 20 to intermittently transport the multicore shielded cable 1 in the transport direction. That is, the multicore shielded cable 1 as described above is held, the drain wire 3 and the core wire 4 are exposed, the drain wire 3 is moved to a predetermined rotational position (stop position 200), and the sheath 2F on the distal end side is closed. The process of pulling out and separating the core wire 4 is sequentially performed on both ends 1L and 1R of the multicore shielded cable 1. FIG.
 [調整工程の詳細]
 [基本制御]
 以下では、ドレイン線3を所定の停止位置200に移動させる調整工程について詳しく説明する。図10は、画像取得装置60による画像の模式図である。図10では、コア線4の図示は省略している。図11は、多芯シールドケーブル1の模式的な正面図であって、回転領域の区分を示す図である。なお、図10におけるドレイン線3の位置と、図11におけるドレイン線3の位置とは一致していない。図11に示すように、ここでは、前方側に向かって見た軸線Ax周りの回転位置(多芯シールドケーブル1の状態に依存しない位置)を、0時の位置を0度とした時計回りの360度表記で表すものとする。例えば、3時の位置は、90度の位置である。また、以下の説明における左右方向および回転方向は、特に断らない限り、前方に向かって見た場合の方向を指す。ただし、このような回転位置の表現は、説明の便宜上のものに過ぎない。
[Details of adjustment process]
[Basic control]
Below, the adjustment process for moving the drain wire 3 to the predetermined stop position 200 will be described in detail. FIG. 10 is a schematic diagram of an image obtained by the image acquisition device 60. As shown in FIG. In FIG. 10, illustration of the core wire 4 is omitted. FIG. 11 is a schematic front view of the multicore shielded cable 1, showing sections of the rotation area. Note that the position of the drain line 3 in FIG. 10 does not match the position of the drain line 3 in FIG. As shown in FIG. 11, here, the rotational position around the axis Ax viewed toward the front (the position that does not depend on the state of the multicore shielded cable 1) is rotated clockwise with the 0 o'clock position being 0 degrees. It shall be expressed in 360-degree notation. For example, the 3 o'clock position is the 90 degree position. In addition, the left-right direction and the rotation direction in the following description refer to directions when viewed forward unless otherwise specified. However, such representation of the rotational position is only for convenience of explanation.
 図10に示すように、調整工程の開始時、ドレイン線3が多芯シールドケーブル1の上半分(270度位置から0度位置を経て90度位置まで)に位置している場合には、画像取得装置60による画面には、ドレイン線3が映り込む。判別装置90は、画像内の明度(赤外光の反射光の強度)の分布により、ドレイン線3を判別する。 As shown in FIG. 10, when the drain wire 3 is positioned in the upper half of the multicore shielded cable 1 (from the 270° position to the 0° position to the 90° position) at the start of the adjustment process, the image The drain line 3 is reflected on the screen of the acquisition device 60 . The discriminating device 90 discriminates the drain line 3 from the distribution of brightness (intensity of reflected infrared light) in the image.
 画像取得装置60によって取得された画像における軸線Ax周りの回転位置は、複数の仮想的な領域に分割されている。図11に示すように、軸線Ax周りの回転位置は、周方向の所定範囲に設定された左側低速領域200Lと、左側低速領域200Lと一部が重なるような周方向の所定範囲に設定された右側低速領域200Rと、を含んでいる。左側低速領域200Lは、0度位置よりも左側から右側にかけての領域であり、0度位置を含んでいる。左側低速領域200Lは、0度位置よりも右側の領域の方が左側の領域よりも小さい。右側低速領域200Rは、左側低速領域200Lと左右対称に設定されている。概ね0度位置と定められたドレイン線3の停止位置200は、詳しくは、左側低速領域200Lと右側低速領域200Rとの重なり部分である。制御装置100は、左側低速領域200Lまたは右側低速領域200Rにドレイン線3が検出されると、保持装置30の回転速度をそれまでよりも低速にする。制御装置100は、左側低速領域200Lおよび右側低速領域200Rの両方にドレイン線3が検出されると、保持装置30による多芯シールドケーブル1の回転を停止させる。停止位置200は、回転方向とドレイン線3の太さとに依存する僅かなバラツキを有している。 The rotational position around the axis Ax in the image acquired by the image acquisition device 60 is divided into a plurality of virtual regions. As shown in FIG. 11 , the rotational position about the axis Ax is set in a predetermined circumferential range that partially overlaps the left low speed region 200L, which is set in a predetermined range in the circumferential direction, and the left low speed region 200L. and a right low speed region 200R. The left low speed region 200L is a region from the left side to the right side of the 0 degree position and includes the 0 degree position. In the left low speed region 200L, the region on the right side of the 0 degree position is smaller than the region on the left side. The right low speed region 200R is set symmetrically with the left low speed region 200L. The stop position 200 of the drain line 3, which is set at approximately the 0 degree position, is, more specifically, the overlapping portion of the left low speed region 200L and the right low speed region 200R. When the drain wire 3 is detected in the left low speed region 200L or the right low speed region 200R, the control device 100 makes the rotational speed of the holding device 30 lower than before. Control device 100 stops rotation of multicore shielded cable 1 by holding device 30 when drain wire 3 is detected in both left low speed region 200L and right low speed region 200R. The stop position 200 has slight variations depending on the direction of rotation and the thickness of the drain wire 3 .
 本実施形態では、平面視において左側低速領域200Lまたは右側低速領域200Rに占めるドレイン線3の面積の割合が予め定められた閾値(例えば、20%)を越えると、左側低速領域200Lまたは右側低速領域200Rにドレイン線3が検出されたと判定される。他の領域についても同様である。ただし、閾値は領域ごとに異なっていてもよい。また、閾値は、領域内で検出されるドレイン線3の面積であってもよい。以下、ある領域にドレイン線3が存在する、検出される、位置する等と言う場合は、上記のようなことを意味している。なお、停止位置200の場合のように、複数の領域にドレイン線3が存在すると判定される場合もある。 In this embodiment, when the ratio of the area of the drain lines 3 to the left low speed region 200L or the right low speed region 200R in plan view exceeds a predetermined threshold value (for example, 20%), the left low speed region 200L or the right low speed region It is determined that the drain line 3 is detected at 200R. The same applies to other areas. However, the threshold may be different for each region. Alternatively, the threshold may be the area of the drain line 3 detected within the region. Hereinafter, when it is said that the drain line 3 exists, is detected, is located in a certain area, etc., it means the above. As in the case of the stop position 200, it may be determined that the drain line 3 exists in a plurality of regions.
 図11に示すように、左側低速領域200Lおよび右側低速領域200Rの外側には、高速領域210が設定されている。高速領域210は、さらに複数に分割されている。高速領域210は、左側低速領域200Lのすぐ外側(左方)に隣接する左側の第1高速領域211Lと、左側の第1高速領域211Lのすぐ外側に隣接する左側の第2高速領域212Lと、左側の第2高速領域212Lのすぐ外側に隣接する左側の第3高速領域213Lと、を含んでいる。高速領域210は、さらに、右側低速領域200Rのすぐ外側(右方)に隣接する右側の第1高速領域211Rと、右側の第1高速領域211Rのすぐ外側に隣接する右側の第2高速領域212Rと、右側の第2高速領域212Rのすぐ外側に隣接する右側の第3高速領域213Rと、を含んでいる。画像取得装置60による画像には映らない90度位置から270度位置までの領域も高速領域210に含まれる。以下では、この90度位置から270度位置までの領域を裏側領域214とも呼ぶ。 As shown in FIG. 11, a high speed region 210 is set outside the left low speed region 200L and the right low speed region 200R. The high speed area 210 is further divided into a plurality of areas. The high speed region 210 includes a left first high speed region 211L immediately outside (to the left of) the left low speed region 200L, a left second high speed region 212L immediately outside and adjacent to the left first high speed region 211L, and a left third high speed region 213L immediately outside and adjacent to the left second high speed region 212L. The high speed region 210 further includes a first right high speed region 211R immediately outside (to the right of) the right low speed region 200R and a second right high speed region 212R immediately outside and adjacent to the first right high speed region 211R. and a right third high speed region 213R immediately outside and adjacent to the right second high speed region 212R. The high-speed area 210 also includes an area from the 90-degree position to the 270-degree position that is not captured by the image acquisition device 60 . Hereinafter, the area from the 90-degree position to the 270-degree position will also be referred to as the back side area 214 .
 上記複数の領域は、境界部分が一部重なるように設定されている。これにより、ドレイン線3が検出されない部分が発生することを防いでいる。詳しくは、左側低速領域200Lと左側の第1高速領域211Lとは一部が重なり、左側の第1高速領域211Lと左側の第2高速領域212Lとは一部が重なり、左側の第2高速領域212Lと左側の第3高速領域213Lとは一部が重なっている。0度位置よりも右側の領域についても同様である。 The above multiple areas are set so that their boundaries partially overlap. This prevents the occurrence of a portion where the drain line 3 is not detected. Specifically, the left low speed region 200L and the left first high speed region 211L partially overlap, the left first high speed region 211L and the left second high speed region 212L partially overlap, and the left second high speed region 212L and the third high-speed area 213L on the left partly overlap. The same applies to the area on the right side of the 0 degree position.
 制御装置100は、高速領域210にドレイン線が検出されると(ドレイン線3が検出されないため、裏側領域214にドレイン線3が存在することが認識される場合も含む)、設定された所定の角度だけ多芯シールドケーブル1を回転させるように構成されている。上記所定の角度は、高速領域ごとに設定されている。上記所定の角度は、外側の高速領域ほど大きく(少なくとも1つ内側の領域と同じに)設定されている。左側の第2高速領域212Lに対応する回転角は、左側の第1高速領域211Lに対応する回転角以上に設定されている。左側の第3高速領域213Lに対応する回転角は、左側の第2高速領域212Lに対応する回転角以上に設定されている。0度位置よりも右側の領域についても同様である。裏側領域214に対応する回転角は、ここでは、左右の第3高速領域213Lおよび213Rに対応する回転角と同じに設定されている。ただし、裏側領域214に対応する回転角は、左右の第3高速領域213Lおよび213Rに対応する回転角よりも大きく設定されていてもよい。 When the control device 100 detects the drain line in the high-speed area 210 (including the case where the presence of the drain line 3 in the back side area 214 is recognized because the drain line 3 is not detected), the set predetermined It is configured to rotate the multicore shielded cable 1 by an angle. The predetermined angle is set for each high speed region. The predetermined angle is set larger (at least the same as that of the inner region) in the outer high-speed region. The rotation angle corresponding to the second high-speed area 212L on the left side is set to be greater than the rotation angle corresponding to the first high-speed area 211L on the left side. The rotation angle corresponding to the left third high speed region 213L is set to be greater than or equal to the rotation angle corresponding to the left second high speed region 212L. The same applies to the area on the right side of the 0 degree position. The rotation angle corresponding to the back side area 214 is set here to be the same as the rotation angle corresponding to the left and right third high speed areas 213L and 213R. However, the rotation angle corresponding to the back side area 214 may be set larger than the rotation angle corresponding to the left and right third high speed areas 213L and 213R.
 ドレイン線3が高速領域210で検出された場合、多芯シールドケーブル1は、高速領域ごとに設定された回転角だけ、途中で止まることなく回転される。また、高速領域210における多芯シールドケーブル1の回転速度は、左側低速領域200Lおよび右側低速領域200Rにおける多芯シールドケーブル1の回転速度よりも高速に設定されている。 When the drain wire 3 is detected in the high speed region 210, the multicore shielded cable 1 is rotated by the rotation angle set for each high speed region without stopping halfway. The rotation speed of the multicore shielded cable 1 in the high speed region 210 is set higher than the rotation speed of the multicore shielded cable 1 in the left low speed region 200L and the right low speed region 200R.
 各高速領域に対応する回転角は、多芯シールドケーブル1が当該角度だけ回転されてもドレイン線3が停止位置200よりも手前までしか到達しない角度に設定されている。ここでは、各高速領域に対応する回転角は、多芯シールドケーブル1が当該角度だけ回転されても、より内側の高速領域か、または、停止位置200よりも手前側の低速領域200Lまたは200Rまでしかドレイン線3が到達しない角度に設定されている。これにより、多芯シールドケーブル1は、停止位置200よりも手前側の低速領域200Lまたは200Rにいったん位置付けられ、その後、停止位置200に達するまで低速で移動する。 The rotation angle corresponding to each high-speed region is set to an angle that allows the drain wire 3 to reach only before the stop position 200 even if the multicore shielded cable 1 is rotated by the angle. Here, even if the multicore shielded cable 1 is rotated by the angle, the rotation angle corresponding to each high-speed region is the inner high-speed region or the low- speed region 200L or 200R on the front side of the stop position 200. The angle is set such that the drain line 3 does not reach the terminal. As a result, the multicore shielded cable 1 is once positioned in the low speed region 200L or 200R on the front side of the stop position 200, and then moves at low speed until it reaches the stop position 200. FIG.
 本実施形態では、制御装置100は、左側低速領域200Lまたは右側領域200Rと左右の第1高速領域211Lまたは211Rとの両方にドレイン線3が検出された場合、ドレイン線3が第1高速領域211Lまたは211Rに存在するものとみなして多芯シールドケーブル1を回転させる。他の領域の境界についても同様であり、制御装置100は、より外側の領域にドレイン線3が存在するものとみなして多芯シールドケーブル1を回転させる。処理装置10は、これにより、ドレイン線3が停止位置200に到達するまでの時間を短縮している。なお、各高速領域に対応する回転角は、多芯シールドケーブル1がより外側の領域に対応する角度だけ回転されても、ドレイン線3が停止位置200に到達しないような角度に設定されている。上記において、第1回転クランプ31および第2回転クランプ32は、多芯シールドケーブル1の先端側と根元側を把持して、同期して回転する。これにより、多芯シールドケーブル1の回転の軸がぶれにくくなり、多芯シールドケーブル1の回転が安定する。よって、ドレイン線3の位置調整の確実性も向上する。 In this embodiment, when the drain line 3 is detected in both the left low speed region 200L or the right region 200R and the left and right first high speed regions 211L or 211R, the control device 100 detects that the drain line 3 is in the first high speed region 211L. Alternatively, the multi-core shielded cable 1 is rotated assuming that it exists in 211R. The same applies to the boundaries of other areas, and the control device 100 rotates the multicore shielded cable 1 assuming that the drain wires 3 are present in the outer area. The processing apparatus 10 thereby shortens the time until the drain line 3 reaches the stop position 200 . The rotation angle corresponding to each high-speed region is set to such an angle that the drain wire 3 does not reach the stop position 200 even if the multicore shielded cable 1 is rotated by an angle corresponding to the outer region. . In the above, the first rotating clamp 31 and the second rotating clamp 32 grip the tip end side and the root side of the multicore shielded cable 1 and rotate synchronously. As a result, the axis of rotation of the multicore shielded cable 1 is less likely to sway, and the rotation of the multicore shielded cable 1 is stabilized. Therefore, the certainty of position adjustment of the drain wire 3 is also improved.
 [回転角の抑制]
 本実施形態では、多芯シールドケーブル1は、両端1Lおよび1Rが同じ方向を向くようにU字状に曲げられており、調整工程では、両端1Lおよび1Rがそれぞれ周方向に回転される。そのため、本実施形態では、制御装置100は、多芯シールドケーブル1の左端1Lを第1の回転方向(例えば、正面視において時計回り)に回転させて左端1Lのドレイン線3を停止位置200に移動した場合には、右端1Rを第1の回転方向とは逆の第2の回転方向(例えば、正面視において反時計回り)に回転させて右端1Rのドレイン線3を停止位置200に移動する。処理装置10は、調整工程において、多芯シールドケーブル1の両端1Lおよび1Rを互いに逆方向に回転させる。これにより、多芯シールドケーブル1が捩れることが抑制される。
[Suppression of rotation angle]
In this embodiment, the multicore shielded cable 1 is bent in a U shape so that both ends 1L and 1R face the same direction, and both ends 1L and 1R are rotated in the circumferential direction in the adjustment process. Therefore, in the present embodiment, the control device 100 rotates the left end 1L of the multicore shielded cable 1 in the first rotation direction (for example, clockwise when viewed from the front) to move the drain wire 3 of the left end 1L to the stop position 200. When it is moved, the right end 1R is rotated in a second direction opposite to the first direction (for example, counterclockwise when viewed from the front) to move the drain wire 3 at the right end 1R to the stop position 200. . The processing device 10 rotates both ends 1L and 1R of the multicore shielded cable 1 in opposite directions in the adjusting process. This suppresses twisting of the multicore shielded cable 1 .
 さらに本実施形態では、調整工程において多芯シールドケーブル1を回転させる角度を180度以下とする制御が行われている。本実施形態では、U字に曲げた多芯シールドケーブル1の両端1Lおよび1Rを回転させるため、回転角が大きくなると、多芯シールドケーブル1が捩れやすくなる。そのため、調整工程において多芯シールドケーブル1を回転させる角度を最大でも180度とする。ただし、多芯シールドケーブル1を逆回転させる制御を行うと、ドレイン線3を停止位置200に移動させるのに要する時間が増加する場合が多い。そのため、多芯シールドケーブル1を逆回転させるかどうかを判断する角度は、90度以上の角度で適宜に設定されてもよい。上記角度は、好適には、例えば、90度以上120度以下の角度である。 Furthermore, in this embodiment, control is performed so that the angle at which the multicore shielded cable 1 is rotated is 180 degrees or less in the adjustment process. In this embodiment, both ends 1L and 1R of the multicore shielded cable 1 bent in a U shape are rotated, so that the multicore shielded cable 1 tends to be twisted when the angle of rotation increases. Therefore, the maximum angle for rotating the multicore shielded cable 1 in the adjustment process is 180 degrees. However, when the multicore shielded cable 1 is controlled to rotate in reverse, the time required to move the drain wire 3 to the stop position 200 often increases. Therefore, the angle for determining whether to rotate the multicore shielded cable 1 in the reverse direction may be appropriately set to an angle of 90 degrees or more. The angle is preferably, for example, 90 degrees or more and 120 degrees or less.
 詳しくは、制御装置100は、調整工程の開始時においてドレイン線3が左側低速領域200Lまたは左側のいずれかの高速領域211L~213Lで検出された場合、多芯シールドケーブル1を時計回りに回転させる。これにより、多芯シールドケーブル1を回転させる角度を90度以下とすることができる。右側についても同様であり、制御装置100は、調整工程の開始時においてドレイン線3が右側低速領域200Rまたは右側のいずれかの高速領域211R~213Rで検出された場合、多芯シールドケーブル1を反時計回りに回転させる。 Specifically, when the drain wire 3 is detected in the left low speed region 200L or one of the left high speed regions 211L to 213L at the start of the adjustment process, the control device 100 rotates the multicore shielded cable 1 clockwise. . As a result, the angle at which the multicore shielded cable 1 is rotated can be 90 degrees or less. The same is true for the right side, and when the drain wire 3 is detected in the right low speed region 200R or one of the right high speed regions 211R to 213R at the start of the adjustment process, the control device 100 reverses the multicore shielded cable 1. Rotate clockwise.
 調整工程の開始時においてドレイン線3が裏側領域214にある場合、ドレイン線3は検出されない。よって、時計方向、反時計方向のどちらに回転させた方が多芯シールドケーブル1の回転角が小さくなるのか判断できない。従って、制御装置100は、まず、予め定められた方向(例えば、時計回り)に多芯シールドケーブル1を回転させる。制御装置100は、多芯シールドケーブル1の回転角が90度以上となってもドレイン線3が検出されない場合、回転方向を逆転させる。例えば最初の方向が時計回りである場合、ドレイン線3が180度位置と270度位置との間の領域(180度位置よりも左側の領域)にあれば、90度以下の回転でドレイン線3が検出される。この場合、時計回りに180度以下の角度だけ多芯シールドケーブル1を回転させることにより、ドレイン線3を停止位置200に位置付けることができる。しかし、ドレイン線3が90度位置と180度位置との間の領域(180度位置よりも右側の領域)にあれば、回転角が90度を越えてもドレイン線3は検出されない。この場合には、多芯シールドケーブル1を反時計回りさせて、いったん当初の回転位置に戻してから、さらに反時計回りに回転させる。これにより、180度以下の回転で、ドレイン線3を停止位置200に位置付けることができる。 If the drain line 3 is in the back side region 214 at the start of the adjustment process, the drain line 3 will not be detected. Therefore, it cannot be determined whether the rotation angle of the multicore shielded cable 1 is smaller by rotating it clockwise or counterclockwise. Therefore, the control device 100 first rotates the multicore shielded cable 1 in a predetermined direction (for example, clockwise). If the drain wire 3 is not detected even when the rotation angle of the multicore shielded cable 1 reaches 90 degrees or more, the control device 100 reverses the rotation direction. For example, when the initial direction is clockwise, if the drain wire 3 is in the region between the 180-degree position and the 270-degree position (the region to the left of the 180-degree position), the drain wire 3 is rotated by 90 degrees or less. is detected. In this case, the drain wire 3 can be positioned at the stop position 200 by rotating the multicore shielded cable 1 clockwise by an angle of 180 degrees or less. However, if the drain line 3 is in the area between the 90-degree position and the 180-degree position (the area on the right side of the 180-degree position), the drain line 3 will not be detected even if the rotation angle exceeds 90 degrees. In this case, the multicore shielded cable 1 is rotated counterclockwise, returned to the initial rotation position, and then rotated further counterclockwise. As a result, the drain wire 3 can be positioned at the stop position 200 with a rotation of 180 degrees or less.
 [調整工程のプロセス]
 以下では、フローチャートを参照しながら、調整工程における制御の一例について説明する。図12は、調整工程の一例を示すフローチャートである。ここでは、裏側領域214および左右の第3高速領域213L、213Rにおける回転角は30度であるものとする。また、左右の第2高速領域212L、212Rにおける回転角は12度であるものとする。左右の第1高速領域211L、211Rにおける回転角は9度であるものとする。
[Process of adjustment process]
An example of control in the adjustment process will be described below with reference to flowcharts. FIG. 12 is a flow chart showing an example of the adjustment process. Here, it is assumed that the rotation angle in the back side area 214 and the left and right third high speed areas 213L and 213R is 30 degrees. It is also assumed that the rotation angle in the left and right second high speed regions 212L and 212R is 12 degrees. It is assumed that the rotation angle in the left and right first high speed regions 211L and 211R is 9 degrees.
 図12の例に係る調整工程では、まず、ステップS11において、ドレイン線3が左側の領域200L、211L、212L、または213Lで検出されたかどうかが判定される。ドレイン線3が左側の領域200L、211L、212L、または213Lで検出された場合(ステップS11の結果がYESの場合)、ステップS12において、多芯シールドケーブル1の回転方向として時計回りが選択される。ステップS12に続くステップS13では、ドレイン線3が左側の第3高速領域213Lで検出されたかどうかが判定される。ドレイン線3が左側の第3高速領域213Lで検出された場合(ステップS13の結果がYESの場合)、多芯シールドケーブル1は、ステップS14において、時計回りに30度回転される。ドレイン線3が左側の第3高速領域213Lで検出されなかった場合(ステップS13の結果がNOの場合)、ステップS15において、ドレイン線3が左側の第2高速領域212Lで検出されたかどうかが判定される。ドレイン線3が左側の第2高速領域212Lで検出された場合(ステップS15の結果がYESの場合)、多芯シールドケーブル1は、ステップS16において、時計回りに12度回転される。ドレイン線3が左側の第2高速領域212Lでも検出されなかった場合(ステップS15の結果がNOの場合)、ステップS17において、ドレイン線3が左側の第1高速領域211Lで検出されたかどうかが判定される。ドレイン線3が左側の第1高速領域211Lで検出された場合(ステップS17の結果がYESの場合)、多芯シールドケーブル1は、ステップS18において、時計回りに9度回転される。 In the adjustment process according to the example of FIG. 12, first, in step S11, it is determined whether or not the drain line 3 is detected in the left region 200L, 211L, 212L, or 213L. If the drain wire 3 is detected in the left region 200L, 211L, 212L, or 213L (if the result of step S11 is YES), clockwise is selected as the rotation direction of the multicore shielded cable 1 in step S12. . In step S13 following step S12, it is determined whether or not the drain line 3 has been detected in the left third high speed region 213L. If the drain wire 3 is detected in the left third high-speed region 213L (if the result of step S13 is YES), the multicore shielded cable 1 is rotated 30 degrees clockwise in step S14. If the drain line 3 is not detected in the left third high speed region 213L (the result of step S13 is NO), it is determined in step S15 whether the drain line 3 is detected in the left second high speed region 212L. be done. If the drain wire 3 is detected in the second high-speed area 212L on the left side (if the result of step S15 is YES), the multicore shielded cable 1 is rotated clockwise by 12 degrees in step S16. If the drain line 3 is not detected in the second high-speed area 212L on the left side (if the result of step S15 is NO), it is determined in step S17 whether the drain line 3 is detected in the first high-speed area 211L on the left side. be done. If the drain wire 3 is detected in the left first high speed area 211L (if the result of step S17 is YES), the multicore shielded cable 1 is rotated clockwise by 9 degrees in step S18.
 ドレイン線3が左側の第1高速領域211Lでも検出されなかった場合(ステップS17の結果がNOの場合)、ドレイン線3は、左側低速領域200Lに存在する。よって、ステップS19において、多芯シールドケーブル1は、時計回りに低速で回転される。ステップS20では、ドレイン線3が停止位置200に到達したかどうかが判定される。ドレイン線3が停止位置200に到達するまで(ステップS20の結果がYESとなるまで)、ステップS19の多芯シールドケーブル1の低速回転は継続される。 If the drain line 3 is not detected in the left first high speed region 211L (if the result of step S17 is NO), the drain line 3 exists in the left low speed region 200L. Therefore, in step S19, the multicore shielded cable 1 is rotated clockwise at low speed. In step S20, it is determined whether the drain line 3 has reached the stop position 200 or not. The low-speed rotation of the multicore shielded cable 1 in step S19 is continued until the drain wire 3 reaches the stop position 200 (until the result of step S20 becomes YES).
 図12に示すように、ステップS14において多芯シールドケーブル1が時計回りに30度回転された後には、再びステップS13において、ドレイン線3が左側の第3高速領域213Lで検出されたかどうかが判定される。ステップS14において、ドレイン線3が左側の第3高速領域213Lを通過している場合には、2回目のステップS13の結果はNOとなる。同様に、ステップS16において多芯シールドケーブル1が時計回りに12度回転された後には、再びステップS15において、ドレイン線3が左側の第2高速領域212Lで検出されたかどうかが判定される。ステップS18において多芯シールドケーブル1が時計回りに9度回転された後には、再びステップS17において、ドレイン線3が左側の第1高速領域211Lで検出されたかどうかが判定される。 As shown in FIG. 12, after the multicore shielded cable 1 is rotated 30 degrees clockwise in step S14, it is determined again in step S13 whether or not the drain wire 3 is detected in the left third high-speed region 213L. be done. In step S14, when the drain line 3 passes through the left third high-speed region 213L, the result of the second step S13 is NO. Similarly, after the multicore shielded cable 1 is rotated 12 degrees clockwise in step S16, it is determined again in step S15 whether the drain wire 3 has been detected in the left second high speed region 212L. After the multicore shielded cable 1 is rotated clockwise by 9 degrees in step S18, it is determined again in step S17 whether or not the drain wire 3 has been detected in the left first high speed region 211L.
 図12に示すように、ステップS11の結果がNOの場合、ステップS21において、ドレイン線3が右側の領域200R、211R、212R、または213Rで検出されたかどうかが判定される。ドレイン線3が右側の領域200R、211R、212R、または213Rで検出された場合(ステップS21の結果がYESの場合)、ステップS22において、多芯シールドケーブル1の回転方向として反時計回りが選択される。その後は、多芯シールドケーブル1の回転方向を除き、時計回りの場合と同様である。よって、その後のステップの図示および説明は省略する。 As shown in FIG. 12, if the result of step S11 is NO, it is determined in step S21 whether the drain line 3 has been detected in the right region 200R, 211R, 212R, or 213R. If the drain wire 3 is detected in the right region 200R, 211R, 212R, or 213R (if the result of step S21 is YES), counterclockwise is selected as the rotation direction of the multicore shielded cable 1 in step S22. be. After that, except for the rotating direction of the multi-core shielded cable 1, it is the same as the case of clockwise rotation. Therefore, illustration and description of subsequent steps are omitted.
 ステップS21の結果がNOの場合、ドレイン線3は、裏側領域214に存在していると判定される。この場合、ステップS23において、多芯シールドケーブル1の回転方向として時計回りが選択される。ただし、ステップS23において選択される最初の回転方向は、反時計周りでもよい。続くステップS24では、多芯シールドケーブル1が時計回りに30度回転される。ステップS24に続くステップS25では、ドレイン線3が検出されたかどうかが判定される。ステップS25の結果がYESの場合(ドレイン線3が検出された場合)、次にステップS13が行われる。以降、ドレイン線3が左側の領域200L、211L、212L、または213Lで検出された場合と同様のステップが行われる。 If the result of step S21 is NO, it is determined that the drain line 3 exists in the back side region 214. In this case, clockwise rotation is selected as the direction of rotation of the multicore shielded cable 1 in step S23. However, the initial rotation direction selected in step S23 may be counterclockwise. In the subsequent step S24, the multicore shielded cable 1 is rotated clockwise by 30 degrees. In step S25 following step S24, it is determined whether or not the drain line 3 has been detected. If the result of step S25 is YES (drain line 3 is detected), then step S13 is performed. Thereafter, the same steps as when the drain line 3 is detected in the left region 200L, 211L, 212L, or 213L are performed.
 ステップS25の結果がNOの場合(ドレイン線3が検出されなかった場合)、ステップS26において、ドレイン線3の不検出の回数(ステップS21における不検出を除く)が3回に達したかどうかが判定される。ステップS26の結果がNOの場合(ドレイン線3の不検出の回数が3回未満の場合)、再びステップS24において、多芯シールドケーブル1が時計回りに30度回転される。このループにおいて、3回以内にドレイン線3が検出されると(言い換えると、不検出が2回以内の場合)、ステップS13が行われる。この場合、それまでに多芯シールドケーブル1が時計回りに回転された角度は、90度(30度×3回)以下である。よって、ドレイン線3が停止位置200に到達するまでに多芯シールドケーブル1が回転する角度は、時計回りに180度以内となる。 When the result of step S25 is NO (when the drain line 3 is not detected), in step S26, it is determined whether the number of times of non-detection of the drain line 3 (excluding non-detection in step S21) has reached three. be judged. If the result of step S26 is NO (if the number of non-detections of the drain wire 3 is less than 3), again in step S24, the multicore shielded cable 1 is rotated clockwise by 30 degrees. In this loop, if the drain line 3 is detected within three times (in other words, if it is not detected within two times), step S13 is performed. In this case, the angle by which the multicore shielded cable 1 has been rotated clockwise is 90 degrees (30 degrees×3 times) or less. Therefore, the rotation angle of the multicore shielded cable 1 until the drain wire 3 reaches the stop position 200 is within 180 degrees clockwise.
 ドレイン線3の不検出が3回に達した場合(ステップS26の結果がYESの場合)、ステップS27において、多芯シールドケーブル1が反時計回りに(すなわち、それまでとは逆回転で)90度回転され、調整工程開始時の回転位置に戻される。続くステップS28では、多芯シールドケーブル1の回転方向として反時計回りが選択される。その後のステップは、多芯シールドケーブル1の回転方向を除き、ステップS24以降(時計回りの場合)と同様である。ただし、この場合、例えばドレイン線3が失われているというような特別な問題がない限り、3回以内にドレイン線3が検出される。そのため、ドレイン線3が停止位置200に到達するまでに多芯シールドケーブル1が回転する角度は、反時計回りに180度以内となる。 When the non-detection of the drain wire 3 reaches three times (the result of step S26 is YES), in step S27, the multi-core shielded cable 1 rotates counterclockwise (that is, reverse rotation) 90 It is rotated by degrees and returned to the rotational position at the start of the adjustment process. In the following step S28, counterclockwise rotation is selected as the direction of rotation of the multicore shielded cable 1. FIG. The subsequent steps are the same as those after step S24 (clockwise), except for the rotation direction of the multicore shielded cable 1 . However, in this case, the drain line 3 is detected within three times unless there is a special problem such as the drain line 3 being lost. Therefore, the rotation angle of the multicore shielded cable 1 until the drain wire 3 reaches the stop position 200 is within 180 degrees counterclockwise.
 [多芯シールドケーブルの右端の処理]
 多芯シールドケーブル1の右端1Rは、左端1Lを回転させた回転方向とは逆回りに回転される。右端1Rのドレイン線3は、右端1Rを左端1Lと左右対称に回転させれば、停止位置200またはその付近まで移動する。よって、多芯シールドケーブル1の右端1Rは、まず、左端1Lの処理において左端1Lを回転させたのと逆方向に同角度だけ回転される。その後、図12に示したのと同様の制御を行えば、右端1Rのドレイン線3を停止位置200に移動させることができる。右端1Rの場合、ドレイン線3は、最初の移動で停止位置200またはその付近まで移動している。そのため、多くの場合には、左端1Lよりも短い時間で調整工程を終えることができる。
[Treatment of right end of multi-core shielded cable]
The right end 1R of the multicore shielded cable 1 is rotated in a direction opposite to the direction of rotation of the left end 1L. The drain line 3 at the right end 1R moves to or near the stop position 200 by rotating the right end 1R symmetrically with the left end 1L. Therefore, the right end 1R of the multi-core shielded cable 1 is first rotated by the same angle in the direction opposite to the rotation of the left end 1L in the treatment of the left end 1L. After that, the drain line 3 at the right end 1R can be moved to the stop position 200 by performing the same control as shown in FIG. In the case of the right end 1R, the drain wire 3 has moved to or near the stop position 200 in the initial movement. Therefore, in many cases, the adjustment process can be completed in less time than the left end 1L.
 なお、上記した調整工程のプロセスは単に例示に過ぎず、調整工程を特に限定しない。例えば、各高速領域に設定された多芯シールドケーブル1の回転角は、単なる好適な一例に過ぎない。 It should be noted that the adjustment process described above is merely an example, and the adjustment process is not particularly limited. For example, the rotation angle of the multi-core shielded cable 1 set in each high-speed region is merely a preferred example.
 [実施形態の作用効果]
 以下、本実施形態の作用効果について説明する。本実施形態に係る多芯シールドケーブル1の処理装置10は、ドレイン線3とコア線4とがシース2から露出した多芯シールドケーブル1を所定の軸線Axに沿って保持するとともに多芯シールドケーブル1を軸線Ax周りに回転させる保持装置30と、保持装置30に保持された状態のドレイン線3およびコア線4の画像を取得可能な画像取得装置60と、画像取得装置60によって取得された画像内の明度の分布に基づいてドレイン線3を判別する判別装置90と、判別装置90の判別に基づいて保持装置30を制御し、軸線Ax周りの予め定められた停止位置200にドレイン線3を移動させる制御装置100と、を備えている。かかる処理装置10によれば、導体素線が露出したドレイン線3と、被覆4bに覆われたコア線4との全体的な明度(反射光の強度)の違いを利用して、ドレイン線3を判別することができる。そのため、ドレイン線3とコア線4とを有する多芯シールドケーブル1に関する限り、非常に簡易な構成でドレイン線3の回転位置を調整できる。
[Action and effect of the embodiment]
The effects of this embodiment will be described below. A processing apparatus 10 for a multicore shielded cable 1 according to the present embodiment holds the multicore shielded cable 1 in which the drain wire 3 and the core wire 4 are exposed from the sheath 2 along a predetermined axis Ax, and 1 around the axis Ax, an image acquisition device 60 capable of acquiring an image of the drain wire 3 and the core wire 4 held by the holding device 30, and an image acquired by the image acquisition device 60 A discriminating device 90 discriminating the drain wire 3 based on the lightness distribution in the inside, and a holding device 30 is controlled based on the discrimination by the discriminating device 90, and the drain wire 3 is placed at a predetermined stop position 200 around the axis line Ax. and a control device 100 for moving. According to the processing apparatus 10, the drain wire 3 having the exposed conductor element wire and the core wire 4 covered with the coating 4b utilizes the difference in overall brightness (intensity of reflected light) between the drain wire 3 and the core wire 4. can be determined. Therefore, as far as the multicore shielded cable 1 having the drain wire 3 and the core wire 4 is concerned, the rotational position of the drain wire 3 can be adjusted with a very simple configuration.
 本実施形態では、保持装置30は、それぞれ多芯シールドケーブル1を保持して軸線Ax周りに回転させることが可能であって軸線Axに沿って配置された第1回転クランプ31と第2回転クランプ32とを含んでいる。処理装置10は、シース2の軸線Axに沿った所定の切込位置Pcに切れ目2aを形成する切込装置50と、第1回転クランプ31と第2回転クランプ32とを軸線Ax方向に接近または離反させる移動装置40と、を備えている。第1回転クランプ31は、切込位置Pcよりも多芯シールドケーブル1の先端側でシース2を保持する。第2回転クランプ32は、切込位置Pcよりも多芯シールドケーブル1の根元側でシース2を保持する。制御装置100は、第1回転クランプ31および第2回転クランプ32に多芯シールドケーブル1を保持させ、多芯シールドケーブル1が保持された状態で切込装置50を制御して、シース2に切れ目2aを形成する。制御装置100は、シース2に切れ目2aが形成された後に、移動装置40を制御して、ドレイン線3およびコア線4の一部が露出し、かつ、ドレイン線3およびコア線4の他の一部に先端側のシース2Fが残るように先端側のシース2Fを引き抜くセミストリップを行う。制御装置100は、セミストリップの後、画像取得装置60にドレイン線3およびコア線4の画像を取得させる。かかる処理装置10によれば、ドレイン線3およびコア線4には先端側のシース2が差し込まれたままなので、ドレイン線3がばらけにくい。そのため、判別装置90によるドレイン線3の判別時に、ドレイン線3がばらけて判別しにくくなるのを防ぐことができる。 In the present embodiment, the holding device 30 includes a first rotary clamp 31 and a second rotary clamp which are arranged along the axis Ax and are capable of holding the multicore shielded cable 1 and rotating it around the axis Ax. 32. The processing device 10 moves the cutting device 50 that forms the cut 2a at a predetermined cutting position Pc along the axis Ax of the sheath 2, the first rotating clamp 31 and the second rotating clamp 32 in the direction of the axis Ax, or and a moving device 40 for separating. The first rotating clamp 31 holds the sheath 2 on the tip side of the multicore shielded cable 1 from the cutting position Pc. The second rotating clamp 32 holds the sheath 2 on the root side of the multicore shielded cable 1 from the cutting position Pc. The control device 100 causes the first rotating clamp 31 and the second rotating clamp 32 to hold the multicore shielded cable 1 , controls the cutting device 50 while the multicore shielded cable 1 is held, and cuts the sheath 2 . 2a is formed. After the cut 2 a is formed in the sheath 2 , the control device 100 controls the moving device 40 to expose a part of the drain wire 3 and the core wire 4 and remove the other part of the drain wire 3 and the core wire 4 . A semi-strip is performed to pull out the sheath 2F on the tip side so that the sheath 2F on the tip side remains partially. After semi-stripping, the control device 100 causes the image acquisition device 60 to acquire images of the drain wire 3 and the core wire 4 . According to the processing apparatus 10, the drain wire 3 and the core wire 4 remain inserted in the sheath 2 on the distal end side, so the drain wire 3 is less likely to come apart. Therefore, when discriminating the drain wires 3 by the discriminating device 90, it is possible to prevent the drain wires 3 from being separated and becoming difficult to discriminate.
 本実施形態では、制御装置100は、セミストリップにおいて、先端側のシース2Fを根元側のシース2Rに対して回転させ、ドレイン線3とコア線4との撚りをほどくように構成されている。かかる処理装置10によれば、ドレイン線3とコア線4との撚りをほどくことにより、調整工程におけるドレイン線3の判別を容易に実施することができる。また、本実施形態では、シース2のセミストリップとドレイン線3およびコア線4の撚り戻しとを同時に行うことにより、多芯シールドケーブル1の処理のサイクルタイムを短縮している。 In this embodiment, the control device 100 is configured to rotate the sheath 2F on the distal end side with respect to the sheath 2R on the root side in the semi-strip to untwist the drain wire 3 and the core wire 4 . According to the processing apparatus 10, by untwisting the drain wire 3 and the core wire 4, it is possible to easily identify the drain wire 3 in the adjustment process. In addition, in this embodiment, the cycle time for processing the multicore shielded cable 1 is shortened by simultaneously performing the semi-stripping of the sheath 2 and the untwisting of the drain wire 3 and the core wire 4 .
 本実施形態では、第1回転クランプ31および第2回転クランプ32は、停止位置200にドレイン線3を移動させる際に同期して回転する。かかる処理装置10によれば、第1回転クランプ31と第2回転クランプ32とが多芯シールドケーブル1の先端側と根元側とを把持して同期回転するため、多芯シールドケーブル1の回転の軸がぶれにくく、回転が安定する。よって、ドレイン線3の位置調整の確実性も向上する。 In this embodiment, the first rotating clamp 31 and the second rotating clamp 32 rotate synchronously when moving the drain wire 3 to the stop position 200 . According to the processing apparatus 10, the first rotating clamp 31 and the second rotating clamp 32 grip the tip side and the base side of the multicore shielded cable 1 and rotate synchronously, so that the rotation of the multicore shielded cable 1 is reduced. Rotation is stable because the axis is less likely to shake. Therefore, the certainty of position adjustment of the drain wire 3 is also improved.
 本実施形態では、処理装置10は、保持装置30によって保持された状態の多芯シールドケーブル1の径方向外方に配置され、ドレイン線3およびコア線4を回転不能に固定し、または、回転可能に解放する複数のチャック71と、複数のチャック71を駆動するチャック開閉装置72と、を備えている。制御装置100は、停止位置200にドレイン線3が移動された後に、チャック開閉装置72を制御して、複数のチャック71にドレイン線3およびコア線4を固定させる。さらに制御装置100は、ドレイン線3およびコア線4が固定された状態で、第1回転クランプ31を制御して先端側のシース2Fを回転させながら、移動装置40を制御して先端側のシース2Fを多芯シールドケーブル1から離脱させる。かかる処理装置10によれば、ドレイン線3とコア線4との撚りをほどきながら先端側のシース2Fを多芯シールドケーブル1から離脱させることができる。かつ、そのとき、ドレイン線3およびコア線4がチャック71により回転不能に固定されているため、先端側のシース2Fの回転にもかかわらず、ドレイン線3は、停止位置200に保持される。 In the present embodiment, the processing device 10 is arranged radially outward of the multicore shielded cable 1 held by the holding device 30, and fixes the drain wire 3 and the core wire 4 so as not to rotate or rotates. A plurality of chucks 71 that can be released and a chuck opening/closing device 72 that drives the plurality of chucks 71 are provided. After the drain wire 3 is moved to the stop position 200 , the controller 100 controls the chuck opening/closing device 72 to fix the drain wire 3 and the core wire 4 to the plurality of chucks 71 . Further, the control device 100 controls the first rotating clamp 31 to rotate the distal sheath 2F while the drain wire 3 and the core wire 4 are fixed, and controls the moving device 40 to rotate the distal sheath 2F. 2F is separated from the multicore shielded cable 1. According to such a processing device 10, the sheath 2F on the distal end side can be detached from the multicore shielded cable 1 while untwisting the drain wire 3 and the core wire 4. FIG. At this time, since the drain wire 3 and the core wire 4 are non-rotatably fixed by the chuck 71, the drain wire 3 is held at the stop position 200 despite the rotation of the sheath 2F on the distal end side.
 本実施形態では、処理装置10は、軸線Ax方向視において停止位置200に対応する方向(本実施形態では0時方向)の逆方向(本実施形態では6時方向)にチャック71を移動させるチャック移動装置73を備えている。チャック71は、ドレイン線3およびコア線4を回転不能に固定した状態において、停止位置200に隙間を有している。制御装置100は、先端側のシース2Fを多芯シールドケーブル1から離脱させた後に、チャック移動装置73を制御してチャック71を移動させることにより、コア線4とドレイン線3とを分離する。かかる処理装置10によれば、コア線4は、停止位置200に対応する方向の逆方向である曲げ方向に曲げられ、ドレイン線3は、チャック71の隙間を通るため曲げられない。これにより、ドレイン線3とコア線4とを分離することができる。分離後のドレイン線3には、例えば、熱収縮チューブを被せる等の、コア線4とは別の処理が行われてもよい。 In this embodiment, the processing apparatus 10 moves the chuck 71 in the opposite direction (6 o'clock direction in this embodiment) to the direction corresponding to the stop position 200 (0 o'clock direction in this embodiment) when viewed in the direction of the axis Ax. A moving device 73 is provided. The chuck 71 has a gap at the stop position 200 when the drain wire 3 and the core wire 4 are non-rotatably fixed. The control device 100 separates the core wire 4 and the drain wire 3 by controlling the chuck moving device 73 to move the chuck 71 after detaching the sheath 2F on the distal end side from the multicore shielded cable 1 . According to this processing apparatus 10, the core wire 4 is bent in the bending direction opposite to the direction corresponding to the stop position 200, and the drain wire 3 passes through the gap of the chuck 71 and is not bent. Thereby, the drain line 3 and the core line 4 can be separated. The separated drain wire 3 may be subjected to a different treatment than the core wire 4, such as covering with a heat-shrinkable tube.
 本実施形態では、多芯シールドケーブル1は、両端1L、1Rが同じ方向を向くようにU字状に曲げられるとともに、両端1L、1Rにおいてドレイン線3およびコア線4が露出している。処理装置10は、保持装置30の軸線Axに交差する搬送方向(ここでは左右方向)に多芯シールドケーブル1を搬送し、保持装置30に多芯シールドケーブル1の両端1L、1Rを順次受け渡す搬送装置20をさらに備えている。かかる処理装置10によれば、多芯シールドケーブル1の両端1L、1Rに対する処理を連続的に行うことができる。 In this embodiment, the multicore shielded cable 1 is bent in a U shape so that both ends 1L and 1R face the same direction, and the drain wire 3 and the core wire 4 are exposed at both ends 1L and 1R. The processing device 10 conveys the multicore shielded cable 1 in the conveying direction (here, left and right direction) intersecting the axis Ax of the holding device 30, and sequentially delivers both ends 1L and 1R of the multicore shielded cable 1 to the holding device 30. A transport device 20 is further provided. According to the processing apparatus 10, both ends 1L and 1R of the multicore shielded cable 1 can be processed continuously.
 本実施形態では、制御装置100は、多芯シールドケーブル1の一端(例えば、左端1L)を第1の回転方向に回転させて当該一端のドレイン線3を停止位置200に移動し、他端(例えば、右端1R)を第1の回転方向とは逆の第2の回転方向に回転させて当該他端のドレイン線3を停止位置200に移動する。かかる処理装置10によれば、多芯シールドケーブル1の両端1L、1Rを互いに逆方向に回転させるため、U字に曲げられた多芯シールドケーブル1の捩れを抑制できる。 In this embodiment, the control device 100 rotates one end (for example, the left end 1L) of the multicore shielded cable 1 in the first rotation direction to move the drain wire 3 at the one end to the stop position 200, and For example, the right end 1R) is rotated in a second rotation direction opposite to the first rotation direction to move the drain wire 3 at the other end to the stop position 200. FIG. According to the processing device 10, both ends 1L and 1R of the multicore shielded cable 1 are rotated in opposite directions, so that twisting of the multicore shielded cable 1 bent into a U shape can be suppressed.
 本実施形態では、画像取得装置60は、軸線Ax方向視において、軸線Axに対して停止位置200に対応する方向(ここでは、0時の方向)に設けられている。制御装置100は、多芯シールドケーブル1の回転角が90度以上の所定角度(本実施形態では90度、好適には120度以下の角度)に達してもドレイン線3が検出されない場合、回転方向を逆転させる。かかる処理装置10では、多芯シールドケーブル1の回転の前、ドレイン線3が画像取得装置60の画像取得領域内に入らない場合がある。すなわち、ドレイン線3が裏側領域214に隠れる場合がある。多芯シールドケーブル1の回転角が90度以上となってもドレイン線3が検出されない場合、そのまま回転を続けると、最終的な多芯シールドケーブル1の回転角は180度を越える。しかし、回転方向を逆転させると、最終的な多芯シールドケーブル1の回転角は180度以内となる。そのため、多芯シールドケーブル1の端部1Lを回転させる角度を小さくすることができる。これにより、U字に曲げられた多芯シールドケーブル1の捩れを抑制できる。ただし、多芯シールドケーブル1を逆回転させるかどうかを判断する角度は、平均のサイクルタイムを考慮して、90度以上の角度で適宜に設定されてもよい。 In this embodiment, the image acquisition device 60 is provided in a direction corresponding to the stop position 200 with respect to the axis Ax (here, the 0 o'clock direction) when viewed in the direction of the axis Ax. If the drain wire 3 is not detected even if the rotation angle of the multicore shielded cable 1 reaches a predetermined angle of 90 degrees or more (90 degrees in this embodiment, preferably 120 degrees or less), the control device 100 stops the rotation. reverse direction. In such a processing device 10, the drain wire 3 may not enter the image acquisition area of the image acquisition device 60 before the multicore shielded cable 1 is rotated. That is, the drain line 3 may be hidden behind the back side region 214 in some cases. When the drain wire 3 is not detected even when the rotation angle of the multicore shielded cable 1 reaches 90 degrees or more, if the rotation is continued as it is, the final rotation angle of the multicore shielded cable 1 exceeds 180 degrees. However, if the rotation direction is reversed, the final rotation angle of the multicore shielded cable 1 will be within 180 degrees. Therefore, the angle at which the end portion 1L of the multicore shielded cable 1 is rotated can be reduced. As a result, twisting of the multi-core shielded cable 1 bent in a U shape can be suppressed. However, the angle for determining whether to rotate the multicore shielded cable 1 in the reverse direction may be appropriately set to an angle of 90 degrees or more in consideration of the average cycle time.
 本実施形態では、画像取得装置60によって取得される画像における軸線Ax周りの回転位置は、周方向の所定範囲に設定された左側低速領域200Lと、左側低速領域200Lと一部が重なるような周方向の所定範囲に設定された右側低速領域200Rと、を含んでいる。停止位置200は、左側低速領域200Lと右側低速領域200Rとの重なり部分である。制御装置100は、左側低速領域200Lおよび右側低速領域200Rの両方にドレイン線3が検出されると、保持装置30による多芯シールドケーブル1の回転を停止させる。かかる処理装置10によれば、左側低速領域200Lでのドレイン線3の検出、および、右側低速領域200Rでのドレイン線3の検出、という簡単な画像処理の和を取るだけでドレイン線を容易に停止位置200に停止させることができる。 In the present embodiment, the rotational position around the axis Ax in the image acquired by the image acquisition device 60 is such that the left low speed region 200L set in a predetermined range in the circumferential direction partially overlaps the left low speed region 200L. and a right low speed region 200R set to a predetermined range of directions. The stop position 200 is an overlapping portion between the left low speed area 200L and the right low speed area 200R. Control device 100 stops rotation of multicore shielded cable 1 by holding device 30 when drain wire 3 is detected in both left low speed region 200L and right low speed region 200R. According to the processing device 10, the drain line can be easily detected by summing simple image processing of detection of the drain line 3 in the left low speed area 200L and detection of the drain line 3 in the right low speed area 200R. It can be stopped at the stop position 200 .
 本実施形態では、左側低速領域200Lおよび右側低速領域200Rの外側には、高速領域210が設定されている。制御装置100は、高速領域210にドレイン線3が検出されると、保持装置30を制御して、所定の角度だけ多芯シールドケーブル1を回転させるように構成されている。上記所定の角度は、ドレイン線3が停止位置200よりも手前までしか到達しない角度に設定されている。かかる処理装置10によれば、高速領域210では所定の角度だけ多芯シールドケーブル1が回転されるため、より迅速にドレイン線3を停止位置200に近づけることができる。かつ、多芯シールドケーブル1は、停止位置200に到達する前に、左側低速領域200Lまたは右側低速領域200Rでいったん減速する。そのため、そこからは、前述した制御により、ドレイン線3を停止位置200に停止させることができる。かかる高速領域210での移動により、調整工程に要する時間を短縮することができる。なお、多芯シールドケーブル1は、停止位置200に到達する前に、左側低速領域200Lまたは右側低速領域200Rでいったん停止してもよい。 In this embodiment, a high speed region 210 is set outside the left low speed region 200L and the right low speed region 200R. The control device 100 is configured to control the holding device 30 to rotate the multicore shielded cable 1 by a predetermined angle when the drain wire 3 is detected in the high speed area 210 . The predetermined angle is set such that the drain wire 3 reaches only a point short of the stop position 200 . According to the processing apparatus 10, the multicore shielded cable 1 is rotated by a predetermined angle in the high speed region 210, so the drain wire 3 can be brought closer to the stop position 200 more quickly. Moreover, before reaching the stop position 200, the multicore shielded cable 1 once decelerates in the left low speed region 200L or the right low speed region 200R. Therefore, from there, the drain line 3 can be stopped at the stop position 200 by the control described above. Movement in the high-speed region 210 can shorten the time required for the adjustment process. Note that the multicore shielded cable 1 may temporarily stop in the left low speed region 200L or the right low speed region 200R before reaching the stop position 200. FIG.
 本実施形態では、制御装置100は、左側低速領域200Lまたは右側低速領域200Rと高速領域210との両方にドレイン線3が検出されると、ドレイン線3が高速領域210に存在するものとみなして、保持装置30に多芯シールドケーブル1を回転させる。かかる処理装置10によれば、左側低速領域200Lまたは右側低速領域200Rと高速領域210との両方にドレイン線3が検出された場合、ドレイン線3が高速領域210に存在するものとみなされるため、さらに迅速にドレイン線3を停止位置200に近づけることができる。 In this embodiment, when the drain line 3 is detected in both the left low speed area 200L or the right low speed area 200R and the high speed area 210, the control device 100 regards the drain line 3 as existing in the high speed area 210. , the holding device 30 rotates the multicore shielded cable 1 . According to the processing device 10, when the drain line 3 is detected in both the left low speed area 200L or the right low speed area 200R and the high speed area 210, it is assumed that the drain line 3 exists in the high speed area 210. Furthermore, the drain wire 3 can be brought closer to the stop position 200 more quickly.
 本実施形態では、画像取得装置60は、ドレイン線3およびコア線4に照射する光を生成する光源61と、光源61によって生成された光のドレイン線3およびコア線4による反射光を取得する画像取得部62と、を備えている。かかる処理装置10によれば、画像取得装置60は、自らが照射する光の反射光を取得する。そのため、ドレイン線3の検出が外部の光の影響を受けにくい。 In this embodiment, the image acquisition device 60 acquires the light source 61 that generates light to irradiate the drain line 3 and the core line 4, and the light generated by the light source 61 reflected by the drain line 3 and the core line 4. and an image acquisition unit 62 . According to the processing device 10, the image acquisition device 60 acquires the reflected light of the light emitted by itself. Therefore, the detection of the drain line 3 is less likely to be affected by external light.
 本実施形態では、光源61によって生成される光は、赤外光である。そのため、ドレイン線の検出が、特に外部の可視光線の影響を受けにくい。 In this embodiment, the light generated by the light source 61 is infrared light. Therefore, detection of the drain line is not particularly susceptible to external visible light.
 本実施形態では、画像取得部62は、光源61によって生成される光のドレイン線3およびコア線4による正反射光の光軸L2上から外れるように設けられている。かかる処理装置10によれば、被覆4bに光沢があるなどの理由によってコア線4の正反射光が強い場合でも、ドレイン線3を誤検知する可能性を低減することができる。 In this embodiment, the image acquisition unit 62 is provided so as to be off the optical axis L2 of the specularly reflected light from the drain line 3 and the core line 4 of the light generated by the light source 61 . According to such a processing apparatus 10, even when specularly reflected light from the core wire 4 is strong due to reasons such as the coating 4b being glossy, the possibility of erroneously detecting the drain wire 3 can be reduced.
 [他の実施形態]
 以上、本発明の好適な一実施形態について説明した。ただし、上記実施形態は例示に過ぎず、他にも種々の実施形態が可能である。例えば、上記した実施形態では、シース2のセミストリップを行った後にドレイン線3の位置を調整し、さらにその後にシース2の全ストリップを行っていた。しかし、例えば、シース2のストリップ長が短く、ドレイン線3およびコア線4がばらけるおそれが少ない場合などには、シース2の全ストリップ後にドレイン線3の位置を調整してもよい。また、シース2のストリップ長が短く、ドレイン線3およびコア線4の撚りが問題にならない場合などには、シース2のストリップにおけるドレイン線3およびコア線4の撚り戻しは行われなくてもよい。さらに、特に問題がなければ、全ストリップ時の撚り戻しにおいて、ドレイン線3およびコア線4は、チャック71によって回転不能に固定されていなくてもよい。ドレイン線3およびコア線4を回転不能に固定する部材は、コア線4を分離するためのチャック71ではなく、専用の把持部材であってもよい。
[Other embodiments]
A preferred embodiment of the present invention has been described above. However, the above embodiment is merely an example, and various other embodiments are possible. For example, in the embodiment described above, the position of the drain wire 3 is adjusted after semi-stripping the sheath 2, and then the full stripping of the sheath 2 is performed. However, for example, when the strip length of the sheath 2 is short and there is little risk of the drain wire 3 and the core wire 4 coming apart, the position of the drain wire 3 may be adjusted after the sheath 2 is completely stripped. Further, when the strip length of the sheath 2 is short and the twisting of the drain wire 3 and the core wire 4 does not matter, the untwisting of the drain wire 3 and the core wire 4 in the strip of the sheath 2 may not be performed. . Furthermore, if there is no particular problem, the drain wire 3 and the core wire 4 do not need to be non-rotatably fixed by the chuck 71 during untwisting at the time of all stripping. A member for non-rotatably fixing the drain wire 3 and the core wire 4 may be a dedicated gripping member instead of the chuck 71 for separating the core wire 4 .
 各ステーションStに設けられる装置の区分は特に限定されない。例えば、上記に説明した工程は、複数のステーションStにまたがって実施されてもよい。1つのステーションStで、上記以外の他の工程がさらに行われてもよい。また、1つの工程を行う装置は複数に分かれていてもよく、複数の工程を行う装置が1つにまとめられていてもよい。機能を果たす限りにおいて、各装置がどのように一体化され、分割されるかは特に限定されない。 The division of the devices provided in each station St is not particularly limited. For example, the steps described above may be performed across multiple stations St. Other steps than those described above may be further performed in one station St. Moreover, the apparatus for performing one step may be divided into a plurality of units, or the apparatus for performing a plurality of steps may be integrated into one unit. There are no particular restrictions on how each device is integrated or divided as long as it performs its function.
 上記した実施形態では、多芯シールドケーブル1は、高速領域210では間欠的に回転され、低速領域200L、200Rでは連続的に回転された。ただし、多芯シールドケーブル1は、高速領域でも低速領域でも連続的に回転されてもよい。この場合、高速領域における多芯シールドケーブル1の回転速度は、低速領域よりも高速であってもよい。ただし、多芯シールドケーブル1の回転速度は、領域によらず同じあってもよい。 In the embodiment described above, the multicore shielded cable 1 was intermittently rotated in the high speed region 210 and continuously rotated in the low speed regions 200L and 200R. However, the multicore shielded cable 1 may be rotated continuously in both the high speed region and the low speed region. In this case, the rotation speed of the multicore shielded cable 1 in the high speed region may be higher than that in the low speed region. However, the rotational speed of the multicore shielded cable 1 may be the same regardless of the area.
 多芯シールドケーブル1は、U字に曲げられていなくてもよい。その場合、多芯シールドケーブル1の一端は、他端の処理が完全に終わってから(例えば、端子が圧着された後に)処理されてもよい。また、そのような場合は、調整工程における多芯シールドケーブル1の回転角は180度を越えてもよい。 The multicore shielded cable 1 does not have to be bent in a U shape. In that case, one end of the multicore shielded cable 1 may be processed after the processing of the other end is completed (for example, after the terminals are crimped). Also, in such a case, the rotation angle of the multicore shielded cable 1 in the adjustment process may exceed 180 degrees.
 その他、特に言及されない限り、上記した実施形態は本発明を限定しない。例えば、画像取得装置は、光源を有するものや、赤外光を検知するものには限定されない。 In addition, unless otherwise specified, the above-described embodiments do not limit the present invention. For example, the image acquisition device is not limited to having a light source or detecting infrared light.
1    多芯シールドケーブル
2    シース
3    ドレイン線
4    コア線
10   処理装置
20   搬送装置
30   保持装置
31   第1回転クランプ(第1保持装置)
32   第2回転クランプ(第2保持装置)
40   移動装置
50   切込装置
60   画像取得装置
61   光源
62   画像取得部
70   コア線分離装置
71   チャック(把持部材)
72   チャック開閉装置(駆動装置)
73   チャック移動装置(分離装置)
90   判別装置
100  制御装置
200  停止位置(回転位置)
200L 左側低速領域(第1領域)
200R 右側低速領域(第2領域)
210  高速領域(外側領域)
1 Multicore Shielded Cable 2 Sheath 3 Drain Wire 4 Core Wire 10 Processing Device 20 Transfer Device 30 Holding Device 31 First Rotary Clamp (First Holding Device)
32 second rotary clamp (second holding device)
40 moving device 50 cutting device 60 image acquiring device 61 light source 62 image acquiring unit 70 core wire separating device 71 chuck (gripping member)
72 chuck opening and closing device (driving device)
73 chuck moving device (separating device)
90 discrimination device 100 control device 200 stop position (rotational position)
200L left low speed region (first region)
200R right low speed area (second area)
210 fast region (outer region)

Claims (15)

  1.  ドレイン線とコア線とがシースから露出した多芯シールドケーブルを所定の軸線に沿って保持するとともに、前記多芯シールドケーブルを前記軸線周りに回転させる保持装置と、
     前記保持装置に保持された状態の前記ドレイン線および前記コア線の画像を取得可能な画像取得装置と、
     前記画像取得装置によって取得された画像内の明度の分布に基づいて、前記ドレイン線を判別する判別装置と、
     前記判別装置の判別に基づいて前記保持装置を制御し、前記軸線周りの予め定められた回転位置に前記ドレイン線を移動させる制御装置と、を備えた、
    多芯シールドケーブルの処理装置。
    a holding device for holding along a predetermined axis a multicore shielded cable in which the drain wire and the core wire are exposed from the sheath, and for rotating the multicore shielded cable around the axis;
    an image acquisition device capable of acquiring an image of the drain wire and the core wire held by the holding device;
    a discrimination device that discriminates the drain line based on the brightness distribution in the image acquired by the image acquisition device;
    a control device that controls the holding device based on the determination by the determination device and moves the drain wire to a predetermined rotational position about the axis;
    Processing equipment for multi-core shielded cables.
  2.  前記保持装置は、それぞれ前記多芯シールドケーブルを保持して前記軸線周りに回転させることが可能であって前記軸線に沿って配置された第1保持装置と第2保持装置とを含み、
     前記シースの前記軸線に沿った所定の切込位置に切れ目を形成する切込装置と、
     前記第1保持装置および前記第2保持装置のうちの少なくとも一方を前記軸線方向に移動させることにより前記第1保持装置と前記第2保持装置とを接近または離反させる移動装置と、をさらに備え、
     前記第1保持装置は、前記切込位置よりも前記多芯シールドケーブルの先端側で前記シースを保持し、
     前記第2保持装置は、前記切込位置よりも前記多芯シールドケーブルの根元側で前記シースを保持し、
     前記制御装置は、
      前記第1保持装置および前記第2保持装置に前記多芯シールドケーブルを保持させ、
      前記多芯シールドケーブルが保持された状態で前記切込装置を制御して前記シースに前記切れ目を形成し、
      前記シースに前記切れ目が形成された後に、前記移動装置を制御して、前記ドレイン線および前記コア線の一部が露出し、かつ、前記ドレイン線および前記コア線の他の一部に先端側のシースが残るように先端側のシースを引き抜くセミストリップを行い、
      前記セミストリップの後に、前記画像取得装置に前記ドレイン線および前記コア線の画像を取得させる、
    請求項1に記載の多芯シールドケーブルの処理装置。
    The holding device includes a first holding device and a second holding device arranged along the axis and capable of holding the multicore shielded cable and rotating it about the axis, respectively;
    a cutting device for forming a cut at a predetermined cutting position along the axis of the sheath;
    a moving device that moves at least one of the first holding device and the second holding device in the axial direction to approach or separate the first holding device and the second holding device;
    The first holding device holds the sheath on the distal end side of the multicore shielded cable from the cutting position,
    The second holding device holds the sheath on the root side of the multicore shielded cable from the cutting position,
    The control device is
    causing the first holding device and the second holding device to hold the multicore shielded cable;
    forming the cut in the sheath by controlling the cutting device while the multicore shielded cable is held;
    After the cut is formed in the sheath, the moving device is controlled to expose a portion of the drain wire and the core wire and to move the other portion of the drain wire and the core wire toward the distal side. Perform semi-stripping to pull out the sheath on the tip side so that the sheath of
    After the semi-strip, causing the image acquisition device to acquire an image of the drain line and the core line;
    2. The multi-core shielded cable processing apparatus according to claim 1.
  3.  前記制御装置は、前記セミストリップにおいて、前記第1保持装置および前記第2保持装置のうちの少なくとも一方を駆動させて前記先端側のシースを根元側のシースに対して回転させ、前記ドレイン線と前記コア線との撚りをほどく、
    請求項2に記載の多芯シールドケーブルの処理装置。
    In the semi-strip, the control device drives at least one of the first holding device and the second holding device to rotate the sheath on the distal side with respect to the sheath on the root side, and the drain wire and the drain wire. untwisting the core wire;
    3. The multi-core shielded cable processing apparatus according to claim 2.
  4.  前記第1保持装置および前記第2保持装置は、前記予め定められた回転位置に前記ドレイン線を移動させる際に同期して回転する、
    請求項2または3に記載の多芯シールドケーブルの処理装置。
    the first holding device and the second holding device rotate synchronously when moving the drain wire to the predetermined rotational position;
    4. The processing apparatus for a multicore shielded cable according to claim 2 or 3.
  5.  前記保持装置によって保持された状態の前記多芯シールドケーブルの径方向外方に配置され、前記ドレイン線および前記コア線を回転不能に固定し、または、回転可能に解放する把持部材と、
     前記把持部材を駆動する駆動装置と、をさらに備え、
     前記制御装置は、
      前記予め定められた回転位置に前記ドレイン線が移動された後に、前記駆動装置を制御して前記把持部材に前記ドレイン線および前記コア線を固定させ、
      前記ドレイン線および前記コア線が固定された状態で、前記第1保持装置を制御して前記先端側のシースを回転させながら、前記移動装置を制御して前記先端側のシースを前記多芯シールドケーブルから離脱させる、
    請求項2~4のいずれか一つに記載の多芯シールドケーブルの処理装置。
    a gripping member disposed radially outward of the multi-core shielded cable held by the holding device to fix or rotatably release the drain wire and the core wire;
    a driving device that drives the gripping member,
    The control device is
    after the drain wire is moved to the predetermined rotational position, controlling the driving device to fix the drain wire and the core wire to the gripping member;
    While the drain wire and the core wire are fixed, the first holding device is controlled to rotate the distal end side sheath, and the moving device is controlled to move the distal end side sheath to the multicore shield. disconnect from the cable
    The multi-core shielded cable processing apparatus according to any one of claims 2 to 4.
  6.  前記軸線方向視において前記予め定められた回転位置に対応する方向の逆方向に前記把持部材を移動させる分離装置をさらに備え、
     前記把持部材は、前記ドレイン線および前記コア線を回転不能に固定した状態において、前記予め定められた回転位置に隙間を有しており、
     前記制御装置は、前記先端側のシースを前記多芯シールドケーブルから離脱させた後に、前記分離装置を制御して前記把持部材を移動させることにより、前記コア線と前記ドレイン線とを分離する、
    請求項5に記載の多芯シールドケーブルの処理装置。
    further comprising a separating device for moving the gripping member in a direction opposite to the direction corresponding to the predetermined rotational position when viewed in the axial direction;
    The gripping member has a gap at the predetermined rotational position in a state in which the drain wire and the core wire are non-rotatably fixed,
    The control device separates the core wire and the drain wire by controlling the separating device to move the gripping member after the sheath on the distal end side is detached from the multicore shielded cable.
    The multi-core shielded cable processing apparatus according to claim 5.
  7.  前記多芯シールドケーブルは、両端が同じ方向を向くようにU字状に曲げられるとともに、両端において前記ドレイン線および前記コア線が露出しており、
     前記軸線に交差する搬送方向に前記多芯シールドケーブルを搬送し、前記保持装置に前記多芯シールドケーブルの両端を順次受け渡す搬送装置をさらに備えている、
    請求項1~6のいずれか一つに記載の多芯シールドケーブルの処理装置。
    The multicore shielded cable is bent in a U shape so that both ends face the same direction, and the drain wire and the core wire are exposed at both ends,
    The apparatus further comprises a conveying device that conveys the multicore shielded cable in a conveying direction that intersects with the axis and sequentially transfers both ends of the multicore shielded cable to the holding device.
    The multicore shielded cable processing apparatus according to any one of claims 1 to 6.
  8.  前記制御装置は、前記多芯シールドケーブルの一端を第1の回転方向に回転させて前記一端の前記ドレイン線を前記予め定められた回転位置に移動し、他端を前記第1の回転方向とは逆の第2の回転方向に回転させて前記他端の前記ドレイン線を前記予め定められた回転位置に移動する、
    請求項7に記載の多芯シールドケーブルの処理装置。
    The control device rotates one end of the multicore shielded cable in the first rotation direction to move the drain wire at the one end to the predetermined rotation position, and rotates the other end in the first rotation direction. rotates in an opposite second rotational direction to move the drain wire at the other end to the predetermined rotational position;
    The multi-core shielded cable processing apparatus according to claim 7.
  9.  前記画像取得装置は、前記軸線方向視において、前記軸線に対して前記予め定められた回転位置に対応する方向に設けられており、
     前記制御装置は、前記多芯シールドケーブルの回転角が90度以上の所定角度に達して前記ドレイン線が検出されない場合、回転方向を逆転させる、
    請求項7または8に記載の多芯シールドケーブルの処理装置。
    The image acquisition device is provided in a direction corresponding to the predetermined rotational position with respect to the axis when viewed in the axial direction,
    The control device reverses the rotation direction when the rotation angle of the multicore shielded cable reaches a predetermined angle of 90 degrees or more and the drain wire is not detected.
    9. The processing apparatus for a multicore shielded cable according to claim 7 or 8.
  10.  前記画像取得装置によって取得される画像における前記軸線周りの回転位置は、
      周方向の所定範囲に設定された第1領域と、
      前記第1領域と一部が重なるような周方向の所定範囲に設定された第2領域と、を含み、
     前記予め定められた回転位置は、前記第1領域と前記第2領域との重なり部分であり、
     前記制御装置は、前記第1領域および前記第2領域の両方に前記ドレイン線が検出されると、前記保持装置による前記多芯シールドケーブルの回転を停止させる、
    請求項1~9のいずれか一つに記載の多芯シールドケーブルの処理装置。
    A rotational position about the axis in the image acquired by the image acquisition device is
    a first region set in a predetermined range in the circumferential direction;
    a second region set in a predetermined range in the circumferential direction that partially overlaps with the first region;
    the predetermined rotational position is an overlapping portion of the first region and the second region;
    The control device stops rotation of the multicore shielded cable by the holding device when the drain wire is detected in both the first region and the second region.
    The multi-core shielded cable processing apparatus according to any one of claims 1 to 9.
  11.  前記第1領域および前記第2領域の外側には、外側領域が設定されており、
     前記制御装置は、前記外側領域に前記ドレイン線が検出されると、前記保持装置を制御して所定の角度だけ前記多芯シールドケーブルを回転させるように構成されており、
     前記所定の角度は、前記ドレイン線が前記予め定められた回転位置よりも手前までしか到達しない角度に設定されている、
    請求項10に記載の多芯シールドケーブルの処理装置。
    An outer region is set outside the first region and the second region,
    The control device is configured to control the holding device to rotate the multicore shielded cable by a predetermined angle when the drain wire is detected in the outer region,
    The predetermined angle is set to an angle at which the drain line reaches only a short distance from the predetermined rotational position.
    The multi-core shielded cable processing apparatus according to claim 10.
  12.  前記制御装置は、前記第1領域または前記第2領域と前記外側領域との両方に前記ドレイン線が検出されると、前記ドレイン線が前記外側領域に存在するものとみなして、前記保持装置に前記多芯シールドケーブルを回転させる、
    請求項11に記載の多芯シールドケーブルの処理装置。
    When the drain line is detected in both the first region or the second region and the outer region, the control device determines that the drain line exists in the outer region, rotating the multicore shielded cable;
    The multi-core shielded cable processing apparatus according to claim 11.
  13.  前記画像取得装置は、
      前記ドレイン線および前記コア線に照射する光を生成する光源と、
      前記光源によって生成された光の前記ドレイン線および前記コア線による反射光を取得する画像取得部と、を備えている、
    請求項1~12のいずれか一つに記載の多芯シールドケーブルの処理装置。
    The image acquisition device is
    a light source that generates light to irradiate the drain line and the core line;
    an image acquisition unit that acquires light reflected by the drain line and the core line of the light generated by the light source,
    The multicore shielded cable processing apparatus according to any one of claims 1 to 12.
  14.  前記光源によって生成される光は、赤外光である、
    請求項13に記載の多芯シールドケーブルの処理装置。
    the light produced by the light source is infrared light;
    The multi-core shielded cable processing apparatus according to claim 13.
  15.  前記画像取得部は、前記光源によって生成される光の前記ドレイン線および前記コア線による正反射光の光軸上から外れるように設けられている、
    請求項13または14に記載の多芯シールドケーブルの処理装置。
    The image acquisition unit is provided so as to be off the optical axis of light specularly reflected by the drain line and the core line of the light generated by the light source,
    15. The multi-core shielded cable processing apparatus according to claim 13 or 14.
PCT/JP2022/035096 2021-10-14 2022-09-21 Processing device for multi-core shielded cable WO2023063035A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-169028 2021-10-14
JP2021169028 2021-10-14

Publications (1)

Publication Number Publication Date
WO2023063035A1 true WO2023063035A1 (en) 2023-04-20

Family

ID=85987686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035096 WO2023063035A1 (en) 2021-10-14 2022-09-21 Processing device for multi-core shielded cable

Country Status (1)

Country Link
WO (1) WO2023063035A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06276639A (en) * 1993-03-17 1994-09-30 Hitachi Ltd Shield processing device for cable
US20150287180A1 (en) * 2014-04-08 2015-10-08 SLE quality engineering GmbH und Co. KG Method and device for determining or aligning the angular position of individual wires within a sheathed cable containing twisted wires
CN112435808A (en) * 2020-10-30 2021-03-02 中国科学院长春光学精密机械与物理研究所 Thread take-up device for multi-core wire harness

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06276639A (en) * 1993-03-17 1994-09-30 Hitachi Ltd Shield processing device for cable
US20150287180A1 (en) * 2014-04-08 2015-10-08 SLE quality engineering GmbH und Co. KG Method and device for determining or aligning the angular position of individual wires within a sheathed cable containing twisted wires
CN112435808A (en) * 2020-10-30 2021-03-02 中国科学院长春光学精密机械与物理研究所 Thread take-up device for multi-core wire harness

Similar Documents

Publication Publication Date Title
CN107895610B (en) Method and device for calibrating cable ends and cable assembly device
JPH02246716A (en) Method and device for moditying derection of cable and where the sheath of round cable is remound
CN104638497B (en) Equipment for processing multi-core cable
WO2018198757A1 (en) End setting device and end processing device
WO2023063035A1 (en) Processing device for multi-core shielded cable
US3484936A (en) Sleeve assembling and insulation stripping apparatus for coaxial cable
JPS61133844A (en) Inspecting device for compressed part of terminal of terminal compressed wire
JPH0787643A (en) Flaw detector for core
JP2000166046A (en) Device for processing end of coaxial cable
JP2023511874A (en) Cable processing station, cable machine having cable processing station, and computer-implemented method
EP0718594A2 (en) Method and device for illumination in terminated cable part inspection device for stripped terminal crimping machine
JP2517381B2 (en) Crimp terminal crimp condition inspection device
JP7307130B2 (en) Shield foil removal method and shield foil removal device
JP2000231976A (en) Test device for crimped condition of terminal and terminal crimping device provided with it
EP0600415B1 (en) Automatic terminal crimping apparatus
WO2023063428A1 (en) Multicore cable processing device
EP3979265B1 (en) Electric cable processing device
CN114543659B (en) Connector quality inspection method and system
WO2024080307A1 (en) Multi-core shielded cable machining device
JPH1123226A (en) Inspection device for covered conductor with cap
JP2003134626A (en) Jacketed wire stripping apparatus
JP2018185983A (en) Un-twining device and wire end part processor
JPS5895911A (en) Device for treating end of wire
US10903631B2 (en) Device and method for manipulating an inner conductor
JPS6159202A (en) Position displacement detecting system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22880731

Country of ref document: EP

Kind code of ref document: A1