WO2023061302A1 - 多用户设备调度方法、装置、基站及计算机可读存储介质 - Google Patents

多用户设备调度方法、装置、基站及计算机可读存储介质 Download PDF

Info

Publication number
WO2023061302A1
WO2023061302A1 PCT/CN2022/124167 CN2022124167W WO2023061302A1 WO 2023061302 A1 WO2023061302 A1 WO 2023061302A1 CN 2022124167 W CN2022124167 W CN 2022124167W WO 2023061302 A1 WO2023061302 A1 WO 2023061302A1
Authority
WO
WIPO (PCT)
Prior art keywords
user equipment
user
candidate
priority
channel information
Prior art date
Application number
PCT/CN2022/124167
Other languages
English (en)
French (fr)
Inventor
郑正
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023061302A1 publication Critical patent/WO2023061302A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality

Definitions

  • the embodiments of the present application relate to but are not limited to the field of communication technologies, and in particular, relate to a multi-user equipment scheduling method, device, base station, and computer-readable storage medium.
  • the mmWave system uses a combination of analog phase shifters and digital links for shaping to reduce system costs.
  • Multi-user MIMO technology has been applied in the millimeter wave system.
  • the analog-to-digital hybrid shape-forming architecture combined with analog phase shifters and digital links constrains the base station antenna channel, so that the base station has only one direction beam at a time of full bandwidth; user equipment (User Equipment, UE) needs to be in different The base station is accessed under the beam for communication; the hardware constraints of the user equipment also lead to the need to calibrate the uplink beam measurement at different times.
  • the method is: first select multiple user equipment for pairing, then measure and obtain multi-user channel information, and then screen the multi-user equipment based on the multi-user channel information.
  • the user equipment with the user scheduling conditions finally performs multi-user scheduling based on the multi-user channel information.
  • This method requires additional signaling interaction with the millimeter-wave terminal, resulting in high measurement overhead and greatly reducing system performance.
  • Embodiments of the present application provide a multi-user equipment scheduling method, device, base station, and computer-readable storage medium.
  • the embodiment of the present application provides a multi-user equipment scheduling method, which is applied to a base station.
  • the method includes: performing single-user channel measurement on multiple user equipments accessing the base station, and obtaining each of the Single-user channel information corresponding to the user equipment, where the single-user channel information includes at least the intensity value fed back by the user equipment to the beam and uplink channel information; for each user equipment, according to the corresponding intensity value, the The user equipment is paired with the beam corresponding to the maximum value of the intensity value; according to the preset multi-user equipment scheduling condition, at least one candidate user equipment is determined from a plurality of the user equipment, and the candidate The beam paired by the user equipment is used as a candidate beam; determining the priority of the candidate user equipment, and determining the priority of the candidate beam according to the priority of the candidate user equipment; determining the priority of the candidate beam according to the priority of the candidate beam the target beam, and determine the target user equipment corresponding to the target beam according to the priority of the candidate user equipment; and perform multi-
  • the embodiment of the present application also provides a multi-user equipment scheduling device, which is applied to a base station, including a single-user channel measurement unit, a pairing unit, a first screening unit, a priority calculation unit, a second screening unit, and a scheduling unit .
  • the single-user channel measurement unit is configured to perform single-user channel measurement on multiple user equipments accessing the base station, to obtain single-user channel information corresponding to each user equipment, and the single-user channel information includes at least the user The strength value and uplink channel information fed back by the device to the beam.
  • the pairing unit is configured to, for each user equipment, pair the user equipment with the beam corresponding to the maximum value of the intensity values according to the corresponding intensity value.
  • the first screening unit is configured to determine at least one candidate user equipment from multiple user equipments according to preset multi-user equipment scheduling conditions, and use the beam paired with the candidate user equipment as a candidate beam.
  • the priority calculating unit is configured to determine the priority of the candidate user equipment, and determine the priority of the candidate beam according to the priority of the candidate user equipment.
  • the second screening unit is configured to determine a target beam according to the priority of the candidate beam, and determine a target user equipment corresponding to the target beam according to the priority of the candidate user equipment.
  • the scheduling unit is configured to perform multi-user scheduling on the target user equipment according to the uplink channel information.
  • the embodiment of the present application further provides a base station, including a memory, a processor, and a computer program stored in the memory and operable on the processor.
  • a base station including a memory, a processor, and a computer program stored in the memory and operable on the processor.
  • the processor executes the computer program, the multi-user device scheduling method as described in the first aspect is implemented.
  • the embodiment of the present application further provides a computer-readable storage medium. Executable instructions are stored in the storage medium, and when the executable instructions are executed by the processor, the multi-user equipment scheduling method as described in the first aspect is implemented.
  • FIG. 1 is a flowchart of a multi-user equipment scheduling method according to an embodiment of the present application
  • Fig. 2 is the specific flowchart of step S600 in Fig. 1;
  • FIG. 3 is a schematic structural diagram of a multi-user equipment scheduling device according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a base station according to an embodiment of the present application.
  • Embodiments of the present application provide a multi-user equipment scheduling method, device, base station, and computer storage medium; perform single-user channel measurement on multiple user equipment connected to the base station, and obtain single-user channel information corresponding to each user equipment,
  • the single-user channel information includes at least the intensity value fed back by the user equipment to the beam and uplink channel information; for each user equipment, according to the corresponding intensity value, the user equipment is paired with the beam corresponding to the maximum value of the intensity value;
  • the preset multi-user equipment scheduling conditions at least one candidate user equipment is determined from multiple user equipments, and the beam to which the candidate user equipment is paired is used as a candidate beam; the priority of the candidate user equipment is determined, and according to the priority of the candidate user equipment Determine the priority of the candidate beam; determine the target beam according to the priority of the candidate beam, and determine the target user equipment corresponding to the target beam according to the priority of the candidate user equipment; perform multi-user scheduling on the target user equipment according to the uplink channel information; Directly using single-user channel information
  • FIG. 1 is a flowchart of a multi-user equipment scheduling method; the multi-user equipment scheduling method is applied to a base station, and the base station applies a multi-user MIMO system.
  • a multi-user equipment scheduling method includes but is not limited to the following steps:
  • Step S100 perform single-user channel measurement on multiple user equipments accessing the base station, and obtain single-user channel information corresponding to each user equipment.
  • the single-user channel information includes at least the intensity value fed back by the user equipment to the beam and uplink channel information .
  • the single-user channel means that the base station uses a beam corresponding to a single user to measure the channel of a single user
  • the multi-user channel means that the base station uses a beam corresponding to multiple users to measure channels of multiple users.
  • SRS channel sounding Reference Signal
  • the user equipment includes user terminals such as mobile terminals, smart terminals, multimedia equipment, and streaming media equipment.
  • the single-user channel measurement includes downlink channel beam strength measurement, and the single-user channel information obtained from the measurement is the strength value fed back by the user equipment to the beam.
  • the downlink channel beam intensity measurement specifically includes: the base station sequentially transmits multiple beams to each user equipment accessing the base station, and obtains intensity values fed back by the user equipment for different beams. For example, a cell has 10 user equipments connected to a base station, and the base station covers the entire cell by using 16 preset beams. When the base station performs downlink channel beam strength measurement, it transmits beam number 1 to each user equipment respectively. receiving beams with beam number 1 from each user equipment and measuring the intensity value.
  • transmit the beam with the beam number 2 receive the feedback of each user equipment on the beam with the beam number 2 and measure the intensity value.
  • the beams are polled according to the above process until the 16 preset beams are transmitted to the user equipment, and then the intensity value fed back by the user equipment to the beams is obtained.
  • the following steps are also included: constructing an intensity table according to the intensity value fed back by each user equipment for each beam, and Record the intensity table in the log; the intensity table includes the intensity value fed back by each user equipment for each beam.
  • the intensity table is recorded in the log, which is convenient for calling and querying later.
  • Table 1 shows the intensity table obtained after the base station measures the downlink channel beam strength of 10 user equipments accessed through 16 preset beams.
  • P 1,1 represents the intensity value fed back by the user equipment with the UE number 1 to the beam with the beam number 1, and the other principles are the same.
  • the single-user channel measurement includes uplink channel sounding reference signal measurement, and the single-user channel information obtained from the measurement is uplink channel information.
  • the uplink channel sounding reference signal measurement is specifically: the uplink channel sounding reference signal measurement is performed on multiple user equipments connected to the base station, and each user equipment will send the channel sounding reference signal to the base station at different times, that is, the uplink channel information is the channel Sounding reference signal, channel sounding reference signal is used to estimate uplink channel quality, and provide reference for multi-user scheduling.
  • single-user channel information can also be obtained, such as the channel quality of the user equipment and the correlation of each channel corresponding to the user equipment.
  • Step S200 for each user equipment, according to the corresponding intensity value, pair the user equipment with the beam corresponding to the maximum value of the intensity value.
  • the maximum value of the intensity value corresponding to each user equipment may be determined from the intensity table, and the user equipment is paired with the beam corresponding to the maximum value.
  • the maximum value of its corresponding intensity value can be obtained by searching from the strength table is P 1,2 , then the user equipment with UE number 1 is paired with the beam with beam number 2, That is, the user equipment whose UE number is 1 will use the beam whose beam number is 2 to communicate with the base station.
  • Step S300 according to preset multi-user equipment scheduling conditions, determine at least one candidate user equipment from multiple user equipments, and use the beam that the candidate user equipment is paired with as the candidate beam.
  • step S300 according to the preset multi-user equipment scheduling conditions, at least one candidate user equipment is determined from multiple user equipments, and the beam paired by the candidate user equipment is used as the candidate beam, specifically: according to the channel quality of the user equipment and the user equipment According to the correlation of each channel corresponding to the device, at least one candidate user equipment is determined from multiple user equipments, and the beam to which the candidate user equipment is paired is used as the candidate beam.
  • the beam with the beam number 2 is paired with the user equipment with the UE number 1 and the user equipment with the UE number 3, and the user equipment with the UE number 1 meets the multi-user equipment scheduling conditions, while the user equipment with the UE number 3 does not If the multi-user equipment scheduling condition is met, the user whose UE number is 1 is used as a candidate user equipment, and the user whose UE number is 3 is not used as a candidate user equipment; correspondingly, the beam whose beam number is 2 is used as a candidate beam.
  • the beam with the beam number 1 is paired with the user equipment with the UE number 5, and the user equipment with the UE number 5 does not meet the multi-user equipment scheduling conditions, then the user equipment with the UE number 5 is not a candidate user equipment, and correspondingly , the beam with beam number 1 is not a candidate beam.
  • the preset multi-user equipment scheduling condition is a conditional function determined by the channel quality of the user equipment and the correlation of each channel corresponding to the user equipment, which can be obtained according to historical data.
  • step S300 according to the preset multi-user equipment scheduling condition, at least one candidate user equipment is determined from multiple user equipments, and after the step of using the beam that the candidate user equipment is paired with as the candidate beam, the following steps are further included: according to The pairing relationship between the beam and the user equipment and the pairing relationship between the beam and the candidate user equipment construct a pairing table, and record the pairing table in a log; the pairing table includes at least the pairing relationship between the beam and the user equipment and the pairing relationship between the beam and the candidate user equipment. The pairing table is recorded in the log, which is convenient for calling and querying later.
  • Table 2 shows the obtained pairing table after the base station measures the downlink channel beam strength of the 10 accessed user equipments through 16 preset beams.
  • ⁇ n 1 ⁇ represents the set of user equipment paired with the beam whose beam number is 1
  • N 1 is the number of user equipment in the set of ⁇ n 1 ⁇
  • N 1,MU is A set of candidate user equipments that meet the multi-user equipment scheduling conditions among ⁇ n 1 ⁇ that are paired with the beam numbered 1;
  • Step S400 determining the priorities of candidate user equipments, and determining the priorities of candidate beams according to the priorities of candidate user equipments.
  • the priority of the candidate user equipment is determined, specifically: according to the service type of the candidate user equipment, the priority of the candidate user equipment is obtained.
  • the priority can be calculated by a function related to the service type of the user equipment, and the service type includes retransmission, guaranteed bit rate, and the like.
  • Determining the priorities of the candidate beams according to the priorities of the candidate user equipments specifically includes: for each candidate beam, performing a weighted average on the priorities of the candidate user equipments corresponding to the candidate beams to obtain the priorities of the candidate beams.
  • step S500 a target beam is determined according to the priority of the candidate beams, and a target user equipment corresponding to the target beam is determined according to the priority of the candidate user equipment.
  • step S500 wherein the target beam is determined according to the priority of the candidate beams, specifically: when the number of candidate beams is greater than or equal to the preset number value, the priority of the candidate beams is sorted in descending order, and the ranking is selected at All candidate beams before the preset number value are used as target beams.
  • the preset number is obtained according to actual requirements, that is, the number of target user equipments that need to be scheduled for multi-user equipments.
  • the preset number is 2, and the candidate user equipments are user equipment with a UE number of 1, a user equipment with a UE number of 4, a user equipment with a UE number of 5, and a user equipment with a UE number of 8 .
  • the user equipment with UE number 1 is paired with beam number 2
  • the user equipment with UE number 4 and the user equipment with UE number 5 are both paired with beam number 3
  • the user equipment with UE number 8 is paired with beam number Beam pairing numbered 5.
  • the candidate beams are the beam with the beam number 2, the beam with the beam number 3, and the beam with the beam number 5.
  • the priority of user equipment with UE number 1 is 0.5
  • the priority of user equipment with UE number 4 is 0.8
  • the priority of user equipment with UE number 5 is 0.6
  • the priority of user equipment with UE number 8 is 0.4.
  • the priority of the beam with beam number 2 is 0.8
  • the priority of the beam with beam number 3 is 0.7
  • the priority of the beam with beam number 5 is 0.4.
  • the beam with the beam number 2 is 3 and greater than the preset number value
  • the beam with the beam number 3 and the beam with the beam number 5 are sorted according to the priority of the candidate beams from large to small,
  • the sorting results are: the beam with beam number 2, the beam with beam number 3, and the beam with beam number 5.
  • Select the first two candidate beams as the target beams, then the target beams are the beam with beam number 2 and the beam with beam number 3.
  • the preset number is 4, and the candidate user equipments are user equipment with UE number 1, user equipment with UE number 4, user equipment with UE number 5, and user equipment with UE number 8. user equipment.
  • the user equipment with UE number 1 is paired with beam number 2
  • the user equipment with UE number 4 and the user equipment with UE number 5 are both paired with beam number 3
  • the user equipment with UE number 8 is paired with beam number Beam pairing numbered 5.
  • the candidate beams are the beam with the beam number 2, the beam with the beam number 3, and the beam with the beam number 5.
  • the number of candidate beams is 3 and is less than the preset number value, then do not continue to perform the subsequent steps until the new user equipment accesses the base station and makes the candidate beam corresponding to the new user equipment and the candidate beam corresponding to the previous user equipment
  • the sum of the quantities is greater than or equal to the preset quantity value.
  • determining the target user equipment corresponding to the target beam according to the priority of the candidate user equipment is specifically: taking the candidate user equipment with the highest priority corresponding to each target beam as the target user equipment.
  • the target beam is the beam with the beam number 2 and the beam with the beam number 3;
  • the user equipment with the UE number 1 is paired with the beam with the beam number 2, and the user equipment with the UE number 4 and the user equipment with the UE number 5 They are all paired with the beam with beam number 3;
  • the priority of user equipment with UE number 1 is 0.5
  • the priority of user equipment with UE number 4 is 0.8
  • the priority of user equipment with UE number 5 is 0.6.
  • the paired candidate user equipment is only the user equipment with the UE number 1, and the corresponding candidate user equipment with the highest priority is the user equipment with the UE number 1; for the beam number 3 Since the priority of the user equipment with the UE number 5 is higher than that of the user equipment with the UE number 4, the corresponding candidate user equipment with the highest priority is the user equipment with the UE number 5. Then the target user equipment is the user equipment with UE number 1 and the user equipment with UE number 5.
  • step S500 target beams and target user equipment suitable for multi-user equipment scheduling under space division multiplexing can be screened out.
  • step S600 is a step based on the uplink channel information, and the acquisition of uplink channel information in step S100 needs to go through the time from processing step S200 to step S500, before performing step S600, in order to ensure that the uplink channel information of the target user equipment is in Within the time interval threshold, a step of updating expired uplink channel information is also included, including but not limited to the following steps:
  • the measurement time is the time when the uplink channel sounding reference signal measurement is performed in step S100 to obtain the uplink channel information; the measurement time interval is obtained according to the measurement time and the current time; the measurement time interval exceeds The target user equipment at the time interval threshold re-measures the uplink channel sounding reference signal to obtain new uplink channel information to replace expired uplink channel information.
  • time interval threshold is set artificially and obtained according to historical experience.
  • step S600 perform multi-user scheduling on the target user equipment according to the uplink channel information.
  • Step S600 the base station sends a command to the physical layer to execute step S600.
  • Step S600 includes but is not limited to the following steps:
  • Step S610 calibrate the uplink channel information corresponding to the target user equipment.
  • step S610 the channel sounding reference signals received by the base station at different times have amplitude and phase errors, and the uplink channel information corresponding to the target user equipment is calibrated, which is conducive to improving the accuracy of the modulus-digital hybrid precoding weights, which in turn is beneficial to the downlink Multi-user scheduling.
  • Step S620 calculating the mixed modulus precoding weights according to the calibrated uplink channel information.
  • the uplink channel information can be used for channel estimation to obtain an optimal precoding matrix, so the modulus-digital hybrid precoding weights are calculated according to the calibrated uplink channel information for the entire resource block.
  • Analog-to-digital hybrid precoding is a cascade that decomposes all-digital precoding into two parts: digital baseband low-dimensional precoding is implemented through a small number of radio frequency links to eliminate inter-user interference, and analog radio frequency high-dimensional precoding is achieved through a large number of analog phase shifters Implemented to increase antenna array gain.
  • the analog-digital hybrid precoding can achieve the purpose of greatly reducing the number of radio frequency links and processing complexity with a small performance loss, thereby improving the power efficiency of the system.
  • Step S630 in the MIMO system environment, perform downlink multi-user scheduling on the target user according to the modulus-digital hybrid precoding weight according to the space division multiplexing rule.
  • step S600 the adaptive adjustment technology of beam calibration and hybrid precoding is used in the physical layer to optimize resources, so as to improve throughput and data transmission link performance in a multi-user MIMO environment.
  • Multi-user multi-antenna scheduling for downlink space division multiplexing Therefore, there is no need to reconfigure the uplink measurement resources of the user equipment, which saves the overhead of signaling interaction with the user equipment; it does not need to perform multi-user channel measurement and user screening based on the multi-user channel measurement information, which saves additional measurement overhead; at the same time,
  • the scheduling process is optimized, and the spectrum efficiency of the MIMO system is improved.
  • an embodiment of the present application also provides a multi-user equipment scheduling apparatus, and applies the above-mentioned multi-user equipment scheduling method.
  • FIG. 3 is a schematic structural diagram of a multi-user device pairing apparatus.
  • the multi-user equipment scheduling apparatus includes a single-user channel measurement unit 100 , a pairing unit 200 , a first screening unit 300 , a priority calculation unit 400 , a second screening unit 500 and a scheduling unit 600 .
  • the single-user channel measurement unit 100 is used to perform single-user channel measurement on multiple user equipments accessing the base station respectively, to obtain the single-user channel information corresponding to each user equipment, and the single-user channel information includes at least the feedback from the user equipment to the beam strength value and uplink channel information;
  • the pairing unit 200 is used to pair the user equipment with the beam corresponding to the maximum value of the strength value for each user equipment according to the corresponding strength value;
  • the first screening unit 300 is used to pair the user equipment according to the preset
  • the multi-user equipment scheduling condition is set, at least one candidate user equipment is determined from multiple user equipments, and the beam that the candidate user equipment is paired with is used as a candidate beam;
  • the priority calculation unit 400 is used to determine the priority of the candidate user equipment, and according to The priority of the candidate user equipment determines the priority of the candidate beam;
  • the second screening unit 500 is used to determine the target beam according to the priority of the candidate beam, and determines the target user equipment corresponding to the target beam according to the priority of the
  • each unit of the multi-user equipment scheduling apparatus in this embodiment corresponds to each step of the above-mentioned multi-user equipment scheduling method, adopts the same technical means, and has the same technical effect, and will not be described in detail here. .
  • each unit in the multi-user equipment scheduling apparatus can be understood with reference to the relevant description of the foregoing multi-user equipment scheduling method.
  • the functions of each unit in the multi-user equipment scheduling device can be realized by programs running on the processor, or by specific logic circuits, such as programmable logic (FPGA).
  • an embodiment of the present application also provides a base station.
  • FIG. 4 is a schematic structural diagram of a base station.
  • the base station includes: a memory 20 , a processor 10 and a computer program stored in the memory 20 and operable on the processor 10 .
  • the processor 10 executes the computer program, the above user equipment scheduling method is realized.
  • the processor 10 and the memory 20 may be connected through a bus 30 or other means.
  • the memory 20 may include a high-speed random access memory, and may also include a non-transitory memory, such as at least one magnetic disk storage device, a flash memory device, or other non-transitory solid-state storage devices.
  • memory 20 may optionally include memory located remotely from the processor, and these remote memories may be connected to the processor through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the non-transitory software programs and instructions required to realize the information processing method of the above-mentioned embodiment are stored in the memory 20, and when executed by the processor, the multi-user equipment scheduling method in the above-mentioned embodiment is executed, for example, the steps described above are executed S100 to step S600, and step S610 to step S630.
  • node embodiments described above are only illustrative, and the units described as separate components may or may not be physically separated, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • an embodiment of the present application also provides a computer-readable storage medium, the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are executed by a processor or a controller, for example, by a Execution by the processor may cause the processor to execute the multi-user equipment scheduling method in the above embodiment, for example, execute the steps S100 to S600 and steps S610 to S630 described above.
  • Computer storage media include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, tape, magnetic disk storage or other magnetic storage devices, or can Any other medium used to store desired information and which can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program elements, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and may include any information delivery media .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了多用户设备调度方法、装置、基站及计算机可读存储介质,其中方法包括:对多个用户设备进行单用户信道测量,得到单用户信道信息;根据单用户信道信息的强度值,将用户设备与波束配对;根据多用户设备调度条件,筛选候选用户设备和候选波束;确定候选用户设备和候选波束的优先级;根据优先级确定目标波束和目标用户设备;根据上行信道信息,对目标用户设备进行多用户调度。

Description

多用户设备调度方法、装置、基站及计算机可读存储介质
相关申请的交叉引用
本申请基于申请号为202111180428.5、申请日为2021年10月11日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请实施例涉及但不限于通信技术领域,尤其涉及多用户设备调度方法、装置、基站及计算机可读存储介质。
背景技术
在5G应用中,毫米波系统使用模拟移相器和数字链路结合的方式进行赋形,降低系统成本。多用户多输入多输出技术在毫米波系统得到应用。但模拟移相器和数字链路结合的模数混合赋形的架构约束了基站天线通道,使基站在全带宽的一个时刻只有一个方向的波束;用户设备(User Equipment,UE)需要在不同的波束下接入基站进行通信;用户设备的硬件约束也导致需要对不同时刻的上行波束测量进行校准。这些因素导致目前主要通过多用户信道信息进行空分复用的多用户调度,其方法为:先选择多个用户设备进行配对,再测量获得多用户信道信息,然后基于多用户信道信息筛选符合多用户调度条件的用户设备,最后基于多用户信道信息进行多用户调度。该方法需与毫米波终端进行额外的信令交互,导致测量开销大,极大地降低了系统的性能。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请实施例提供了一种多用户设备调度方法、装置、基站及计算机可读存储介质。
第一方面,本申请实施例提供了一种多用户设备调度方法,应用于基站,所述方法包括:对接入所述基站的多个用户设备分别进行单用户信道测量,得到每个所述用户设备对应的单用户信道信息,所述单用户信道信息至少包括所述用户设备对波束所反馈的强度值和上行信道信息;对每个所述用户设备,根据对应的所述强度值,将所述用户设备与所述强度值中的最大值所对应的所述波束配对;根据预设的多用户设备调度条件,从多个所述用户设备中确定至少一个候选用户设备,将所述候选用户设备所配对的所述波束作为候选波束;确定所述候选用户设备的优先级,并根据所述候选用户设备的优先级确定所述候选波束的优先级;根据所述候选波束的优先级确定目标波束,并根据所述候选用户设备的优 先级确定所述目标波束对应的目标用户设备;以及根据所述上行信道信息,对所述目标用户设备进行多用户调度。
第二方面,本申请实施例还提供了一种多用户设备调度装置,应用于基站,包括单用户信道测量单元、配对单元、第一筛选单元、优先级计算单元、第二筛选单元以及调度单元。单用户信道测量单元配置为对接入所述基站的多个用户设备分别进行单用户信道测量,得到每个所述用户设备对应的单用户信道信息,所述单用户信道信息至少包括所述用户设备对波束所反馈的强度值和上行信道信息。配对单元配置为对每个所述用户设备,根据对应的所述强度值,将所述用户设备与所述强度值中的最大值所对应的所述波束配对。第一筛选单元配置为根据预设的多用户设备调度条件,从多个所述用户设备中确定至少一个候选用户设备,将所述候选用户设备所配对的所述波束作为候选波束。优先级计算单元配置为确定所述候选用户设备的优先级,并根据所述候选用户设备的优先级确定所述候选波束的优先级。第二筛选单元配置为根据所述候选波束的优先级确定目标波束,并根据所述候选用户设备的优先级确定所述目标波束对应的目标用户设备。调度单元配置为根据所述上行信道信息,对所述目标用户设备进行多用户调度。
第三方面,本申请实施例还提供了一种基站,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序。处理器执行计算机程序时实现如第一方面所述的多用户设备调度方法。
第四方面,本申请实施例还提供了一种计算机可读存储介质。存储介质中存储有可执行指令,所述可执行指令被处理器执行时实现如第一方面所述的多用户设备调度方法。
本发明本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本申请技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1是本申请实施例一种多用户设备调度方法的流程图;
图2是图1中的步骤S600的具体流程图;
图3是本申请实施例一种多用户设备调度装置的结构示意图;以及
图4是本申请实施例一种基站的结构示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
需要说明的是,虽然在装置示意图中进行了功能单元划分,在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于装置中的单元划分,或流程图中的顺序执行所示出或描述的步骤。说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。在本申请的描述中,若干的含义是一个或者多个,多个的含义是两个以上,大于、小于、超过等理解为不包括本数,以上、以下、以内等理解为包括本数。
本申请实施例提供了一种多用户设备调度方法、装置、基站及计算机存储介质;对接入基站的多个用户设备分别进行单用户信道测量,得到每个用户设备对应的单用户信道信息,单用户信道信息至少包括用户设备对波束所反馈的强度值和上行信道信息;对每个用户设备,根据对应的所述强度值,将用户设备与强度值中的最大值所对应的波束配对;根据预设的多用户设备调度条件,从多个用户设备中确定至少一个候选用户设备,将候选用户设备所配对的波束作为候选波束;确定候选用户设备的优先级,并根据候选用户设备的优先级确定候选波束的优先级;根据候选波束的优先级确定目标波束,并根据候选用户设备的优先级确定目标波束对应的目标用户设备;根据上行信道信息,对目标用户设备进行多用户调度;能够直接利用单用户信道信息进行多用户调度,节省了与用户设备的信令交互开销和额外的测量开销,提高了系统频谱效率。
下面结合附图,对本申请实施例作进一步阐述。
参照图1,图1是一种多用户设备调度方法的流程图;该多用户设备调度方法应用到基站,该基站应用多用户多输入多输出系统。
如图1所示,一种多用户设备调度方法,包括但不限于有以下步骤:
步骤S100,对接入基站的多个用户设备分别进行单用户信道测量,得到每个用户设备对应的单用户信道信息,单用户信道信息至少包括用户设备对波束所反馈的强度值和上行信道信息。
需要说明的是,单用户信道指的是基站使用单用户对应的波束测量单个用户的信道,多用户信道指的是基站使用多用户对应的波束测量多个用户的信道。在毫米波系统中,由于存在模拟波束,需要先选定多用户配对,然后基站使用多个用户对应的波束去接收信道探测参考信号(Sounding Reference Signal,SRS),才能实现测量多用户信道。因此单 用户信道测量相对多用户信道测量采集和计算更简单,同时开销更小。
需要说明的是,用户设备包括移动终端、智能终端、多媒体设备、流媒体设备等用户终端。
对于步骤S100,单用户信道测量包括下行信道波束强度测量,测量得到的单用户信道信息为用户设备对波束所反馈的强度值。下行信道波束强度测量具体为:基站对接入基站的每个用户设备,依次发射多个波束,得到用户设备对不同波束所反馈的强度值。例如一个小区有10个用户设备接入一个基站,该基站通过使用16个预置的波束覆盖整个小区,该基站在进行下行信道波束强度测量时,分别对每个用户设备先发射波束编号为1的波束,接收每个用户设备对波束编号为1的波束的反馈并测量强度值。然后再发射波束编号为2的波束,接收每个用户设备对波束编号为2的波束的反馈并测量强度值。按照上述流程轮询波束直至向用户设备发射完16个预置的波束,进而得到用户设备对波束所反馈的强度值。
另外,在完成下行信道波束强度测量,得到每个用户设备对每个波束所反馈的强度值之后,还包括以下步骤:根据每个用户设备对每个波束所反馈的强度值构建强度表,并将强度表在日志记录;强度表包括每个用户设备对每个波束所反馈的强度值。强度表记录在日志,便于以后调用和查询。
基站通过16个预置的波束对接入的10个用户设备进行下行信道波束强度测量后,得到的强度表如表1所示。
表1 强度表
Figure PCTCN2022124167-appb-000001
需要说明的是,P 1,1表示UE编号为1的用户设备对波束编号为1的波束所反馈的强度值,对应地其他同理。
单用户信道测量包括上行信道探测参考信号测量,测量得到的单用户信道信息为上行信道信息。上行信道探测参考信号测量具体为:对接入基站的多个用户设备分别进行上行信道探测参考信号测量,每个用户设备会在不同时刻向基站发送信道探测参考信号,即上 行信道信息即为信道探测参考信号,信道探测参考信号用于估计上行信道质量,为多用户调度提供参考。
当然,通过单用户信道测量,还可以得到其他单用户信道信息,例如用户设备的信道质量和用户设备对应的每个信道的相关性。
步骤S200,对每个用户设备,根据对应的强度值,将用户设备与强度值中的最大值所对应的波束配对。
对于步骤S200,从强度表中可以确定每个用户设备对应的强度值的最大值,将用户设备与最大值所对应的波束配对。例如,对于UE编号为1的用户设备,从强度表中搜索可以得到其对应的强度值的最大值为P 1,2,则将UE编号为1的用户设备与波束编号为2的波束配对,即UE编号为1的用户设备将采用波束编号为2的波束与基站进行通信。
步骤S300,根据预设的多用户设备调度条件,从多个用户设备中确定至少一个候选用户设备,将候选用户设备所配对的波束作为候选波束。
对于步骤S300,根据预设的多用户设备调度条件,从多个用户设备中确定至少一个候选用户设备,将候选用户设备所配对的波束作为候选波束,具体为:根据用户设备的信道质量和用户设备对应的每个信道的相关性,从多个用户设备中确定至少一个候选用户设备,将候选用户设备所配对的波束作为候选波束。
例如,波束编号为2的波束配对有UE编号为1的用户设备和UE编号为3的用户设备,且UE编号为1的用户设备符合多用户设备调度条件,而UE编号为3的用户设备不符合多用户设备调度条件,则将UE编号为1的用户作为候选用户设备,而UE编号为3的用户则不作为候选用户设备;对应地,将波束编号为2的波束作为候选波束。
又例如,波束编号为1的波束配对有UE编号为5的用户设备,且UE编号为5的用户设备不符合多用户设备调度条件,则UE编号为5的用户设备不是候选用户设备,对应地,波束编号为1的波束不是候选波束。
需要说明的是,预设的多用户设备调度条件是由用户设备的信道质量和用户设备对应的每个信道的相关性决定的一个条件函数,根据历史数据可以得到。
另外,在步骤S300,根据预设的多用户设备调度条件,从多个用户设备中确定至少一个候选用户设备,将候选用户设备所配对的波束作为候选波束的步骤之后,还包括以下步骤:根据波束与用户设备的配对关系和波束与候选用户设备的配对关系构建配对表,并将配对表在日志记录;配对表至少包括波束与用户设备的配对关系和波束与候选用户设备的配对关系。配对表记录在日志,便于以后调用和查询。
基站通过16个预置的波束对接入的10个用户设备进行下行信道波束强度测量后,得到的配对表如表2所示。
表2 配对表
波束编号 1 2 3 ... 15 16
用户设备 {n 1} {n 2} {n 3} ... {n 15} {n 16}
用户设备数量 N 1 N 2 N 3 ... N 15 N 16
候选用户设备 N 1,MU N 2,MU N 3,MU ... N 15,MU N 16,MU
需要说明的是,表2中,{n 1}表示与波束编号为1的波束配对的用户设备所组成的集合,N 1为{n 1}集合中的用户设备的数量,N 1,MU为与波束编号为1的波束配对的{n 1}中符合多用户设备调度条件的候选用户设备所组成集合;对应地其他同理。
步骤S400,确定候选用户设备的优先级,并根据候选用户设备的优先级确定候选波束的优先级。
对于步骤S400,确定候选用户设备的优先级,具体为:根据候选用户设备的业务类型,得到候选用户设备的优先级。优先级可以通过与用户设备的业务类型相关的函数计算得到,业务类型包括重传、保证比特速率等。
根据候选用户设备的优先级确定候选波束的优先级具体为:对每个候选波束,将候选波束对应的候选用户设备的优先级进行加权平均,得到候选波束的优先级。
步骤S500,根据候选波束的优先级确定目标波束,并根据候选用户设备的优先级确定目标波束对应的目标用户设备。
对于步骤S500,其中,根据候选波束的优先级确定目标波束,具体为:当候选波束的数量大于或等于预设数量值,将候选波束的优先级按照由大到小的顺序排序,选取排名位于预设数量值之前的所有候选波束作为目标波束。
需要说明的是,预设数量值根据实际需求得到的,即需要进行多用户设备调度的目标用户设备的数量。
例如,在一个实施例中,预设数量值为2,候选用户设备为UE编号为1的用户设备、UE编号为4的用户设备、UE编号为5的用户设备和UE编号为8的用户设备。UE编号为1的用户设备与波束编号为2的波束配对,UE编号为4的用户设备和UE编号为5的用户设备均与波束编号为3的波束配对,UE编号为8的用户设备与波束编号为5的波束配对。候选波束为波束编号为2的波束、波束编号为3的波束和波束编号为5的波束。
UE编号为1的用户设备的优先级为0.5,UE编号为4的用户设备的优先级为0.8,UE 编号为5的用户设备的优先级为0.6,UE编号为8的用户设备的优先级为0.4。则候选波束为波束编号为2的波束的优先级为0.8,波束编号为3的波束的优先级为0.7,波束编号为5的波束的优先级为0.4。
则候选波束的数量为3且大于预设数量值,则将波束编号为2的波束、波束编号为3的波束和波束编号为5的波束根据候选波束的优先级由大到小的顺序排序,排序结果为:波束编号为2的波束、波束编号为3的波束、波束编号为5的波束。选取前2个候选波束作为目标波束,则目标波束为波束编号为2的波束和波束编号为3的波束。
又例如,在另一个实施例中,预设数量值为4,候选用户设备为UE编号为1的用户设备、UE编号为4的用户设备、UE编号为5的用户设备和UE编号为8的用户设备。UE编号为1的用户设备与波束编号为2的波束配对,UE编号为4的用户设备和UE编号为5的用户设备均与波束编号为3的波束配对,UE编号为8的用户设备与波束编号为5的波束配对。候选波束为波束编号为2的波束、波束编号为3的波束和波束编号为5的波束。则候选波束的数量为3且小于预设数量值,则不继续执行后续步骤,直至新的用户设备接入该基站并使得新的用户设备对应的候选波束和之前的用户设备对应的候选波束的数量之和大于或等于预设数量值。
其中,根据候选用户设备的优先级确定目标波束对应的目标用户设备,具体为:将每个目标波束对应的具有最高优先级的候选用户设备作为目标用户设备。
例如,目标波束为波束编号为2的波束和波束编号为3的波束;UE编号为1的用户设备与波束编号为2的波束配对,UE编号为4的用户设备和UE编号为5的用户设备均与波束编号为3的波束配对;UE编号为1的用户设备的优先级为0.5,UE编号为4的用户设备的优先级为0.8,UE编号为5的用户设备的优先级为0.6。则对于波束编号为2的波束,其配对的候选用户设备只有UE编号为1的用户设备,则其对应的具有最高优先级的候选用户设备为UE编号为1的用户设备;对于波束编号为3的波束,由于UE编号为5的用户设备的优先级大于UE编号为4的用户设备的优先级,其对应的具有最高优先级的候选用户设备为UE编号为5的用户设备。则目标用户设备为UE编号为1的用户设备和UE编号为5的用户设备。
通过步骤S500能筛选出适合进行空分复用下的多用户设备调度的目标波束和目标用户设备。
由于步骤S600是根据上行信道信息而进行的步骤,且在步骤S100中获取上行信道信息需要经过处理步骤S200至步骤S500的时间,因此在执行步骤S600之前,为了保证目 标用户设备的上行信道信息处于时间间隔阈值内,还包括更新过期的上行信道信息的步骤,其包括以下步骤但不限于此:
获取目标用户设备的上行信道信息的测量时间,该测量时间为在步骤S100中进行上行信道探测参考信号测量获得上行信道信息的时间;根据测量时间和当前时间得到测量时间间隔;对测量时间间隔超过时间间隔阈值的目标用户设备重新进行上行信道探测参考信号测量,得到新的上行信道信息,以替换过期的上行信道信息。
需要说明的是,时间间隔阈值是人为设定的,根据历史经验得到。
参照图2,步骤S600,根据上行信道信息,对目标用户设备进行多用户调度。
对于步骤S600,基站下发命令至物理层以执行步骤S600。步骤S600包括但不限于有以下步骤:
步骤S610,对目标用户设备对应的上行信道信息进行校准。
对于步骤S610,基站在不同时刻接收到的信道探测参考信号存在幅度相位误差,对目标用户设备对应的上行信道信息进行校准,有利于提高模数混合预编码权值的准确性,进而有利于下行多用户调度。
步骤S620,根据校准后的上行信道信息计算模数混合预编码权值。
对于步骤S620,上行信道信息可用于进行信道估计从而得到最优预编码矩阵,因此按整个资源块根据校准后的上行信道信息计算模数混合预编码权值。模数混合预编码是将全数字预编码分解为两个部分的级联:数字基带低维度预编码通过少量射频链路实现以消除用户间干扰,模拟射频高维度预编码通过大量模拟移相器实现以增加天线阵列增益。模数混合预编码可以较小的性能损失达到大幅降低射频链路数量和处理复杂度的目的,从而提升系统的功率效率。
步骤S630,在多输入多输出系统环境下,按空分复用规则,根据模数混合预编码权值对目标用户进行下行多用户调度。
在步骤S600中,物理层中采用了波束校准和混合预编码的自适应调整技术来进行资源优化,以使在多用户多输入多输出环境下提高吞吐量和数据传输链路性能。
通过上述多用户设备调度方法,进行单用户信道测量,使用单用户测量信息进行目标用户设备与目标波束的筛选与配对,通过基站根据单用户测量信息进行波束校准,使用校准后的上行测量信道实现下行空分复用的多用户多天线调度。从而不需要重新配置用户设备的上行测量资源,节省了与用户设备的信令交互开销;不需要进行多用户信道测量和根据多用户信道测量信息进行用户筛选,节省了额外的测量开销;同时,优化了调度流程, 提升了多输入多输出系统的频谱效率。
另外,本申请的一个实施例还提供了一种多用户设备调度装置,且应用上述的多用户设备调度方法。
参照图3,图3是多用户设备配对装置的结构示意图。多用户设备调度装置包括单用户信道测量单元100、配对单元200、第一筛选单元300、优先级计算单元400、第二筛选单元500和调度单元600。
其中,单用户信道测量单元100用于对接入基站的多个用户设备分别进行单用户信道测量,得到每个用户设备对应的单用户信道信息,单用户信道信息至少包括用户设备对波束所反馈的强度值和上行信道信息;配对单元200用于对每个用户设备,根据对应的强度值,将用户设备与强度值中的最大值所对应的波束配对;第一筛选单元300用于根据预设的多用户设备调度条件,从多个用户设备中确定至少一个候选用户设备,将候选用户设备所配对的波束作为候选波束;优先级计算单元400用于确定候选用户设备的优先级,并根据候选用户设备的优先级确定候选波束的优先级;第二筛选单元500用于根据候选波束的优先级确定目标波束,并根据候选用户设备的优先级确定目标波束对应的目标用户设备;调度单元600用于根据上行信道信息,对目标用户设备进行多用户调度。
需要说明的是,本实施例中的多用户设备调度装置的各单元与上述多用户设备调度方法的各步骤一一对应,采用相同的技术手段,具有相同的技术效果,在此不再详述。
本领域技术人员应当理解,多用户设备调度装置中的各单元的实现功能可参照前述多用户设备调度方法的相关描述而理解。多用户设备调度装置中的各单元的功能可通过运行于处理器上的程序而实现,也可通过具体的逻辑电路而实现,例如可编程逻辑(FPGA)等。
另外,本申请的一个实施例还提供了一种基站。
参照图4,图4是基站的结构示意图。该基站包括:存储器20、处理器10及存储在存储器20上并可在处理器10上运行的计算机程序。处理器10执行计算机程序时实现如上的用户设备调度方法。
处理器10和存储器20可以通过总线30或者其他方式连接。
存储器20作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序以及非暂态性计算机可执行程序。此外,存储器20可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施方式中,存储器20可选包括相对于处理器远程设置的存储器,这些远程存储器可以通过网络连接至该处理器。上述网络的实例包括但不限于互联网、企业内部网、局域 网、移动通信网及其组合。
实现上述实施例的信息处理方法所需的非暂态软件程序以及指令存储在存储器20中,当被处理器执行时,执行上述实施例中的多用户设备调度方法,例如,执行以上描述的步骤S100至步骤S600,以及步骤S610至步骤S630。
以上所描述的节点实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
此外,本申请的一个实施例还提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个处理器或控制器执行,例如,被一个处理器执行,可使得上述处理器执行上述实施例中的多用户设备调度方法,例如,执行以上描述的步骤S100至步骤S600,以及步骤S610至步骤S630。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序单元或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序单元或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上是对本申请的较佳实施进行了具体说明,但本申请并不局限于上述实施方式,熟悉本领域的技术人员在不违背本申请精神的前提下还可作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

Claims (14)

  1. 一种多用户设备调度方法,应用于基站,所述方法包括:
    对接入所述基站的多个用户设备分别进行单用户信道测量,得到每个所述用户设备对应的单用户信道信息,所述单用户信道信息至少包括所述用户设备对波束所反馈的强度值和上行信道信息;
    对每个所述用户设备,根据对应的所述强度值,将所述用户设备与所述强度值中的最大值所对应的所述波束配对;
    根据预设的多用户设备调度条件,从多个所述用户设备中确定至少一个候选用户设备,将所述候选用户设备所配对的所述波束作为候选波束;
    确定所述候选用户设备的优先级,并根据所述候选用户设备的优先级确定所述候选波束的优先级;
    根据所述候选波束的优先级确定目标波束,并根据所述候选用户设备的优先级确定所述目标波束对应的目标用户设备;以及
    根据所述上行信道信息,对所述目标用户设备进行多用户调度。
  2. 根据权利要求1所述的多用户设备调度方法,其中,所述根据所述候选波束的优先级确定目标波束,包括:若所述候选波束的数量大于或等于预设数量值,将所述候选波束的优先级按照由大到小的顺序排序,选取排名位于所述预设数量值之前的所有所述候选波束作为目标波束。
  3. 根据权利要求1所述的多用户设备调度方法,其中,所述根据所述候选用户设备的优先级确定所述目标波束对应的目标用户设备,包括:
    将每个所述目标波束对应的具有最高优先级的所述候选用户设备作为目标用户设备。
  4. 根据权利要求1所述的多用户设备调度方法,其中,所述单用户信道测量包括下行信道波束强度测量;所述对接入所述基站的多个用户设备分别进行单用户信道测量,得到每个所述用户设备对应的单用户信道信息,包括:
    对每个所述用户设备,依次发射多个波束,得到所述用户设备对不同所述波束所反馈的强度值。
  5. 根据权利要求1或4所述的多用户设备调度方法,在所述对接入所述基站的多个用户设备分别进行单用户信道测量,得到每个所述用户设备对应的单用户信道信息的步骤之后,还包括:构建强度表,并将所述强度表在日志记录,所述强度表包括每个所述用户设备对每个所述波束所反馈的强度值。
  6. 根据权利要求1所述的多用户设备调度方法,其中,所述单用户信道信息还包括所述用户设备的信道质量和所述用户设备对应的每个信道的相关性;所述根据预设的多用户设备调度条件,从多个所述用户设备中确定至少一个候选用户设备,将所述候选用户设备所配对的所述波束作为候选波束,包括:
    根据所述用户设备的信道质量和所述用户设备对应的每个信道的相关性,从多个所述用户设备中确定至少一个候选用户设备,将所述候选用户设备所配对的所述波束作为候选波束。
  7. 根据权利要求1或6所述的多用户设备调度方法,在所述根据预设的多用户设备调度条件,从多个所述用户设备中确定至少一个候选用户设备,将所述候选用户设备所配对的所述波束作为候选波束的步骤之后,还包括:构建配对表,并将所述配对表在日志记录,所述配对表至少包括所述波束与所述用户设备的配对关系和所述波束与所述候选用户设备的配对关系。
  8. 根据权利要求1所述的多用户设备调度方法,其中,所述确定所述候选用户设备的优先级,并根据所述候选用户设备的优先级确定所述候选波束的优先级,包括:
    根据所述候选用户设备的业务类型,得到所述候选用户设备的优先级;以及
    将所述候选波束对应的所述候选用户设备的优先级进行加权平均,得到所述候选波束的优先级。
  9. 根据权利要求1所述的多用户设备调度方法,其中,所述对接入所述基站的多个用户设备分别进行单用户信道测量,得到每个所述用户设备对应的单用户信道信息,包括:
    对接入所述基站的多个所述用户设备分别进行上行信道探测参考信号测量,得到每个所述用户设备对应的上行信道信息。
  10. 根据权利要求1或9所述的多用户设备调度方法,其中,所述根据所述上行信道信息,对所述目标用户设备进行多用户设备调度,包括:
    对所述目标用户设备对应的所述上行信道信息进行校准;
    根据校准后的所述上行信道信息计算模数混合预编码权值;以及
    根据所述模数混合预编码权值对所述目标用户按空分复用规则进行下行多用户调度。
  11. 根据权利要求10所述的多用户设备调度方法,在所述根据所述上行信道信息,对所述目标用户设备进行多用户调度的步骤之前,还包括:
    获取所述目标用户设备的所述上行信道信息的测量时间;
    根据所述测量时间和当前时间得到测量时间间隔;以及
    对所述测量时间间隔超过时间间隔阈值的所述目标用户设备重新进行上行信道探测参考信号测量,并更新所述上行信道信息。
  12. 一种多用户设备调度装置,应用于基站,所述装置包括:
    单用户信道测量单元,配置为对接入所述基站的多个用户设备分别进行单用户信道测量,得到每个所述用户设备对应的单用户信道信息,其中所述单用户信道信息至少包括所述用户设备对波束所反馈的强度值和上行信道信息;
    配对单元,配置为对每个所述用户设备,根据对应的所述强度值,将所述用户设备与所述强度值中的最大值所对应的所述波束配对;
    第一筛选单元,配置为根据预设的多用户设备调度条件,从多个所述用户设备中确定至少一个候选用户设备,将所述候选用户设备所配对的所述波束作为候选波束;
    优先级计算单元,配置为确定所述候选用户设备的优先级,并根据所述候选用户设备的优先级确定所述候选波束的优先级;
    第二筛选单元,配置为根据所述候选波束的优先级确定目标波束,并根据所述候选用户设备的优先级确定所述目标波束对应的目标用户设备;以及
    调度单元,配置为根据所述上行信道信息,对所述目标用户设备进行多用户调度。
  13. 一种基站,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其中,所述处理器执行所述计算机程序时实现如权利要求1至11中任意一项所述的多用户设备调度方法。
  14. 一种计算机可读存储介质,存储有可执行指令,其中,所述可执行指令被处理器执行时实现权利要求1至11任一项所述的多用户设备调度方法。
PCT/CN2022/124167 2021-10-11 2022-10-09 多用户设备调度方法、装置、基站及计算机可读存储介质 WO2023061302A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111180428.5A CN115967973A (zh) 2021-10-11 2021-10-11 多用户设备调度方法、装置、基站及计算机可读存储介质
CN202111180428.5 2021-10-11

Publications (1)

Publication Number Publication Date
WO2023061302A1 true WO2023061302A1 (zh) 2023-04-20

Family

ID=85894821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/124167 WO2023061302A1 (zh) 2021-10-11 2022-10-09 多用户设备调度方法、装置、基站及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN115967973A (zh)
WO (1) WO2023061302A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109314556A (zh) * 2016-09-02 2019-02-05 惠州Tcl移动通信有限公司 一种具有干扰测量的多用户多输入多输出联合调度方法、基站及用户设备
CN112533230A (zh) * 2019-09-18 2021-03-19 中国移动通信有限公司研究院 一种测量配置方法、终端及基站
CN112868196A (zh) * 2018-10-19 2021-05-28 瑞典爱立信有限公司 调度装置和方法
CN113346933A (zh) * 2021-06-04 2021-09-03 中山大学 基于等效基带信道增益的大规模mimo多用户调度方法及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109314556A (zh) * 2016-09-02 2019-02-05 惠州Tcl移动通信有限公司 一种具有干扰测量的多用户多输入多输出联合调度方法、基站及用户设备
CN112868196A (zh) * 2018-10-19 2021-05-28 瑞典爱立信有限公司 调度装置和方法
CN112533230A (zh) * 2019-09-18 2021-03-19 中国移动通信有限公司研究院 一种测量配置方法、终端及基站
CN113346933A (zh) * 2021-06-04 2021-09-03 中山大学 基于等效基带信道增益的大规模mimo多用户调度方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOKIA, NOKIA SHANGHAI BELL: "Intra and Inter Frequency Scenarios", 3GPP DRAFT; R2-2102942, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Electronic; 20210412 - 20210420, 2 April 2021 (2021-04-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052174511 *

Also Published As

Publication number Publication date
CN115967973A (zh) 2023-04-14

Similar Documents

Publication Publication Date Title
US11522597B2 (en) Beam information feedback method and apparatus, and configuration information feedback method and apparatus
US20230325679A1 (en) User Equipment-Coordination Set Federated for Deep Neural Networks
US10148329B2 (en) Adaptively grouped user equipment multicasting and beamforming
US8565688B2 (en) Method of reducing feedback load and feedback overhead in a multi-cell cooperative network and related communication device
US11777558B2 (en) Active set management for multiple-input multiple-output communications
US10439680B2 (en) Coordinated beamforming method and device
US9450662B2 (en) Evolved node-B, user equipment, and methods for channel quality indicator (CQI) feedback
US10574368B2 (en) Devices and methods for determining channel quality indicator for higher resource allocation
US20220385384A1 (en) Enhancement of channel state information on multiple transmission/reception points
US10075223B1 (en) Systems and methods for performing beamforming during carrier aggregation
KR102083352B1 (ko) 가상 셀 네트워크 시스템에서 가상 셀 형성장치 및 방법
US11032841B2 (en) Downlink active set management for multiple-input multiple-output communications
CN110337834B (zh) 调度用户的确定方法、装置及系统
US8660507B1 (en) Diversity signal reception
US20170353961A1 (en) Managing Radio Utilization of an Access Point
WO2023061302A1 (zh) 多用户设备调度方法、装置、基站及计算机可读存储介质
KR20130104369A (ko) 협력 전송 기반의 다중 안테나 시스템에서의 전송 파워 결정 방법
WO2023061254A1 (zh) 多用户设备调度方法、装置、基站及计算机可读存储介质
US12119899B2 (en) Downlink symbol-level precoding as part of multiuser MISO communication
CN109547278A (zh) 一种提升超级小区网络吞吐量的方法及装置
US11737058B2 (en) Indication of non-preferred resources for sidelink communications
WO2022141075A1 (zh) 上行功率控制方法、装置、终端及存储介质
KR102000667B1 (ko) 협력 전송 기반의 다중 안테나 시스템에서의 전송 파워 결정 방법
CN114978256B (zh) 一种无蜂窝大规模mimo系统、调整方法及调整装置
WO2024140212A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22880241

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22880241

Country of ref document: EP

Kind code of ref document: A1