WO2023061312A1 - 麦克风结构和电子设备 - Google Patents

麦克风结构和电子设备 Download PDF

Info

Publication number
WO2023061312A1
WO2023061312A1 PCT/CN2022/124284 CN2022124284W WO2023061312A1 WO 2023061312 A1 WO2023061312 A1 WO 2023061312A1 CN 2022124284 W CN2022124284 W CN 2022124284W WO 2023061312 A1 WO2023061312 A1 WO 2023061312A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
microphone structure
grating
vibrating membrane
light
Prior art date
Application number
PCT/CN2022/124284
Other languages
English (en)
French (fr)
Inventor
杜峰
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023061312A1 publication Critical patent/WO2023061312A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/08Mouthpieces; Microphones; Attachments therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2499/00Aspects covered by H04R or H04S not otherwise provided for in their subgroups
    • H04R2499/10General applications
    • H04R2499/11Transducers incorporated or for use in hand-held devices, e.g. mobile phones, PDA's, camera's

Definitions

  • the present application belongs to the technical field of electronic equipment, and in particular relates to a microphone structure and electronic equipment.
  • This application aims to solve at least one of the technical problems existing in the prior art or related art.
  • the purpose of this application is to provide a microphone structure and electronic equipment.
  • an optical fiber sensor By setting an optical fiber sensor, when the sound is transmitted to the vibrating membrane, the characteristics of the optical fiber can be used to obtain the sound by detecting the change of the light.
  • the optical fiber Due to the optical fiber It is not a conductive material, so there is no need to specially set up an anti-electromagnetic interference structure, and its setting position is more flexible.
  • the optical fiber itself has a certain waterproof performance, and there is no need to design a more complicated waterproof structure.
  • for the sealing of the sound cavity The demand has also been reduced, which greatly simplifies the structural design, and has the advantages of flexible layout and good waterproof performance.
  • the microphone structure provided by the embodiment of the first aspect of the present application includes: a substrate with a mounting groove; The groove bottom of the installation groove extends into the installation groove; wherein, the extending direction of the optical fiber sensor is perpendicular to the extending direction of the vibrating membrane.
  • the microphone structure includes: a substrate, a vibrating membrane and an optical fiber sensor, wherein the substrate is used to provide support for the vibrating membrane and the optical fiber sensor, so as to facilitate the installation of the vibrating membrane and the normal sensing function of the optical fiber sensor.
  • a mounting groove is provided on the substrate, and the vibrating film is arranged at the notch of the mounting groove, so that when the external sound is transmitted to the vibrating film, the light can be generated under the joint action of vibration and the optical fiber sensor. Changes, so that through the analysis of the change of light, the specific radio content can be obtained, and the effect of the microphone can be realized.
  • the microphone in this application is implemented through the propagation of optical signals, it is only necessary to prevent other media from flowing into the installation groove to interfere with the propagation of light. Compared with the sealing requirements of traditional sound chambers, it can Significantly reduce the sealing requirements for the entire installation groove.
  • the optical fiber sensor will analyze the sound according to the difference and convert it into an electrical signal , so as to facilitate the subsequent analysis of the sound, and then realize functions such as speech recognition and recording.
  • the extension direction of the fiber optic sensor is set perpendicular to the extension direction of the vibrating membrane, which can effectively improve the accuracy of the fiber optic sensor for light acquisition, thereby greatly improving the accuracy of sound analysis and further improving the accuracy of speech. Recognition accuracy and recording effects, etc.
  • the optical fiber sensor can emit light outwards, and can also accept externally injected optical fibers.
  • the part of the optical fiber sensor will pass through the bottom of the installation groove and extend into the installation groove, when the optical fiber sensor emits light, The emitted light will return to the fiber optic sensor under the action of the vibrating membrane.
  • light under the action of the vibrating membrane includes but is not limited to direct reflection or indirect reflection, that is, part of the light path will change the light path trajectory under the action of the vibrating membrane.
  • the present application proposes an embodiment of an electronic device, including: a device middle frame; and the microphone structure in any of the above embodiments, and a substrate of the microphone structure is disposed on the device middle frame.
  • the electronic device provided by the second aspect of the present application includes a device middle frame and a microphone structure, wherein, by arranging the substrate of the microphone structure on the device middle frame, the basic function of sound collection of the electronic device can be realized.
  • the electronic device includes the microphone structure in the above-mentioned embodiment of the first aspect, it has the beneficial effect of any of the above-mentioned embodiments, and details are not repeated here.
  • the electronic device may be a smart phone, a tablet, a smart watch, a smart bracelet, or other devices with certain radio requirements.
  • FIG. 1 shows a schematic structural diagram of a microphone structure according to an embodiment of the present application
  • FIG. 2 shows a schematic structural diagram of a microphone structure according to an embodiment of the present application
  • Fig. 3 shows a schematic structural diagram of an installation groove according to an embodiment of the present application
  • FIG. 4 shows a schematic diagram of a partial structure of a microphone structure according to an embodiment of the present application
  • FIG. 5 shows a schematic structural diagram of a microphone structure according to an embodiment of the present application
  • FIG. 6 shows a schematic diagram of a partial structure of a microphone structure according to an embodiment of the present application
  • Fig. 7 shows a structural schematic block diagram of a microphone structure according to an embodiment of the present application.
  • Fig. 8 shows a structural schematic block diagram of a microphone structure according to an embodiment of the present application.
  • Fig. 9 shows a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • 100 microphone structure; 102: substrate; 1022: installation slot; 1024: installation port; 104: optical fiber sensor; 1042: optical fiber; 1044: light detector; 1046: probe terminal; 1048: grating terminal; 106: sealant; 1072 : optical coupler; 1074: signal amplifier; 1076: filter; 1078: analog-to-digital converter; 1080: data processor; 1082: controller; 109: laser; 110: diaphragm; 200: electronic equipment; 202: equipment middle frame.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected, or integrally connected; it can be mechanically connected or electrically connected; it can be directly connected or indirectly connected through an intermediary, and it can be the internal communication of two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in this application in specific situations.
  • the microphone structure provided in the embodiments of the present application is mainly used in electronic devices, such as mobile terminals such as mobile phones, wearable devices, tablet computers, laptop computers, mobile computers, handheld game consoles, video recorders and camcorders, and the like.
  • electronic devices such as mobile terminals such as mobile phones, wearable devices, tablet computers, laptop computers, mobile computers, handheld game consoles, video recorders and camcorders, and the like.
  • mobile terminals such as mobile phones, wearable devices, tablet computers, laptop computers, mobile computers, handheld game consoles, video recorders and camcorders, and the like.
  • mobile terminals such as mobile phones, wearable devices, tablet computers, laptop computers, mobile computers, handheld game consoles, video recorders and camcorders, and the like.
  • it may not be limited to electronic devices, but may be applied to other devices that need to radiate electromagnetic waves outward.
  • a microphone structure and an electronic device provided according to an embodiment of the present application are described below with reference to FIG. 1 to FIG. 9 .
  • an embodiment of the present application proposes a microphone structure 100, including: a substrate 102, on which a mounting groove 1022 is provided; a vibrating membrane 110, disposed at the notch of the mounting groove 1022; The fiber optic sensor 104 , part of the fiber optic sensor 104 extends into the installation groove 1022 through the bottom of the installation groove 1022 ; wherein, the extension direction of the fiber optic sensor 104 is perpendicular to the extension direction of the vibrating membrane 110 .
  • the microphone structure 100 includes: a substrate 102, a vibrating membrane 110 and an optical fiber sensor 104, wherein the substrate 102 is used to provide support for the vibrating membrane 110 and the optical fiber sensor 104, so as to facilitate the installation of the vibrating membrane 110 and Normal sensing function of the fiber optic sensor 104 .
  • the substrate 102 is provided with a mounting groove 1022, and by setting the vibrating membrane 110 at the notch of the mounting groove 1022, when the external sound is transmitted to the vibrating membrane 110, the vibration and the joint action of the optical fiber sensor 104 can Under this condition, the light will change, so that through the analysis of the light change, the specific radio content can be obtained, and the effect of the microphone can be realized.
  • the microphone in this application is implemented through the propagation of optical signals, it is only necessary to prevent other media from flowing into the installation groove 1022 and causing interference to the propagation of light. Compared with the sealing requirements of traditional sound chambers, The sealing requirements for the entire installation groove 1022 can be greatly reduced.
  • the optical fiber sensor 104 will analyze the sound according to the difference, and convert it to It is converted into an electrical signal to facilitate subsequent analysis of the sound, and then realize voice recognition, recording and other functions.
  • the extension direction of the fiber sensor 104 is perpendicular to the extension direction of the vibrating membrane 110, which can effectively improve the accuracy of the fiber sensor 104 for light acquisition, thereby greatly improving the accuracy of sound analysis. In turn, the accuracy of speech recognition and recording effects can be improved.
  • the optical fiber sensor 104 can emit light outwards, and can also accept the optical fiber 1042 injected from the outside. When the sensor 104 emits light, the emitted light will return to the fiber optic sensor 104 under the action of the vibrating membrane 110 .
  • the light under the action of the vibrating membrane 110 includes but not limited to direct reflection or indirect reflection, that is, part of the light path will change the light path trajectory under the action of the vibrating membrane 110 .
  • the processor or circuit board When it is necessary to collect sound, the processor or circuit board will control the light to enter the fiber optic sensor 104; under the action of the vibrating membrane 110, the light will generate two beams with a certain phase difference. At this time, the light phase information is converted into light intensity information , under the action of other responsive components, the conversion of optical signal to electrical signal, the effect of amplification and acquisition into digital signal, signal processing, analysis and storage can be realized in sequence.
  • the optical fiber sensor 104 specifically includes: an optical fiber 1042 ; and a light detector 1044 electrically connected to the other end of the optical fiber 1042 .
  • the optical fiber sensor 104 mainly includes two parts, one of which is an optical fiber 1042 for light transmission. It can be understood that the structural characteristics of the optical fiber 1042 itself determine that its ability to be subjected to electromagnetic interference is weak, and it has a certain ability to resist electromagnetic interference. The setting position will not be affected by the position of the antenna, and the setting of the position is more flexible. In addition, by connecting the other end of the optical fiber 1042 to the optical detector 1044, it is convenient to convert optical signals of various intensities and phases in the optical fiber 1042 into electrical signals, which is more convenient for subsequent signal analysis.
  • one end of the optical fiber 1042 is provided with a probe terminal 1046, and in the extending direction of the optical fiber 1042, there is a distance between the probe terminal 1046 and the vibrating membrane 110; wherein, the vibrating membrane 110 vibrates, and the spacing
  • the light emitted from the probe terminal 1046 and the light incident on the probe terminal 1046 after being reflected by the vibrating membrane 110 will form a light beam with a phase difference.
  • the probe terminal 1046 By setting the probe terminal 1046 at one end of the optical fiber 1042 , the light transmitted through the optical fiber 1042 can be emitted outwards under the action of the probe terminal 1046 , and at the same time, the light incident from the outside can be received and transmitted to the optical fiber 1042 .
  • the distance between the probe terminal 1046 and the vibrating membrane 110 after the vibrating membrane 110 vibrates, there will be a certain deformation in the thickness direction of the vibrating membrane 110, so for the probe terminal 1046 and the vibration
  • the distance between the films 110 will also change accordingly, so that for light, there will be two beams of light with a phase difference, which can be approximately considered as two-beam interference, so that the subsequent analysis of the beams can be obtained Specific sound vibrations.
  • a photodetector 1044 which is electrically connected to the probe terminal 1046, and the photodetector 1044 acquires the optical phase information of the phase difference of the beam and converts it into photoelectric information.
  • the optical signal can be converted into an electrical signal under the action of the photodetector 1044.
  • the photodetector 1044 can obtain the double beams detected by the probe terminal 1046. , by analyzing the phase and light intensity of the double beams, it can be converted into different electrical signals, that is, photoelectric information, so as to facilitate the subsequent analysis and processing of the photoelectric information, and finally store it.
  • an optical coupler 1072 may be provided between the optical detector 1044 and the probe terminal 1046 to facilitate demodulation of light of different phases.
  • a signal amplifier 1074, a filter 1076, an analog-to-digital converter 1078, a data processor 1080, and a controller 1082 may also be provided, wherein the signal Amplifier 1074 and filter 1076 are used to amplify and filter the previously converted photoelectric information, analog-to-digital converter 1078 is to convert the analog signal representing the sound characteristics into a digital signal, and the data rough tool is to use
  • the digital signal collected by the front end is further processed through a specific demodulation algorithm to restore the sensed sound wave information and store it, so as to realize the sound collection.
  • the final controller 1082 is responsible for the sound collection as the central node. , data processing and storage, laser 109 launch and other aspects of the overall control.
  • one end of the optical fiber is provided with two grating terminals 1048, and each grating terminal 1048 is against the vibrating membrane 110; wherein, when the vibrating membrane 110 vibrates, the two grating terminals 1048 form a Beams with phase difference.
  • two grating terminals 1048 respectively offset against the vibrating membrane 110 are provided by restricting one end of the optical fiber, so that when the vibrating membrane 110 receives external sound, corresponding vibrations will be generated.
  • Each grating terminal 1048 will directly form a light beam with a certain phase difference. At this time, the specific sound vibration can be obtained through subsequent analysis of the light beam.
  • a photodetector 1044 which is electrically connected to the grating terminal 1048, and the photodetector 1044 acquires the optical phase information of the phase difference of the beam and converts it into photoelectric information.
  • the optical signal can be converted into an electrical signal under the action of the photodetector 1044, specifically, the photodetector 1044 can obtain the double beam detected by the grating terminal 1048 , by analyzing the phase and light intensity of the double beams, it can be converted into different electrical signals, that is, photoelectric information, so as to facilitate the subsequent analysis and processing of the photoelectric information, and finally store it.
  • an optical coupler 1072 may be provided between the optical detector 1044 and the probe terminal 1046 to facilitate demodulation of light of different phases.
  • a signal amplifier 1074, a filter 1076, an analog-to-digital converter 1078, and a data processor 1080 may also be provided.
  • the controller 1082, etc. wherein the functions of the signal amplifier 1074 and the filter 1076 are to amplify and filter the previously converted photoelectric information respectively, and the analog-to-digital converter 1078 converts the analog signal representing the sound characteristics into a digital signal, and the data rough tool is used to further process the digital signal collected by the front end through a specific demodulation algorithm, restore the sensed sound wave information, and store it, so as to realize the sound collection.
  • the final controller 1082 As the central node, it is responsible for overall planning and control of sound collection, data processing and storage, and laser 109 emission.
  • the grating terminals 1048 are arranged in parallel, and the ends of the two grating terminals 1048 abutting against the vibrating membrane 110 are connected to each other.
  • one end of the two grating terminals 1048 is connected to each other, so that the optical path will form a projective loop, that is, after the light passes through one grating terminal 1048 to the vibrating film 110, it will pass through the other grating terminal 1048 return.
  • each grating sensor includes two parallel grating terminals 1048; wherein, the multiple grating sensors are connected to the optical fiber 1042 through a coupler.
  • a plurality of grating sensors can be set on the optical fiber 1042, and the position of each grating sensor is different, which can realize sound collection for different positions.
  • a very small number of optical fibers 1042 can be used, and in extreme cases, only one optical fiber can be provided, so that the application of multiple microphones can be achieved without increasing the volume of the mobile terminal.
  • the layout position and space of each grating sensor are not limited by the antenna, the position flexibility of sound sampling can be increased.
  • At least one installation opening 1024 is provided at the bottom of the installation groove 1022 , and the microphone structure 100 further includes: a sealant 106 filled between the installation opening 1024 and the optical fiber sensor.
  • the light sensor When the light sensor is fixed to the installation groove 1022, it is mainly achieved by opening the installation opening 1024 at the bottom of the installation groove 1022, and sealing the light sensor to the installation opening 1024 through the sealant 106.
  • the optical fiber 1042 Since the optical fiber 1042 has high hardness and is basically incompressible, the application can use the sealant 106 to directly realize the sealing. At this time, the sealing is completely sealed, which can effectively improve the sealing level of the entire electronic device 200 and greatly improve the product strength. .
  • a laser 109 connected to the optical fiber 1042 , the laser 109 is used to emit a monochromatic light source to the optical fiber 1042 .
  • a monochromatic light source can be emitted to the optical fiber 1042 under the action of the laser 109, so as to realize subsequent sensing.
  • the laser 109 only generates a monochromatic light source to prevent the possibility that the wavelength cannot be determined after the multicolor light sources are mixed with each other, and at the same time, the possibility that the phase difference cannot be accurately judged.
  • a fiber optic 1042 microphone is provided, which is applied to a mobile terminal and has the advantages of flexible layout, good waterproof performance, and simple structural design.
  • the optical fiber 1042 is vertically arranged with a thin film, and the section of the optical fiber 1042 is separated from the thin film by a certain distance to form a sensing part.
  • the vibration of the external sound wave causes the displacement of the diaphragm, and the intensity and phase of the laser reflected by the diaphragm are different if the displacement of the diaphragm is different, so as to sense the change of the external sound.
  • the optical fiber 1042 microphone includes a structural member (i.e. the substrate 102), an optical fiber 1042 probe (i.e. the probe terminal 1046) and a vibrating membrane (i.e. the vibrating membrane 110), wherein the vibrating membrane is attached to the surface of the structural member, and the optical fiber 1042 probe and the vibration
  • the films are perpendicular to each other, and there is a certain gap between them, and the size of the gap can be designed and adjusted according to the response range.
  • the gap passing through the fixed wall of the terminal can be completely sealed by glue to achieve the purpose of being truly waterproof.
  • control circuit it also includes: the sound wave input channel, if the sensor is directly arranged on the inner wall of the terminal shell, the channel is equal to the thickness of the shell; the sensing unit composed of the optical fiber 1042 and the vibrating film; the optical fiber 1042, which provides light wave transmission The path transmits the outgoing light and reflected light.
  • the optical coupler 1072 demodulates light of different phases in the optical fiber 1042; the optical detection unit converts different intensities and the phase optical signal is converted into an electrical signal; the signal amplification and filtering unit amplifies and filters the weak electrical signal converted by the photoelectric tube; the ADC sampling unit converts the analog signal representing the sound characteristics into a digital signal; the data processing unit passes The specific demodulation algorithm further processes the digital signal collected by the front end, restores the sensed sound wave information, and stores it, so as to realize the sound collection; the central control unit, as the central node, is responsible for sound collection, data processing and storage, Coordinated control of links such as the launch of the laser 109; the laser 109 unit is responsible for generating a monochromatic light source for sensing.
  • the central control unit controls the light emitted by the monochromatic light source to enter the sensor through the optical fiber 1042 coupler;
  • the light returned by the sensor enters the photodetector through the optical coupler 1072, converts the light intensity signal into an electrical signal, and then converts it into a digital signal through amplification and collection, and then enters the signal acquisition and processing unit for signal processing, analysis and storage.
  • this specific embodiment utilizes the optical fiber 1042 grating (ie grating terminal 1048) to replace the optical fiber 1042 probe, the optical fiber The 1042 grating and the vibrating membrane 110 are pasted together to form the sensing part.
  • the external sound wave vibration causes the diaphragm to deform, which drives the optical fiber 1042 grating to deform, and the grating pitch changes.
  • the characteristics of the incident light are screened, and the returned light carries the information of the grating change, thereby sensing the external sound change.
  • the length of the bonding of the optical fiber 1042 grating and the vibrating membrane 110 can be designed and adjusted according to the response range.
  • another embodiment of the present application provides an electronic device 200, including a device middle frame 202 and a microphone structure 100, where the substrate 102 of the microphone structure 100 is arranged on the device middle frame 202, so that
  • the electronic device 200 has the beneficial effects of any of the above-mentioned embodiments because it includes the microphone structure 100 in any of the above-mentioned embodiments, and will not be repeated here.
  • the electronic device 200 may be a smart phone, a tablet, a smart watch, a smart bracelet or other devices that have a certain need for radio reception.
  • the acquisition of sound can be realized by detecting the change of light by utilizing the characteristics of the optical fiber. It has a certain waterproof performance, and there is no need to design a more complicated waterproof structure. On the other hand, the sealing requirements for the sound cavity are also reduced, which greatly simplifies the structural design, and has the advantages of flexible layout and good waterproof performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)

Abstract

本申请公开了一种麦克风结构和电子设备,其中,麦克风结构包括:基板,基板上设有安装槽;振动膜,设于安装槽的槽口处;光纤传感器,光纤传感器的部分穿过安装槽的槽底伸入设于安装槽内;其中,光纤传感器的延伸方向与振动膜的延伸方向垂直设置。

Description

麦克风结构和电子设备
相关申请的交叉引用
本申请要求于2021年10月11日提交的申请号为202111180256.1,发明名称为“麦克风结构和电子设备”的中国专利申请的优先权,其通过引用方式全部并入本申请。
技术领域
本申请属于电子设备技术领域,具体涉及一种麦克风结构和电子设备。
背景技术
目前,随着科技的不断发展,应用一些移动终端进行办公、学习、娱乐的使用场景越来越多,而在使用过程中,麦克风的语音获取可有效的解放用户双手,可提升工作、学习等效率。但目前的移动终端内的麦克风常常为电子类的麦克风元器件,对所处环境存在一定的要求,一方面设置的位置受到电磁干扰的限制,另一方面,具体的位置需要进行更高标准的防水处理。
发明内容
本申请旨在至少解决现有技术或相关技术中存在的技术问题之一。
本申请旨在提供一种麦克风结构和电子设备,通过设置光纤传感器,可在声音传递至振动膜上时,利用光纤的特性,通过检测光线的变化即可实现对声音的获取,一方面由于光纤并不是导电材质,故而无需专门设置抗电磁干扰的结构,其设置的位置更加灵活,此外,光纤本身具有一定的防水性能,也不用设计较为复杂的防水结构,另一方面,对于音腔的密封需求也有所降低,极大的简化了结构设计,具有布局灵活、防水性好等优 点。
为了实现上述目的,本申请第一方面的实施例提供的麦克风结构,包括:基板,基板上设有安装槽;振动膜,设于安装槽的槽口处;光纤传感器,光纤传感器的部分穿过安装槽的槽底伸入设于安装槽内;其中,光纤传感器的延伸方向与振动膜的延伸方向垂直设置。
根据本申请提供的麦克风结构的实施例,包括:基板、振动膜以及光纤传感器,其中,基板用于为振动膜以及光纤传感器提供支撑,以便于振动膜的安装以及光纤传感器的正常传感作用。具体地,基板上设置有安装槽,通过将振动膜设置在安装槽的槽口处,以便于在外界声音传递至振动膜处时,可在振动以及光纤传感器的共同作用下,会使得光线发生变化,从而通过光线的变化进行分析,即可得到具体的收音内容,实现麦克风的效果。
需要强调的是,由于本申请中麦克风是通过光信号的传播实现的,只需要防止其他介质流入安装槽中对光线的传播造成干扰即可,相比于传统音腔的密封要求而言,可大幅度降低对于整个安装槽的密封需求。
当然,声音在传播到振动膜上时,射向振动膜的光线和经振动膜反射的光线之间存在一定的差异,从而光纤传感器会根据该差异实现对声音的分析,将其转变成电信号,以便于后续对声音的分析,进而实现语音识别、录音等功能。需要特别强调的是,本申请中,光纤传感器的延伸方向与振动膜的延伸方向垂直设置,可有效提高光纤传感器对光线的获取精度,从而极大的提高对声音的分析准确性,进而提高语音识别的准确率以及录音效果等。
其中,光纤传感器会向外发射光线,还可接受外部射入的光纤,在本申请中,由于光纤传感器的部分会穿过安装槽的槽底伸入安装槽,故而在光纤传感器发射光线时,发出的光线会在振动膜的作用下重新返回至光纤传感器中。
其中,光线在振动膜的作用下包括但不限于直接反射,或间接反射, 即部分光路会在振动膜的作用下改变光路轨迹。
第二方面,本申请提出一种电子设备的实施例,包括:设备中框;上述任一实施例中的麦克风结构,麦克风结构的基板设于所述设备中框上。
通过本申请第二方面提供的电子设备,包括设备中框和麦克风结构,其中,通过将麦克风结构的基板设置在设备中框上,以便于实现电子设备的收音的基本功能,在此基础上,由于电子设备包括上述第一方面实施例中的麦克风结构,故而具有上述任一实施例的有益效果,在此不再赘述。
其中,电子设备可以为智能手机、平板、智能手表、智能手环或其他具有一定收音需求的设备。
本申请的附加方面和优点将在下面的描述部分中变得明显,或通过本申请的实践了解到。
附图说明
图1示出了根据本申请的一个实施例的麦克风结构的结构示意图;
图2示出了根据本申请的一个实施例的麦克风结构的结构示意图;
图3示出了根据本申请的一个实施例的安装槽的结构示意图;
图4示出了根据本申请的一个实施例的麦克风结构的局部结构示意图;
图5示出了根据本申请的一个实施例的麦克风结构的结构示意图;
图6示出了根据本申请的一个实施例的麦克风结构的局部结构示意图;
图7示出了根据本申请的一个实施例的麦克风结构的结构示意框图;
图8示出了根据本申请的一个实施例的麦克风结构的结构示意框图;
图9示出了根据本申请的一个实施例的电子设备的结构示意图。
其中,图1至图9中附图标记与部件名称之间的对应关系为:
100:麦克风结构;102:基板;1022:安装槽;1024:安装口;104:光纤传感器;1042:光纤;1044:光探测器;1046:探头端子;1048:光栅端子;106:密封胶;1072:光耦合器;1074:信号放大器;1076:滤波器;1078:模数转换器;1080:数据处理器;1082:控制器;109:激 光器;110:振动膜;200:电子设备;202:设备中框。
具体实施方式
下面将详细描述本申请的实施例,实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
本申请实施例中提供的麦克风结构主要用于电子设备,如手机等移动终端、可穿戴式设备、平板电脑、膝上型电脑、移动计算机、掌上游戏机、录像机和摄录机等等。当然,也可以不限于电子设备,而应用于其他需要向外辐射电磁波的设备。
下面参照图1至图9描述根据本申请实施例提供的麦克风结构和电子设备。
如图1和图2所示,本申请的一个实施例提出一种麦克风结构100,包括: 基板102,基板102上设有安装槽1022;振动膜110,设于安装槽1022的槽口处;光纤传感器104,光纤传感器104的部分穿过安装槽1022的槽底伸入设于安装槽1022内;其中,光纤传感器104的延伸方向与振动膜110的延伸方向垂直设置。
根据本申请提供的麦克风结构100的实施例,包括:基板102、振动膜110以及光纤传感器104,其中,基板102用于为振动膜110以及光纤传感器104提供支撑,以便于振动膜110的安装以及光纤传感器104的正常传感作用。具体地,基板102上设置有安装槽1022,通过将振动膜110设置在安装槽1022的槽口处,以便于在外界声音传递至振动膜110处时,可在振动以及光纤传感器104的共同作用下,会使得光线发生变化,从而通过光线的变化进行分析,即可得到具体的收音内容,实现麦克风的效果。
需要强调的是,由于本申请中麦克风是通过光信号的传播实现的,只需要防止其他介质流入安装槽1022中对光线的传播造成干扰即可,相比于传统音腔的密封要求而言,可大幅度降低对于整个安装槽1022的密封需求。
当然,声音在传播到振动膜110上时,射向振动膜110的光线和经振动膜110反射的光线之间存在一定的差异,从而光纤传感器104会根据该差异实现对声音的分析,将其转变成电信号,以便于后续对声音的分析,进而实现语音识别、录音等功能。需要特别强调的是,本申请中,光纤传感器104的延伸方向与振动膜110的延伸方向垂直设置,可有效提高光纤传感器104对光线的获取精度,从而极大的提高对声音的分析准确性,进而提高语音识别的准确率以及录音效果等。
其中,光纤传感器104会向外发射光线,还可接受外部射入的光纤1042,在本申请中,由于光纤传感器104的部分会穿过安装槽1022的槽底伸入安装槽1022,故而在光纤传感器104发射光线时,发出的光线会在振动膜110的作用下重新返回至光纤传感器104中。
其中,光线在振动膜110的作用下包括但不限于直接反射,或间接反射,即部分光路会在振动膜110的作用下改变光路轨迹。
具体的工作原理如下:
当需要采集声音时处理器或电路板会控制光线进入光纤传感器104;在振动膜110的作用下,光线会生成两束有一定相位差的光束,此时通过将光相位信息转化为光强度信息,可在其他响应的元器件的作用下,依次实现光信号到电信号的转变、放大采集转换成数字信号以及信号处理、分析和存储的效果。
进一步地,如图2所示,光纤传感器104具体包括:光纤1042;光探测器1044,与光纤1042的另一端电连接。
光纤传感器104主要包括两个部分,其一为供光线传播的光纤1042,可以理解,光纤1042自身的结构特性决定了其受电磁的干扰能力较弱,具有一定的抗电磁干扰的能力,从而导致其设置的位置不会受天线位置的影响,位置设置较为灵活。此外,通过将光纤1042的另一端连接至光探测器1044,以便于对光纤1042中各种强度及相位的光信号转换为电信号,更利于后续的信号分析。
在一个具体的实施例中,进一步地,光纤1042的一端设有探头端子1046,在光纤1042的延伸方向上,探头端子1046与振动膜110之间存在间距;其中,振动膜110发生振动,间距发生变化,由探头端子1046向外射出的光线与经振动膜110反射后射入探头端子1046的光线会形成存在相位差的光束。
通过限定光纤1042的一端设置探头端子1046,可在探头端子1046的作用下向外发射经光纤1042传播过来的光线,同时也会接收到外部射入的光线,并将其传输至光纤1042中。需要强调的是,通过限定探头端子1046和振动膜110之间存在一定的间距,在振动膜110发生振动后,会在振动膜110的厚度方向上存在一定的形变,故而对于探头端子1046和振动膜110之间的间距而言,也会随之发生变化,从而对于光线而言,会产生存在相位差的两束光线,可近似认为产生了双光束干涉,以便于后续对光束进行分析以得到具体的声音振动。
进一步地,还包括:光探测器1044,与探头端子1046电连接,光探测器 1044获取光束的相位差的光相位信息并转换成光电信息。
通过设置与探头端子1046电连接的光探测器1044,可在光探测器1044的作用下将光信号转换为电信号,具体地,光探测器1044可获取到探头端子1046所探测到的双光束,通过对双光束的相位以及光强进行分析,可对应转换为不同的电信号,也即光电信息,从而以便于后续对光电信息进行分析处理,最终进行存储。
本领域技术人员可以理解,在光探测器1044和探头端子1046之间除了光纤1042这类用于光路传输的结构,还可以设置有光耦合器1072,以便于对不同相位光进行解调。
当然,在光探测器1044的另一端,为了保证信息的纯净和准确,还可以设置有信号放大器1074、滤波器1076、模数转换器1078、数据处理器1080以及控制器1082等,其中,信号放大器1074和滤波器1076的作用分别为将此前转换成的光电信息进行放大处理以及滤波处理,模数转换器1078则是将代表声音特性的模拟信号转换为数字信号,而数据粗利器则是用于通过特定解调算法将前端采集到的数字信号进行进一步处理,还原出被传感的声波信息,并储存下来,从而实现声音的采集,最后的控制器1082则是作为中央节点负责对声音采集、数据处理存储、激光器109发射等环节的统筹控制。
在另一个具体的实施例中,进一步地,光纤的一端设有两个光栅端子1048,每个光栅端子1048与振动膜110相抵;其中,振动膜110发生振动时,两个光栅端子1048形成具有相位差的光束。
如图5和图6所示,通过限制光纤的一端设有两个分别与振动膜110相抵的光栅端子1048,以便于在振动膜110收到外界声音时,会产生相应的振动,此时两个光栅端子1048则会直接形成具有一定相位差的光束,此时,通过后续对光束进行分析即可得到具体的声音振动。
进一步地,还包括:光探测器1044,与光栅端子1048电连接,光探测器1044获取光束的相位差的光相位信息并转换成光电信息。
通过设置与光栅端子1048电连接的光探测器1044,可在光探测器1044 的作用下将光信号转换为电信号,具体地,光探测器1044可获取到光栅端子1048所探测到的双光束,通过对双光束的相位以及光强进行分析,可对应转换为不同的电信号,也即光电信息,从而以便于后续对光电信息进行分析处理,最终进行存储。
本领域技术人员可以理解,在光探测器1044和探头端子1046之间除了光纤1042这类用于光路传输的结构,还可以设置有光耦合器1072,以便于对不同相位光进行解调。
当然,在光探测器1044的另一端,为了保证信息的纯净和准确,如图7和图8所示,还可以设置有信号放大器1074、滤波器1076、模数转换器1078、数据处理器1080以及控制器1082等,其中,信号放大器1074和滤波器1076的作用分别为将此前转换成的光电信息进行放大处理以及滤波处理,模数转换器1078则是将代表声音特性的模拟信号转换为数字信号,而数据粗利器则是用于通过特定解调算法将前端采集到的数字信号进行进一步处理,还原出被传感的声波信息,并储存下来,从而实现声音的采集,最后的控制器1082则是作为中央节点负责对声音采集、数据处理存储、激光器109发射等环节的统筹控制。
进一步地,光栅端子1048平行设置,且两个光栅端子1048与振动膜110相抵的一端相互连接。
通过将两个光栅端子1048平行设置,可使得通过光栅端子1048传播的光线之间存在较为严格的相位差,也即除了相位不同和光强由于存在反射消耗存在不同外,光路轨迹是平行的,以便于后续根据相位差即可对具体的声音进行分析处理。
需要补充的是,两个光栅端子1048的一端是相互连接的,以便于光路会形成投射方式的环路,也即光线通过一个光栅端子1048射向振动膜110后,会从另一个光栅端子1048返回。
进一步地,包括:多个光栅传感器,每个光栅传感器包括两个平行的光栅端子1048;其中,多个光栅传感器通过耦合器与光纤1042相连。
在本方案中,可在光纤1042上设置多个光栅传感器,每个光栅传感器的位置不同,可实现对于不同位置的声音采集,由于多个光栅传感器之间可以通过耦合器耦合,再与光纤1042相连,可利用极少数量的光纤1042,极端情况下,可仅设置一根光纤,从而可在不增加移动终端的体积的条件下达到多麦克风的应用。同时由于各个光栅传感器的布局位置以及空间均不受天线的限制,故而可增加声音采样的位置灵活性。
进一步地,如图3和图4所示,安装槽1022的槽底设有至少一个安装口1024,麦克风结构100还包括:密封胶106,填充于安装口1024和光纤传感器之间。
在将光线传感器固定至安装槽1022上时,主要是通过在安装槽1022的槽底开设安装口1024,并通过密封胶106将光线传感器密封连接至安装口1024上实现的,需要强调的是,由于光纤1042的硬度较高,基本不可压缩,故而本申请可以利用密封胶106直接实现密封,此时的密封为完全密封,从而可有效提高整个电子设备200的密封等级,极大的提高产品力。
进一步地,还包括:激光器109,与光纤1042相连,激光器109用于向光纤1042发射单色光源。
通过设置与光纤1042相连的激光器109,可在激光器109的作用下向光纤1042发射单色光源,以便于实现后续的传感作用。
需要说明的,激光器109仅生成单色光源,防止出现多色光源之间相互混合后无法确定波长,同时无法准确判断相位差的可能性。
在一个具体的实施例中,如图1至图4所示,提供了一种光纤1042麦克风,应用于移动终端,具有布局灵活、防水性好、结构设计简单等优点。其中,将光纤1042与一个薄膜片垂直布局,光纤1042断面与膜片间隔一定距离构成传感部分。外界声波振动引起膜片位移,膜片位移量不同则经膜片反射回的激光强度及相位不同,从而来感应外界声音变化。
具体地,光纤1042麦克风包括结构件(即基板102)、光纤1042探头(即探头端子1046)以及振动薄膜(即振动膜110),其中,振动薄膜贴附在结构 件表面,光纤1042探头和振动薄膜相互垂直,且两者间距离一定间隙,间隙大小可以根据响应范围进行设计调整。
由于光纤1042为不可压缩硬体,则其穿过终端固定壁的间隙可以通过胶水完全密封,达到真正防水的目的。
此外,对于控制电路而言,还包括有:声波传入通道,若传感器直接布局在终端外壳内壁,则该通道等于外壳厚度;光纤1042与振动薄膜组成的传感单元;光纤1042,提供光波传输通路,传输出射光和反射光,由于其损耗小不受电磁干扰,因此可以分布在终端的任意区间;光耦合器1072,对光纤1042中不同相位光进行解调;光探测单元,将不同强度及相位的光信号转换为电信号;信号放大及滤波单元,将光电管转换的微弱电信号进行放大及滤波;ADC采样单元,将代表声音特性的模拟信号转换为数字信号;数据处理单元,通过特定解调算法将前端采集到的数字信号进行进一步处理,还原出被传感的声波信息,并储存下来,从而实现声音的采集;中央控制单元,作为中央节点负责对声音采集、数据处理存储、激光器109发射等环节的统筹控制;激光器109单元,负责产生传感用的单色光源。
本具体实施例的系统工作流程为:
①当需要采集声音时中央控制单元控制单色光源发出的光经过光纤1042耦合器进入传感器;
②由于传感器膜片与光纤1042断面之间有一个间距,叠加声音引起膜片震动后产生的距离变换,最终产生两束有一定相位差的光束,可被近似认为产生双光束干涉,将光相位信息转化为光强度信息;
③传感器返回的光经光耦合器1072进入到光电探测器,将光强度信号转换为电信号后,再经过放大采集等环节转变为数字信号,进入信号采集处理单元进行信号处理分析及存储。
在另一个具体的实施例中,如图5所示,与上一具体实施例提到的特征的区别在于,本具体实施例利用光纤1042光栅(即光栅端子1048)代替了光纤1042探头,光纤1042光栅与振动膜110片贴合在一起构成传感部分。 外界声波振动引起膜片变形,带动光纤1042光栅变形,则光栅间距变化,对入射光部分特性进行筛选,返回的光携带了光栅变化的信息,从而来感应外界声音变化。
在本具体实施例中,光纤1042光栅与振动膜110片贴合在一起的长度可根据响应范围进行设计调整。
如图9所示,本申请的另一个实施例提供了一种电子设备200,包括设备中框202和麦克风结构100,其中,通过将麦克风结构100的基板102设置在设备中框202上,以便于实现电子设备200的收音的基本功能,在此基础上,由于电子设备200包括上述任一实施例中的麦克风结构100故而具有上述任一实施例的有益效果,在此不再赘述。
其中,电子设备200可以为智能手机、平板、智能手表、智能手环或其他具有一定收音需求的设备。
根据本申请的电子设备的实施例,利用光纤的特性,通过检测光线的变化即可实现对声音的获取,一方面由于光纤并不是导电材质,故而无需专门设置抗电磁干扰的结构,此外,光纤本身具有一定的防水性能,也不用设计较为复杂的防水结构,另一方面,对于音腔的密封需求也有所降低,极大的简化了结构设计,具有布局灵活、防水性好等优点。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (11)

  1. 一种麦克风结构,包括:
    基板,所述基板上设有安装槽;
    振动膜,设于所述安装槽的槽口处;
    光纤传感器,所述光纤传感器的部分穿过所述安装槽的槽底伸入所述设于所述安装槽内;
    其中,所述光纤传感器的延伸方向与所述振动膜的延伸方向垂直设置。
  2. 根据权利要求1所述的麦克风结构,其中,所述光纤传感器具体包括:
    光纤;
    光探测器,与所述光纤的另一端电连接。
  3. 根据权利要求2所述的麦克风结构,其中,所述光纤的一端设有探头端子,在所述光纤的延伸方向上,所述探头端子与所述振动膜之间存在间距;
    其中,所述振动膜发生振动,所述间距发生变化,由所述探头端子向外射出的光线与经所述振动膜反射后射入所述探头端子的光线会形成存在相位差的光束。
  4. 根据权利要求3所述的麦克风结构,其中,还包括:
    光探测器,与所述探头端子电连接,所述光探测器获取所述光束的相位差的光相位信息并转换成光电信息。
  5. 根据权利要求2所述的麦克风结构,其中,所述光纤的一端设有两个光栅端子,每个所述光栅端子与所述振动膜相抵;
    其中,所述振动膜发生振动时,两个所述光栅端子形成具有相位差的光束。
  6. 根据权利要求5所述的麦克风结构,其中,还包括:
    光探测器,与所述光栅端子电连接,所述光探测器获取所述光束的相位差的光相位信息并转换成光电信息。
  7. 根据权利要求5所述的麦克风结构,其中,所述光栅端子平行设 置,且两个所述光栅端子与所述振动膜相抵的一端相互连接。
  8. 根据权利要求7所述的麦克风结构,其中,包括:
    多个光栅传感器,每个所述光栅传感器包括两个平行的所述光栅端子;
    其中,多个所述光栅传感器通过耦合器与所述光纤相连。
  9. 根据权利要求1至8中任一项所述的麦克风结构,其中,所述安装槽的槽底设有至少一个安装口,所述麦克风结构还包括:
    密封胶,填充于所述安装口和所述光纤传感器之间。
  10. 根据权利要求1至8中任一项所述的麦克风结构,其中,
    激光器,与所述光纤相连,所述激光器用于向所述光纤发射单色光源。
  11. 一种电子设备,包括:
    设备中框;
    如权利要求1至10中任一项所述的麦克风结构,所述麦克风结构的基板设于所述设备中框上。
PCT/CN2022/124284 2021-10-11 2022-10-10 麦克风结构和电子设备 WO2023061312A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111180256.1A CN113905299A (zh) 2021-10-11 2021-10-11 麦克风结构和电子设备
CN202111180256.1 2021-10-11

Publications (1)

Publication Number Publication Date
WO2023061312A1 true WO2023061312A1 (zh) 2023-04-20

Family

ID=79191204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/124284 WO2023061312A1 (zh) 2021-10-11 2022-10-10 麦克风结构和电子设备

Country Status (2)

Country Link
CN (1) CN113905299A (zh)
WO (1) WO2023061312A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113905299A (zh) * 2021-10-11 2022-01-07 维沃移动通信有限公司 麦克风结构和电子设备

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040130728A1 (en) * 2002-03-29 2004-07-08 Degertekin Fahrettin Levent Highly-sensitive displacement-measuring optical device
CN2834067Y (zh) * 2005-06-28 2006-11-01 深圳市豪恩电声科技有限公司 光纤麦克风
US20070165896A1 (en) * 2006-01-19 2007-07-19 Miles Ronald N Optical sensing in a directional MEMS microphone
JP2009005144A (ja) * 2007-06-22 2009-01-08 Nippon Hoso Kyokai <Nhk> 収音装置
CN101778328A (zh) * 2010-01-26 2010-07-14 北京邮电大学 一种光纤麦克风
CN101808264A (zh) * 2010-02-10 2010-08-18 中国科学院半导体研究所 光纤激光麦克风
CN108696812A (zh) * 2018-06-01 2018-10-23 山东省科学院激光研究所 光纤光栅麦克风
US20200059738A1 (en) * 2018-08-20 2020-02-20 Uchicago Argonne, Llc Fiber laser microphones with graphene diaphragms
CN111787439A (zh) * 2019-04-03 2020-10-16 长沙理工大学 基于逆反射的高容错光纤麦克风
CN113905299A (zh) * 2021-10-11 2022-01-07 维沃移动通信有限公司 麦克风结构和电子设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103152684B (zh) * 2013-03-12 2015-12-02 中国电子科技集团公司第三研究所 光纤传声器探头
CN106792298A (zh) * 2016-12-15 2017-05-31 北京快鱼电子股份公司 一种光纤光栅麦克风及其制作方法
CN112449295A (zh) * 2019-08-30 2021-03-05 华为技术有限公司 麦克风芯片、麦克风及终端设备

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040130728A1 (en) * 2002-03-29 2004-07-08 Degertekin Fahrettin Levent Highly-sensitive displacement-measuring optical device
CN2834067Y (zh) * 2005-06-28 2006-11-01 深圳市豪恩电声科技有限公司 光纤麦克风
US20070165896A1 (en) * 2006-01-19 2007-07-19 Miles Ronald N Optical sensing in a directional MEMS microphone
JP2009005144A (ja) * 2007-06-22 2009-01-08 Nippon Hoso Kyokai <Nhk> 収音装置
CN101778328A (zh) * 2010-01-26 2010-07-14 北京邮电大学 一种光纤麦克风
CN101808264A (zh) * 2010-02-10 2010-08-18 中国科学院半导体研究所 光纤激光麦克风
CN108696812A (zh) * 2018-06-01 2018-10-23 山东省科学院激光研究所 光纤光栅麦克风
US20200059738A1 (en) * 2018-08-20 2020-02-20 Uchicago Argonne, Llc Fiber laser microphones with graphene diaphragms
CN111787439A (zh) * 2019-04-03 2020-10-16 长沙理工大学 基于逆反射的高容错光纤麦克风
CN113905299A (zh) * 2021-10-11 2022-01-07 维沃移动通信有限公司 麦克风结构和电子设备

Also Published As

Publication number Publication date
CN113905299A (zh) 2022-01-07

Similar Documents

Publication Publication Date Title
CN101132653B (zh) 一种基于相位载波调制的光纤硅微传声器系统
JP5667980B2 (ja) 変換器システム
WO2021036416A1 (zh) 麦克风芯片、麦克风及终端设备
US8488973B2 (en) Signal processing within an optical microphone
US8301029B2 (en) Electroacoustic transducer
US7894618B2 (en) Apparatus comprising a directionality-enhanced acoustic sensor
WO2023061312A1 (zh) 麦克风结构和电子设备
CN203811527U (zh) 用于声学应用的检测装置
CN107911782B (zh) 一种光纤传声器探头及光纤传声器系统
CN105021271B (zh) 一种光纤efpi次声波传感器及次声信号探测系统
CN101603857A (zh) 法布里-珀罗干涉型光纤水听器中的相位载波解调方法
CN215598551U (zh) 一种光学声传感器
CN102427573A (zh) 基于自混合干涉测量方法的实时语音信号拾取装置
CN102833661B (zh) 一种激光麦克风
WO2019184020A1 (zh) 一种小型空间声源方位探测装置及其方法
CN104697624A (zh) 一种基于迈克尔逊干涉仪的声波探测器
CN101783997A (zh) 光纤激光传声扬声系统
JPH11178099A (ja) マイクロホン
KR102254700B1 (ko) 마이크 장치 및 층간 소음 감지 방법
RU2375842C1 (ru) Оптико-электронный микрофон
CN113776642A (zh) 一种基于激光多普勒测振的数字水听器及测振方法
CN219608205U (zh) 一种基于激光自混合效应的声音探测装置
WO2021000165A1 (zh) Mems 麦克风和移动终端
CN116007740A (zh) 一种基于激光自混合效应的声音探测装置及方法
CN106937227A (zh) 一种新型无振膜主动式传声器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22880251

Country of ref document: EP

Kind code of ref document: A1