WO2023062786A1 - Abnormality detection assistance device, abnormality detection assistance system, abnormality detection assistance method, abnormality detection assistance program, and computer-readable recording medium having abnormality detection assistance program recorded thereon - Google Patents

Abnormality detection assistance device, abnormality detection assistance system, abnormality detection assistance method, abnormality detection assistance program, and computer-readable recording medium having abnormality detection assistance program recorded thereon Download PDF

Info

Publication number
WO2023062786A1
WO2023062786A1 PCT/JP2021/038096 JP2021038096W WO2023062786A1 WO 2023062786 A1 WO2023062786 A1 WO 2023062786A1 JP 2021038096 W JP2021038096 W JP 2021038096W WO 2023062786 A1 WO2023062786 A1 WO 2023062786A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
vibration value
value
vibration
analysis
Prior art date
Application number
PCT/JP2021/038096
Other languages
French (fr)
Japanese (ja)
Inventor
昭司 鈴木
慎司 中山
Original Assignee
中山水熱工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中山水熱工業株式会社 filed Critical 中山水熱工業株式会社
Priority to PCT/JP2021/038096 priority Critical patent/WO2023062786A1/en
Publication of WO2023062786A1 publication Critical patent/WO2023062786A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H1/00Measuring characteristics of vibrations in solids by using direct conduction to the detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings
    • G01M13/045Acoustic or vibration analysis

Definitions

  • the present invention relates to an anomaly detection auxiliary device, an anomaly detection aiding system, an anomaly detection aiding method, an anomaly detection aiding program, and a computer-readable recording medium recording an anomaly detection aiding program for aiding the anomaly detection of mechanical devices.
  • a vibration detection element is attached to the bearing device of a railway vehicle, the envelope of the detected vibration signal is obtained, and the envelope is subjected to frequency analysis by FFT, thereby diagnosing the abnormality of the bearing.
  • a device is known (see, for example, Patent Document 1, paragraphs 0025 and 0026).
  • the vibration detection element is mounted so as to detect at least vibration in the radial direction if the bearing is a radial bearing, or in the axial direction if the bearing is a thrust bearing. It says to install.
  • An anomaly detection auxiliary device provides an X-axis vibration value, a Y-axis vibration value, and a Z-axis vibration value representing vibrations in the mutually orthogonal X-axis direction, Y-axis direction, and Z-axis direction, respectively.
  • a vibration value acquisition unit that acquires continuously over time;
  • a three-axis synthesis unit that generates three-axis synthesized waveform data based on the X-axis vibration value, the Y-axis vibration value, and the Z-axis vibration value obtained at a plurality of timings;
  • a frequency analysis unit that performs frequency analysis by fast Fourier transform based on the three-axis synthesized waveform data and calculates an analysis value for each frequency component.
  • An abnormality detection assistance system further includes the abnormality detection assistance device described above, and a vibration detection device that detects the X-axis vibration value, the Y-axis vibration value, and the Z-axis vibration value. .
  • an abnormality detection assistance method includes (A) an X-axis vibration value, a Y-axis vibration value, and a Z-axis vibration representing vibrations in mutually orthogonal X-axis, Y-axis, and Z-axis directions; (B) Three-axis synthesis based on the X-axis vibration value, the Y-axis vibration value, and the Z-axis vibration value obtained at a plurality of timings. Waveform data is generated, and (C) frequency analysis is performed by fast Fourier transform based on the three-axis synthesized waveform data to calculate an analysis value for each frequency component.
  • the abnormality detection auxiliary program provides a computer with an X-axis vibration value, a Y-axis vibration value, and a Z-axis vibration representing vibrations in mutually orthogonal X-axis, Y-axis, and Z-axis directions.
  • a vibration value acquisition unit that continuously acquires values over time; It functions as a triaxial synthesizing section that generates synthetic waveform data, and a frequency analyzing section that performs frequency analysis by fast Fourier transform based on the triaxial synthetic waveform data and calculates an analysis value for each frequency component.
  • a computer-readable recording medium records the above-described anomaly detection auxiliary program.
  • FIG. 1 is a block diagram showing an example of an anomaly detection assisting system having an anomaly detection assisting device according to an embodiment of the present invention
  • FIG. 4 is a waveform diagram conceptually showing an example of an X-axis vibration value Vx acquired over time
  • FIG. 2 is an explanatory diagram illustrating calculation of a synthesized vibration value Vc by a three-axis synthesizing unit shown in FIG. 1
  • FIG. FIG. 2 is a flow chart showing an example of the operation of the abnormality detection assistance system shown in FIG. 1 according to the first embodiment
  • 4 is a graph of analytical values when a normal bearing sample without damage is used as a bearing to be inspected; 4 is a graph of analytical values when using a bearing sample with a damaged outer ring at one location as a bearing to be inspected. 4 is a graph of analysis values when a bearing sample with damage in one part of the inner ring is used as the bearing to be inspected. 4 is a graph showing analysis values obtained by performing frequency analysis on waveform data of X-axis vibration values Vx when the outer ring is damaged. 4 is a graph showing analysis values obtained by performing frequency analysis on waveform data of Y-axis vibration value Vy when the outer ring is damaged.
  • FIG. 9 is a flow chart showing an example of the operation of the abnormality detection assistance system shown in FIG. 1 according to the second embodiment; FIG. FIG.
  • FIG. 2 is a flow chart showing an example of the operation of the abnormality detection assistance system shown in FIG. 1 according to the first embodiment;
  • FIG. Obtained by executing steps S11 to S14 and S4 to S6 using the same data as the X-axis vibration value Vx, Y-axis vibration value Vy, and Z-axis vibration value Vz that are the basis of the analysis results shown in FIG. It is a graph of the analytical values obtained.
  • FIG. 1 is a block diagram showing an example of an anomaly detection assistance system equipped with an anomaly detection assistance device according to an embodiment of the present invention.
  • the abnormality detection assistance system 1 shown in FIG. 1 includes an abnormality detection assistance device 2 and a vibration detection device 3 .
  • the vibration detection device 3 is attached, for example, to the housing M2 of the mechanical device M that is the object of abnormality detection.
  • the mechanical device M comprises, for example, a motor M1 with bearings as bearings. Therefore, vibrations generated by the motor M1, bearings, and other driving mechanisms are transmitted to the housing M2.
  • the vibration detection device 3 is not limited to being attached to the housing M2 as long as it is attached to a location where the vibration generated by the drive mechanism of the mechanical device M is transmitted.
  • the mechanical device M is not limited to the example provided with bearings.
  • the vibration detection device 3 includes, for example, a three-axis acceleration sensor that detects accelerations in mutually orthogonal X-axis, Y-axis, and Z-axis directions as vibration detection values Dx, Dy, and Dz, respectively, and a vibration detection value Dx , Dy, and Dz to the abnormality detection assisting device 2 by wireless communication.
  • a sampling frequency at which the vibration detection device 3 detects the vibration detection values Dx, Dy, and Dz can be set to 3200 Hz, for example.
  • Acceleration is an example of information representing vibration.
  • the vibration detection device 3 only needs to be able to detect vibrations in the X-axis, Y-axis, and Z-axis directions, and is not limited to detecting vibrations based on acceleration.
  • the vibration detection device 3 may detect vibration based on velocity, or may detect vibration based on displacement, for example.
  • the anomaly detection auxiliary device 2 is configured using, for example, a personal computer.
  • the anomaly detection assisting device 2 includes an arithmetic unit 21 , a communication I/F (interface) circuit 22 and an antenna 23 .
  • the communication I/F circuit 22 is a communication interface circuit capable of wireless communication with the vibration detection device 3 via the antenna 23 .
  • various wireless communication methods such as WiFi (registered trademark) and Bluetooth (registered trademark) can be used.
  • the anomaly detection auxiliary device 2 and the vibration detection device 3 are not limited to wireless communication, and may be wired communication.
  • the vibration detection values Dx, Dy, and Dz detected by the vibration detection device 3 are stored in a storage medium such as a memory card, and the abnormality detection auxiliary device 2 reads the storage medium to obtain the vibration detection values Dx, Dy. , Dz may be acquired by the anomaly detection auxiliary device 2 .
  • the computing unit 21 is configured using, for example, a microcomputer.
  • the calculation unit 21 includes, for example, a CPU (Central Processing Unit) that executes predetermined calculation processing, a RAM (Random Access Memory) that temporarily stores data, a non-volatile memory such as a HDD (Hard Disk Drive) and an SSD (Solid State Drive). It is configured using a physical storage device, peripheral circuits thereof, and the like.
  • a CPU Central Processing Unit
  • RAM Random Access Memory
  • HDD Hard Disk Drive
  • SSD Solid State Drive
  • the calculation unit 21 executes, for example, an abnormality detection auxiliary program pre-stored in the above-described storage device, so that the vibration value acquisition unit 211, the three-axis synthesis unit 212, the frequency analysis unit 213, the graphing unit 214, and It functions as an abnormality determination unit 215 .
  • the vibration value acquisition unit 211 Based on the vibration detection values Dx, Dy, and Dz transmitted from the vibration detection device 3 to the communication I/F circuit 22, the vibration value acquisition unit 211 extracts X-axis direction, Y-axis direction, and Z-axis direction that are orthogonal to each other.
  • An X-axis vibration value Vx, a Y-axis vibration value Vy, and a Z-axis vibration value Vz representing the vibration of are continuously obtained with the lapse of time.
  • FIG. 2 is a waveform diagram conceptually showing an example of the X-axis vibration value Vx acquired over time.
  • the X-axis vibration value Vx continuously acquired over time t can be grasped as waveform data representing the waveform of acceleration.
  • the Y-axis vibration value Vy and the Z-axis vibration value Vz can also be grasped as waveform data in the same manner as the X-axis vibration value Vx shown in FIG.
  • the vibration value acquisition unit 211 may acquire the vibration detection values Dx, Dy, and Dz obtained by the vibration detection device 3 as they are as the X-axis vibration value Vx, the Y-axis vibration value Vy, and the Z-axis vibration value Vz.
  • the vibration value acquiring unit 211 obtains the vibration detection values Dx, Dy, and Dz obtained by the vibration detection device 3 by correcting the detection error of the vibration detection device 3, etc. It may be obtained as a vibration value Vy and a Z-axis vibration value Vz.
  • the 3-axis synthesis unit 212 generates 3-axis synthesized waveform data based on the X-axis vibration value Vx, the Y-axis vibration value Vy, and the Z-axis vibration value Vz obtained at a plurality of timings (time t). Specifically, the square root of the sum of the squares of the X-axis vibration value Vx(t), the Y-axis vibration value Vy(t), and the Z-axis vibration value Vz(t) obtained at the same timing (time t) is A combined vibration value Vc(t) at time t is calculated based on the following equation (1).
  • Composite vibration value Vc(t) ⁇ Vx(t) 2 +Vy(t) 2 +Vz(t) 2 ⁇ (1)
  • the three-axis synthesizing unit 212 calculates the synthesized vibration value Vc corresponding to a plurality of timings, thereby generating three-axis synthesized waveform data in which the plurality of synthesized vibration values Vc(t) are arranged along the time axis. Generate.
  • FIG. 3 is an explanatory diagram for explaining calculation of the synthesized vibration value Vc by the three-axis synthesizing unit 212 shown in FIG.
  • the process of calculating the square root of the sum of the squares of the X-axis vibration value Vx, the Y-axis vibration value Vy, and the Z-axis vibration value Vz as the combined vibration value Vc is, as shown in FIG. Vx, the value of the Y-axis direction vector is Vy, and the value of the Z-axis direction vector is Vz.
  • the X-axis, Y-axis, and Z-axis directions of the vibration detection device 3 do not necessarily match the vibration direction of the mechanical device M to be detected. Therefore, the vibration of the mechanical device M is decomposed into components in the X-axis direction, the Y-axis direction, and the Z-axis direction, and detected by the vibration detection device 3 as vibration detection values Dx, Dy, and Dz. Therefore, the combined vibration value Vc obtained from the X-axis vibration value Vx, the Y-axis vibration value Vy, and the Z-axis vibration value Vz based on the vibration detection values Dx, Dy, and Dz is It represents the magnitude of the original vibration in the vibration direction of the mechanical device M.
  • the anomaly detection auxiliary device 2 including the three-axis synthesizing unit 212 does not need to consider the mounting direction of the vibration detection device 3 .
  • the frequency analysis unit 213 performs frequency analysis by fast Fourier transform (FFT) based on triaxial synthesized waveform data composed of synthesized vibration values Vc obtained at a plurality of consecutive timings, and obtains an analyzed value for each frequency component.
  • FFT fast Fourier transform
  • the graphing unit 214 graphs the analysis value for each frequency component calculated by the frequency analysis unit 213 on a two-dimensional plane with the frequency on one axis and the analysis value on the other axis.
  • the abnormality determination unit 215 determines an abnormality when the magnitude of the analysis value for each frequency component exceeds a preset reference value within a preset reference frequency range.
  • FIG. 4 is a flow chart showing an example of the operation of the abnormality detection assistance system 1 shown in FIG.
  • the vibration detection device 3 detects vibration detection values Dx, Dy, and Dz from the mechanical device M, and transmits the detected vibration detection values Dx, Dy, and Dz to the abnormality detection auxiliary device 2 (step S1).
  • the vibration value acquisition unit 211 obtains the X-axis vibration value Vx, the Y-axis vibration value Vy, and the Z-axis vibration value Vz continuously over time. (step S2: process (A)).
  • the vibration value acquisition unit 211 may directly use the vibration detection values Dx, Dy, and Dz as the X-axis vibration value Vx, the Y-axis vibration value Vy, and the Z-axis vibration value Vz.
  • the X-axis vibration value Vx, the Y-axis vibration value Vy, and the Z-axis vibration value Vz may be obtained by processing such as correction.
  • the three-axis synthesis unit 212 calculates the square root of the sum of the squares of the X-axis vibration value Vx, the Y-axis vibration value Vy, and the Z-axis vibration value Vz obtained at the same timing as the synthesized vibration value Vc ( Step S3: Step (B)).
  • the three-axis synthesis unit 212 generates three-axis synthesized waveform data including a plurality of synthesized vibration values Vc by calculating the synthesized vibration values Vc at a plurality of consecutive timings (step S4: process ( B)).
  • the frequency analysis unit 213 performs frequency analysis by fast Fourier transform on the triaxial synthesized waveform data, and calculates an analysis value for each frequency component (step S5: process (C)).
  • the graphing unit 214 graphs the analysis value for each frequency component calculated by the frequency analysis unit 213 on a two-dimensional plane with the frequency on one axis and the analysis value on the other axis (step S6).
  • the frequency analysis unit 213 may store the graphed analysis values in a storage device, for example, display them on an image display device (not shown), or print them with a printer.
  • FIG. 5 to 7 are graphs showing examples of analysis values obtained by the abnormality detection auxiliary device 2 based on the vibration detection values Dx, Dy, and Dz experimentally measured by the vibration detection device 3.
  • the vibration detection device 3 was attached to a mechanical device M equipped with a bearing that is a cylindrical roller bearing of bearing model number N204 (hereinafter referred to as the bearing to be inspected), and the bearing to be inspected was rotated by the motor M1 at 1,200 rpm (20 Hz). rotated.
  • FIG. 5 is a graph of analysis values when a normal bearing sample without damage is used as a bearing to be inspected.
  • FIG. 6 is a graph of analysis values when using a bearing sample with a damaged outer ring at one location as the bearing to be inspected.
  • FIG. 7 is a graph of analysis values when using a bearing sample with damage in one part of the inner ring as the bearing to be inspected.
  • the outer ring damage characteristic frequency Fo and the inner ring damage characteristic frequency Fi can be obtained, for example, by entering the bearing model number and rotation speed on the web page of each bearing manufacturer.
  • the outer ring damage characteristic frequency Fo and the inner ring damage characteristic frequency Fi can be found on the webpages of manufacturers, etc., as “bearing vibration frequency”, “passing frequency”, “number of rolling elements passing against the inner ring”, or “rolling frequency against the outer ring”. It is provided under a name such as "number of passages of moving objects”.
  • FIGS. 8 to 13 show, without executing steps S3 and S4, frequency Analytical values obtained by performing analysis are shown.
  • 8 to 10 show analytical values when using a bearing to be inspected that has a damaged outer ring, as in FIG.
  • FIG. 8 shows analysis values obtained by performing frequency analysis on the waveform data of the X-axis vibration value Vx.
  • FIG. 9 shows analysis values obtained by performing frequency analysis on the waveform data of the Y-axis vibration value Vy.
  • FIG. 10 shows analysis values obtained by performing frequency analysis on the waveform data of the Z-axis vibration value Vz. None of FIGS. 8 to 10 show the peak of the outer ring damage characteristic frequency Fo.
  • FIGS. 11 to 13 are analytical values when using a bearing to be inspected with a damaged inner ring, as in Fig. 7.
  • FIG. 11 shows analysis values obtained by performing frequency analysis on the waveform data of the X-axis vibration value Vx.
  • FIG. 12 shows analysis values obtained by performing frequency analysis on the waveform data of the Y-axis vibration value Vy.
  • FIG. 13 shows analysis values obtained by performing frequency analysis on the waveform data of the Z-axis vibration value Vz. None of FIGS. 11 to 13 show the peak of the inner ring damage characteristic frequency Fi.
  • the abnormality determination unit 215 determines that there is an abnormality when the magnitude of the analysis value for each frequency component exceeds a preset reference value within a preset reference frequency range (step S7).
  • the abnormality determination unit 215 may display the determination result on a display device (not shown).
  • a value with a width corresponding to the measurement error of the vibration detection device 3 can be used for each of the inner ring damage characteristic frequency Fi and the outer ring damage characteristic frequency Fo.
  • the reference value can be determined, for example, experimentally and set appropriately.
  • an inner ring frequency range set in association with the inner ring of the bearing and an outer ring frequency range set in association with the outer ring of the bearing are set.
  • the inner ring is determined to be abnormal
  • the outer ring may be determined to be abnormal.
  • the inner ring damage characteristic frequency Fi can be set to have a width corresponding to the measurement error of the vibration detection device 3.
  • the outer ring frequency range for example, the outer ring damage characteristic frequency Fo can be used.
  • an abnormality detection assistance system 1a and an abnormality detection assistance device 2a according to the second embodiment of the present invention will be described.
  • the abnormality detection assistance system 1a and the abnormality detection assistance device 2a are shown in FIG.
  • the anomaly detection assisting device 2a differs from the anomaly detection assisting device 2 in that it includes a three-axis synthesizing unit 212a instead of the three-axis synthesizing unit 212.
  • the three-axis synthesizing unit 212a differs from the three-axis synthesizing unit 212 in the method of generating the three-axis synthesized waveform data.
  • Step S11 the three-axis synthesis unit 212a acquires, as an X-axis envelope waveform, the envelope of the X-axis waveform in which the X-axis vibration values Vx obtained at a plurality of timings in step S2 are arranged along the time axis. (Step S11: step (B)).
  • the three-axis synthesis unit 212a acquires, as a Y-axis envelope waveform, the envelope of the Y-axis waveform in which the Y-axis vibration values Vy obtained at a plurality of timings in step S2 are arranged along the time axis ( Step S12: Step (B)).
  • the three-axis synthesis unit 212a acquires, as a Z-axis envelope waveform, the envelope of the Z-axis waveform in which the Z-axis vibration values Vz obtained at a plurality of timings in step S2 are arranged along the time axis ( Step S13: Step (B)).
  • steps S11 to S13 as the envelope processing for acquiring the X-axis envelope waveform, the Y-axis envelope waveform, and the Y-axis envelope waveform from the X-axis waveform, the Y-axis waveform, and the Z-axis waveform, the envelope is shown from the waveform data.
  • Known processing methods for obtaining data can be used.
  • a method using Hilbert transform can be used as an example of envelope processing.
  • the three-axis synthesis unit 212a calculates the square root of the sum of the squares of the values at the same timing in the X-axis envelope waveform, the Y-axis envelope waveform, and the Z-axis envelope waveform as the synthesized vibration value Vc (Step S14: Step ( B)).
  • the value of time t in the X-axis envelope waveform is Ex(t)
  • the value of time t in the Y-axis envelope waveform is Ey(t)
  • the value of time t in the Z-axis envelope waveform is Ez(t)
  • the composite vibration value Vc at time t is Vc(t)
  • the composite vibration value Vc(t) at time t is obtained by the following equation (2).
  • step S4 step (B)
  • the synthesized vibration value Vc obtained in step S14 is calculated for a plurality of consecutive timings to generate three-axis synthesized waveform data. to S7 are executed.
  • Ex(t), Ey(t), and Ez(t) perform envelope processing on vibrations decomposed into components in the X-axis direction, Y-axis direction, and Z-axis direction, as described above. equivalent to Therefore, the synthesized vibration value Vc(t) obtained in this manner represents the magnitude of the original vibration in the vibration direction of the mechanical device M before being resolved in the three axial directions, as described above. .
  • the abnormality detection auxiliary device 2a including the three-axis synthesizing unit 212a does not need to consider the mounting direction of the vibration detection device 3.
  • step S3 The effect of the three-axis synthesizing unit 212a performing steps S11 to S14 instead of step S3 will be described below.
  • FIG. 16 executes steps S11 to S14 and S4 to S6 using the same data as the X-axis vibration value Vx, Y-axis vibration value Vy, and Z-axis vibration value Vz that are the basis of the analysis results shown in FIG. It is a graph of the analytical value obtained by. According to the analytical value graph shown in FIG . An analytical value of 0.29 m/s 2 was obtained for peak A3 at 240 Hz, and an analytical value of 0.3 m/s 2 was obtained for peak A4 at 320 Hz.
  • the analysis shown in FIG. The analytical value of peak A1 is 0.95 m/s 2 , the analytical value of peak A2 is 0.25 m/s 2 , the analytical value of peak A3 is 0.1 m/s 2 , the analytical value of peak A4 is 0.1 m/s. 16, in which the triaxial synthesizing unit 212a executes steps S11 to S14 instead of step S3, the analytical values of the peaks A1 to A4 are larger than those in FIG .
  • FIG. 17 executes steps S11 to S14 and S4 to S6 using the same data as the X-axis vibration value Vx, Y-axis vibration value Vy, and Z-axis vibration value Vz that are the basis of the analysis results shown in FIG. It is a graph of the analytical value obtained by.
  • the analytical value of the peak B2 of 240 Hz is 0.38 m/s 2
  • An analytical value of 0.19 m/s 2 was obtained for peak B3 at 360 Hz.
  • step S7 does not have to be executed.
  • the graphing unit 214 is not necessarily provided, and step S6 may not be executed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

This abnormality detection assistance device comprises: a vibration value acquiring unit 211 for continuously acquiring, with the passage of time t, each of an X-axis vibration value Vx, a Y-axis vibration value Vy, and a Z-axis vibration value Vz representing vibrations in an X-axis direction, a Y-axis direction, and a Z-axis direction which are mutually orthogonal; a three-axis combining unit 212, 212a for generating three-axis composite waveform data on the basis of the X-axis vibration value Vx, the Y-axis vibration value Vy, and the Z-axis vibration value Vz obtained at a plurality of timings; and a frequency analyzing unit 213 for performing frequency analysis by means of a fast Fourier transform on the basis of the three-axis composite waveform data to calculate an analysis value for each frequency component.

Description

異常検出補助装置、異常検出補助システム、異常検出補助方法、異常検出補助プログラム、及び異常検出補助プログラムを記録したコンピュータ読み取り可能な記録媒体Abnormality Detection Auxiliary Device, Abnormality Detection Auxiliary System, Abnormality Detection Auxiliary Method, Abnormality Detection Auxiliary Program, and Computer-Readable Recording Medium Recording Abnormality Detection Auxiliary Program
 本発明は、機械装置の異常検出を補助するための異常検出補助装置、異常検出補助システム、異常検出補助方法、異常検出補助プログラム、及び異常検出補助プログラムを記録したコンピュータ読み取り可能な記録媒体に関する。 The present invention relates to an anomaly detection auxiliary device, an anomaly detection aiding system, an anomaly detection aiding method, an anomaly detection aiding program, and a computer-readable recording medium recording an anomaly detection aiding program for aiding the anomaly detection of mechanical devices.
 従来より、鉄道車両の軸受装置に振動検出素子を取り付け、検出した振動信号のエンベロープ(包絡線)を求め、そのエンベロープに対してFFTによる周波数分析を行うことによって、軸受けの異常を診断する異常診断装置が知られている(例えば、特許文献1、段落0025、0026参照。)。 Conventionally, a vibration detection element is attached to the bearing device of a railway vehicle, the envelope of the detected vibration signal is obtained, and the envelope is subjected to frequency analysis by FFT, thereby diagnosing the abnormality of the bearing. A device is known (see, for example, Patent Document 1, paragraphs 0025 and 0026).
 特許文献1の段落0014には、振動検出素子を取り付け方向に関して、軸受がラジアル軸受の場合にはラジアル方向を、またスラスト軸受の場合にはアキシアル方向の振動を少なくとも検出するように振動検出素子を取り付けるべきことが記載されている。 In paragraph 0014 of Patent Document 1, regarding the mounting direction of the vibration detection element, the vibration detection element is mounted so as to detect at least vibration in the radial direction if the bearing is a radial bearing, or in the axial direction if the bearing is a thrust bearing. It says to install.
 また、特許文献1の段落0075には、一方向の振動のみ検出可能な振動検出素子を用いた場合には、振動検出素子の検出方向と、検出対象の振動が大きい方向とが一致していないと、振動が正しく検出されないことが記載されている。そして、一方向のみ検出可能な振動検出素子では振動大の方向と素子の検出可能方向が構造上一致させられないような場合であっても、複数の検出方向から振動検出可能な多方向同時振動検出素子は、何れかの検出方向を振動大の方向と一致させることが可能であるため、良好な振動検出が可能であることが記載されている。 Further, in paragraph 0075 of Patent Document 1, when a vibration detection element capable of detecting vibration in only one direction is used, the detection direction of the vibration detection element does not match the direction in which the vibration to be detected is large. , and that vibrations are not detected correctly. With a vibration detection element that can detect only one direction, even if the direction of large vibration and the detectable direction of the element cannot be matched due to the structure, multidirectional simultaneous vibration can be detected from multiple detection directions. It is described that since the detection element can match any detection direction with the direction of large vibration, good vibration detection is possible.
特開2004-212225号公報Japanese Patent Application Laid-Open No. 2004-212225
 しかしながら、上述の多方向同時振動検出素子を用いた場合であっても、上述の通り、何れかの検出方向を振動大の方向と一致させる必要がある。 However, even in the case of using the multi-directional simultaneous vibration detection element described above, it is necessary to match one of the detection directions with the direction of large vibration, as described above.
 本発明の目的は、振動検出装置の取り付け方向を考慮する必要がない異常検出補助装置、異常検出補助システム、異常検出補助方法、異常検出補助プログラム、及び異常検出補助プログラムを記録したコンピュータ読み取り可能な記録媒体を提供することである。 It is an object of the present invention to provide a computer readable system which records an anomaly detection auxiliary device, an anomaly detection aiding system, an anomaly detection aiding method, an anomaly detection aiding program, and an anomaly detection aiding program which do not require consideration of the mounting direction of the vibration detection device. It is to provide a recording medium.
 本発明の一局面に従う異常検出補助装置は、互いに直交するX軸方向、Y軸方向、及びZ軸方向の振動を表すX軸振動値、Y軸振動値、及びZ軸振動値を、それぞれ、時間の経過に伴い連続的に取得する振動値取得部と、 An anomaly detection auxiliary device according to one aspect of the present invention provides an X-axis vibration value, a Y-axis vibration value, and a Z-axis vibration value representing vibrations in the mutually orthogonal X-axis direction, Y-axis direction, and Z-axis direction, respectively. a vibration value acquisition unit that acquires continuously over time;
 複数のタイミングで得られた前記X軸振動値、前記Y軸振動値、及び前記Z軸振動値に基づいて三軸合成波形データを生成する三軸合成部と、 a three-axis synthesis unit that generates three-axis synthesized waveform data based on the X-axis vibration value, the Y-axis vibration value, and the Z-axis vibration value obtained at a plurality of timings;
 前記三軸合成波形データに基づいて、高速フーリエ変換による周波数分析を行い、周波数成分毎の分析値を算出する周波数分析部とを備える。 A frequency analysis unit that performs frequency analysis by fast Fourier transform based on the three-axis synthesized waveform data and calculates an analysis value for each frequency component.
 また、本発明の一局面に従う異常検出補助システムは、上述の異常検出補助装置と、前記X軸振動値、前記Y軸振動値、及び前記Z軸振動値を検出する振動検出装置とをさらに備える。 An abnormality detection assistance system according to an aspect of the present invention further includes the abnormality detection assistance device described above, and a vibration detection device that detects the X-axis vibration value, the Y-axis vibration value, and the Z-axis vibration value. .
 また、本発明の一局面に従う異常検出補助方法は、(A)互いに直交するX軸方向、Y軸方向、及びZ軸方向の振動を表すX軸振動値、Y軸振動値、及びZ軸振動値を、それぞれ、時間の経過に伴い連続的に取得し、(B)複数のタイミングで得られた前記X軸振動値、前記Y軸振動値、及び前記Z軸振動値に基づいて三軸合成波形データを生成し、(C)前記三軸合成波形データに基づいて、高速フーリエ変換による周波数分析を行い、周波数成分毎の分析値を算出する。 In addition, an abnormality detection assistance method according to an aspect of the present invention includes (A) an X-axis vibration value, a Y-axis vibration value, and a Z-axis vibration representing vibrations in mutually orthogonal X-axis, Y-axis, and Z-axis directions; (B) Three-axis synthesis based on the X-axis vibration value, the Y-axis vibration value, and the Z-axis vibration value obtained at a plurality of timings. Waveform data is generated, and (C) frequency analysis is performed by fast Fourier transform based on the three-axis synthesized waveform data to calculate an analysis value for each frequency component.
 また、本発明の一局面に従う異常検出補助プログラムは、コンピュータを、互いに直交するX軸方向、Y軸方向、及びZ軸方向の振動を表すX軸振動値、Y軸振動値、及びZ軸振動値を、それぞれ、時間の経過に伴い連続的に取得する振動値取得部と、複数のタイミングで得られた前記X軸振動値、前記Y軸振動値、及び前記Z軸振動値に基づく三軸合成波形データを生成する三軸合成部と、前記三軸合成波形データに基づいて、高速フーリエ変換による周波数分析を行い、周波数成分毎の分析値を算出する周波数分析部として機能させる。 In addition, the abnormality detection auxiliary program according to one aspect of the present invention provides a computer with an X-axis vibration value, a Y-axis vibration value, and a Z-axis vibration representing vibrations in mutually orthogonal X-axis, Y-axis, and Z-axis directions. a vibration value acquisition unit that continuously acquires values over time; It functions as a triaxial synthesizing section that generates synthetic waveform data, and a frequency analyzing section that performs frequency analysis by fast Fourier transform based on the triaxial synthetic waveform data and calculates an analysis value for each frequency component.
 また、本発明の一局面に従うコンピュータ読み取り可能な記録媒体は、上述の異常検出補助プログラムを記録する。 Also, a computer-readable recording medium according to one aspect of the present invention records the above-described anomaly detection auxiliary program.
本発明の一実施形態に係る異常検出補助装置を備えた異常検出補助システムの一例を示すブロック図である。1 is a block diagram showing an example of an anomaly detection assisting system having an anomaly detection assisting device according to an embodiment of the present invention; FIG. 時間の経過に伴い取得された、X軸振動値Vxの一例を概念的に示す波形図である。4 is a waveform diagram conceptually showing an example of an X-axis vibration value Vx acquired over time; FIG. 図1に示す三軸合成部による合成振動値Vcの算出を説明する説明図である。2 is an explanatory diagram illustrating calculation of a synthesized vibration value Vc by a three-axis synthesizing unit shown in FIG. 1; FIG. 図1に示す異常検出補助システムの第一実施形態に係る動作の一例を示すフローチャートである。FIG. 2 is a flow chart showing an example of the operation of the abnormality detection assistance system shown in FIG. 1 according to the first embodiment; FIG. 被検査ベアリングとして、損傷のない正常なベアリングサンプルを用いた場合の分析値のグラフである。4 is a graph of analytical values when a normal bearing sample without damage is used as a bearing to be inspected; 被検査ベアリングとして、外輪の一か所に損傷があるベアリングサンプルを用いた場合の分析値のグラフである。4 is a graph of analytical values when using a bearing sample with a damaged outer ring at one location as a bearing to be inspected. 被検査ベアリングとして、内輪の一か所に損傷があるベアリングサンプルを用いた場合の分析値のグラフである。4 is a graph of analysis values when a bearing sample with damage in one part of the inner ring is used as the bearing to be inspected. 外輪に損傷がある場合のX軸振動値Vxの波形データに対する周波数分析を行うことにより得られた分析値を示すグラフである。4 is a graph showing analysis values obtained by performing frequency analysis on waveform data of X-axis vibration values Vx when the outer ring is damaged. 外輪に損傷がある場合のY軸振動値Vyの波形データに対する周波数分析を行うことにより得られた分析値を示すグラフである。4 is a graph showing analysis values obtained by performing frequency analysis on waveform data of Y-axis vibration value Vy when the outer ring is damaged. 外輪に損傷がある場合のZ軸振動値Vzの波形データに対する周波数分析を行うことにより得られた分析値を示すグラフである。4 is a graph showing analysis values obtained by performing frequency analysis on waveform data of Z-axis vibration value Vz when the outer ring is damaged. 内輪に損傷がある場合のX軸振動値Vxの波形データに対する周波数分析を行うことにより得られた分析値を示すグラフである。4 is a graph showing analysis values obtained by performing frequency analysis on waveform data of X-axis vibration values Vx when the inner ring is damaged. 内輪に損傷がある場合のY軸振動値Vyの波形データに対する周波数分析を行うことにより得られた分析値を示すグラフである。4 is a graph showing analysis values obtained by performing frequency analysis on waveform data of Y-axis vibration value Vy when the inner ring is damaged. 内輪に損傷がある場合のZ軸振動値Vzの波形データに対する周波数分析を行うことにより得られた分析値を示すグラフである。4 is a graph showing analysis values obtained by performing frequency analysis on waveform data of Z-axis vibration value Vz when the inner ring is damaged. 図1に示す異常検出補助システムの第二実施形態に係る動作の一例を示すフローチャートである。FIG. 9 is a flow chart showing an example of the operation of the abnormality detection assistance system shown in FIG. 1 according to the second embodiment; FIG. 図1に示す異常検出補助システムの第一実施形態に係る動作の一例を示すフローチャートである。FIG. 2 is a flow chart showing an example of the operation of the abnormality detection assistance system shown in FIG. 1 according to the first embodiment; FIG. 図6に示す分析結果の元となったX軸振動値Vx、Y軸振動値Vy、及びZ軸振動値Vzと同じデータを用いてステップS11~S14,S4~S6を実行することにより得られた分析値のグラフである。Obtained by executing steps S11 to S14 and S4 to S6 using the same data as the X-axis vibration value Vx, Y-axis vibration value Vy, and Z-axis vibration value Vz that are the basis of the analysis results shown in FIG. It is a graph of the analytical values obtained. 図7に示す分析結果の元となったX軸振動値Vx、Y軸振動値Vy、及びZ軸振動値Vzと同じデータを用いてステップS11~S14,S4~S6を実行することにより得られた分析値のグラフである。Obtained by executing steps S11 to S14 and S4 to S6 using the same data as the X-axis vibration value Vx, Y-axis vibration value Vy, and Z-axis vibration value Vz that are the basis of the analysis results shown in FIG. It is a graph of the analytical values obtained.
 以下、本発明に係る実施形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、その説明を省略する。
(第一実施形態)
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment according to the present invention will be described below with reference to the drawings. It should be noted that the same reference numerals in each figure indicate the same configuration, and the description thereof will be omitted.
(First embodiment)
 図1は、本発明の一実施形態に係る異常検出補助装置を備えた異常検出補助システムの一例を示すブロック図である。 FIG. 1 is a block diagram showing an example of an anomaly detection assistance system equipped with an anomaly detection assistance device according to an embodiment of the present invention.
 図1に示す異常検出補助システム1は、異常検出補助装置2と、振動検出装置3とを備えている。振動検出装置3は、例えば、異常検出対象である機械装置Mの筐体M2に取り付けられている。機械装置Mは、例えば、軸受けとしてベアリングを備えたモータM1を備えている。そのため、モータM1、ベアリング、その他の駆動機構で生じた振動が、筐体M2に伝わるようになっている。 The abnormality detection assistance system 1 shown in FIG. 1 includes an abnormality detection assistance device 2 and a vibration detection device 3 . The vibration detection device 3 is attached, for example, to the housing M2 of the mechanical device M that is the object of abnormality detection. The mechanical device M comprises, for example, a motor M1 with bearings as bearings. Therefore, vibrations generated by the motor M1, bearings, and other driving mechanisms are transmitted to the housing M2.
 なお、振動検出装置3は、機械装置Mの駆動機構で生じた振動が伝わる箇所に取り付けられればよく、筐体M2に取り付けられる例に限らない。また、機械装置Mは、ベアリングを備える例に限らない。 It should be noted that the vibration detection device 3 is not limited to being attached to the housing M2 as long as it is attached to a location where the vibration generated by the drive mechanism of the mechanical device M is transmitted. Moreover, the mechanical device M is not limited to the example provided with bearings.
 振動検出装置3は、例えば、互いに直交するX軸、Y軸、及びZ軸方向の加速度を、それぞれ振動を表す振動検出値Dx、Dy、Dzとして検出する三軸加速度センサと、振動検出値Dx、Dy、Dzを、無線通信によって異常検出補助装置2へ送信する無線通信回路とを備えている。振動検出装置3が振動検出値Dx、Dy、Dzを検出するサンプリング周波数は、例えば3200Hzとすることができる。 The vibration detection device 3 includes, for example, a three-axis acceleration sensor that detects accelerations in mutually orthogonal X-axis, Y-axis, and Z-axis directions as vibration detection values Dx, Dy, and Dz, respectively, and a vibration detection value Dx , Dy, and Dz to the abnormality detection assisting device 2 by wireless communication. A sampling frequency at which the vibration detection device 3 detects the vibration detection values Dx, Dy, and Dz can be set to 3200 Hz, for example.
 加速度は、振動を表す情報の一例に相当する。なお、振動検出装置3は、X軸、Y軸、及びZ軸方向の振動を検出することができればよく、振動を加速度によって検出するものに限らない。振動検出装置3は、例えば、速度によって振動を検出してもよく、変位によって振動を検出してもよい。 Acceleration is an example of information representing vibration. Note that the vibration detection device 3 only needs to be able to detect vibrations in the X-axis, Y-axis, and Z-axis directions, and is not limited to detecting vibrations based on acceleration. The vibration detection device 3 may detect vibration based on velocity, or may detect vibration based on displacement, for example.
 異常検出補助装置2は、例えばパーソナルコンピュータを用いて構成されている。異常検出補助装置2は、演算部21と、通信I/F(インターフェイス)回路22と、アンテナ23とを備えている。 The anomaly detection auxiliary device 2 is configured using, for example, a personal computer. The anomaly detection assisting device 2 includes an arithmetic unit 21 , a communication I/F (interface) circuit 22 and an antenna 23 .
 通信I/F回路22は、アンテナ23を介して振動検出装置3と無線通信可能な通信インターフェイス回路である。通信I/F回路22と振動検出装置3との通信方式は、例えばWiFi(登録商標)やBluetooth(登録商標)等、種々の無線通信方式を用いることができる。 The communication I/F circuit 22 is a communication interface circuit capable of wireless communication with the vibration detection device 3 via the antenna 23 . As a communication method between the communication I/F circuit 22 and the vibration detection device 3, various wireless communication methods such as WiFi (registered trademark) and Bluetooth (registered trademark) can be used.
 なお、異常検出補助装置2と振動検出装置3とは、無線通信を行う例に限られず、有線通信を行ってもよい。あるいは、振動検出装置3で検出された振動検出値Dx、Dy、Dzを、メモリカード等の記憶媒体に記憶し、その記憶媒体を異常検出補助装置2が読み取ることによって、振動検出値Dx、Dy、Dzを異常検出補助装置2が取得するようにしてもよい。 The anomaly detection auxiliary device 2 and the vibration detection device 3 are not limited to wireless communication, and may be wired communication. Alternatively, the vibration detection values Dx, Dy, and Dz detected by the vibration detection device 3 are stored in a storage medium such as a memory card, and the abnormality detection auxiliary device 2 reads the storage medium to obtain the vibration detection values Dx, Dy. , Dz may be acquired by the anomaly detection auxiliary device 2 .
 演算部21は、例えばマイクロコンピュータを用いて構成されている。演算部21は、例えば所定の演算処理を実行するCPU(Central Processing Unit)、データを一時的に記憶するRAM(Random Access Memory)、HDD(Hard Disk Drive)やSSD(Solid State Drive)等の不揮発性の記憶装置、及びこれらの周辺回路等を用いて構成されている。 The computing unit 21 is configured using, for example, a microcomputer. The calculation unit 21 includes, for example, a CPU (Central Processing Unit) that executes predetermined calculation processing, a RAM (Random Access Memory) that temporarily stores data, a non-volatile memory such as a HDD (Hard Disk Drive) and an SSD (Solid State Drive). It is configured using a physical storage device, peripheral circuits thereof, and the like.
 そして、演算部21は、例えば上述の記憶装置に予め記憶された異常検出補助プログラムを実行することによって、振動値取得部211、三軸合成部212、周波数分析部213、グラフ化部214、及び異常判定部215として機能する。 Then, the calculation unit 21 executes, for example, an abnormality detection auxiliary program pre-stored in the above-described storage device, so that the vibration value acquisition unit 211, the three-axis synthesis unit 212, the frequency analysis unit 213, the graphing unit 214, and It functions as an abnormality determination unit 215 .
 振動値取得部211は、振動検出装置3から通信I/F回路22へ送信された、振動検出値Dx、Dy、Dzに基づいて、互いに直交するX軸方向、Y軸方向、及びZ軸方向の振動を表すX軸振動値Vx、Y軸振動値Vy、及びZ軸振動値Vzを、それぞれ、時間の経過に伴い連続的に取得する。 Based on the vibration detection values Dx, Dy, and Dz transmitted from the vibration detection device 3 to the communication I/F circuit 22, the vibration value acquisition unit 211 extracts X-axis direction, Y-axis direction, and Z-axis direction that are orthogonal to each other. An X-axis vibration value Vx, a Y-axis vibration value Vy, and a Z-axis vibration value Vz representing the vibration of are continuously obtained with the lapse of time.
 図2は、時間の経過に伴い取得された、X軸振動値Vxの一例を概念的に示す波形図である。図2に示すように、時間tの経過に伴い連続的に取得されたX軸振動値Vxは、加速度の波形を表す波形データとして把握することができる。Y軸振動値Vy、及びZ軸振動値Vzについても、図2に示すX軸振動値Vxと同様に、波形データとして把握することができる。 FIG. 2 is a waveform diagram conceptually showing an example of the X-axis vibration value Vx acquired over time. As shown in FIG. 2, the X-axis vibration value Vx continuously acquired over time t can be grasped as waveform data representing the waveform of acceleration. The Y-axis vibration value Vy and the Z-axis vibration value Vz can also be grasped as waveform data in the same manner as the X-axis vibration value Vx shown in FIG.
 振動値取得部211は、振動検出装置3で得られた振動検出値Dx、Dy、DzをそのままX軸振動値Vx、Y軸振動値Vy、及びZ軸振動値Vzとして取得してもよい。あるいは振動値取得部211は、振動検出装置3で得られた振動検出値Dx、Dy、Dzに対して、振動検出装置3の検出誤差等を補正した値を、X軸振動値Vx、Y軸振動値Vy、及びZ軸振動値Vzとして取得してもよい。 The vibration value acquisition unit 211 may acquire the vibration detection values Dx, Dy, and Dz obtained by the vibration detection device 3 as they are as the X-axis vibration value Vx, the Y-axis vibration value Vy, and the Z-axis vibration value Vz. Alternatively, the vibration value acquiring unit 211 obtains the vibration detection values Dx, Dy, and Dz obtained by the vibration detection device 3 by correcting the detection error of the vibration detection device 3, etc. It may be obtained as a vibration value Vy and a Z-axis vibration value Vz.
 三軸合成部212は、複数のタイミング(時間t)で得られたX軸振動値Vx、Y軸振動値Vy、及びZ軸振動値Vzに基づいて三軸合成波形データを生成する。具体的には、同一のタイミング(時間t)で得られたX軸振動値Vx(t)、Y軸振動値Vy(t)、及びZ軸振動値Vz(t)同士の二乗和平方根を、下記の式(1)に基づき時間tの合成振動値Vc(t)として算出する。
合成振動値Vc(t)=√{Vx(t)+Vy(t)+Vz(t)} ・・・(1)
The 3-axis synthesis unit 212 generates 3-axis synthesized waveform data based on the X-axis vibration value Vx, the Y-axis vibration value Vy, and the Z-axis vibration value Vz obtained at a plurality of timings (time t). Specifically, the square root of the sum of the squares of the X-axis vibration value Vx(t), the Y-axis vibration value Vy(t), and the Z-axis vibration value Vz(t) obtained at the same timing (time t) is A combined vibration value Vc(t) at time t is calculated based on the following equation (1).
Composite vibration value Vc(t)=√{Vx(t) 2 +Vy(t) 2 +Vz(t) 2 } (1)
 そして、三軸合成部212は、合成振動値Vcを複数のタイミングに対応して算出することによって、複数の合成振動値Vc(t)が時間軸に沿って並べられた三軸合成波形データを生成する。 Then, the three-axis synthesizing unit 212 calculates the synthesized vibration value Vc corresponding to a plurality of timings, thereby generating three-axis synthesized waveform data in which the plurality of synthesized vibration values Vc(t) are arranged along the time axis. Generate.
 図3は、図1に示す三軸合成部212による合成振動値Vcの算出を説明する説明図である。X軸振動値Vx、Y軸振動値Vy、及びZ軸振動値Vz同士の二乗和平方根を、合成振動値Vcとして算出する処理は、図3に示すように、X軸方向のベクトルの値をVx、Y軸方向のベクトルの値をVy、及びZ軸方向のベクトルの値をVzとし、この三軸方向のベクトル値の和の絶対値を合成振動値Vcとして算出することに相当する。 FIG. 3 is an explanatory diagram for explaining calculation of the synthesized vibration value Vc by the three-axis synthesizing unit 212 shown in FIG. The process of calculating the square root of the sum of the squares of the X-axis vibration value Vx, the Y-axis vibration value Vy, and the Z-axis vibration value Vz as the combined vibration value Vc is, as shown in FIG. Vx, the value of the Y-axis direction vector is Vy, and the value of the Z-axis direction vector is Vz.
 振動検出装置3のX軸、Y軸、及びZ軸の各方向は、必ずしも検出対象である機械装置Mの振動方向と一致しない。そのため、機械装置Mの振動は、X軸方向の成分、Y軸方向の成分、及びZ軸方向の成分に分解されて、振動検出装置3によって振動検出値Dx、Dy、Dzとして検出される。従って、振動検出値Dx、Dy、Dzに基づくX軸振動値Vx、Y軸振動値Vy、及びZ軸振動値Vzから得られた合成振動値Vcは、三軸方向に分解される前の、機械装置Mの振動方向における本来の振動の大きさを表すことになる。 The X-axis, Y-axis, and Z-axis directions of the vibration detection device 3 do not necessarily match the vibration direction of the mechanical device M to be detected. Therefore, the vibration of the mechanical device M is decomposed into components in the X-axis direction, the Y-axis direction, and the Z-axis direction, and detected by the vibration detection device 3 as vibration detection values Dx, Dy, and Dz. Therefore, the combined vibration value Vc obtained from the X-axis vibration value Vx, the Y-axis vibration value Vy, and the Z-axis vibration value Vz based on the vibration detection values Dx, Dy, and Dz is It represents the magnitude of the original vibration in the vibration direction of the mechanical device M.
 すなわち、三軸合成部212を備えた異常検出補助装置2は、振動検出装置3の取り付け方向を考慮する必要がない。 That is, the anomaly detection auxiliary device 2 including the three-axis synthesizing unit 212 does not need to consider the mounting direction of the vibration detection device 3 .
 周波数分析部213は、連続する複数のタイミングに対して得られた合成振動値Vcからなる三軸合成波形データに基づいて、高速フーリエ変換(FFT)による周波数分析を行い、周波数成分毎の分析値を算出する。 The frequency analysis unit 213 performs frequency analysis by fast Fourier transform (FFT) based on triaxial synthesized waveform data composed of synthesized vibration values Vc obtained at a plurality of consecutive timings, and obtains an analyzed value for each frequency component. Calculate
 グラフ化部214は、周波数分析部213により算出された周波数成分毎の分析値を、一方の軸を周波数、他方の軸を分析値とした二次元平面にグラフ化する。 The graphing unit 214 graphs the analysis value for each frequency component calculated by the frequency analysis unit 213 on a two-dimensional plane with the frequency on one axis and the analysis value on the other axis.
 異常判定部215は、周波数成分毎の分析値の大きさが、予め設定された基準周波数範囲内において、予め設定された基準値を超えたとき、異常と判定する。 The abnormality determination unit 215 determines an abnormality when the magnitude of the analysis value for each frequency component exceeds a preset reference value within a preset reference frequency range.
 次に、図1に示す異常検出補助システム1の動作について説明する。図4は、図1に示す異常検出補助システム1の動作の一例を示すフローチャートである。以下、同一の処理には同一のステップ番号を付してその説明を省略する。まず、振動検出装置3によって、機械装置Mから振動検出値Dx、Dy、Dzが検出され、検出された振動検出値Dx、Dy、Dzが異常検出補助装置2へ送信される(ステップS1)。 Next, the operation of the abnormality detection assistance system 1 shown in FIG. 1 will be described. FIG. 4 is a flow chart showing an example of the operation of the abnormality detection assistance system 1 shown in FIG. Hereinafter, the same processing will be given the same step number, and the description thereof will be omitted. First, the vibration detection device 3 detects vibration detection values Dx, Dy, and Dz from the mechanical device M, and transmits the detected vibration detection values Dx, Dy, and Dz to the abnormality detection auxiliary device 2 (step S1).
 次に、振動値取得部211は、振動検出値Dx、Dy、Dzに基づいて、X軸振動値Vx、Y軸振動値Vy、及びZ軸振動値Vzを、それぞれ、時間の経過に伴い連続的に取得する(ステップS2:工程(A))。振動値取得部211は、振動検出値Dx、Dy、DzをそのままX軸振動値Vx、Y軸振動値Vy、及びZ軸振動値Vzとしてもよく、振動検出値Dx、Dy、Dzに対して補正する等の加工を加えたものをX軸振動値Vx、Y軸振動値Vy、及びZ軸振動値Vzとしてもよい。 Next, based on the vibration detection values Dx, Dy, and Dz, the vibration value acquisition unit 211 obtains the X-axis vibration value Vx, the Y-axis vibration value Vy, and the Z-axis vibration value Vz continuously over time. (step S2: process (A)). The vibration value acquisition unit 211 may directly use the vibration detection values Dx, Dy, and Dz as the X-axis vibration value Vx, the Y-axis vibration value Vy, and the Z-axis vibration value Vz. The X-axis vibration value Vx, the Y-axis vibration value Vy, and the Z-axis vibration value Vz may be obtained by processing such as correction.
 次に、三軸合成部212は、同一のタイミングで得られたX軸振動値Vx、Y軸振動値Vy、及びZ軸振動値Vz同士の二乗和平方根を、合成振動値Vcとして算出する(ステップS3:工程(B))。 Next, the three-axis synthesis unit 212 calculates the square root of the sum of the squares of the X-axis vibration value Vx, the Y-axis vibration value Vy, and the Z-axis vibration value Vz obtained at the same timing as the synthesized vibration value Vc ( Step S3: Step (B)).
 次に、三軸合成部212は、合成振動値Vcを連続する複数のタイミングに対して算出することにより、複数の合成振動値Vcを含む三軸合成波形データを生成する(ステップS4:工程(B))。 Next, the three-axis synthesis unit 212 generates three-axis synthesized waveform data including a plurality of synthesized vibration values Vc by calculating the synthesized vibration values Vc at a plurality of consecutive timings (step S4: process ( B)).
 次に、周波数分析部213は、三軸合成波形データに対して高速フーリエ変換による周波数分析を行い、周波数成分毎の分析値を算出する(ステップS5:工程(C))。 Next, the frequency analysis unit 213 performs frequency analysis by fast Fourier transform on the triaxial synthesized waveform data, and calculates an analysis value for each frequency component (step S5: process (C)).
 次に、グラフ化部214は、周波数分析部213によって算出された周波数成分毎の分析値を、一方の軸を周波数、他方の軸を分析値とした二次元平面にグラフ化する(ステップS6)。周波数分析部213は、グラフ化された分析値を記憶装置に記憶してもよく、例えば図略の画像表示装置に表示したり、プリンターによって印刷したりしてもよい。 Next, the graphing unit 214 graphs the analysis value for each frequency component calculated by the frequency analysis unit 213 on a two-dimensional plane with the frequency on one axis and the analysis value on the other axis (step S6). . The frequency analysis unit 213 may store the graphed analysis values in a storage device, for example, display them on an image display device (not shown), or print them with a printer.
 図5~図7は、振動検出装置3によって実験的に測定した振動検出値Dx、Dy、Dzに基づき、異常検出補助装置2で得られた分析値の一例を示すグラフである。実験では、ベアリング型番N204の円筒コロ軸受けであるベアリング(以下、被検査ベアリングと称する)を備えた機械装置Mに振動検出装置3を取り付け、モータM1で被検査ベアリングを1,200rpm(20Hz)で回転させた。 5 to 7 are graphs showing examples of analysis values obtained by the abnormality detection auxiliary device 2 based on the vibration detection values Dx, Dy, and Dz experimentally measured by the vibration detection device 3. FIG. In the experiment, the vibration detection device 3 was attached to a mechanical device M equipped with a bearing that is a cylindrical roller bearing of bearing model number N204 (hereinafter referred to as the bearing to be inspected), and the bearing to be inspected was rotated by the motor M1 at 1,200 rpm (20 Hz). rotated.
 この状態で、ステップS1~S6を実行した結果、ステップS6において、図5~図7に示す分析値のグラフが得られた。図5は、被検査ベアリングとして、損傷のない正常なベアリングサンプルを用いた場合の分析値のグラフである。図6は、被検査ベアリングとして、外輪の一か所に損傷があるベアリングサンプルを用いた場合の分析値のグラフである。図7は、被検査ベアリングとして、内輪の一か所に損傷があるベアリングサンプルを用いた場合の分析値のグラフである。 As a result of executing steps S1 to S6 in this state, graphs of the analysis values shown in FIGS. 5 to 7 were obtained in step S6. FIG. 5 is a graph of analysis values when a normal bearing sample without damage is used as a bearing to be inspected. FIG. 6 is a graph of analysis values when using a bearing sample with a damaged outer ring at one location as the bearing to be inspected. FIG. 7 is a graph of analysis values when using a bearing sample with damage in one part of the inner ring as the bearing to be inspected.
 ベアリングに損傷がある場合、ベアリングの型式毎に、ベアリングの回転速度(rpm、Hz)に応じた特徴的な振動が生じることが知られている。ベアリングの外輪に損傷がある場合に生じる特徴的な振動を外輪損傷特徴周波数Fo、ベアリングの内輪に損傷がある場合に生じる特徴的な振動を内輪損傷特徴周波数Fiと称する。 It is known that when there is damage to a bearing, characteristic vibrations occur depending on the rotational speed (rpm, Hz) of the bearing for each type of bearing. A characteristic vibration generated when the outer ring of the bearing is damaged is called an outer ring damage characteristic frequency Fo, and a characteristic vibration generated when the inner ring of the bearing is damaged is called an inner ring damage characteristic frequency Fi.
 外輪損傷特徴周波数Fo及び内輪損傷特徴周波数Fiは、例えばベアリングの製造メーカ各社のWebページ等においてベアリング型番と回転速度を入力することによって、入手可能となっている。外輪損傷特徴周波数Fo及び内輪損傷特徴周波数Fiは、製造メーカ各社のWebページ等において、「軸受の振動周波数」、「通過振動数」、「内輪に対する転動体の通過数」、又は「外輪に対する転動体の通過数」等の名称で提供されている。 The outer ring damage characteristic frequency Fo and the inner ring damage characteristic frequency Fi can be obtained, for example, by entering the bearing model number and rotation speed on the web page of each bearing manufacturer. The outer ring damage characteristic frequency Fo and the inner ring damage characteristic frequency Fi can be found on the webpages of manufacturers, etc., as "bearing vibration frequency", "passing frequency", "number of rolling elements passing against the inner ring", or "rolling frequency against the outer ring". It is provided under a name such as "number of passages of moving objects".
 型番N204の被検査ベアリングを1,200rpm(20Hz)で回転させた場合、外輪損傷特徴周波数Foは80Hz、内輪損傷特徴周波数Fiは120Hzとなる。 When the bearing under inspection of model number N204 is rotated at 1,200 rpm (20 Hz), the outer ring damage characteristic frequency Fo is 80 Hz and the inner ring damage characteristic frequency Fi is 120 Hz.
 正常な被検査ベアリングを用いた場合の分析結果(図5)によれば、回転速度である20HzのピークP1と、20Hzの高調波である40HzのピークP2及び60HzのピークP3とが確認できたが、外輪損傷特徴周波数Fo及び内輪損傷特徴周波数Fiのピークは確認できなかった。 According to the analysis results (Fig. 5) of a normal bearing under test, a peak P1 of 20 Hz, which is the rotational speed, and peaks P2 of 40 Hz and P3 of 60 Hz, which are harmonics of 20 Hz, were confirmed. However, the peaks of the outer ring damage characteristic frequency Fo and the inner ring damage characteristic frequency Fi could not be confirmed.
 外輪に損傷のある被検査ベアリングを用いた場合の分析結果(図6)によれば、図5とは異なり、外輪損傷特徴周波数Fo(=80Hz)のピークA1と、80Hzの高調波である、160HzのピークA2、240HzのピークA3、及び320HzのピークA4とが確認できた。 According to the analysis results (FIG. 6) when using a bearing under inspection with damage to the outer ring, unlike FIG. A peak A2 at 160 Hz, a peak A3 at 240 Hz, and a peak A4 at 320 Hz were confirmed.
 内輪に損傷のある被検査ベアリングを用いた場合の分析結果(図7)によれば、図5とは異なり、内輪損傷特徴周波数Fi(=120Hz)のピークB1と、120Hzの高調波である、240HzのピークB2、及び360HzのピークB3とが確認できた。 According to the analysis results (FIG. 7) when using a bearing to be inspected with damage to the inner ring, unlike FIG. A peak B2 at 240 Hz and a peak B3 at 360 Hz were confirmed.
 以上のことから、ステップS1~S5の処理により得られた分析値に、外輪損傷特徴周波数Foに対応するピークがあれば被検査ベアリングの外輪に損傷があると判断でき、内輪損傷特徴周波数Fiに対応するピークがあれば被検査ベアリングの内輪に損傷があると判断できることが実験的に確認できた。さらに、ステップS6を実行して分析値をグラフ化することによって、内輪損傷特徴周波数Fi及び外輪損傷特徴周波数Foのピークの有無を確認することが容易になる。 From the above, if there is a peak corresponding to the outer ring damage characteristic frequency Fo in the analysis values obtained by the processing of steps S1 to S5, it can be determined that the outer ring of the bearing to be inspected has damage, and the inner ring damage characteristic frequency Fi It was experimentally confirmed that if there is a corresponding peak, it can be determined that the inner ring of the bearing to be inspected has damage. Furthermore, by executing step S6 and graphing the analysis values, it becomes easy to confirm the presence or absence of peaks in the inner ring damage characteristic frequency Fi and the outer ring damage characteristic frequency Fo.
 以下、ステップS3,S4によって、三軸合成波形データを生成することの効果について説明する。図8~図13は、ステップS3,S4を実行せず、ステップS2で得られたX軸振動値Vx、Y軸振動値Vy、及びZ軸振動値Vzに対して、それぞれ高速フーリエ変換による周波数分析を行うことにより得られた分析値を示している。 The effect of generating triaxial synthesized waveform data in steps S3 and S4 will be described below. FIGS. 8 to 13 show, without executing steps S3 and S4, frequency Analytical values obtained by performing analysis are shown.
 実験条件は、図6、図7の場合と同様である。図8~図10は、図6と同様、外輪に損傷のある被検査ベアリングを用いた場合の分析値である。図8は、X軸振動値Vxの波形データに対する周波数分析を行うことにより得られた分析値を示している。図9は、Y軸振動値Vyの波形データに対する周波数分析を行うことにより得られた分析値を示している。図10は、Z軸振動値Vzの波形データに対する周波数分析を行うことにより得られた分析値を示している。図8~図10のいずれにも、外輪損傷特徴周波数Foのピークは表れていない。 The experimental conditions are the same as in FIGS. 6 and 7. 8 to 10 show analytical values when using a bearing to be inspected that has a damaged outer ring, as in FIG. FIG. 8 shows analysis values obtained by performing frequency analysis on the waveform data of the X-axis vibration value Vx. FIG. 9 shows analysis values obtained by performing frequency analysis on the waveform data of the Y-axis vibration value Vy. FIG. 10 shows analysis values obtained by performing frequency analysis on the waveform data of the Z-axis vibration value Vz. None of FIGS. 8 to 10 show the peak of the outer ring damage characteristic frequency Fo.
 図11~図13は、図7と同様、内輪に損傷のある被検査ベアリングを用いた場合の分析値である。図11は、X軸振動値Vxの波形データに対する周波数分析を行うことにより得られた分析値を示している。図12は、Y軸振動値Vyの波形データに対する周波数分析を行うことにより得られた分析値を示している。図13は、Z軸振動値Vzの波形データに対する周波数分析を行うことにより得られた分析値を示している。図11~図13のいずれにも、内輪損傷特徴周波数Fiのピークは表れていない。  Figs. 11 to 13 are analytical values when using a bearing to be inspected with a damaged inner ring, as in Fig. 7. Figs. FIG. 11 shows analysis values obtained by performing frequency analysis on the waveform data of the X-axis vibration value Vx. FIG. 12 shows analysis values obtained by performing frequency analysis on the waveform data of the Y-axis vibration value Vy. FIG. 13 shows analysis values obtained by performing frequency analysis on the waveform data of the Z-axis vibration value Vz. None of FIGS. 11 to 13 show the peak of the inner ring damage characteristic frequency Fi.
 以上、ステップS3,S4を実行した場合の図6、図7と、ステップS3,S4を実行しない場合の図8~図13との比較から、ステップS3,S4を実行することにより損傷の検出が容易になることが確認できた。 6 and 7 when steps S3 and S4 are executed and FIGS. 8 to 13 when steps S3 and S4 are not executed, it can be seen that damage can be detected by executing steps S3 and S4. I have found it to be easy.
 次に、異常判定部215は、周波数成分毎の分析値の大きさが、予め設定された基準周波数範囲内において、予め設定された基準値を超えたとき、異常と判定する(ステップS7)。異常判定部215は、判定結果を図略の表示装置に表示してもよい。 Next, the abnormality determination unit 215 determines that there is an abnormality when the magnitude of the analysis value for each frequency component exceeds a preset reference value within a preset reference frequency range (step S7). The abnormality determination unit 215 may display the determination result on a display device (not shown).
 基準周波数範囲としては、例えば内輪損傷特徴周波数Fi及び外輪損傷特徴周波数Foに対して、それぞれ振動検出装置3の測定誤差程度の幅を持たせた値を用いることができる。基準値は、例えば実験的に求めて適宜設定することができる。 As the reference frequency range, for example, a value with a width corresponding to the measurement error of the vibration detection device 3 can be used for each of the inner ring damage characteristic frequency Fi and the outer ring damage characteristic frequency Fo. The reference value can be determined, for example, experimentally and set appropriately.
 なお、基準周波数範囲として、ベアリングの内輪に対応付けて設定された内輪周波数範囲と、ベアリングの外輪に対応付けて設定された外輪周波数範囲とを設定し、異常判定部215は、周波数成分毎の分析値の大きさが、内輪周波数範囲内において基準値を超えたとき、内輪の異常と判定し、周波数成分毎の分析値の大きさが、外輪周波数範囲内において基準値を超えたとき、外輪の異常と判定してもよい。 As the reference frequency range, an inner ring frequency range set in association with the inner ring of the bearing and an outer ring frequency range set in association with the outer ring of the bearing are set. When the magnitude of the analysis value exceeds the reference value within the frequency range of the inner ring, the inner ring is determined to be abnormal, and when the magnitude of the analysis value for each frequency component exceeds the reference value within the frequency range of the outer ring, the outer ring may be determined to be abnormal.
 内輪周波数範囲としては、例えば内輪損傷特徴周波数Fiに対して、振動検出装置3の測定誤差程度の幅を持たせた値を用いることができ、外輪周波数範囲としては、例えば外輪損傷特徴周波数Foに対して、振動検出装置3の測定誤差程度の幅を持たせた値を用いることができる。
(第二実施形態)
As the inner ring frequency range, for example, the inner ring damage characteristic frequency Fi can be set to have a width corresponding to the measurement error of the vibration detection device 3. As the outer ring frequency range, for example, the outer ring damage characteristic frequency Fo can be used. On the other hand, it is possible to use a value with a width of about the measurement error of the vibration detection device 3 .
(Second embodiment)
 次に、本発明の第二実施形態に係る異常検出補助システム1a及び異常検出補助装置2aについて説明する。異常検出補助システム1a及び異常検出補助装置2aは、異常検出補助システム1及び異常検出補助装置2と同様、図1で示される。 Next, an abnormality detection assistance system 1a and an abnormality detection assistance device 2a according to the second embodiment of the present invention will be described. The abnormality detection assistance system 1a and the abnormality detection assistance device 2a are shown in FIG.
 異常検出補助装置2aは、異常検出補助装置2とは、三軸合成部212の代わりに三軸合成部212aを備える点で異なる。三軸合成部212aは、三軸合成部212とは、三軸合成波形データの生成方法が異なる。 The anomaly detection assisting device 2a differs from the anomaly detection assisting device 2 in that it includes a three-axis synthesizing unit 212a instead of the three-axis synthesizing unit 212. The three-axis synthesizing unit 212a differs from the three-axis synthesizing unit 212 in the method of generating the three-axis synthesized waveform data.
 その他の構成は異常検出補助システム1及び異常検出補助装置2と同様であるのでその説明を省略し、以下本実施形態の特徴的な点について説明する。 Other configurations are the same as those of the abnormality detection assistance system 1 and the abnormality detection assistance device 2, so description thereof will be omitted, and the characteristic points of this embodiment will be described below.
 図14、図15は、異常検出補助システム1aの動作の一例を示すフローチャートである。ステップS1,S2,S4~S7は図4と同様であるのでその説明を省略する。三軸合成部212aは、ステップS3の代わりにステップS11~S14を実行する。
 ステップS11において、三軸合成部212aは、ステップS2で複数のタイミングで得られたX軸振動値Vxが時間軸に沿って並べられたX軸波形の包絡線を、X軸エンベロープ波形として取得する(ステップS11:工程(B))。
14 and 15 are flow charts showing an example of the operation of the abnormality detection assistance system 1a. Steps S1, S2, and S4 to S7 are the same as in FIG. 4, so description thereof will be omitted. The three-axis synthesizing unit 212a executes steps S11 to S14 instead of step S3.
In step S11, the three-axis synthesis unit 212a acquires, as an X-axis envelope waveform, the envelope of the X-axis waveform in which the X-axis vibration values Vx obtained at a plurality of timings in step S2 are arranged along the time axis. (Step S11: step (B)).
 次に、三軸合成部212aは、ステップS2で複数のタイミングで得られたY軸振動値Vyが時間軸に沿って並べられたY軸波形の包絡線を、Y軸エンベロープ波形として取得する(ステップS12:工程(B))。 Next, the three-axis synthesis unit 212a acquires, as a Y-axis envelope waveform, the envelope of the Y-axis waveform in which the Y-axis vibration values Vy obtained at a plurality of timings in step S2 are arranged along the time axis ( Step S12: Step (B)).
 次に、三軸合成部212aは、ステップS2で複数のタイミングで得られたZ軸振動値Vzが時間軸に沿って並べられたZ軸波形の包絡線を、Z軸エンベロープ波形として取得する(ステップS13:工程(B))。 Next, the three-axis synthesis unit 212a acquires, as a Z-axis envelope waveform, the envelope of the Z-axis waveform in which the Z-axis vibration values Vz obtained at a plurality of timings in step S2 are arranged along the time axis ( Step S13: Step (B)).
 ステップS11~S13において、X軸波形、Y軸波形、及びZ軸波形から、X軸エンベロープ波形、Y軸エンベロープ波形、及びY軸エンベロープ波形を取得するエンベローブ処理としては、波形データから包絡線を示すデータを得る公知の処理方法を用いることができる。例えば、エンベロープ処理の一例として、ヒルベルト変換を用いる方法を利用可能である。 In steps S11 to S13, as the envelope processing for acquiring the X-axis envelope waveform, the Y-axis envelope waveform, and the Y-axis envelope waveform from the X-axis waveform, the Y-axis waveform, and the Z-axis waveform, the envelope is shown from the waveform data. Known processing methods for obtaining data can be used. For example, as an example of envelope processing, a method using Hilbert transform can be used.
 次に、三軸合成部212aは、X軸エンベロープ波形、Y軸エンベロープ波形、及びZ軸エンベロープ波形における同一のタイミングの値同士の二乗和平方根を合成振動値Vcとして算出する(ステップS14:工程(B))。具体的には、X軸エンベロープ波形における時間tの値をEx(t)、Y軸エンベロープ波形における時間tの値をEy(t)、Z軸エンベロープ波形における時間tの値をEz(t)、時間tにおける合成振動値VcをVc(t)とすると、時間tにおける合成振動値Vc(t)は、下記の式(2)で得られる。 Next, the three-axis synthesis unit 212a calculates the square root of the sum of the squares of the values at the same timing in the X-axis envelope waveform, the Y-axis envelope waveform, and the Z-axis envelope waveform as the synthesized vibration value Vc (Step S14: Step ( B)). Specifically, the value of time t in the X-axis envelope waveform is Ex(t), the value of time t in the Y-axis envelope waveform is Ey(t), the value of time t in the Z-axis envelope waveform is Ez(t), Assuming that the composite vibration value Vc at time t is Vc(t), the composite vibration value Vc(t) at time t is obtained by the following equation (2).
 合成振動値Vc(t)=√{Ex(t)+Ey(t)+Ez(t)} ・・・(2) Composite vibration value Vc(t)=√{Ex(t) 2 +Ey(t) 2 +Ez(t) 2 } (2)
 ステップS4(工程(B))では、ステップS14で得られた合成振動値Vcを連続する複数のタイミングに対して算出することにより、三軸合成波形データが生成され、以下上述と同様にステップS5~S7が実行される。 In step S4 (step (B)), the synthesized vibration value Vc obtained in step S14 is calculated for a plurality of consecutive timings to generate three-axis synthesized waveform data. to S7 are executed.
 Ex(t)、Ey(t)、Ez(t)は、上述と同様、X軸方向の成分、Y軸方向の成分、及びZ軸方向の成分に分解された振動に対してエンベロープ処理を行ったものに相当する。従って、このようにして得られた合成振動値Vc(t)は、上述と同様、三軸方向に分解される前の、機械装置Mの振動方向における本来の振動の大きさを表すことになる。 Ex(t), Ey(t), and Ez(t) perform envelope processing on vibrations decomposed into components in the X-axis direction, Y-axis direction, and Z-axis direction, as described above. equivalent to Therefore, the synthesized vibration value Vc(t) obtained in this manner represents the magnitude of the original vibration in the vibration direction of the mechanical device M before being resolved in the three axial directions, as described above. .
 すなわち、三軸合成部212aを備えた異常検出補助装置2aは、振動検出装置3の取り付け方向を考慮する必要がない。 That is, the abnormality detection auxiliary device 2a including the three-axis synthesizing unit 212a does not need to consider the mounting direction of the vibration detection device 3.
 以下、三軸合成部212aが、ステップS3の代わりにステップS11~S14を実行することの効果について説明する。 The effect of the three-axis synthesizing unit 212a performing steps S11 to S14 instead of step S3 will be described below.
 図16は、図6に示す分析結果の元となったX軸振動値Vx、Y軸振動値Vy、及びZ軸振動値Vzと同じデータを用いてステップS11~S14,S4~S6を実行することにより得られた分析値のグラフである。図16に示す分析値のグラフによれば、外輪損傷特徴周波数Fo(=80Hz)のピークA1の分析値として1.5m/s、160HzのピークA2の分析値として0.41m/s、240HzのピークA3の分析値として0.29m/s、320HzのピークA4の分析値として0.3m/sが得られた。 FIG. 16 executes steps S11 to S14 and S4 to S6 using the same data as the X-axis vibration value Vx, Y-axis vibration value Vy, and Z-axis vibration value Vz that are the basis of the analysis results shown in FIG. It is a graph of the analytical value obtained by. According to the analytical value graph shown in FIG . An analytical value of 0.29 m/s 2 was obtained for peak A3 at 240 Hz, and an analytical value of 0.3 m/s 2 was obtained for peak A4 at 320 Hz.
 すなわち、同じX軸振動値Vx、Y軸振動値Vy、及びZ軸振動値Vzを用いたにもかかわらず、三軸合成部212がステップS3を実行した場合に得られた図6に示す分析値である、ピークA1の分析値0.95m/s、ピークA2の分析値0.25m/s、ピークA3の分析値0.1m/s、ピークA4の分析値0.1m/sよりも、三軸合成部212aがステップS3の代わりにステップS11~S14を実行した図16の方が、ピークA1~A4の分析値が大きくなることが確認できた。 That is, although the same X-axis vibration value Vx, Y-axis vibration value Vy, and Z-axis vibration value Vz are used, the analysis shown in FIG. The analytical value of peak A1 is 0.95 m/s 2 , the analytical value of peak A2 is 0.25 m/s 2 , the analytical value of peak A3 is 0.1 m/s 2 , the analytical value of peak A4 is 0.1 m/s. 16, in which the triaxial synthesizing unit 212a executes steps S11 to S14 instead of step S3, the analytical values of the peaks A1 to A4 are larger than those in FIG .
 図17は、図7に示す分析結果の元となったX軸振動値Vx、Y軸振動値Vy、及びZ軸振動値Vzと同じデータを用いてステップS11~S14,S4~S6を実行することにより得られた分析値のグラフである。図17に示す分析値のグラフによれば、内輪損傷特徴周波数Fi(=120Hz)のピークB1の分析値として0.55m/s、240HzのピークB2の分析値として0.38m/s、360HzのピークB3の分析値として0.19m/sが得られた。 FIG. 17 executes steps S11 to S14 and S4 to S6 using the same data as the X-axis vibration value Vx, Y-axis vibration value Vy, and Z-axis vibration value Vz that are the basis of the analysis results shown in FIG. It is a graph of the analytical value obtained by. According to the graph of the analytical values shown in FIG. 17, the analytical value of the peak B1 of the inner ring damage characteristic frequency Fi (=120 Hz) is 0.55 m/s 2 , the analytical value of the peak B2 of 240 Hz is 0.38 m/s 2 , An analytical value of 0.19 m/s 2 was obtained for peak B3 at 360 Hz.
 すなわち、同じX軸振動値Vx、Y軸振動値Vy、及びZ軸振動値Vzを用いたにもかかわらず、三軸合成部212がステップS3を実行した場合に得られた図7に示す分析値である、ピークB1の分析値0.41m/s、ピークB2の分析値0.25m/s、ピークB3の分析値0.12m/sよりも、三軸合成部212aがステップS3の代わりにステップS11~S14を実行した図17の方が、ピークB1~B3の分析値が大きくなることが確認できた。 That is, although the same X-axis vibration value Vx, Y-axis vibration value Vy, and Z-axis vibration value Vz are used, the analysis shown in FIG. 0.41 m/s 2 for peak B1, 0.25 m/s 2 for peak B2, and 0.12 m/s 2 for peak B3. It was confirmed that the analysis values of the peaks B1 to B3 are larger in FIG. 17 in which steps S11 to S14 are executed instead of .
 以上のように、同じX軸振動値Vx、Y軸振動値Vy、及びZ軸振動値Vzを用いた場合であっても、三軸合成部212がステップS3を実行した場合よりも、三軸合成部212aがステップS11~S14を実行した場合の方が、ピークA1~A4,B1~B3の分析値が大きくなることが確認できた。このことから、ステップS3よりも、ステップS11~S14の方が、損傷を示す特徴周波数の分析値が大きくなるので、損傷の有無を確認することが容易となる。 As described above, even when the same X-axis vibration value Vx, Y-axis vibration value Vy, and Z-axis vibration value Vz are used, the three-axis It has been confirmed that the analysis values of the peaks A1 to A4 and B1 to B3 are larger when the synthesizing unit 212a executes steps S11 to S14. As a result, the analysis value of the characteristic frequency indicating damage is larger in steps S11 to S14 than in step S3, making it easier to confirm the presence or absence of damage.
 なお、必ずしも異常判定部215を備える必要はなく、ステップS7は実行しなくてもよい。また、必ずしもグラフ化部214を備える必要はなく、ステップS6は実行しなくてもよい。 It should be noted that the abnormality determination unit 215 does not necessarily have to be provided, and step S7 does not have to be executed. Also, the graphing unit 214 is not necessarily provided, and step S6 may not be executed.
 なお、発明を実施するための形態の項においてなされた具体的な実施態様又は実施例は、あくまでも、本発明の技術内容を明らかにするものであって、本発明は、そのような具体例にのみ限定して狭義に解釈されるべきものではない。 It should be noted that the specific embodiments or examples described in the section for carrying out the invention merely clarify the technical content of the present invention, and the present invention is based on such specific examples. It should not be interpreted narrowly by limiting only
1,1a    異常検出補助システム
2,2a    異常検出補助装置
3    振動検出装置
21  演算部
22  通信I/F回路
23  アンテナ
211      振動値取得部
212,212a  三軸合成部
213      周波数分析部
214      グラフ化部
215      異常判定部
A1~A4,B1~B3,P1~P3  ピーク
Dx,Dy,Dz  振動検出値
Fi  内輪損傷特徴周波数
Fo  外輪損傷特徴周波数
M    機械装置
M1  モータ
M2  筐体
Vc  合成振動値
Vx  X軸振動値
Vy  Y軸振動値
Vz  Z軸振動値
t    時間(タイミング)
1, 1a Abnormality detection auxiliary system 2, 2a Abnormality detection auxiliary device 3 Vibration detection device 21 Calculation unit 22 Communication I/F circuit 23 Antenna 211 Vibration value acquisition unit 212, 212a Triaxial synthesis unit 213 Frequency analysis unit 214 Graphing unit 215 Abnormality determination part A1-A4, B1-B3, P1-P3 Peaks Dx, Dy, Dz Vibration detection value Fi Inner ring damage characteristic frequency Fo Outer ring damage characteristic frequency M Mechanical device M1 Motor M2 Case Vc Combined vibration value Vx X-axis vibration value Vy Y-axis vibration value Vz Z-axis vibration value t Time (timing)

Claims (10)

  1.  互いに直交するX軸方向、Y軸方向、及びZ軸方向の振動を表すX軸振動値、Y軸振動値、及びZ軸振動値を、それぞれ、時間の経過に伴い連続的に取得する振動値取得部と、
     複数のタイミングで得られた前記X軸振動値、前記Y軸振動値、及び前記Z軸振動値に基づいて三軸合成波形データを生成する三軸合成部と、
     前記三軸合成波形データに基づいて、高速フーリエ変換による周波数分析を行い、周波数成分毎の分析値を算出する周波数分析部とを備える異常検出補助装置。
    X-axis vibration value, Y-axis vibration value, and Z-axis vibration value representing vibrations in the mutually orthogonal X-axis direction, Y-axis direction, and Z-axis direction, respectively, are obtained continuously over time. an acquisition unit;
    a three-axis synthesis unit that generates three-axis synthesized waveform data based on the X-axis vibration value, the Y-axis vibration value, and the Z-axis vibration value obtained at a plurality of timings;
    and a frequency analysis unit that performs frequency analysis by fast Fourier transform based on the three-axis synthesized waveform data and calculates an analysis value for each frequency component.
  2.  前記三軸合成部は、同一のタイミングで得られた前記X軸振動値、前記Y軸振動値、及び前記Z軸振動値同士の二乗和平方根を合成振動値として算出し、前記合成振動値を複数のタイミングに対応して算出することによって、前記複数の合成振動値から構成される前記三軸合成波形データを生成する請求項1記載の異常検出補助装置。 The three-axis synthesis unit calculates a square root of the sum of squares of the X-axis vibration value, the Y-axis vibration value, and the Z-axis vibration value obtained at the same timing as a synthesized vibration value, and calculates the synthesized vibration value as 2. An anomaly detection assisting device according to claim 1, wherein said three-axis synthesized waveform data composed of said plurality of synthesized vibration values is generated by performing calculations corresponding to a plurality of timings.
  3.  前記三軸合成部は、
     前記複数のタイミングで得られた前記X軸振動値からなるX軸波形の包絡線をX軸エンベロープ波形として取得し、
     前記複数のタイミングで得られた前記Y軸振動値からなるY軸波形の包絡線をY軸エンベロープ波形として取得し、
     前記複数のタイミングで得られた前記Z軸振動値からなるZ軸波形の包絡線をZ軸エンベロープ波形として取得し、
     前記X軸エンベロープ波形、前記Y軸エンベロープ波形、及び前記Z軸エンベロープ波形における同一のタイミングの値同士の二乗和平方根を合成振動値として算出し、前記合成振動値を複数のタイミングに対応して算出することによって、前記複数の合成振動値から構成される前記三軸合成波形データを生成する請求項1記載の異常検出補助装置。
    The triaxial synthesis unit is
    obtaining an envelope curve of an X-axis waveform composed of the X-axis vibration values obtained at the plurality of timings as an X-axis envelope waveform;
    obtaining an envelope curve of a Y-axis waveform composed of the Y-axis vibration values obtained at the plurality of timings as a Y-axis envelope waveform;
    obtaining an envelope of a Z-axis waveform composed of the Z-axis vibration values obtained at the plurality of timings as a Z-axis envelope waveform;
    A square root sum of squares of values at the same timing in the X-axis envelope waveform, the Y-axis envelope waveform, and the Z-axis envelope waveform is calculated as a composite vibration value, and the composite vibration value is calculated corresponding to a plurality of timings. 2. An anomaly detection assisting device according to claim 1, wherein said three-axis synthesized waveform data composed of said plurality of synthesized vibration values is generated by:
  4.  前記周波数成分毎の分析値を、一方の軸を周波数、他方の軸を前記分析値とした二次元平面にグラフ化するグラフ化部をさらに備える請求項1~3のいずれか1項に記載の異常検出補助装置。 4. The graphing unit according to any one of claims 1 to 3, further comprising a graphing unit that graphs the analysis value for each frequency component on a two-dimensional plane with the frequency on one axis and the analysis value on the other axis. Anomaly detection auxiliary equipment.
  5.  前記周波数成分毎の分析値の大きさが、予め設定された基準周波数範囲内において、予め設定された基準値を超えたとき、異常と判定する異常診断部をさらに備える請求項1~4のいずれか1項に記載の異常検出補助装置。 5. The apparatus according to any one of claims 1 to 4, further comprising an abnormality diagnosis unit that determines an abnormality when the magnitude of the analysis value for each frequency component exceeds a preset reference value within a preset reference frequency range. 1. The abnormality detection auxiliary device according to 1.
  6.  前記X軸振動値、前記Y軸振動値、及び前記Z軸振動値は、ベアリングを備えた装置から検出された振動を表し、
     前記基準周波数範囲は、前記ベアリングの内輪に対応付けて設定された内輪周波数範囲と、前記ベアリングの外輪に対応付けて設定された外輪周波数範囲とを含み、
     前記異常診断部は、
     前記周波数成分毎の分析値の大きさが、前記内輪周波数範囲内において前記基準値を超えたとき、内輪の異常と判定し、
     前記周波数成分毎の分析値の大きさが、前記外輪周波数範囲内において前記基準値を超えたとき、外輪の異常と判定する請求項5記載の異常検出補助装置。
    wherein the X-axis vibration value, the Y-axis vibration value, and the Z-axis vibration value represent vibrations detected from a device with bearings;
    The reference frequency range includes an inner ring frequency range set in association with the inner ring of the bearing and an outer ring frequency range set in association with the outer ring of the bearing,
    The abnormality diagnosis unit
    determining that the inner ring is abnormal when the magnitude of the analysis value for each frequency component exceeds the reference value within the inner ring frequency range;
    6. An abnormality detection auxiliary device according to claim 5, wherein when the magnitude of the analysis value for each frequency component exceeds the reference value within the outer ring frequency range, it is determined that the outer ring is abnormal.
  7.  請求項1~6のいずれか1項に記載の異常検出補助装置と、
     前記X軸振動値、前記Y軸振動値、及び前記Z軸振動値を検出する振動検出装置とをさらに備える異常検出補助システム。
    An abnormality detection auxiliary device according to any one of claims 1 to 6;
    An anomaly detection assistance system further comprising a vibration detection device for detecting the X-axis vibration value, the Y-axis vibration value, and the Z-axis vibration value.
  8. (A)互いに直交するX軸方向、Y軸方向、及びZ軸方向の振動を表すX軸振動値、Y軸振動値、及びZ軸振動値を、それぞれ、時間の経過に伴い連続的に取得し、
    (B)複数のタイミングで得られた前記X軸振動値、前記Y軸振動値、及び前記Z軸振動値に基づく三軸合成波形データを生成し、
    (C)前記三軸合成波形データに基づいて、高速フーリエ変換による周波数分析を行い、周波数成分毎の分析値を算出する異常検出補助方法。
    (A) X-axis vibration value, Y-axis vibration value, and Z-axis vibration value representing vibrations in the X-axis direction, Y-axis direction, and Z-axis direction, which are orthogonal to each other, are obtained continuously over time. death,
    (B) generating three-axis composite waveform data based on the X-axis vibration value, the Y-axis vibration value, and the Z-axis vibration value obtained at a plurality of timings;
    (C) An anomaly detection assistance method of performing frequency analysis by fast Fourier transform based on the triaxial synthesized waveform data and calculating an analysis value for each frequency component.
  9.  コンピュータを、
     互いに直交するX軸方向、Y軸方向、及びZ軸方向の振動を表すX軸振動値、Y軸振動値、及びZ軸振動値を、それぞれ、時間の経過に伴い連続的に取得する振動値取得部と、
     複数のタイミングで得られた前記X軸振動値、前記Y軸振動値、及び前記Z軸振動値に基づく三軸合成波形データを生成する三軸合成部と、
     前記三軸合成波形データに基づいて、高速フーリエ変換による周波数分析を行い、周波数成分毎の分析値を算出する周波数分析部として機能させる異常検出補助プログラム。
    the computer,
    X-axis vibration value, Y-axis vibration value, and Z-axis vibration value representing vibrations in the mutually orthogonal X-axis direction, Y-axis direction, and Z-axis direction, respectively, are obtained continuously over time. an acquisition unit;
    a three-axis synthesis unit that generates three-axis synthesized waveform data based on the X-axis vibration value, the Y-axis vibration value, and the Z-axis vibration value obtained at a plurality of timings;
    An anomaly detection auxiliary program functioning as a frequency analysis unit that performs frequency analysis by fast Fourier transform based on the three-axis synthesized waveform data and calculates an analysis value for each frequency component.
  10.  請求項9に記載の異常検出補助プログラムを記録したコンピュータ読み取り可能な記録媒体。 A computer-readable recording medium recording the anomaly detection auxiliary program according to claim 9.
PCT/JP2021/038096 2021-10-14 2021-10-14 Abnormality detection assistance device, abnormality detection assistance system, abnormality detection assistance method, abnormality detection assistance program, and computer-readable recording medium having abnormality detection assistance program recorded thereon WO2023062786A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/038096 WO2023062786A1 (en) 2021-10-14 2021-10-14 Abnormality detection assistance device, abnormality detection assistance system, abnormality detection assistance method, abnormality detection assistance program, and computer-readable recording medium having abnormality detection assistance program recorded thereon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/038096 WO2023062786A1 (en) 2021-10-14 2021-10-14 Abnormality detection assistance device, abnormality detection assistance system, abnormality detection assistance method, abnormality detection assistance program, and computer-readable recording medium having abnormality detection assistance program recorded thereon

Publications (1)

Publication Number Publication Date
WO2023062786A1 true WO2023062786A1 (en) 2023-04-20

Family

ID=85988166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038096 WO2023062786A1 (en) 2021-10-14 2021-10-14 Abnormality detection assistance device, abnormality detection assistance system, abnormality detection assistance method, abnormality detection assistance program, and computer-readable recording medium having abnormality detection assistance program recorded thereon

Country Status (1)

Country Link
WO (1) WO2023062786A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004212225A (en) * 2002-12-27 2004-07-29 Nsk Ltd Abnormality diagnostic apparatus
JP2015143662A (en) * 2014-01-31 2015-08-06 セイコーエプソン株式会社 Structure monitoring device, structure monitoring system and structure monitoring method
JP2017142153A (en) * 2016-02-10 2017-08-17 セイコーエプソン株式会社 Life prediction method, life prediction device, and life prediction system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004212225A (en) * 2002-12-27 2004-07-29 Nsk Ltd Abnormality diagnostic apparatus
JP2015143662A (en) * 2014-01-31 2015-08-06 セイコーエプソン株式会社 Structure monitoring device, structure monitoring system and structure monitoring method
JP2017142153A (en) * 2016-02-10 2017-08-17 セイコーエプソン株式会社 Life prediction method, life prediction device, and life prediction system

Similar Documents

Publication Publication Date Title
US10337958B2 (en) Bearing device vibration analysis method, bearing device vibration analyzer, and rolling bearing condition monitoring system
Chandra et al. Fault detection in rotor bearing systems using time frequency techniques
Verma et al. Experimental investigation of misalignment effects on rotor shaft vibration and on stator current signature
JP2006528347A (en) Method for determining a contact force vector acting on a rolling element bearing and sensor device therefor
KR101748559B1 (en) Apparatus for inspecting rotating device and method thereof
JP5749964B2 (en) Shaft vibration monitoring to detect shaft misalignment in turbomachinery
JP6919397B2 (en) Information processing equipment, information processing methods and programs
Gradzki et al. Method of shaft crack detection based on squared gain of vibration amplitude
Singh et al. Discrete wavelet transform based measurement of inner race defect width in taper roller bearing
CN110118657A (en) Based on relative entropy and K nearest neighbor algorithm Fault Diagnosis of Roller Bearings and system
CN111649886B (en) Abnormality detection device, rotating machine, abnormality detection method, and computer-readable storage medium
JP2019168412A (en) Abnormality detector and abnormality detection method
JP2003232674A (en) Abnormality diagnosing method and abnormality diagnosing device of machine equipment or apparatus
WO2023062786A1 (en) Abnormality detection assistance device, abnormality detection assistance system, abnormality detection assistance method, abnormality detection assistance program, and computer-readable recording medium having abnormality detection assistance program recorded thereon
Chi et al. Spectral DCS-based feature extraction method for rolling element bearing pseudo-fault in rotor-bearing system
JP7014080B2 (en) Information processing equipment, information processing methods and programs
JPH04204021A (en) Apparatus for diagnosing vibration and sound of rotating machine
Da Costa et al. Orbit analysis for imbalance fault detection in rotating machinery
JP6995969B1 (en) Diagnostic device for rotating equipment
JP7181162B2 (en) Diagnostic device, diagnostic system and diagnostic method
JPWO2019234832A1 (en) Diagnostic equipment, diagnostic methods, and programs
WO2024057364A1 (en) Vibration detection device, abnormality detection assistance system, and vibration detection method
Chiementin et al. On-shaft ball bearings monitoring by using an inertial measurement unit (IMU) under stationary conditions
KR100767340B1 (en) System for diagnosing rotating device
Inamdar et al. Estimation of frequency and damping of a rotating system using MEOT and virtual sensor concept

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21960643

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE