WO2023063007A1 - Multilayer piezoelectric element - Google Patents

Multilayer piezoelectric element Download PDF

Info

Publication number
WO2023063007A1
WO2023063007A1 PCT/JP2022/034339 JP2022034339W WO2023063007A1 WO 2023063007 A1 WO2023063007 A1 WO 2023063007A1 JP 2022034339 W JP2022034339 W JP 2022034339W WO 2023063007 A1 WO2023063007 A1 WO 2023063007A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric element
internal electrode
piezoelectric ceramic
mol
laminated piezoelectric
Prior art date
Application number
PCT/JP2022/034339
Other languages
French (fr)
Japanese (ja)
Inventor
亮 伊藤
隆幸 後藤
Original Assignee
太陽誘電株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽誘電株式会社 filed Critical 太陽誘電株式会社
Publication of WO2023063007A1 publication Critical patent/WO2023063007A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/06Forming electrodes or interconnections, e.g. leads or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals

Definitions

  • the present invention relates to laminated piezoelectric elements.
  • a piezoelectric element is an electronic component with a structure in which a piezoelectric ceramic (piezoelectric ceramic) is sandwiched between a pair of electrodes.
  • piezoelectricity is a property capable of mutually converting electrical energy and mechanical energy.
  • Piezoelectric elements use the aforementioned properties of piezoelectric ceramics to convert the voltage applied between a pair of electrodes into mechanical energy such as pressure or vibration, thereby moving other objects or moving itself. can do.
  • piezoelectric elements can convert mechanical energy such as vibration and pressure into electrical energy, and extract the electrical energy as voltage between a pair of electrodes.
  • the structure of the piezoelectric element in addition to the one in which electrodes are formed only on the surface of the piezoelectric ceramic, the one called laminated piezoelectric element in which multiple piezoelectric ceramic layers and internal electrode layers are alternately laminated is known.
  • Laminated piezoelectric elements can be used, for example, as actuators because they can provide a large displacement in the lamination direction of the piezoelectric ceramic layers.
  • Laminated piezoelectric elements are typically manufactured by simultaneously firing piezoelectric ceramic layers and internal electrode layers.
  • piezoelectric ceramics constituting such piezoelectric elements those mainly composed of lead zirconate titanate (Pb(Zr, Ti)O 3 , PZT) and their solid solutions are widely used. Since PZT-based piezoelectric ceramics have a high Curie temperature, it is possible to obtain a piezoelectric element that can be used even in a high-temperature environment. It has the advantage that a piezoelectric element that can be converted efficiently can be obtained. Moreover, by selecting an appropriate composition, firing can be performed at a temperature below 1000° C., which has the advantage of reducing the manufacturing cost of the piezoelectric element.
  • PZT-based piezoelectric ceramics have a high Curie temperature, it is possible to obtain a piezoelectric element that can be used even in a high-temperature environment. It has the advantage that a piezoelectric element that can be converted efficiently can be obtained. Moreover, by selecting an appropriate composition, firing can be performed at a temperature below 1000° C., which has the advantage
  • the internal electrodes co-fired with the piezoelectric ceramics are made of a low-melting-point material that contains a large proportion of silver, in other words, contains a small proportion of expensive materials such as platinum and palladium. Being able to use it will bring significant cost savings.
  • PZT-based piezoelectric ceramics contain lead, which is a hazardous substance, which is regarded as a problem.
  • Various compositions have been reported, such as layered compound systems and tungsten bronze systems.
  • alkaline niobate-based piezoelectric ceramics have a high Curie point and a relatively large electromechanical coupling coefficient, and are therefore attracting attention as alternatives to PZT-based ceramics (Patent Document 1).
  • Patent Document 2 it is reported that by setting the composition of alkaline niobate-based piezoelectric ceramics to contain an alkaline earth metal and silver, it was possible to sinter integrally with internal electrodes of Ag0.7Pd0.3. It is In addition, Patent Document 2 reports that the obtained laminated piezoelectric element exhibited high electrical resistivity and exhibited a large amount of displacement when a voltage was applied.
  • Patent Document 3 a non-conductive portion composed of a ceramic portion filled with ceramic powder and a void portion is formed at a specific ratio in an internal electrode layer of a laminated piezoelectric element, thereby preventing displacement by the internal electrode layer. reported to be suppressed.
  • Li 2 O and SiO 2 which are components that contribute to improving the sinterability
  • MnO which is a component that contributes to improving the electrical resistance
  • Li3NbO4 which has conductivity
  • lithium manganate which has a lower electrical resistivity than alkali niobates
  • the laminated piezoelectric element described in Patent Document 2 exhibits a large amount of displacement when a voltage is applied. may restrain the displacement of the piezoelectric ceramic layer.
  • Patent Document 3 does not describe prevention of shortening of the life of the piezoelectric element due to deterioration of electrical insulation during use.
  • an object of the present invention is to provide a multilayer piezoelectric element that does not contain lead as a constituent component, has a small decrease in electrical insulation during use, and has a large amount of displacement when a voltage is applied.
  • the laminated piezoelectric element is composed of a piezoelectric ceramic layer containing alkali niobate as a main component and a conductive portion containing silver as a main component. and having an internal electrode layer containing lithium manganate in at least a part of the gap where the conductive portion does not exist. reached.
  • one aspect of the present invention for solving the above problems is a piezoelectric ceramic layer mainly composed of alkali niobate having a perovskite structure, and a piezoelectric ceramic layer disposed between the piezoelectric ceramic layers and having a silver content of 50 mass. % or more, the area percentage (R 1 ) occupied by the conductive part is 75% or more and 95% or less, and the gap part where the conductive part does not exist is the average area percentage (R 2 ) is 5% or less, and an internal electrode layer containing lithium manganate is provided in at least one of the gaps.
  • the present invention it is possible to provide a multilayer piezoelectric element that does not contain lead as a component, has a small decrease in electrical insulation during use, and has a large amount of displacement when a voltage is applied.
  • FIG. 2 is a perspective view showing the state of internal electrode layers in the laminated piezoelectric element according to one aspect of the present invention
  • FIG. 4 is an explanatory diagram of the dimensions of each part necessary for calculating parameters R 1 , R 2 , R 3 and R 4 indicating the state of the internal electrode layers in the laminated piezoelectric element according to one aspect of the present invention
  • a multilayer piezoelectric element 100 according to one aspect of the present invention (hereinafter sometimes simply referred to as "this aspect") has piezoelectric ceramic layers, as schematically shown in cross-sectional views in FIGS. 10, internal electrode layers 20 arranged between the piezoelectric ceramic layers 10 and connection conductors 30 electrically connecting the internal electrode layers 20 every other layer.
  • the connection conductor 30 is formed on the surface of the laminated piezoelectric element 100.
  • the connection conductor 30 is formed inside the laminated piezoelectric element 100 so as to penetrate the piezoelectric ceramic layer 10. may have been
  • this side surface is provided with side margin portions 40 located between the Y-axis direction side surfaces and the internal electrode layers 20, and cover portions 50 located on the Z-axis direction upper and lower surfaces. good too.
  • an external electrode (not shown) that electrically connects the connection conductor 30 and the drive circuit may be formed on the surface of this side surface.
  • the piezoelectric ceramic layer 10 is mainly composed of alkali niobate having a perovskite structure.
  • the alkali niobate which is the main component, contains, as constituent elements, at least one alkali metal element selected from the group consisting of lithium (Li), sodium (Na) and potassium (K), and niobium (Nb). It is an oxide having a perovskite structure.
  • the perovskite structure has an A site located at the vertex of the unit cell, an O site located at the face center of the unit cell, and an octahedron having the O site as a vertex. It is a crystal structure having a B site.
  • alkali metal ions are located at the A site
  • niobium ions are located at the B site
  • oxide ions are located at the O site.
  • each site may contain various ions other than those described above.
  • the piezoelectric ceramic layer 10 is mainly composed of alkali niobate having a perovskite structure is performed by the following procedure.
  • a diffraction line was obtained by an X-ray diffraction (XRD) apparatus using Cu—K ⁇ rays. Measure your profile.
  • the method of exposing the piezoelectric ceramic layer 10 on the surface of the laminated piezoelectric element 100 is not particularly limited, and a method of cutting or polishing the piezoelectric element can be employed.
  • the means for pulverizing the laminated piezoelectric element 100 is not particularly limited, and a hand mill (mortar/pestle) or the like can be used.
  • a hand mill mortar/pestle
  • the piezoelectric ceramics It is determined that the layer 10 is mainly composed of a compound having a perovskite structure.
  • the XRD measurement is performed on the powder obtained by pulverizing the laminated piezoelectric element 100, the peak of the metal constituting the internal electrode layer 20 is also detected. comparison.
  • the piezoelectric ceramic layer 10 determined to be mainly composed of a compound having a perovskite structure or the powder prepared therefrom, high-frequency inductively coupled plasma (ICP) emission spectrometry, ion chromatography, or X-ray fluorescence (XRF)
  • ICP inductively coupled plasma
  • XRF X-ray fluorescence
  • An analyzer measures the ratio of each element contained. As a result of the measurement, both the total content of alkali metal elements and the content of niobium expressed in mol % (or atomic %) were greater than the contents of other elements, indicating that the perovskite structure, which is the main component, is determined to be an alkali niobate.
  • the piezoelectric ceramic layer 10 may contain other components as long as the main component is alkali niobate having a perovskite structure. These other components may be dissolved in any of the A site, B site, and O site of the perovskite structure described above, or may exist as a different phase between sintered particles of the main component.
  • the piezoelectric ceramic layer 10 may further contain at least one alkaline earth metal element selected from the group consisting of calcium (Ca), strontium (Sr) and barium (Ba), and silver (Ag). good.
  • the piezoelectric ceramic layer 10 becomes dense with a small sintered particle size, and exhibits excellent piezoelectricity.
  • the total content of alkaline earth metal elements is 100 mol % of the content of the elements in the B site of the alkali niobate, which is the main component (often in an ionic state). It is preferably more than 0.2 mol %, more preferably 0.3 mol % or more, even more preferably 0.5 mol % or more.
  • the content of silver is preferably more than 0.5 mol %, more preferably 0.7 mol % or more, relative to 100 mol % of the elements in the B site. 0 mol % or more is more preferable.
  • the total content of the alkaline earth metal elements is It is preferably 5.0 mol % or less, more preferably 3.0 mol % or less, even more preferably 1.0 mol % or less.
  • the silver content is preferably 5.0 mol % or less, more preferably 4.0 mol % or less, and further preferably 3.0 mol % or less. preferable.
  • the total content of the alkaline earth metal elements and the content of silver are set so that the total content of the alkaline earth metal elements is 0.2 per 100 mol % of the elements in the B site. It is more than 5.0 mol % and less than or equal to 5.0 mol %, preferably more than 0.5 mol % and less than or equal to 5.0 mol % of silver, and the total content of alkaline earth metal elements is 0.3 mol % or more.
  • silver is more preferably 0.7 mol % or more and 4.0 mol % or less, and the total content of alkaline earth metal elements is 0.5 mol % or more and 1.0 mol % or less. and more preferably 1.0 mol % or more and 3.0 mol % or less of silver.
  • the piezoelectric ceramic layer 10 may further contain manganese (Mn).
  • Mn manganese
  • the content of manganese should be 0.00% when the content of the element in the B site of the alkali niobate, which is the main component (actually, it is often in an ionic state), is 100 mol %. It is preferably 2 mol % or more, more preferably 0.3 mol % or more, and even more preferably 0.5 mol % or more.
  • the content of manganese is preferably 2.0 mol % or less with respect to 100 mol % of the elements in the B site. It is more preferably 5 mol % or less, and even more preferably 1.0 mol % or less.
  • the manganese content is preferably 0.2 mol % or more and 2.0 mol % or less, and 0.3 mol % or more, relative to 100 mol % of the elements in the B site. It is more preferably 1.5 mol % or less, and even more preferably 0.5 mol % or more and 1.0 mol % or less.
  • the piezoelectric ceramic layer 10 may further contain silicon (Si).
  • Si silicon
  • the piezoelectric ceramic layer 10 is densified, and excess Li that has not completely dissolved in the main component reacts with silicon to form compounds such as Li 2 SiO 3 and Li 4 SiO 4 . can suppress the formation of conductive compounds such as Li 3 NbO 4 .
  • the content of silicon should be 0.00% when the content of the element in the B site of the alkali niobate, which is the main component (actually, it is often in an ionic state), is 100 mol %. It is preferably 1 mol % or more, more preferably 0.5 mol % or more, and even more preferably 1.0 mol % or more.
  • the content of silicon is 3.0 mol % with respect to 100 mol % of the elements in the B site. or less, more preferably 2.5 mol % or less, and even more preferably 2.0 mol % or less.
  • the content of silicon is preferably 0.1 mol % or more and 3.0 mol % or less with respect to 100 mol % of the elements in the B site, and 0.5 mol % or more. 0.5 mol % or less is more preferable, and 1.0 mol % or more and 2.0 mol % or less is even more preferable.
  • the piezoelectric ceramic layer 10 may optionally contain at least one selected from first transition elements such as Sc, Ti, V, Cr, Fe, Co, Ni, Cu and Zn. good. By including these elements in appropriate amounts, it is possible to adjust the firing temperature of the laminated piezoelectric element 100, control grain growth, and extend the life in a high electric field.
  • first transition elements such as Sc, Ti, V, Cr, Fe, Co, Ni, Cu and Zn. good.
  • the piezoelectric ceramic layer 10 may contain at least one selected from Y, Mo, Ru, Rh and Pd, which are second transition elements, if necessary. By including these elements in appropriate amounts, it is possible to adjust the firing temperature of the laminated piezoelectric element 100, control grain growth, and extend the life in a high electric field.
  • the piezoelectric ceramic layer 10 may include third transition elements such as La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, and W, if necessary. , Re, Os, Ir, Pt and Au. By including these elements in appropriate amounts, it is possible to adjust the firing temperature of the laminated piezoelectric element 100, control grain growth, and extend the life in a high electric field.
  • third transition elements such as La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, and W, if necessary. , Re, Os, Ir, Pt and Au.
  • the piezoelectric ceramic layer 10 can contain a plurality of types of the above-described first transition element, second transition element, and third transition element.
  • the alkali niobate is represented by the following composition formula (1) from the viewpoint of exhibiting excellent piezoelectric properties and obtaining a long-life element when used under a high electric field. preferable.
  • M2 in the formula represents at least one alkaline earth metal element selected from the group consisting of calcium (Ca), strontium (Sr) and barium (Ba).
  • u, v, w, x, y, z and a are respectively 0.005 ⁇ u ⁇ 0.05, 0.002 ⁇ v ⁇ 0.05, 0.007 ⁇ u+v ⁇ 0.1, 0 ⁇ w ⁇ 1, 0.02 ⁇ x ⁇ 0.1, 0.02 ⁇ w+x ⁇ 1, 0 ⁇ y ⁇ 0.1, 0 ⁇ z ⁇ 0.4, 1 ⁇ a ⁇ 1.1 A numerical value that satisfies an inequality.
  • the alkali niobate is represented by the above compositional formula (1).
  • the piezoelectric ceramic layer 10 which has been confirmed to contain an alkali niobate having a perovskite structure as a main component, or a powder prepared therefrom, is subjected to high-frequency inductively coupled plasma (ICP) emission spectroscopy and ion chromatography.
  • ICP inductively coupled plasma
  • XRF X-ray fluorescence
  • the total number of moles of antimony, tantalum and niobium is calculated, and the ratio of the number of moles of each element to this is calculated.
  • the ratio of each element is within the range of the above composition formula (1), it is determined that the alkali niobate is represented by the above composition formula (1).
  • the internal electrode layer 20 has, as schematically shown in FIG.
  • the area percentage is 75% or more and 95% or less
  • the size of the gap 22 is 5% or less in average area percentage per location
  • lithium manganate is present in at least one location of the gap 22 23.
  • the internal electrode layer 20 has a conductive portion 21 made of metal with a silver content of 50% by mass or more. Since the content of silver in the conductive portion 21 is 50% by mass or more, the amount of expensive metals such as platinum and palladium used can be reduced, and the material cost of the laminated piezoelectric element 100 can be suppressed. In addition, since the ratio of silver, which is excellent in conductivity, increases, the electrical resistivity decreases, and the electrical loss when driving the multilayer piezoelectric element 100 is reduced.
  • a silver-palladium alloy is exemplified as a metal having a silver content of 50% by mass or more.
  • the content of silver in the conductive portion 21 is preferably 70% by mass or more, more preferably 80% by mass or more.
  • the content of silver in the internal electrode layer 20 can be confirmed by performing elemental analysis of the internal electrode layer 20 using various measuring instruments and calculating the mass ratio of silver to all the detected elements.
  • the measuring instrument used is a scanning electron microscope (SEM) or an energy dispersive X-ray spectrometer (EDS) attached to a transmission electron microscope (TEM). Or wavelength dispersive X-ray spectrometer (Wavelength Dispersive X-ray Spectrometer, WDS), electron probe microanalyzer (Electron Probe Micro Analyzer, EPMA) and laser irradiation type inductively coupled plasma mass spectrometer (LA-ICP-MS), etc. exemplified.
  • the area percentage of the conductive portions 21 in the internal electrode layers 20 is set to 75% or more and 95% or less.
  • R 1 By setting the area percentage (hereinafter sometimes simply referred to as “R 1 ”) to 75% or more, a sufficient voltage is applied to the piezoelectric ceramic layer 10 when driving the multilayer piezoelectric element 100, A large displacement can be obtained.
  • R1 is preferably 80% or more.
  • R1 by setting R1 to 95% or less, the restraining force by the internal electrode layers 20 generated when the piezoelectric ceramic layers 10 are displaced is reduced, and a large displacement can be obtained. From this point of view, R 1 is preferably 93% or less. For the reason described above, R1 is preferably 80% or more and 93% or less.
  • the internal electrode layer 20 has a gap portion 22 where the conductive portion 21 does not exist.
  • the gaps 22 are sized such that the average area percentage (hereinafter sometimes simply referred to as “R 2 ”) per portion of the entire internal electrode layer 20 is 5% or less.
  • R2 is preferably 3% or less.
  • the lower limit of R2 is not limited, it is often 0.01% or more in the laminated piezoelectric element 100 having R1 of 75% or more and 95% or less, which is obtained by a general manufacturing method.
  • the ratio of the total area of the gaps 22 to the area of the internal electrode layers 20 is 5% or more and 25% or less in terms of area percentage, that is, the value obtained by subtracting the aforementioned R1 from 100%. Therefore, the area percentage of the total area of the gaps 22 corresponding to the above-mentioned preferable value of R1 is 7% or more and 20% or less.
  • the gap 22 contains lithium manganate 23 in at least one location.
  • Lithium manganate 23 is a compound having a lower electrical resistivity than alkaline niobate, which is the main component of piezoelectric ceramic layer 10 .
  • the presence of such a compound in the piezoelectric ceramic layer 10 causes a decrease in electrical resistivity of the piezoelectric ceramic layer 10 and the multilayer piezoelectric element 100 as a whole during use.
  • the lithium manganate 23 is present in the interstices 22 of the internal electrode layers 20, although the electrical resistivity of the interstices 22 is lower than in the case where the alkali niobate is present, the interstices 22 are included. Since the internal electrode layer 20 is originally conductive, the adverse effect on the electrical resistivity of the laminated piezoelectric element 100 is limited. Therefore, the presence of the lithium manganate 23 in the interstices 22 of the internal electrode layers 20 reduces the amount of lithium manganate in the piezoelectric ceramic layer 10, and the entire piezoelectric ceramic layer 10 and the laminated piezoelectric element 100 in use. decrease in electrical resistivity is suppressed.
  • the lithium manganate 23 contained in the gap 22 includes those represented by various composition formulas such as Li 2 MnO 3 , LiMn 2 O 4 and LiMnO 2 . Express.
  • the area ratio of the lithium manganate 23 contained in the gaps 22 to the total area of the internal electrode layers 20 (hereinafter sometimes simply referred to as “R 3 ”) is preferably 1% or more. , more preferably 2% or more. As a result, deterioration of the electrical insulation of the laminated piezoelectric element 100 during use is significantly reduced.
  • R3 is not limited, as described above, the upper limit of the ratio of the total area of the gaps 22 to the area of the internal electrode layers 20 is 25%, and the preferable upper limit is 20%. necessarily lower than these values. For the reasons described above, R3 is preferably 1% or more and 25% or less, more preferably 2% or more and 20% or less.
  • the ratio of the area of the lithium manganate 23 contained in the gap 22 to the total area of the gap 22 (hereinafter sometimes simply referred to as “R 4 ”) is preferably 10% or more, It is more preferably 20% or more. As a result, deterioration of the electrical insulation of the laminated piezoelectric element 100 during use is significantly reduced.
  • the upper limit of R 4 is not limited, and may be 100%, that is, a state in which all the gaps 22 are filled with lithium manganate 23 .
  • the laminated piezoelectric element 100 is cut along a plane perpendicular to the plane perpendicular to the lamination direction, passing near the center of gravity, and the cut surface is polished to expose the internal electrode layers 20 .
  • the cutting is performed while avoiding the connecting conductor 30.
  • the exposed internal electrode layers 20 are observed with an optical microscope to identify the conductive portions 21 having metallic luster and the gaps 22 where the conductive portions are interrupted. Identify the location of the speckled portion that is recognized by the difference in lightness or saturation.
  • the spotted portion often has an orange or black color due to the coloring of manganese.
  • Li, Mn and Nb were analyzed using a laser irradiation type inductively coupled plasma mass spectrometer (LA-ICP-MS) for each of the speckled portions and portions where similar specks did not exist in the piezoelectric ceramic layer 10. Measure the content.
  • LA-ICP-MS laser irradiation type inductively coupled plasma mass spectrometer
  • R 1 , R 2 , R 3 and R 4 described above are measured and calculated in the following procedure.
  • an optical microscope image of a cross section of the laminated piezoelectric element 100 determined to contain lithium manganate 23 in the interstices 22 of the internal electrode layers 20 by the above-described procedure is taken from the internal electrode layers 20 exposed there. , arbitrarily select three consecutive sheets (layers).
  • Next for the selected internal electrode layers 20, as schematically shown in FIG . Length occupied by each lithium manganate 23 (L M11 , L M12 , . ) , the length occupied by each lithium manganate 23 (L M21 , L M22 , .
  • each lithium manganate 23 (L M31 , L M32 , . . . , L M3r ) and the length occupied by each lithium manganate 23 (L M31 , L M32 , . . . , L M3r ) are measured.
  • the suffixes a, b, and c respectively denote the number of gaps 22 present in each layer, and the suffixes p, q, and r denote the number of lithium manganate 23 present in each layer.
  • R 1 is determined by the following formula (2)
  • R 2 is determined by the following formula (3)
  • R 3 is determined by the following formula (4)
  • R 4 is determined by the following formula (5). calculate.
  • connection conductor 30 electrically connects every other internal electrode layer 20 .
  • the material of the connection conductor 30 has high conductivity and is physically and chemically stable under the polarization conditions and the usage environment of the element, which will be described later. is not particularly limited. Examples include silver (Ag), copper (Cu), gold (Au), platinum (Pt), palladium (Pd), nickel (Ni), and alloys thereof.
  • the connecting conductor 30 is formed inside the laminated piezoelectric element 100 so as to penetrate the piezoelectric ceramic layer 10, the silver content is 50%, similarly to the conductive portion 21 of the internal electrode layer 20 described above. It is preferable to use the metal in mass % or more.
  • the side margin portion 40 and the cover portion 50 function as protection portions that protect the piezoelectric ceramic layers 10 and the internal electrode layers 20 .
  • the side margin portion 40 and the cover portion 50 are made of alkali niobate, similar to the piezoelectric ceramic layer 10, from the viewpoint of the shrinkage rate during firing of the laminated piezoelectric element 100 and the relaxation of internal stress in the laminated piezoelectric element 100. It is preferably formed of a sintered body containing salt as a main component. However, the material for forming the side margin portions 40 and the cover portion 50 need not contain alkali niobate as a main component as long as the material has high insulating properties.
  • the external electrode has a function of electrically connecting the connection conductor 30 and the drive circuit. Moreover, when this is formed on the piezoelectric ceramics layer 10, it also has a function of applying a voltage thereto.
  • the material of the external electrode is not particularly limited as long as it has high conductivity and is physically and chemically stable under the polarization conditions and the usage environment of the piezoelectric element. Examples include silver (Ag), copper (Cu), gold (Au), platinum (Pt), palladium (Pd), nickel (Ni), and alloys thereof.
  • the laminated piezoelectric element according to this aspect is obtained by, for example, mixing raw material powders in a predetermined ratio to obtain a raw material mixed powder, calcining the raw material mixed powder, and Obtaining a calcined powder as a component, mixing the calcined powder with a binder and a dispersion medium to prepare a slurry, forming the slurry into a sheet to obtain a green sheet, silver on the green sheet A paste containing a metal and a manganese compound whose After removing the binder from the green compact, firing it to obtain a laminated piezoelectric ceramic, applying a conductor paste to the surface of the laminated piezoelectric ceramic where the internal electrode layer is exposed, and baking it to connect conductor and applying a high voltage between the connection conductors to polarize the piezoelectric ceramic layer.
  • a calcined powder as a component
  • mixing the calcined powder with a binder and a dispersion medium to prepare a slurry
  • raw material powders are mixed at a predetermined ratio to obtain a raw material mixed powder.
  • raw material powders to be used include lithium carbonate (Li 2 CO 3 ) as a lithium compound, sodium carbonate (Na 2 CO 3 ) and sodium hydrogen carbonate (NaHCO 3 ) as sodium compounds, and potassium carbonate ( K 2 CO 3 ) and potassium hydrogen carbonate (KHCO 3 ), and niobium pentoxide (Nb 2 O 5 ) as a niobium compound.
  • frequently used compounds include tantalum pentoxide (Ta 2 O 5 ) as a tantalum compound and antimony trioxide (Sb 2 O 3 ) as an antimony compound.
  • the method of mixing the raw material powders is not particularly limited as long as each powder is uniformly mixed while suppressing the contamination of impurities, and either dry mixing or wet mixing may be employed.
  • dry mixing using a ball mill for example, partially stabilized zirconia (PSZ) balls are used, and after stirring for about 8 to 60 hours with a ball mill using an organic solvent such as ethanol as a dispersion medium, The organic solvent may be evaporated and dried.
  • PSZ partially stabilized zirconia
  • the mixed raw material powder is calcined to obtain a calcined powder.
  • the calcination is carried out under conditions under which raw material powders react with each other to obtain an alkali niobate having a predetermined composition.
  • One example is firing in air at a temperature of 700 to 1000° C. for 1 to 10 hours.
  • the calcined powder may be directly used to prepare a slurry, but it is preferable to pulverize the powder with a ball mill, a stamp mill, or the like prior to this, in order to obtain a smooth green sheet through a uniform slurry.
  • the subsequent operations may be performed on this powder without preparing the raw material mixed powder and preparing the calcined powder described above.
  • the calcined powder is mixed with a binder and a dispersion medium to prepare a slurry.
  • a binder a binder that can hold the shape of the green sheet to be described later and is volatilized without leaving carbon or the like by firing or a binder removal treatment prior thereto is used.
  • binders examples include polyvinyl alcohol-based, polyvinyl butyral-based, cellulose-based, urethane-based and vinyl acetate-based binders.
  • the amount of the binder used is also not particularly limited, but since it is removed in the post-process, it is preferable to reduce the amount as much as possible within the range where the desired moldability and shape retention can be obtained, in terms of reducing raw material costs. .
  • dispersion medium one that does not cause aggregation of the calcined powder and the binder and can be easily removed by volatilization or the like after forming the green sheet described later is used.
  • examples of usable dispersion media include water and alcoholic solvents.
  • Components that adjust the properties of the slurry such as dispersants, plasticizers and thickeners, may be added to the slurry.
  • various components to be contained in the piezoelectric ceramic layer may be added to the slurry.
  • alkaline earths such as calcium carbonate ( CaCO3 ), calcium metasilicate ( CaSiO3 ) and calcium orthosilicate ( Ca2SiO4 ), strontium carbonate ( SrCO3 ) and barium carbonate ( BaCO3 ).
  • silver-containing compounds such as silver oxide (AgO)
  • lithium-containing compounds such as lithium carbonate, lithium fluoride and lithium manganate
  • manganese-containing compounds such as manganese oxide, manganese carbonate, manganese acetate and lithium manganate
  • silicon-containing compounds such as silicon dioxide ( SiO2 ), calcium metasilicate ( CaSiO3 ) and calcium orthosilicate ( Ca2SiO4 ).
  • the method of mixing the calcined powder, binder, and dispersion medium is not particularly limited as long as each component is uniformly mixed while preventing impurities from being mixed.
  • One example is ball mill mixing.
  • the obtained slurry is molded to obtain a green sheet.
  • a commonly used method such as a doctor blade method can be adopted.
  • an internal electrode paste containing a metal with a silver content of 50% by mass or more and a manganese compound is printed on the obtained green sheets. Since the internal electrode paste contains a manganese compound, the lithium that did not fully dissolve into the perovskite structure during firing, which will be described later, reacts with the manganese compound in the internal electrode layer to generate lithium manganate, thereby creating a gap. part is formed.
  • the amount of the manganese compound added to the internal electrode paste should be 0.1% by mass or more and 3% by mass or less. preferably.
  • R1 and R2 are also affected by the composition of the piezoelectric ceramic layer, the amount of vehicle in the internal electrode paste, the printed film thickness, and the like. For this reason, the amount of the manganese compound added to the paste is controlled under the manufacturing conditions that are actually employed.
  • the value of 2 may be determined to be a predetermined value.
  • glass frit or powder having the same composition as the alkali niobate powder contained in the green sheet may be added in order to improve the adhesion strength to the piezoelectric ceramic layer after firing.
  • the internal electrode paste on the green sheet it may be printed with a space that will be the side margin when the laminated piezoelectric element is formed.
  • a predetermined number of green sheets printed with the internal electrode paste are laminated, and the green sheets are pressure-bonded to each other to produce a green body.
  • Lamination and pressure bonding may be carried out by a commonly used method, such as a method in which laminated green sheets are heated and pressed in the direction of lamination, and thermocompression bonding is performed by the action of a binder.
  • green sheets may be added to both ends in the lamination direction to serve as cover portions when the laminated piezoelectric element is formed.
  • the green sheet to be added may have the same composition as the green sheet on which the internal electrode paste is printed, or may have a different composition. From the viewpoint of uniforming the shrinkage rate during firing, the composition of the green sheets to be added is preferably the same as or similar to the composition of the green sheets printed with the internal electrode paste.
  • the binder may be removed from the green body prior to firing. In this case, removal of the binder and firing may be performed continuously using the same firing apparatus.
  • the conditions for removing and firing the binder may be appropriately set in consideration of the volatilization temperature and content of the binder, the sinterability of the alkali niobate, the heat resistance of the metal contained in the internal electrode paste, and the like.
  • An example of the conditions for removing the binder is an atmospheric atmosphere at a temperature of 300 to 500° C. for 5 to 20 hours. Examples of firing conditions include 800° C. to 1100° C. for 1 hour to 5 hours in an air atmosphere.
  • lithium that did not fully dissolve in the perovskite structure reacts with the manganese compound in the internal electrode layer to form lithium manganate, thereby forming gaps. be done.
  • silver in the internal electrode layers diffuses into the piezoelectric ceramic layers during firing, which may form gaps.
  • the green sheet forming the green body contains at least one alkaline earth metal element selected from the group consisting of calcium, strontium and barium, silver and alkaline earth elements diffused from the internal electrode layers during firing. Due to the interaction with the metal element, the obtained piezoelectric ceramic layer becomes dense with fine sintered particles.
  • the green sheet forming the green body when the green sheet forming the green body contains silicon, it can act as a sintering aid to lower the firing temperature.
  • silicon reacts with elements contained in the alkali niobate or separately added elements during firing to form Li 2 SiO 3 , Li 4 SiO 4 , K 3 Nb 3 O 6 Si 2 O 7 , KNbSi 2 .
  • a crystalline phase such as O 7 , K 3 LiSiO 4 or KLi 3 SiO 4 or an amorphous phase containing these elements, the volatilization of alkali metals and precipitation between sintered particles can be suppressed. .
  • connection conductor Next, a conductive paste is applied to the surfaces of the obtained laminated piezoelectric ceramics where the internal electrode layers are exposed, and then baked to form connection conductors.
  • Example 1 A calcined powder represented by the composition formula Li 0.06 Na 0.52 K 0.42 NbO 3 was prepared as an alkali niobate powder having a perovskite structure. With respect to 100 mol% of this calcined powder, 0.65 mol% Li2CO3 , 1.3 mol% SiO2 , 0.5 mol% CaCO3 and 0.5 mol% MnCO3 , and polyvinyl A butyral-based binder was added, respectively, and wet-ball-mill mixed. The resulting mixed slurry was molded with a doctor blade to obtain a green sheet with a thickness of 30 ⁇ m.
  • MnO manganese oxide
  • Example 2 In the same manner as in Example 1, except that the amount of manganese oxide (MnO) added to the Ag—Pd alloy paste was set to 0.5% by mass (Example 2) and 3% by mass (Example 3). Laminated piezoelectric elements according to Examples 2 and 3 were obtained.
  • MnO manganese oxide
  • Comparative example 1 A multilayer piezoelectric element according to Comparative Example 1 was obtained in the same manner as in Example 1, except that manganese oxide (MnO) was not added to the Ag—Pd alloy paste.
  • MnO manganese oxide
  • Comparative example 2 A laminated piezoelectric element according to Comparative Example 2 was obtained in the same manner as in Example 1, except that the amount of manganese oxide (MnO) added to the Ag—Pd alloy paste was 10% by mass.
  • MnO manganese oxide
  • the displacement performance d * 33 per unit voltage in one piezoelectric ceramic layer was calculated.
  • the obtained displacement performance d * 33 is shown in Table 1 as a ratio when the displacement performance d * 33 of the multilayer piezoelectric element according to Comparative Example 1 is set to 100.
  • the laminated piezoelectric element having the alkaline niobate-based piezoelectric ceramic layers includes gaps of a predetermined ratio and size in the internal electrode layers, and lithium manganate is contained in the gaps. It can be said that by using the material as a material, the deterioration of the electrical insulation during use is reduced and the displacement performance is also improved.
  • a laminated piezoelectric element using an alkali niobate-based piezoelectric ceramic less degraded in electrical insulation during use and to have a large displacement when a voltage is applied. can.
  • Such a laminated piezoelectric element is suitable for a haptic module that requires a large amount of displacement and a long life.
  • the laminated piezoelectric element does not contain lead as a component, it is useful in that it can reduce the load on the environment during its life cycle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

A multilayer piezoelectric element according to one aspect of the present invention is provided with piezoelectric ceramic layers which are mainly composed of an alkali niobate salt having a perovskite structure, and an internal electrode layer 20 which is arranged between the piezoelectric ceramic layers and has a conductive part 21 that has a silver content of 50% by mass or more, wherein: the area percentage (R1) occupied by the conductive part 21 is 75% to 95%; the internal electrode layer also has interstitial parts 22 in which the conductive part 21 is not present, and which have an average area percentage (R2) per one interstitial part of 5% or less; and at least one of the interstitial parts 22 contains lithium manganate 23.

Description

積層型圧電素子Laminated piezoelectric element
 本発明は、積層型圧電素子に関する。 The present invention relates to laminated piezoelectric elements.
 圧電素子は、圧電性を有するセラミックス(圧電セラミックス)を一対の電極で挟み込んだ構造の電子部品である。ここで、圧電性とは、電気エネルギーと機械エネルギーとを相互に変換可能な性質である。 A piezoelectric element is an electronic component with a structure in which a piezoelectric ceramic (piezoelectric ceramic) is sandwiched between a pair of electrodes. Here, piezoelectricity is a property capable of mutually converting electrical energy and mechanical energy.
 圧電素子は、前述した圧電セラミックスの性質を利用して、一対の電極間に印加された電圧を、圧力や振動といった機械エネルギーに変換することで、他の物体を動かしたり、自身を動作させたりすることができる。他方、圧電素子は、振動や圧力といった機械エネルギーを電気エネルギーに変換し、当該電気エネルギーを一対の電極間の電圧として取り出すこともできる。 Piezoelectric elements use the aforementioned properties of piezoelectric ceramics to convert the voltage applied between a pair of electrodes into mechanical energy such as pressure or vibration, thereby moving other objects or moving itself. can do. On the other hand, piezoelectric elements can convert mechanical energy such as vibration and pressure into electrical energy, and extract the electrical energy as voltage between a pair of electrodes.
 圧電素子の構造としては、圧電セラミックスの表面にのみ電極を形成したものの他、積層型圧電素子と呼ばれる、複数の圧電セラミックス層と内部電極層とを交互に積層したものが知られている。積層型圧電素子は、圧電セラミックス層の積層方向に大きな変位が得られるため、例えばアクチュエータ等に利用可能である。積層型圧電素子は、典型的には、圧電セラミックス層と内部電極層とを同時に焼成することにより製造される。 As for the structure of the piezoelectric element, in addition to the one in which electrodes are formed only on the surface of the piezoelectric ceramic, the one called laminated piezoelectric element in which multiple piezoelectric ceramic layers and internal electrode layers are alternately laminated is known. Laminated piezoelectric elements can be used, for example, as actuators because they can provide a large displacement in the lamination direction of the piezoelectric ceramic layers. Laminated piezoelectric elements are typically manufactured by simultaneously firing piezoelectric ceramic layers and internal electrode layers.
 こうした圧電素子を構成する圧電セラミックスとしては、チタン酸ジルコン酸鉛(Pb(Zr,Ti)O、PZT)及びその固溶体を主成分とするものが広く用いられている。PZT系の圧電セラミックスは、高いキュリー温度を有することから、高温環境下でも使用可能な圧電素子を得ることができると共に、高い電気機械結合係数を有することから、電気的エネルギーと機械的エネルギーとを効率良く変換可能な圧電素子を得ることができるという利点を有する。また、適切な組成を選択することにより、1000℃を下回る温度で焼成できるため、圧電素子の製造コストを低減できる利点も有する。特に、前述した積層型圧電素子では、圧電セラミックスと同時焼成される内部電極に、銀の含有割合の多い、換言すれば白金やパラジウム等の高価な材料の含有割合の少ない、低融点の材料を使用できるようになることが、大きなコスト低減効果を生む。 As piezoelectric ceramics constituting such piezoelectric elements, those mainly composed of lead zirconate titanate (Pb(Zr, Ti)O 3 , PZT) and their solid solutions are widely used. Since PZT-based piezoelectric ceramics have a high Curie temperature, it is possible to obtain a piezoelectric element that can be used even in a high-temperature environment. It has the advantage that a piezoelectric element that can be converted efficiently can be obtained. Moreover, by selecting an appropriate composition, firing can be performed at a temperature below 1000° C., which has the advantage of reducing the manufacturing cost of the piezoelectric element. In particular, in the laminated piezoelectric element described above, the internal electrodes co-fired with the piezoelectric ceramics are made of a low-melting-point material that contains a large proportion of silver, in other words, contains a small proportion of expensive materials such as platinum and palladium. Being able to use it will bring significant cost savings.
 しかし、PZT系の圧電セラミックスは、有害物質である鉛を含むことが問題視されており、これに代わる、鉛を含まない圧電磁器組成物が求められている。 However, PZT-based piezoelectric ceramics contain lead, which is a hazardous substance, which is regarded as a problem.
 現在まで、鉛を含まない圧電セラミックスとして、アルカリニオブ酸((Li,Na,K)NbO)系、チタン酸ビスマスナトリウム((Bi0.5Na0.5)TiO、BNT)系、ビスマス層状化合物系及びタングステンブロンズ系等の種々の組成を有するものが報告されている。これらのうち、アルカリニオブ酸系の圧電セラミックスは、キュリー点が高く、電気機械結合係数も比較的大きいことから、PZT系に代わるものとして注目されている(特許文献1)。 Alkali niobate ((Li, Na, K)NbO 3 ) system, bismuth sodium titanate ((Bi 0.5 Na 0.5 )TiO 3 , BNT) system, bismuth Various compositions have been reported, such as layered compound systems and tungsten bronze systems. Among these, alkaline niobate-based piezoelectric ceramics have a high Curie point and a relatively large electromechanical coupling coefficient, and are therefore attracting attention as alternatives to PZT-based ceramics (Patent Document 1).
 このアルカリニオブ酸系の圧電セラミックスを低温焼成化して、銀の含有割合の多い内部電極との一体焼成を可能とし、積層型圧電素子の製造コストを削減する試みがなされている。例えば、特許文献2では、アルカリニオブ酸系の圧電セラミックスの組成を、アルカリ土類金属と銀とを含有するものとすることで、Ag0.7Pd0.3の内部電極と一体焼成できたことが報告されている。また、特許文献2では、得られた積層型圧電素子が、高い電気抵抗率を示すと共に、電圧を印可した際に大きな変位量を示したことも報告されている。 Attempts have been made to reduce the manufacturing cost of laminated piezoelectric elements by firing the alkaline niobate-based piezoelectric ceramics at a low temperature, enabling them to be fired together with internal electrodes containing a large amount of silver. For example, in Patent Document 2, it is reported that by setting the composition of alkaline niobate-based piezoelectric ceramics to contain an alkaline earth metal and silver, it was possible to sinter integrally with internal electrodes of Ag0.7Pd0.3. It is In addition, Patent Document 2 reports that the obtained laminated piezoelectric element exhibited high electrical resistivity and exhibited a large amount of displacement when a voltage was applied.
 他方、積層型圧電素子では、内部電極層が圧電セラミックスの変位を拘束することで、素子の変位量が抑制される問題が報告されている(特許文献3)。特許文献3では、積層型圧電素子の内部電極層に、セラミックス粉末が充填されたセラミック部と空隙部とからなる非導電部を特定の比率で形成することで、内部電極層による変位の阻害が抑制されたことが報告されている。 On the other hand, in the laminated piezoelectric element, it has been reported that the internal electrode layers constrain the displacement of the piezoelectric ceramics, thereby suppressing the amount of displacement of the element (Patent Document 3). In Patent Document 3, a non-conductive portion composed of a ceramic portion filled with ceramic powder and a void portion is formed at a specific ratio in an internal electrode layer of a laminated piezoelectric element, thereby preventing displacement by the internal electrode layer. reported to be suppressed.
国際公開第2007/094115号WO2007/094115 特開2017-163055号公報JP 2017-163055 A 国際公開第2006/068245号WO2006/068245
 特許文献2には、上述のアルカリニオブ酸系の圧電セラミックスに、焼結性の向上に寄与する成分であるLiO及びSiOや、電気抵抗の向上に寄与する成分であるMnOを含有させてもよい旨の記載がある。しかし、これらの成分の含有量によっては、導電性を有するLiNbOや、アルカリニオブ酸塩に比べて電気抵抗率の低いマンガン酸リチウムが圧電セラミックス中に多量に生成し、素子の使用中に電気的絶縁性の低下が起こることで、素子の寿命が短くなる場合があることが判明した。 In Patent Document 2, Li 2 O and SiO 2 , which are components that contribute to improving the sinterability, and MnO, which is a component that contributes to improving the electrical resistance, are added to the above-described alkaline niobate-based piezoelectric ceramics. There is a statement to the effect that it is acceptable. However, depending on the content of these components , Li3NbO4 , which has conductivity, and lithium manganate, which has a lower electrical resistivity than alkali niobates, are generated in large amounts in the piezoelectric ceramics, and during use of the element, It has been found that the life of the element may be shortened due to the deterioration of the electrical insulation.
 また、特許文献2に記載された積層型圧電素子は、上述のとおり、電圧を印可した際に大きな変位量を示すものではあるが、特許文献3にて報告されているように、内部電極層によって圧電セラミックス層の変位が拘束されている可能性がある。 As described above, the laminated piezoelectric element described in Patent Document 2 exhibits a large amount of displacement when a voltage is applied. may restrain the displacement of the piezoelectric ceramic layer.
 他方、特許文献3には、圧電素子の使用中の電気絶縁性の低下に起因した素子寿命の短縮を防止することについては記載されていない。 On the other hand, Patent Document 3 does not describe prevention of shortening of the life of the piezoelectric element due to deterioration of electrical insulation during use.
 そこで本発明は、構成成分に鉛を含まず、使用中の電気的絶縁性の低下が小さく、電圧を印可した際の変位量が大きい積層型圧電素子を提供することを課題とする。 Therefore, an object of the present invention is to provide a multilayer piezoelectric element that does not contain lead as a constituent component, has a small decrease in electrical insulation during use, and has a large amount of displacement when a voltage is applied.
 本発明者は、前記課題を解決するために種々の検討を行ったところ、積層型圧電素子を、アルカリニオブ酸塩を主成分とする圧電セラミックス層、及び銀を主成分とする導電部を特定の面積割合で有すると共に、前記導電部が存在しない間隙部の少なくとも一部にマンガン酸リチウムを含有する内部電極層を備えるものとすることで、当該課題を解決できることを見出し、本発明を完成するに至った。 The present inventor conducted various studies in order to solve the above problems, and found that the laminated piezoelectric element is composed of a piezoelectric ceramic layer containing alkali niobate as a main component and a conductive portion containing silver as a main component. and having an internal electrode layer containing lithium manganate in at least a part of the gap where the conductive portion does not exist. reached.
 すなわち、前記課題を解決するための本発明の一側面は、ペロブスカイト型構造を有するアルカリニオブ酸塩を主成分とする圧電セラミックス層、及び前記圧電セラミックス層間に配置され、銀の含有量が50質量%以上である導電部を有し、前記導電部の占める面積百分率(R)が75%以上95%以下であり、前記導電部が存在しない間隙部を、1箇所あたりの平均面積百分率(R)が5%以下となる大きさで有し、かつ前記間隙部の少なくとも1箇所にマンガン酸リチウムを含有する内部電極層を備える積層型圧電素子である。 That is, one aspect of the present invention for solving the above problems is a piezoelectric ceramic layer mainly composed of alkali niobate having a perovskite structure, and a piezoelectric ceramic layer disposed between the piezoelectric ceramic layers and having a silver content of 50 mass. % or more, the area percentage (R 1 ) occupied by the conductive part is 75% or more and 95% or less, and the gap part where the conductive part does not exist is the average area percentage (R 2 ) is 5% or less, and an internal electrode layer containing lithium manganate is provided in at least one of the gaps.
 本発明によれば、構成成分に鉛を含まず、使用中の電気的絶縁性の低下が小さく、かつ電圧を印可した際の変位量が大きい積層型圧電素子を提供することができる。 According to the present invention, it is possible to provide a multilayer piezoelectric element that does not contain lead as a component, has a small decrease in electrical insulation during use, and has a large amount of displacement when a voltage is applied.
本発明の一側面に係る積層型圧電素子の構造を示す断面図(X-Z面)A cross-sectional view (XZ plane) showing the structure of a laminated piezoelectric element according to one aspect of the present invention. 本発明の一側面に係る積層型圧電素子の構造を示す断面図(Y-Z面)A cross-sectional view (YZ plane) showing the structure of a laminated piezoelectric element according to one aspect of the present invention. ペロブスカイト型構造の単位格子モデルを示す斜視図A perspective view showing a unit cell model of a perovskite structure 本発明の一側面に係る積層型圧電素子中の内部電極層の状態を示す斜視図FIG. 2 is a perspective view showing the state of internal electrode layers in the laminated piezoelectric element according to one aspect of the present invention; 本発明の一側面に係る積層型圧電素子において、内部電極層の状態を示すパラメータR、R、R及びRの算出に必要な各部の寸法の説明図FIG. 4 is an explanatory diagram of the dimensions of each part necessary for calculating parameters R 1 , R 2 , R 3 and R 4 indicating the state of the internal electrode layers in the laminated piezoelectric element according to one aspect of the present invention;
 以下、図面を参照しながら、本発明の構成及び作用効果について、技術的思想を交えて説明する。但し、作用機構については推定を含んでおり、その正否は、本発明を制限するものではない。 Hereinafter, the configuration and effects of the present invention will be described with technical ideas, with reference to the drawings. However, the mechanism of action is presumed, and whether it is correct or not does not limit the present invention.
[積層型圧電素子]
 本発明の一側面に係る積層型圧電素子100(以下、単に「本側面」と記載することがある。)は、図1及び図2にその断面図を模式的に示すように、圧電セラミックス層10、該圧電セラミックス層10の間に配置された内部電極層20及び該内部電極層20を1層おきに電気的に接続する接続導体30を備える。なお、図1及び図2に示される内部電極層20及び図1に示される接続導体30のうち、同じアルファベット(「a」又は「b」)が付されたものは、同一極性(「+」又は「-」)を有するものを意味する。また、図1に示される積層型圧電素子100では、その表面に接続導体30が形成されているが、接続導体30は、積層型圧電素子100の内部に、圧電セラミックス層10を貫通して形成されていてもよい。
[Laminated piezoelectric element]
A multilayer piezoelectric element 100 according to one aspect of the present invention (hereinafter sometimes simply referred to as "this aspect") has piezoelectric ceramic layers, as schematically shown in cross-sectional views in FIGS. 10, internal electrode layers 20 arranged between the piezoelectric ceramic layers 10 and connection conductors 30 electrically connecting the internal electrode layers 20 every other layer. Among the internal electrode layers 20 shown in FIGS. 1 and 2 and the connection conductors 30 shown in FIG. or "-"). 1, the connection conductor 30 is formed on the surface of the laminated piezoelectric element 100. The connection conductor 30 is formed inside the laminated piezoelectric element 100 so as to penetrate the piezoelectric ceramic layer 10. may have been
 本側面には、図2に示すように、Y軸方向両側面と内部電極層20との間に位置するサイドマージン部40、及びZ軸方向上下面に位置するカバー部50が形成されていてもよい。また、本側面は、接続導体30と駆動回路とを電気的に接続する外部電極(図示せず)が表面に形成されていてもよい。 As shown in FIG. 2, this side surface is provided with side margin portions 40 located between the Y-axis direction side surfaces and the internal electrode layers 20, and cover portions 50 located on the Z-axis direction upper and lower surfaces. good too. In addition, an external electrode (not shown) that electrically connects the connection conductor 30 and the drive circuit may be formed on the surface of this side surface.
 以下、積層型圧電素子100を構成する各部分について詳述する。 Each part constituting the multilayer piezoelectric element 100 will be described in detail below.
(圧電セラミックス層)
 圧電セラミックス層10は、ペロブスカイト型構造を有するアルカリニオブ酸塩を主成分とする。
(Piezoelectric ceramic layer)
The piezoelectric ceramic layer 10 is mainly composed of alkali niobate having a perovskite structure.
 主成分であるアルカリニオブ酸塩は、構成元素として、リチウム(Li)、ナトリウム(Na)及びカリウム(K)からなる群から選択される少なくとも1種のアルカリ金属元素、並びにニオブ(Nb)を含有する、ペロブスカイト型構造を有する酸化物である。ここで、ペロブスカイト型構造は、図3に示すように、単位格子の頂点に位置するAサイト、単位格子の面心に位置するOサイト、及び前記Oサイトを頂点とする八面体内に位置するBサイトを有する結晶構造である。本実施形態におけるアルカリニオブ酸塩では、アルカリ金属イオンがAサイトに、ニオブイオンがBサイトに、酸化物イオンがOサイトに、それぞれ位置する。この他に、各サイトには、前述した以外の種々のイオンを含んでいてもよい。 The alkali niobate, which is the main component, contains, as constituent elements, at least one alkali metal element selected from the group consisting of lithium (Li), sodium (Na) and potassium (K), and niobium (Nb). It is an oxide having a perovskite structure. Here, as shown in FIG. 3, the perovskite structure has an A site located at the vertex of the unit cell, an O site located at the face center of the unit cell, and an octahedron having the O site as a vertex. It is a crystal structure having a B site. In the alkali niobate according to the present embodiment, alkali metal ions are located at the A site, niobium ions are located at the B site, and oxide ions are located at the O site. In addition, each site may contain various ions other than those described above.
 ここで、圧電セラミックス層10が、ペロブスカイト型構造を有するアルカリニオブ酸塩を主成分とすることの確認は、以下の手順で行う。
 まず、積層型圧電素子100の表面に露出させた圧電セラミックス層10、又は積層型圧電素子100を粉砕して得た粉末について、Cu-Kα線を用いたX線回折(XRD)装置で回折線プロファイルを測定する。積層型圧電素子100の表面に圧電セラミックス層10を露出させる方法は特に限定されず、圧電素子を切断ないし研磨する方法等を採用できる。また、積層型圧電素子100の粉砕手段も特に限定されず、ハンドミル(乳鉢・乳棒)等を利用できる。
 次いで、得られた回折線プロファイル中の、ペロブスカイト型構造由来のプロファイルにおける最強回折線強度に対する、他の構造由来の回折プロファイルにおける最強回折線強度の割合が10%以下となったことをもって、圧電セラミックス層10がペロブスカイト型構造を有する化合物を主成分とするものと判定する。このとき、積層型圧電素子100を粉砕した粉末についてXRD測定を行った場合には、内部電極層20を構成する金属のピークも検出されるため、これを除外した上で、前述した回折線強度の比較を行う。
 次いで、ペロブスカイト型構造を有する化合物を主成分とすると判定された圧電セラミックス層10又はこれから調製した粉末について、高周波誘導結合プラズマ(ICP)発光分光分析、イオンクロマトグラフィー装置ないしは、蛍光X線(XRF)分析装置によって、含有する各元素の比率を測定する。測定の結果、モル%(又は原子%)で表したアルカリ金属元素の合計含有量及びニオブの含有量の両者が、他の元素の含有量よりも多くなったことをもって、主成分であるペロブスカイト構造を有する化合物がアルカリニオブ酸塩であると判定する。
Here, confirmation that the piezoelectric ceramic layer 10 is mainly composed of alkali niobate having a perovskite structure is performed by the following procedure.
First, regarding the piezoelectric ceramic layer 10 exposed on the surface of the laminated piezoelectric element 100 or the powder obtained by pulverizing the laminated piezoelectric element 100, a diffraction line was obtained by an X-ray diffraction (XRD) apparatus using Cu—Kα rays. Measure your profile. The method of exposing the piezoelectric ceramic layer 10 on the surface of the laminated piezoelectric element 100 is not particularly limited, and a method of cutting or polishing the piezoelectric element can be employed. Moreover, the means for pulverizing the laminated piezoelectric element 100 is not particularly limited, and a hand mill (mortar/pestle) or the like can be used.
Next, when the ratio of the strongest diffraction line intensity in the diffraction profile derived from the other structure to the strongest diffraction line intensity in the profile derived from the perovskite structure in the obtained diffraction line profile is 10% or less, the piezoelectric ceramics It is determined that the layer 10 is mainly composed of a compound having a perovskite structure. At this time, when the XRD measurement is performed on the powder obtained by pulverizing the laminated piezoelectric element 100, the peak of the metal constituting the internal electrode layer 20 is also detected. comparison.
Next, for the piezoelectric ceramic layer 10 determined to be mainly composed of a compound having a perovskite structure or the powder prepared therefrom, high-frequency inductively coupled plasma (ICP) emission spectrometry, ion chromatography, or X-ray fluorescence (XRF) An analyzer measures the ratio of each element contained. As a result of the measurement, both the total content of alkali metal elements and the content of niobium expressed in mol % (or atomic %) were greater than the contents of other elements, indicating that the perovskite structure, which is the main component, is determined to be an alkali niobate.
 圧電セラミックス層10は、ペロブスカイト型構造を有するアルカリニオブ酸塩を主成分とするものであれば、他の成分を含有してもよい。こうした他の成分は、上述したペロブスカイト構造のAサイト、Bサイト及びOサイトのいずれかに固溶していてもよく、主成分の焼結粒子間等に異相として存在してもよい。 The piezoelectric ceramic layer 10 may contain other components as long as the main component is alkali niobate having a perovskite structure. These other components may be dissolved in any of the A site, B site, and O site of the perovskite structure described above, or may exist as a different phase between sintered particles of the main component.
 例えば、圧電セラミックス層10は、カルシウム(Ca)、ストロンチウム(Sr)及びバリウム(Ba)からなる群から選択される少なくとも1種のアルカリ土類金属元素、並びに銀(Ag)をさらに含有してもよい。これにより、圧電セラミックス層10が、焼結粒子径の小さい緻密なものとなり、優れた圧電性を発現する。この点からは、アルカリ土類金属元素の合計含有量は、主成分であるアルカリニオブ酸塩のBサイト中の元素(実際にはイオン状態であることが多い)の含有量を100モル%としたときに0.2モル%を超えることが好ましく、0.3モル%以上とすることがより好ましく、0.5モル%以上とすることがさらに好ましい。また、同様の理由により、銀の含有量は、前記Bサイト中の元素100モル%に対して0.5モル%を超えることが好ましく、0.7モル%以上とすることがより好ましく、1.0モル%以上とすることがさらに好ましい。他方、圧電セラミックス層10の電気的絶縁性をさらに向上させて、高電界下での使用を可能にすると共に、素子寿命を長くする点からは、前記アルカリ土類金属元素の合計含有量は、5.0モル%以下とすることが好ましく、3.0モル%以下とすることがより好ましく、1.0モル%以下とすることがさらに好ましい。また、同様の理由により、前記銀の含有量は、5.0モル%以下とすることが好ましく、4.0モル%以下とすることがより好ましく、3.0モル%以下とすることがさらに好ましい。また、前述した理由から、前記アルカリ土類金属元素の合計含有量及び銀の含有量は、前記Bサイト中の元素100モル%に対して、アルカリ土類金属元素の合計含有量を0.2モル%を超え5.0モル%以下とし、銀を0.5モル%を超え5.0モル%以下とすることが好ましく、アルカリ土類金属元素の合計含有量を0.3モル%以上3.0モル%以下とし、銀を0.7モル%以上4.0モル%以下とすることがより好ましく、アルカリ土類金属元素の合計含有量を0.5モル%以上1.0モル%以下とし、銀を1.0モル%以上3.0モル%以下とすることがさらに好ましい。 For example, the piezoelectric ceramic layer 10 may further contain at least one alkaline earth metal element selected from the group consisting of calcium (Ca), strontium (Sr) and barium (Ba), and silver (Ag). good. As a result, the piezoelectric ceramic layer 10 becomes dense with a small sintered particle size, and exhibits excellent piezoelectricity. From this point of view, the total content of alkaline earth metal elements is 100 mol % of the content of the elements in the B site of the alkali niobate, which is the main component (often in an ionic state). It is preferably more than 0.2 mol %, more preferably 0.3 mol % or more, even more preferably 0.5 mol % or more. For the same reason, the content of silver is preferably more than 0.5 mol %, more preferably 0.7 mol % or more, relative to 100 mol % of the elements in the B site. 0 mol % or more is more preferable. On the other hand, from the viewpoint of further improving the electrical insulation of the piezoelectric ceramic layer 10 to enable use under a high electric field and prolonging the device life, the total content of the alkaline earth metal elements is It is preferably 5.0 mol % or less, more preferably 3.0 mol % or less, even more preferably 1.0 mol % or less. For the same reason, the silver content is preferably 5.0 mol % or less, more preferably 4.0 mol % or less, and further preferably 3.0 mol % or less. preferable. In addition, for the reason described above, the total content of the alkaline earth metal elements and the content of silver are set so that the total content of the alkaline earth metal elements is 0.2 per 100 mol % of the elements in the B site. It is more than 5.0 mol % and less than or equal to 5.0 mol %, preferably more than 0.5 mol % and less than or equal to 5.0 mol % of silver, and the total content of alkaline earth metal elements is 0.3 mol % or more. 0 mol % or less, silver is more preferably 0.7 mol % or more and 4.0 mol % or less, and the total content of alkaline earth metal elements is 0.5 mol % or more and 1.0 mol % or less. and more preferably 1.0 mol % or more and 3.0 mol % or less of silver.
 また、圧電セラミックス層10は、マンガン(Mn)をさらに含有してもよい。これにより、圧電セラミックス層10の電気的絶縁性が向上し、長寿命の積層型圧電素子100が得られる。この点からは、マンガンの含有量は、主成分であるアルカリニオブ酸塩のBサイト中の元素(実際にはイオン状態であることが多い)の含有量を100モル%としたときに0.2モル%以上とすることが好ましく、0.3モル%以上とすることがより好ましく、0.5モル%以上とすることがさらに好ましい。他方、圧電セラミックス層10を圧電特性に優れるものとする点からは、マンガンの含有量は、前記Bサイト中の元素100モル%に対して2.0モル%以下とすることが好ましく、1.5モル%以下とすることがより好ましく、1.0モル%以下とすることがさらに好ましい。また、前述した理由から、マンガンの含有量は、前記Bサイト中の元素100モル%に対して、0.2モル%以上2.0モル%以下とすることが好ましく、0.3モル%以上1.5モル%以下とすることがより好ましく、0.5モル%以上1.0モル%以下とすることがさらに好ましい。 In addition, the piezoelectric ceramic layer 10 may further contain manganese (Mn). As a result, the electrical insulation of the piezoelectric ceramic layer 10 is improved, and the laminated piezoelectric element 100 with a long life can be obtained. From this point of view, the content of manganese should be 0.00% when the content of the element in the B site of the alkali niobate, which is the main component (actually, it is often in an ionic state), is 100 mol %. It is preferably 2 mol % or more, more preferably 0.3 mol % or more, and even more preferably 0.5 mol % or more. On the other hand, from the viewpoint of making the piezoelectric ceramic layer 10 excellent in piezoelectric characteristics, the content of manganese is preferably 2.0 mol % or less with respect to 100 mol % of the elements in the B site. It is more preferably 5 mol % or less, and even more preferably 1.0 mol % or less. For the reason described above, the manganese content is preferably 0.2 mol % or more and 2.0 mol % or less, and 0.3 mol % or more, relative to 100 mol % of the elements in the B site. It is more preferably 1.5 mol % or less, and even more preferably 0.5 mol % or more and 1.0 mol % or less.
 また、圧電セラミックス層10は、ケイ素(Si)をさらに含有してもよい。これにより、圧電セラミックス層10が緻密化すると共に、上記主成分中に固溶しきれなかった余剰のLiとケイ素とが反応してLiSiOやLiSiO等の化合物を生成することで、LiNbOをはじめとする導電性化合物の生成を抑制できる。この点からは、ケイ素の含有量は、主成分であるアルカリニオブ酸塩のBサイト中の元素(実際にはイオン状態であることが多い)の含有量を100モル%としたときに0.1モル%以上とすることが好ましく、0.5モル%以上とすることがより好ましく、1.0モル%以上とすることがさらに好ましい。他方、圧電セラミックス層10中に含まれる、圧電性を有さない異相の量を抑制する点からは、ケイ素の含有量は、前記Bサイト中の元素100モル%に対して3.0モル%以下とすることが好ましく、2.5モル%以下とすることがより好ましく、2.0モル%以下とすることがさらに好ましい。また、前述した理由から、ケイ素の含有量は、前記Bサイト中の元素100モル%に対して0.1モル%以上3.0モル%以下とすることが好ましく、0.5モル%以上2.5モル%以下とすることがより好ましく、1.0モル%以上2.0モル%以下とすることがさらに好ましい。 Moreover, the piezoelectric ceramic layer 10 may further contain silicon (Si). As a result, the piezoelectric ceramic layer 10 is densified, and excess Li that has not completely dissolved in the main component reacts with silicon to form compounds such as Li 2 SiO 3 and Li 4 SiO 4 . can suppress the formation of conductive compounds such as Li 3 NbO 4 . From this point of view, the content of silicon should be 0.00% when the content of the element in the B site of the alkali niobate, which is the main component (actually, it is often in an ionic state), is 100 mol %. It is preferably 1 mol % or more, more preferably 0.5 mol % or more, and even more preferably 1.0 mol % or more. On the other hand, from the viewpoint of suppressing the amount of non-piezoelectric heterogeneous phases contained in the piezoelectric ceramic layer 10, the content of silicon is 3.0 mol % with respect to 100 mol % of the elements in the B site. or less, more preferably 2.5 mol % or less, and even more preferably 2.0 mol % or less. For the reason described above, the content of silicon is preferably 0.1 mol % or more and 3.0 mol % or less with respect to 100 mol % of the elements in the B site, and 0.5 mol % or more. 0.5 mol % or less is more preferable, and 1.0 mol % or more and 2.0 mol % or less is even more preferable.
 これらの成分の他、圧電セラミックス層10は、必要に応じて、第一遷移元素であるSc、Ti、V、Cr、Fe、Co、Ni、Cu及びZnから選択される少なくとも1つを含んでもよい。これらの元素を適当な量で含むことで、積層型圧電素子100の焼成温度の調整や、粒成長の制御や、高電界における長寿命化が可能である。 In addition to these components, the piezoelectric ceramic layer 10 may optionally contain at least one selected from first transition elements such as Sc, Ti, V, Cr, Fe, Co, Ni, Cu and Zn. good. By including these elements in appropriate amounts, it is possible to adjust the firing temperature of the laminated piezoelectric element 100, control grain growth, and extend the life in a high electric field.
 また、圧電セラミックス層10は、必要に応じて、第二遷移元素であるY、Mo、Ru、Rh及びPdから選択される少なくとも1つを含んでもよい。これらの元素を適当な量で含むことで、積層型圧電素子100の焼成温度の調整や、粒成長の制御や、高電界における長寿命化が可能である。 In addition, the piezoelectric ceramic layer 10 may contain at least one selected from Y, Mo, Ru, Rh and Pd, which are second transition elements, if necessary. By including these elements in appropriate amounts, it is possible to adjust the firing temperature of the laminated piezoelectric element 100, control grain growth, and extend the life in a high electric field.
 さらに、圧電セラミックス層10は、必要に応じて、第三遷移元素であるLa、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Hf、W、Re、Os、Ir、Pt及びAuから選択される少なくとも1つを含んでもよい。これらの元素を適当な量で含むことで、積層型圧電素子100の焼成温度の調整や、粒成長の制御や、高電界における長寿命化が可能である。 Further, the piezoelectric ceramic layer 10 may include third transition elements such as La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, and W, if necessary. , Re, Os, Ir, Pt and Au. By including these elements in appropriate amounts, it is possible to adjust the firing temperature of the laminated piezoelectric element 100, control grain growth, and extend the life in a high electric field.
 勿論、本実施形態においては、圧電セラミックス層10に、前述の第一遷移元素、第二遷移元素、及び第三遷移元素のうちの複数種類を含有させることもできる。 Of course, in the present embodiment, the piezoelectric ceramic layer 10 can contain a plurality of types of the above-described first transition element, second transition element, and third transition element.
 前記アルカリニオブ酸塩は、優れた圧電特性を発現させる点、及び高電界下で使用した際に長寿命の素子を得る点からは、下記組成式(1)で表されるものであることが好ましい。
 
  (AgM2(K1-w-xNaLi1-u-v
         (SbTaNb1-y-z)O3       …(1)
 
 ただし、式中のM2は、カルシウム(Ca)、ストロンチウム(Sr)及びバリウム(Ba)からなる群から選択される少なくとも1種のアルカリ土類金属元素を示す。また、u、v、w、x、y、z及びaはそれぞれ、0.005<u≦0.05、0.002<v≦0.05、0.007<u+v≦0.1、0≦w≦1、0.02<x≦0.1、0.02<w+x≦1、0≦y≦0.1、0≦z≦0.4、1<a≦1.1で表される各不等式を満たす数値である。
The alkali niobate is represented by the following composition formula (1) from the viewpoint of exhibiting excellent piezoelectric properties and obtaining a long-life element when used under a high electric field. preferable.

(Ag u M2 v (K 1-w-x Na w Li x ) 1-u-v ) a
(Sb y Ta z Nb 1-yz )O 3 (1)

However, M2 in the formula represents at least one alkaline earth metal element selected from the group consisting of calcium (Ca), strontium (Sr) and barium (Ba). Further, u, v, w, x, y, z and a are respectively 0.005<u≦0.05, 0.002<v≦0.05, 0.007<u+v≦0.1, 0≦ w≤1, 0.02<x≤0.1, 0.02<w+x≤1, 0≤y≤0.1, 0≤z≤0.4, 1<a≤1.1 A numerical value that satisfies an inequality.
 ここで、アルカリニオブ酸塩が上記組成式(1)で表されるものであることは、以下の手順で確認する。
 まず、上述した手順により、ペロブスカイト型構造を有するアルカリニオブ酸塩を主成分とすることを確認した圧電セラミックス層10又はこれから調製した粉末について、高周波誘導結合プラズマ(ICP)発光分光分析、イオンクロマトグラフィー装置ないしは、蛍光X線(XRF)分析装置によって、銀(Ag)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)、カリウム(K)、ナトリウム(Na)、リチウム(Li)、アンチモン(Sb)、タンタル(Ta)及びニオブ(Nb)の含有量を測定する。
 次いで、アンチモン、タンタル及びニオブの合計モル数を算出し、これに対する前記各元素のモル数の割合を算出する。
 そして、得られた前記各元素の割合が上記組成式(1)の範囲内となったことをもって、アルカリニオブ酸塩が上記組成式(1)で表されるものと判定する。
Here, it is confirmed by the following procedure that the alkali niobate is represented by the above compositional formula (1).
First, the piezoelectric ceramic layer 10, which has been confirmed to contain an alkali niobate having a perovskite structure as a main component, or a powder prepared therefrom, is subjected to high-frequency inductively coupled plasma (ICP) emission spectroscopy and ion chromatography. Equipment or X-ray fluorescence (XRF) analyzer, silver (Ag), calcium (Ca), strontium (Sr), barium (Ba), potassium (K), sodium (Na), lithium (Li), antimony ( Sb), tantalum (Ta) and niobium (Nb) contents are measured.
Next, the total number of moles of antimony, tantalum and niobium is calculated, and the ratio of the number of moles of each element to this is calculated.
When the obtained ratio of each element is within the range of the above composition formula (1), it is determined that the alkali niobate is represented by the above composition formula (1).
(内部電極層)
 内部電極層20は、図4に模式的に示すように、銀の含有量が50質量%以上である導電部21と、導電部21が存在しない間隙部22とを有し、導電部21の占める割合が、面積百分率で75%以上95%以下であり、間隙部22の大きさが、1箇所あたりの平均面積百分率で5%以下であり、かつ間隙部22の少なくとも1箇所にマンガン酸リチウム23を含有する。
(Internal electrode layer)
The internal electrode layer 20 has, as schematically shown in FIG. The area percentage is 75% or more and 95% or less, the size of the gap 22 is 5% or less in average area percentage per location, and lithium manganate is present in at least one location of the gap 22 23.
 内部電極層20は、銀の含有量が50質量%以上の金属で構成される導電部21を有する。導電部21における銀の含有量が50質量%以上であることで、白金やパラジウム等の高価な金属の使用量を減らして、積層型圧電素子100の材料コストを抑えることができる。また、導電性に優れる銀の割合が増加することから、電気抵抗率が減少し、積層型圧電素子100を駆動する際の電気的損失が低減される。銀の含有量が50質量%以上の金属としては、銀-パラジウム合金が例示される。導電部21中の銀の含有量は、70質量%以上とすることが好ましく、80質量%以上とすることがより好ましい。 The internal electrode layer 20 has a conductive portion 21 made of metal with a silver content of 50% by mass or more. Since the content of silver in the conductive portion 21 is 50% by mass or more, the amount of expensive metals such as platinum and palladium used can be reduced, and the material cost of the laminated piezoelectric element 100 can be suppressed. In addition, since the ratio of silver, which is excellent in conductivity, increases, the electrical resistivity decreases, and the electrical loss when driving the multilayer piezoelectric element 100 is reduced. A silver-palladium alloy is exemplified as a metal having a silver content of 50% by mass or more. The content of silver in the conductive portion 21 is preferably 70% by mass or more, more preferably 80% by mass or more.
 内部電極層20における銀の含有量は、各種測定機器を用いて内部電極層20の元素分析を行い、検出された全元素に対する銀の質量割合を算出することで確認できる。使用する測定機器としては、走査型電子顕微鏡(Scanning Electron Microscope、SEM)又は透過型電子顕微鏡(Transmission Electron Microscope、TEM)に装着したエネルギー分散型X線分光器(Energy Dispersive X-ray Spectrometer、EDS)又は波長分散型X線分光器(Wavelength Dispersive X-ray Spectrometer、WDS)、電子線マイクロアナライザー(Electron Probe Micro Analyzer、EPMA)及びレーザー照射型誘導結合プラズマ質量分析装置(LA-ICP-MS)等が例示される。 The content of silver in the internal electrode layer 20 can be confirmed by performing elemental analysis of the internal electrode layer 20 using various measuring instruments and calculating the mass ratio of silver to all the detected elements. The measuring instrument used is a scanning electron microscope (SEM) or an energy dispersive X-ray spectrometer (EDS) attached to a transmission electron microscope (TEM). Or wavelength dispersive X-ray spectrometer (Wavelength Dispersive X-ray Spectrometer, WDS), electron probe microanalyzer (Electron Probe Micro Analyzer, EPMA) and laser irradiation type inductively coupled plasma mass spectrometer (LA-ICP-MS), etc. exemplified.
 内部電極層20に占める導電部21の割合は、面積百分率で75%以上95%以下とする。前記面積百分率(以下、単に「R」と表記することがある)を75%以上とすることで、積層型圧電素子100を駆動する際に、圧電セラミックス層10に十分な電圧を印加し、大きな変位を得ることができる。この点からは、Rは80%以上とすることが好ましい。他方、Rを95%以下とすることで、圧電セラミックス層10が変位する際に生じる内部電極層20による拘束力が低減され、大きな変位を得ることができる。この点からは、Rは93%以下とすることが好ましい。また、前述した理由から、Rは、80%以上93%以下とすることが好ましい。 The area percentage of the conductive portions 21 in the internal electrode layers 20 is set to 75% or more and 95% or less. By setting the area percentage (hereinafter sometimes simply referred to as “R 1 ”) to 75% or more, a sufficient voltage is applied to the piezoelectric ceramic layer 10 when driving the multilayer piezoelectric element 100, A large displacement can be obtained. From this point of view, R1 is preferably 80% or more. On the other hand, by setting R1 to 95% or less, the restraining force by the internal electrode layers 20 generated when the piezoelectric ceramic layers 10 are displaced is reduced, and a large displacement can be obtained. From this point of view, R 1 is preferably 93% or less. For the reason described above, R1 is preferably 80% or more and 93% or less.
 内部電極層20は、導電部21が存在しない間隙部22を有する。そして、間隙部22は、内部電極層20全体に占める1箇所あたりの平均面積百分率(以下、単に「R」と表記することがある)が5%以下となる大きさとする。これにより、積層型圧電素子100を駆動する際に、圧電セラミックス層10に十分な電圧を印加し、大きな変位を得ることができる。圧電セラミックス層10の両端に、より大きな電圧を印加する点からは、Rは3%以下とすることが好ましい。Rの下限値は限定されないが、一般的な製法で得られる、前述したRが75%以上95%以下である積層型圧電素子100では、0.01%以上となることが多い。なお、内部電極層20の面積に占める間隙部22の総面積の割合は、面積百分率で5%以上25%以下、すなわち100%から前述したRを引いた値となる。したがって、前述した好ましいRの値に対応する間隙部22の総面積の面積百分率は、7%以上20%以下となる。 The internal electrode layer 20 has a gap portion 22 where the conductive portion 21 does not exist. The gaps 22 are sized such that the average area percentage (hereinafter sometimes simply referred to as “R 2 ”) per portion of the entire internal electrode layer 20 is 5% or less. As a result, when driving the laminated piezoelectric element 100, a sufficient voltage can be applied to the piezoelectric ceramic layer 10 to obtain a large displacement. From the viewpoint of applying a higher voltage across the piezoelectric ceramic layer 10, R2 is preferably 3% or less. Although the lower limit of R2 is not limited, it is often 0.01% or more in the laminated piezoelectric element 100 having R1 of 75% or more and 95% or less, which is obtained by a general manufacturing method. The ratio of the total area of the gaps 22 to the area of the internal electrode layers 20 is 5% or more and 25% or less in terms of area percentage, that is, the value obtained by subtracting the aforementioned R1 from 100%. Therefore, the area percentage of the total area of the gaps 22 corresponding to the above-mentioned preferable value of R1 is 7% or more and 20% or less.
 間隙部22は、その少なくとも1箇所に、マンガン酸リチウム23を含有する。これにより、積層型圧電素子100の使用中の電気絶縁性の低下が小さくなる。これは、以下の機序により抑制されると考えられる。マンガン酸リチウム23は、圧電セラミックス層10の主成分であるアルカリニオブ酸塩に比べて電気抵抗率が低い化合物である。こうした化合物が圧電セラミックス層10中に存在すると、使用中に、圧電セラミックス層10及び積層型圧電素子100全体の電気抵抗率の低下を引き起こす。他方、マンガン酸リチウム23が内部電極層20の間隙部22に存在する場合には、アルカリニオブ酸塩が存在する場合に比べて間隙部22の電気抵抗率は低下するものの、間隙部22を含む内部電極層20は元々導電性を有するものであるから、積層型圧電素子100の電気抵抗率への悪影響は限定的となる。このため、内部電極層20の間隙部22にマンガン酸リチウム23が存在することで、圧電セラミックス層10中のマンガン酸リチウム量は減少し、使用中の圧電セラミックス層10及び積層型圧電素子100全体の電気抵抗率の低下が抑制される。 The gap 22 contains lithium manganate 23 in at least one location. As a result, deterioration in electrical insulation during use of the laminated piezoelectric element 100 is reduced. This is thought to be suppressed by the following mechanism. Lithium manganate 23 is a compound having a lower electrical resistivity than alkaline niobate, which is the main component of piezoelectric ceramic layer 10 . The presence of such a compound in the piezoelectric ceramic layer 10 causes a decrease in electrical resistivity of the piezoelectric ceramic layer 10 and the multilayer piezoelectric element 100 as a whole during use. On the other hand, when the lithium manganate 23 is present in the interstices 22 of the internal electrode layers 20, although the electrical resistivity of the interstices 22 is lower than in the case where the alkali niobate is present, the interstices 22 are included. Since the internal electrode layer 20 is originally conductive, the adverse effect on the electrical resistivity of the laminated piezoelectric element 100 is limited. Therefore, the presence of the lithium manganate 23 in the interstices 22 of the internal electrode layers 20 reduces the amount of lithium manganate in the piezoelectric ceramic layer 10, and the entire piezoelectric ceramic layer 10 and the laminated piezoelectric element 100 in use. decrease in electrical resistivity is suppressed.
 間隙部22に含まれるマンガン酸リチウム23には、LiMnO、LiMn及びLiMnO等の種々の組成式で表されるものが存在するが、いずれの化合物によっても前述の効果は発現する。 The lithium manganate 23 contained in the gap 22 includes those represented by various composition formulas such as Li 2 MnO 3 , LiMn 2 O 4 and LiMnO 2 . Express.
 間隙部22に含まれるマンガン酸リチウム23が、内部電極層20の総面積に対して占める面積割合(以下、単に「R」と表記することがある)は、1%以上であることが好ましく、2%以上であることがより好ましい。これにより、使用中の積層型圧電素子100の電気的絶縁性の低下が顕著に小さくなる。Rの上限値は限定されないが、上述したとおり、内部電極層20の面積に占める間隙部22の総面積の割合の上限値が25%であり、好ましい上限値が20%であることから、必然的にこれらの値より低いものとなる。前述した理由から、Rは1%以上25%以下が好ましく、2%以上20%以下がより好ましい。 The area ratio of the lithium manganate 23 contained in the gaps 22 to the total area of the internal electrode layers 20 (hereinafter sometimes simply referred to as “R 3 ”) is preferably 1% or more. , more preferably 2% or more. As a result, deterioration of the electrical insulation of the laminated piezoelectric element 100 during use is significantly reduced. Although the upper limit of R3 is not limited, as described above, the upper limit of the ratio of the total area of the gaps 22 to the area of the internal electrode layers 20 is 25%, and the preferable upper limit is 20%. necessarily lower than these values. For the reasons described above, R3 is preferably 1% or more and 25% or less, more preferably 2% or more and 20% or less.
 間隙部22に含まれるマンガン酸リチウム23が、間隙部22の総面積に対して占める面積割合(以下、単に「R」と表記することがある)は、10%以上であることが好ましく、20%以上であることがより好ましい。これにより、使用中の積層型圧電素子100の電気的絶縁性の低下が顕著に小さくなる。Rの上限値は限定されず、100%、すなわち全ての間隙部22がマンガン酸リチウム23で埋められた状態であってもよい。 The ratio of the area of the lithium manganate 23 contained in the gap 22 to the total area of the gap 22 (hereinafter sometimes simply referred to as “R 4 ”) is preferably 10% or more, It is more preferably 20% or more. As a result, deterioration of the electrical insulation of the laminated piezoelectric element 100 during use is significantly reduced. The upper limit of R 4 is not limited, and may be 100%, that is, a state in which all the gaps 22 are filled with lithium manganate 23 .
 ここで、内部電極層20中の間隙部22の少なくとも1箇所にマンガン酸リチウム23が含まれることは、以下の手順で確認する。
 まず、積層型圧電素子100を、積層方向に垂直な面の重心付近を通り、該面に直交する面にて切断し、切断面を研磨して内部電極層20を露出させる。ただし、接続導体30が圧電セラミックス層10を貫通して形成されている積層型素子については、接続導体30を避けて切断を行う。
 次いで、露出した内部電極層20を光学顕微鏡で観察し、金属光沢を有する導電部21及びこれが途切れている間隙部22を識別した上で、間隙部22中で、圧電セラミックス層10との色相、明度又は彩度の相違により認識される斑点部分の位置を特定する。なお、前記斑点部分は、マンガンの発色に起因して、橙色又は黒色を呈していることが多い。
 次いで、前記斑点部分、及び圧電セラミック層10中の同様の斑点が存在しない箇所のそれぞれについて、レーザー照射型誘導結合プラズマ質量分析装置(LA-ICP-MS)を用いて、Li、Mn及びNbの含有量を測定する。
 次いで、得られた測定結果から、原子%で表示したNb量に対するLi量の比(Li/Nb)、及び原子%で表示したNb量に対するMn量の比(Mn/Nb)を、各測定箇所についてそれぞれ算出する。
 次いで、前記斑点部分について算出されたLi/Nb及びMn/Nbの値がいずれも、圧電セラミックス層10中の測定箇所について算出された各値よりも大きくなったことをもって、前記斑点部分をマンガン酸リチウム23と判定する。なお、同様の外観を有する斑点部分が多数存在する場合には、それらのうち3箇所のLi/Nb及びMn/Nbの値が圧電セラミックス層10中の測定箇所よりも大きくなったことをもって、残りの斑点部分についてもマンガン酸リチウム23と判定する。
Here, whether lithium manganate 23 is contained in at least one of gaps 22 in internal electrode layer 20 is confirmed by the following procedure.
First, the laminated piezoelectric element 100 is cut along a plane perpendicular to the plane perpendicular to the lamination direction, passing near the center of gravity, and the cut surface is polished to expose the internal electrode layers 20 . However, in the laminated element in which the connecting conductor 30 is formed through the piezoelectric ceramic layer 10, the cutting is performed while avoiding the connecting conductor 30. FIG.
Next, the exposed internal electrode layers 20 are observed with an optical microscope to identify the conductive portions 21 having metallic luster and the gaps 22 where the conductive portions are interrupted. Identify the location of the speckled portion that is recognized by the difference in lightness or saturation. In addition, the spotted portion often has an orange or black color due to the coloring of manganese.
Next, Li, Mn and Nb were analyzed using a laser irradiation type inductively coupled plasma mass spectrometer (LA-ICP-MS) for each of the speckled portions and portions where similar specks did not exist in the piezoelectric ceramic layer 10. Measure the content.
Next, from the obtained measurement results, the ratio of the amount of Li to the amount of Nb expressed in atomic % (Li/Nb) and the ratio of the amount of Mn to the amount of Nb expressed in atomic % (Mn/Nb) were determined at each measurement point. are calculated respectively.
Next, when the values of Li/Nb and Mn/Nb calculated for the spotted portion became larger than the respective values calculated for the measurement points in the piezoelectric ceramic layer 10, the spotted portion was replaced with manganic acid. Determined to be lithium-23. If there are a large number of speckled portions having the same appearance, the Li/Nb and Mn/Nb values at three of them are larger than the measured portions in the piezoelectric ceramic layer 10, and the remaining is also determined to be lithium manganate 23.
 また、上述したR、R、R及びRの値は、以下の手順で測定・算出する。
 まず、前述した手順にて、内部電極層20の間隙部22にマンガン酸リチウム23が含まれると判定された積層型圧電素子100の断面の光学顕微鏡像について、そこに露出する内部電極層20から、連続する3枚(層)を任意に選択する。
 次いで、選択した内部電極層20について、図5に模式的に示すように、1層目の全長(Lt1)、各間隙部22の長さ(Ld11、Ld12、…、Ld1a)及び各マンガン酸リチウム23が占める長さ(LM11、LM12、…、LM1p)、2層目の全長(Lt2)、各間隙部22の長さ(Ld21、Ld22、…、Ld2b)及び各マンガン酸リチウム23が占める長さ(LM21、LM22、…、LM2q)、並びに3層目の全長(Lt3)、各間隙部22の長さ(Ld31、Ld32、…、Ld3c)及び各マンガン酸リチウム23が占める長さ(LM31、LM32、…、LM3r)をそれぞれ測定する。なお、添字a、b及びcはそれぞれ、各層中に存在する間隙部22の数を意味し、添字p、q及びrはそれぞれ、各層中に存在するマンガン酸リチウム23の数を意味する。
 次いで、測定された長さから、下記式(2)によりRを、下記式(3)によりRを、下記式(4)によりRを、下記式(5)によりRを、それぞれ算出する。
Moreover, the values of R 1 , R 2 , R 3 and R 4 described above are measured and calculated in the following procedure.
First, an optical microscope image of a cross section of the laminated piezoelectric element 100 determined to contain lithium manganate 23 in the interstices 22 of the internal electrode layers 20 by the above-described procedure is taken from the internal electrode layers 20 exposed there. , arbitrarily select three consecutive sheets (layers).
Next , for the selected internal electrode layers 20, as schematically shown in FIG . Length occupied by each lithium manganate 23 (L M11 , L M12 , . ) , the length occupied by each lithium manganate 23 (L M21 , L M22 , . , L d3c ) and the length occupied by each lithium manganate 23 (L M31 , L M32 , . . . , L M3r ) are measured. The suffixes a, b, and c respectively denote the number of gaps 22 present in each layer, and the suffixes p, q, and r denote the number of lithium manganate 23 present in each layer.
Next, from the measured lengths, R 1 is determined by the following formula (2), R 2 is determined by the following formula (3), R 3 is determined by the following formula (4), and R 4 is determined by the following formula (5). calculate.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
(接続導体)
 接続導体30は、内部電極層20を1層おきに電気的に接続する。接続導体30の材質としては、これが積層型圧電素子100の表面に形成される場合には、導電性が高く、後述する分極条件下及び素子の使用環境下で物理的及び化学的に安定なものであれば特に限定されない。一例として、銀(Ag)、銅(Cu)、金(Au)、白金(Pt)、パラジウム(Pd)及びニッケル(Ni)、並びにこれらの合金等が挙げられる。他方、接続導体30が積層型圧電素子100の内部に、圧電セラミックス層10を貫通して形成される場合には、上述した内部電極層20の導電部21と同様に、銀の含有量が50質量%以上の金属とすることが好ましい。
(connection conductor)
The connection conductor 30 electrically connects every other internal electrode layer 20 . When the connection conductor 30 is formed on the surface of the laminated piezoelectric element 100, the material of the connection conductor 30 has high conductivity and is physically and chemically stable under the polarization conditions and the usage environment of the element, which will be described later. is not particularly limited. Examples include silver (Ag), copper (Cu), gold (Au), platinum (Pt), palladium (Pd), nickel (Ni), and alloys thereof. On the other hand, when the connecting conductor 30 is formed inside the laminated piezoelectric element 100 so as to penetrate the piezoelectric ceramic layer 10, the silver content is 50%, similarly to the conductive portion 21 of the internal electrode layer 20 described above. It is preferable to use the metal in mass % or more.
(サイドマージン部及びカバー部)
 サイドマージン部40及びカバー部50は、圧電セラミックス層10及び内部電極層20を保護する保護部として機能する。
(Side margin and cover)
The side margin portion 40 and the cover portion 50 function as protection portions that protect the piezoelectric ceramic layers 10 and the internal electrode layers 20 .
 サイドマージン部40及びカバー部50は、積層型圧電素子100の焼成時の収縮率や、積層型圧電素子100内における内部応力の緩和等の観点から、圧電セラミックス層10と同様に、アルカリニオブ酸塩を主成分とする焼結体で形成されていることが好ましい。しかし、サイドマージン部40及びカバー部50を形成する材料は、高い絶縁性を有する材料であれば、アルカリニオブ酸塩を主成分とするものでなくともよい。 The side margin portion 40 and the cover portion 50 are made of alkali niobate, similar to the piezoelectric ceramic layer 10, from the viewpoint of the shrinkage rate during firing of the laminated piezoelectric element 100 and the relaxation of internal stress in the laminated piezoelectric element 100. It is preferably formed of a sintered body containing salt as a main component. However, the material for forming the side margin portions 40 and the cover portion 50 need not contain alkali niobate as a main component as long as the material has high insulating properties.
(外部電極)
 外部電極は、接続導体30と駆動回路とを電気的に接続する機能を有する。また、これが圧電セラミックス層10上に形成される場合には、これに電圧を印可する機能も有する。外部電極の材質は、導電性が高く、分極条件下及び圧電素子の使用環境下で物理的及び化学的に安定なものであれば特に限定されない。一例として、銀(Ag)、銅(Cu)、金(Au)、白金(Pt)、パラジウム(Pd)及びニッケル(Ni)、並びにこれらの合金等が挙げられる。
(external electrode)
The external electrode has a function of electrically connecting the connection conductor 30 and the drive circuit. Moreover, when this is formed on the piezoelectric ceramics layer 10, it also has a function of applying a voltage thereto. The material of the external electrode is not particularly limited as long as it has high conductivity and is physically and chemically stable under the polarization conditions and the usage environment of the piezoelectric element. Examples include silver (Ag), copper (Cu), gold (Au), platinum (Pt), palladium (Pd), nickel (Ni), and alloys thereof.
[積層型圧電セラミックスの製造方法]
 本側面に係る積層型圧電素子は、例えば、原料粉末を所定の割合で混合して原料混合粉末を得ること、該原料混合粉末を仮焼して、ペロブスカイト型構造を有するアルカリニオブ酸塩を主成分とする仮焼粉末を得ること、該仮焼粉末をバインダ及び分散媒と混合してスラリーを調製すること、該スラリーをシート状に成形してグリーンシートを得ること、該グリーンシート上に銀の含有量が50質量%以上である金属及びマンガン化合物を含むペーストを、内部電極層の形状に印刷すること、前記金属ペーストが印刷されたグリーンシートを所定の枚数積層し、圧着して生成形体を得ること、該生成形体からバインダを除去した後、焼成して積層型圧電セラミックスを得ること、該積層型圧電セラミックスの、内部電極層が露出する表面に導体ペーストを塗布した後焼き付けて接続導体を形成すること、並びに該接続導体間に高電圧を印可して、圧電セラミックス層の分極処理を行うこと、を経て製造される。以下、各操作について詳述する。
[Manufacturing Method of Laminated Piezoelectric Ceramics]
The laminated piezoelectric element according to this aspect is obtained by, for example, mixing raw material powders in a predetermined ratio to obtain a raw material mixed powder, calcining the raw material mixed powder, and Obtaining a calcined powder as a component, mixing the calcined powder with a binder and a dispersion medium to prepare a slurry, forming the slurry into a sheet to obtain a green sheet, silver on the green sheet A paste containing a metal and a manganese compound whose After removing the binder from the green compact, firing it to obtain a laminated piezoelectric ceramic, applying a conductor paste to the surface of the laminated piezoelectric ceramic where the internal electrode layer is exposed, and baking it to connect conductor and applying a high voltage between the connection conductors to polarize the piezoelectric ceramic layer. Each operation will be described in detail below.
(原料混合粉末の作製)
 まず、原料粉末を所定の割合で混合して原料混合粉末を得る。使用する原料粉末の一例としては、リチウム化合物としての炭酸リチウム(LiCO)、ナトリウム化合物としての炭酸ナトリウム(NaCO)及び炭酸水素ナトリウム(NaHCO)、カリウム化合物としての炭酸カリウム(KCO)及び炭酸水素カリウム(KHCO)、並びにニオブ化合物としての五酸化ニオブ(Nb)が挙げられる。また、任意成分ではあるものの、よく使用される化合物としては、タンタル化合物としての五酸化タンタル(Ta)や、アンチモン化合物としての三酸化アンチモン(Sb)等が挙げられる。
(Preparation of raw material mixed powder)
First, raw material powders are mixed at a predetermined ratio to obtain a raw material mixed powder. Examples of raw material powders to be used include lithium carbonate (Li 2 CO 3 ) as a lithium compound, sodium carbonate (Na 2 CO 3 ) and sodium hydrogen carbonate (NaHCO 3 ) as sodium compounds, and potassium carbonate ( K 2 CO 3 ) and potassium hydrogen carbonate (KHCO 3 ), and niobium pentoxide (Nb 2 O 5 ) as a niobium compound. Although optional components, frequently used compounds include tantalum pentoxide (Ta 2 O 5 ) as a tantalum compound and antimony trioxide (Sb 2 O 3 ) as an antimony compound.
 原料粉末を混合する方法は、不純物の混入を抑えつつ各粉末が均一に混合されるものであれば特に限定されず、乾式混合、湿式混合のいずれを採用してもよい。混合方法としてボールミルを用いた湿式混合を採用する場合には、例えば、部分安定化ジルコニア(PSZ)ボールを用い、エタノール等の有機溶媒を分散媒とするボールミルによって8~60時間程度撹拌した後、有機溶媒を揮発乾燥すればよい。 The method of mixing the raw material powders is not particularly limited as long as each powder is uniformly mixed while suppressing the contamination of impurities, and either dry mixing or wet mixing may be employed. When wet mixing using a ball mill is adopted as the mixing method, for example, partially stabilized zirconia (PSZ) balls are used, and after stirring for about 8 to 60 hours with a ball mill using an organic solvent such as ethanol as a dispersion medium, The organic solvent may be evaporated and dried.
(仮焼粉末の作製)
 次いで、原料混合粉末を仮焼し、仮焼粉末を得る。仮焼は、原料粉末同士が反応し、所定の組成を有するアルカリニオブ酸塩が得られる条件にて行う。一例として、大気中、700~1000℃の温度で、1~10時間焼成することが挙げられる。仮焼後の粉末は、そのままスラリーの調製に供してもよいが、これに先立ってボールミルやスタンプミル等によって解砕することが、均一なスラリーを経て平滑なグリーンシートが得られる点で好ましい。
(Preparation of calcined powder)
Next, the mixed raw material powder is calcined to obtain a calcined powder. The calcination is carried out under conditions under which raw material powders react with each other to obtain an alkali niobate having a predetermined composition. One example is firing in air at a temperature of 700 to 1000° C. for 1 to 10 hours. The calcined powder may be directly used to prepare a slurry, but it is preferable to pulverize the powder with a ball mill, a stamp mill, or the like prior to this, in order to obtain a smooth green sheet through a uniform slurry.
 なお、市販のアルカリニオブ酸塩粉末が利用できる場合は、前述した原料混合粉末の作製及び仮焼粉末の作製を行わず、この粉末に対して以後の操作を行ってもよい。 If a commercially available alkali niobate powder can be used, the subsequent operations may be performed on this powder without preparing the raw material mixed powder and preparing the calcined powder described above.
(スラリーの調製)
 次いで、仮焼粉末をバインダ及び分散媒と混合してスラリーを調製する。バインダとしては、後述するグリーンシートの形状を保持できると共に、焼成ないしこれに先立つバインダ除去処理により、炭素等を残存させることなく揮発するものを用いる。使用できるバインダの例としては、ポリビニルアルコール系、ポリビニルブチラール系、セルロース系、ウレタン系及び酢酸ビニル系のものが挙げられる。バインダの使用量も特に限定されないが、後工程で除去されるものであるため、所期の成形性・保形性が得られる範囲内で極力少なくすることが、原料コストを低減する点で好ましい。
(Preparation of slurry)
Next, the calcined powder is mixed with a binder and a dispersion medium to prepare a slurry. As the binder, a binder that can hold the shape of the green sheet to be described later and is volatilized without leaving carbon or the like by firing or a binder removal treatment prior thereto is used. Examples of binders that can be used include polyvinyl alcohol-based, polyvinyl butyral-based, cellulose-based, urethane-based and vinyl acetate-based binders. The amount of the binder used is also not particularly limited, but since it is removed in the post-process, it is preferable to reduce the amount as much as possible within the range where the desired moldability and shape retention can be obtained, in terms of reducing raw material costs. .
 分散媒としては、仮焼粉末及びバインダの凝集を生じることがなく、後述するグリーンシート成形後に揮発等により容易に除去できるものを用いる。使用できる分散媒の例としては、水及びアルコール系溶媒等が挙げられる。 As the dispersion medium, one that does not cause aggregation of the calcined powder and the binder and can be easily removed by volatilization or the like after forming the green sheet described later is used. Examples of usable dispersion media include water and alcoholic solvents.
 スラリーには、分散剤、可塑剤及び増粘剤等のスラリーの性状を調節する成分を添加してもよい。 Components that adjust the properties of the slurry, such as dispersants, plasticizers and thickeners, may be added to the slurry.
 また、スラリーには、圧電セラミックス層に含有させる各種成分を添加してもよい。こうした成分の例としては、炭酸カルシウム(CaCO)、メタケイ酸カルシウム(CaSiO)及びオルトケイ酸カルシウム(CaSiO)、炭酸ストロンチウム(SrCO)、炭酸バリウム(BaCO)等のアルカリ土類金属含有化合物、酸化銀(AgO)等の銀含有化合物、炭酸リチウム、フッ化リチウム及びマンガン酸リチウム等のリチウム含有化合物、酸化マンガン、炭酸マンガン、酢酸マンガン及びマンガン酸リチウム等のマンガン含有化合物、並びに二酸化ケイ素(SiO)、メタケイ酸カルシウム(CaSiO)及びオルトケイ酸カルシウム(CaSiO)等のケイ素含有化合物が挙げられる。 Moreover, various components to be contained in the piezoelectric ceramic layer may be added to the slurry. Examples of such components include alkaline earths such as calcium carbonate ( CaCO3 ), calcium metasilicate ( CaSiO3 ) and calcium orthosilicate ( Ca2SiO4 ), strontium carbonate ( SrCO3 ) and barium carbonate ( BaCO3 ). metal-containing compounds, silver-containing compounds such as silver oxide (AgO), lithium-containing compounds such as lithium carbonate, lithium fluoride and lithium manganate, manganese-containing compounds such as manganese oxide, manganese carbonate, manganese acetate and lithium manganate, and Examples include silicon-containing compounds such as silicon dioxide ( SiO2 ), calcium metasilicate ( CaSiO3 ) and calcium orthosilicate ( Ca2SiO4 ).
 仮焼粉末、バインダ及び分散媒の混合方法は、不純物の混入を防ぎつつ各成分が均一に混合されるものであれば特に限定されない。一例として、ボールミル混合が挙げられる。 The method of mixing the calcined powder, binder, and dispersion medium is not particularly limited as long as each component is uniformly mixed while preventing impurities from being mixed. One example is ball mill mixing.
(グリーンシートの作製)
 次いで、得られたスラリーを成形してグリーンシートを得る。成形方法としては、ドクターブレード法等の慣用されている方法を採用できる。
(Preparation of green sheet)
Next, the obtained slurry is molded to obtain a green sheet. As a molding method, a commonly used method such as a doctor blade method can be adopted.
(金属ペーストの印刷)
 次いで、得られたグリーンシート上に、銀の含有量が50質量%以上の金属及びマンガン化合物を含む内部電極ペーストを印刷する。内部電極ペーストがマンガン化合物を含むことで、後述する焼成時にペロブスカイト型構造中に固溶しきれなかったリチウムが、内部電極層にてマンガン化合物と反応してマンガン酸リチウムを生成し、これにより間隙部が形成される。間隙部の面積割合R及び間隙部1箇所あたりの平均面積百分率Rを所定の範囲とするためには、内部電極ペーストに対するマンガン化合物の添加量を0.1質量%以上3質量%以下とすることが好ましい。なお、前記R及びRの値は、圧電セラミックス層の組成、内部電極ペースト中のビヒクルの量、及び印刷膜厚等の影響も受ける。このため、ペーストに添加するマンガン化合物の量は、実際に採用する製造条件下で、種々の量のマンガン化合物を添加した内部電極ペーストを用いて積層型圧電素子を試作し、前記R及びRの値が所定のものとなるように決定すればよい。
(Printing of metal paste)
Next, an internal electrode paste containing a metal with a silver content of 50% by mass or more and a manganese compound is printed on the obtained green sheets. Since the internal electrode paste contains a manganese compound, the lithium that did not fully dissolve into the perovskite structure during firing, which will be described later, reacts with the manganese compound in the internal electrode layer to generate lithium manganate, thereby creating a gap. part is formed. In order to keep the area ratio R1 of the gap and the average area percentage R2 per gap within a predetermined range, the amount of the manganese compound added to the internal electrode paste should be 0.1% by mass or more and 3% by mass or less. preferably. The values of R1 and R2 are also affected by the composition of the piezoelectric ceramic layer, the amount of vehicle in the internal electrode paste, the printed film thickness, and the like. For this reason, the amount of the manganese compound added to the paste is controlled under the manufacturing conditions that are actually employed. The value of 2 may be determined to be a predetermined value.
 内部電極ペーストには、焼成後の圧電セラミックス層への付着強度を向上させるため、ガラスフリットや、グリーンシート中に含まれるアルカリニオブ酸塩粉末と同様の組成を有する粉末を添加してもよい。 To the internal electrode paste, glass frit or powder having the same composition as the alkali niobate powder contained in the green sheet may be added in order to improve the adhesion strength to the piezoelectric ceramic layer after firing.
 グリーンシート上に内部電極ペーストを印刷する際には、積層型圧電素子とした際にサイドマージン部となるスペースを空けて印刷してもよい。 When printing the internal electrode paste on the green sheet, it may be printed with a space that will be the side margin when the laminated piezoelectric element is formed.
(生成形体の作製)
 次いで、内部電極ペーストを印刷したグリーンシートを所定の枚数積層し、該グリーンシート同士を圧着して生成形体を作製する。積層及び圧着は慣用されている方法で行えばよく、積層したグリーンシート同士を加熱しながら積層方向にプレスし、バインダの作用で熱圧着する方法等を採用できる。
(Production of green body)
Next, a predetermined number of green sheets printed with the internal electrode paste are laminated, and the green sheets are pressure-bonded to each other to produce a green body. Lamination and pressure bonding may be carried out by a commonly used method, such as a method in which laminated green sheets are heated and pressed in the direction of lamination, and thermocompression bonding is performed by the action of a binder.
 積層及び圧着に際しては、積層方向の両端部に、積層型圧電素子とした際にカバー部となるグリーンシートを追加してもよい。この場合、追加するグリーンシートは、内部電極ペーストを印刷したグリーンシートと同一の組成であっても、これとは異なる組成であってもよい。焼成時の収縮率を揃える観点からは、追加するグリーンシートの組成は、前述の内部電極ペーストを印刷したグリーンシートと同一又は類似の組成であることが好ましい。 At the time of lamination and pressure bonding, green sheets may be added to both ends in the lamination direction to serve as cover portions when the laminated piezoelectric element is formed. In this case, the green sheet to be added may have the same composition as the green sheet on which the internal electrode paste is printed, or may have a different composition. From the viewpoint of uniforming the shrinkage rate during firing, the composition of the green sheets to be added is preferably the same as or similar to the composition of the green sheets printed with the internal electrode paste.
(積層型圧電セラミックスの作製)
 次いで、得られた生成形体を焼成し、積層型圧電セラミックスを得る。焼成に先立って、生成形体からバインダを除去してもよい。この場合、バインダの除去と焼成とは同じ焼成装置を用いて連続して行ってもよい。バインダの除去及び焼成の条件は、バインダの揮発温度及び含有量、並びにアルカリニオブ酸塩の焼結性及び内部電極ペーストに含まれる金属の耐熱性等を考慮して適宜設定すればよい。バインダを除去する条件の例としては、大気雰囲気中、300~500℃の温度で5~20時間が挙げられる。また、焼成条件の例としては、大気雰囲気中、800℃~1100℃で1時間~5時間が挙げられる。1つの生成形体から複数の積層型圧電セラミックスを得る場合には、焼成に先立って生成形体を幾つかのブロックに分割してもよい。
(Fabrication of laminated piezoelectric ceramics)
Next, the obtained green body is fired to obtain a laminated piezoelectric ceramic. The binder may be removed from the green body prior to firing. In this case, removal of the binder and firing may be performed continuously using the same firing apparatus. The conditions for removing and firing the binder may be appropriately set in consideration of the volatilization temperature and content of the binder, the sinterability of the alkali niobate, the heat resistance of the metal contained in the internal electrode paste, and the like. An example of the conditions for removing the binder is an atmospheric atmosphere at a temperature of 300 to 500° C. for 5 to 20 hours. Examples of firing conditions include 800° C. to 1100° C. for 1 hour to 5 hours in an air atmosphere. When obtaining a plurality of laminated piezoelectric ceramics from one green body, the green body may be divided into several blocks prior to firing.
 上述したように、生成形体の焼成中に、ペロブスカイト型構造中に固溶しきれなかったリチウムが、内部電極層にてマンガン化合物と反応してマンガン酸リチウムを生成し、これにより間隙部が形成される。また、焼成中には、内部電極層中の銀が圧電セラミックス層中へと拡散するため、これによって間隙部が形成されることもある。 As described above, during firing of the green compact, lithium that did not fully dissolve in the perovskite structure reacts with the manganese compound in the internal electrode layer to form lithium manganate, thereby forming gaps. be done. In addition, silver in the internal electrode layers diffuses into the piezoelectric ceramic layers during firing, which may form gaps.
 生成形体を形成するグリーンシートがカルシウム、ストロンチウム及びバリウムからなる群から選択される少なくとも1つのアルカリ土類金属元素を含む場合には、焼成中に内部電極層から拡散してくる銀とアルカリ土類金属元素との相互作用により、得られる圧電セラミックス層が、微細な焼結粒子で形成された緻密なものとなる。 When the green sheet forming the green body contains at least one alkaline earth metal element selected from the group consisting of calcium, strontium and barium, silver and alkaline earth elements diffused from the internal electrode layers during firing. Due to the interaction with the metal element, the obtained piezoelectric ceramic layer becomes dense with fine sintered particles.
 また、生成形体を形成するグリーンシートがケイ素を含む場合には、これが焼結助剤として作用することで焼成温度を低下させることができる。加えて、ケイ素は、アルカリニオブ酸塩に含まれる元素又は別途添加した元素と焼成中に反応して、LiSiO、LiSiO、KNbSi、KNbSi、KLiSiO若しくはKLiSiO等の結晶相、又はこれらの元素を含む非結晶相を析出することで、アルカリ金属の揮発及び焼結粒子間への析出を抑制することもできる。 In addition, when the green sheet forming the green body contains silicon, it can act as a sintering aid to lower the firing temperature. In addition, silicon reacts with elements contained in the alkali niobate or separately added elements during firing to form Li 2 SiO 3 , Li 4 SiO 4 , K 3 Nb 3 O 6 Si 2 O 7 , KNbSi 2 . By precipitating a crystalline phase such as O 7 , K 3 LiSiO 4 or KLi 3 SiO 4 or an amorphous phase containing these elements, the volatilization of alkali metals and precipitation between sintered particles can be suppressed. .
(接続導体の形成)
 次いで、得られた積層型圧電セラミックスの、内部電極層が露出する表面に導体ペーストを塗布した後焼き付けて接続導体を形成する。
(Formation of connection conductor)
Next, a conductive paste is applied to the surfaces of the obtained laminated piezoelectric ceramics where the internal electrode layers are exposed, and then baked to form connection conductors.
(分極処理)
 最後に、接続導体間に高電圧を印加して分極処理を行い、積層型圧電素子を得る。分極処理の条件は、積層型圧電セラミックスに亀裂等の損傷を生じることなく、各圧電セラミックス層中の自発分極の向きを揃えられるものであれば特に限定されない。一例として、100℃~150℃の温度にて4kV/mm~6kV/mmの電界を印加することが挙げられる。
(Polarization treatment)
Finally, a high voltage is applied between the connecting conductors to perform polarization treatment, thereby obtaining a laminated piezoelectric element. Conditions for the polarization treatment are not particularly limited as long as the direction of spontaneous polarization in each piezoelectric ceramic layer can be aligned without causing damage such as cracks in the laminated piezoelectric ceramics. An example is applying an electric field of 4 kV/mm to 6 kV/mm at a temperature of 100.degree. C. to 150.degree.
 以下、実施例により本発明をさらに具体的に説明するが、本発明は該実施例に限定されるものではない。 The present invention will be described in more detail below with reference to examples, but the present invention is not limited to the examples.
(実施例1)
 ペロブスカイト型構造を有するアルカリニオブ酸塩の粉末として、組成式Li0.06Na0.520.42NbOで表される仮焼粉を準備した。この仮焼粉100モル%に対し、0.65モル%のLiCO、1.3モル%のSiO、0.5モル%のCaCO及び0.5モル%のMnCO、並びにポリビニルブチラール系のバインダをそれぞれ添加して、湿式ボールミル混合した。得られた混合スラリーをドクターブレードにて成形し、厚さ30μmのグリーンシートを得た。他方、Ag-Pd合金ペースト(Ag/Pd質量比=9/1)に対して、酸化マンガン(MnO)を0.1質量%混合し、内部電極ペーストを調製した。前記グリーンシート上に、前記内部電極ペーストをスクリーン印刷して電極パターンを形成した後、該グリーンシートを26層積層し、加熱しながら50MPa程度の圧力で加圧することで圧着して積層体を得た。この積層体を個片化した後、大気中で脱バインダ処理を行い、これに引き続いて大気中、980℃で2時間の焼成を行って、焼成体(積層型圧電セラミックス)を得た。この焼成体の表面にAgを含む導電性ペーストを塗布し、600℃まで昇温して焼き付けることで、一対の接続導体及び外部電極を形成した。最後に、80℃の恒温槽中で、前記一対の外部電極間に3.0kV/mmの電界を3分間印加して分極処理を行い、実施例1に係る積層型圧電素子を得た。
(Example 1)
A calcined powder represented by the composition formula Li 0.06 Na 0.52 K 0.42 NbO 3 was prepared as an alkali niobate powder having a perovskite structure. With respect to 100 mol% of this calcined powder, 0.65 mol% Li2CO3 , 1.3 mol% SiO2 , 0.5 mol% CaCO3 and 0.5 mol% MnCO3 , and polyvinyl A butyral-based binder was added, respectively, and wet-ball-mill mixed. The resulting mixed slurry was molded with a doctor blade to obtain a green sheet with a thickness of 30 μm. On the other hand, an internal electrode paste was prepared by mixing 0.1% by mass of manganese oxide (MnO) with Ag—Pd alloy paste (Ag/Pd mass ratio=9/1). After forming an electrode pattern by screen-printing the internal electrode paste on the green sheet, 26 layers of the green sheet are laminated and pressed at a pressure of about 50 MPa while heating to obtain a laminate. rice field. After separating the laminate into individual pieces, binder removal treatment was performed in the air, followed by firing in the air at 980° C. for 2 hours to obtain a fired body (laminated piezoelectric ceramics). A conductive paste containing Ag was applied to the surface of this fired body, heated to 600° C. and baked to form a pair of connecting conductors and external electrodes. Finally, an electric field of 3.0 kV/mm was applied between the pair of external electrodes for 3 minutes in a constant temperature bath at 80° C. to perform polarization treatment, thereby obtaining the laminated piezoelectric element of Example 1.
(実施例2及び3)
 Ag-Pd合金ペーストに対する酸化マンガン(MnO)の添加量を、0.5質量%(実施例2)及び3質量%(実施例3)としたこと以外は実施例1と同様の方法で、実施例2及び3に係る積層型圧電素子をそれぞれ得た。
(Examples 2 and 3)
In the same manner as in Example 1, except that the amount of manganese oxide (MnO) added to the Ag—Pd alloy paste was set to 0.5% by mass (Example 2) and 3% by mass (Example 3). Laminated piezoelectric elements according to Examples 2 and 3 were obtained.
(比較例1)
 Ag-Pd合金ペーストに対して酸化マンガン(MnO)を添加しなかった以外は実施例1と同様の方法で、比較例1に係る積層型圧電素子を得た。
(Comparative example 1)
A multilayer piezoelectric element according to Comparative Example 1 was obtained in the same manner as in Example 1, except that manganese oxide (MnO) was not added to the Ag—Pd alloy paste.
(比較例2)
 Ag-Pd合金ペーストに対する酸化マンガン(MnO)の添加量を、10質量%としたこと以外は実施例1と同様の方法で、比較例2に係る積層型圧電素子を得た。
(Comparative example 2)
A laminated piezoelectric element according to Comparative Example 2 was obtained in the same manner as in Example 1, except that the amount of manganese oxide (MnO) added to the Ag—Pd alloy paste was 10% by mass.
<評価>
[内部電極層中の間隙部及びマンガン酸リチウムの有無の確認]
 得られた各積層型圧電素子について、上述した方法で断面観察を行うと共に、斑点部分が確認されたものについて組成分析を行ったところ、全ての積層型圧電素子において、内部電極層中に間隙部が確認され、また該間隙部中にマンガン酸リチウムが存在することも確認された。
<Evaluation>
[Confirmation of presence or absence of interstices in internal electrode layers and lithium manganate]
For each laminated piezoelectric element thus obtained, cross-sectional observation was performed by the above-described method, and composition analysis was performed for those in which spots were confirmed. was confirmed, and the presence of lithium manganate in the gap was also confirmed.
[内部電極層のR、R、R及びRの算出]
 得られた各積層型圧電素子について、上述した方法で、断面観察並びに内部電極層、間隙部及びマンガン酸リチウムの長さ測定を行い、内部電極層のR、R、R及びRを算出した。結果を表1に示す。
[Calculation of R 1 , R 2 , R 3 and R 4 of internal electrode layers]
For each laminated piezoelectric element thus obtained, the cross section was observed and the lengths of the internal electrode layers, gaps, and lithium manganate were measured by the method described above, and R 1 , R 2 , R 3 and R 4 of the internal electrode layers were measured. was calculated. Table 1 shows the results.
[電気抵抗率の測定]
 得られた各積層型圧電素子を、80℃の恒温槽に入れ、5kV/mmの電界を5分間印加したときの電圧値及び電流値を測定した。そして、得られた測定値及び素子寸法に基づいて、積層型圧電素子の電気抵抗率を算出した。結果を表1に示す。
[Measurement of electrical resistivity]
Each laminated piezoelectric element thus obtained was placed in a constant temperature bath at 80° C., and an electric field of 5 kV/mm was applied for 5 minutes to measure the voltage value and the current value. Then, based on the obtained measured values and element dimensions, the electrical resistivity of the laminated piezoelectric element was calculated. Table 1 shows the results.
[電気的絶縁性の経時変化(平均寿命)の測定]
 得られた各積層型圧電素子を100℃の恒温槽内に配置し、外部電極間に8kV/mmの直流電界を印加して、外部電極間に流れる電流値が1mA以上となるまでの時間を測定した。そして、この時間の10個の素子についての平均値を、平均寿命とした。得られた平均寿命を、比較例1に係る積層型圧電素子の平均寿命を100としたときの比として表1に示す。
[Measurement of change in electrical insulation over time (average life)]
Each laminated piezoelectric element thus obtained was placed in a constant temperature bath at 100° C., a DC electric field of 8 kV/mm was applied between the external electrodes, and the time until the current value flowing between the external electrodes reached 1 mA or more was measured. It was measured. Then, the average value for 10 devices at this time was taken as the average life. Table 1 shows the obtained average life as a ratio of the average life of the laminated piezoelectric element according to Comparative Example 1 to 100.
[圧電特性の評価]
 得られた各積層型圧電素子の圧電特性を、変位性能d 33(pm/V)により評価した。まず、積層型圧電セラミックスに100Hz程度で最大電界6kV/mmとなる単極性のサイン波形を打ち込み、その際の積層型圧電素子の変位量を、レーザードップラー変位計にて測定した。そして、得られた積層型圧電素子の変位量を、圧電セラミックス層の厚さ(電極間距離)及び最大電界から算出される最大電圧、並びに積層型圧電素子を構成する圧電セラミックス層の層数で割ることで、1層の圧電セラミックス層における単位電圧あたりの変位性能d 33を算出した。得られた変位性能d 33を、比較例1に係る積層型圧電素子の変位性能d 33を100としたときの比として表1に示す。
[Evaluation of Piezoelectric Properties]
The piezoelectric characteristics of each laminated piezoelectric element obtained were evaluated by displacement performance d * 33 (pm/V). First, a unipolar sine wave having a maximum electric field of 6 kV/mm was applied to the laminated piezoelectric ceramics at about 100 Hz, and the displacement of the laminated piezoelectric element was measured with a laser Doppler displacement meter. Then, the displacement amount of the obtained laminated piezoelectric element is calculated from the thickness of the piezoelectric ceramic layer (the distance between the electrodes), the maximum voltage calculated from the maximum electric field, and the number of piezoelectric ceramic layers constituting the laminated piezoelectric element. By dividing, the displacement performance d * 33 per unit voltage in one piezoelectric ceramic layer was calculated. The obtained displacement performance d * 33 is shown in Table 1 as a ratio when the displacement performance d * 33 of the multilayer piezoelectric element according to Comparative Example 1 is set to 100.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 以上の結果から、アルカリニオブ酸系の圧電セラミックス層を備える積層型圧電素子を、内部電極層中に間隙部を所定の割合及び大きさで含むと共に、前記間隙部中にマンガン酸リチウムを含有するものとすることで、使用中の電気的絶縁性の低下が小さくなり、変位性能も向上するといえる。 From the above results, it can be seen that the laminated piezoelectric element having the alkaline niobate-based piezoelectric ceramic layers includes gaps of a predetermined ratio and size in the internal electrode layers, and lithium manganate is contained in the gaps. It can be said that by using the material as a material, the deterioration of the electrical insulation during use is reduced and the displacement performance is also improved.
 本発明によれば、アルカリニオブ酸系の圧電セラミックスを用いた積層型圧電素子を、使用中の電気的絶縁性の低下が小さく、かつ電圧を印可した際の変位量が大きいものとすることができる。このような積層型圧電素子は、大きな変位量と長寿命とが求められる触覚用モジュール用途に好適である。また、前記積層型圧電素子は、構成成分に鉛を含まないために、そのライフサイクルにおいて環境への負荷を低減できる点でも有用である。 According to the present invention, it is possible to make a laminated piezoelectric element using an alkali niobate-based piezoelectric ceramic less degraded in electrical insulation during use and to have a large displacement when a voltage is applied. can. Such a laminated piezoelectric element is suitable for a haptic module that requires a large amount of displacement and a long life. Moreover, since the laminated piezoelectric element does not contain lead as a component, it is useful in that it can reduce the load on the environment during its life cycle.
100 積層型圧電素子
10 圧電セラミックス層
20、20a、20b 内部電極層
21 導電部
22 間隙部
23 マンガン酸リチウム
30、30a、30b 接続導体
40 サイドマージン部
50 カバー部
REFERENCE SIGNS LIST 100 Laminated piezoelectric element 10 Piezoelectric ceramic layers 20, 20a, 20b Internal electrode layer 21 Conductive portion 22 Gap portion 23 Lithium manganate 30, 30a, 30b Connection conductor 40 Side margin portion 50 Cover portion

Claims (5)

  1.  ペロブスカイト型構造を有するアルカリニオブ酸塩を主成分とする圧電セラミックス層、及び
      前記圧電セラミックス層間に配置され、
      銀の含有量が50質量%以上である導電部を有し、
      前記導電部の占める面積百分率(R)が75%以上95%以下であり、
      前記導電部が存在しない間隙部を、1箇所あたりの平均面積百分率(R)が5%以下
     となる大きさで有し、かつ
      前記間隙部の少なくとも1箇所にマンガン酸リチウムを含有する
     内部電極層
    を備える積層型圧電素子。
    A piezoelectric ceramic layer mainly composed of an alkali niobate having a perovskite structure, and disposed between the piezoelectric ceramic layers,
    Having a conductive part with a silver content of 50% by mass or more,
    The area percentage (R 1 ) occupied by the conductive portion is 75% or more and 95% or less,
    An internal electrode having gaps in which the conductive part is not present and having an average area percentage (R 2 ) of 5% or less per one gap, and containing lithium manganate in at least one of the gaps. A laminated piezoelectric element comprising layers.
  2.  前記圧電セラミックス層が、カルシウム(Ca)、ストロンチウム(Sr)、及びバリウム(Ba)からなる群から選択される少なくとも1種のアルカリ土類金属、並びに銀(Ag)をさらに含む、請求項1に記載の積層型圧電素子。 2. The method of claim 1, wherein the piezoelectric ceramic layer further contains at least one alkaline earth metal selected from the group consisting of calcium (Ca), strontium (Sr), and barium (Ba), and silver (Ag). Laminated piezoelectric element as described.
  3.  前記圧電アルカリニオブ酸塩が以下の組成式で表される、請求項1又は2に記載の積層型圧電素子。
     
      (AgM2(K1-w-xNaLi1-u-v
            (SbTaNb1-y-z)O     …(1)
     
    (ただし、式中のM2は、カルシウム(Ca)、ストロンチウム(Sr)及びバリウム(Ba)からなる群から選択される少なくとも1種のアルカリ土類金属を示す。また、式中のu、v、w、x、y、z及びaはそれぞれ、0.005<u≦0.05、0.002<v≦0.05、0.007<u+v≦0.1、0≦w≦1、0.02<x≦0.1、0.02<w+x≦1、0≦y≦0.1、0≦z≦0.4、1<a≦1.1で表される各不等式を満たす数値である。)
    3. The laminated piezoelectric element according to claim 1, wherein said piezoelectric alkali niobate is represented by the following compositional formula.

    (Ag u M2 v (K 1-w-x Na w Li x ) 1-u-v ) a
    (Sb y Ta z Nb 1-yz )O 3 (1)

    (However, M2 in the formula represents at least one alkaline earth metal selected from the group consisting of calcium (Ca), strontium (Sr) and barium (Ba). w, x, y, z and a are 0.005<u≤0.05, 0.002<v≤0.05, 0.007<u+v≤0.1, 0≤w≤1, 0.005<u≤0.05;02<x≦0.1,0.02<w+x≦1, 0≦y≦0.1, 0≦z≦0.4, and 1<a≦1.1. .)
  4.  前記内部電極層に占める前記マンガン酸リチウムの面積百分率(R)が1%以上である、請求項1から3のいずれか1項に記載の積層型圧電素子。 4. The multilayer piezoelectric element according to claim 1, wherein the area percentage ( R3 ) of said lithium manganate in said internal electrode layer is 1% or more.
  5.  前記間隙部に占める前記マンガン酸リチウムの面積百分率(R)が10%以上である、請求項1から4のいずれか1項に記載の積層型圧電素子。 5. The laminated piezoelectric element according to claim 1, wherein the area percentage ( R4 ) of said lithium manganate in said gap is 10% or more.
PCT/JP2022/034339 2021-10-12 2022-09-14 Multilayer piezoelectric element WO2023063007A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-167159 2021-10-12
JP2021167159 2021-10-12

Publications (1)

Publication Number Publication Date
WO2023063007A1 true WO2023063007A1 (en) 2023-04-20

Family

ID=85987421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034339 WO2023063007A1 (en) 2021-10-12 2022-09-14 Multilayer piezoelectric element

Country Status (1)

Country Link
WO (1) WO2023063007A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113451496A (en) * 2020-03-27 2021-09-28 太阳诱电株式会社 Piezoelectric element and method for manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004047958A (en) * 2002-05-20 2004-02-12 Matsushita Electric Ind Co Ltd Method for manufacturing laminated piezoelectric transformer
WO2006068245A1 (en) * 2004-12-24 2006-06-29 Murata Manufacturing Co., Ltd Multilayer piezoelectric ceramic component and method for producing multilayer piezoelectric ceramic component
JP2014026998A (en) * 2012-07-24 2014-02-06 Taiyo Yuden Co Ltd Piezoelectric element and manufacturing method therefor
JP2021158250A (en) * 2020-03-27 2021-10-07 太陽誘電株式会社 Piezoelectric element and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004047958A (en) * 2002-05-20 2004-02-12 Matsushita Electric Ind Co Ltd Method for manufacturing laminated piezoelectric transformer
WO2006068245A1 (en) * 2004-12-24 2006-06-29 Murata Manufacturing Co., Ltd Multilayer piezoelectric ceramic component and method for producing multilayer piezoelectric ceramic component
JP2014026998A (en) * 2012-07-24 2014-02-06 Taiyo Yuden Co Ltd Piezoelectric element and manufacturing method therefor
JP2021158250A (en) * 2020-03-27 2021-10-07 太陽誘電株式会社 Piezoelectric element and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113451496A (en) * 2020-03-27 2021-09-28 太阳诱电株式会社 Piezoelectric element and method for manufacturing the same
CN113451496B (en) * 2020-03-27 2024-05-14 太阳诱电株式会社 Piezoelectric element and method for manufacturing the same
US12010921B2 (en) 2020-03-27 2024-06-11 Taiyo Yuden Co., Ltd. Piezoelectric element with lithium manganate-containing ceramic layers and silver-containing internal electrodes

Similar Documents

Publication Publication Date Title
JP5662888B2 (en) Multi-layer piezoelectric ceramic parts
JP5543537B2 (en) Piezoelectric element
JP5704725B2 (en) Piezoelectric ceramics and piezoelectric element
JP6259577B2 (en) Piezoelectric ceramics and piezoelectric element
CN113451496B (en) Piezoelectric element and method for manufacturing the same
WO2023063007A1 (en) Multilayer piezoelectric element
JP2013035746A (en) Ceramic composition and laminated ceramic electronic component including the same
JP2020145286A (en) Piezoelectric ceramic and manufacturing method thereof, and piezoelectric element
CN111689775B (en) Laminated piezoelectric ceramic, method for manufacturing same, piezoelectric element, and piezoelectric vibration device
JP7374597B2 (en) Laminated piezoelectric ceramics and their manufacturing method, laminated piezoelectric elements, and piezoelectric vibration devices
US20230391675A1 (en) Piezoelectric element and method for manufacturing same, as well as piezoelectric vibration device
JP7261047B2 (en) Laminated piezoelectric ceramics and its manufacturing method, laminated piezoelectric element, and piezoelectric vibration device
JP7021701B2 (en) Ceramic members and electronic devices
JP2007230839A (en) Piezoelectric ceramic composition, multilayer piezoelectric element and method of manufacturing the same
WO2024029278A1 (en) Multilayer piezoelectric element
WO2023112661A1 (en) Piezoelectric/dielectric ceramic, piezoelectric element and sounder
JP6362883B2 (en) Solid ion capacitor and method of manufacturing solid ion capacitor
JP6039715B2 (en) Piezoelectric ceramics and piezoelectric element
CN113451500B (en) Piezoelectric element and method for manufacturing the same
WO2023032326A1 (en) Piezoelectric ceramic composition, piezoelectric ceramics, piezoelectric element, and tactile module
JP2015012089A (en) Piezoelectric ceramic component and manufacturing method therefor
CN112687790B (en) Piezoelectric ceramic, method for producing same, and piezoelectric element
JP2006096626A (en) Method of manufacturing piezoelectric ceramic, method of manufacturing piezoelectric element, and piezoelectric element
JP2020167407A (en) Lamination type piezoelectric ceramic and manufacturing method thereof, and lamination type piezoelectric device and piezoelectric vibratory machine
JP6426416B2 (en) Piezoelectric ceramic and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22880703

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023555039

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE