WO2019242456A1 - 分配时频资源的方法和装置 - Google Patents

分配时频资源的方法和装置 Download PDF

Info

Publication number
WO2019242456A1
WO2019242456A1 PCT/CN2019/088613 CN2019088613W WO2019242456A1 WO 2019242456 A1 WO2019242456 A1 WO 2019242456A1 CN 2019088613 W CN2019088613 W CN 2019088613W WO 2019242456 A1 WO2019242456 A1 WO 2019242456A1
Authority
WO
WIPO (PCT)
Prior art keywords
allocated
orthogonal
time
preset number
belongs
Prior art date
Application number
PCT/CN2019/088613
Other languages
English (en)
French (fr)
Inventor
张鹏程
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19822965.0A priority Critical patent/EP3796585B1/en
Priority to JP2020570789A priority patent/JP7092897B2/ja
Publication of WO2019242456A1 publication Critical patent/WO2019242456A1/zh
Priority to US17/126,473 priority patent/US11876736B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a method and an apparatus for allocating time-frequency resources.
  • Soft splitting refers to the proper splitting of the sector of the base station, so that the number of sectors of the base station increases, and more carriers are allocated within the increased sector coverage.
  • the increase in the number of carriers corresponds to the increase in the number of user equipment.
  • Network expansion can be achieved, and the sector beam after splitting is narrower and the coverage area is larger.
  • the soft splitting technology generally transforms a traditional single base station 3 sector into a 6 cell by adjusting the phase weight and amplitude of the antenna.
  • Soft splitting technology can include co-frequency soft splitting.
  • Co-frequency soft splitting refers to splitting a cell into two cells with symmetrical coverage, and the user equipment (User equipment) in the two cells after splitting can Use the same time-frequency resources, that is, to achieve space division multiplexing of time-frequency resources of two cells.
  • F-band (frequency range 20M) cells can be split at the same frequency into two adjacent cells at the same frequency. The frequency band that can be used by the two adjacent co-frequency cells after the split becomes 20 + 20M.
  • the base station schedules time-frequency resources for two cells respectively.
  • the distribution of UEs in the two cells is not necessarily symmetrical. It may happen that there are many UEs in one cell and few UEs in the other cell (for example, there are 10 UEs in cell 1, 2 has 1 UE). In this way, although the two time-frequency resources are space-divided, the base station schedules the time-frequency resources for the two cells separately, resulting in that the time-frequency resources of the cell with few UEs are not effectively used.
  • embodiments of the present invention provide a method and an apparatus for allocating time-frequency resources.
  • the technical solution is as follows:
  • a method for allocating time-frequency resources includes:
  • the uplink reference signal includes an uplink channel sounding reference signal SRS and / or a specific reference signal DMRS; and according to the uplink reference signal, a first preset number of beams Measure each beam in a second preset number of orthogonal beam groups to determine the level of each beam; and determine, according to the level of each beam, the UE to be allocated in the second preset
  • the orthogonal beam group refers to that multiple beams included do not interfere with each other, or the interference between multiple beams is less than a certain threshold, which does not affect the normal transmission and reception of data.
  • the first preset number of beams It can be configured by a technician based on the antenna conditions of the base station. By adjusting the weighting coefficient and amplitude of the base station antenna, the first preset number of beams can be combined into a second preset number of orthogonal beam groups, for example, a total of M Beam, each time you adjust the weighting coefficient and amplitude of the base station antenna, you can turn these M beams into another M beams, which are orthogonal to each other. After (N-1) adjustments, you will get N orthogonal Beam group, the second preset number is N. Level refers to the equivalent power of the beam.
  • the base station has data to be transmitted to the UEs in the split cell, or the UE in the split cell has data to transmit to the base station.
  • Frequency resources when the base station allocates time-frequency resources, it can obtain uplink reference signals of the UE to be allocated.
  • the uplink reference signals include uplink channel sounding reference signals (Sounding Reference Signals (SRS)) and / or specific reference signals (Demodulation Reference Signal, DMRS).
  • SRS is generally transmitted periodically by the UE to the base station for the base station to perform uplink channel estimation. Generally, the SRS is transmitted in the last symbol of a subframe.
  • SRS is used to transmit data, it is shared only for the physical downlink of a specific UE.
  • Channel Physical Downlink, Shared Channel, PDSCH
  • a resource block Resource Block
  • the base station If the base station has received the SRS sent by the UE to be allocated in the current cycle, it can obtain the SRS in the current cycle. If the base station has not received the SRS sent by the UE to be allocated in the current cycle, it can obtain the SRS. And the base station can obtain the DMRS when the UE to be allocated last transmitted data.
  • the base station can measure any beam in each orthogonal beam group by using the obtained uplink reference signal and use the uplink reference signal to obtain the level of any beam.
  • the base station may determine the beam attribute of the UE to be allocated in each orthogonal beam group based on the level of each beam.
  • the base station can obtain the allocated UEs on the same time-frequency resource (the UEs to be allocated belong to the same cell after the split or belong to the split cell respectively) Two cells), and then obtain the beam attribute of each beam group of the allocated UE on the second preset number of beam groups (the determination method is the same as the previous method for determining the UE to be allocated, and is not repeated here). Then, according to the beam attributes of the UE to be allocated and the beam attributes of the allocated UE, time-frequency resources are allocated to the UE to be allocated.
  • measuring each beam in a second preset number of orthogonal beam groups composed of a first preset number of beams, and determining each of The level of the beam includes: measuring, according to the uplink reference signal, each beam in a second preset number of orthogonal beam groups composed of a first preset number of beams to determine an equivalent value of each beam Channel response; determining the level of each beam according to the equivalent channel response of each beam.
  • the base station can determine an equivalent channel response of each beam in the orthogonal beam group.
  • the equivalent channel response of each beam in each orthogonal beam group is obtained, and the level of each beam is determined according to the equivalent channel response of each beam in each orthogonal beam group.
  • the determining the beam attribute of the UE to be allocated in the second preset number of orthogonal beam groups according to the level of each beam includes: for each An orthogonal beam group, and if a target beam in the orthogonal beam group satisfies a preset condition, determining a beam attribute of the UE to be allocated in the orthogonal beam group as the target beam, and if the orthogonal beam group If no beam in the beam group satisfies the preset condition, it is determined that a beam attribute of the UE to be allocated in the orthogonal beam group is a joint attribute; wherein the preset condition is a level of the target beam The difference between the levels of the beams in the orthogonal beam group except for the target beam is greater than or equal to a preset value.
  • the preset condition can be preset and stored in the base station.
  • the preset condition is that the difference between the level of the target beam and the levels of other beams in the orthogonal beam group except the target beam is greater than a preset value.
  • the base station can compare the level of each beam in the orthogonal beam group. If the level of the target beam in the orthogonal beam group is equal to the positive beam group, The difference between the levels of the beams other than the target beam in the cross beam group are all greater than or equal to a preset value, and it is determined that the beam attribute of the UE to be allocated in the orthogonal beam group is the target beam.
  • the difference between the level of the highest level beam x (target beam) and the level of other beams in a certain orthogonal beam group of the UE to be allocated is greater than or equal to a preset value
  • the beam attribute of the UE to be allocated is beam x
  • the difference between the levels of multiple beams x, y with higher levels and the levels of any other beams is greater than or equal to a certain preset value
  • it is determined that the beam attributes of the UE to be allocated are beam x, beam y . If no beam in the orthogonal beam group satisfies the foregoing preset condition, it may be determined that the beam attribute of the UE to be allocated in the orthogonal beam group is a joint attribute.
  • time-frequency resources allocated for the UE to be allocated and the allocated UE are used for downlink transmission;
  • the allocation of time-frequency resources by the UE to be allocated includes: determining a transmission mode of the UE to be allocated and a transmission mode of the allocated UE; and according to the transmission mode of the UE to be allocated and the transmission mode of the allocated UE, Beam attributes in the second preset number of orthogonal beam groups and beam attributes of the allocated UE in the second preset number of orthogonal beam groups allocate time-frequency resources for the UEs to be allocated.
  • the transmission mode when the base station transmits data to the UE in a downlink, the transmission mode generally includes transmission modes such as a multiple-input multiple-output (MIMO) transmission mode, a beam forming (BF) transmission mode, and transmit diversity.
  • MIMO multiple-input multiple-output
  • BF beam forming
  • the transmission mode mentioned is a downlink transmission mode, and is generally a MIMO transmission mode and a BF transmission mode based on a cell-specific reference signal (CRS).
  • CRS cell-specific reference signal
  • the base station may determine the transmission mode of the UE based on the reference signal used for demodulation. If the demodulation is performed based on the CRS, it is determined that the UE is a MIMO transmission mode based on the CRS.
  • the DMRS performs demodulation to determine that the UE is in the BF transmission mode. Based on this principle, the base station can determine the transmission modes of the UE to be allocated and the allocated UE, and then according to the transmission mode of the UE to be allocated and the transmission mode of the allocated UE, the UE to be allocated is in a second preset number of orthogonal beam groups.
  • the beam attribute of the UE and the beam attribute of the allocated UE allocate time-frequency resources for the UE to be allocated.
  • the beam attributes of the UE to be allocated in the second preset number of orthogonal beam groups And assigning time-frequency resources to the to-be-allocated UE with the beam attributes of the allocated UE in the second preset number of orthogonal beam groups includes: according to the transmission mode of the to-be-allocated UE and transmission of the allocated UE Mode, beam properties of the UE to be allocated in the second preset number of orthogonal beam groups, and beam properties of the allocated UE in the second preset number of orthogonal beam groups, if the If the allocated UE and the allocated UE satisfy the orthogonal matching condition, the time-frequency resource is allocated for the UE to be allocated among the same time-frequency resource to which the time-frequency resource allocated for the allocated UE belongs.
  • the orthogonal matching condition refers to a condition satisfied by two UEs that do not interfere with each other when transmitting downlink data on the same time-frequency resource.
  • the base station may, according to the transmission mode of the UE to be allocated and the transmission mode of the allocated UE, the beam attributes of the UE to be allocated in the second preset number of orthogonal beam groups, and the allocated UE in the first
  • the beam attributes in two preset number of orthogonal beam groups determine whether the UE to be allocated and the UE that have been allocated meet the orthogonal matching condition. If the UE to be allocated and the UE that have been allocated meet the orthogonal matching condition, the UE to be allocated and the allocated The correlation between any UE in the UE is relatively small and does not affect each other.
  • the time-frequency resource may be allocated for the UE to be allocated in the same time-frequency resource to which the time-frequency resource allocated for the allocated UE belongs.
  • the UE to be allocated does not satisfy the orthogonal matching condition with the allocated UE (which does not satisfy the orthogonal matching condition with a UE in the allocated UE), it indicates that the correlation between the UE to be allocated and the UE in the allocated UE is relatively large. It will affect each other, and may affect the UE to receive demodulated data, so the time-frequency resource cannot be allocated for the UE to be allocated in the same time-frequency resource to which the time-frequency resource allocated for the allocated UE belongs.
  • the time and frequency allocated to the allocated UE are Allocating time-frequency resources for the UE to be allocated in the same time-frequency resource to which the resources belong includes: if a transmission mode of at least one UE among the allocated UE and the UE to be allocated is based on a cell-specific reference signal CRS solution
  • the adjusted multiple-input multiple-output MIMO transmission mode obtaining the physical cell identity PCI of the cell to which the UE to be allocated belongs and the PCI of the cell to which the allocated UE belongs; according to the second preset number of UEs to be allocated, A beam attribute in an orthogonal beam group, a beam attribute of the allocated
  • the base station when the UE has just accessed the LTE network, the base station will record the physical cell identification (PCI) of the cell to which the UE belongs, so the base station can obtain the data to be stored from the pre-recorded PCI storage location.
  • PCI physical cell identification
  • the base station After the base station determines the transmission mode of the UE to be allocated and the allocated UE, it can determine whether at least one of them has a CRS-based MIMO transmission mode. If it exists, it obtains the PCI and allocated of the cell to which the UE to be allocated belongs.
  • the beams of the allocated UE in the second preset number of orthogonal beam groups Attribute to determine whether the UE to be allocated meets the orthogonal matching condition with the allocated UE. If the orthogonal matching condition is satisfied, the time-frequency resource may be allocated for the UE to be allocated in the same time-frequency resource to which the time-frequency resource allocated for the allocated UE belongs.
  • the allocated UE is in the second preset number of orthogonal beams.
  • the beam attributes in the group, the PCI of the cell to which the UE to be allocated belongs, and the PCI of the cell to which the allocated UE belongs, if the UE to be allocated and the allocated UE meet the orthogonal matching condition, the Allocating time-frequency resources to the UE to be allocated among the same time-frequency resources to which the allocated time-frequency resources belong includes: if the transmission mode of the UE to be allocated is the MIMO transmission mode, and the cell to which the UE to be allocated belongs belongs And the PCI of the cell to which the UE whose transmission mode is the MIMO transmission mode in the allocated UE is different, and the PCI of the cell to which the UE to be assigned belongs and the transmission mode of the allocated UE to the BF transmission mode are different The PCI of the cell to which the UE belongs is different, and for the
  • At least one orthogonal beam group exists in the second preset number of orthogonal beam groups, and neither the beam attribute of the UE to be allocated nor the beam attribute of the second UE is a joint attribute, and The beam attributes of the UE to be allocated and the beam attributes of the allocated UE are completely different, then the UE to be allocated and the allocated UE satisfy an orthogonal matching condition, and the time-frequency resources allocated to the allocated UE are In the same time-frequency resource to which the UE belongs, Allocating time-frequency resources, wherein the second UE is any one of the allocated UEs.
  • the base station may determine the PCI of the cell to which the UE whose transmission mode is the CRS-based MIMO transmission mode belongs.
  • the PCI of the cell to which the UE belongs is different from the PCI of the cell to which the UE whose transmission mode is CRS-based MIMO transmission mode in the allocated UE belongs. You can determine the PCI of the cell to which the UE whose transmission mode is BF transmission mode belongs.
  • the transmission mode of the UE to be allocated is a CRS-based MIMO transmission mode.
  • the beam property of the UE to be allocated may be matched with the beam property of any UE (ie, the first UE) among the allocated UEs.
  • the matching principle may be: for the first UE, determining whether an orthogonal beam group exists in the second preset number of orthogonal beam groups, and determining that at least one orthogonal beam exists in the second preset number of orthogonal beam groups; Group, the beam properties of the UE to be allocated and the beam properties of the first UE in the allocated UE are not joint properties, and their beam properties are completely different. It can be determined that the first UE in the allocated UE and the allocated UE meet orthogonality Matching conditions. In this way, it can be determined whether any of the UE to be allocated and the allocated UE satisfy the orthogonal matching condition.
  • the time-frequency resource may be allocated to the UE to be allocated in the same time-frequency resource to which the time-frequency resource allocated for the allocated UE belongs.
  • the base station may determine the PCI of the cell to which the UE whose transmission mode is CRS-based MIMO transmission mode belongs, and if the PCI of the cell to which the UE to be allocated belongs and the allocated UE transmit If the PCI of the cell to which the UE belongs is different in the CRS-based MIMO transmission mode, the beam properties of the UE to be allocated can be matched with the beam properties of any UE (ie, the second UE) in the allocated UE.
  • the matching principle may be: for any one of the UE to be allocated and the UE to be allocated, it is determined that at least one orthogonal beam group exists in the second preset number of orthogonal beam groups, and the beam attributes of the UE to be allocated and the allocated UE are The beam attributes of the second UE are not joint attributes, and their beam attributes are completely different. It can be determined that the second UE among the to-be-assigned UE and the assigned UE meets the orthogonal matching condition. In this way, it can be determined whether any of the UE to be allocated and the allocated UE satisfy the orthogonal matching condition.
  • the time-frequency resource may be allocated to the UE to be allocated in the same time-frequency resource to which the time-frequency resource allocated for the allocated UE belongs.
  • the base station determines the transmission modes of the UE to be allocated and the allocated UE, it can determine whether their transmission modes are the same. If the transmission modes of the UE to be allocated and the allocated UE are BF transmission modes, Then, the beam attribute of the UE to be allocated may be matched with the beam attribute of any UE (ie, the third UE) among the allocated UEs.
  • the matching principle may be: for any UE of the UE to be allocated and the UE to be allocated, determine whether there is an orthogonal beam group in the second preset number of orthogonal beam groups, the beam attributes of the UE to be allocated and the allocated UE.
  • the beam attributes of the third UE are not joint attributes, and the beam attributes are completely different. It can be determined that the third UE among the to-be-assigned UE and the assigned UE meets the orthogonal matching condition. In this way, it can be determined whether any of the UE to be allocated and the allocated UE satisfy the orthogonal matching condition.
  • the time-frequency resource may be allocated to the UE to be allocated in the same time-frequency resource to which the time-frequency resource allocated for the allocated UE belongs.
  • the time-frequency resources allocated for the UE to be allocated and the allocated UE are used for uplink transmission; and according to the UE to be allocated, the second preset number of orthogonalities is used.
  • Allocating time-frequency resources for the to-be-allocated UE to the to-be-allocated UE according to the beam attribute in the beam group and the beam attributes of the allocated UE in the second preset number of orthogonal beam groups includes: The beam attributes in the second preset number of orthogonal beam groups and the beam attributes of the allocated UE in the second preset number of orthogonal beam groups, if the to-be-assigned UE and the allocated UE satisfy orthogonal matching If the condition is, the time-frequency resource is allocated to the UE to be allocated among the same time-frequency resource to which the time-frequency resource allocated by the allocated UE belongs.
  • the base station may determine that the UE has been allocated on the same time-frequency resource (the same as the UE to be allocated belongs to the same after splitting). Cell or two cells after splitting respectively), and then obtain the beam attributes of each beam group of the second number of orthogonal beam groups of the allocated UE, according to the beam attributes of the UE to be allocated and the beam attributes of the allocated UE To determine whether the UE to be allocated meets the orthogonal matching condition with the allocated UE. If the orthogonal matching condition is satisfied, the time-frequency resource can be allocated for the UE to be allocated in the same time-frequency resource to which the time-frequency resource allocated for the allocated UE belongs. .
  • the to-be-allocated UE is allocated to the to-be-allocated UE in the same time-frequency resource to which the time-frequency resource allocated for the allocated UE belongs
  • the time-frequency resource includes: obtaining a PCI of a cell to which the UE to be allocated belongs and a PCI of a cell to which the allocated UE belongs; according to the PCI of the cell to which the UE to be allocated belongs and the PCI of the cell to which the allocated UE belongs, the The beam attributes of the UE to be allocated in the second preset number of orthogonal beam groups and the beam attributes of the allocated UE in the second preset number of orthogonal beam groups, if the
  • the base station when the UE has just accessed the LTE network, the base station records the PCI of the cell to which the UE belongs, so the base station can obtain the to-be-allocated UE and the cell to which the allocated UE belongs from the storage location of the pre-recorded PCI. PCI.
  • the base station After the base station determines the beam attributes of the UE to be allocated in each orthogonal beam group, the base station can determine that the UE has been allocated on the same time-frequency resource (the UE and the UE to be allocated belong to the same cell after splitting or belong to the two cells after splitting respectively). Cells), and then obtain the beam attributes of each assigned beam group of the UE in the second number of orthogonal beam groups.
  • the base station may then according to the PCI of the cell to which the UE to be allocated belongs and the PCI of the cell to which the allocated UE belongs, the beam properties of the UE to be allocated in the second preset number of orthogonal beam groups, and the allocated UE in the second preset number of positive
  • the beam attribute in the cross beam group determines whether the UE to be allocated and the allocated UE meet the orthogonal matching condition. If the orthogonal matching condition is satisfied, the same time-frequency resource to which the time-frequency resource allocated for the allocated UE belongs may be The to-be-allocated UE allocates time-frequency resources.
  • the UE to be allocated is in the second preset number of orthogonal beam groups. And the beam attributes of the allocated UE in the second preset number of orthogonal beam groups, and if the UE to be allocated and the allocated UE meet an orthogonal matching condition, the UE is being allocated for the allocated UE.
  • allocating the time-frequency resource to the UE to be allocated includes: if the PCI of the cell to which the UE to be allocated belongs and the PCI of the cell to which any of the allocated UEs belongs It is not the same, and for the fourth UE among the allocated UEs, at least one orthogonal beam group exists in the second preset number of orthogonal beam groups, the beam attributes of the UE to be allocated and the first The beam attributes of the four UEs are not joint attributes, and the beam attributes of the UE to be allocated and the beam attributes of the fourth UE are completely different.
  • the same time-frequency resource allocated to the allocated UE belongs to the same Among the time-frequency resources, time-frequency resources are allocated to the UE to be allocated, wherein the fourth UE is any UE among the allocated UEs.
  • the base station may determine whether the PCIs of the UEs to be allocated and the cells to which the allocated UEs belong are the same. If they are not the same, the beam properties of the UEs to be allocated may be different from any of the allocated UEs (that is, the fourth UE) to match the beam properties.
  • the matching principle may be: for the fourth UE, judging whether an orthogonal beam group exists in the second preset number of orthogonal beam groups, and judging that at least one orthogonal beam exists in the second preset number of orthogonal beam groups.
  • the beam attributes of the UE to be allocated and the beam attributes of the fourth UE in the allocated UE are not joint attributes, and their beam attributes are completely different. It can be determined that the fourth UE in the to-be-allocated UE and the allocated UE meet orthogonality Matching conditions. In this way, it can be determined whether any of the UE to be allocated and the allocated UE satisfy the orthogonal matching condition.
  • the time-frequency resource may be allocated to the UE to be allocated in the same time-frequency resource to which the time-frequency resource allocated for the allocated UE belongs.
  • a base station in a second aspect, includes a processor, and the processor executes instructions to implement the method for allocating time-frequency resources provided in the first aspect.
  • an apparatus for allocating time-frequency resources includes one or more modules.
  • the one or more modules implement instructions to implement the method for allocating time-frequency resources provided in the first aspect.
  • a computer-readable storage medium stores instructions.
  • the base station is caused to perform the allocation of time-frequency resources provided by the first aspect. method.
  • a computer program product containing instructions which when executed on a base station, causes the base station to perform the method for allocating time-frequency resources provided in the first aspect.
  • the UE can be paired according to the beam properties of the UE to determine whether it is possible to allocate time-frequency resources to different UEs in the same time-frequency resource. Therefore, even if the UEs in the split cell are unevenly distributed, they can be flexibly scheduled. Time-frequency resources enable efficient use of time-frequency resources.
  • FIG. 1 is a schematic diagram of interaction between a base station and a UE according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of allocating time-frequency resources according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of allocating time-frequency resources in an RBG according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of allocating time-frequency resources in an RBG according to an embodiment of the present invention.
  • FIG. 6 is a schematic flowchart of allocating time-frequency resources according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of allocating time-frequency resources in an RBG according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of an apparatus for allocating time-frequency resources according to an embodiment of the present invention.
  • the embodiments of the present invention can be applied to Long Term Evolution (LTE).
  • LTE Long Term Evolution
  • 4G user equipments there are more and more 4G user equipments, and the requirements for network coverage and quality are getting higher and higher.
  • Soft splitting technology to improve network coverage and network capacity without adding new equipment (such as base stations) and with limited time-frequency resources.
  • the LTE base station covers three cells, and each cell covers an area of 120 degrees. After a 120-degree cell is split into two cells with the same frequency using soft splitting technology, the traffic distribution will affect the expansion effect. For example, splitting The pre-split cell resource block (RB) load is 90%, with an average of 10 UEs. Each user can use an average of 9 RBs. A total of 100 RBs are required.
  • RB resource block
  • the terminal device may also be called an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, or a user device.
  • the terminal device can be a station (STAION, ST) in WLAN, can be a cell phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (WLL) station, personal digital processing (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to a wireless modem, in-vehicle devices, wearable devices, and next-generation communication systems.
  • STAION Session Initiation Protocol
  • WLL wireless local loop
  • PDA Personal Digital Assistant
  • Base station to achieve wireless communication coverage and provide services to UEs through at least one cell, and optionally support Global System for Mobile (GSM) systems, Code Division Multiple Access (CDMA) systems, and broadband codes Wideband Code Division Multiple Access (WCDMA) system, General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, Frequency Division Division Duplex (FDD) System, LTE Time Division Duplex (TDD), Universal Mobile Telecommunication System (UMTS), Global Interoperability for Microwave Access (WiMAX) communication system, future fifth generation (WiMAX) 5th Generation (5G) system or New Radio (NR).
  • GSM Global System for Mobile
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Global Interoperability for Microwave Access
  • 5G 5th Generation
  • NR New Radio
  • An embodiment of the present invention provides a method for allocating time-frequency resources, and an execution subject of the method may be a base station.
  • FIG. 2 shows a structural block diagram of a base station according to an embodiment of the present invention.
  • the base station may include at least a receiver 201, a processor 202, a memory 203, and a transmitter 204.
  • the receiver 201 may be used to implement data reception, and may be specifically used to receive data of the UE
  • the transmitter 204 may be used to transmit data, and specifically may be used to transmit data of the UE
  • the memory 203 may be used to store software Programs and modules.
  • the processor 202 executes various functional applications and data processing by running software programs and modules stored in the memory 203.
  • the memory 203 mainly includes a storage program area and a storage data area, where the storage program area can store an operating system, application programs required for at least one function, and the like; the storage data area can store data created according to the use of the base station, and the like.
  • the memory 203 may include a high-speed random access memory, and may further include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the memory 203 may further include a memory controller to provide the processor 202, the receiver 201, and the transmitter 204 access to the memory 203.
  • the processor 202 is a control center of the base station, and uses various interfaces and lines to connect various parts of the entire base station.
  • the processor 202 executes or executes software programs and / or modules stored in the memory 203 and calls data stored in the memory 203 to execute Various functions and processing data of the base station, so as to monitor the base station as a whole.
  • the processor 202 may include one or more processing cores; preferably, the processor 202 may integrate an application processor and a modem processor, wherein the application processor mainly processes an operating system, a user interface, and an application program, etc.
  • the modem processor mainly handles wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 202.
  • the embodiment of the present invention uses the base station to send data to the UE as an example to describe the solution.
  • the processing process of the solution may be as follows:
  • Step 301 Obtain an uplink reference signal of a UE to be allocated.
  • the UE refers to a UE in two split-frequency cells after splitting, and a UE that has not yet been allocated time-frequency resources for transmitting data.
  • the uplink reference signal includes SRS and / or DMRS.
  • the SRS is generally transmitted by the UE to the base station periodically for the base station to perform uplink channel estimation. Generally, the SRS is transmitted in the last symbol of a subframe.
  • DMRS generally transmits data only in the RBs allocated for PDSCH transmission of a specific UE.
  • the base station when the base station receives data to be sent to the UE by the core network side (the UE may be referred to as a UE to be allocated in the future), if the base station has received the SRS sent by the UE to be allocated in the current period, it can obtain the current For the SRS in the period, if the base station does not receive the SRS sent by the UE to be allocated in the current period, it can obtain the SRS sent by the UE to be allocated in the previous period. And / or the base station may obtain the DMRS when the UE last transmitted data.
  • the base station when the base station receives data to be sent to multiple UEs from the core network side at the same time, it will also first determine the UE with the highest priority among the multiple UEs. Generally, the priority of the UE is determined based on the type of data to be transmitted. Level, such as telephone voice data with the highest priority, followed by short messages, and video data, etc., the UE with the highest priority is determined as the UE to be allocated.
  • Step 302 According to the uplink reference signal, measure each beam in the second preset number of orthogonal beam groups composed of the first preset number of beams to determine the level of each beam.
  • the orthogonal beam group refers to that multiple beams included do not interfere with each other, or the interference between multiple beams is less than a certain threshold, which does not affect the normal transmission and reception of data.
  • the first preset number of beams It can be configured by a technician based on the antenna conditions of the base station. By adjusting the weighting coefficient and amplitude of the base station antenna, the first preset number of beams can be combined into a second preset number of orthogonal beam groups, for example, a total of M Beam, each time you adjust the weighting coefficient and amplitude of the base station antenna, you can turn these M beams into another M beams, which are orthogonal to each other. After (N-1) adjustments, you will get N orthogonal Beam group, the second preset number is N. Level refers to the equivalent power of the beam.
  • the base station may obtain a second preset number of orthogonal beam groups composed of the first preset number of beams, and then use the uplink reference signal separately for each Any beam in the orthogonal beam group is measured to obtain the level of any beam.
  • the equivalent channel response of each beam may be determined first, and the level of each beam is determined based on the equivalent channel response.
  • the corresponding processing in step 302 may be as follows:
  • each beam in the second preset number of orthogonal beam groups composed of the first preset number of beams is measured to determine an equivalent channel response of each beam;
  • the effective channel response determines the level of each beam.
  • An orthogonal beam group can calculate the equivalent channel response as follows:
  • I the channel coefficient of the received P physical channels, that is, the SRS of the UE to be allocated obtained from the last symbol of a subframe
  • H 0 the channel coefficient of the first physical channel
  • Is the multi-beam weight (the multi-beam weight is preset and stored in the base station), and is different for each orthogonal beam group, Is the weight vector of beam m on the physical channel used, m belongs to [0, M-1], Represents the equivalent channel response of each beam obtained after weighting.
  • the base station can then calculate the equivalent power of each beam according to the following formula:
  • Equation (2) Represents the norm of the equivalent channel coefficient of the beam m, m belongs to [0, M-1], E is the uplink physical channel gain, which is a preset value.
  • the base station After the base station determines the equivalent power of each beam, it can determine the equivalent power of each beam as the level of each beam, respectively.
  • the uplink reference signal is SRS for example. If the uplink reference signal is DMRS, you can set Replaced with the acquired DMRS. If the uplink reference signal is SRS and DMRS, if the SRS is acquired for a physical channel, the channel coefficient of the physical channel is SRS. The channel coefficient of the channel is DMRS. If SRS and DMRS are obtained for a physical channel, the channel coefficient of the physical channel can be either.
  • Step 303 Determine the beam attributes of the UE to be allocated in the second preset number of orthogonal beam groups according to the level of each beam.
  • the beam attribute is used to measure a beam whose characteristics are closer to that of the UE, that is, to characterize the distribution characteristics of the UE on the beam group, and is a comprehensive characterization of the channel such as azimuth angle (AOA), antenna correlation, and the like.
  • AOA azimuth angle
  • the base station may determine the beam attribute of the UE to be allocated in each orthogonal beam group based on the level of each beam.
  • the beam attributes of the UE to be allocated can be determined by comparison.
  • the processing of the corresponding step 303 can be as follows:
  • a target beam in the orthogonal beam group satisfies a preset condition, it is determined that the beam attribute of the UE to be allocated in the orthogonal beam group is the target beam. If no beam exists in the orthogonal beam group, The preset condition determines that the beam attribute of the UE to be allocated in the orthogonal beam group is a joint attribute.
  • the preset condition can be preset and stored in the base station.
  • the preset condition is that the difference between the level of the target beam and the levels of other beams in the orthogonal beam group except the target beam is greater than a preset value.
  • the base station may compare the level of each beam in the orthogonal beam group. If the level of the target beam in the orthogonal beam group is divided by the orthogonal beam group, If the difference between the levels of the beams other than the target beam is greater than a preset value, it is determined that the beam attribute of the UE to be allocated in the orthogonal beam group is the target beam.
  • the difference between the level of the highest level beam x (target beam) and the levels of other beams in a certain orthogonal beam group of the UE to be allocated is greater than a preset value, and the beam attribute of the UE to be allocated is beam x.
  • the difference between the levels of multiple beams x and y with higher levels and the levels of any other beams is greater than a certain preset value, it is determined that the beam attributes of the UE to be allocated are beam x and beam y. If no beam in the orthogonal beam group satisfies the foregoing preset condition, it may be determined that the beam attribute of the UE to be allocated in the orthogonal beam group is a joint attribute.
  • the beam properties of the UE to be allocated in each orthogonal beam group can be determined.
  • Step 304 Allocate time-frequency resources for the UE to be allocated according to the beam attributes of the UE to be allocated in the second preset number of orthogonal beam groups and the beam properties of the allocated UE.
  • the allocated UE uses the same time-frequency resource, and some resources in the same time-frequency resource are not occupied (for example, the same time-frequency resource is the same RBG, and some resources refer to certain RBs), and the allocated UE is one Or more, the assigned time-frequency resource for the allocated UE refers to the base station sending data to the UE.
  • the same time-frequency resource refers to the same RBG, or the same RB. Multiple RBs can be included in the RBG, and the number can be configured based on the service. In the description later in this embodiment of the present invention, the same time-frequency resource is used as an example to describe the same RBG.
  • the base station can obtain the allocated RBG.
  • UE (belonging to the same cell after splitting as the UE to be allocated or two cells after splitting respectively), and then obtain the beam attribute of each allocated beam group on the second preset number of beam groups (determination method (The method is the same as the method for determining the UE to be allocated, and is not repeated here). Then, according to the beam attributes of the UE to be allocated and the beam attributes of the allocated UE, time-frequency resources are allocated to the UE to be allocated.
  • a new time-frequency resource (RB or RBG) is currently allocated to allocate time-frequency resources for the UE to be allocated, since the new time-frequency resources have not yet been allocated time-frequency resources for other UEs, it can be directly at that time. Allocate time-frequency resources to the UE to be allocated on the frequency resources. For example, if time-frequency resources are currently allocated for a UE to be allocated on a new RBG, since time-frequency resources are not allocated for other UEs on the new RBG, time-frequency resources may be allocated for the UEs to be allocated directly on the RBG. .
  • time-frequency resources may also be allocated for the UE to be allocated based on the transmission mode and beam attributes of the UE to be allocated.
  • the corresponding processing in step 304 may be as follows:
  • the beam attributes and the The beam attributes of the UE in the second preset number of orthogonal beam groups are allocated, and time-frequency resources are allocated to the UEs to be allocated.
  • the transmission modes when the base station transmits data to the UE in the downlink, the transmission modes generally include transmission modes such as multiple-input multiple-output MIMO transmission mode, BF transmission mode, and transmit diversity.
  • the transmission mode mentioned is a downlink transmission mode, which is generally a CRS-based MIMO transmission mode and a BF transmission mode.
  • the base station may determine the transmission mode of the UE based on the reference signal used for demodulation. If the demodulation is based on the CRS, determine that the UE is a MIMO transmission mode based on the CRS, and if the demodulation is based on the DMRS of the UE, It is determined that the UE is in a BF transmission mode. Based on this principle, the base station can determine the transmission modes of the UE to be allocated and the allocated UE, and then according to the transmission mode of the UE to be allocated and the transmission mode of the allocated UE, the UE to be allocated is in a second preset number of orthogonal beam groups. The beam attribute of the UE and the beam attribute of the allocated UE allocate time-frequency resources for the UE to be allocated.
  • CRS is transmitted on each downlink sub-frame and each RB in the frequency domain. It can be used for channel estimation of the UE and related demodulation of all downlink transmissions. It can also be used for UE to obtain channel status.
  • Information (Channel-state Information) (CSI).
  • CSI Channel-state Information
  • a DMRS is a UE-specific reference signal, which is used for channel estimation and coherent demodulation of the UE.
  • the DMRS is generally transmitted only in RBs allocated for PDSCH transmission of a particular UE.
  • time-frequency resources are allocated to the UE to be allocated, and the corresponding processing may be as follows:
  • the beam properties of the UE to be allocated in the second preset number of orthogonal beam groups, and the Beam attributes are allocated to the UE to be allocated among the same time and frequency resources to which the time and frequency resources allocated to the allocated UE belong.
  • the orthogonal matching condition refers to a condition satisfied by two UEs that do not interfere with each other when transmitting data in the same RBG.
  • the base station may determine the transmission mode of the UE to be allocated and the transmission mode of the allocated UE, the beam properties of the UE to be allocated in the second preset number of orthogonal beam groups, and the allocated UE in the second preset number.
  • the beam attribute in the orthogonal beam group determines whether the to-be-assigned UE and the assigned UE meet the orthogonal matching condition. If the to-be-assigned UE and the assigned UE meet the orthogonal matching condition, it indicates that any of the UE to be assigned and the assigned UE The correlation is relatively small and does not affect each other.
  • time-frequency resources can be allocated for the UE to be allocated.
  • the UE to be allocated is the B cell UEo. Since UEo, UEd, and UEc both meet the orthogonal matching condition, UEo can use the same RBG1 as UEd and UEc. A cell and B cell are After two splits.
  • the UE to be allocated does not satisfy the orthogonal matching condition with the allocated UE (which does not satisfy the orthogonal matching condition with a UE in the allocated UE), it indicates that the correlation between the UE to be allocated and the UE in the allocated UE is relatively large. It will affect each other, and may affect the UE to receive demodulated data, so the time-frequency resource cannot be allocated for the UE to be allocated in the RBG to which the time-frequency resource allocated for the allocated UE belongs.
  • the base station may determine the priorities of other UEs waiting to allocate time-frequency resources, determine the highest priority UE from them, and allocate time-frequency to the UE in the manner described above. After all the time-frequency resources on the current RBG have been allocated, resources can be allocated on the next RBG first for the UE to be allocated.
  • each of the UE to be allocated and the allocated UE meets the orthogonal matching condition, and then it can be determined that the UE to be allocated and the allocated UE meet the orthogonal matching condition, as long as If one of the UE to be allocated and the allocated UE does not satisfy the orthogonal matching condition, the UE to be allocated and the allocated UE do not satisfy the orthogonal matching condition.
  • the transmission mode of the UE to be allocated is a CRS-based MIMO transmission mode
  • the transmission mode of the UE to be allocated is a CRS-based MIMO transmission mode
  • the transmission mode of at least one UE among the allocated UE and the UE to be allocated is a CRS-based MIMO transmission mode, obtain the physical cell identity PCI of the cell to which the UE to be allocated belongs and the PCI of the cell to which the allocated UE belongs;
  • the to-be-allocated UE and the allocated UE satisfy the orthogonal matching condition, the time-frequency resource is allocated to the to-be-allocated UE in the same time-frequency resource to which the time-frequency resource allocated for the allocated UE belongs.
  • the base station when the UE has just accessed the LTE network, the base station will record the physical cell identity of the cell to which the UE belongs, so the base station can obtain the PCI of the UE to be allocated and the cell to which the allocated UE belongs from the storage location of the pre-recorded PCI.
  • the base station After the base station determines the transmission mode of the UE to be allocated and the allocated UE, it can determine whether at least one of them has a CRS-based MIMO transmission mode. If it exists, it obtains the PCI and allocated of the cell to which the UE to be allocated belongs. The PCI of the cell to which the UE belongs, and then according to the acquired PCI and the beam attributes of the UE to be allocated in the second preset number of orthogonal beam groups, the beams of the allocated UE in the second preset number of orthogonal beam groups Attribute to determine whether the UE to be allocated meets the orthogonal matching condition with the allocated UE. If the orthogonal matching condition is satisfied, the UE can be allocated in the same time-frequency resource to which the time-frequency resource allocated for the allocated UE belongs. Time-frequency resources.
  • the following methods can be used to determine whether the orthogonal matching condition is met, and the corresponding processing can be as follows:
  • the transmission mode of the UE to be allocated is CRS-based MIMO transmission mode
  • the PCI of the cell to which the UE to be allocated belongs is different from the PCI of the cell to which the UE whose transmission mode is CRS-based MIMO transmission mode belongs
  • the UE to be allocated The PCI of the owning cell is different from the PCI of the cell to which the UE whose transmission mode is BF in the allocated UE belongs, and for the first UE in the allocated UE, at least one exists in the second preset number of orthogonal beam groups
  • the beam attributes of the UE to be allocated and the beam attributes of the first UE are not joint attributes, and the beam attributes of the UE to be allocated and the beam attributes of the first UE are completely different, the UE to be allocated and the UE to be allocated Satisfying the orthogonal matching condition, allocating time-frequency resources to the UE to be allocated in the same time-frequency resource to which the time-frequency resources allocated by the allocated UE belong, wherein the first
  • the transmission mode of the UE to be allocated is BF transmission mode
  • the PCI of the cell to which the UE to be allocated belongs is different from the PCI of the cell to which the UE whose transmission mode is CRS-based MIMO transmission mode belongs
  • the Two UEs at least one orthogonal beam group exists in the second preset number of orthogonal beam groups, and neither the beam attributes of the UE to be allocated nor the beam attributes of the second UE are joint attributes, and the beam attributes of the UE to be allocated
  • the beam properties of the allocated UE are completely different from those of the allocated UE.
  • the to-be-allocated UE and the allocated UE satisfy the orthogonal matching condition.
  • the time-frequency is allocated to the allocated UE. Resources, where the second UE is any one of the allocated UEs.
  • the base station may determine the PCI of the cell to which the UE to which the transmission mode is CRS-based MIMO transmission mode belongs.
  • the PCI of the cell to which the UE whose transmission mode is CRS-based MIMO transmission mode in the assigned UE is different is the PCI of the cell to which the UE whose transmission mode is BF transmission mode belongs.
  • the PCI of the cell is different from the PCI of the cell to which the UE whose transmission mode is the BF transmission mode in the allocated UEs (that is, the transmission mode of the UE to be allocated is a CRS-based MIMO transmission mode, and the allocated UE does not exist and is not to be allocated.
  • the UE to which the UE belongs has the same PCI), the beam properties of the UE to be allocated can be matched with the beam properties of any UE (ie, the first UE) in the allocated UE.
  • the matching principle can be:
  • the first UE determine whether there is an orthogonal beam group in the second preset number of orthogonal beam groups, determine whether there is at least one orthogonal beam group in the second preset number of orthogonal beam groups, and the UE to be allocated Both the beam attribute of the UE and the beam attribute of the first UE in the allocated UE are not joint attributes, and their beam attributes are completely different. It can be determined that the UE to be allocated and the first UE in the allocated UE meet an orthogonal matching condition. In this way, it can be determined whether any of the UE to be allocated and the allocated UE satisfy the orthogonal matching condition.
  • the time-frequency resource may be allocated for the UE to be allocated in the RBG to which the time-frequency resource allocated for the allocated UE belongs.
  • the UE to be allocated is UE3, the transmission mode of UE1 is the BF transmission mode, the PCI of the owning cell is A, and the transmission mode of UE2 is BF transmission mode, the PCI of the owning cell is A, the transmission mode of UE3 is the CRS-based MIMO transmission mode, the PCI of the owning cell is B, the transmission mode of UE1 is different from the transmission mode of UE2 and UE3, and the cell to which UE1 and UE3 belong
  • the PCIs are different, and the cell identities of the cells to which UE2 and UE3 belong are also different.
  • the first orthogonal beam group of the second preset number of orthogonal beam groups (the first orthogonal beam group is any beam group in the second preset number of orthogonal beam groups), UE1 and
  • the beam attributes of UE3 are not joint attributes, and the beam attributes of UE1 are beam x, the beam attributes of UE3 are beam y, which are completely different, and the beam attributes of UE2 are beam z, which is also completely different from that of UE3. It can be determined that UE3 is respectively It meets the orthogonal matching conditions with UE1 and UE2, and can allocate time-frequency resources to UE3 in the RBG2 to which the time-frequency resources allocated to UE1 and UE2 belong.
  • the base station may determine the PCI of the cell to which the UE whose transmission mode is CRS-based MIMO transmission mode belongs, and if the PCI of the cell to which the UE to be allocated belongs and the allocated UE transmit If the PCI of the cell to which the UE belongs is different in the CRS-based MIMO transmission mode, the beam properties of the UE to be allocated can be matched with the beam properties of any UE (ie, the second UE) in the allocated UE.
  • the matching principle can be:
  • any one of the UE to be allocated and the allocated UE it is determined that at least one orthogonal beam group exists in the second preset number of orthogonal beam groups, the beam attribute of the UE to be allocated and the beam of the second UE in the allocated UE None of the attributes are joint attributes, and their beam attributes are completely different. It can be determined that the UE to be allocated and the second UE among the allocated UEs satisfy the orthogonal matching condition. In this way, it can be determined whether any of the UE to be allocated and the allocated UE satisfy the orthogonal matching condition.
  • the time-frequency resource may be allocated for the UE to be allocated in the RBG to which the time-frequency resource allocated for the allocated UE belongs.
  • the assigned UE has one UE3, the UE to be assigned is UE4, the transmission mode of UE3 is a CRS-based MIMO transmission mode, the PCI of the owning cell is A, and the transmission mode of UE4 is the BF transmission mode.
  • the PCI is B, and the PCIs of the cells to which UE3 and UE4 belong are different.
  • UE3 and The beam attributes of UE4 are not joint attributes, and the beam attributes of UE3 are beam x, and the beam attributes of UE4 are beam y, which are completely different. It can be determined that UE4 and UE3 meet the orthogonal matching condition, and time and frequency resources can be allocated for UE3. In the associated RBG, time-frequency resources are allocated to UE4.
  • the transmission mode of the UE to be allocated is CRS-based MIMO transmission mode
  • the PCI of the cell to which any UE belongs to the UE in the allocated UE whose transmission mode is CRS-based MIMO transmission mode is the same as the PCI of the cell to which the UE to be allocated belongs. Then, the to-be-allocated UE and the allocated UE do not satisfy the orthogonal matching condition, and the time-frequency resource cannot be allocated to the to-be-allocated UE in the RBG to which the time-frequency resource allocated for the allocated UE belongs.
  • the transmission mode of the UE to be allocated is a CRS-based MIMO transmission mode
  • the PCI of the cell to which any UE belongs in the UE whose transmission mode is BF transmission mode is the same as that of the cell to which the UE to be allocated belongs
  • the to be allocated The UE and the allocated UE do not satisfy the orthogonal matching condition.
  • the transmission mode of the UE to be allocated is the BF transmission mode
  • the PCI of the cell to which any UE belongs in the UE whose transmission mode is the CRS-based MIMO transmission mode is the same as that of the cell to which the UE to be allocated belongs
  • the to be allocated The UE and the allocated UE do not satisfy the orthogonal matching condition.
  • the transmission mode of the UE to be allocated is a CRS-based MIMO transmission mode
  • the PCI of the cell to which the UE to be allocated belongs is different from the PCI of the cell to which the UE whose transmission mode is CRS-based MIMO transmission mode belongs, and is to be allocated.
  • the PCI of the cell to which the UE belongs is not the same as the PCI of the cell to which the UE belongs in the BF transmission mode among the allocated UEs.
  • there is at least one UE in the allocated UEs and there is no one orthogonal beam group in the second preset number of orthogonal beam groups.
  • the beam attributes of the UE to be allocated and the beam attributes of the UE in the allocated UEs are not uniform.
  • the transmission mode of the UE to be assigned is BF transmission mode
  • the PCI of the cell to which the UE to be assigned belongs is different from the PCI of the cell to which the UE whose transmission mode is CRS-based MIMO transmission mode belongs, and the cell to which the UE to be assigned belongs belongs. Is different from the PCI of the cell to which the UE whose transmission mode is the BF transmission mode in the allocated UE belongs.
  • the beam attributes of the UE to be allocated and the beam attributes of the UE in the allocated UEs are not uniform.
  • the base station may determine the priorities of other UEs waiting to be allocated time-frequency resources, determine the UE with the highest priority from them, and allocate the UEs in the manner described above. Time-frequency resources. After all the time-frequency resources on the current RBG are allocated, the time-frequency resources can be allocated to the UE to be allocated first on the next RBG.
  • the transmission modes of the UEs to be allocated and the UEs that are allocated are both BF transmission modes. It can be determined in the following manner whether the orthogonal matching condition is met, and the corresponding processing can be as follows:
  • the transmission modes of the to-be-assigned UE and the assigned UE are both BF transmission modes, and for the third UE in the allocated UE, at least one orthogonal beam group exists in the second preset number of orthogonal beam groups, the to-be-assigned
  • the beam attributes of the UE and the beam attributes of the third UE are not joint attributes, and the beam attributes of the UE to be allocated and the beam attributes of the third UE are completely different.
  • time-frequency resources are allocated for the UE to be allocated, where the third UE is any UE among the allocated UEs.
  • the base station determines the transmission modes of the UEs to be allocated and the allocated UEs, it can determine whether their transmission modes are the same. If the transmission modes of the UEs to be allocated and the allocated UEs are BF transmission modes, the The beam properties of the UE are matched with the beam properties of any UE (ie, the third UE) in the allocated UEs.
  • the matching principle can be:
  • any of the UE to be allocated and the UE to be allocated determine whether an orthogonal beam group exists in the second preset number of orthogonal beam groups, the beam attribute of the UE to be allocated, and the beam of the third UE in the allocated UE. None of the attributes are joint attributes, and the beam attributes are completely different. It can be determined that the third UE among the UEs to be allocated and the allocated UEs satisfy the orthogonal matching condition. In this way, it can be determined whether any of the UE to be allocated and the allocated UE satisfy the orthogonal matching condition.
  • the time-frequency resource may be allocated for the UE to be allocated in the RBG to which the time-frequency resource allocated for the allocated UE belongs.
  • the allocated UE has two UE5 and UE6, the UE to be allocated is UE7, the transmission mode of UE5 and UE6 are BF transmission mode, the transmission mode of UE7 is BF transmission mode, and the second preset number of orthogonal beam groups
  • the beam attribute of UE5 is beam x
  • the beam attribute of UE7 is beam p. It can be determined that in the second orthogonal beam group, the beam attributes of UE5 and UE7 are not joint attributes, and they The beam attributes are completely different. It can be determined that UE5 and UE7 meet the orthogonal matching condition, and the third orthogonal beam group among the second preset number of orthogonal beam groups.
  • the beam attributes of UE6 are beam z, and UE7's
  • the beam attribute is beam p. It can be determined that in the third orthogonal beam group, the beam attributes of UE6 and UE7 are not joint attributes, and their beam attributes are completely different. It can be determined that UE6 and UE7 meet the orthogonal matching condition, and it can be determined The to-be-assigned UE and the allocated UE satisfy the orthogonal matching condition, and time-frequency resources may be allocated to UE7 in the RBG to which the time-frequency resources allocated for UE5 and UE6 belong.
  • the transmission modes of the to-be-assigned UE and the assigned UE are BF transmission modes, there is at least one UE among the assigned UEs, and there is no one orthogonal beam group among the second preset number of orthogonal beam groups.
  • the beam attributes of the assigned UE and the beam attributes of the UE in the assigned UE are not both joint attributes or joint attributes, but the beam attributes are not completely different. It can be determined that the UE in the to-be-assigned and the assigned UEs are not satisfied Orthogonal matching conditions, the UE to be allocated and the allocated UEs do not meet the orthogonal matching conditions.
  • the base station may determine the priorities of other UEs waiting to be allocated time-frequency resources, determine the UE with the highest priority from them, and allocate the UEs in the manner described above. Time-frequency resources. After all the time-frequency resources on the current RBG are allocated, the time-frequency resources can be allocated to the UE to be allocated first on the next RBG.
  • the base station may map the data to be transmitted to the UE to be allocated onto the time-frequency resources allocated for the UE to be allocated, and send the data to the UE to be allocated through the time-frequency resources. .
  • the beam weights of the allocated UEs after allocating time-frequency resources to the UE to be allocated on the same time-frequency resource, it is also possible to obtain the beam weights of the allocated UEs, and obtain the channel coefficients of the UEs to be allocated, and the beams of the allocated UEs are
  • the weights and the channel coefficients of the UEs to be allocated form a matrix, and then the matrix is used to orthogonalize the channel coefficients of the UEs to be allocated and the beam weights of the allocated UEs to obtain the orthogonalized weights. Based on the orthogonalization To the data of the UE to be allocated to the time-frequency resource allocated to the UE to be allocated.
  • the beam weight of UEa in the allocated UE is
  • the UE channel coefficient to be allocated is
  • the data of the UE to be allocated is mapped to the time-frequency resources allocated to the UE to be allocated.
  • any allocated UE when mapping the data of the UE to the time-frequency resources allocated for the UE, a matrix is formed for the channel coefficients of the UE and the beam weights of the UE to be allocated, and then used The matrix performs orthogonal processing on the channel coefficients of the UE and the beam weights of the UEs to be allocated to obtain the orthogonalized weights. Based on the orthogonalized weights, the data of the UE is mapped to the UEs. Allocated time-frequency resources. In this way, since the orthogonalization process is performed, the UE to be allocated and the UE to be allocated can be more accurately demodulated to the data sent to itself.
  • the UE can be paired according to the beam properties of the UE to determine whether it is possible to allocate time-frequency resources to different UEs in the same time-frequency resource. Therefore, even if the UEs in the split cell are unevenly distributed, they can be flexibly scheduled. Time-frequency resources enable efficient use of time-frequency resources.
  • a solution is described by using an example of requesting scheduling of time-frequency resources when the UE sends data to a base station. As shown in FIG. 6, the processing process of this solution may be as follows:
  • Step 601 When the to-be-allocated UE requests scheduling of time-frequency resources, obtain an uplink reference signal of the to-be-allocated UE.
  • time-frequency resources are allocated for the UEs to be allocated and the allocated UEs for transmitting uplink data.
  • the base station allocates time-frequency resources for the UE to be allocated, and is used for the UE to be allocated to transmit data to the base station.
  • the UE when the UE (which may be referred to as a UE to be allocated later) sends data through the network, it will request the base station to allocate time-frequency resources for itself.
  • the UE will send a resource scheduling request to the base station.
  • the base station receives the time-frequency
  • the base station if the base station has received the SRS sent by the UE to be allocated in the current cycle, it can obtain the SRS in the current cycle, and if the base station has not received the SRS sent by the UE to be allocated in the current cycle, it can obtain the previous week It is expected to allocate the SRS sent by the UE. And / or the base station obtains the DMRS when the UE last transmitted data.
  • the base station when the base station receives the resource scheduling request sent by the UE at the same time, it will also first determine the UE with the highest priority among multiple UEs. Generally, the priority of the UE is determined based on the type of data to be transmitted, such as phone voice Data has the highest priority, followed by short messages, video data, and so on. The UE with the highest priority is determined as the UE to be allocated.
  • Step 602 According to the uplink reference signal, measure each beam in the second preset number of orthogonal beam groups composed of the first preset number of beams to determine the level of each beam.
  • the orthogonal beam group refers to that multiple beams included do not interfere with each other, or the interference between multiple beams is less than a certain threshold, which does not affect the normal transmission and reception of data.
  • the first preset number of beams It can be configured by a technician based on the antenna conditions of the base station. By adjusting the weighting coefficient and amplitude of the base station antenna, the first preset number of beams can be combined into a second preset number of orthogonal beam groups, for example, a total of M Beam, each time you adjust the weighting coefficient and amplitude of the base station antenna, you can turn these M beams into another M beams, which are orthogonal to each other. After (N-1) adjustments, you will get N orthogonal Beam group, the second preset number is N. Level refers to the equivalent power of the beam.
  • the base station may obtain a second preset number of orthogonal beam groups composed of the first preset number of beams, and then use the uplink reference signal separately for each Any beam in the orthogonal beam group is measured to obtain the level of any beam.
  • the equivalent channel response of each beam may be determined first, and the level of each beam is determined based on the equivalent channel response.
  • the processing of step 602 of the response may be as follows:
  • each beam in the second preset number of orthogonal beam groups composed of the first preset number of beams is measured to determine the equivalent channel response of each beam; according to the equivalent channel of each beam In response, determine the level of each beam.
  • this process is the same as that in the previous embodiment, and the method of determining the level of the beam can be referred to the foregoing description, which is not repeated here.
  • Step 603 Determine the beam attributes of the UE to be allocated in the second preset number of orthogonal beam groups according to the level of each beam.
  • the beam attribute is used to measure which kind of beam the UE is closer to, and the correlation between the UEs can be measured based on the beam attribute in the future.
  • the base station may determine the beam attribute of the UE to be allocated in each orthogonal beam group based on the level of each beam.
  • the beam attributes of the UE to be allocated can be determined by comparison.
  • the processing of the corresponding step 303 can be as follows:
  • a target beam in the orthogonal beam group satisfies a preset condition, it is determined that the beam attribute of the UE to be allocated in the orthogonal beam group is the target beam. If no beam exists in the orthogonal beam group, The preset condition determines that the beam attribute of the UE to be allocated in the orthogonal beam group is a joint attribute.
  • the preset condition can be preset and stored in the base station.
  • the preset condition is that the difference between the level of the target beam and the levels of other beams in the orthogonal beam group except the target beam is greater than a preset value.
  • the base station may compare the level of each beam in the orthogonal beam group. If the level of the target beam in the orthogonal beam group is divided by the orthogonal beam group, If the difference between the levels of the beams other than the target beam is greater than a preset value, it is determined that the beam attribute of the UE to be allocated in the orthogonal beam group is the target beam.
  • the difference between the level of the highest level beam x (target beam) and the level of other beams in a certain orthogonal beam group where the UE to be allocated is greater than a preset value, and the beam attribute of the UE to be allocated is beam x
  • the beam attributes of the UE to be allocated are beams x and y. If no beam in the orthogonal beam group satisfies the foregoing preset condition, it may be determined that the beam attribute of the UE to be allocated in the orthogonal beam group is a joint attribute.
  • the beam properties of the UE to be allocated in each orthogonal beam group can be determined.
  • Step 604 According to the beam properties of the UE to be allocated in the second preset number of orthogonal beam groups and the beam properties of the allocated UE in the second preset number of orthogonal beam groups, if the UE to be allocated and the allocated UE are When the orthogonal matching condition is satisfied, time-frequency resources are allocated to the UE to be allocated among the same time-frequency resources allocated to the time-frequency resources allocated to the allocated UE.
  • the allocated UE uses the same time-frequency resource, and some resources in the same time-frequency resource are not occupied (for example, the same time-frequency resource is the same RBG, and some resources refer to certain RBs), and the allocated UE is one
  • the assigned time refers to the scheduled time-frequency resources for the UE, which is used by the UE to send data to the base station.
  • the same time-frequency resource refers to the same resource block group or the same time-frequency resource block RB. Multiple RBs can be included in the RBG, and the number can be configured based on services.
  • the same time-frequency resource is used for the same RBG in the process described later in the embodiment of the present invention. As an example.
  • the base station may determine that the RBG has been allocated.
  • UE (belonging to the same cell after splitting as the UE to be allocated or two cells after splitting respectively), and then obtain the beam attributes of each beam group of the second number of orthogonal beam groups of the allocated UE according to the The beam attributes of the allocated UE and the beam attributes of the allocated UE determine whether the to-be-assigned UE and the allocated UE meet an orthogonal matching condition. If the orthogonal matching condition is satisfied, it can be included in the RBG to which the time-frequency resource allocated for the allocated UE belongs. To allocate time-frequency resources to the UE to be allocated.
  • time-frequency resources are currently allocated to the UE on a new RBG, time-frequency resources are allocated to the UE to be allocated directly on the RBG.
  • the to-be-assigned UE and the assigned UE do not satisfy the orthogonal matching condition (and any UE in the assigned UE does not satisfy the orthogonal matching condition), it indicates that the to-be-assigned UE has a greater correlation with the assigned UE and will affect each other. , It may affect the UE to receive demodulated data, so the time-frequency resource cannot be allocated for the UE to be allocated in the RBG to which the time-frequency resource allocated for the allocated UE belongs.
  • the base station may determine the priorities of other UEs waiting to allocate time-frequency resources, determine the highest priority UE from them, and allocate time-frequency to the UE in the manner described above. After all the time-frequency resources on the current RBG have been allocated, resources can be allocated on the next RBG first for the UE to be allocated.
  • the UE to be allocated and the allocated UE meet the orthogonal matching condition, and the corresponding processing can be as follows:
  • the UE to be allocated belongs and the PCI of the cell to which the allocated UE belongs; according to the PCI of the cell to which the UE to be allocated belongs and the PCI of the cell to which the allocated UE belongs, the UE to be allocated in the second preset number of orthogonal beam groups Beam attributes and beam attributes of the allocated UEs in the second preset number of orthogonal beam groups. If the UEs to be allocated and the allocated UEs meet orthogonal matching conditions, the RBG to which the time-frequency resources allocated for the allocated UEs belong In time, time-frequency resources are allocated for the UE to be allocated.
  • the base station when the UE has just accessed the LTE network, the base station records the PCI of the cell to which the UE belongs, so the base station can obtain the PCI of the UE to be allocated and the cell to which the allocated UE belongs from the storage location of the pre-recorded PCI.
  • the base station After the base station determines the beam attributes of the UE to be allocated in each orthogonal beam group, if there is an unoccupied RBG in the RBG that is currently allocating time-frequency resources, the base station can determine that the allocated UE (and Allocating UEs to the same cell after splitting or to two cells after splitting respectively), and then obtaining the beam attributes of each of the second number of orthogonal beam groups of the allocated UE.
  • the base station may then according to the PCI of the cell to which the UE to be allocated belongs and the PCI of the cell to which the allocated UE belongs, the beam properties of the UE to be allocated in the second preset number of orthogonal beam groups, and the allocated UE in the second preset number of positive
  • the beam attributes in the cross beam group determine whether the UE to be allocated and the allocated UE meet the orthogonal matching condition. If the orthogonal matching condition is satisfied, the RBG to which the time-frequency resource allocated for the allocated UE belongs can be assigned to the UE to be allocated. Allocate time-frequency resources.
  • the UE to be allocated and the allocated UE meet the orthogonal matching condition, and the corresponding processing can be as follows:
  • the PCI of the cell to which the UE to be allocated belongs is different from the PCI of the cell to which any UE belongs, and for the fourth UE in the allocated UE, at least one positive exists in the second preset number of orthogonal beam groups.
  • the beam attributes of the UE to be allocated and the beam attributes of the fourth UE are not joint attributes, and the beam attributes of the UE to be allocated and the beam attributes of the fourth UE are completely different.
  • the orthogonal matching condition is to allocate time-frequency resources to the UE to be allocated in the RBG to which the time-frequency resources allocated to the allocated UE belong, where the fourth UE is any UE among the allocated UEs.
  • the base station may determine whether the PCI of the UE to be allocated and the cell to which the allocated UE belongs are the same. If not, the beam properties of the UE to be allocated may be different from the beam properties of any of the allocated UEs (ie, the fourth UE). Make a match.
  • the matching principle may be: for the fourth UE, judging whether an orthogonal beam group exists in the second preset number of orthogonal beam groups, and judging that at least one orthogonal beam exists in the second preset number of orthogonal beam groups.
  • the beam attributes of the UE to be allocated and the beam attributes of the fourth UE in the allocated UE are not joint attributes, and their beam attributes are completely different. It can be determined that the fourth UE in the to-be-allocated UE and the allocated UE meet orthogonality Matching conditions. In this way, it can be determined whether any of the UE to be allocated and the allocated UE satisfy the orthogonal matching condition.
  • Time-frequency resources may be allocated for the UE to be allocated in the RBG to which the time-frequency resources allocated for the allocated UE belong.
  • the UE to be allocated and the allocated UE do not meet the orthogonal matching condition, and the time and frequency of the allocated UE cannot be allocated.
  • the RBG to which the resource belongs time-frequency resources are allocated for the UE to be allocated.
  • the base station may determine the priorities of other UEs waiting to allocate time-frequency resources, and determine the UE with the highest priority from them, and allocate time-frequency resources to the UEs in the manner described above. After all time-frequency resources on the current RBG are allocated, , On the next RBG, time-frequency resources may be allocated for the UE to be allocated first.
  • the base station may notify the UE of the time-frequency resources allocated for the UE to be allocated, and the UE may send data to the base station on the time-frequency resources.
  • the number of REs occupied by multiple UEs must be completely the same.
  • the orthogonal matching condition is satisfied, It indicates that the correlation of the UE is relatively small, and the mutual influence is relatively small. It has nothing to do with the number of resource elements (REs) occupied, so the number of occupied REs does not have to be exactly the same.
  • one cell is split into two cells as an example for illustration.
  • the soft split into other numbers of cells can be applied.
  • the UE can be paired according to the beam properties of the UE to determine whether it is possible to allocate time-frequency resources to different UEs in the same time-frequency resource. Therefore, even if the UEs in the split cell are unevenly distributed, they can be flexibly scheduled. Time-frequency resources enable efficient use of time-frequency resources.
  • an embodiment of the present invention further provides an apparatus for allocating time-frequency resources. As shown in FIG. 8, the apparatus includes:
  • the obtaining module 810 is configured to obtain an uplink reference signal of a user equipment UE to be allocated, where the uplink reference signal includes an uplink channel sounding reference signal SRS and / or a specific reference signal DMRS, and may specifically implement steps 301 and 601 described above. Acquisition functions, and other hidden steps;
  • a determining module 820 configured to measure each beam in a second preset number of orthogonal beam groups composed of a first preset number of beams according to the uplink reference signal, and determine a level of each beam; Determine the beam attribute of the UE to be allocated in the second preset number of orthogonal beam groups according to the level of each beam; specifically, the above steps 302, 303, 602, and 603 may be implemented Identification function, and other hidden steps;
  • An allocation module 830 configured to be based on the beam attributes of the UE to be allocated in the second preset number of orthogonal beam groups and the beam attributes of the allocated UE in the second preset number of orthogonal beam groups Assigning time-frequency resources to the UE to be allocated, wherein the allocated UEs use the same time-frequency resource, and the same time-frequency resource is the same time-frequency resource block RB or the same time-frequency resource block group RBG.
  • the distribution function in steps 304 and 604 described above, and other hidden steps may be implemented;
  • the determining module 820 is configured to:
  • the determining module 820 is configured to:
  • a target beam in the orthogonal beam group satisfies a preset condition, it is determined that a beam attribute of the UE to be allocated in the orthogonal beam group is the target beam. If no beam in the orthogonal beam group satisfies the preset condition, it is determined that a beam attribute of the UE to be allocated in the orthogonal beam group is a joint attribute; wherein the preset condition is the target beam.
  • the preset condition is the target beam
  • the time-frequency resources allocated for the UE to be allocated and the allocated UE are used for downlink transmission;
  • the distribution module 830 is configured to:
  • beam properties of the UE to be allocated in the second preset number of orthogonal beam groups, and the allocated UE in the second preset Beam attributes in the number of orthogonal beam groups allocate time-frequency resources to the UE to be allocated.
  • the distribution module 830 is configured to:
  • the transmission mode of the UE to be allocated and the transmission mode of the allocated UE beam properties of the UE to be allocated in the second preset number of orthogonal beam groups, and the allocated UE in the second preset
  • the time-frequency resource to which the time-frequency resource allocated for the allocated UE belongs is the The to-be-allocated UE allocates time-frequency resources.
  • the distribution module 830 is configured to:
  • a transmission mode of at least one UE among the allocated UE and the UE to be allocated is a multiple-input multiple-output MIMO transmission mode, obtaining a physical cell identifier PCI of a cell to which the UE to be allocated belongs and the allocated UE belong to PCI of the cell;
  • the beam properties of the UE to be allocated in the second preset number of orthogonal beam groups the beam properties of the allocated UE in the second preset number of orthogonal beam groups, the UE to be allocated The PCI of the cell to which the UE belongs and the PCI of the cell to which the allocated UE belongs. If the UE to be allocated and the allocated UE satisfy the orthogonal matching condition, the time-frequency resource to which the time-frequency resource allocated for the allocated UE belongs To allocate time-frequency resources to the UE to be allocated.
  • the distribution module 830 is configured to:
  • the transmission mode of the UE to be allocated is a MIMO transmission mode
  • the PCI of the cell to which the UE to be allocated belongs is different from the PCI of the cell to which the UE whose transmission mode is MIMO transmission mode belongs
  • the The PCI of the cell to which the UE belongs is different from the PCI of the cell to which the UE whose transmission mode is BF transmission mode in the allocated UE is, and for the first UE in the allocated UE, the second preset number of There are at least one orthogonal beam group in the orthogonal beam group, and neither the beam attributes of the UE to be allocated nor the beam attributes of the first UE are joint attributes, and the beam attributes of the UE to be allocated and the first The beam attributes of the UEs are completely different, and the to-be-allocated UE and the already-allocated UE meet an orthogonal matching condition, and among the time-frequency resources to which the time-frequency resource allocated for the allocated UE belongs, is allocated for the to-be-allocated UE.
  • the transmission mode of the UE to be allocated is a BF transmission mode
  • the PCI of the cell to which the UE to be allocated belongs is different from the PCI of the cell to which the UE whose transmission mode is MIMO transmission mode belongs
  • the second UE of the allocated UEs has at least one orthogonal beam group in the second preset number of orthogonal beam groups, and neither the beam attributes of the UE to be allocated nor the beam attributes of the second UE are the same.
  • time-frequency resources are allocated to the UE to be allocated, wherein the second UE is any one of the allocated UEs.
  • the distribution module 830 is configured to:
  • the transmission modes of the to-be-assigned UE and the allocated UE are both BF transmission modes, and for a third UE in the allocated UE, at least one of the second preset number of orthogonal beam groups exists
  • the beam attributes of the UE to be allocated and the beam attributes of the third UE are not joint attributes, and the beam attributes of the UE to be allocated and the beam attributes of the third UE are completely different
  • the UE to be allocated and the allocated UE meet an orthogonal matching condition, and among the time-frequency resources to which the time-frequency resources allocated for the allocated UE belong, time-frequency resources are allocated to the UE to be allocated, where
  • the third UE is any UE among the allocated UEs.
  • the time-frequency resources allocated for the UE to be allocated and the allocated UE are used for uplink transmission;
  • the distribution module 830 is configured to:
  • the beam attributes of the UE to be allocated in the second preset number of orthogonal beam groups and the beam attributes of the allocated UE in the second preset number of orthogonal beam groups if the to-be-assigned If the UE and the allocated UE satisfy the orthogonal matching condition, then among the time-frequency resources to which the time-frequency resources allocated for the allocated UE belong, time-frequency resources are allocated to the UE to be allocated.
  • the distribution module 830 is configured to:
  • the PCI of the cell to which the UE to be allocated belongs and the PCI of the cell to which the allocated UE belongs, beam properties of the UE to be allocated in the second preset number of orthogonal beam groups, and the allocated UE in the Beam attributes in the second preset number of orthogonal beam groups, and if the UE to be allocated and the allocated UE meet an orthogonal matching condition, then among the time-frequency resources to which the time-frequency resources allocated for the allocated UE belong To allocate time-frequency resources to the UE to be allocated.
  • the distribution module 830 is configured to:
  • the second preset number of positive There are at least one orthogonal beam group in the cross beam group, and neither the beam attribute of the UE to be allocated nor the beam attribute of the fourth UE is a joint attribute, and the beam attribute of the UE to be allocated and the fourth UE.
  • the beam attributes of the UE are completely different, and the UE to be allocated and the UE that are allocated meet orthogonal matching conditions.
  • the UE can be paired according to the beam properties of the UE to determine whether it is possible to allocate time-frequency resources to different UEs in the same time-frequency resource. Therefore, even if the UEs in the split cell are unevenly distributed, they can be flexibly scheduled. Time-frequency resources enable efficient use of time-frequency resources.
  • the device for allocating time-frequency resources only uses the division of the foregoing functional modules as an example to explain the allocation of time-frequency resources.
  • the above-mentioned functions may be assigned by different functions.
  • the function module is completed, that is, the internal structure of the device is divided into different function modules to complete all or part of the functions described above.
  • the apparatus for allocating time-frequency resources and the method for allocating time-frequency resources provided by the foregoing embodiments belong to the same concept. For specific implementation processes, refer to the method embodiments, and details are not described herein again.
  • all or part may be implemented by software, hardware, firmware, or any combination thereof.
  • software When implemented using software, it may be all or partly implemented in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a device, all or part of the processes or functions according to the embodiment of the present invention are generated.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, a computer, a server, or a data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a device or a data storage device such as a server, a data center, and the like that includes one or more available medium integration.
  • the usable medium may be a magnetic medium (such as a floppy disk, a hard disk, a magnetic tape, etc.), an optical medium (such as a Digital Video Disk (DVD), etc.), or a semiconductor medium (such as a solid state hard disk, etc.).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种分配时频资源的方法和装置,属于通信技术领域。所述方法包括:在为待分配UE调度时频资源时,可以获取待分配用户设备UE的上行信道探测参考信号上行参考信号;根据获取到的上行参考信号,对第一预设数目个波束组成的第二预设数目个正交波束组中每个波束进行测量,确定出每个波束的电平,然后根据每个波束的电平,确定出待分配UE在第二预设数目个正交波束组中的波束属性,然后根据待分配UE在第二预设数目个正交波束组中的波束属性和已分配UE在第二预设数目个正交波束组中的波束属性,为待分配UE分配时频资源,其中,已分配UE使用同一时频资源,同一时频资源为同一时频资源块RB或同一时频资源块组RBG。采用本申请,可以提高时频资源的利用率。

Description

分配时频资源的方法和装置
本申请要求于2018年6月20日提交的申请号为201810636394.8、发明名称为“分配时频资源的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,特别涉及一种分配时频资源的方法和装置。
背景技术
随着通信技术的发展,4G用户设备越来越多,对网络的覆盖和质量要求也越来越高,为了解决深度网络覆盖并提升网络质量,在不新增设备(如基站等)的情况下,且在有限的时频资源下,利用软劈裂技术,来改善网络覆盖范围,且提升网络容量。软劈裂技术是指对基站的扇区进行适当劈裂,使得基站的扇区数量增加,在增加的扇区覆盖范围内分配更多的载波,载波数量的增加对应着用户设备数量的增加,可以实现网络扩容,且劈裂后的扇区波束更窄,覆盖范围更大。
相关技术中,软劈裂技术一般是通过调整天线的相位权值和幅度,将传统单基站3扇区转变成6小区。软劈裂技术可以包括同频软劈裂,同频软劈裂指将一个小区劈裂成两个覆盖对称的小区,且劈裂后的两个小区中的用户设备(User equipment,UE)可以使用相同的时频资源,也就是实现两个小区时频资源的空分复用,例如,F频段(频率范围为20M)小区可以同频软劈裂为两个相邻的同频小区,劈裂后的两个相邻的同频小区可以使用的频段变为20+20M。在同频软劈裂后,基站分别为两个小区调度时频资源。
在实现本申请的过程中,发明人发现相关技术至少存在以下问题:
劈裂后的两个小区的覆盖虽然对称,但是两个小区内的UE分布不一定对称,有可能出现一个小区UE多,另一个小区UE少的情况(例如,小区1有10个UE,小区2有1个UE),这样,虽然空分了两份时频资源,但是基站是分别为两个小区调度时频资源,导致UE少的小区的时频资源并没有得到有效的利用。
发明内容
为了解决相关技术的问题,本发明实施例提供了一种分配时频资源的方法和装置。所述技术方案如下:
第一方面,提供了一种分配时频资源的方法,所述方法包括:
获取待分配用户设备UE的上行参考信号,其中,所述上行参考信号包括上行信道探测参考信号SRS和/或特定参考信号DMRS;根据所述上行参考信号,对第一预设数目个波束组成的第二预设数目个正交波束组中每个波束进行测量,确定所述每个波束的电平;根据所述每个波束的电平,确定所述待分配UE在所述第二预设数目个正交波束组中的波束属性;根据所述待分配UE在所述第二预设数目个正交波束组中的波束属性和已分配UE在所述第二预设数目个正交波束组中的波束属性,为所述待分配UE分配时频资源,其中,所述已分配 UE使用同一时频资源,所述同一时频资源为同一时频资源块RB或同一时频资源块组RBG。
其中,正交波束组是指包括的多个波束之间相互不受干扰,或者多个波束之间的干扰均小于一定阈值,不会影响数据的正常发送和接收,第一预设数目个波束可以由技术人员基于基站的天线情况配置,通过调整基站天线的加权系数和幅值等,可以将第一预设数目个波束组成第二预设数目个正交波束组,例如,一共有M个波束,每次调整基站天线的加权系数和幅值,可以将这M个波束,变成另外的M个波束,且彼此正交,通过(N-1)次调整,会得到N个正交的波束组,第二预设数目为N。电平指波束的等效功率。
本发明实施例所示的方案,基站有数据要传输给劈裂后的小区中的UE,或者,劈裂后的小区中的UE有数据传输给基站,基站需要给UE分配用户传输数据的时频资源,基站在分配时频资源时,可以获取待分配UE的上行参考信号,上行参考信号中包括上行信道探测参考信号(Sounding Reference Signal,SRS)和/或特定参考信号(Demodulation Reference Signal,DMRS),SRS一般是UE周期性传输给基站,用于基站进行上行信道估计,一般是在一个子帧的最后一个符号中进行传输,DMRS一般是传输数据时,仅在为特定UE的物理下行共享信道(Physical Downlink Shared Channel,PDSCH)传输而分配的资源块(Resource Block,RB)中进行传输。
如果基站已经接收到当前周期内待分配UE发送的SRS,则可以获取当前周期内的SRS,如果基站未接收到当前周期内待分配UE发送的SRS,则可以获取上一个周期待分配UE发送的SRS。并且基站可以获取上一次待分配UE传输数据时的DMRS。
然后基站可以根据获取到的上行参考信号,使用上行参考信号,对每个正交波束组中的任一波束进行测量,得到任一波束的电平。
基站在确定每个正交波束组中的各波束的电平后,可以基于各波束的电平,确定待分配UE在每个正交波束组中的波束属性。最后基站在确定待分配UE在每个正交波束组中的波束属性后,基站可以获取同一时频资源上的已分配UE(与待分配UE属于劈裂后的同一小区或者分别属于劈裂后的两个小区),然后获取已分配UE在第二预设数目个波束组上每个波束组的波束属性(确定方法与前面确定待分配UE的方法相同,此处不再赘述)。然后根据待分配UE的波束属性和已分配UE的波束属性,为待分配UE分配时频资源。
在一种可能的实施方式中,所述根据所述上行参考信号,对第一预设数目个波束组成的第二预设数目个正交波束组中每个波束进行测量,确定所述每个波束的电平,包括:根据所述上行参考信号,对第一预设数目个波束组成的第二预设数目个正交波束组中每个波束进行测量,确定所述每个波束的等效信道响应;根据所述每个波束的等效信道响应,确定所述每个波束的电平。
本发明实施例所示的方案,对于第二预设数目个正交波束组中任一正交波束组,基站可以确定该正交波束组中每个波束的等效信道响应,这样,就可以得到每个正交波束组中各波束的等效信道响应,根据每个正交波束组中各波束的等效信道响应,确定出每个波束的电平。
在一种可能的实施方式中,所述根据所述每个波束的电平,确定所述待分配UE在所述第二预设数目个正交波束组中的波束属性,包括:对于每个正交波束组,如果所述正交波束组中存在目标波束满足预设条件,则确定所述待分配UE在所述正交波束组中的波束属性为所述目标波束,如果所述正交波束组中不存在波束满足所述预设条件,则确定所述待分配UE在所述正交波束组中的波束属性为联合属性;其中,所述预设条件为所述目标波束的电平与 所述正交波束组中除所述目标波束之外的其它波束的电平的差值均大于或等于预设数值。
其中,预设条件可以预设,并且存储至基站中,预设条件为目标波束的电平与正交波束组中除目标波束之外的其它波束的电平的差值均大于预设数值,目标波束为一个或多个,预设数值可以预设,并且存储至基站中,用于衡量波束之间的相关性。
本发明实施例所示的方案,对于任一正交波束组,基站可以比较该正交波束组中,每个波束的电平,如果该正交波束组中的目标波束的电平与该正交波束组中除目标波束之外的其它波束的电平的差值,均大于或等于预设数值,则确定待分配UE在该正交波束组中的波束属性为目标波束。
例如,待分配UE在某个正交波束组中,电平最高的波束x(目标波束)的电平与其他波束的电平之差大于或等于预设数值,待分配UE的波束属性为波束x,或者电平较高的多个波束x、y的电平与其他任一波束的电平的差值大于或等于一定预设数值,则判断待分配UE的波束属性为波束x、波束y。如果该正交波束组中不存在波束满足上述预设条件,则可以确定待分配UE在该正交波束组中的波束属性为联合属性。
在一种可能的实施方式中,为所述待分配UE和所述已分配UE分配的时频资源用于下行传输;
所述根据所述待分配UE在所述第二预设数目个正交波束组中的波束属性和已分配UE在所述第二预设数目个正交波束组中的波束属性,为所述待分配UE分配时频资源,包括:确定所述待分配UE的传输模式和已分配UE的传输模式;根据所述待分配UE的传输模式和已分配UE的传输模式、所述待分配UE在所述第二预设数目个正交波束组中的波束属性和已分配UE在所述第二预设数目个正交波束组中的波束属性,为所述待分配UE分配时频资源。
其中,基站向UE下行传输数据时,传输模式一般有多入多出(Multiple-Input Multiple-Output,MIMO)传输模式、波束赋形(Beam Forming,BF)传输模式、发射分集等传输模式。在本发明实施例中,提到的传输模式是下行传输模式,一般是基于小区特定参考信号(Cell Reference Signal,CRS)的MIMO传输模式和BF传输模式。
本发明实施例所示的方案,基站可以基于用于解调的参考信号来判断UE的传输模式,如果是基于CRS进行解调,则确定UE是基于CRS的MIMO传输模式,如果是基于UE的DMRS进行解调,则确定UE是BF传输模式。基于这种原则,基站可以确定待分配UE和已分配UE的传输模式,然后根据待分配UE的传输模式和已分配UE的传输模式、待分配UE在第二预设数目个正交波束组中的波束属性和已分配UE的波束属性,为待分配UE分配时频资源。
在一种可能的实施方式中,所述根据所述待分配UE的传输模式和已分配UE的传输模式、所述待分配UE在所述第二预设数目个正交波束组中的波束属性和已分配UE在所述第二预设数目个正交波束组中的波束属性,为所述待分配UE分配时频资源,包括:根据所述待分配UE的传输模式和已分配UE的传输模式、所述待分配UE在所述第二预设数目个正交波束组中的波束属性和已分配UE在所述第二预设数目个正交波束组中的波束属性,如果所述待分配UE和已分配UE满足正交匹配条件,则在为所述已分配UE分配的时频资源所属的同一时频资源中,为所述待分配UE分配时频资源。
其中,正交匹配条件是指在同一时频资源上传输下行数据时,相互不会干扰的两个UE 所满足的条件。
本发明实施例所示的方案,基站可以根据待分配UE的传输模式和已分配UE的传输模式、待分配UE在第二预设数目个正交波束组中的波束属性和已分配UE在第二预设数目个正交波束组中的波束属性,确定待分配UE和已分配UE是否满足正交匹配条件,如果待分配UE与已分配UE满足正交匹配条件,说明待分配UE与已分配UE中任一UE的相关性比较小,不会互相影响,可以在为已分配UE分配的时频资源所属的同一时频资源中,为待分配UE分配时频资源。另外,如果待分配UE与已分配UE不满足正交匹配条件(与已分配UE中某个UE不满足正交匹配条件),说明待分配UE与已分配UE中该UE的相关性比较大,会互相影响,有可能会影响UE接收解调数据,所以不能在为已分配UE分配的时频资源所属的同一时频资源中,为待分配UE分配时频资源。
在一种可能的实施方式中,所述根据所述待分配UE的传输模式和已分配UE的传输模式、所述待分配UE在所述第二预设数目个正交波束组中的波束属性和已分配UE在所述第二预设数目个正交波束组中的波束属性,如果所述待分配UE和已分配UE满足正交匹配条件,则在为所述已分配UE分配的时频资源所属的同一时频资源中,为所述待分配UE分配时频资源,包括:如果所述已分配UE和所述待分配UE中存在至少一个UE的传输模式为基于小区特定参考信号CRS解调的多入多出MIMO传输模式,则获取所述待分配UE所属小区的物理小区标识PCI和所述已分配UE所属小区的PCI;根据所述待分配UE在所述第二预设数目个正交波束组中的波束属性、已分配UE在所述第二预设数目个正交波束组中的波束属性、所述待分配UE所属小区的PCI以及所述已分配UE所属小区的PCI,如果所述待分配UE和已分配UE满足正交匹配条件,则在为所述已分配UE分配的时频资源所属的同一时频资源中,为所述待分配UE分配时频资源。
本发明实施例所示的方案,UE在刚接入LTE网络时,基站会记录UE所属小区的物理小区标识(Physical cell identification,PCI),所以基站可以从预先记录PCI的存储位置,获取到待分配UE和已分配UE所属小区的PCI。基站确定出待分配UE与已分配UE的传输模式后,可以判断他们中是否存在至少一个UE的传输模式为基于CRS的MIMO传输模式,如果存在,则获取待分配UE所属小区的PCI、已分配UE所属小区的PCI,然后根据获取到的PCI、以及待分配UE在第二预设数目个正交波束组中的波束属性、已分配UE在第二预设数目个正交波束组中的波束属性,来确定待分配UE与已分配UE是否满足正交匹配条件。如果满足正交匹配条件,则可以在为已分配UE分配的时频资源所属的同一时频资源中,为待分配UE分配时频资源。
在一种可能的实施方式中,所述根据所述待分配UE在所述第二预设数目个正交波束组中的波束属性、已分配UE在所述第二预设数目个正交波束组中的波束属性、所述待分配UE所属小区的PCI以及所述已分配UE所属小区的PCI,如果所述待分配UE和已分配UE满足正交匹配条件,则在为所述已分配UE分配的时频资源所属的同一时频资源中,为所述待分配UE分配时频资源,包括:如果所述待分配UE的传输模式为所述MIMO传输模式,且所述待分配UE所属小区的PCI与所述已分配UE中传输模式为所述MIMO传输模式的UE所属小区的PCI不相同,且所述待分配UE所属小区的PCI与所述已分配UE中传输模式为BF传输模式的UE所属小区的PCI不相同,且对于所述已分配UE中第一UE,在所述第二个预设数目个正交波束组中存在至少一个正交波束组,所述待分配UE的波束属性和所述第一UE 的波束属性均不为联合属性,且所述待分配UE的波束属性和所述第一UE的波束属性完全不相同,则所述待分配UE和已分配UE满足正交匹配条件,在为所述已分配UE分配的时频资源所属的同一时频资源中,为所述待分配UE分配时频资源,其中,所述第一UE为所述已分配UE中任一UE;如果所述待分配UE的传输模式为BF传输模式,且所述待分配UE所属小区的PCI与所述已分配UE中传输模式为所述MIMO传输模式的UE所属小区的PCI不相同,且对于所述已分配UE中第二UE,在所述第二个预设数目个正交波束组中存在至少一个正交波束组,所述待分配UE的波束属性和所述第二UE的波束属性均不为联合属性,且所述待分配UE的波束属性和所述已分配UE的波束属性完全不相同,则所述待分配UE和所述已分配UE满足正交匹配条件,在为所述已分配UE分配的时频资源所属的同一时频资源中,为所述待分配UE分配时频资源,其中,所述第二UE为所述已分配UE中任一UE。
本发明实施例所示的方案,如果待分配UE的传输模式为基于CRS的MIMO传输模式,则基站可以确定已分配UE中传输模式为基于CRS的MIMO传输模式的UE所属小区的PCI,如果待分配UE所属小区的PCI与已分配UE中传输模式为基于CRS的MIMO传输模式的UE所属小区的PCI不相同,则可以确定已分配UE中传输模式为BF传输模式的UE所属小区的PCI,如果确定待分配UE所属小区的PCI与已分配UE中传输模式为BF传输模式的UE所属小区的PCI不相同(也就是说待分配UE的传输模式为基于CRS的MIMO传输模式,已分配的UE中不存在与待分配UE所属小区的PCI相同的UE),则可以将待分配UE的波束属性与已分配UE中任一UE(即第一UE)的波束属性进行匹配。匹配原则可以是:对于第一UE,判断在第二预设数目个正交波束组中是否存在一个正交波束组,判断在第二预设数目个正交波束组中存在至少一个正交波束组,待分配UE的波束属性和已分配UE中第一UE的波束属性均不为联合属性,且他们的波束属性完全不相同,可以确定待分配UE和已分配UE中第一UE满足正交匹配条件。这样,可以确定出待分配UE与已分配UE中任一UE是否满足正交匹配条件。如果待分配UE与已分配UE中任一UE都满足正交匹配条件,则确定待分配UE与已分配UE满足正交匹配条件。可以在为已分配UE分配的时频资源所属的同一时频资源中,为待分配UE分配时频资源。如果待分配UE的传输模式为BF传输模式,则基站可以确定已分配UE中传输模式为基于CRS的MIMO传输模式的UE所属小区的PCI,如果待分配UE所属小区的PCI与已分配UE中传输模式为基于CRS的MIMO传输模式的UE所属小区的PCI不相同,则可以将待分配UE的波束属性与已分配UE中任一UE(即第二UE)的波束属性进行匹配。匹配原则可以是:对于待分配UE与已分配UE中任一UE,判断在第二预设数目个正交波束组中存在至少一个正交波束组,待分配UE的波束属性和已分配UE中第二UE的波束属性均不为联合属性,且他们的波束属性完全不相同,可以确定待分配UE和已分配UE中第二UE满足正交匹配条件。这样,可以确定出待分配UE与已分配UE中任一UE是否满足正交匹配条件。如果待分配UE与已分配UE中任一UE都满足正交匹配条件,则确定待分配UE与已分配UE满足正交匹配条件。可以在为已分配UE分配的时频资源所属的同一时频资源中,为待分配UE分配时频资源。
在一种可能的实施方式中,所述根据所述待分配UE的传输模式和已分配UE的传输模式、所述待分配UE在所述第二预设数目个正交波束组中的波束属性和已分配UE在所述第二预设数目个正交波束组中的波束属性,如果所述待分配UE和已分配UE满足正交匹配条件,则在为所述已分配UE分配的时频资源所属的同一时频资源中,为所述待分配UE分配 时频资源,包括:如果所述待分配UE和所述已分配UE的传输模式均为BF传输模式,且对于所述已分配UE中第三UE,在所述第二个预设数目个正交波束组中存在至少一个正交波束组,所述待分配UE的波束属性和所述第三UE的波束属性均不为联合属性,且所述待分配UE的波束属性和所述第三UE的波束属性完全不相同,则所述待分配UE和已分配UE满足正交匹配条件,在为所述已分配UE分配的时频资源所属的同一时频资源中,为所述待分配UE分配时频资源,其中,所述第三UE为所述已分配UE中任一UE。
本发明实施例所示的方案,基站确定出待分配UE与已分配UE的传输模式后,可以判断它们的传输模式是否相同,如果待分配UE和已分配UE的传输模式均为BF传输模式,则可以将待分配UE的波束属性与已分配UE中任一UE(即第三UE)的波束属性进行匹配。匹配原则可以是:对于待分配UE与已分配UE中任一UE,判断在第二预设数目个正交波束组中是否存在一个正交波束组,待分配UE的波束属性和已分配UE中第三UE的波束属性均不为联合属性,且波束属性完全不相同,可以确定待分配UE和已分配UE中第三UE满足正交匹配条件。这样,可以确定出待分配UE与已分配UE中任一UE是否满足正交匹配条件。
如果待分配UE与已分配UE中任一UE都满足正交匹配条件,则确定待分配UE与已分配UE满足正交匹配条件。可以在为已分配UE分配的时频资源所属的同一时频资源中,为待分配UE分配时频资源。
在一种可能的实施方式中,为所述待分配UE和所述已分配UE分配的时频资源用于上行传输;所述根据所述待分配UE在所述第二预设数目个正交波束组中的波束属性和已分配UE在所述第二预设数目个正交波束组中的波束属性,为所述待分配UE分配时频资源,包括:根据所述待分配UE在所述第二预设数目个正交波束组中的波束属性和已分配UE在所述第二预设数目个正交波束组中的波束属性,如果所述待分配UE和已分配UE满足正交匹配条件,则在为所述已分配UE分配的时频资源所属的同一时频资源中,为所述待分配UE分配时频资源。
本发明实施例所示的方案,基站在确定待分配UE在每个正交波束组中的波束属性后,基站可以确定同一时频资源上已分配UE(与待分配UE属于劈裂后的同一小区或者分别属于劈裂后的两个小区),然后获取已分配UE在第二数目个正交波束组中每个波束组的波束属性,根据待分配UE的波束属性和已分配UE的波束属性,确定待分配UE与已分配UE是否满足正交匹配条件,如果满足正交匹配条件,可以在为已分配UE分配的时频资源所属的同一时频资源中,为待分配UE分配时频资源。
在一种可能的实施方式中,所述根据所述待分配UE在所述第二预设数目个正交波束组中的波束属性和已分配UE在所述第二预设数目个正交波束组中的波束属性,如果所述待分配UE和已分配UE满足正交匹配条件,则在为所述已分配UE分配的时频资源所属的同一时频资源中,为所述待分配UE分配时频资源,包括:获取所述待分配UE所属小区的PCI和所述已分配UE所属小区的PCI;根据所述待分配UE所属小区的PCI和所述已分配UE所属小区的PCI、所述待分配UE在所述第二预设数目个正交波束组中的波束属性和已分配UE在所述第二预设数目个正交波束组中的波束属性,如果所述待分配UE和已分配UE满足正交匹配条件,则在为所述已分配UE分配的时频资源所属的同一时频资源中,为所述待分配UE分配时频资源。
本发明实施例所示的方案,UE在刚接入LTE网络时,基站会记录UE所属小区的PCI, 所以基站可以从预先记录PCI的存储位置,获取到待分配UE和已分配UE所属小区的PCI。
基站在确定待分配UE在每个正交波束组中的波束属性后,基站可以确定同一时频资源上已分配UE(与待分配UE属于劈裂后的同一小区或者分别属于劈裂后的两个小区),然后获取已分配UE在第二数目个正交波束组中每个波束组的波束属性。然后基站可以根据待分配UE所属小区的PCI和已分配UE所属小区的PCI、待分配UE在第二预设数目个正交波束组中的波束属性和已分配UE在第二预设数目个正交波束组中的波束属性,确定待分配UE和已分配UE是否满足正交匹配条件,如果满足正交匹配条件,可以在为已分配UE分配的时频资源所属的同一时频资源中,为待分配UE分配时频资源。
在一种可能的实施方式中,所述根据所述待分配UE所属小区的PCI和所述已分配UE所属小区的PCI、所述待分配UE在所述第二预设数目个正交波束组中的波束属性和已分配UE在所述第二预设数目个正交波束组中的波束属性,如果所述待分配UE和已分配UE满足正交匹配条件,则在为所述已分配UE分配的时频资源所属的同一时频资源中,为所述待分配UE分配时频资源,包括:如果所述待分配UE所属小区的PCI和所述已分配UE中任一UE所属小区的PCI不相同,且对于所述已分配UE中第四UE,在所述第二个预设数目个正交波束组中存在至少一个正交波束组,所述待分配UE的波束属性和所述第四UE的波束属性均不为联合属性,且所述待分配UE的波束属性和所述第四UE的波束属性完全不相同,则所述待分配UE和已分配UE满足正交匹配条件,在为所述已分配UE分配的时频资源所属的同一时频资源中,为所述待分配UE分配时频资源,其中,所述第四UE为所述已分配UE中任一UE。
本发明实施例所示的方案,基站可以确定待分配UE和已分配UE所属小区的PCI是否相同,如果不相同,可以将待分配UE的波束属性与已分配UE中任一UE(即第四UE)的波束属性进行匹配。
匹配原则可以是:对于第四UE,判断在第二预设数目个正交波束组中是否存在一个正交波束组,判断在第二预设数目个正交波束组中存在至少一个正交波束组,待分配UE的波束属性和已分配UE中第四UE的波束属性均不为联合属性,且他们的波束属性完全不相同,可以确定待分配UE和已分配UE中第四UE满足正交匹配条件。这样,可以确定出待分配UE与已分配UE中任一UE是否满足正交匹配条件。
如果待分配UE与已分配UE中任一UE都满足正交匹配条件,则确定待分配UE与已分配UE满足正交匹配条件。可以在为已分配UE分配的时频资源所属的同一时频资源中,为待分配UE分配时频资源。
第二方面,提供了一种基站,该基站包括处理器,所述处理器通过执行指令来实现上述第一方面所提供的分配时频资源的方法。
第三方面,提供了一种分配时频资源的装置,该装置包括一个或多个模块,该一个或多个模块通过执行指令来实现上述第一方面所提供的分配时频资源的方法。
第四方面,提供了一种计算机可读存储介质,计算机可读存储介质存储有指令,当计算机可读存储介质在基站上运行时,使得基站执行上述第一方面所提供的分配时频资源的方法。
第五方面,提供了一种包含指令的计算机程序产品,当其在基站上运行时,使得基站执行上述第一方面所提供的分配时频资源的方法。
本发明实施例提供的技术方案带来的有益效果至少包括:
本发明实施例中,可以通过UE的波束属性来配对,判断是否可以在同一时频资源中为不同的UE分配时频资源,所以即使劈裂后的小区的UE分布不均匀,也可以灵活调度时频资源,使时频资源得到有效的利用。
附图说明
图1是本发明实施例提供的一种基站和UE交互示意图;
图2是本发明实施例提供的一种基站的结构示意图;
图3是本发明实施例提供的一种分配时频资源的流程示意图;
图4是本发明实施例提供的一种在RBG分配时频资源的示意图;
图5是本发明实施例提供的一种在RBG分配时频资源的示意图;
图6是本发明实施例提供的一种分配时频资源的流程示意图;
图7是本发明实施例提供的一种在RBG分配时频资源的示意图;
图8是本发明实施例提供的一种分配时频资源的装置结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
为了便于对本发明实施例的理解,下面首先介绍本发明实施例涉及的系统架构以及所涉及到名词的概念:
本发明实施例可以适用于长期演进技术(Long Term Evolution,LTE)中,在LTE中,4G用户设备越来越多,对网络的覆盖和质量要求也越来越高,为了解决深度网络覆盖并提升网络质量,在不新增设备(如基站等)的情况下,且在有限的时频资源下,利用软劈裂技术,来改善网络覆盖范围,且提升网络容量。LTE的基站覆盖有三个小区,每个小区覆盖120度的区域,在使用软劈裂技术将一个120度的小区劈裂成两个同频小区后,业务量分布会影响扩容效果,例如,劈裂前小区资源块(Resource Block,RB)负载90%,平均10个UE,每个用户平均可以使用9RB,一共需要100个RB,劈裂后左小区9个UE,右小区1个UE,由于劈裂后的小区的交叠区联合调度RB会有很多,小区频谱效率会降低,大致相当于原来负载的70%~80%,这样,左小区9个UE需要的RB数目为9*9/(70%)=115,即使左小区负载达到100%,也不够9个UE使用,而右小区1个UE需要的RB数目为1*9/(70%)=13,右小区的时频资源没有得到有效的利用,所以就需要提供一种有效使用右小区的时频资源的方法。
UE:也叫用户设备、终端设备。其中,终端设备也可以称为接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用 户代理或用户装置。终端设备可以是WLAN中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及下一代通信系统。
基站:实现无线通信覆盖并通过至少一个小区为UE提供服务,可选择性支持全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、未来的第五代(5th Generation,5G)系统或新无线(New Radio,NR)等。如图1所示,基站和UE之间可以进行通信。
本发明实施例提供了一种分配时频资源的方法,该方法的执行主体可以是基站。
图2示出了本发明实施例中基站的结构框图,该基站至少可以包括接收器201、处理器202、存储器203和发射器204。其中,接收器201可以用于实现数据的接收,具体可以用于UE的数据的接收,发射器204可以用于数据的发送,具体可以用于UE的数据的发送,存储器203可以用于存储软件程序以及模块,处理器202通过运行存储在存储器203中的软件程序以及模块,从而执行各种功能应用以及数据处理。存储器203主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序等;存储数据区可存储根据基站的使用所创建的数据等。此外,存储器203可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。相应地,存储器203还可以包括存储器控制器,以提供处理器202、接收器201和发射器204对存储器203的访问。处理器202是基站的控制中心,利用各种接口和线路连接整个基站的各个部分,通过运行或执行存储在存储器203内的软件程序和/或模块,以及调用存储在存储器203内的数据,执行基站的各种功能和处理数据,从而对基站进行整体监控。
可选的,处理器202可包括一个或多个处理核心;优选的,处理器202可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器202中。
本发明实施例以基站向UE发送数据为例进行方案的说明,如图3所示,该方案的处理过程可以如下:
步骤301,获取待分配UE的上行参考信号。
其中,UE指劈裂后的两个同频小区中的UE,当前还未分配用于传输数据的时频资源的UE,上行参考信号中包括SRS和/或DMRS。SRS一般是UE周期性传输给基站,用于基站 进行上行信道估计,一般是在一个子帧的最后一个符号中进行传输。DMRS一般是是传输数据时,仅在为特定UE的PDSCH传输而分配的RB中进行传输。
在实施中,在基站接收到核心网侧要发往UE(后续该UE可以称为是待分配UE)的数据时,如果基站已经接收到当前周期内待分配UE发送的SRS,则可以获取当前周期内的SRS,如果基站未接收到当前周期内待分配UE发送的SRS,则可以获取上一个周期待分配UE发送的SRS。和/或基站可以获取上一次UE发送数据时的DMRS。
可选的,在基站同时接收到核心网侧要发送往多个UE的数据时,还会先判断多个UE中优先级最高的UE,一般是基于要传输的数据类型,来判断UE的优先级,如电话语音数据的优先级最高、其次是短消息、再次之是视频数据等,将优先级最高的UE,确定为待分配UE。
需要说明的是,在SRS丢失时,可以仅使用DMRS,在DMRS丢失时,可以仅使用SRS,在同时存在SRS和DMRS时,可以同时使用SRS和DMRS。
步骤302,根据上行参考信号,对第一预设数目个波束组成的第二预设数目个正交波束组中每个波束进行测量,确定每个波束的电平。
其中,正交波束组是指包括的多个波束之间相互不受干扰,或者多个波束之间的干扰均小于一定阈值,不会影响数据的正常发送和接收,第一预设数目个波束可以由技术人员基于基站的天线情况配置,通过调整基站天线的加权系数和幅值等,可以将第一预设数目个波束组成第二预设数目个正交波束组,例如,一共有M个波束,每次调整基站天线的加权系数和幅值,可以将这M个波束,变成另外的M个波束,且彼此正交,通过(N-1)次调整,会得到N个正交的波束组,第二预设数目为N。电平指波束的等效功率。
在实施中,基站在获取到待分配UE的上行参考信号后,可以获取第一预设数目个波束组成的第二预设数目个正交波束组,然后分别使用该上行参考信号,对每个正交波束组中的任一波束进行测量,得到任一波束的电平。
可选的,可以先确定每个波束的等效信道响应,基于等效信道响应,确定每个波束的电平,相应的步骤302的处理可以如下:
根据UE的上行参考信号,对第一预设数目个波束组成的第二预设数目个正交波束组中每个波束进行测量,确定每个波束的等效信道响应;根据每个波束的等效信道响应,确定每个波束的电平。
在实施中,假如基站有P个发送接收物理通道,每个正交波束组中M个波束,M个波束在覆盖上可以达到互补的效果,对于第二预设数目个正交波束组中任一正交波束组,可以按照以下方式计算出等效信道响应:
Figure PCTCN2019088613-appb-000001
在式(1)中,
Figure PCTCN2019088613-appb-000002
为接收的P个物理通道的信道系数,也就是从一个子帧的最后一个符号中获取到的待分配UE的SRS,H 0表示第一个物理通道的信道系数,依此类推。
Figure PCTCN2019088613-appb-000003
为多波束权值(多波束权值是预设的,存储在基站中),对于每个正交波束组不相同,
Figure PCTCN2019088613-appb-000004
为波束m在所用物理通道上的权值向量,m属于[0,M-1],
Figure PCTCN2019088613-appb-000005
表示通过加权处理后得到的每个波束的等效信道响应。
这样,按照上述方式,可以计算出第二预设数目个正交波束组中每个正交波束组中每个波束的等效信道响应。
然后基站可以按照以下公式计算每个波束的等效功率:
Figure PCTCN2019088613-appb-000006
在式(2)中,
Figure PCTCN2019088613-appb-000007
表示波束m等效信道系数的范数,m属于[0,M-1],
Figure PCTCN2019088613-appb-000008
E表示上行物理通道增益,为预设数值。
基站确定出每个波束的等效功率后,可以将每个波束的等效功率,分别确定为每个波束的电平。
需要说明的是,此处是以上行参考信号为SRS为例进行说明,如果上行参考信号为DMRS,可以将
Figure PCTCN2019088613-appb-000009
替换成获取到的DMRS,如果上行参考信号为SRS和DMRS,如果某个物理通道,获取到SRS,则该物理通道的信道系数即为SRS,如果某个物理通道,获取到DMRS,则该物理通道的信道系数即为DMRS,如果某个物理通道,获取到SRS和DMRS,则该物理通道的信道系数可以取二者任一。
步骤303,根据每个波束的电平,确定待分配UE在第二预设数目个正交波束组中的波束属性。
其中,波束属性用于衡量UE的特性更接近的波束,也就是表征UE在波束组上的分布特征,是方位角(Angle of Arrival,AOA)、天线相关性等的信道综合表征量。
在实施中,基站在确定每个正交波束组中的各波束的电平后,可以基于各波束的电平,确定待分配UE在每个正交波束组中的波束属性。
可选的,可以通过对比的方式,确定待分配UE的波束属性,相应的步骤303的处理可以如下:
对于每个正交波束组,如果正交波束组中存在目标波束满足预设条件,则确定待分配UE在正交波束组中的波束属性为目标波束,如果正交波束组中不存在波束满足预设条件,则确定待分配UE在正交波束组中的波束属性为联合属性。
其中,预设条件可以预设,并且存储至基站中,预设条件为目标波束的电平与正交波束 组中除目标波束之外的其它波束的电平的差值均大于预设数值,目标波束为一个或多个,预设数值可以预设,并且存储至基站中,用于衡量波束之间的相关性。
在实施中,对于任一正交波束组,基站可以比较该正交波束组中,每个波束的电平,如果该正交波束组中的目标波束的电平与该正交波束组中除目标波束之外的其它波束的电平的差值,均大于预设数值,则确定待分配UE在该正交波束组中的波束属性为目标波束。
例如,待分配UE在某个正交波束组中,电平最高的波束x(目标波束)的电平与其他波束的电平之差大于预设数值,待分配UE的波束属性为波束x,或者电平较高的多个波束x、y的电平与其他任一波束的电平的差值大于一定预设数值,则判断待分配UE的波束属性为波束x、波束y。如果该正交波束组中不存在波束满足上述预设条件,则可以确定待分配UE在该正交波束组中的波束属性为联合属性。
这样,依此类推,基于相同的方式,可以确定出待分配UE在每个正交波束组中的波束属性。
步骤304,根据待分配UE在第二预设数目个正交波束组中的波束属性和已分配UE的波束属性,为待分配UE分配时频资源。
其中,已分配UE使用同一时频资源,且同一时频资源中的某些资源没有被占满(如同一时频资源为同一RBG,某些资源指某些RB),且已分配的UE为一个或多个,为已分配UE指此次调度时频资源,用于基站向UE发送数据。同一时频资源指同一RBG,或同一RB,RBG中可以包括多个RB,数目可以基于业务进行配置,在本发明实施例后面描述过程中使用同一时频资源为同一RBG为例进行说明。
在实施中,基站在确定待分配UE在每个正交波束组中的波束属性后,如果当前正分配时频资源的RBG中存在没有被占满的RB,则基站可以获取RBG上的已分配UE(与待分配UE属于劈裂后的同一小区或者分别属于劈裂后的两个小区),然后获取已分配UE在第二预设数目个波束组上每个波束组的波束属性(确定方法与前面确定待分配UE的方法相同,此处不再赘述)。然后根据待分配UE的波束属性和已分配UE的波束属性,为待分配UE分配时频资源。
另外,如果当前开始在一个新的时频资源(RB或RBG)上为待分配UE分配时频资源,由于新的时频资源上还没有为其它UE分配的时频资源,可以直接在该时频资源上为待分配UE分配时频资源。例如,如果当前开始在一个新的RBG上为待分配UE分配时频资源,由于新的RBG上还没有为其它UE分配的时频资源,可以直接在该RBG上为待分配UE分配时频资源。
可选的,还可以基于待分配UE的传输模式和波束属性,为待分配UE分配时频资源,相应的步骤304的处理可以如下
确定待分配UE的传输模式和已分配UE的传输模式;根据待分配UE的传输模式和已分配UE的传输模式、待分配UE在第二预设数目个正交波束组中的波束属性和已分配UE在第二预设数目个正交波束组中的波束属性,为待分配UE分配时频资源。
其中,基站向UE下行传输数据时,传输模式一般有多入多出MIMO传输模式、BF传输模式、发射分集等传输模式。在本发明实施例中,提到的传输模式是下行传输模式,一般是基于CRS的MIMO传输模式和BF传输模式。
在实施中,基站可以基于用于解调的参考信号来判断UE的传输模式,如果是基于CRS 进行解调,则确定UE是基于CRS的MIMO传输模式,如果是基于UE的DMRS进行解调,则确定UE是BF传输模式。基于这种原则,基站可以确定待分配UE和已分配UE的传输模式,然后根据待分配UE的传输模式和已分配UE的传输模式、待分配UE在第二预设数目个正交波束组中的波束属性和已分配UE的波束属性,为待分配UE分配时频资源。
需要说明的是,CRS是在每个下行子帧和频域的每个RB上进行传输,可以用于UE的信道估计,以及实现所有下行传输的相关解调,还可以用于UE获取信道状态信息(Channel-state Information,CSI)。DMRS是一个UE的特定参考信号,用于该UE的信道估计和相干解调,DMRS一般仅在为特定UE的PDSCH传输而分配的RB中进行传输。
可选的,可以首先确定待分配UE和已分配UE是否满足正交匹配条件,基于这个结果为待分配UE分配时频资源,相应的处理可以如下:
根据待分配UE的传输模式和已分配UE的传输模式、待分配UE在第二预设数目个正交波束组中的波束属性和已分配UE在第二预设数目个正交波束组中的波束属性,如果待分配UE和已分配UE满足正交匹配条件,则在为已分配UE分配的时频资源所属的同一时频资源中,为待分配UE分配时频资源。
其中,正交匹配条件是指在同一RBG上下行传输数据时,相互不会干扰的两个UE所满足的条件。
在实施中,基站可以根据待分配UE的传输模式和已分配UE的传输模式、待分配UE在第二预设数目个正交波束组中的波束属性和已分配UE在第二预设数目个正交波束组中的波束属性,确定待分配UE和已分配UE是否满足正交匹配条件,如果待分配UE与已分配UE满足正交匹配条件,说明待分配UE与已分配UE中任一UE的相关性比较小,不会互相影响,可以在为已分配UE分配的时频资源所属的RBG中,为待分配UE分配时频资源。例如,如图4所示,在RBG1中,待分配UE为B小区UEo,由于UEo与UEd、UEc均满足正交匹配条件,所以UEo可以与UEd、UEc使用同一RBG1,A小区和B小区是经过劈裂后的两个小区。
另外,如果待分配UE与已分配UE不满足正交匹配条件(与已分配UE中某个UE不满足正交匹配条件),说明待分配UE与已分配UE中该UE的相关性比较大,会互相影响,有可能会影响UE接收解调数据,所以不能在为已分配UE分配的时频资源所属的RBG中,为待分配UE分配时频资源。
另外,在待分配UE与已分配UE不满足正交匹配条件时,基站可以确定其它等待分配时频资源的UE的优先级,从中确定出优先级最高的UE,按照上述方式为UE分配时频资源,在当前RBG上的时频资源全部分配完毕后,可以在下一个RBG上,首先为待分配UE分配时频资源。
需要说明的是,上述已分配UE是多个的情况下,待分配UE和已分配UE中每个UE均满足正交匹配条件,才能确定待分配UE与已分配UE满足正交匹配条件,只要待分配UE和已分配UE中某个UE不满足正交匹配条件,则待分配UE与已分配UE不满足正交匹配条件。
可选的,在待分配UE的传输模式为基于CRS的MIMO传输模式,且在已分配UE中存在UE与待分配UE的传输模式相同时,可以按照以下方式判断是否满足正交匹配条件,相应的处理可以如下:
如果已分配UE和待分配UE中存在至少一个UE的传输模式为基于CRS的MIMO传输 模式,则获取待分配UE所属小区的物理小区标识PCI和已分配UE所属小区的PCI;根据待分配UE在第二预设数目个正交波束组中的波束属性、已分配UE在第二预设数目个正交波束组中的波束属性、待分配UE所属小区的PCI以及已分配UE所属小区的PCI,如果待分配UE和已分配UE满足正交匹配条件,则在为已分配UE分配的时频资源所属的同一时频资源中,为待分配UE分配时频资源。
在实施中,UE在刚接入LTE网络时,基站会记录UE所属小区的物理小区标识,所以基站可以从预先记录PCI的存储位置,获取到待分配UE和已分配UE所属小区的PCI。
基站确定出待分配UE与已分配UE的传输模式后,可以判断他们中是否存在至少一个UE的传输模式为基于CRS的MIMO传输模式,如果存在,则获取待分配UE所属小区的PCI、已分配UE所属小区的PCI,然后根据获取到的PCI、以及待分配UE在第二预设数目个正交波束组中的波束属性、已分配UE在第二预设数目个正交波束组中的波束属性,来确定待分配UE与已分配UE是否满足正交匹配条件,如果满足正交匹配条件,则可以在为已分配UE分配的时频资源所属的同一时频资源中,为待分配UE分配时频资源。
可选的,可以基于PCI,使用以下方式来判断是否满足正交匹配条件,相应的处理可以如下:
如果待分配UE的传输模式为基于CRS的MIMO传输模式,且待分配UE所属小区的PCI与已分配UE中传输模式为基于CRS的MIMO传输模式的UE所属小区的PCI不相同,且待分配UE所属小区的PCI与已分配UE中传输模式为BF传输模式的UE所属小区的PCI不相同,且对于已分配UE中第一UE,在第二个预设数目个正交波束组中存在至少一个正交波束组,待分配UE的波束属性和第一UE的波束属性均不为联合属性,且待分配UE的波束属性和第一UE的波束属性完全不相同,则待分配UE和已分配UE满足正交匹配条件,在为已分配UE分配的时频资源所属的同一时频资源中,为待分配UE分配时频资源,其中,第一UE为已分配UE中任一UE;
如果待分配UE的传输模式为BF传输模式,且待分配UE所属小区的PCI与已分配UE中传输模式为基于CRS的MIMO传输模式的UE所属小区的PCI不相同,且对于已分配UE中第二UE,在第二个预设数目个正交波束组中存在至少一个正交波束组,待分配UE的波束属性和第二UE的波束属性均不为联合属性,且待分配UE的波束属性和已分配UE的波束属性完全不相同,则待分配UE和已分配UE满足正交匹配条件,在为已分配UE分配的时频资源所属的同一时频资源中,为待分配UE分配时频资源,其中,第二UE为已分配UE中任一UE。
在实施中,如果待分配UE的传输模式为基于CRS的MIMO传输模式,则基站可以确定已分配UE中传输模式为基于CRS的MIMO传输模式的UE所属小区的PCI,如果待分配UE所属小区的PCI与已分配UE中传输模式为基于CRS的MIMO传输模式的UE所属小区的PCI不相同,则可以确定已分配UE中传输模式为BF传输模式的UE所属小区的PCI,如果确定待分配UE所属小区的PCI与已分配UE中传输模式为BF传输模式的UE所属小区的PCI不相同(也就是说待分配UE的传输模式为基于CRS的MIMO传输模式,已分配的UE中不存在与待分配UE所属小区的PCI相同的UE),则可以将待分配UE的波束属性与已分配UE中任一UE(即第一UE)的波束属性进行匹配。匹配原则可以是:
对于第一UE,判断在第二预设数目个正交波束组中是否存在一个正交波束组,判断在第 二预设数目个正交波束组中存在至少一个正交波束组,待分配UE的波束属性和已分配UE中第一UE的波束属性均不为联合属性,且他们的波束属性完全不相同,可以确定待分配UE和已分配UE中第一UE满足正交匹配条件。这样,可以确定出待分配UE与已分配UE中任一UE是否满足正交匹配条件。
如果待分配UE与已分配UE中任一UE都满足正交匹配条件,则确定待分配UE与已分配UE满足正交匹配条件。可以在为已分配UE分配的时频资源所属的RBG中,为待分配UE分配时频资源。
例如,如图5所示,在RBG2上,已分配UE有两个,UE1和UE2,待分配UE为UE3,UE1的传输模式为BF传输模式,所属小区的PCI为A,UE2的传输模式为BF传输模式,所属小区的PCI为A,UE3的传输模式为基于CRS的MIMO传输模式,所属小区的PCI为B,UE1的传输模式与UE2、UE3的传输模式均不相同,UE1和UE3所属小区的PCI不相同,UE2和UE3所属小区的小区标识也不相同。然后可以看在第二预设数目个正交波束组的第一正交波束组(第一正交波束组是第二预设数目个正交波束组中的任一波束组)中,UE1和UE3的波束属性均不是联合属性,且UE1的波束属性是波束x,UE3的波束属性是波束y,完全不相同,且UE2的波束属性为波束z,也与UE3完全不相同,可以确定UE3分别与UE1、UE2满足正交匹配条件,可以在为UE1和UE2分配的时频资源所属的RBG2中,为UE3分配时频资源。
如果待分配UE的传输模式为BF传输模式,则基站可以确定已分配UE中传输模式为基于CRS的MIMO传输模式的UE所属小区的PCI,如果待分配UE所属小区的PCI与已分配UE中传输模式为基于CRS的MIMO传输模式的UE所属小区的PCI不相同,则可以将待分配UE的波束属性与已分配UE中任一UE(即第二UE)的波束属性进行匹配。匹配原则可以是:
对于待分配UE与已分配UE中任一UE,判断在第二预设数目个正交波束组中存在至少一个正交波束组,待分配UE的波束属性和已分配UE中第二UE的波束属性均不为联合属性,且他们的波束属性完全不相同,可以确定待分配UE和已分配UE中第二UE满足正交匹配条件。这样,可以确定出待分配UE与已分配UE中任一UE是否满足正交匹配条件。
如果待分配UE与已分配UE中任一UE都满足正交匹配条件,则确定待分配UE与已分配UE满足正交匹配条件。可以在为已分配UE分配的时频资源所属的RBG中,为待分配UE分配时频资源。
例如,在RBG3上,已分配UE有一个UE3,待分配UE为UE4,UE3的传输模式为基于CRS的MIMO传输模式,所属小区的PCI为A,UE4的传输模式为BF传输模式,所属小区的PCI为B,UE3和UE4所属小区的PCI不相同。然后可以看在第二预设数目个正交波束组的第一正交波束组(第一正交波束组是第二预设数目个正交波束组中的任一波束组)中,UE3和UE4的波束属性均不是联合属性,且UE3的波束属性是波束x,UE4的波束属性是波束y,完全不相同,可以确定UE4与UE3满足正交匹配条件,可以在为UE3分配的时频资源所属的RBG中,为UE4分配时频资源。
另外,如果待分配UE的传输模式为基于CRS的MIMO传输模式,已分配UE中传输模式为基于CRS的MIMO传输模式的UE中任一UE所属小区的PCI与待分配UE所属小区的PCI相同,则待分配UE和已分配UE不满足正交匹配条件,不可以在为已分配UE分配的时 频资源所属的RBG中,为待分配UE分配时频资源。
另外,如果待分配UE的传输模式为基于CRS的MIMO传输模式,已分配UE中传输模式为BF传输模式的UE中任一UE所属小区的PCI与待分配UE所属小区的PCI相同,则待分配UE和已分配UE不满足正交匹配条件。
另外,如果待分配UE的传输模式为BF传输模式,已分配UE中传输模式为基于CRS的MIMO传输模式的UE中任一UE所属小区的PCI与待分配UE所属小区的PCI相同,则待分配UE和已分配UE不满足正交匹配条件。
另外,如果待分配UE的传输模式为基于CRS的MIMO传输模式,待分配UE所属小区的PCI与已分配UE中传输模式为基于CRS的MIMO传输模式的UE所属小区的PCI不相同,且待分配UE所属小区的PCI与已分配UE中传输模式为BF传输模式的UE所属小区的PCI不相同。但是在已分配UE中存在一个至少一个UE,在第二预设数目个正交波束组中不存在一个正交波束组,待分配UE的波束属性和已分配UE中该UE的波束属性不是均不为联合属性,或者均为联合属性,但是波束属性不是完全不相同,可以确定待分配UE和已分配UE中该UE不满足正交匹配条件,则待分配UE和已分配UE不满足正交匹配条件。
另外,如果待分配UE的传输模式为BF传输模式,待分配UE所属小区的PCI与已分配UE中传输模式为基于CRS的MIMO传输模式的UE所属小区的PCI不相同,且待分配UE所属小区的PCI与已分配UE中传输模式为BF传输模式的UE所属小区的PCI不相同。但是在已分配UE中存在一个至少一个UE,在第二预设数目个正交波束组中不存在一个正交波束组,待分配UE的波束属性和已分配UE中该UE的波束属性不是均不为联合属性,或者均为联合属性,但是波束属性不是完全不相同,可以确定待分配UE和已分配UE中该UE不满足正交匹配条件,则待分配UE和已分配UE不满足正交匹配条件。
可选的,在待分配UE和已分配UE不满足正交匹配条件时,基站可以确定其它等待分配时频资源的UE的优先级,从中确定出优先级最高的UE,按照上述方式为UE分配时频资源,在当前RBG上的时频资源全部分配完毕后,可以在下一个RBG上,首先为待分配UE分配时频资源。
可选的,在待分配UE和已分配UE的传输模式均为BF传输模式,可以按照以下方式判断是否满足正交匹配条件,相应的处理可以如下:
如果待分配UE和已分配UE的传输模式均为BF传输模式,且对于已分配UE中第三UE,在第二个预设数目个正交波束组中存在至少一个正交波束组,待分配UE的波束属性和第三UE的波束属性均不为联合属性,且待分配UE的波束属性和第三UE的波束属性完全不相同,则待分配UE和已分配UE满足正交匹配条件,在为已分配UE分配的时频资源所属的RBG中,为待分配UE分配时频资源,其中,第三UE为已分配UE中任一UE。
在实施中,基站确定出待分配UE与已分配UE的传输模式后,可以判断它们的传输模式是否相同,如果待分配UE和已分配UE的传输模式均为BF传输模式,则可以将待分配UE的波束属性与已分配UE中任一UE(即第三UE)的波束属性进行匹配。匹配原则可以是:
对于待分配UE与已分配UE中任一UE,判断在第二预设数目个正交波束组中是否存在一个正交波束组,待分配UE的波束属性和已分配UE中第三UE的波束属性均不为联合属性,且波束属性完全不相同,可以确定待分配UE和已分配UE中第三UE满足正交匹配条件。这样,可以确定出待分配UE与已分配UE中任一UE是否满足正交匹配条件。
如果待分配UE与已分配UE中任一UE都满足正交匹配条件,则确定待分配UE与已分配UE满足正交匹配条件。可以在为已分配UE分配的时频资源所属的RBG中,为待分配UE分配时频资源。
例如,已分配UE有两个UE5和UE6,待分配UE为UE7,UE5和UE6的传输模式均为BF传输模式,UE7的传输模式为BF传输模式,在第二预设数目个正交波束组中的第二正交波束组,UE5的波束属性分别为波束x,UE7的波束属性为波束p,可以确定在第二正交波束组,UE5和UE7的波束属性均不为联合属性,且他们的波束属性完全不相同,可以确定UE5与UE7满足正交匹配条件,并且在第二预设数目个正交波束组中的第三正交波束组,UE6的波束属性分别为波束z,UE7的波束属性为波束p,可以确定在第三正交波束组,UE6和UE7的波束属性均不为联合属性,且他们的波束属性完全不相同,可以确定UE6与UE7满足正交匹配条件,可以确定待分配UE和已分配UE满足正交匹配条件,可以在为UE5和UE6分配的时频资源所属的RBG中,为UE7分配时频资源。
另外,如果待分配UE和已分配UE的传输模式为BF传输模式,在已分配UE中存在一个至少一个UE,在第二预设数目个正交波束组中不存在一个正交波束组,待分配UE的波束属性和已分配UE中该UE的波束属性不是均不为联合属性,或者均为联合属性,但是波束属性不是完全不相同,可以确定待分配UE和已分配UE中该UE不满足正交匹配条件,则待分配UE和已分配UE不满足正交匹配条件。
可选的,在待分配UE和已分配UE不满足正交匹配条件时,基站可以确定其它等待分配时频资源的UE的优先级,从中确定出优先级最高的UE,按照上述方式为UE分配时频资源,在当前RBG上的时频资源全部分配完毕后,可以在下一个RBG上,首先为待分配UE分配时频资源。
在上述,为待分配UE分配时频资源后,基站可以将要传输给待分配UE的数据,映射在为待分配UE分配的时频资源上,通过该时频资源,将数据发送至待分配UE。
另外,本发明实施例中,在同一时频资源上为待分配UE分配时频资源后,还可以获取已分配UE的波束权值,并获取待分配UE的信道系数,将已分配UE的波束权值和待分配UE的信道系数组成矩阵,然后使用该矩阵,对待分配UE的信道系数和已分配UE的波束权值进行正交化处理,得到正交化的权值,基于该正交化的权值,将待分配UE的数据映射至为待分配UE分配的时频资源。
例如,已分配UE中UEa的波束权值为
Figure PCTCN2019088613-appb-000010
待分配UE信道系数为
Figure PCTCN2019088613-appb-000011
组合成矩阵为C=[conj(W a),H b],UEa与待分配UE信道系数正交化D=((C H*C) -1*C H) H之后的权值为
Figure PCTCN2019088613-appb-000012
基于该权值,将待分配UE的数据映射至为待分配UE分配的时频资源。
同样,对于已分配的任一UE,在将该UE的数据映射至为该UE分配的时频资源时,也会对将该UE的信道系数和待分配UE的波束权值组成矩阵,然后使用该矩阵,对该UE的信道系数和待分配UE的波束权值进行正交化处理,得到正交化的权值,基于该正交化的权值,将该UE的数据映射至为该UE分配的时频资源。这样,由于进行了正交化处理,所以可以使待分配UE和已分配UE更准确的解调到发送给自己的数据。
本发明实施例中,可以通过UE的波束属性来配对,判断是否可以在同一时频资源中为 不同的UE分配时频资源,所以即使劈裂后的小区的UE分布不均匀,也可以灵活调度时频资源,使时频资源得到有效的利用。
本发明另一实施例,以UE向基站发送数据时,请求调度时频资源为例进行方案的说明,如图6所示,该方案的处理过程可以如下:
步骤601,在待分配UE请求调度时频资源时,获取待分配UE的上行参考信号。
其中,为待分配UE和已分配UE分配时频资源,用于传输上行数据。基站为待分配UE分配时频资源,用于待分配UE向基站传输数据。
在实施中,UE(后续可以称为是待分配UE)通过网络向外发送数据时,会请求基站为自身分配时频资源,UE会向基站发送资源调度请求,基站接收到UE发送的时频资源调度请求时,如果基站已经接收到当前周期内待分配UE发送的SRS,则可以获取当前周期内的SRS,如果基站未接收到当前周期内待分配UE发送的SRS,则可以获取上一个周期待分配UE发送的SRS。和/或基站获取UE上一次发送数据时的DMRS。
可选的,在基站同时接收到UE发送的资源调度请求时,还会先判断多个UE中优先级最高的UE,一般是基于要传输的数据类型,来判断UE的优先级,如电话语音数据的优先级最高、其次是短消息、再次之是视频数据等,将优先级最高的UE,确定为待分配UE。
步骤602,根据上行参考信号,对第一预设数目个波束组成的第二预设数目个正交波束组中每个波束进行测量,确定每个波束的电平。
其中,正交波束组是指包括的多个波束之间相互不受干扰,或者多个波束之间的干扰均小于一定阈值,不会影响数据的正常发送和接收,第一预设数目个波束可以由技术人员基于基站的天线情况配置,通过调整基站天线的加权系数和幅值等,可以将第一预设数目个波束组成第二预设数目个正交波束组,例如,一共有M个波束,每次调整基站天线的加权系数和幅值,可以将这M个波束,变成另外的M个波束,且彼此正交,通过(N-1)次调整,会得到N个正交的波束组,第二预设数目为N。电平指波束的等效功率。
在实施中,基站在获取到待分配UE的上行参考信号后,可以获取第一预设数目个波束组成的第二预设数目个正交波束组,然后分别使用该上行参考信号,对每个正交波束组中的任一波束进行测量,得到任一波束的电平。
可选的,可以先确定每个波束的等效信道响应,基于等效信道响应,确定每个波束的电平,响应的步骤602的处理可以如下:
根据上行参考信号,对第一预设数目个波束组成的第二预设数目个正交波束组中每个波束进行测量,确定每个波束的等效信道响应;根据每个波束的等效信道响应,确定每个波束的电平。
在实施中,该过程与上一个实施例中,确定波束的电平的方式相同,可以参见前面的描述,此处不再赘述。
步骤603,根据每个波束的电平,确定待分配UE在第二预设数目个正交波束组中的波束属性。
其中,波束属性用于衡量UE更接近于何种波束,后续可以基于波束属性衡量UE之间的相关性。
在实施中,基站在确定每个正交波束组中的各波束的电平后,可以基于各波束的电平, 确定待分配UE在每个正交波束组中的波束属性。
可选的,可以通过对比的方式,确定待分配UE的波束属性,相应的步骤303的处理可以如下:
对于每个正交波束组,如果正交波束组中存在目标波束满足预设条件,则确定待分配UE在正交波束组中的波束属性为目标波束,如果正交波束组中不存在波束满足预设条件,则确定待分配UE在正交波束组中的波束属性为联合属性。
其中,预设条件可以预设,并且存储至基站中,预设条件为目标波束的电平与正交波束组中除目标波束之外的其它波束的电平的差值均大于预设数值,目标波束为一个或多个,预设数值可以预设,并且存储至基站中,用于衡量波束之间的相关性。
在实施中,对于任一正交波束组,基站可以比较该正交波束组中,每个波束的电平,如果该正交波束组中的目标波束的电平与该正交波束组中除目标波束之外的其它波束的电平的差值,均大于预设数值,则确定待分配UE在该正交波束组中的波束属性为目标波束。
例如,待分配UE所在的某个正交波束组中,电平最高的波束x(目标波束)的电平与其他波束的电平之差大于预设数值,待分配UE的波束属性为波束x,或者电平较高的多个波束x、y的电平与其他任一波束的电平的差值大于一定预设数值,则判断待分配UE的波束属性为波束x、波束y。如果该正交波束组中不存在波束满足上述预设条件,则可以确定待分配UE在该正交波束组中的波束属性为联合属性。
这样,依此类推,基于相同的方式,可以确定出待分配UE在每个正交波束组中的波束属性。
步骤604,根据待分配UE在第二预设数目个正交波束组中的波束属性和已分配UE在第二预设数目个正交波束组中的波束属性,如果待分配UE和已分配UE满足正交匹配条件,则在为已分配UE分配的时频资源所属的同一时频资源中,为待分配UE分配时频资源。
其中,已分配UE使用同一时频资源,且同一时频资源中的某些资源没有被占满(如同一时频资源为同一RBG,某些资源指某些RB),且已分配的UE为一个或多个,为已分配UE指此次调度时频资源,用于UE向基站发送数据。同一时频资源指同一资源块组,或同一时频资源块RB,RBG中可以包括多个RB,数目可以基于业务进行配置,在本发明实施例后面描述过程中使用同一时频资源为同一RBG为例进行说明。
在实施中,基站在确定待分配UE在每个正交波束组中的波束属性后,如果当前正分配时频资源的RBG中存在没有被占满的RB,则基站可以确定RBG上,已分配UE(与待分配UE属于劈裂后的同一小区或者分别属于劈裂后的两个小区),然后获取已分配UE在第二数目个正交波束组中每个波束组的波束属性,根据待分配UE的波束属性和已分配UE的波束属性,确定待分配UE与已分配UE是否满足正交匹配条件,如果满足正交匹配条件,可以在为已分配UE分配的时频资源所属的RBG中,为待分配UE分配时频资源。
另外,如果当前开始在一个新的RBG上为UE分配时频资源,则直接在该RBG上为待分配UE分配时频资源。
另外,如果待分配UE与已分配UE不满足正交匹配条件(与已分配UE中任一UE不满足正交匹配条件),说明待分配UE与已分配UE的相关性比较大,会互相影响,有可能会影响UE接收解调数据,所以不能在为已分配UE分配的时频资源所属的RBG中,为待分配UE分配时频资源。
另外,在待分配UE与已分配UE不满足正交匹配条件时,基站可以确定其它等待分配时频资源的UE的优先级,从中确定出优先级最高的UE,按照上述方式为UE分配时频资源,在当前RBG上的时频资源全部分配完毕后,可以在下一个RBG上,首先为待分配UE分配时频资源。
可选的,可以基于待分配UE与已分配UE所属小区的小区标识,确定待分配UE与已分配UE是否满足正交匹配条件,相应的处理可以如下:
获取待分配UE所属小区的PCI和已分配UE所属小区的PCI;根据待分配UE所属小区的PCI和已分配UE所属小区的PCI、待分配UE在第二预设数目个正交波束组中的波束属性和已分配UE在第二预设数目个正交波束组中的波束属性,如果待分配UE和已分配UE满足正交匹配条件,则在为已分配UE分配的时频资源所属的RBG中,为待分配UE分配时频资源。
在实施中,UE在刚接入LTE网络时,基站会记录UE所属小区的PCI,所以基站可以从预先记录PCI的存储位置,获取到待分配UE和已分配UE所属小区的PCI。
基站在确定待分配UE在每个正交波束组中的波束属性后,如果当前正分配时频资源的RBG中存在没有被占满的RB,则基站可以确定RBG上,已分配UE(与待分配UE属于劈裂后的同一小区或者分别属于劈裂后的两个小区),然后获取已分配UE在第二数目个正交波束组中每个波束组的波束属性。然后基站可以根据待分配UE所属小区的PCI和已分配UE所属小区的PCI、待分配UE在第二预设数目个正交波束组中的波束属性和已分配UE在第二预设数目个正交波束组中的波束属性,确定待分配UE和已分配UE是否满足正交匹配条件,如果满足正交匹配条件,可以在为已分配UE分配的时频资源所属的RBG中,为待分配UE分配时频资源。
可选的,可以基于待分配UE与已分配UE所属小区的小区标识,确定待分配UE与已分配UE是否满足正交匹配条件,相应的处理可以如下:
如果待分配UE所属小区的PCI和已分配UE中任一UE所属小区的PCI不相同,且对于已分配UE中第四UE,在第二个预设数目个正交波束组中存在至少一个正交波束组,待分配UE的波束属性和第四UE的波束属性均不为联合属性,且待分配UE的波束属性和第四UE的波束属性完全不相同,则待分配UE和已分配UE满足正交匹配条件,在为已分配UE分配的时频资源所属的RBG中,为待分配UE分配时频资源,其中,第四UE为已分配UE中任一UE。
在实施中,基站可以确定待分配UE和已分配UE所属小区的PCI是否相同,如果不相同,可以将待分配UE的波束属性与已分配UE中任一UE(即第四UE)的波束属性进行匹配。
匹配原则可以是:对于第四UE,判断在第二预设数目个正交波束组中是否存在一个正交波束组,判断在第二预设数目个正交波束组中存在至少一个正交波束组,待分配UE的波束属性和已分配UE中第四UE的波束属性均不为联合属性,且他们的波束属性完全不相同,可以确定待分配UE和已分配UE中第四UE满足正交匹配条件。这样,可以确定出待分配UE与已分配UE中任一UE是否满足正交匹配条件。
如果待分配UE与已分配UE中任一UE都满足正交匹配条件,则确定待分配UE与已分配UE满足正交匹配条件。可以在为已分配UE分配的时频资源所属的RBG中,为待分配 UE分配时频资源。
另外,如果待分配UE所属小区的PCI和已分配UE中任一UE所属小区的PCI相同,则待分配UE和已分配UE不满足正交匹配条件,不可以在为已分配UE分配的时频资源所属的RBG中,为待分配UE分配时频资源。可选的,基站可以确定其它等待分配时频资源的UE的优先级,从中确定出优先级最高的UE,按照上述方式为UE分配时频资源,在当前RBG上的时频资源全部分配完毕后,可以在下一个RBG上,首先为待分配UE分配时频资源。
在上述,为待分配UE分配时频资源后,基站可以将为待分配UE分配的时频资源通知给UE,UE可以在该时频资源上,向基站发送数据。
需要说明的是,在上行调度时频资源时,由于同频劈裂成两个小区,由于有待分配UE所属小区的PCI与已分配UE所属小区PCI不相同的限制,在一个RBG中,仅能为两个UE调度时频资源,且两个UE属于不相同的小区。例如,如图7所示,在RGB0中,只有A小区的UEa和B小区的UEb。
需要说明的是,现有技术中,要在同一RBG上传输多个UE的上行数据,多个UE所占用的RE的数目必须完全相同,而本发明实施例中,只要满足正交匹配条件,说明UE的相关性比较小,相互影响就比较少,无关占用的资源单元(Resource Element,RE)的数目,所以占用的RE的数目不必完全相同。
需要说明的是,在本申请的上述两个实施例中,是将一个小区软劈裂成两个小区为例进行说明,在后续使用过程中,软劈裂成其他数目的小区,均可以应用本申请的上述两个实施例。
本发明实施例中,可以通过UE的波束属性来配对,判断是否可以在同一时频资源中为不同的UE分配时频资源,所以即使劈裂后的小区的UE分布不均匀,也可以灵活调度时频资源,使时频资源得到有效的利用。
基于相同的技术构思,本发明实施例还提供了一种分配时频资源的装置,如图8所示,该装置包括:
获取模块810,用于获取待分配用户设备UE的上行参考信号,其中,所述上行参考信号包括上行信道探测参考信号SRS和/或特定参考信号DMRS,具体可以实现上述步骤301和步骤601中的获取功能,以及其它隐含步骤;
确定模块820,用于根据所述上行参考信号,对第一预设数目个波束组成的第二预设数目个正交波束组中每个波束进行测量,确定所述每个波束的电平;根据所述每个波束的电平,确定所述待分配UE在所述第二预设数目个正交波束组中的波束属性;具体可以实现上述步骤302、步骤303、步骤602和步骤603中的确定功能,以及其它隐含步骤;
分配模块830,用于根据所述待分配UE在所述第二预设数目个正交波束组中的波束属性和已分配UE在所述第二预设数目个正交波束组中的波束属性,为所述待分配UE分配时频资源,其中,所述已分配UE使用同一时频资源,所述同一时频资源为同一时频资源块RB或同一时频资源块组RBG。具体可以实现上述步骤304和步骤604中的分配功能,以及其它隐含步骤;
可选的,所述确定模块820,用于:
根据所述SRS,对第一预设数目个波束组成的第二预设数目个正交波束组中每个波束进 行测量,确定所述每个波束的等效信道响应;
根据所述每个波束的等效信道响应,确定所述每个波束的电平。
可选的,所述确定模块820,用于:
对于每个正交波束组,如果所述正交波束组中存在目标波束满足预设条件,则确定所述待分配UE在所述正交波束组中的波束属性为所述目标波束,如果所述正交波束组中不存在波束满足所述预设条件,则确定所述待分配UE在所述正交波束组中的波束属性为联合属性;其中,所述预设条件为所述目标波束的电平与所述正交波束组中除所述目标波束之外的其它波束的电平的差值均大于或等于预设数值。
可选的,为所述待分配UE和所述已分配UE分配的时频资源用于下行传输;
所述分配模块830,用于:
确定所述待分配UE的传输模式和已分配UE的传输模式;
根据所述待分配UE的传输模式和已分配UE的传输模式、所述待分配UE在所述第二预设数目个正交波束组中的波束属性和已分配UE在所述第二预设数目个正交波束组中的波束属性,为所述待分配UE分配时频资源。
可选的,所述分配模块830,用于:
根据所述待分配UE的传输模式和已分配UE的传输模式、所述待分配UE在所述第二预设数目个正交波束组中的波束属性和已分配UE在所述第二预设数目个正交波束组中的波束属性,如果所述待分配UE和已分配UE满足正交匹配条件,则在为所述已分配UE分配的时频资源所属的时频资源中,为所述待分配UE分配时频资源。
可选的,所述分配模块830,用于:
如果所述已分配UE和所述待分配UE中存在至少一个UE的传输模式为多入多出MIMO传输模式,则获取所述待分配UE所属小区的物理小区标识PCI和所述已分配UE所属小区的PCI;
根据所述待分配UE在所述第二预设数目个正交波束组中的波束属性、已分配UE在所述第二预设数目个正交波束组中的波束属性、所述待分配UE所属小区的PCI以及所述已分配UE所属小区的PCI,如果所述待分配UE和已分配UE满足正交匹配条件,则在为所述已分配UE分配的时频资源所属的时频资源中,为所述待分配UE分配时频资源。
可选的,所述分配模块830,用于:
如果所述待分配UE的传输模式为MIMO传输模式,且所述待分配UE所属小区的PCI与所述已分配UE中传输模式为MIMO传输模式的UE所属小区的PCI不相同,且所述待分配UE所属小区的PCI与所述已分配UE中传输模式为BF传输模式的UE所属小区的PCI不相同,且对于所述已分配UE中第一UE,在所述第二个预设数目个正交波束组中存在至少一个正交波束组,所述待分配UE的波束属性和所述第一UE的波束属性均不为联合属性,且所述待分配UE的波束属性和所述第一UE的波束属性完全不相同,则所述待分配UE和已分配UE满足正交匹配条件,在为所述已分配UE分配的时频资源所属的时频资源中,为所述待分配UE分配时频资源,其中,所述第一UE为所述已分配UE中任一UE;
如果所述待分配UE的传输模式为BF传输模式,且所述待分配UE所属小区的PCI与所述已分配UE中传输模式为MIMO传输模式的UE所属小区的PCI不相同,且对于所述已分配UE中第二UE,在所述第二个预设数目个正交波束组中存在至少一个正交波束组,所述待 分配UE的波束属性和所述第二UE的波束属性均不为联合属性,且所述待分配UE的波束属性和所述已分配UE的波束属性完全不相同,则所述待分配UE和所述已分配UE满足正交匹配条件,在为所述已分配UE分配的时频资源所属的时频资源中,为所述待分配UE分配时频资源,其中,所述第二UE为所述已分配UE中任一UE。
可选的,所述分配模块830,用于:
如果所述待分配UE和所述已分配UE的传输模式均为BF传输模式,且对于所述已分配UE中第三UE,在所述第二个预设数目个正交波束组中存在至少一个正交波束组,所述待分配UE的波束属性和所述第三UE的波束属性均不为联合属性,且所述待分配UE的波束属性和所述第三UE的波束属性完全不相同,则所述待分配UE和已分配UE满足正交匹配条件,在为所述已分配UE分配的时频资源所属的时频资源中,为所述待分配UE分配时频资源,其中,所述第三UE为所述已分配UE中任一UE。
可选的,为所述待分配UE和所述已分配UE分配的时频资源用于上行传输;
所述分配模块830,用于:
根据所述待分配UE在所述第二预设数目个正交波束组中的波束属性和已分配UE在所述第二预设数目个正交波束组中的波束属性,如果所述待分配UE和已分配UE满足正交匹配条件,则在为所述已分配UE分配的时频资源所属的时频资源中,为所述待分配UE分配时频资源。
可选的,所述分配模块830,用于:
获取所述待分配UE所属小区的PCI和所述已分配UE所属小区的PCI;
根据所述待分配UE所属小区的PCI和所述已分配UE所属小区的PCI、所述待分配UE在所述第二预设数目个正交波束组中的波束属性和已分配UE在所述第二预设数目个正交波束组中的波束属性,如果所述待分配UE和已分配UE满足正交匹配条件,则在为所述已分配UE分配的时频资源所属的时频资源中,为所述待分配UE分配时频资源。
可选的,所述分配模块830,用于:
如果所述待分配UE所属小区的PCI和所述已分配UE中任一UE所属小区的PCI不相同,且对于所述已分配UE中第四UE,在所述第二个预设数目个正交波束组中存在至少一个正交波束组,所述待分配UE的波束属性和所述第四UE的波束属性均不为联合属性,且所述待分配UE的波束属性和所述第四UE的波束属性完全不相同,则所述待分配UE和已分配UE满足正交匹配条件,在为所述已分配UE分配的时频资源所属的时频资源中,为所述待分配UE分配时频资源,其中,所述第四UE为所述已分配UE中任一UE。
本发明实施例中,可以通过UE的波束属性来配对,判断是否可以在同一时频资源中为不同的UE分配时频资源,所以即使劈裂后的小区的UE分布不均匀,也可以灵活调度时频资源,使时频资源得到有效的利用。
需要说明的是:上述实施例提供的分配时频资源的装置在分配时频资源时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的分配时频资源的装置与分配时频资源的方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现,当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令,在装置上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴光缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是装置能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(如软盘、硬盘和磁带等),也可以是光介质(如数字视盘(Digital Video Disk,DVD)等),或者半导体介质(如固态硬盘等)。
以上所述仅为本申请的一个实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (35)

  1. 一种分配时频资源的方法,其特征在于,所述方法包括:
    获取待分配用户设备UE的上行参考信号,其中,所述上行参考信号包括上行信道探测参考信号SRS和/或特定参考信号DMRS;
    根据所述上行参考信号,对第一预设数目个波束组成的第二预设数目个正交波束组中每个波束进行测量,确定所述每个波束的电平;
    根据所述每个波束的电平,确定所述待分配UE在所述第二预设数目个正交波束组中的波束属性;
    根据所述待分配UE在所述第二预设数目个正交波束组中的波束属性和已分配UE在所述第二预设数目个正交波束组中的波束属性,为所述待分配UE分配时频资源,其中,所述已分配UE使用同一时频资源,所述同一时频资源为同一时频资源块RB或同一时频资源块组RBG。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述上行参考信号,对第一预设数目个波束组成的第二预设数目个正交波束组中每个波束进行测量,确定所述每个波束的电平,包括:
    根据所述上行参考信号,对第一预设数目个波束组成的第二预设数目个正交波束组中每个波束进行测量,确定所述每个波束的等效信道响应;
    根据所述每个波束的等效信道响应,确定所述每个波束的电平。
  3. 根据权利要求1所述的方法,其特征在于,所述根据所述每个波束的电平,确定所述待分配UE在所述第二预设数目个正交波束组中的波束属性,包括:
    对于每个正交波束组,如果所述正交波束组中存在目标波束满足预设条件,则确定所述待分配UE在所述正交波束组中的波束属性为所述目标波束,如果所述正交波束组中不存在波束满足所述预设条件,则确定所述待分配UE在所述正交波束组中的波束属性为联合属性;其中,所述预设条件为所述目标波束的电平与所述正交波束组中除所述目标波束之外的其它波束的电平的差值均大于或等于预设数值。
  4. 根据权利要求1至3任一所述的方法,其特征在于,为所述待分配UE和所述已分配UE分配的时频资源用于下行传输;
    所述根据所述待分配UE在所述第二预设数目个正交波束组中的波束属性和已分配UE在所述第二预设数目个正交波束组中的波束属性,为所述待分配UE分配时频资源,包括:
    确定所述待分配UE的传输模式和已分配UE的传输模式;
    根据所述待分配UE的传输模式和已分配UE的传输模式、所述待分配UE在所述第二预设数目个正交波束组中的波束属性和已分配UE在所述第二预设数目个正交波束组中的波束属性,为所述待分配UE分配时频资源。
  5. 根据权利要求4所述的方法,其特征在于,所述根据所述待分配UE的传输模式和已分配UE的传输模式、所述待分配UE在所述第二预设数目个正交波束组中的波束属性和已分配UE在所述第二预设数目个正交波束组中的波束属性,为所述待分配UE分配时频资源,包括:
    根据所述待分配UE的传输模式和已分配UE的传输模式、所述待分配UE在所述第二预设数目个正交波束组中的波束属性和已分配UE在所述第二预设数目个正交波束组中的波束属性,如果所述待分配UE和已分配UE满足正交匹配条件,则在为所述已分配UE分配的时频资源所属的同一时频资源中,为所述待分配UE分配时频资源。
  6. 根据权利要求5所述的方法,其特征在于,所述根据所述待分配UE的传输模式和已分配UE的传输模式、所述待分配UE在所述第二预设数目个正交波束组中的波束属性和已分配UE在所述第二预设数目个正交波束组中的波束属性,如果所述待分配UE和已分配UE满足正交匹配条件,则在为所述已分配UE分配的时频资源所属的同一时频资源中,为所述待分配UE分配时频资源,包括:
    如果所述已分配UE和所述待分配UE中存在至少一个UE的传输模式为基于小区特定参考信号CRS解调的多入多出MIMO传输模式,则获取所述待分配UE所属小区的物理小区标识PCI和所述已分配UE所属小区的PCI;
    根据所述待分配UE在所述第二预设数目个正交波束组中的波束属性、已分配UE在所述第二预设数目个正交波束组中的波束属性、所述待分配UE所属小区的PCI以及所述已分配UE所属小区的PCI,如果所述待分配UE和已分配UE满足正交匹配条件,则在为所述已分配UE分配的时频资源所属的同一时频资源中,为所述待分配UE分配时频资源。
  7. 根据权利要求6所述的方法,其特征在于,所述根据所述待分配UE在所述第二预设数目个正交波束组中的波束属性、已分配UE在所述第二预设数目个正交波束组中的波束属性、所述待分配UE所属小区的PCI以及所述已分配UE所属小区的PCI,如果所述待分配UE和已分配UE满足正交匹配条件,则在为所述已分配UE分配的时频资源所属的同一时频资源中,为所述待分配UE分配时频资源,包括:
    如果所述待分配UE的传输模式为所述MIMO传输模式,且所述待分配UE所属小区的PCI与所述已分配UE中传输模式为所述MIMO传输模式的UE所属小区的PCI不相同,且所述待分配UE所属小区的PCI与所述已分配UE中传输模式为BF传输模式的UE所属小区的PCI不相同,且对于所述已分配UE中第一UE,在所述第二个预设数目个正交波束组中存在至少一个正交波束组,所述待分配UE的波束属性和所述第一UE的波束属性均不为联合属性,且所述待分配UE的波束属性和所述第一UE的波束属性完全不相同,则所述待分配UE和已分配UE满足正交匹配条件,在为所述已分配UE分配的时频资源所属的同一时频资源中,为所述待分配UE分配时频资源,其中,所述第一UE为所述已分配UE中任一UE;
    如果所述待分配UE的传输模式为BF传输模式,且所述待分配UE所属小区的PCI与所述已分配UE中传输模式为所述MIMO传输模式的UE所属小区的PCI不相同,且对于所述已分配UE中第二UE,在所述第二个预设数目个正交波束组中存在至少一个正交波束组,所述待分配UE的波束属性和所述第二UE的波束属性均不为联合属性,且所述待分配UE的波束属性和所述已分配UE的波束属性完全不相同,则所述待分配UE和所述已分配UE满足正交匹配条件,在为所述已分配UE分配的时频资源所属的同一时频资源中,为所述待分配UE分配时频资源,其中,所述第二UE为所述已分配UE中任一UE。
  8. 根据权利要求5所述的方法,其特征在于,所述根据所述待分配UE的传输模式和已分配UE的传输模式、所述待分配UE在所述第二预设数目个正交波束组中的波束属性和已分配UE在所述第二预设数目个正交波束组中的波束属性,如果所述待分配UE和已分配UE 满足正交匹配条件,则在为所述已分配UE分配的时频资源所属的同一时频资源中,为所述待分配UE分配时频资源,包括:
    如果所述待分配UE和所述已分配UE的传输模式均为BF传输模式,且对于所述已分配UE中第三UE,在所述第二个预设数目个正交波束组中存在至少一个正交波束组,所述待分配UE的波束属性和所述第三UE的波束属性均不为联合属性,且所述待分配UE的波束属性和所述第三UE的波束属性完全不相同,则所述待分配UE和已分配UE满足正交匹配条件,在为所述已分配UE分配的时频资源所属的同一时频资源中,为所述待分配UE分配时频资源,其中,所述第三UE为所述已分配UE中任一UE。
  9. 根据权利要求1至3任一所述的方法,其特征在于,为所述待分配UE和所述已分配UE分配的时频资源用于上行传输;
    所述根据所述待分配UE在所述第二预设数目个正交波束组中的波束属性和已分配UE在所述第二预设数目个正交波束组中的波束属性,为所述待分配UE分配时频资源,包括:
    根据所述待分配UE在所述第二预设数目个正交波束组中的波束属性和已分配UE在所述第二预设数目个正交波束组中的波束属性,如果所述待分配UE和已分配UE满足正交匹配条件,则在为所述已分配UE分配的时频资源所属的同一时频资源中,为所述待分配UE分配时频资源。
  10. 根据权利要求9所述的方法,其特征在于,所述根据所述待分配UE在所述第二预设数目个正交波束组中的波束属性和已分配UE在所述第二预设数目个正交波束组中的波束属性,如果所述待分配UE和已分配UE满足正交匹配条件,则在为所述已分配UE分配的时频资源所属的同一时频资源中,为所述待分配UE分配时频资源,包括:
    获取所述待分配UE所属小区的PCI和所述已分配UE所属小区的PCI;
    根据所述待分配UE所属小区的PCI和所述已分配UE所属小区的PCI、所述待分配UE在所述第二预设数目个正交波束组中的波束属性和已分配UE在所述第二预设数目个正交波束组中的波束属性,如果所述待分配UE和已分配UE满足正交匹配条件,则在为所述已分配UE分配的时频资源所属的同一时频资源中,为所述待分配UE分配时频资源。
  11. 根据权利要求10所述的方法,其特征在于,所述根据所述待分配UE所属小区的PCI和所述已分配UE所属小区的PCI、所述待分配UE在所述第二预设数目个正交波束组中的波束属性和已分配UE在所述第二预设数目个正交波束组中的波束属性,如果所述待分配UE和已分配UE满足正交匹配条件,则在为所述已分配UE分配的时频资源所属的同一时频资源中,为所述待分配UE分配时频资源,包括:
    如果所述待分配UE所属小区的PCI和所述已分配UE中任一UE所属小区的PCI不相同,且对于所述已分配UE中第四UE,在所述第二个预设数目个正交波束组中存在至少一个正交波束组,所述待分配UE的波束属性和所述第四UE的波束属性均不为联合属性,且所述待分配UE的波束属性和所述第四UE的波束属性完全不相同,则所述待分配UE和已分配UE满足正交匹配条件,在为所述已分配UE分配的时频资源所属的同一时频资源中,为所述待分配UE分配时频资源,其中,所述第四UE为所述已分配UE中任一UE。
  12. 一种分配时频资源的基站,其特征在于,所述基站包括处理器,其中:
    所述处理器,用于:
    获取待分配用户设备UE的上行参考信号,其中,所述上行参考信号包括上行信道探测参考信号SRS和/或特定参考信号DMRS;
    根据所述上行参考信号,对第一预设数目个波束组成的第二预设数目个正交波束组中每个波束进行测量,确定所述每个波束的电平;
    根据所述每个波束的电平,确定所述待分配UE在所述第二预设数目个正交波束组中的波束属性;
    根据所述待分配UE在所述第二预设数目个正交波束组中的波束属性和已分配UE在所述第二预设数目个正交波束组中的波束属性,为所述待分配UE分配时频资源,其中,所述已分配UE使用同一时频资源,所述同一时频资源为同一时频资源块RB或同一时频资源块组RBG。
  13. 根据权利要求12所述的基站,其特征在于,所述处理器,用于:
    根据所述上行参考信号,对第一预设数目个波束组成的第二预设数目个正交波束组中每个波束进行测量,确定所述每个波束的等效信道响应;
    根据所述每个波束的等效信道响应,确定所述每个波束的电平。
  14. 根据权利要求12所述的基站,其特征在于,所述处理器,用于:
    对于每个正交波束组,如果所述正交波束组中存在目标波束满足预设条件,则确定所述待分配UE在所述正交波束组中的波束属性为所述目标波束,如果所述正交波束组中不存在波束满足所述预设条件,则确定所述待分配UE在所述正交波束组中的波束属性为联合属性;其中,所述预设条件为所述目标波束的电平与所述正交波束组中除所述目标波束之外的其它波束的电平的差值均大于或等于预设数值。
  15. 根据权利要求12至14任一所述的基站,其特征在于,为所述待分配UE和所述已分配UE分配的时频资源用于下行传输;
    所述处理器,用于:
    确定所述待分配UE的传输模式和已分配UE的传输模式;
    根据所述待分配UE的传输模式和已分配UE的传输模式、所述待分配UE在所述第二预设数目个正交波束组中的波束属性和已分配UE在所述第二预设数目个正交波束组中的波束属性,为所述待分配UE分配时频资源。
  16. 根据权利要求15所述的基站,其特征在于,所述处理器,用于:
    根据所述待分配UE的传输模式和已分配UE的传输模式、所述待分配UE在所述第二预设数目个正交波束组中的波束属性和已分配UE在所述第二预设数目个正交波束组中的波束属性,如果所述待分配UE和已分配UE满足正交匹配条件,则在为所述已分配UE分配的时频资源所属的同一时频资源中,为所述待分配UE分配时频资源。
  17. 根据权利要求16所述的基站,其特征在于,所述处理器,用于:
    如果所述已分配UE和所述待分配UE中存在至少一个UE的传输模式为多入多出MIMO传输模式,则获取所述待分配UE所属小区的物理小区标识PCI和所述已分配UE所属小区的PCI;
    根据所述待分配UE在所述第二预设数目个正交波束组中的波束属性、已分配UE在所述第二预设数目个正交波束组中的波束属性、所述待分配UE所属小区的PCI以及所述已分配UE所属小区的PCI,如果所述待分配UE和已分配UE满足正交匹配条件,则在为所述已 分配UE分配的时频资源所属的同一时频资源中,为所述待分配UE分配时频资源。
  18. 根据权利要求17所述的基站,其特征在于,所述处理器,用于:
    如果所述待分配UE的传输模式为所述MIMO传输模式,且所述待分配UE所属小区的PCI与所述已分配UE中传输模式为所述MIMO传输模式的UE所属小区的PCI不相同,且所述待分配UE所属小区的PCI与所述已分配UE中传输模式为BF传输模式的UE所属小区的PCI不相同,且对于所述已分配UE中第一UE,在所述第二个预设数目个正交波束组中存在至少一个正交波束组,所述待分配UE的波束属性和所述第一UE的波束属性均不为联合属性,且所述待分配UE的波束属性和所述第一UE的波束属性完全不相同,则所述待分配UE和已分配UE满足正交匹配条件,在为所述已分配UE分配的时频资源所属的同一时频资源中,为所述待分配UE分配时频资源,其中,所述第一UE为所述已分配UE中任一UE;
    如果所述待分配UE的传输模式为BF传输模式,且所述待分配UE所属小区的PCI与所述已分配UE中传输模式为所述MIMO传输模式的UE所属小区的PCI不相同,且对于所述已分配UE中第二UE,在所述第二个预设数目个正交波束组中存在至少一个正交波束组,所述待分配UE的波束属性和所述第二UE的波束属性均不为联合属性,且所述待分配UE的波束属性和所述已分配UE的波束属性完全不相同,则所述待分配UE和所述已分配UE满足正交匹配条件,在为所述已分配UE分配的时频资源所属的同一时频资源中,为所述待分配UE分配时频资源,其中,所述第二UE为所述已分配UE中任一UE。
  19. 根据权利要求16所述的基站,其特征在于,所述处理器,用于:
    如果所述待分配UE和所述已分配UE的传输模式均为BF传输模式,且对于所述已分配UE中第三UE,在所述第二个预设数目个正交波束组中存在至少一个正交波束组,所述待分配UE的波束属性和所述第三UE的波束属性均不为联合属性,且所述待分配UE的波束属性和所述第三UE的波束属性完全不相同,则所述待分配UE和已分配UE满足正交匹配条件,在为所述已分配UE分配的时频资源所属的同一时频资源中,为所述待分配UE分配时频资源,其中,所述第二UE为所述已分配UE中任一UE。
  20. 根据权利要求12至14任一所述的基站,其特征在于,为所述待分配UE和所述已分配UE分配的时频资源用于上行传输;
    所述处理器,用于:
    根据所述待分配UE在所述第二预设数目个正交波束组中的波束属性和已分配UE在所述第二预设数目个正交波束组中的波束属性,如果所述待分配UE和已分配UE满足正交匹配条件,则在为所述已分配UE分配的时频资源所属的同一时频资源中,为所述待分配UE分配时频资源。
  21. 根据权利要求20所述的基站,其特征在于,所述处理器,用于:
    获取所述待分配UE所属小区的PCI和所述已分配UE所属小区的PCI;
    根据所述待分配UE所属小区的PCI和所述已分配UE所属小区的PCI、所述待分配UE在所述第二预设数目个正交波束组中的波束属性和已分配UE在所述第二预设数目个正交波束组中的波束属性,如果所述待分配UE和已分配UE满足正交匹配条件,则在为所述已分配UE分配的时频资源所属的同一时频资源中,为所述待分配UE分配时频资源。
  22. 根据权利要求21所述的基站,其特征在于,所述处理器,用于:
    如果所述待分配UE所属小区的PCI和所述已分配UE中任一UE所属小区的PCI不相同, 且对于所述已分配UE中第四UE,在所述第二个预设数目个正交波束组中存在至少一个正交波束组,所述待分配UE的波束属性和所述第四UE的波束属性均不为联合属性,且所述待分配UE的波束属性和所述第四UE的波束属性完全不相同,则所述待分配UE和已分配UE满足正交匹配条件,在为所述已分配UE分配的时频资源所属的同一时频资源中,为所述待分配UE分配时频资源,其中,所述第四UE为所述已分配UE中任一UE。
  23. 一种分配时频资源的装置,其特征在于,所述装置包括:
    获取模块,用于获取待分配用户设备UE的上行参考信号,其中,所述上行参考信号包括上行信道探测参考信号SRS和/或特定参考信号DMRS;
    确定模块,用于根据所述上行参考信号,对第一预设数目个波束组成的第二预设数目个正交波束组中每个波束进行测量,确定所述每个波束的电平;根据所述每个波束的电平,确定所述待分配UE在所述第二预设数目个正交波束组中的波束属性;
    分配模块,用于根据所述待分配UE在所述第二预设数目个正交波束组中的波束属性和已分配UE在所述第二预设数目个正交波束组中的波束属性,为所述待分配UE分配时频资源,其中,所述已分配UE使用同一时频资源,所述同一时频资源为同一时频资源块RB或同一时频资源块组RBG。
  24. 根据权利要求23所述的装置,其特征在于,所述确定模块,用于:
    根据所述上行参考信号,对第一预设数目个波束组成的第二预设数目个正交波束组中每个波束进行测量,确定所述每个波束的等效信道响应;
    根据所述每个波束的等效信道响应,确定所述每个波束的电平。
  25. 根据权利要求23所述的装置,其特征在于,所述确定模块,用于:
    对于每个正交波束组,如果所述正交波束组中存在目标波束满足预设条件,则确定所述待分配UE在所述正交波束组中的波束属性为所述目标波束,如果所述正交波束组中不存在波束满足所述预设条件,则确定所述待分配UE在所述正交波束组中的波束属性为联合属性;其中,所述预设条件为所述目标波束的电平与所述正交波束组中除所述目标波束之外的其它波束的电平的差值均大于或等于预设数值。
  26. 根据权利要求23至25任一所述的装置,其特征在于,为所述待分配UE和所述已分配UE分配的时频资源用于下行传输;
    所述分配模块,用于:
    确定所述待分配UE的传输模式和已分配UE的传输模式;
    根据所述待分配UE的传输模式和已分配UE的传输模式、所述待分配UE在所述第二预设数目个正交波束组中的波束属性和已分配UE在所述第二预设数目个正交波束组中的波束属性,为所述待分配UE分配时频资源。
  27. 根据权利要求26所述的装置,其特征在于,所述分配模块,用于:
    根据所述待分配UE的传输模式和已分配UE的传输模式、所述待分配UE在所述第二预设数目个正交波束组中的波束属性和已分配UE在所述第二预设数目个正交波束组中的波束属性,如果所述待分配UE和已分配UE满足正交匹配条件,则在为所述已分配UE分配的时频资源所属的同一时频资源中,为所述待分配UE分配时频资源。
  28. 根据权利要求27所述的装置,其特征在于,所述分配模块,用于:
    如果所述已分配UE和所述待分配UE中存在至少一个UE的传输模式为多入多出MIMO传输模式,则获取所述待分配UE所属小区的物理小区标识PCI和所述已分配UE所属小区的PCI;
    根据所述待分配UE在所述第二预设数目个正交波束组中的波束属性、已分配UE在所述第二预设数目个正交波束组中的波束属性、所述待分配UE所属小区的PCI以及所述已分配UE所属小区的PCI,如果所述待分配UE和已分配UE满足正交匹配条件,则在为所述已分配UE分配的时频资源所属的同一时频资源中,为所述待分配UE分配时频资源。
  29. 根据权利要求28所述的装置,其特征在于,所述分配模块,用于:
    如果所述待分配UE的传输模式为所述MIMO传输模式,且所述待分配UE所属小区的PCI与所述已分配UE中传输模式为所述MIMO传输模式的UE所属小区的PCI不相同,且所述待分配UE所属小区的PCI与所述已分配UE中传输模式为BF传输模式的UE所属小区的PCI不相同,且对于所述已分配UE中第一UE,在所述第二个预设数目个正交波束组中存在至少一个正交波束组,所述待分配UE的波束属性和所述第一UE的波束属性均不为联合属性,且所述待分配UE的波束属性和所述第一UE的波束属性完全不相同,则所述待分配UE和已分配UE满足正交匹配条件,在为所述已分配UE分配的时频资源所属的同一时频资源中,为所述待分配UE分配时频资源,其中,所述第一UE为所述已分配UE中任一UE;
    如果所述待分配UE的传输模式为BF传输模式,且所述待分配UE所属小区的PCI与所述已分配UE中传输模式为所述MIMO传输模式的UE所属小区的PCI不相同,且对于所述已分配UE中第二UE,在所述第二个预设数目个正交波束组中存在至少一个正交波束组,所述待分配UE的波束属性和所述第二UE的波束属性均不为联合属性,且所述待分配UE的波束属性和所述已分配UE的波束属性完全不相同,则所述待分配UE和所述已分配UE满足正交匹配条件,在为所述已分配UE分配的时频资源所属的同一时频资源中,为所述待分配UE分配时频资源,其中,所述第二UE为所述已分配UE中任一UE。
  30. 根据权利要求27所述的装置,其特征在于,所述分配模块,用于:
    如果所述待分配UE和所述已分配UE的传输模式均为BF传输模式,且对于所述已分配UE中第三UE,在所述第二个预设数目个正交波束组中存在至少一个正交波束组,所述待分配UE的波束属性和所述第三UE的波束属性均不为联合属性,且所述待分配UE的波束属性和所述第三UE的波束属性完全不相同,则所述待分配UE和已分配UE满足正交匹配条件,在为所述已分配UE分配的时频资源所属的同一时频资源中,为所述待分配UE分配时频资源,其中,所述第二UE为所述已分配UE中任一UE。
  31. 根据权利要求23至25任一所述的装置,其特征在于,为所述待分配UE和所述已分配UE分配的时频资源用于上行传输;
    所述分配模块,用于:
    根据所述待分配UE在所述第二预设数目个正交波束组中的波束属性和已分配UE在所述第二预设数目个正交波束组中的波束属性,如果所述待分配UE和已分配UE满足正交匹配条件,则在为所述已分配UE分配的时频资源所属的同一时频资源中,为所述待分配UE分配时频资源。
  32. 根据权利要求31所述的装置,其特征在于,所述分配模块,用于:
    获取所述待分配UE所属小区的PCI和所述已分配UE所属小区的PCI;
    根据所述待分配UE所属小区的PCI和所述已分配UE所属小区的PCI、所述待分配UE在所述第二预设数目个正交波束组中的波束属性和已分配UE在所述第二预设数目个正交波束组中的波束属性,如果所述待分配UE和已分配UE满足正交匹配条件,则在为所述已分配UE分配的时频资源所属的同一时频资源中,为所述待分配UE分配时频资源。
  33. 根据权利要求32所述的装置,其特征在于,所述分配模块,用于:
    如果所述待分配UE所属小区的PCI和所述已分配UE中任一UE所属小区的PCI不相同,且对于所述已分配UE中第四UE,在所述第二个预设数目个正交波束组中存在至少一个正交波束组,所述待分配UE的波束属性和所述第四UE的波束属性均不为联合属性,且所述待分配UE的波束属性和所述第四UE的波束属性完全不相同,则所述待分配UE和已分配UE满足正交匹配条件,在为所述已分配UE分配的时频资源所属的同一时频资源中,为所述待分配UE分配时频资源,其中,所述第四UE为所述已分配UE中任一UE。
  34. 一种包含指令的计算机程序产品,其特征在于,当所述计算机程序产品在基站上运行时,使得所述基站执行所述权利要求1-11中任一权利要求所述的方法。
  35. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有指令,当所述计算机可读存储介质在基站上运行时,使得所述基站执行所述权利要求1-11中任一权利要求所述的方法。
PCT/CN2019/088613 2018-06-20 2019-05-27 分配时频资源的方法和装置 WO2019242456A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19822965.0A EP3796585B1 (en) 2018-06-20 2019-05-27 Time-frequency resource allocation method and device
JP2020570789A JP7092897B2 (ja) 2018-06-20 2019-05-27 時間-周波数リソース割り当て方法および装置
US17/126,473 US11876736B2 (en) 2018-06-20 2020-12-18 Allocating the same time-frequency resources to different UEs based on orthogonal beams assigned to the different UEs

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810636394.8A CN110620642B (zh) 2018-06-20 2018-06-20 分配时频资源的方法和装置
CN201810636394.8 2018-06-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/126,473 Continuation US11876736B2 (en) 2018-06-20 2020-12-18 Allocating the same time-frequency resources to different UEs based on orthogonal beams assigned to the different UEs

Publications (1)

Publication Number Publication Date
WO2019242456A1 true WO2019242456A1 (zh) 2019-12-26

Family

ID=68920905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/088613 WO2019242456A1 (zh) 2018-06-20 2019-05-27 分配时频资源的方法和装置

Country Status (5)

Country Link
US (1) US11876736B2 (zh)
EP (1) EP3796585B1 (zh)
JP (1) JP7092897B2 (zh)
CN (1) CN110620642B (zh)
WO (1) WO2019242456A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11704609B2 (en) 2021-06-10 2023-07-18 Bank Of America Corporation System for automatically balancing anticipated infrastructure demands
US11252036B1 (en) 2021-06-10 2022-02-15 Bank Of America Corporation System for evaluating and tuning resources for anticipated demands
US12014210B2 (en) 2021-07-27 2024-06-18 Bank Of America Corporation Dynamic resource allocation in a distributed system
US12026554B2 (en) 2021-07-27 2024-07-02 Bank Of America Corporation Query-response system for identifying application priority

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150365142A1 (en) * 2014-06-12 2015-12-17 Nec Laboratories America, Inc. Efficient large-scale multiple input multiple output communications
CN105790913A (zh) * 2014-12-26 2016-07-20 上海无线通信研究中心 FDD模式massive-MIMO系统中上行导频的选择与分配方法
CN106464322A (zh) * 2014-10-07 2017-02-22 联发科技股份有限公司 网络辅助小区内干扰消除以及抑制的信令

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9252918B2 (en) * 2011-08-15 2016-02-02 Google Technology Holdings LLC Method and apparatus for control channel transmission and reception
WO2013066224A1 (en) * 2011-11-03 2013-05-10 Telefonaktiebolaget L M Ericsson (Publ) Channel estimation using reference signals
CN103188805A (zh) * 2011-12-31 2013-07-03 华为技术有限公司 导频资源分配方法和设备
KR102109655B1 (ko) * 2012-02-23 2020-05-12 한국전자통신연구원 대규모 안테나 시스템에서의 다중 입력 다중 출력 통신 방법
EP3068156B1 (en) * 2013-11-29 2018-01-17 Huawei Device Co., Ltd. Beam precoding manner reporting method, and scheduling method and device
ES2791352T3 (es) * 2014-06-09 2020-11-04 Commscope Technologies Llc Programación del mismo recurso en redes de acceso a la radio
CN104968051B (zh) * 2015-05-26 2019-03-08 大唐移动通信设备有限公司 一种小区宽带上行链路的资源分配方法和装置
CN106954260B (zh) * 2016-01-07 2023-05-30 中兴通讯股份有限公司 一种资源分配方法和装置
CN108024365B (zh) * 2016-11-03 2024-03-15 华为技术有限公司 一种信息传输方法及设备
US10218424B2 (en) * 2017-01-13 2019-02-26 Nokia Technologies Oy Reference signal indications for massive MIMO networks
BR112019026710A2 (pt) * 2017-06-16 2020-06-30 Telefonaktiebolaget Lm Ericsson (Publ) sondagem de enlace ascendente de múltiplos recursos e transmissão em subconjuntos de antena

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150365142A1 (en) * 2014-06-12 2015-12-17 Nec Laboratories America, Inc. Efficient large-scale multiple input multiple output communications
CN106464322A (zh) * 2014-10-07 2017-02-22 联发科技股份有限公司 网络辅助小区内干扰消除以及抑制的信令
CN105790913A (zh) * 2014-12-26 2016-07-20 上海无线通信研究中心 FDD模式massive-MIMO系统中上行导频的选择与分配方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3796585A4
ZTE: "Group based beam management for NR-MIMO", 3GPP TSG RAN WG1 MEETING #88 R1-1701798, 7 February 2017 (2017-02-07), XP051220864 *

Also Published As

Publication number Publication date
EP3796585A4 (en) 2021-08-04
JP2021530136A (ja) 2021-11-04
JP7092897B2 (ja) 2022-06-28
US20210111843A1 (en) 2021-04-15
EP3796585B1 (en) 2024-10-09
EP3796585A1 (en) 2021-03-24
CN110620642A (zh) 2019-12-27
CN110620642B (zh) 2021-02-09
US11876736B2 (en) 2024-01-16

Similar Documents

Publication Publication Date Title
KR102481397B1 (ko) 다중 입력 다중 출력 무선 시스템을 위한 사운딩 기준 신호 전력 제어
WO2019242456A1 (zh) 分配时频资源的方法和装置
JP2013524646A (ja) ノンサービングセルに対するセル固有参照シンボルローケーションでの物理的ダウンリンク共用チャネルミュート
WO2019080119A1 (zh) 一种广播波束域调整方法及装置
US11595994B2 (en) Apparatus and method for coordinated spatial reuse in wireless communication
US11277801B2 (en) System and method for uplink power control in a communications system with multi-access point coordination
US11172499B2 (en) Information transmission method, apparatus, and system
WO2018202137A1 (zh) 一种通信方法及装置
WO2019191949A1 (zh) 通信方法、通信装置和系统
WO2023273869A1 (zh) 信道状态信息报告的优先级确定方法与装置、相关设备
CN111740768A (zh) 一种通信方法及设备
CN116097115A (zh) 用于低功率消耗跟踪的定位参考信号设计
US11196522B2 (en) Enhanced sounding reference signal scheme
US8879411B2 (en) Method of handling interference mitigation in heterogeneous network by channel measurement and related communication device
WO2017092383A1 (zh) 一种共小区网络下的多天线传输方法及基站
CN113228791B (zh) 空间流中的通信
KR20230161970A (ko) 향상된 크로스 링크 간섭 측정 및 관리
CN114554539B (zh) 业务处理方法、装置、网络设备及存储介质
WO2023061302A1 (zh) 多用户设备调度方法、装置、基站及计算机可读存储介质
WO2024130713A1 (zh) 一种信号处理的方法和通信装置
CN109314613B (zh) 用于执行上行链路协作多点通信的方法和装置
WO2021081910A1 (zh) 波束赋形方法和通信装置
GB2520944A (en) Method and apparatus
CN117998640A (zh) 一种信道占用时间的传输方法、装置、终端及网络设备
KR20210157301A (ko) 무선 통신에서 협력 공간 재사용을 위한 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19822965

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020570789

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019822965

Country of ref document: EP

Effective date: 20201217