WO2023061879A1 - Elektronische baugruppe - Google Patents

Elektronische baugruppe Download PDF

Info

Publication number
WO2023061879A1
WO2023061879A1 PCT/EP2022/077964 EP2022077964W WO2023061879A1 WO 2023061879 A1 WO2023061879 A1 WO 2023061879A1 EP 2022077964 W EP2022077964 W EP 2022077964W WO 2023061879 A1 WO2023061879 A1 WO 2023061879A1
Authority
WO
WIPO (PCT)
Prior art keywords
low
circuit board
cooling block
side switch
printed circuit
Prior art date
Application number
PCT/EP2022/077964
Other languages
English (en)
French (fr)
Inventor
Göran SCHUBERT
Original Assignee
Vitesco Technologies Germany Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102021214906.5A external-priority patent/DE102021214906A1/de
Application filed by Vitesco Technologies Germany Gmbh filed Critical Vitesco Technologies Germany Gmbh
Publication of WO2023061879A1 publication Critical patent/WO2023061879A1/de

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20927Liquid coolant without phase change

Definitions

  • the invention relates to an electronic assembly with at least one half-bridge, which has two series-connected electronic switches.
  • Such an electronic assembly is used, for example, in voltage regulators and voltage converters.
  • the electronic switches of the assembly are usually applied to one side of an electrically insulating component carrier, such as a ceramic, for example by soldering or sintering.
  • the component carrier is usually coated on both sides with metal, for example with copper, for heat spreading.
  • the lower metal-coated side of the component carrier is often applied, for example by soldering or sintering, to a shielding metal housing of a control unit, which has cooling channels running through it. When a coolant flows through these cooling channels, the thermal energy absorbed by the coolant can be transported to the outside, ie away from the electronic switches.
  • the component carrier forms the bottleneck of the heat transfer path. Due to the transfer of heat by means of lattice vibrations of the insulator, only a significantly lower heat flow can be transported than through metals whose heat transfer is based on moving electrons, for example only one tenth to one third of the heat flow that can be transported by a metal.
  • the component carrier which is coated with metal on both sides, forms a plate capacitor whose capacitance can be in the high pF range.
  • the current driven through this capacitance by the switching voltages of the electronic switches is still in the mA range in the case of inverters or converters in the multiple kW range at a frequency of 10 MHz.
  • currents in this frequency range must not exceed 1.3 pA so that the emission limit values are observed.
  • coplanar conductor arrangements are used for the electrical connection of the electronic switches to the intermediate circuit, the outgoing and return conductors of which often frame large areas.
  • large-scale circuits are created which, with currents of several hundred amperes, lead to strong magnetic fields that penetrate the environment and potentially disrupt it.
  • the electrical fields that occur in the system with potential differences, for example in the kV range also protrude far into the surrounding space with this construction technology and can potentially interfere.
  • the invention is based on the object of specifying an electronic assembly which is improved in terms of cooling and electromagnetic compatibility (EMC) and has at least one half-bridge which has two electronic switches connected in series.
  • EMC cooling and electromagnetic compatibility
  • An electronic assembly according to the invention comprises
  • each high-side cooling block and each high-side switch are arranged and which is connected to the negative pole, where - the cooling blocks each have at least one cooling channel for conducting a coolant and the cooling channels of all cooling blocks are connected to one another,
  • All high-side switches are arranged on the printed circuit board on a first side of the printed circuit board and all low-side switches are arranged on the printed circuit board on a second side of the printed circuit board opposite the first side of the printed circuit board, so that the high-side switch and the low side -switches of each half-bridge face each other,
  • the high-side switch of each half-bridge is connected to a high-side connection of the intermediate circuit capacitor and the low-side switch of each half-bridge is connected to a low-side connection of the intermediate circuit capacitor, so that a high-side connection between a Connection and a low-side connection of the intermediate circuit capacitor in a half-bridge electric current flowing through the high-side switch in a direction that is opposite to the direction through the low-side switch,
  • each high-side switch facing away from the printed circuit board rests against the high-side cooling block assigned to the high-side switch
  • each low-side switch facing away from the circuit board rests against a low-side cooling block.
  • high-side switch and low-side switch are used here to distinguish the positive-connected electronic switches (high-side switches) from the negative-connected electronic switches (low-side switches). The terms therefore refer to the electrical wiring of the switches in the assembly, not to the physical configuration of the switches. Physically, the high-side switches and the low-side switches can be identical.
  • high-side cooling block and low-side cooling block are used here to distinguish a cooling block on which a high-side switch is arranged from a cooling block on which at least one low-side switch is arranged. These terms therefore relate to the assignment of the respective cooling block to a high-side switch or at least one low-side switch, not to the physical design of the cooling blocks.
  • a High-side cooling block can therefore be designed physically similar to a low-side cooling block.
  • An electronic assembly according to the invention differs from the conventional assemblies described above on the one hand by improved cooling and on the other hand by improved electromagnetic compatibility.
  • Cooling is improved because the assembly does not have an electrically insulating component carrier on which the high-side switches and low-side switches are attached. Instead, these switches are each arranged directly on a metallic cooling block which has at least one cooling channel through which a coolant can be conducted. As a result, the heat dissipation from the switches is significantly improved compared to an assembly with an electrically insulating component carrier on which the switches are arranged.
  • Electromagnetic compatibility is improved compared to conventional assemblies on the one hand by compensating for magnetic fields generated by the electrical currents flowing through the switches and on the other hand by spatial limitation of electrical fields caused by potential differences between electrical potentials of the assembly.
  • the compensation of the magnetic fields is achieved in that an electric current flowing between a high-side connection and a low-side connection of the intermediate circuit capacitor in a half-bridge flows through the high-side switch in a direction that is the direction through the low -Side switch is opposite.
  • the magnetic field of the current flowing through the high-side switch therefore at least partially compensates for the magnetic field of the current flowing through the low-side switch.
  • the spatial delimitation of the electric fields is caused in particular by the opposing inner surfaces of the high-side and low-side cooling blocks achieved, the latter being connected to the negative pole of the DC link.
  • the electric fields are essentially limited to the inside of the plate capacitors formed in this way.
  • each high-side heatsink is electrically isolated from every other high-side heatsink, from the positive terminal, and from each low-side heatsink.
  • the housing surrounding the high-side switch and the intermediate circuit is electrically conductively connected to each low-side cooling block.
  • At least one cooling duct of a high-side cooling block is connected to a cooling duct of a low-side cooling block by a connecting sleeve guided through the printed circuit board.
  • the assembly has precisely one low-side cooling block, which bears against the surfaces of all the low-side switches that are remote from the printed circuit board.
  • this embodiment of the invention advantageously reduces the number of components of the assembly compared to an embodiment with a plurality of low-side cooling blocks, for example with a low-side cooling block for each low-side Switch.
  • the housing has a housing part which is open towards the printed circuit board and has an edge which bears against the printed circuit board on the first side of the printed circuit board and in which each high-side cooling block is arranged. This refinement of the invention achieves an enclosing of the high-side cooling blocks and thus also the high-side switch on the first side of the printed circuit board by the housing.
  • the housing has a metal layer arranged on the second side of the printed circuit board or in the printed circuit board, which has a recess for each low-side switch and high-side switch and is connected to the housing part open to the printed circuit board by several Vias in the circuit board is electrically connected.
  • the metal layer closes off the part of the housing that is open to the printed circuit board, so that together with the metal layer it encloses the high-side cooling blocks and the high-side switches.
  • the housing is at least partially filled with a dielectric.
  • the dielectric has a relative permittivity of at least 2.
  • the electrical flux density is primarily concentrated within the space filled by the dielectric.
  • the dielectric can also increase the dielectric strength of the interior of the housing, which means that the distances between components with high potential differences in the interior of the housing can be reduced, which in turn advantageously spatially limits the electrical fields generated by the potential differences.
  • the dielectric is also, for example, a thermoplastic, a duroplastic or a casting compound. In this way, in particular, a simple mechanical fixation of components in the interior of the housing can be achieved by means of the dielectric.
  • Intermediate circuit capacitor a series connection of several one above the other arranged partial capacitors, which each have a plurality of electrode layers arranged one above the other and insulating layers arranged between the electrode layers.
  • Such a design of the intermediate circuit capacitor allows its dielectric strength to be increased and it also allows at least partial compensation of the magnetic fields accompanying the capacitor currents, which is advantageously noticeable in a lower inductance.
  • FIG. 1 shows a sectional view of a first exemplary embodiment of an electronic assembly according to the invention
  • FIG. 1 shows a circuit diagram of the electronic assembly shown in FIG. 1,
  • FIG. 3 shows a first perspective view of parts of the electronic assembly shown in FIG. 1,
  • FIG. 4 shows a perspective view of the printed circuit board of the electronic assembly shown in FIG. 1,
  • FIG. 5 shows a second perspective view of parts of the electronic assembly shown in FIG. 1,
  • FIG. 6 shows a third perspective view of parts of the electronic assembly shown in FIG. 1
  • 7 shows a perspective view of the electronic assembly shown in FIG. 1
  • FIG. 8 shows a perspective view of the intermediate circuit capacitor of the electronic assembly shown in FIG. 1,
  • FIG. 9 shows a first sectional view of the intermediate circuit capacitor of the electronic assembly shown in FIG. 1,
  • FIG. 10 shows a second sectional view of the intermediate circuit capacitor of the electronic assembly shown in FIG. 1,
  • FIG. 11 shows a circuit diagram of an interconnection of a center tap with electrode layers of the intermediate circuit capacitor of the electronic assembly shown in FIG. 1,
  • FIG. 12 shows a perspective view of a second exemplary embodiment of an electronic assembly according to the invention.
  • Figures 1 to 11 show a first exemplary embodiment of an electronic assembly 100 according to the invention.
  • Figure 1 shows a sectional view of assembly 100
  • Figure 2 shows a circuit diagram of assembly 100.
  • Assembly 100 includes an electrical intermediate DC voltage circuit 101 with a positive pole 102, a negative pole 103 and an intermediate circuit capacitor 8. The electrical potential of
  • Negative pole 103 defines a reference potential of the assembly 100. Furthermore, the assembly 100 includes three half-bridges 104 to 106, each with one with the
  • the half-bridge taps 9 are each connected, for example, to an outer conductor of a three-phase motor that is controlled by the assembly 100 .
  • the high-side switch 1 and the low-side switch 19 are each designed as a transistor with a semiconductor with a wide bandgap (Wide Bandgap Transistor, WBT for short), e.g. in GaN or SiC technology .
  • WBT Wide Bandgap Transistor
  • they can also each be designed as a different electronic switch, for example as an IGBT (abbreviation for insulated-gate bipolar transistor, German: bipolar transistor with insulated gate electrode) and a freewheeling diode connected antiparallel.
  • IGBT abbreviation for insulated-gate bipolar transistor, German: bipolar transistor with insulated gate electrode
  • the terms drain, source and gate used for the electrical connections of a WBT are to be replaced by corresponding terms, for example in the case of an IGBT drain by collector and source by emitter.
  • All high-side switches 1 are arranged on printed circuit board 14 on a first printed circuit board side and all low-side switches 19 are arranged on printed circuit board 14 on a second printed circuit board side opposite the first printed circuit board side, so that high-side switch 1 and the low-side switch 19 of each half-bridge 104 to 106 face each other.
  • the high-side switch 1 and the low-side switch 19 of each half-bridge 104 to 106 are electrically connected to one another by a via 21 in the printed circuit board 14 .
  • the assembly 100 also includes, for each high-side switch 1, a metallic high-side cooling block 2 which bears against a surface of the high-side switch 1 facing away from the printed circuit board 14, and a metallic connecting cooling block 3 which runs along end faces of the high-side cooling blocks 2, but runs at a distance from these end faces (see also FIG. 3).
  • Each high-side cooling block 2 has a cooling channel 2.1 running in the high-side cooling block 2 to the connecting cooling block 3 for conducting a coolant.
  • the connecting cooling block 3 has a connecting cooling channel 3.1 running in it perpendicularly to the cooling channels 2.1.
  • the cooling channels 2.1 are connected to the connecting cooling channel 3.1 by electrically insulating cooling connections 6, which also serve as spacers between the high-side cooling blocks 2 and the connecting cooling block 3.
  • the assembly 100 also includes a metallic low-side cooling block 20.
  • the low-side cooling block 20 has a cooling section 20.1 for each low-side switch 19, which is designed similarly to a high-side cooling block 2 and on which a surface of the low-side switch 19 facing away from the printed circuit board 14 is in contact. Furthermore, the low-side cooling block 20 has a connection cooling section 20.2, which connects the cooling sections 20.1 to one another (see also FIG. 5). Each cooling section 20.1 has a cooling channel 20.3 which runs towards the connecting cooling section 20.2.
  • Connection cooling section 20.2 has a connection cooling channel 20.4, which connects the cooling channels 20.3 to one another and runs perpendicularly to them.
  • the cooling channel 20.3 of a cooling section 20.1 is connected to the cooling channel 2.1 of that high-side cooling block 2 which is opposite it on the other side of the printed circuit board 14 by an electrically insulating connecting sleeve 22 which is routed through the printed circuit board 14.
  • connection cooling block 3 is electrically connected to the positive pole 102 .
  • the low-side cooling block 20 is electrically connected to the negative pole 103 .
  • the high-side cooling blocks 2 are electrically isolated from each other and from the connection cooling block 3 .
  • connection cooling section 20.2 of the low-side cooling block 20 and the connection cooling block 3 run parallel to one another on opposite sides of the printed circuit board 14 and have end faces which are aligned with one another and which face the intermediate circuit capacitor 8 .
  • the half-bridge taps 9 are offset from one another (see FIG. 3).
  • FIG. 1 shows a magnetic field sensor 33 running annularly around a half-bridge tap 9 for detecting the magnetic field surrounding the half-bridge tap 9 .
  • FIG 3 shows a perspective view of the intermediate circuit capacitor 8 and components of the assembly 100 arranged on the first side of the printed circuit board.
  • the intermediate circuit capacitor 8 has a high-side connection 5 and a low-side connection 25 for each half-bridge 104 to 106 .
  • the high-side connections 5 and low-side connections 25 are brought out of the intermediate circuit capacitor 8 on the printed circuit board side.
  • Each high-side connection 5 of the intermediate circuit capacitor 8 is electrically connected to the connection cooling block 3 and to an electrically conductive connection block 10 arranged on the printed circuit board 14 on the first side of the printed circuit board.
  • Each connection block 10 is electrically connected to the drain connection of a high-side switch 1 via a line 11 arranged in the printed circuit board 14 .
  • the gate connection of a high-side switch 1 is connected to a line 12 arranged in the circuit board 14
  • the source connection of a high-side switch 1 is connected to a line 13 arranged in the circuit board 14 .
  • Each low-side connection 25 of the intermediate circuit capacitor 8 is correspondingly electrically connected to the connection cooling section 20.2 of the low-side cooling block 20 and to an electrically conductive connection block 15 (see FIGS. 1 and 4) arranged on the printed circuit board 14 on the second side of the printed circuit board.
  • Each connecting block 15 is electrically connected to the source connection of a low-side switch 19 via a line 16 arranged in the printed circuit board 14 (see FIGS. 1 and 4).
  • the gate connection of a low-side switch 19 is with a line 17 arranged in the printed circuit board 14 (see FIG. 4), the drain connection of a high-side switch 1 is connected to a line 18 arranged in the printed circuit board 14 (see FIG. 4).
  • FIG. 3 also shows a coolant connection 7 of the connection cooling block 3 for supplying and discharging coolant to and from the connection cooling channel 3.1 and an electrical connection 4, via which the connection cooling block 3 is connected to the positive pole 102.
  • FIG. 4 shows a perspective view of the circuit board 14 without the high-side switch 1 and low-side switch 19. Shown are the connection blocks 15, the lines 11, 12, 13, 16, 17, 18 and one metal layer 32 arranged on the second side of the printed circuit board, which has a recess 32.1 for each high-side switch 1 and low-side switch 19 and is part of a housing 107 (see FIGS. 1 and 7) of the assembly 100.
  • the metal layer 32 can also be arranged in an inner layer of the circuit board 14 instead of on the second side of the circuit board. Evaluation and/or control electronics related to the reference potential of the assembly 100 can then also be placed above or below the metal layer 32 on the printed circuit board 14 and electrically connected to the metal layer 32 .
  • FIG 5) shows a perspective view of the arrangement and geometric design of the intermediate circuit capacitor 8, the printed circuit board 14, the low-side cooling block 20, the high-side cooling blocks 2 and the connection cooling block 3 and the half-bridge taps 9. It also shows 5 shows a coolant connection 23 of the low-side cooling block 20 for supplying and discharging coolant to and from the connecting cooling channel 20.4 and an electrical connection 24, via which the low-side cooling block 20 is connected to the negative pole 103.
  • FIG. 6 shows a perspective representation of the ones already shown in FIG.
  • the capacitor cooling blocks 26, 27 each bear against an outer surface of the intermediate circuit capacitor 8 facing away from the printed circuit board 14 and on lateral outer surfaces of the intermediate circuit capacitor 8 adjoining it.
  • Each condenser cooling block 26, 27 has a cooling channel.
  • the cooling channel of the condenser cooling block 27 is connected in the vicinity of the coolant connection 7 with the cooling channel 3.1 of the connecting cooling block 3 by a connecting element which is similar to the cooling connections 6 of the cooling channels 2.1 with the cooling channel 3.1 (see Figure 1), but in contrast to the cooling connections 6 electrically is conductive.
  • the condenser cooling block 27 is connected to the positive pole 102 via the connecting cooling block 3 .
  • the cooling duct of the condenser cooling block 26 is connected in the vicinity of the coolant connection 23 to the connecting cooling duct 20.4 of the low-side cooling block 20 by an electrically conductive connecting element.
  • the condenser cooling block 26 is connected to the negative pole 103 via the low-side cooling block 20 .
  • the other two ends of the cooling channels of the condenser cooling blocks 26, 27 are connected to the cooling channel 3.1 by an electrically insulating connecting element analogous to the cooling connections 6 of the cooling channels 2.1.
  • the outer surfaces of the capacitor cooling blocks 26, 27 facing away from one another are each aligned with an outer surface of the intermediate circuit capacitor 8.
  • a metal sheet 28, 30 is arranged on each of these outer surfaces and the corresponding outer surface of the intermediate circuit capacitor 8.
  • FIG. 7 shows a perspective view of the assembly 100.
  • the condenser cooling block 26 projects laterally beyond the printed circuit board 14 and laterally and rearwardly beyond the condenser cooling block 27.
  • This makes it possible to mount a box-like metallic housing frame 29 on the capacitor cooling block 26, which encloses the intermediate circuit capacitor 8 and part of the printed circuit board 14 in Figure 7 at the side, rear and from below and has a housing part 29.1 which is open towards the printed circuit board 14 and has a the Printed circuit board 14 has edge 29.2 on the first side of the printed circuit board and in which each high-side cooling block 2 is arranged.
  • the edge 29.2 is electrically connected to the metal layer 32 (see FIGS.
  • the housing frame 29, the top plate 28 and the metal layer 32 form a housing 107 in which the intermediate circuit capacitor 8, each high-side cooling block 2 and each high-side switch 1 are arranged and which is connected to the negative pole 103 and thus is at the reference potential of assembly 100. Together with the low-side cooling block 20, the housing 107 encloses the entire power electronics of the assembly 100, i.e. all the high-side switches 1 and low-side switches 19.
  • the voids of the housing 107 are filled with a dielectric 42 having a relative permittivity of at least 2.
  • the dielectric 42 is, for example, a thermoplastic, thermoset or a casting compound such as a casting resin.
  • the housing 107 including the printed circuit board 14 and the low-side cooling block 20 can also be encased with the dielectric 42 .
  • all mechanical and electrical components of the assembly 100 can be fixed and the entire assembly 100 can be electrically insulated from the outside.
  • the dielectric 42 increases the dielectric strength and thus allows smaller distances between components of different potential and concentrates the electric field on the dielectrically filled area due to the higher relative permittivity.
  • FIG. 7 also shows a ferrite ring 43 which runs around and abuts the junction cooling block 3 and junction cooling section 20.2 of the low-side cooling block 20 and forms a liquid-cooled inductance for an EMI filter.
  • FIG. 8 shows a perspective illustration of the intermediate circuit capacitor 8.
  • a center tap 41 is led out of the intermediate circuit capacitor 8 on a side opposite the high-side connections 5 and the low-side connections 25.
  • FIG. 9 (FIG. 9) and FIG. 10 (FIG. 10) show sectional views of the intermediate circuit capacitor 8 with sectional planes orthogonal to one another.
  • the intermediate circuit capacitor 8 has a series connection of a plurality of partial capacitors 8.1 arranged one above the other, each of which has a plurality of first electrode layers 8.2 connected to the positive pole 102, a plurality of second electrode layers 8.3 connected to the negative pole 103 and insulating layers 8.4 arranged between the electrode layers 8.2, 8.3.
  • the electrode layers 8.2, 8.3 and the insulating layers 8.4 are arranged one above the other.
  • the electrode layers 8.2 and 8.3 of a partial capacitor 8.1 are each realized, for example, by folding an electrode foil.
  • first contact points 8.5 at which first electrode layers 8.2 are connected to a high-side connection 5 of the intermediate circuit capacitor 8
  • second contact points 8.6 at which second electrode layers 8.3 are connected to a low-side connection 25 of the intermediate circuit capacitor 8
  • the intermediate circuit capacitor 8 has third electrode layers 8.7, which are each arranged between two insulating layers 8.4 and are connected to the center tap 41 at third contact points 8.8.
  • FIG. 11 shows a circuit diagram of an interconnection of electrode layers 8.2, 8.3, 8.7 of the intermediate circuit capacitor 8 with the center tap 41.
  • a third electrode layer 8.7 forms a capacitor circuit 36 with a first electrode layer 8.2 and a second electrode layer 8.3.
  • the third electrode layer 8.7 is connected to the center tap 41 tied together.
  • the center tap 41 is in turn connected to a capacitor 37, the other connection of which is grounded.
  • an LC push-pull and common-mode filter with a low-pass character is obtained.
  • the resulting star filter is designed, for example, as in EP 1867065 A1. The effect can be increased accordingly by adding a PI filter.
  • the ratio of the capacitances between the capacitor 37, which is dominant for the common-mode mode, and the capacitor circuits 36 can be selected to be lower (see EP 1867065 A1), which means that the EMC inductance of the Ferrite ring 43 can achieve a lower cut-off frequency of the low-pass filter for the common-mode mode with a significantly reduced common-mode to differential-mode transformation, ie with reduced interference in the useful mode and vice versa.
  • the push-pull mode behavior remains unaffected.
  • FIG 12 shows a perspective view of a second exemplary embodiment of an electronic assembly 100 according to the invention.
  • the coolant connections 7, 23 and the electrical connections 4, 24 are on the circuit board 14 opposite side of the intermediate circuit capacitor 8 arranged. Accordingly, the coolant port 7 and the electrical port 4 are connected to the condenser cooling block 27 instead of the connection cooling block 3 and the coolant connection 23 and the electrical connection 24 are connected to the condenser cooling block 26 instead of the connection cooling section 20.2 of the low-side cooling block 20.
  • the exemplary embodiment of an electronic assembly 100 according to the invention shown in FIG. 12 corresponds to the exemplary embodiment shown in FIGS.
  • the arrangement of the coolant connections 7, 23 and electrical connections 4, 24 on the side of the intermediate circuit capacitor 8 facing away from the printed circuit board 14 has the advantage that the EMC inductance of the ferrite ring 43 is located directly at the center tap 41 of the intermediate circuit capacitor 8, which reduces the connection length and thus reduces the parasitic inductance of the connected capacitors.
  • Both exemplary embodiments of an electronic assembly 100 according to the invention shown in the figures can be modified such that the low-side cooling block 20, which is designed in one piece, is replaced by three individual low-side cooling blocks, each of which corresponds to a cooling section 20.1 and analogously to the high-side -Cooling blocks 2 are formed, and a low-side connection cooling block connecting these low-side cooling blocks, which corresponds to the connection cooling section 20.2 and is designed analogously to the connection cooling block 3.
  • the cooling channels of the low-side cooling blocks are connected to the cooling channel of the low-side connection cooling block analogously to the connection of the cooling channels 2.1 of the high-side cooling blocks 2 to the cooling channel 3.1 of the connection cooling block 3 (see Figure 1), but no electrically insulating cooling connections 6 but corresponding electrically conductive cooling connections are used.

Abstract

Die Erfindung betrifft eine elektronische Baugruppe (100) mit einem elektrischen Gleichspannungszwischenkreis (101) und wenigstens einer Halbbrücke (104, 105, 106) mit einem elektronischen High-Side-Schalter (1) und einem elektronischen Low-Side-Schalter (19). Die Baugruppe (100) umfasst ferner für jeden High-Side-Schalter (1) einen metallischen High-Side-Kühlblock (2), wenigstens einen metallischen Low-Side-Kühlblock (20), eine Leiterplatte (14) und ein metallisches Gehäuse (107). Alle High-Side-Schalter (1) sind an der Leiterplatte (14) auf einer ersten Leiterplattenseite angeordnet und alle Low-Side-Schalter (19) sind an der Leiterplatte (14) auf einer zweiten Leiterplattenseite angeordnet. Eine von der Leiterplatte (14) abgewandte Oberfläche jedes High-Side-Schalters (1) liegt an dem dem High-Side-Schalter (1) zugeordneten High-Side-Kühlblock (2) an, und eine von der Leiterplatte (14) abgewandte Oberfläche jedes Low-Side-Schalters (19) liegt an einem Low-Side-Kühlblock (20) an.

Description

Beschreibung
Elektronische Baugruppe
Die Erfindung betrifft eine elektronische Baugruppe mit wenigstens einer Halbbrücke, die zwei in Serie geschaltete elektronische Schalter aufweist.
Eine derartige elektronische Baugruppe wird beispielsweise in Spannungsreglern und Spannungswandlern verwendet. Die elektronischen Schalter der Baugruppe werden üblicherweise auf einer Seite eines elektrisch isolierenden Bauteilträgers, beispielsweise einer Keramik aufgebracht, beispielsweise durch Löten oder Sintern. Der Bauteilträger ist zur Wärmespreizung in der Regel beidseitig mit Metall, beispielsweise mit Kupfer beschichtet. Die untere metallbeschichtete Seite des Bauteilträgers wird häufig, beispielsweise durch Löten oder Sintern, auf ein schirmend ausgeführtes metallisches Gehäuse eines Steuergerätes aufgebracht, welches mit Kühlkanälen durchzogen ist. Wenn ein Kühlmittel durch diese Kühlkanäle fließt, kann die von dem Kühlmittel aufgenommene Wärmeenergie nach außen, das heißt von den elektronischen Schaltern weg, transportiert werden.
Dabei bildet der Bauteilträger den Flaschenhals des Wärmeübertragungspfades. Aufgrund der Übertragung der Wärme mittels Gitterschwingungen des Isolators kann nur ein deutlich geringerer Wärmestrom als durch Metalle, deren Wärmeübertragung auf beweglichen Elektronen beruht, transportiert werden, beispielsweise nur ein Zehntel bis ein Drittel des von einem Metall transportierbaren Wärmestroms.
Außerdem bildet der beidseitig mit Metall beschichtete Bauteilträger einen Plattenkondensator, dessen Kapazität in einem hohen pF-Bereich liegen kann. Der durch die Schaltspannungen der elektronischen Schalter durch diese Kapazität getriebene Strom liegt bei Invertern bzw. Konvertern im vielfachen kW-Bereich bei einer Frequenz von 10 MHz noch im mA-Bereich. Ströme in diesem Frequenzbereich dürfen jedoch 1 ,3 pA nicht überschreiten, damit die Emissionsgrenzwerte eingehalten werden. Zur elektrischen Verbindung der elektronischen Schalter mit dem Zwischenkreis werden in der Regel koplanare Leiteranordnungen verwendet, deren Hin- und Rückleiter oft große Flächen umrahmen. Dadurch werden großflächige Stromkreise aufgespannt, die bei Strömen von mehreren hundert Ampere zu starken Magnetfeldern führen, welche die Umgebung durchdringen und potentiell stören. Auch die elektrischen Felder, die bei Potentialdifferenzen beispielsweise im kV-Bereich in dem System auftreten, ragen bei dieser Aufbautechnologie weit in den umgebenden Raum hinaus und können potentiell stören.
Der Erfindung liegt die Aufgabe zugrunde, eine hinsichtlich der Kühlung und der elektromagnetischen Verträglichkeit (EMV) verbesserte elektronische Baugruppe mit wenigstens einer Halbbrücke, die zwei in Serie geschaltete elektronische Schalter aufweist, anzugeben.
Die Aufgabe wird erfindungsgemäß durch eine elektronische Baugruppe mit den Merkmalen des Anspruchs 1 gelöst.
Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche.
Eine erfindungsgemäße elektronische Baugruppe umfasst
- einen elektrischen Gleichspannungszwischenkreis mit einem Pluspol, einem Minuspol und einem Zwischenkreiskondensator,
- wenigstens eine Halbbrücke mit einem mit dem Pluspol verbundenen elektronischen High-Side-Schalter und einem mit dem Minuspol verbundenen elektronischen Low-Side-Schalter,
- für jeden High-Side-Schalter einen metallischen High-Side-Kühlblock, - wenigstens einen metallischen Low-Side-Kühlblock,
- eine Leiterplatte und
- ein metallisches Gehäuse, in dem der Zwischenkreiskondensator, jeder High-Side-Kühlblock und jeder High-Side-Schalter angeordnet sind und das mit dem Minuspol verbunden ist, wobei - die Kühlblöcke jeweils wenigstens einen Kühlkanal zum Leiten eines Kühlmittels aufweisen und die Kühlkanäle aller Kühlblöcke miteinander verbunden sind,
- alle High-Side-Schalter an der Leiterplatte auf einer ersten Leiterplattenseite angeordnet sind und alle Low-Side-Schalter an der Leiterplatte auf einer der ersten Leiterplattenseite gegenüberliegenden zweiten Leiterplattenseite angeordnet sind, so dass der High-Side-Schalter und der Low-Side-Schalter jeder Halbbrücke einander gegenüberliegen,
- der High-Side-Schalter und der Low-Side-Schalter jeder Halbbrücke durch eine Durchkontaktierung in der Leiterplatte elektrisch miteinander verbunden sind,
- der High-Side-Schalter jeder Halbbrücke mit einem High-Side-Anschluss des Zwischenkreiskondensators verbunden ist und der Low-Side-Schalter jeder Halbbrücke mit einem Low-Side-Anschluss des Zwischenkreiskondensators verbunden ist, so dass ein zwischen einem High-Side-Anschluss und einem Low-Side-Anschluss des Zwischenkreiskondensators in einer Halbbrücke fließender elektrischer Strom durch den High-Side-Schalter in einer Richtung fließt, die der Richtung durch den Low-Side-Schalter entgegengesetzt ist,
- eine von der Leiterplatte abgewandte Oberfläche jedes High-Side-Schalters an dem dem High-Side-Schalter zugeordneten High-Side-Kühlblock anliegt, und
- eine von der Leiterplatte abgewandte Oberfläche jedes Low-Side-Schalters an einem Low-Side-Kühlblock anliegt.
Die Begriffe High-Side-Schalter und Low-Side-Schalter werden hier verwendet, um die mit dem Pluspol verbundenen elektronischen Schalter (High-Side-Schalter) von den mit dem Minuspol verbundenen elektronischen Schaltern (Low-Side-Schalter) zu unterscheiden. Die Begriffe beziehen sich also auf die elektrische Verschaltung der Schalter in der Baugruppe, nicht auf die physikalische Ausbildung der Schalter. Physikalisch können die High-Side-Schalter und die Low-Side-Schalter identisch ausgebildet sein. Die Begriffe High-Side-Kühlblock und Low-Side-Kühlblock werden hier verwendet, um einen Kühlblock, an dem ein High-Side-Schalter angeordnet ist, von einem Kühlblock zu unterscheiden, an dem wenigstens ein Low-Side-Schalter angeordnet ist. Diese Begriffe beziehen sich somit auf die Zuordnung des jeweiligen Kühlblocks zu einem High-Side-Schalter oder wenigstens einem Low-Side-Schalter, nicht auf die physikalische Ausbildung der Kühlblöcke. Ein High-Side-Kühlblock kann daher physikalisch ähnlich wie ein Low-Side-Kühlblock ausgebildet sein.
Eine erfindungsgemäße elektronische Baugruppe unterscheidet sich von oben beschriebenen herkömmlichen Baugruppen einerseits durch eine verbesserte Kühlung und andererseits durch eine verbesserte elektromagnetische Verträglichkeit.
Die Kühlung wird dadurch verbessert, dass die Baugruppe keinen elektrisch isolierenden Bauteilträger aufweist, an dem die High-Side-Schalter und Low-Side-Schalter angebracht sind. Stattdessen sind diese Schalter jeweils direkt an einem metallischen Kühlblock angeordnet, der wenigstens einen Kühlkanal aufweist, durch den ein Kühlmittel leitbar ist. Dadurch wird die Wärmeabfuhr von den Schaltern wesentlich verbessert gegenüber einer Baugruppe mit einem elektrisch isolierenden Bauteilträger, auf dem die Schalter angeordnet sind.
Die elektromagnetische Verträglichkeit wird einerseits durch eine Kompensation von Magnetfeldern, die von den durch die Schalter fließenden elektrischen Strömen erzeugt werden, und andererseits durch eine räumliche Begrenzung von elektrischen Feldern, die von Potentialdifferenzen zwischen elektrischen Potentialen der Baugruppe verursacht werden, gegenüber herkömmlichen Baugruppen verbessert.
Die Kompensation der Magnetfelder wird dadurch erreicht, dass ein zwischen einem High-Side-Anschluss und einem Low-Side-Anschluss des Zwischenkreiskondensators in einer Halbbrücke fließender elektrischer Strom durch den High-Side-Schalter in einer Richtung fließt, die der Richtung durch den Low-Side-Schalter entgegengesetzt ist. Das Magnetfeld des durch den High-Side-Schalter fließenden Stroms kompensiert daher das Magnetfeld des durch den Low-Side-Schalter fließenden Stroms zumindest teilweise.
Die räumliche Begrenzung der elektrischen Felder wird insbesondere durch die sich gegenüberliegenden Innenflächen der High-Side- und Low-Side-Kühlblöcke erreicht, wobei letztere mit dem Minuspol des Gleichspannungszwischenkreises verbunden sind. Dadurch werden die elektrischen Felder im Wesentlichen auf das Innere der so gebildeten Plattenkondensatoren begrenzt.
Bei einer Ausgestaltung der Erfindung ist jeder High-Side-Kühlblock von jedem anderen High-Side-Kühlblock, von dem Pluspol und von jedem Low-Side-Kühlblock elektrisch isoliert. Diese Ausgestaltung der Erfindung ermöglicht, dass ein High-Side-Kühlblock im Betrieb der Baugruppe auf wechselndem elektrischen Potential liegt. Dies ist erforderlich, da ein High-Side-Kühlblock mit einem High-Side-Schalter elektrisch verbunden ist.
Bei einer weiteren Ausgestaltung der Erfindung ist das die High-Side-Schalter und den Zwischenkreis umgebende Gehäuse elektrisch leitend mit jedem Low-Side-Kühlblock verbunden. Diese Ausgestaltung der Erfindung ermöglicht die räumliche Begrenzung der verbleibenden elektrischen Felder und führt die von diesen Feldern erzeugten elektrischen Ströme auf kurzen Wegen wieder zu ihren Quellen zurück.
Bei einer weiteren Ausgestaltung der Erfindung ist wenigstens ein Kühlkanal eines High-Side-Kühlblocks mit einem Kühlkanal eines Low-Side-Kühlblocks durch eine durch die Leiterplatte geführte Verbindungshülse verbunden. Diese Ausgestaltung der Erfindung ermöglicht durch die Leiterplatte geführte Verbindungen der Kühlkanäle von High-Side-Kühlblöcken und Low-Side-Kühlblöcken, sodass keine derartigen Verbindungen um die Leiterplatte herumgeführt werden müssen.
Bei einer weiteren Ausgestaltung der Erfindung weist die Baugruppe genau einen Low-Side-Kühlblock auf, der an den von der Leiterplatte abgewandten Oberflächen aller Low-Side-Schalter anliegt. Diese Ausgestaltung der Erfindung reduziert im Fall, dass die Baugruppe mehrere Halbbrücken mit elektronischen Schaltern aufweist, vorteilhaft die Anzahl von Bauelementen der Baugruppe gegenüber einer Ausführung mit mehreren Low-Side-Kühlblöcken, beispielsweise mit einem Low-Side-Kühlblock für jeden Low-Side-Schalter. Bei einer weiteren Ausgestaltung der Erfindung weist das Gehäuse einen zu der Leiterplatte hin offenen Gehäuseteil auf, der eine an der Leiterplatte auf der ersten Leiterplattenseite anliegende Kante aufweist und in dem jeder High-Side-Kühlblock angeordnet ist. Durch diese Ausgestaltung der Erfindung wird eine Umschließung der High-Side-Kühlblöcke und damit auch der High-Side-Schalter auf der ersten Leiterplattenseite durch das Gehäuse erreicht.
Bei einer weiteren Ausgestaltung der Erfindung weist das Gehäuse eine auf der zweiten Leiterplattenseite oder in der Leiterplatte angeordnete Metallschicht auf, die für jeden Low-Side-Schalter und High-Side-Schalter eine Aussparung aufweist und mit dem zu der Leiterplatte hin offenen Gehäuseteil durch mehrere Durchkontaktierungen in der Leiterplatte elektrisch leitend verbunden ist. Durch die Metallschicht wird der zu der Leiterplatte hin offene Gehäuseteil abgeschlossen, sodass er zusammen mit der Metallschicht die High-Side-Kühlblöcke und die High-Side-Schalter umschließt.
Bei einer weiteren Ausgestaltung der Erfindung ist das Gehäuse wenigstens teilweise mit einem Dielektrikum befüllt. Beispielsweise weist das Dielektrikum eine relative Perm ittivität von wenigstens 2 auf. Dadurch wird die elektrische Flußdichte vornehmlich innerhalb des vom Dielektrikum gefüllten Raumes konzentriert. Durch das Dielektrikum kann außerdem eine Durchschlagfestigkeit des Innenraumes des Gehäuses erhöht werden, wodurch die Abstände von Bauteilen mit hohen Potentialdifferenzen im Innenraum des Gehäuses reduziert werden können, wodurch wiederum die von den Potentialdifferenzen erzeugten elektrischen Felder vorteilhaft räumlich begrenzt werden.
Das Dielektrikum ist ferner beispielsweise ein Thermoplast, ein Duroplast oder eine Vergussmasse. Dadurch kann insbesondere eine einfache mechanische Fixierung von Bauteilen im Innenraum des Gehäuses mittels des Dielektrikums erreicht werden.
Bei einer weiteren Ausgestaltung der Erfindung weist der
Zwischenkreiskondensator eine Reihenschaltung mehrerer übereinander angeordneter Teilkondensatoren auf, die jeweils mehrere übereinander angeordnete Elektrodenlagen und zwischen den Elektrodenlagen angeordnete Isolierlagen aufweisen. Durch eine derartige Ausführung des Zwischenkreiskondensators kann dessen Spannungsfestigkeit erhöht werden und sie erlaubt außerdem eine zumindest teilweise Kompensation der die Kondensatorströme begleitenden magnetischen Felder, was sich vorteilhaft in einer geringeren Induktivität bemerkbar macht.
Die oben beschriebenen Eigenschaften, Merkmale und Vorteile dieser Erfindung sowie die Art und Weise, wie diese erreicht werden, werden klarer und deutlicher verständlich im Zusammenhang mit der folgenden Beschreibung von Ausführungsbeispielen, die im Zusammenhang mit den Zeichnungen näher erläutert werden. Dabei zeigen:
FIG 1 eine Schnittdarstellung eines ersten Ausführungsbeispiels einer erfindungsgemäßen elektronischen Baugruppe,
FIG 2 einen Schaltplan der in Figur 1 dargestellten elektronischen Baugruppe,
FIG 3 eine erste perspektivische Darstellung von Teilen der in Figur 1 dargestellten elektronischen Baugruppe,
FIG 4 eine perspektivische Darstellung der Leiterplatte der in Figur 1 dargestellten elektronischen Baugruppe,
FIG 5 eine zweite perspektivische Darstellung von Teilen der in Figur 1 dargestellten elektronischen Baugruppe,
FIG 6 eine dritte perspektivische Darstellung von Teilen der in Figur 1 dargestellten elektronischen Baugruppe, FIG 7 eine perspektivische Darstellung der in Figur 1 dargestellten elektronischen Baugruppe,
FIG 8 eine perspektivische Darstellung des Zwischenkreiskondensators der in Figur 1 dargestellten elektronischen Baugruppe,
FIG 9 eine erste Schnittdarstellung des Zwischenkreiskondensators der in Figur 1 dargestellten elektronischen Baugruppe,
FIG 10 eine zweite Schnittdarstellung des Zwischenkreiskondensators der in Figur 1 dargestellten elektronischen Baugruppe,
FIG 11 eine Schaltskizze einer Verschaltung eines M ittelabgriffs mit Elektrodenlagen des Zwischenkreiskondensators der in Figur 1 dargestellten elektronischen Baugruppe,
FIG 12 eine perspektivische Darstellung eines zweiten Ausführungsbeispiels einer erfindungsgemäßen elektronischen Baugruppe.
Einander entsprechende Teile sind in den Figuren mit denselben Bezugszeichen versehen.
Die Figuren 1 bis 11 zeigen ein erstes Ausführungsbeispiel einer erfindungsgemäßen elektronischen Baugruppe 100. Dabei zeigt Figur 1 (FIG 1 ) eine Schnittdarstellung der Baugruppe 100 und Figur 2 (FIG 2) zeigt einen Schaltplan der Baugruppe 100. Die Baugruppe 100 umfasst einen elektrischen Gleichspannungszwischenkreis 101 mit einem Pluspol 102, einem Minuspol 103 und einem Zwischenkreiskondensator 8. Das elektrische Potential des
Minuspols 103 definiert ein Bezugspotential der Baugruppe 100. Ferner umfasst die Baugruppe 100 drei Halbbrücken 104 bis 106 mit jeweils einem mit dem
Pluspol 102 verbundenen elektronischen High-Side-Schalter 1 , einem mit dem Minuspol 103 verbundenen elektronischen Low-Side-Schalter 19 und einem Halbbrückenabgriff 9, wobei der High-Side-Schalter 1 und der Low-Side-Schalter 19 jeder Halbbrücke 104 bis 106 elektrisch in Reihe geschaltet sind. Die Halbbrückenabgriffe 9 werden beispielsweise jeweils mit einem Außenleiter eines dreiphasigen Motors verbunden, der mittels der Baugruppe 100 gesteuert wird.
Im Folgenden ist angenommen, dass die High-Side-Schalter 1 und die Low-Side-Schalter 19 jeweils als ein Transistor mit einem Halbleiter mit breitem Bandabstand (Wide Bandgap Transistor, abgekürzt WBT), z.B. in GaN oder SiC Technologie ausgeführt, ausgebildet sind. In anderen Ausführungsbeispielen können sie aber auch jeweils als ein anderer elektronischer Schalter ausgebildet sein, beispielsweise als ein IGBT (Abkürzung für insulated-gate bipolar transistor, deutsch: Bipolartransistor mit isolierter Gate-Elektrode) und eine antiparallel geschaltete Freilaufdiode. Im letzteren Fall sind die für die elektrischen Anschlüsse eines WBT verwendeten Begriffe Drain, Source und Gate gegebenenfalls durch entsprechende Begriffe zu ersetzen, beispielsweise im Fall eines IGBT Drain durch Kollektor und Source durch Emitter.
Alle High-Side-Schalter 1 sind an der Leiterplatte 14 auf einer ersten Leiterplattenseite angeordnet und alle Low-Side-Schalter 19 sind an der Leiterplatte 14 auf einer der ersten Leiterplattenseite gegenüberliegenden zweiten Leiterplattenseite angeordnet, so dass der High-Side-Schalter 1 und der Low-Side-Schalter 19 jeder Halbbrücke 104 bis 106 einander gegenüberliegen. Der High-Side-Schalter 1 und der Low-Side-Schalter 19 jeder Halbbrücke 104 bis 106 sind durch eine Durchkontaktierung 21 in der Leiterplatte 14 elektrisch miteinander verbunden.
Die Baugruppe 100 umfasst ferner für jeden High-Side-Schalter 1 einen metallischen High-Side-Kühlblock 2, der an einer von der Leiterplatte 14 abgewandten Oberfläche des High-Side-Schalters 1 anliegt, sowie einen metallischen Verbindungskühlblock 3, der entlang von Stirnseiten der High-Side-Kühlblöcke 2, aber von diesen Stirnseiten beabstandet verläuft (siehe auch Figur 3). Jeder High-Side-Kühlblock 2 weist einen in dem High-Side-Kühlblock 2 zu dem Verbindungskühlblock 3 verlaufenden Kühlkanal 2.1 zum Leiten eines Kühlmittels auf. Der Verbindungskühlblock 3 weist einen in ihm senkrecht zu den Kühlkanälen 2.1 verlaufenden Verbindungskühlkanal 3.1 auf. Die Kühlkanäle 2.1 sind mit dem Verbindungskühlkanal 3.1 durch elektrisch isolierende Kühlverbindungen 6 verbunden, die gleichzeitig als Distanzstücke zwischen den High-Side-Kühlblöcken 2 und dem Verbindungskühlblock 3 dienen.
Die Baugruppe 100 umfasst außerdem einen metallischen Low-Side-Kühlblock 20. Der Low-Side-Kühlblock 20 weist für jeden Low-Side-Schalter 19 einen Kühlabschnitt 20.1 auf, der ähnlich wie ein High-Side-Kühlblock 2 ausgebildet ist und an dem eine von der Leiterplatte 14 abgewandte Oberfläche des Low-Side-Schalters 19 anliegt. Ferner weist der Low-Side-Kühlblock 20 einen Verbindungskühlabschnitt 20.2 auf, der die Kühlabschnitte 20.1 miteinander verbindet (siehe auch Figur 5). Jeder Kühlabschnitt 20.1 weist einen Kühlkanal 20.3 auf, der zu dem Verbindungskühlabschnitt 20.2 hin verläuft. Der
Verbindungskühlabschnitt 20.2 weist einen Verbindungskühlkanal 20.4 auf, der die Kühlkanäle 20.3 miteinander verbindet und senkrecht zu ihnen verläuft. Der Kühlkanal 20.3 eines Kühlabschnitts 20.1 ist mit dem Kühlkanal 2.1 desjenigen High-Side-Kühlblocks 2, der ihm auf der anderen Seite der Leiterplatte 14 gegenüberliegt, durch eine elektrisch isolierende Verbindungshülse 22 verbunden, die durch die Leiterplatte 14 geführt ist.
Der Verbindungskühlblock 3 ist mit dem Pluspol 102 elektrisch verbunden. Der Low-Side-Kühlblock 20 ist mit dem Minuspol 103 elektrisch verbunden. Die High-Side-Kühlblöcke 2 sind voneinander und von dem Verbindungskühlblock 3 elektrisch isoliert.
Der Verbindungskühlabschnitt 20.2 des Low-Side-Kühlblocks 20 und der Verbindungskühlblock 3 verlaufen parallel zueinander auf einander gegenüberliegenden Seiten der Leiterplatte 14 und weisen miteinander fluchtende Stirnseiten auf, die dem Zwischenkreiskondensator 8 zugewandt sind.
Die Halbbrückenabgriffe 9 sind versetzt zueinander angeordnet (siehe Figur 3).
Dadurch kann beispielsweise der Anschluss eines feldkompensierten Dreiphasenkabels an die Halbbrückenabgriffe 9 erleichtert werden. Ein die Halbbrückenabgriffe 9 jeweils umgebendes Magnetfeld kann beispielsweise zur induktiven Phasenstrommessung eines an die Halbbrückenabgriffe 9 angeschlossenen dreiphasigen Verbrauchers genutzt werden. Figur 1 zeigt einen ringförmig um einen Halbbrückenabgriff 9 verlaufenden Magnetfeldsensor 33 zum Erfassen des den Halbbrückenabgriff 9 umgebenden Magnetfeldes.
Figur 3 (FIG 3) zeigt eine perspektivische Darstellung des Zwischenkreiskondensators 8 und auf der ersten Leiterplattenseite angeordneter Komponenten der Baugruppe 100.
Der Zwischenkreiskondensator 8 weist für jede Halbbrücke 104 bis 106 einen High-Side-Anschluss 5 und einen Low-Side-Anschluss 25 auf. Die High-Side-Anschlüsse 5 und Low-Side-Anschlüsse 25 sind leiterplattenseitig aus dem Zwischenkreiskondensator 8 herausgeführt.
Jeder High-Side-Anschluss 5 des Zwischenkreiskondensators 8 ist mit dem Verbindungskühlblock 3 und einem an der Leiterplatte 14 auf der ersten Leiterplattenseite angeordneten elektrisch leitenden Verbindungsblock 10 elektrisch verbunden. Jeder Verbindungsblock 10 ist über eine in der Leiterplatte 14 angeordnete Leitung 11 mit dem Drain-Anschluss eines High-Side-Schalters 1 elektrisch verbunden. Der Gate-Anschluss eines High-Side-Schalters 1 ist mit einer in der Leiterplatte 14 angeordneten Leitung 12 verbunden, der Source-Anschluss eines High-Side-Schalters 1 ist mit einer in der Leiterplatte 14 angeordnete Leitung 13 verbunden.
Jeder Low-Side-Anschluss 25 des Zwischenkreiskondensators 8 ist entsprechend mit dem Verbindungskühlabschnitt 20.2 des Low-Side-Kühlblocks 20 und einem an der Leiterplatte 14 auf der zweiten Leiterplattenseite angeordneten elektrisch leitenden Verbindungsblock 15 (siehe Figuren 1 und 4) elektrisch verbunden. Jeder Verbindungsblock 15 ist über eine in der Leiterplatte 14 angeordnete Leitung 16 (siehe Figuren 1 und 4) mit dem Source-Anschluss eines Low-Side-Schalters 19 elektrisch verbunden. Der Gate-Anschluss eines Low-Side-Schalters 19 ist mit einer in der Leiterplatte 14 angeordneten Leitung 17 (siehe Figur 4) verbunden, der Drain-Anschluss eines High-Side-Schalters 1 ist mit einer in der Leiterplatte 14 angeordnete Leitung 18 (siehe Figur 4) verbunden.
In Figur 3 sind ferner dargestellt ein Kühlmittelanschluss 7 des Verbindungskühlblocks 3 zum Zu- und Ableiten von Kühlmittel zu und aus dem Verbindungskühlkanal 3.1 und ein elektrischer Anschluss 4, über den der Verbindungskühlblock 3 mit dem Pluspol 102 verbunden ist.
Figur 4 (FIG 4) zeigt eine perspektivische Darstellung der Leiterplatte 14 ohne die High-Side-Schalter 1 und Low-Side-Schalter 19. Dargestellt sind die Verbindungsblöcke 15, die Leitungen 11 , 12, 13, 16, 17, 18 und eine auf der zweiten Leiterplattenseite angeordnete Metallschicht 32, die für jeden High-Side-Schalter 1 und Low-Side-Schalter 19 eine Aussparung 32.1 aufweist und Teil eines Gehäuses 107 (siehe Figuren 1 und 7) der Baugruppe 100 ist.
Statt auf der zweiten Leiterplattenseite kann die Metallschicht 32 auch in einer inneren Lage der Leiterplatte 14 angeordnet sein. Dann kann auf das Bezugspotential der Baugruppe 100 bezogene Auswerte - und/oder Ansteuerelektronik auch oberhalb oder unterhalb der Metallschicht 32 an der Leiterplatte 14 platziert und mit der Metallschicht 32 elektrisch verbunden werden.
Figur 5 (FIG 5) zeigt in einer perspektivischen Darstellung die Anordnung und geometrische Ausführung des Zwischenkreiskondensators 8, der Leiterplatte 14, des Low-Side-Kühlblocks 20, der High-Side-Kühlblöcke 2 und des Verbindungskühlblocks 3 und der Halbbrückenabgriffe 9. Ferner zeigt Figur 5 einen Kühlmittelanschluss 23 des Low-Side-Kühlblocks 20 zum Zu- und Ableiten von Kühlmittel zu und aus dem Verbindungskühlkanal 20.4 und einen elektrischen Anschluss 24, über den der Low-Side-Kühlblock 20 mit dem Minuspol 103 verbunden ist.
Figur 6 (FIG 6) zeigt in einer perspektivischen Darstellung bereits in Figur 5 gezeigte
Komponenten der Baugruppe 100 und zusätzlich zwei jeweils U-förmige Kondensatorkühlblöcke 26, 27 zur Kühlung des Zwischenkreiskondensators 8. Die Kondensatorkühlblöcke 26, 27 liegen jeweils an einer von der Leiterplatte 14 abgewandten Außenoberfläche des Zwischenkreiskondensators 8 sowie an daran angrenzenden seitlichen Außenoberflächen des Zwischenkreiskondensators 8 an.
Jeder Kondensatorkühlblock 26, 27 weist einen Kühlkanal auf. Der Kühlkanal des Kondensatorkühlblocks 27 ist in der Nähe des Kühlmittelanschlusses 7 mit dem Kühlkanal 3.1 des Verbindungskühlblocks 3 durch ein Verbindungselement verbunden, das den Kühlverbindungen 6 der Kühlkanäle 2.1 mit dem Kühlkanal 3.1 (siehe Figur 1 ) ähnelt, jedoch im Unterschied zu den Kühlverbindungen 6 elektrisch leitend ist. Dadurch ist der Kondensatorkühlblock 27 über den Verbindungskühlblock 3 mit dem Pluspol 102 verbunden. Der Kühlkanal des Kondensatorkühlblocks 26 ist analog dazu in der Nähe des Kühlmittelanschlusses 23 mit dem Verbindungskühlkanal 20.4 des Low-Side-Kühlblocks 20 durch ein elektrisch leitendes Verbindungselement verbunden. Dadurch ist der Kondensatorkühlblock 26 über den Low-Side-Kühlblock 20 mit dem Minuspol 103 verbunden. Die anderen beiden Enden der Kühlkanäle der Kondensatorkühlblöcke 26, 27 (an den anderen Enden der U-förmigen Kondensatorkühlblöcke 26, 27) sind miteinander durch ein elektrisch isolierendes Verbindungselement analog zu den Kühlverbindungen 6 der Kühlkanäle 2.1 mit dem Kühlkanal 3.1 verbunden.
Die voneinander abgewandten Außenoberflächen der Kondensatorkühlblöcke 26, 27 fluchten jeweils mit einer Außenoberfläche des Zwischenkreiskondensators 8. An jeder dieser Außenoberflächen und der korrespondierenden Außenoberfläche des Zwischenkreiskondensators 8 ist ein Blech 28, 30 angeordnet.
Figur 7 (FIG 7) zeigt eine perspektivische Darstellung der Baugruppe 100. Wie in Figur 6 gezeigt, ragt der Kondensatorkühlblock 26 seitlich über die Leiterplatte 14 sowie seitlich und hinten über den Kondensatorkühlblock 27 hinaus. Dies ermöglicht, an dem Kondensatorkühlblock 26 einen kastenartigen metallischen Gehäuserahmen 29 zu montieren, der den Zwischenkreiskondensator 8 und einen Teil der Leiterplatte 14 in Figur 7 seitlich, hinten und von unten umschließt und einen zu der Leiterplatte 14 hin offenen Gehäuseteil 29.1 aufweist, der eine an der Leiterplatte 14 auf der ersten Leiterplattenseite anliegende Kante 29.2 aufweist und in dem jeder High-Side-Kühlblock 2 angeordnet ist. Die Kante 29.2 ist durch mehrere Durchkontaktierungen 35 in der Leiterplatte 14 mit der Metallschicht 32 (siehe Figuren 1 und 4) elektrisch verbunden. Der Gehäuserahmen 29, das obere Blech 28 und die Metallschicht 32 bilden ein Gehäuse 107, in dem der Zwischenkreiskondensator 8, jeder High-Side-Kühlblock 2 und jeder High-Side-Schalter 1 angeordnet sind und das mit dem Minuspol 103 verbunden ist und somit auf dem Bezugspotential der Baugruppe 100 liegt. Zusammen mit dem Low-Side-Kühlblock 20 umhüllt das Gehäuse 107 die gesamte Leistungselektronik der Baugruppe 100, das heißt alle High-Side-Schalter 1 und Low-Side-Schalter 19.
Die Leerräume des Gehäuses 107 sind mit einem Dielektrikum 42 ausgefüllt, das eine relative Perm ittivität von wenigstens 2 aufweist. Das Dielektrikum 42 ist beispielsweise ein Thermoplast, Duroplast oder eine Vergussmasse wie ein Gießharz. Mit dem Dielektrikum 42 kann ferner auch das Gehäuse 107 einschließlich der Leiterplatte 14 und des Low-Side-Kühlblocks 20 umhüllt sein. Dadurch können alle mechanischen und elektrischen Bauteile der Baugruppe 100 fixiert und die gesamte Baugruppe 100 nach außen elektrisch isoliert werden. Außerdem erhöht das Dielektrikum 42 die Spannungsfestigkeit und erlaubt so geringere Abstände zwischen Bauteilen unterschiedlichen Potentials und konzentriert das elektrische Feld aufgrund der höheren relativen Perm ittivität auf das dielektrisch gefüllte Gebiet.
Durch die magnetische Feldkompensation und damit drastische Verringerung der Magnetfeldstärke mit wachsendem Abstand von den Halbbrücken 104 bis 106, sowie der Konzentration des elektrischen Feldes in unmittelbarer Nähe der Halbbrücken 104 bis 106 sowie der Rückführung der Verschiebungsströme in die Quelle kann potentiell auf ein hochfrequenzdichtes Schirmgehäuse verzichtet werden. Neben einer Kostenersparnis vereinfacht dies auch die Einhaltung der EMV-Grenzwerte über die Lebensdauer der Baugruppe 100. Figur 7 zeigt außerdem einen Ferritring 43, der um den Verbindungskühlblock 3 und Verbindungskühlabschnitt 20.2 des Low-Side-Kühlblocks 20 herum und daran anliegend verläuft und eine flüssigkeitsgekühlte Induktivität für ein EMV-Filter bildet.
Figur 8 (FIG 8) zeigt eine perspektivische Darstellung des Zwischenkreiskondensators 8. Aus dem Zwischenkreiskondensator 8 ist auf einer den High-Side-Anschlüssen 5 und den Low-Side-Anschlüssen 25 gegenüberliegenden Seite ein Mittelabgriff 41 herausgeführt.
Figur 9 (FIG 9) und Figur 10 (FIG 10) zeigen Schnittdarstellungen des Zwischenkreiskondensators 8 mit zueinander orthogonalen Schnittebenen. Der Zwischenkreiskondensator 8 weist eine Reihenschaltung mehrerer übereinander angeordneter Teilkondensatoren 8.1 auf, die jeweils mehrere mit dem Pluspol 102 verbundene erste Elektrodenlagen 8.2, mehrere mit dem Minuspol 103 verbundene zweite Elektrodenlagen 8.3 und zwischen den Elektrodenlagen 8.2, 8.3 angeordnete Isolierlagen 8.4 aufweisen. Die Elektrodenlagen 8.2, 8.3 und die Isolierlagen 8.4 sind übereinander angeordnet. Die Elektrodenlagen 8.2 und 8.3 eines Teilkondensators 8.1 werden beispielsweise jeweils durch Falten einer Elektrodenfolie realisiert. Dargestellt sind ferner beispielhaft erste Kontaktstellen 8.5, an denen erste Elektrodenlagen 8.2 mit einem High-Side-Anschluss 5 des Zwischenkreiskondensators 8 verbunden werden, und zweite Kontaktstellen 8.6, an denen zweite Elektrodenlagen 8.3 mit einem Low-Side-Anschluss 25 des Zwischenkreiskondensators 8 verbunden werden. Außerdem weist der Zwischenkreiskondensator 8 dritte Elektrodenlagen 8.7 auf, die jeweils zwischen zwei Isolierlagen 8.4 angeordnet sind und an dritten Kontaktstellen 8.8 mit dem Mittelabgriff 41 verbunden sind.
Figur 11 (FIG 11 ) zeigt eine Schaltskizze einer Verschaltung von Elektrodenlagen 8.2, 8.3, 8.7 des Zwischenkreiskondensators 8 mit dem Mittelabgriff 41 . Eine dritte Elektrodenlage 8.7 bildet hierbei mit einer ersten Elektrodenlage 8.2 und einer zweiten Elektrodenlagen 8.3 eine Kondensatorschaltung 36. Die dritte Elektrodenlage 8.7 ist mit dem Mittelabgriff 41 verbunden. Der Mittelabgriff 41 ist wiederum an einen Kondensator 37 angeschlossen, dessen anderer Anschluss geerdet ist.
Durch Verbinden des Kondensators 37 mit dem Mittelabgriff 41 erhält man ein LC-Gegentakt- und Gleichtaktfilter mit Tiefpasscharakter. Das so entstandene Sternfilter wird beispielsweise wie in EP 1867065 A1 ausgelegt. Durch Ergänzung zu einem PI-Filter kann die Wirkung entsprechend erhöht werden. Durch die aufbaubedingte geringe relative Toleranz der beiden Teilkondensatoren 36.1 und 36.2 zueinander kann das Verhältnis der Kapazitäten zwischen dem für den Gleichtakt-Mode dominanten Kondensator 37 und den Kondensatorschaltungen 36 geringer gewählt werden (siehe EP 1867065 A1 ), womit sich mit der EMV-Induktivität des Ferritrings 43 eine niedrigere Eckfrequenz des Tiefpassfilters für den Gleichtakt-Mode erreichen lässt bei deutlich reduzierter Gleichtakt- zu Gegentakttransformation, das heißt bei reduzierten Störungen in den Nutz-Mode und umgekehrt. Das Gegentakt-Mode Verhalten bleibt hiervon unberührt.
Figur 12 (FIG 12) zeigt eine perspektivische Darstellung eines zweiten Ausführungsbeispiels einer erfindungsgemäßen elektronischen Baugruppe 100. Im Unterschied zu dem in den Figuren 1 bis 11 gezeigten Ausführungsbeispiel sind die Kühlmittelanschlüsse 7, 23 und die elektrischen Anschlüsse 4, 24 auf der von der Leiterplatte 14 abgewandten Seite des Zwischenkreiskondensators 8 angeordnet. Dementsprechend sind der Kühlmittelanschluss 7 und der elektrische Anschluss 4 mit dem Kondensatorkühlblock 27 statt mit dem Verbindungskühlblock 3 verbunden und der Kühlmittelanschluss 23 und der elektrische Anschluss 24 sind mit dem Kondensatorkühlblock 26 statt mit dem Verbindungskühlabschnitt 20.2 des Low-Side-Kühlblocks 20 verbunden. Abgesehen davon entspricht das in Figur 12 gezeigte Ausführungsbeispiel einer erfindungsgemäßen elektronischen Baugruppe 100 dem in den Figuren 1 bis 11 gezeigten Ausführungsbeispiel. Die Anordnung der Kühlmittelanschlüsse 7, 23 und elektrischen Anschlüsse 4, 24 auf der von der Leiterplatte 14 abgewandten Seite des Zwischenkreiskondensators 8 hat den Vorteil, dass die EMV-Induktivität des Ferritrings 43 direkt am Mittelabgriff 41 des Zwischenkreiskondensators 8 liegt, was die Anschlusslänge und damit die parasitäre Induktivität der angeschlossenen Kondensatoren verringert. Beide in den Figuren gezeigten Ausführungsbeispiele einer erfindungsgemäßen elektronischen Baugruppe 100 können dahingehend abgewandelt werden, dass der einstückig ausgeführte Low-Side-Kühlblock 20 ersetzt wird durch drei einzelne Low-Side-Kühlblöcke, die jeweils einem Kühlabschnitt 20.1 entsprechen und analog zu den High-Side-Kühlblöcken 2 ausgebildet sind, und einen diese Low-Side-Kühlblöcke verbindenden Low-Side-Verbindungskühlblock, der dem Verbindungskühlabschnitt 20.2 entspricht und analog zu dem Verbindungskühlblock 3 ausgebildet ist. Die Kühlkanäle der Low-Side-Kühlblöcke werden dabei mit dem Kühlkanal des Low-Side-Verbindungskühlblocks analog zu der Verbindung der Kühlkanäle 2.1 der High-Side-Kühlblöcke 2 mit dem Kühlkanal 3.1 des Verbindungskühlblocks 3 (siehe Figur 1 ) verbunden, wozu jedoch keine elektrisch isolierenden Kühlverbindungen 6 sondern entsprechende elektrisch leitende Kühlverbindungen verwendet werden.
Bezugszeichenliste
1 High-Side-Schalter
2 High-Side-Kühlblock
2.1 Kühlkanal
3 Verbindungskühlblock
3.1 Kühlkanal
4, 24 elektrischer Anschluss
5 High-Side-Anschluss
6 Kühlverbindung
7, 23 Kühlmittelanschluss
8 Zwischenkreiskondensator
8.1 Teilkondensator
8.2, 8.3, 8.7 Elektrodenlage
8.4 Isolierlage
8.5, 8.6, 8.8 Kontaktstelle
9 Halbbrückenabgriff
10, 15 Verbindungsblock
11 bis 13, 16 bis 18 Leitung
14 Leiterplatte
19 Low-Side-Schalter
20 Low-Side-Kühlblock
20.1 Kühlabschnitt
20.2 Verbindungskühlabschnitt
20.3, 20.4 Kühlkanal
21 , 35 Durchkontaktierung
22 Verbindungshülse
25 Low-Side-Anschluss
26, 27 Kondensatorkühlblock
28, 30 Blech
29 Gehäuserahmen
29.1 Gehäuseteil
29.2 Kante 32 Metallschicht
32.1 Aussparung
33 Magnetfeldsensor
36 Kondensatorschaltung 36.1 , 36.2 Teilkondensator
37 Kondensator
41 Mittelabgriff
42 Dielektrikum
43 Ferritring 100 Baugruppe
101 Gleichspannungszwischenkreis
102 Pluspol
103 Minuspol
104 bis 106 Halbbrücke 107 Gehäuse

Claims

Patentansprüche
1. Elektronische Baugruppe (100), umfassend
- einen elektrischen Gleichspannungszwischenkreis (101 ) mit einem Pluspol (102), einem Minuspol (103) und einem Zwischenkreiskondensator (8),
- wenigstens eine Halbbrücke (104, 105, 106) mit einem mit dem Pluspol (102) verbundenen elektronischen High-Side-Schalter (1 ) und einem mit dem Minuspol (103) verbundenen elektronischen Low-Side-Schalter (19),
- für jeden High-Side-Schalter (1 ) einen metallischen High-Side-Kühlblock (2), - wenigstens einen metallischen Low-Side-Kühlblock (20),
- eine Leiterplatte (14) und
- ein metallisches Gehäuse (107), in dem der Zwischenkreiskondensator (8), jeder High-Side-Kühlblock (2) und jeder High-Side-Schalter (1 ) angeordnet sind und das mit dem Minuspol (103) verbunden ist, wobei
- die Kühlblöcke (2, 20) jeweils wenigstens einen Kühlkanal (2.1 , 20.3, 20.4) zum Leiten eines Kühlmittels aufweisen und die Kühlkanäle (2.1 , 20.3, 20.4) aller Kühlblöcke (2, 20) miteinander verbunden sind,
- alle High-Side-Schalter (1 ) an der Leiterplatte (14) auf einer ersten Leiterplattenseite angeordnet sind und alle Low-Side-Schalter (19) an der Leiterplatte (14) auf einer der ersten Leiterplattenseite gegenüberliegenden zweiten Leiterplattenseite angeordnet sind, so dass der High-Side-Schalter (1 ) und der Low-Side-Schalter (19) jeder Halbbrücke (104, 105, 106) einander gegenüberliegen,
- der High-Side-Schalter (1 ) und der Low-Side-Schalter (19) jeder Halbbrücke (104, 105, 106) durch eine Durchkontaktierung (21 ) in der Leiterplatte (14) elektrisch miteinander verbunden sind,
- der High-Side-Schalter (1 ) jeder Halbbrücke (104, 105, 106) mit einem High-Side-Anschluss (5) des Zwischenkreiskondensators (8) verbunden ist und der Low-Side-Schalter (19) jeder Halbbrücke (104, 105, 106) mit einem Low-Side-Anschluss (25) des Zwischenkreiskondensators (8) verbunden ist, so dass ein zwischen einem High-Side-Anschluss (5) und einem Low-Side-Anschluss (25) des Zwischenkreiskondensators (8) in einer Halbbrücke (104, 105, 106) fließender elektrischer Strom durch den High-Side-Schalter (1 ) in einer Richtung fließt, die der Richtung durch den Low-Side-Schalter (19) entgegengesetzt ist,
- eine von der Leiterplatte (14) abgewandte Oberfläche jedes High-Side-Schalters (1 ) an dem dem High-Side-Schalter (1 ) zugeordneten High-Side-Kühlblock (2) anliegt, und
- eine von der Leiterplatte (14) abgewandte Oberfläche jedes Low-Side-Schalters (19) an einem Low-Side-Kühlblock (20) anliegt.
2. Elektronische Baugruppe (100) nach Anspruch 1 , wobei jeder High-Side-Kühlblock (2) von jedem anderen High-Side-Kühlblock (2), von dem Pluspol (102) und von jedem Low-Side-Kühlblock (20) elektrisch isoliert ist.
3. Elektronische Baugruppe (100) nach Anspruch 1 oder 2, wobei jeder Low-Side-Kühlblock (20) elektrisch leitend mit dem Gehäuse (107) verbunden ist.
4. Elektronische Baugruppe (100) nach einem der vorhergehenden Ansprüche, wobei wenigstens ein Kühlkanal (2.1 ) eines High-Side-Kühlblocks (2) mit einem Kühlkanal (20.3) eines Low-Side-Kühlblocks (20) durch eine durch die Leiterplatte (14) geführte Verbindungshülse (22) verbunden ist.
5. Elektronische Baugruppe (100) nach einem der vorhergehenden Ansprüche, die genau einen Low-Side-Kühlblock (20) aufweist, der an den von der Leiterplatte (14) abgewandten Oberflächen aller Low-Side-Schalter (19) anliegt.
6. Elektronische Baugruppe (100) nach einem der vorhergehenden Ansprüche, wobei das Gehäuse (107) einen zu der Leiterplatte (14) hin offenen Gehäuseteil (29.1 ) aufweist, der eine an der Leiterplatte (14) auf der ersten Leiterplattenseite anliegende Kante (29.2) aufweist und in dem jeder High-Side-Kühlblock (2) angeordnet ist.
7. Elektronische Baugruppe (100) nach Anspruch 6, wobei das Gehäuse (107) eine auf der zweiten Leiterplattenseite oder in der Leiterplatte (14) angeordnete Metallschicht (32) aufweist, die für jeden Low-Side-Schalter (19) und High-Side-Schalter (1 ) eine Aussparung (32.1 ) aufweist und mit dem zu der
Leiterplatte (14) hin offenen Gehäuseteil (29.1 ) durch mehrere
Durchkontaktierungen (35) in der Leiterplatte (14) elektrisch leitend verbunden ist.
8. Elektronische Baugruppe (100) nach einem der vorhergehenden Ansprüche, wobei das Gehäuse (107) wenigstens teilweise mit einem Dielektrikum (42) befüllt ist.
9. Elektronische Baugruppe (100) nach Anspruch 8, wobei das Dielektrikum (42) eine relative Perm ittivität von wenigstens 2 aufweist.
10. Elektronische Baugruppe (100) nach einem der vorhergehenden Ansprüche, wobei der Zwischenkreiskondensator (8) eine Reihenschaltung mehrerer übereinander angeordneter Teilkondensatoren (8.1 ) aufweist, die jeweils mehrere übereinander angeordnete Elektrodenlagen (8.2, 8.3, 8.7) und zwischen den Elektrodenlagen (8.2, 8.3, 8.7) angeordnete Isolierlagen (8.4) aufweisen.
11. Elektronische Baugruppe (100) nach Anspruch 10, wobei erste Elektrodenlagen (8.2) jeweils mit einem High-Side-Anschluss (5) des Zwischenkreiskondensators (8) verbunden sind, zweite Elektrodenlagen (8.3) jeweils mit einem Low-Side-Anschluss (25) des Zwischenkreiskondensators (8) verbunden sind und dritte Elektrodenlagen (8.7) mit einem Mittelabgriff (41 ) des Zwischenkreiskondensators (8) verbunden sind, wobei jede dritte Elektrodenlage (8.7) mit einer ersten Elektrodenlage (8.2) und einer zweiten Elektrodenlagen (8.3) eine Kondensatorschaltung (36) bildet und der Mittelabgriff (41 ) an einen Kondensator (37) angeschlossen ist, dessen anderer Anschluss geerdet ist.
PCT/EP2022/077964 2021-10-14 2022-10-07 Elektronische baugruppe WO2023061879A1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102021126669 2021-10-14
DE102021126669.6 2021-10-14
DE102021214906.5A DE102021214906A1 (de) 2021-10-14 2021-12-22 Elektronische Baugruppe
DE102021214906.5 2021-12-22

Publications (1)

Publication Number Publication Date
WO2023061879A1 true WO2023061879A1 (de) 2023-04-20

Family

ID=84246195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/077964 WO2023061879A1 (de) 2021-10-14 2022-10-07 Elektronische baugruppe

Country Status (1)

Country Link
WO (1) WO2023061879A1 (de)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1867065A1 (de) 2005-04-07 2007-12-19 Contitemic Microelectronic GmbH Elektrisches mehrleitersystem zur gegentakt-signalübertragung mit dämpfungs- oder filterglied und datenübertragungsbus
WO2019083629A1 (en) * 2017-10-23 2019-05-02 Lcdrives Corp. SEMI-BRIDGE SWITCH CIRCUIT SYSTEM
US20190318976A1 (en) * 2018-04-09 2019-10-17 Infineon Technologies Ag Cooling techniques for semiconductor package
WO2021177064A1 (ja) * 2020-03-05 2021-09-10 富士電機株式会社 電力変換装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1867065A1 (de) 2005-04-07 2007-12-19 Contitemic Microelectronic GmbH Elektrisches mehrleitersystem zur gegentakt-signalübertragung mit dämpfungs- oder filterglied und datenübertragungsbus
WO2019083629A1 (en) * 2017-10-23 2019-05-02 Lcdrives Corp. SEMI-BRIDGE SWITCH CIRCUIT SYSTEM
US20190318976A1 (en) * 2018-04-09 2019-10-17 Infineon Technologies Ag Cooling techniques for semiconductor package
WO2021177064A1 (ja) * 2020-03-05 2021-09-10 富士電機株式会社 電力変換装置
US20220181981A1 (en) * 2020-03-05 2022-06-09 Fuji Electric Co., Ltd. Power converter

Similar Documents

Publication Publication Date Title
DE102015115271B4 (de) Elektronikbaugruppe mit entstörkondensatoren und verfahren zum betrieb der elektronikbaugruppe
EP2997801B1 (de) Vorrichtung und elektrische baugruppe zum wandeln einer gleichspannung in eine wechselspannung
WO2017060092A1 (de) Elektromotor-wechselrichter
EP1083599B1 (de) Leistungshalbleitermodul
DE3609065C2 (de)
WO1987001007A1 (en) Electric switchgear
EP3557614A1 (de) Leistungsmodul mit einem leistungselektronischen bauelement auf einer substratplatte und leistungselektronische schaltung mit einem solchen leistungsmodul
EP3300470A1 (de) Umrichter
DE102019218953A1 (de) Elektronische Schaltungseinheit
WO2023061879A1 (de) Elektronische baugruppe
DE10054489A1 (de) Leistungs-Umrichtermodul
DE102021214906A1 (de) Elektronische Baugruppe
EP3208925B1 (de) Umrichter
DE102021211519B4 (de) Elektronische Baugruppe
DE102021213497A1 (de) Halbleiterpackage, Halbleitermodul, Stromrichter, elektrischer Achsantrieb sowie Kraftfahrzeug
WO2022128999A1 (de) Inverter
DE102020106406A1 (de) Leistungshalbleitermodul
EP3176822B1 (de) Elektrisch und thermisch effiziente leistungsbrücke
DE102020113132B4 (de) Anordnung zur Verringerung von parasitären Kapazitäten
EP3236498A1 (de) Leistungshalbleiterbauteil mit zwei lateralen leistungshalbleiterbauelementen in halbbrückenschaltung
DE102022207268A1 (de) Inverteranordnung
DE102017206774A1 (de) Elektrisches Steuergerät
DE102022207899A1 (de) Leistungshalbleitermodul
WO2024022935A1 (de) Leistungshalbleitermodul
WO2021122256A1 (de) Elektrische vorrichtung für einen stromrichter, stromrichter und anordnung mit einer elektrischen maschine und einem stromrichter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22800241

Country of ref document: EP

Kind code of ref document: A1