WO2023061152A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2023061152A1
WO2023061152A1 PCT/CN2022/119431 CN2022119431W WO2023061152A1 WO 2023061152 A1 WO2023061152 A1 WO 2023061152A1 CN 2022119431 W CN2022119431 W CN 2022119431W WO 2023061152 A1 WO2023061152 A1 WO 2023061152A1
Authority
WO
WIPO (PCT)
Prior art keywords
spectrum
spectrum mode
service
terminal device
information
Prior art date
Application number
PCT/CN2022/119431
Other languages
English (en)
French (fr)
Inventor
许胜锋
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023061152A1 publication Critical patent/WO2023061152A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows

Definitions

  • the present application relates to the technical field of communication, and in particular to a communication method and device.
  • D2D communication allows direct communication between terminal devices, and can share spectrum resources with community users under the control of the community network, effectively improving the utilization of spectrum resources.
  • D2D communication includes one-to-many communication and one-to-one communication.
  • One-to-many communication corresponds to multicast and broadcast communication, and one-to-one communication corresponds to unicast communication.
  • one-to-one communication if the distance between two terminal devices is less than the preset distance, the two can establish a proximity service communication 5 (prose communication 5, PC5) connection after mutual discovery, and communicate directly through the PC5 interface .
  • the two terminal devices can be the sender and receiver of service data respectively.
  • the sender and receiver can transmit service data to each other through the authorized spectrum.
  • the authorized spectrum corresponds to the authorized spectrum, and the sender can determine from the authorized spectrum.
  • the authorized spectrum resource is obtained, and then the service data is sent to the receiving end on the determined authorized spectrum resource. Due to the limited licensed spectrum, the implementation method of mutual transmission of service data between the sending end and the receiving end through unlicensed spectrum is introduced.
  • the spectrum mode for transmitting service data between the sending end and the receiving end may be a licensed spectrum mode or an unlicensed spectrum mode, and how to reasonably determine the spectrum mode becomes an urgent technical problem to be solved.
  • the present application provides a communication method and device for reasonably determining a spectrum mode for transmitting service data between a sending end and a receiving end.
  • the present application provides a communication method, which can be executed by a first terminal device or a module (such as a chip) in the first terminal device, and the first terminal device can be a sender of service data.
  • the communication method performed by the first terminal device is taken as an example for description below.
  • the method includes: the first terminal device acquires service information of the first service; the first terminal device transmits the service data of the first service in a first spectrum manner according to the service information of the first service, and the second Service data of a service is carried on the sidelink between the first terminal device and the second terminal device, and the first spectrum mode is a licensed spectrum mode, or an unlicensed spectrum mode, or a licensed spectrum mode and an unlicensed spectrum mode.
  • the first terminal device can transmit the service data of the first service with the second terminal device using the first spectrum method according to the service information of the first service, so that the first terminal device and the second terminal device can Transmission of service data through a spectrum method that is more suitable for service characteristics helps to better meet service requirements and rationally utilize licensed and unlicensed spectrum.
  • the service information includes at least one of the following: PC5 service quality (quality of service, QoS) parameters, service type, or service identifier.
  • PC5 service quality quality of service, QoS
  • service type service type
  • service identifier service identifier
  • the PC5QoS parameters of the first service include one or more of PQI (full name PC5 5QI, where 5QI is a 5G QoS indicator (5G QoS indicator)) and a bit rate;
  • the first The service type of the service may include one or more of the following: video, voice, and key service.
  • the method further includes: the first terminal device determines the first frequency spectrum mode according to the service information.
  • the first terminal device after obtaining the service information of the first service, the first terminal device can determine the first spectrum mode corresponding to the service information of the first service, so that when it is necessary to transmit the service data of the first service with the second terminal device , and transmit through the first spectrum method.
  • the first terminal device determines the first spectrum mode according to the service information, including: the first terminal device determines the first spectrum mode according to the correspondence between the service information and the first spectrum mode and the service information .
  • the first terminal device includes the correspondence between the service information of the first service and the first spectrum mode, and the first terminal device may determine the first spectrum mode according to the service information of the first service and the correspondence.
  • the first terminal device determines the first spectrum mode according to the correspondence between the service information and the first spectrum mode and the service information, including: the adjacent service layer of the first terminal device The first spectrum mode is determined according to the corresponding relationship between the spectrum mode and the service information; or the access layer of the first terminal device determines the first spectrum mode according to the corresponding relationship between the service information and the first spectrum mode and the service information.
  • the adjacent service layer and the access layer in the first terminal device both can determine the first frequency spectrum mode.
  • the first terminal device determines the first spectrum mode according to the service information, including: the first terminal device determines the second spectrum mode according to the correspondence between the service information and the second spectrum mode and the service information ; The first terminal device determines the first spectrum method according to the second spectrum method and the first information; wherein, the second spectrum method is a priority authorized spectrum method, or a priority unlicensed spectrum method; the first information includes at least one of the following: authorized The use status of spectrum resources, the use status of unlicensed spectrum resources, the recommended spectrum mode, or the licensed spectrum mode.
  • the service information of the first service can also correspond to the second spectrum mode, wherein the second spectrum mode is a priority licensed spectrum mode, or a priority unlicensed spectrum mode; the first terminal device can further combine the use of licensed spectrum resources State, the use status of the unlicensed spectrum resources, one or more of the proposed spectrum mode, or authorized spectrum mode, determine the first spectrum mode. In this mode, the first terminal device can determine the first spectrum mode more flexibly and reasonably according to the spectrum mode proposed or authorized by the network side and the actual use status of spectrum resources.
  • the method further includes: the first terminal device acquires one or more items of a usage status of licensed spectrum resources and a usage status of unlicensed spectrum resources.
  • the first terminal device can flexibly and reasonably determine the first spectrum mode according to one or more of the usage status of the licensed spectrum resources, the usage status of the unlicensed spectrum resources, and the second spectrum mode.
  • the method further includes: the first terminal device receives the first information.
  • the first terminal device can obtain the first information from the network device (such as radio access network device or core network device), so that the first terminal device can flexibly and reasonably The first spectrum mode is determined accurately.
  • the first terminal device determines the second spectrum mode according to the correspondence between the service information and the second spectrum mode and the service information; the first terminal device determines the second spectrum mode according to the second spectrum mode and the first information.
  • the first spectrum method includes: the adjacent service layer of the first terminal device determines the second spectrum method according to the correspondence between the service information and the second spectrum method, as well as the service information; the access layer of the first terminal device determines the second spectrum method according to the second spectrum method and the first information to determine the first spectrum mode; or, the adjacent service layer of the first terminal device determines the second spectrum mode according to the corresponding relationship between the service information and the second spectrum mode and the service information; the adjacent service layer of the first terminal device The layer determines the first spectrum mode according to the second spectrum mode and the first information; or, the access layer of the first terminal device determines the second spectrum mode according to the corresponding relationship between the service information and the second spectrum mode and the service information; The access layer of a terminal device determines the first spectrum mode according to the second spectrum mode and the first information.
  • the adjacent service layer or the access layer can first determine the second spectrum mode, and then determine the second spectrum mode according to the second spectrum mode and the first information.
  • a spectrum mode; or, the adjacent service layer may first determine the second spectrum mode, and then the access layer determines the first spectrum mode according to the second spectrum mode and the first information.
  • the method further includes: the first terminal device sends second information to the second terminal device, where the second information is used to instruct the first terminal device to transmit the service of the first service in the first spectrum mode data.
  • the first terminal device can indicate the first spectrum mode to the second terminal device, so that the first terminal device and the second terminal device can transmit the service data of the first service on the spectrum resource corresponding to the first spectrum mode , that is, the second terminal device only needs to receive the service data of the first service on the spectrum resource corresponding to the first spectrum mode, which helps to reduce the energy consumption of the second terminal device.
  • the first terminal device sends the second information and the service identifier of the first service to the second terminal device, where the second information includes the identifier of the first spectrum mode.
  • the second information includes an identifier of the first spectrum mode and a service identifier of the first service.
  • the first terminal device can indicate the first spectrum mode and the first service to the second terminal device, so that the first terminal device and the second terminal device can transmit the first spectrum resource on the spectrum resources corresponding to the first spectrum mode.
  • the method further includes: the first terminal device determines the first The unlicensed spectrum resource, the first unlicensed spectrum resource is used to transmit the service data of the first service between the first terminal device and the second terminal device; the first terminal device sends the information of the first unlicensed spectrum resource to the second terminal device .
  • the first terminal device can determine the first unlicensed spectrum resource from the unlicensed spectrum, and then the first terminal device sends the information of the first unlicensed spectrum resource to the second terminal device, so that the second terminal device does not need to Detecting or receiving service data from the first terminal device on all unlicensed spectrum resources helps to further reduce energy consumption of the second terminal device.
  • the service data of the first service is carried on the first QoS flow (QoS flow) in the sidelink.
  • the sidelink between the first terminal device and the second terminal device includes multiple QoS flows, and multiple QoS flows can carry service data corresponding to different service information, and different QoS flows can correspond to Different spectrum methods help to improve the flexibility of service data transmission.
  • the method further includes: the first terminal device associates the first service with the first QoS flow according to the first spectrum manner and the spectrum manner corresponding to the first QoS flow. In a possible implementation manner, the method further includes: the first terminal device generates the first QoS flow according to the first spectrum mode.
  • the first terminal device can associate the first service with the first QoS flow, so that when the first terminal device sends the service data of the first service to the second terminal device, the service data of the first service can be carried In the first QoS flow.
  • the first terminal device sends the second information and the identifier of the first QoS flow to the second terminal device, and the second information includes the identifier of the first spectrum mode.
  • the second information includes an identifier of the first spectrum mode and an identifier of the first QoS flow.
  • the first terminal device can indicate the first spectrum mode and the first QoS flow to the second terminal device, so that the first terminal device and the second terminal device can transmit the first spectrum mode and the first QoS flow on the spectrum resource corresponding to the first spectrum mode.
  • a QoS flow, wherein the first QoS flow bears the service data of the first service.
  • the present application provides a communication method, which can be executed by a first terminal device or a module (such as a chip) in the first terminal device, and the first terminal device can be a sender of service data.
  • the communication method performed by the first terminal device is taken as an example for description below.
  • the method includes: the first terminal device acquires the spectrum mode subscribed by the first terminal device; and the first terminal device uses the first spectrum mode to transmit the first service's Service data.
  • the service data of the first service is carried on the sidelink between the first terminal device and the second terminal device.
  • the first spectrum mode is the licensed spectrum mode, or the unlicensed spectrum mode, or the licensed spectrum and the unlicensed spectrum mode. Spectrum way.
  • the first terminal device can use the first spectrum method to transmit the service data of the first service according to the spectrum method signed by the first terminal device.
  • the service data is transmitted in a spectrum mode based on the characteristics of the first terminal device, which is helpful for better transmission of service data and rational use of licensed spectrum and unlicensed spectrum.
  • the spectrum mode signed by the first terminal device includes at least one of the following: licensed spectrum mode, unlicensed spectrum mode, licensed spectrum mode and unlicensed spectrum mode, licensed spectrum mode with priority, or unlicensed spectrum mode with priority Way.
  • the method further includes: the first terminal device determining the first spectrum mode according to the spectrum mode signed by the first terminal device.
  • the first terminal device may determine the first spectrum mode, so that when it is necessary to transmit service data of the first service with the second terminal device, the transmission is performed through the first spectrum mode.
  • the first terminal device determines the first spectrum mode according to the spectrum mode subscribed by the first terminal device, including: the area information corresponding to the spectrum mode signed by the first terminal device according to the first terminal device, and The first area information is used to determine the first spectrum mode, and the first area information is used to represent the area where the first terminal device is located.
  • the first terminal device can determine the first spectrum mode according to the area information corresponding to the spectrum mode signed by the first terminal device and the area where the first terminal device is located.
  • the first spectrum mode can be better and flexibly Applies to end devices in different regions.
  • the first terminal device determines the first spectrum mode according to the area information corresponding to the spectrum mode signed by the first terminal device and the first area information, including: the adjacent service layer of the first terminal device according to The area information corresponding to the spectrum mode signed by the first terminal device, and the first area information, determine the first spectrum mode; or the access layer of the first terminal device corresponds to the area information corresponding to the spectrum mode signed by the first terminal device, and the second The area information determines the first frequency spectrum mode.
  • both can determine the first frequency spectrum mode.
  • the first terminal device determines the first spectrum mode according to the spectrum mode subscribed by the first terminal device, including: the first terminal device determines the second spectrum mode according to the spectrum mode subscribed by the first terminal device; The first terminal device determines the first spectrum mode according to the first information and the second spectrum mode; wherein, the second spectrum mode is a priority licensed spectrum mode, or a priority unlicensed spectrum mode; the first information includes at least one of the following: licensed spectrum resources The usage status of unlicensed spectrum resources, the usage status of unlicensed spectrum resources, the recommended spectrum mode, or the licensed spectrum mode.
  • the first terminal device may determine according to the usage state of the authorized spectrum resource, the usage status of the unlicensed spectrum resource, the recommended spectrum mode, or one or more of the authorized spectrum mode, and the second spectrum mode.
  • First Spectrum Mode In this mode, the first terminal device can determine the first spectrum mode more flexibly and reasonably according to the spectrum mode proposed or authorized by the network side and the actual use status of spectrum resources.
  • the method further includes: the first terminal device acquires one or more items of a usage status of licensed spectrum resources and a usage status of unlicensed spectrum resources.
  • the first terminal device can flexibly and reasonably determine the first spectrum mode according to one or more of the usage status of the licensed spectrum resources, the usage status of the unlicensed spectrum resources, and the second spectrum mode.
  • the method further includes: the first terminal device receives the first information.
  • the first terminal device can obtain the first information from the network device (such as radio access network device or core network device), so that the first terminal device can flexibly and reasonably The first spectrum mode is determined accurately.
  • the first terminal device determines the second spectrum mode according to the spectrum mode signed by the first terminal device; the first terminal device determines the first spectrum mode according to the first information and the second spectrum mode, including: The adjacent service layer of a terminal device determines the second spectrum mode according to the spectrum mode signed by the first terminal device; the access layer of the first terminal device determines the first spectrum mode according to the second spectrum mode and the first information; or, the second The adjacent service layer of a terminal device determines the second spectrum method according to the spectrum method signed by the first terminal device; the adjacent service layer of the first terminal device determines the first spectrum method according to the second spectrum method and the first information; or, the second The access layer of a terminal device determines the second spectrum mode according to the spectrum mode signed by the first terminal device; the access layer of the first terminal device determines the first spectrum mode according to the second spectrum mode and the first information.
  • the adjacent service layer or the access layer can first determine the second spectrum mode, and then determine the second spectrum mode according to the second spectrum mode and the first information.
  • a spectrum mode; or, the adjacent service layer may first determine the second spectrum mode, and then the access layer determines the first spectrum mode according to the second spectrum mode and the first information.
  • the method further includes: the first terminal device sends second information to the second terminal device; where the second information is used to instruct the first terminal device to transmit the service of the first service in the first spectrum mode data.
  • the first terminal device can indicate the first spectrum mode to the second terminal device, so that the first terminal device and the second terminal device can transmit the service data of the first service on the spectrum resource corresponding to the first spectrum mode , that is, the second terminal device only needs to receive the service data of the first service on the spectrum resource corresponding to the first spectrum mode, which helps to reduce the energy consumption of the second terminal device.
  • the first terminal device sends the second information to the second terminal device through the sidelink between the first terminal device and the second terminal device, where the second information includes the logo.
  • the first terminal device can indicate the first spectrum mode to the second terminal device through the side link between the first terminal device and the second terminal device, so that the first terminal device and the second terminal device can On the spectrum resource corresponding to the first spectrum mode, the service data of the first service is transmitted through the sidelink.
  • the method further includes: the first terminal device determines the first The unlicensed spectrum resource, the first unlicensed spectrum resource is used to transmit the service data of the first service between the first terminal device and the second terminal device; the first terminal device sends the information of the first unlicensed spectrum resource to the second terminal device .
  • the first terminal device can determine the first unlicensed spectrum resource from the unlicensed spectrum, and then the first terminal device sends the information of the first unlicensed spectrum resource to the second terminal device, so that the second terminal device does not need to Detecting or receiving service data from the first terminal device on all unlicensed spectrum resources helps to further reduce energy consumption of the second terminal device.
  • the present application provides a communication method, which can be executed by a core network device or a module (such as a chip) in the core network device.
  • a communication method which can be executed by a core network device or a module (such as a chip) in the core network device.
  • the implementation of the communication method by the core network device is taken as an example for description as follows.
  • the method includes: a core network device acquires service information and a spectrum mode corresponding to the service information, and sends the service information and the spectrum mode corresponding to the service information to the first terminal device.
  • the service information and the spectrum mode corresponding to the service information can be used by the first terminal device to determine the first spectrum mode, and the first spectrum mode is a licensed spectrum mode, an unlicensed spectrum mode, or a licensed spectrum and an unlicensed Authorized spectrum method.
  • the core network equipment can control different services to use different spectrum modes, so as to prevent terminal equipment from using inappropriate spectrum modes to transmit services.
  • the core network device may be a policy control function (policy control function, PCF) network element or a unified data management (unified data management, UDM) network element.
  • policy control function policy control function
  • UDM unified data management
  • the present application provides a communication method, which can be executed by a core network device or a module (such as a chip) in the core network device.
  • a communication method which can be executed by a core network device or a module (such as a chip) in the core network device.
  • the implementation of the communication method by the core network device is taken as an example for description as follows.
  • the method includes: the core network device acquires a spectrum mode subscribed by the first terminal device, and sends the spectrum mode subscribed by the first terminal device to the first terminal device.
  • the spectrum mode subscribed by the first terminal device can be used by the first terminal device to determine the first spectrum mode.
  • the first spectrum mode is a licensed spectrum mode, an unlicensed spectrum mode, or a Spectrum way.
  • the core network equipment can control the spectrum mode of the terminal equipment to prevent the terminal equipment from using the unlicensed (or uncontracted) spectrum mode to transmit services.
  • the core network device may be a PCF network element or a UDM network element.
  • the embodiment of the present application provides a communication device, which has the function of implementing the first terminal device in the first aspect or any possible implementation manner of the first aspect, and the device may be a terminal device, It may also be a module (such as a chip) in the terminal device.
  • the communication device includes: a processing module, configured to acquire service information of the first service; a processing module, further configured to control the transceiver module to transmit the service of the first service in the first spectrum mode according to the service information Data, the service data of the first service is carried on the sidelink between the communication device and the second terminal equipment, and the first spectrum mode is a licensed spectrum mode, or an unlicensed spectrum mode, or a licensed spectrum mode and an unlicensed spectrum mode.
  • the service information includes at least one of the following: PC5QoS parameters, service type, or service identifier.
  • the processing module is further configured to: determine the first frequency spectrum mode according to the service information.
  • the processing module is specifically configured to: determine the first spectrum mode according to the correspondence between service information and the first spectrum mode and the service information.
  • the processing module is specifically configured to: control the adjacent service layer to determine the first spectrum mode according to the correspondence between the service information and the first spectrum mode and the service information; or control the access layer to determine the first spectrum mode according to the service information and the first spectrum mode; The corresponding relationship of the first spectrum mode and the service information determine the first spectrum mode.
  • the processing module is specifically configured to: determine the second spectrum mode according to the correspondence between service information and the second spectrum mode and the service information; determine the first spectrum mode according to the second spectrum mode and the first information.
  • Spectrum mode wherein, the second spectrum mode is a priority licensed spectrum mode, or a priority unlicensed spectrum mode; the first information includes at least one of the following: the use status of licensed spectrum resources, the use status of unlicensed spectrum resources, and the recommended spectrum mode , or authorized spectrum.
  • the processing module is further configured to: obtain one or more items of the usage status of the licensed spectrum resource and the usage status of the unlicensed spectrum resource.
  • the processing module is further configured to: control the transceiver module to receive the first information.
  • the processing module is specifically configured to: control the adjacent service layer to determine the second spectrum mode according to the correspondence between service information and the second spectrum mode, as well as the service information; control the access layer to determine the second spectrum mode according to the second spectrum mode; and the first information to determine the first spectrum mode; or, control the adjacent service layer to determine the second spectrum mode according to the corresponding relationship between the service information and the second spectrum mode and the service information; control the adjacent service layer to determine the second spectrum mode according to the second spectrum mode and the first spectrum mode One information to determine the first spectrum mode; or, the control access layer determines the second spectrum mode according to the correspondence between the service information and the second spectrum mode and the service information; the control access layer determines the second spectrum mode according to the second spectrum mode and the first information , to determine the first spectrum mode.
  • the processing module is further configured to: control the transceiver module to send second information to the second terminal device; wherein, the second information is used to instruct the communication device to transmit the service data of the first service in the first spectrum mode .
  • the processing module is further configured to: determine the first unlicensed spectrum resource from unlicensed spectrum resources Spectrum resource, the first unlicensed spectrum resource is used to transmit the service data of the first service between the communication device and the second terminal equipment; the control transceiver module sends the information of the first unlicensed spectrum resource to the second terminal equipment.
  • the service data of the first service is carried on the first QoS flow in the sidelink.
  • the processing module is further configured to: associate the first service with the first QoS flow according to the first frequency spectrum method and the spectrum method corresponding to the first QoS flow.
  • the processing module is further configured to: generate the first QoS flow according to the first spectrum mode.
  • the embodiment of the present application provides a communication device, the communication device has the function of implementing the first terminal device in the above second aspect or any possible implementation manner of the second aspect, the device may be a terminal device, It can also be a module (such as a chip) in the terminal device.
  • the processing module is configured to acquire the spectrum mode subscribed by the communication device; the processing module is further configured to control the transceiver module to use the first spectrum mode to transmit the service of the first service according to the spectrum mode subscribed by the communication device Data, the service data of the first service is carried on the sidelink between the communication device and the second terminal equipment, and the first spectrum mode is a licensed spectrum mode, or an unlicensed spectrum mode, or a licensed spectrum mode and an unlicensed spectrum mode.
  • the spectrum mode signed by the communication device includes at least one of the following: a licensed spectrum mode, an unlicensed spectrum mode, a licensed spectrum mode and an unlicensed spectrum mode, a licensed spectrum mode first, or an unlicensed spectrum mode first.
  • the processing module is further configured to: determine the first spectrum mode according to the spectrum mode subscribed by the communication device.
  • the processing module is specifically configured to: determine the first spectrum mode according to the area information corresponding to the spectrum mode subscribed by the communication device and the first area information, and the first area information is used to represent the region where the communication device is located. area.
  • the processing module is specifically configured to: control the adjacent service layer to determine the first spectrum method according to the region information corresponding to the spectrum method subscribed by the communication device and the first region information; or control the access layer to determine the first spectrum method according to the communication device The area information corresponding to the spectrum mode subscribed by the device and the first area information determine the first spectrum mode.
  • the processing module is specifically configured to: determine the second spectrum mode according to the spectrum mode subscribed by the communication device; determine the first spectrum mode according to the first information and the second spectrum mode; wherein, the second spectrum mode is Prioritize authorized spectrum mode, or prioritize unlicensed spectrum mode; the first information includes at least one of the following: usage status of licensed spectrum resources, usage status of unlicensed spectrum resources, suggested spectrum mode, or authorized spectrum mode.
  • the processing module is further configured to: obtain one or more items of the usage status of the licensed spectrum resource and the usage status of the unlicensed spectrum resource.
  • the processing module is further configured to: control the transceiver module to receive the first information.
  • the processing module is specifically configured to: control the adjacent service layer to determine the second spectrum mode according to the spectrum mode subscribed by the communication device; control the access layer to determine the first spectrum mode according to the second spectrum mode and the first information. Spectrum mode; or, control the adjacent service layer to determine the second spectrum mode according to the spectrum mode signed by the communication device; control the adjacent service layer to determine the first spectrum mode according to the second spectrum mode and the first information; or, control the access layer to determine the first spectrum mode according to the second spectrum mode and the first information;
  • the spectrum mode signed by the communication device determines the second spectrum mode; the control access layer determines the first spectrum mode according to the second spectrum mode and the first information.
  • the processing module is further configured to: control the transceiver module to send second information to the second terminal device; wherein, the second information is used to instruct the communication device to transmit the service data of the first service in the first spectrum mode .
  • the processing module is further configured to: determine the first unlicensed spectrum resource from unlicensed spectrum resources Spectrum resource, the first unlicensed spectrum resource is used to transmit the service data of the first service between the communication device and the second terminal equipment; the control transceiver module sends the information of the first unlicensed spectrum resource to the second terminal equipment.
  • the embodiment of the present application provides a communication device, the communication device has the function of implementing the core network device in the above third aspect or any possible implementation manner of the third aspect, the device may be a core network device, It may also be a module (such as a chip) in a core network device.
  • the processing module is configured to acquire service information and a spectrum mode corresponding to the service information, and control the transceiver module to send the service information and the spectrum mode corresponding to the service information to the first terminal device.
  • the service information and the spectrum mode corresponding to the service information can be used by the first terminal device to determine the first spectrum mode, and the first spectrum mode is a licensed spectrum mode, an unlicensed spectrum mode, or a licensed spectrum and an unlicensed Authorized spectrum method.
  • the embodiment of the present application provides a communication device, the communication device has the function of implementing the core network device in the fourth aspect or any possible implementation manner of the fourth aspect, the device may be a core network device, It may also be a module (such as a chip) in a core network device.
  • the processing module is configured to acquire a spectrum mode subscribed by the first terminal device, and control the transceiver module to send the spectrum mode subscribed by the first terminal device to the first terminal device.
  • the spectrum mode subscribed by the first terminal device can be used by the first terminal device to determine the first spectrum mode.
  • the first spectrum mode is a licensed spectrum mode, an unlicensed spectrum mode, or a Spectrum way.
  • the embodiment of the present application provides a chip system, including: a processor, the processor is coupled with a memory, and the memory is used to store programs or instructions, and when the programs or instructions are executed by the processor, the chip system realizes the above-mentioned first
  • the processor is coupled with a memory
  • the memory is used to store programs or instructions, and when the programs or instructions are executed by the processor, the chip system realizes the above-mentioned first
  • the method in any possible implementation manner of the above-mentioned fourth aspect or the method in any possible implementation manner of the fourth aspect.
  • the chip system further includes an interface circuit, which is used for exchanging code instructions to the processor.
  • processors in the chip system, and the processors may be implemented by hardware or by software.
  • the processor may be a logic circuit, an integrated circuit, or the like.
  • the processor may be a general-purpose processor implemented by reading software codes stored in a memory.
  • the memory can be integrated with the processor, or can be set separately from the processor.
  • the memory may be a non-transitory processor, such as a read-only memory ROM, which may be integrated with the processor on the same chip, or may be respectively provided on different chips.
  • the embodiment of the present application provides a computer-readable storage medium, on which a computer program or instruction is stored, and when the computer program or instruction is executed, the computer executes any one of the above-mentioned first aspect or the first aspect.
  • a method in one possible implementation manner or perform the method in any possible implementation manner of the above-mentioned second aspect or the second aspect, or execute the above-mentioned third aspect or any one of the possible implementation manners of the third aspect method, or perform the fourth aspect or the method in any possible implementation manner of the fourth aspect.
  • the embodiments of the present application provide a computer program product.
  • the computer When the computer reads and executes the computer program product, the computer executes the above-mentioned first aspect or any possible implementation of the first aspect.
  • the computer executes the above-mentioned first aspect or any possible implementation of the first aspect.
  • the computer executes the above-mentioned first aspect or any possible implementation of the first aspect.
  • the computer executes the method in any possible implementation of the second aspect or the second aspect above, or execute the method in the third aspect or any possible implementation of the third aspect above, or execute the method in the first aspect above
  • the fourth aspect or the method in any possible implementation of the fourth aspect The fourth aspect or the method in any possible implementation of the fourth aspect.
  • the embodiment of the present application provides a communication system, the communication system includes a core network device and a first terminal device, and the first terminal device is used to implement the above-mentioned first aspect or any possible implementation of the first aspect
  • the core network device is configured to execute the method in the above third aspect or any possible implementation manner of the third aspect
  • the first terminal device is configured to execute the method in the above-mentioned second aspect or any possible implementation of the second aspect
  • the core network device is configured to execute the above-mentioned fourth aspect or any possible implementation of the fourth aspect methods in methods.
  • Fig. 1 is the architectural diagram of a kind of communication system provided
  • Figure 2 is a schematic diagram of a 5G QoS model based on QoS flow
  • Figure 3 is a QoS model based on QoS flow in D2D communication
  • Fig. 4 is a schematic flow chart of establishing a PC5 link provided
  • FIG. 5 is a schematic flowchart of a communication method provided by the present application.
  • FIG. 6 is a schematic flow diagram of UE1 and UE2 transmitting service data in a specific application scenario provided by the present application;
  • FIG. 7 is a schematic flow diagram of a ProSe layer determining a first spectrum method provided by the present application.
  • FIG. 8 is a schematic flowchart of a method for determining the first frequency spectrum at the AS layer provided by the present application.
  • FIG. 9 is a schematic flow diagram of a method for determining the first frequency spectrum provided by the ProSe layer and the AS layer in the present application.
  • FIG. 10 is a schematic flowchart of another communication method provided by the present application.
  • FIG. 11 is a schematic flow diagram of UE1 and UE2 transmitting service data in another specific application scenario provided by the present application;
  • FIG. 12 is a schematic flow diagram of yet another method for determining the first frequency spectrum at the ProSe layer provided by the present application.
  • FIG. 13 is a schematic structural diagram of a communication device provided by the present application.
  • FIG. 14 is a schematic structural diagram of another communication device provided by the present application.
  • Figure 1 is a system architecture used in the communication method of the present application.
  • the network functions and entities included in the system mainly include: terminal equipment (user equipment, UE), radio access network (radio access network, RAN) equipment, user plane function ( user plane function (UPF) network element, data network (data network, DN), access and mobility management function (access and mobility management function, AMF) network element, session management function (session management function, SMF) network element, Network exposure function (network exposure function, NEF) network element, policy control function (policy control function, PCF) network element, application function (application function, AF) network element, network slice selection function (network slice selection function, NSSF) network element, authentication server function (authentication server function, AUSF) network element, unified data management (unified data management, UDM) network element, network storage function (network repository function, NRF) network element and unified data storage function (unified data repository, UDR) network element.
  • terminal equipment user equipment
  • radio access network radio access network
  • UPF user plane function
  • FIG. 1 shows the interaction relationship between network functions and entities and the corresponding interfaces.
  • the terminal device and the AMF network element can interact through the N1 interface, and the interaction message is called N1Message.
  • Some interfaces can be implemented in the form of service interfaces.
  • the user's data flow can be transmitted through the protocol data unit session (PDU) session established between the terminal device and the DN, and the specific transmission can be through the wireless access network device and the UPF network element.
  • PDU protocol data unit session
  • Terminal device it can be a user device, a handheld terminal, a notebook computer, a cellular phone, a smart phone, a tablet computer, a handheld device, an AR device, a VR device, a machine type communication terminal or other devices that can access the network.
  • a certain air interface technology such as new radio (NR) or long term evolution (LTE) technology
  • NR new radio
  • LTE long term evolution
  • a certain air interface technology such as NR or LTE technology
  • the communication terminal uploaded by the vehicle can be used as a terminal device, and the roadside unit (RSU) can also be used as a terminal device.
  • the drone is equipped with a communication terminal, which can also be regarded as a terminal device.
  • Radio access network equipment mainly responsible for wireless resource management, service quality management, data compression and encryption on the air interface side.
  • Radio access network equipment may include base stations in various forms, for example: macro base stations, micro base stations, relay stations, access points, and so on.
  • the name of the equipment with the base station function may be different, for example, in the NR system, it is called gNB.
  • AMF network element It belongs to the core network element and is mainly responsible for access control, mobility management, attachment and detachment, and gateway selection.
  • the AMF network element may specifically provide a storage resource on the control plane for the session, and the storage resource may be used to store the identifier of the session, the identifier of the SMF network element associated with the session, and the like.
  • SMF network element responsible for user plane network element selection, user plane network element redirection, Internet protocol (internet protocol, IP) address allocation, bearer establishment, modification and release, and QoS control.
  • IP Internet protocol
  • the UPF network element responsible for forwarding and receiving user data in terminal equipment.
  • the UPF network element can receive user data from the DN and transmit it to the terminal device through the wireless access network device; the UPF network element can also receive user data from the terminal device through the wireless access network device and forward it to the DN.
  • the UPF network element provides the transmission resource and scheduling function of the service for the terminal equipment.
  • NEF network element used to support the secure interaction between the 3rd Generation Partnership Project (The 3rd Generation Partnership Project, 3GPP) network and third-party applications.
  • 3GPP The 3rd Generation Partnership Project
  • 3GPP Third Generation Partnership Project
  • AF network element used to provide services, and can also provide some third-party services to the network side.
  • PCF network element responsible for decision-making of policy control, providing policy rules for control plane functions, and flow-based charging control functions.
  • NSSF network element It is mainly responsible for network slice selection, and determines the network slice instance that the terminal device is allowed to access according to the slice selection auxiliary information and contract information of the terminal device.
  • UDM network element mainly responsible for the contract data management of terminal equipment, including storage and management of terminal equipment identification, terminal equipment access authorization, etc.
  • AUSF network element supports 3GPP and non-3GPP access authentication.
  • NRF network element supports registration and discovery of network functions.
  • UDR network element store and acquire the subscription data used by UDM network element and PCF network element.
  • each network element in the core network can also be called a functional entity or device, which can be a network element implemented on dedicated hardware, or a software instance running on dedicated hardware, or a Instances of the virtualization features above.
  • the architecture of the communication system shown in FIG. 1 is not limited to include only the network elements shown in the figure, and may also include other devices not shown in the figure, which are not listed here in this application.
  • the embodiment of the present application does not limit the distribution form of each network element, and the distribution form shown in FIG. 1 is only exemplary, and is not limited in this application.
  • the communication system shown in FIG. 1 does not constitute a limitation to the applicable communication system of the embodiment of the present application.
  • the communication system architecture shown in FIG. 1 is a 5G system architecture.
  • the method in the embodiment of the present application is also applicable to various communication systems in the future, such as 6G or other communication networks.
  • a 5G QoS model based on QoS flow is proposed, as shown in Figure 2.
  • the 5G QoS model supports guaranteed bit rate (guaranteed bit rate, GRB) QoS flow (GBR QoS flow) and non-guaranteed bit rate QoS flow (Non-GBR QoS flow), and the data packets controlled by the same QoS flow receive the same Transmission processing (such as scheduling, admission threshold, etc.).
  • a terminal device For a terminal device, it can establish one or more PDU sessions with the 5G network; one or more QoS flows can be established in each PDU session.
  • Each QoS flow is identified by a QoS flow identifier (QoS flow identifier, QFI), which uniquely identifies a QoS flow in a PDU session.
  • QFI QoS flow identifier
  • Whether a QoS flow is a GBR QoS flow or a Non-GBR QoS flow is determined by the corresponding QoS profile (QoS profile).
  • the QoS configuration file corresponding to GBR QoS flow must contain the following QoS parameters: 5G QoS indicator (5G QoS identifier, 5QI), allocation and retention priority (ARP), guaranteed flow bit rate ( Guaranteed flow bit rate, GFBR) and maximum flow bit rate (maximum flow bit rate, MFBR).
  • 5G QoS indicator 5G QoS identifier, 5QI
  • ARP allocation and retention priority
  • Guaranteed flow bit rate Guaranteed flow bit rate, GFBR
  • maximum flow bit rate maximum flow bit rate
  • MFBR maximum flow bit rate
  • the QoS configuration file corresponding to the GBR QoS flow may also include QoS notification control (QoS notification control, QNC). According to whether the QoS configuration file contains QNC, the GBR QoS flow is divided into GRB QoS flow that requires QNC and GBR QoS flow that does not require QNC.
  • the RAN when the RAN detects that the corresponding QoS flow resources cannot be satisfied, the RAN notifies the SMF of the event, and then notifies the PCF. Further, SMF can initiate QoS flow deletion or modification process.
  • the QoS configuration file corresponding to Non-GBR QoS flow must contain the following QoS parameters: 5QI, ARP;
  • the QoS configuration file corresponding to Non-GBR QoS flow can also include reverse QoS attributes (Reflective QoS Attribute, RQA).
  • the QoS parameters are defined as follows:
  • 5QI It is a scalar used to index to the corresponding 5G QoS characteristics; 5QI is divided into standardized 5QI, pre-configured 5QI and dynamically allocated 5QI. For standardized 5QI, it corresponds to a set of standardized 5G QoS characteristic values; for preconfigured 5QI, the corresponding 5G QoS characteristic value is preconfigured in the access network node (AN); for dynamically allocated 5QI, the corresponding The QoS characteristics are included in the QoS configuration file sent to the AN.
  • QoS feature values include resource type (resource type, resource type is divided into GBR and Non-GBR), priority level (priority level), packet delay budget (packet delay budget, which can be understood as the data packet from the terminal device to the UPF Delay), packet error rate (packet error rate), maximum data burst volume (maximum data burst volume), averaging window (averaging window, which can be used to calculate the rate corresponding to GBR).
  • ARP includes priority level, preemption capability and preemption capability
  • RQA It is used to indicate that the service transmitted using the corresponding QoS flow uses reverse QoS
  • QNC Used to indicate whether the RAN notifies the network when the GFBR cannot be satisfied during the usage period of the QoS flow;
  • GFBR represents the bit rate expected to be provided to GBR QoS flow
  • MFBR Limit the bit rate provided to GBR QoS flow, that is, the maximum bit rate provided to GBR QoS flow. If the bit rate is exceeded, packets can be dropped.
  • the 5G network can implement the management process of QoS control through the signaling plane, and the SMF binds the service data flow (service data flow, SDF) to the QoS flow based on QoS and business requirements.
  • the SMF assigns the QoS flow identifier of the new QoS flow to the SDF, and calculates the QoS configuration file and the corresponding packet detection rule (packet detection rule) , PDR) information.
  • the PCC rules include two types: dynamic PCC rules and predefined PCC rules. Dynamic PCC rules are provided by PCF to SMF, and predefined PCC rules are configured on SMF.
  • the PCC rules include service data flow detection related, charging related and policy control related and so on.
  • the service data flow detection related includes the service data flow template (SDF template, the data packets detected by the service data flow template in a PCC rule form an SDF) and the template priority.
  • Policy control related includes Gate status (service data flow can be passed or discarded), authorized QoS parameters (5QI, ARP, maximum bitrate, guaranteed bitrate, etc.), QNC, Reflective QoS Control.
  • maximum bitrate is the maximum bit rate of the service data flow
  • guaranteed bitrate is the guaranteed bit rate of the service data flow.
  • PC5 links may be established between two terminal devices (respectively denoted as UE1 and UE2), and the PC5 links may be PC5 unicast links (unicast links). Further, each PC5 link corresponds to a pair of application layer identifiers (APP Layer ID).
  • Figure 3 is an example of a QoS model based on QoS flow in D2D communication provided by this application, wherein PC5 link 1 corresponds to application layer identifier 1 and application layer identifier 2, wherein application layer identifier 1 is the application layer of UE1 ID, application layer ID 2 is the application layer ID of UE2.
  • PC5 QoS flow#1 to PC5QoS flow#3 are established in PC5 link 1. Further, each PC5QoS flow is identified by a PC5QoS flow identifier (PC5QoS flow identifier, PFI), and the PC5QoS flow identifier uniquely identifies a PC5QoS flow in the PC5 link.
  • PC5QoS flow identifier PC5QoS flow identifier, PFI
  • D2D QoS supports GBR QoS flow and Non-GBR QoS flow.
  • PC5QoS parameters include PQI (PC5 5QI), PC5 flow bit rate (PC5flow bit rate) and PC5 link aggregated bit rate (PC5link aggregated bit rates).
  • PQI is a special 5QI, and each PQI value corresponds to a QoS characteristic value one by one.
  • the QoS characteristic value includes resource type, priority level, data packet delay budget, data packet error probability, maximum data burst, Average window.
  • the PC5 stream bit rate includes the guaranteed stream bit rate and the maximum stream bit rate.
  • the terminal device can obtain the QoS mapping configuration from the PCF during the registration process, and the QoS mapping configuration is included in the terminal device policy.
  • QoS mapping configuration includes: configuration 1) correspondence between business types or business requirements (priority, reliability, delay, etc.) and PC5QoS parameters (such as PQI, MFBR/GFBR, etc.); configuration 2) PC5QoS parameters and sidelinks Correspondence between radio bearers (side link radio bear, SLRB).
  • the PC5QoS parameter is the PC5QoS parameter authorized by the network.
  • configuration 1) can be used in scenarios where the terminal device is under network service or not, and configuration 2) can be used in scenarios where the terminal device is not under network service.
  • the PCF provides the authorized PC5QoS parameters to the terminal equipment, it also sends the authorized PC5QoS parameters to the RAN where the terminal equipment resides through the AMF. It is worth noting that the PC5QoS parameters sent to the terminal equipment and the RAN are all PC5QoS parameters used for direct communication between terminal equipment.
  • the PC5QoS parameter used for direct communication between terminal devices may be understood as the PC5 QoS parameter used for the PC5 link for direct communication between terminal devices.
  • terminal devices negotiate PC5QoS flow information and establish PC5QoS flow. Different services with the same PC5QoS parameters are associated to the same PC5QoS flow.
  • the PC5QoS flow information includes the PC5QoS flow identifier and the PC5QoS parameter information corresponding to the PC5QoS flow identifier.
  • the terminal device derives the QoS rule (QoS rule), which indicates the corresponding relationship between the PC5 Packet Filter Set and the PC5QoS flow identifier.
  • the PC5 packet filtering set can include any combination of service type, source layer 2 identifier (Source layer-2identifier, Source L2ID)/destination layer 2 identifier (Destination layer-2identifier, Destination L2ID), application layer ID.
  • the PC5 data packet filtering set may be an IP data packet filtering set, including any combination of source/destination IP addresses, source/destination port numbers, and the like.
  • the terminal device After the terminal device negotiates the PC5QoS parameter information, the terminal device provides the RAN with PC5QoS parameter information and link information (such as PC5 link ID (PC5link ID) or destination layer 2 identifier) when the terminal device is under the network service, so that the terminal device obtains information from the RAN Obtain the access stratum (access stratum, AS) layer configuration (such as logical channel configuration or radio bearer configuration) corresponding to the PC5QoS parameter.
  • the RAN authorizes the PC5QoS parameters provided by the terminal device according to the authorized PC5QoS parameters obtained from the PCF, and provides the AS layer configuration after the authorization is passed.
  • the flow chart of establishing a PC5 link between two terminal devices can be seen in Figure 4, where the PC5 link established between UE1 and UE2 can be PC5 unicast link.
  • Step 401 UE1 sends a direct communication request message.
  • the direct communication request message includes the application layer identifier of UE2.
  • UE1 uses the source layer 2 identifier and the destination layer 2 identifier to send the direct communication request message, and the direct communication request message may be a broadcast message.
  • the source layer 2 identifier is a layer 2 address allocated by UE1 itself
  • the destination layer 2 identifier is a broadcast layer 2 address.
  • UE2 determines a layer 2 address for receiving the direct communication request message, and configures the layer 2 address of UE2 on the UE2 side.
  • step 402 a secure channel is established between UE1 and UE2.
  • Step 403 UE2 receives the direct communication request message broadcast by UE1, determines that the direct communication request message includes the application layer identifier of UE2, and UE2 sends a direct communication response message to UE1 in response to the direct communication request message.
  • the direct communication response message may be a direct communication acceptance message.
  • the source layer 2 identifier corresponding to the direct communication response message is the layer 2 address allocated by UE2 itself, and the destination layer 2 identifier is the layer 2 address of UE1 in step 401 .
  • PC5QoS flow information can also be negotiated between UE1 and UE2, and the PC5QoS flow information can include PC5QoS flow identifier and PC5QoS parameter information corresponding to the PC5QoS flow identifier.
  • Step 404 after the PC5 link is established between UE1 and UE2, UE1 and UE2 can transmit service data to each other, where the service data can also be referred to as sidelink data, sidelink service data, or proximity services (proximity- based services, ProSe) data, etc.
  • service data can also be referred to as sidelink data, sidelink service data, or proximity services (proximity- based services, ProSe) data, etc.
  • UE1 and UE2 will also allocate PC5 link IDs to identify the PC5 links respectively, wherein the PC5 link IDs are assigned individually by each terminal device and are only used interactively between internal layers of the terminal device.
  • the UE1 includes the ProSe layer and the AS layer. After the ProSe layer establishes a PC5 link with another terminal device (ie UE2), the ProSe layer identifies the PC5 link, the PC5 The source layer 2 identifier and destination layer 2 identifier used by the link are sent to the AS layer.
  • the AS layer stores the corresponding relationship between the PC5 link identifier, the source layer 2 identifier, and the destination layer 2 identifier.
  • the ProSe layer After the ProSe layer establishes the PC5QoS flow, it sends the PC5QoS flow identifier and the corresponding PC5QoS parameters to the AS layer, and the AS layer saves the PC5QoS parameters corresponding to the PC5QoS flow identifier, and generates the AS layer configuration (such as logical channel configuration or radio bearer configuration) according to the PC5QoS parameters. .
  • the ProSe layer determines the PC5 link identifier and PC5QoS flow identifier corresponding to the data packet, and carries the PC5 link identifier and PC5QoS flow identifier with the data packet to the AS layer, and the AS layer determines the source layer according to the PC5 link identifier 2 identifier and destination layer 2 identifier, the AS layer determines the AS layer configuration according to the PC5QoS flow identifier, and the AS layer uses the source layer 2 identifier, destination layer 2 identifier, and AS layer configuration to send corresponding data.
  • the AS layer of UE1 can receive the data packet sent by all terminal devices, determine whether the destination layer 2 identifier is the L2ID allocated by itself, if so, judge itself as the receiving end of the data, and submit it to the upper layer for further processing; if If not, the packet is discarded.
  • Licensed spectrum (licensed spectrum): At present, public mobile communication networks use licensed spectrum, which is allocated by the telecommunications or frequency management departments of various countries. Other technologies and networks are not allowed to be used within the licensed spectrum range to ensure the quality and security of mobile networks. Service reliability and other requirements can be guaranteed by using spectrum resources in the licensed spectrum to transmit services.
  • Unlicensed spectrum (unlicensed spectrum): The use of unlicensed spectrum does not require application and is free. Among them, technologies such as wireless fidelity (WiFi) and Zigbee (zigbee) use unlicensed spectrum. Requirements such as service reliability are not easy to guarantee when services are transmitted through spectrum resources in unlicensed spectrum. In this application, an unlicensed spectrum may also be called an unlicensed spectrum.
  • WiFi wireless fidelity
  • Zigbee Zigbee
  • zigbee Zigbee
  • service reliability are not easy to guarantee when services are transmitted through spectrum resources in unlicensed spectrum.
  • an unlicensed spectrum may also be called an unlicensed spectrum.
  • Spectrum resource refers to the frequency resource used to transmit wireless electromagnetic waves, which can be a section of spectrum resource or some specific frequency resources.
  • the spectrum resources in the licensed spectrum may be frequency resources in a 100MHz bandwidth of 3500MHz-3600MHz
  • the spectrum resources in the unlicensed spectrum may be frequency resources in a 200MHz bandwidth of 5.15GHz-5.35GHz.
  • the two terminal devices can transmit service data to each other through the side link.
  • the communication method provided by the present application can be used to reasonably determine a spectrum mode, so that the two terminal devices can transmit service data in the determined spectrum mode.
  • the two terminal devices may be a first terminal device and a second terminal device respectively, wherein the first terminal device may be a service data sending end, and the second terminal device may be a service data receiving end.
  • the first terminal device is referred to as UE1 for short
  • the second terminal device is referred to as UE2 for short.
  • the service data transmitted by UE1 and UE2 can be referred to as the service data of the first service;
  • the spectrum method for UE1 and UE2 to transmit the service data of the first service can be called the first spectrum method, and the first spectrum method can be the authorized spectrum method , or an unlicensed spectrum method, or a licensed spectrum and an unlicensed spectrum (licensed spectrum and unlicensed spectrum) method.
  • UE1 and UE2 can transmit the service data of the first service through the licensed spectrum; when the first spectrum mode is the unlicensed spectrum mode, UE1 and UE2 can transmit the first service data through the unlicensed spectrum Service data of a service; when the first spectrum mode is licensed spectrum and unlicensed spectrum, UE1 and UE2 can transmit the service data of the first service through licensed spectrum and unlicensed spectrum.
  • UE1 may use licensed spectrum and unlicensed spectrum to transmit service data of the first service with UE2 at the same time based on carrier aggregation (carrier aggregation, CA).
  • FIG. 5 shows a communication method of the present application.
  • UE1 can transmit service data of the first service with UE2 using the first spectrum method according to the service information of the first service.
  • the details are as follows.
  • step 501 UE1 acquires service information of a first service.
  • the application layer of UE1 may generate service information of the first service, and send the service information of the first service to the ProSe layer of UE1.
  • the ProSe layer of UE1 may acquire the service information of the first service from the application layer of UE1.
  • the service information of the first service may include at least one of the following (1) to (3):
  • the PC5QoS parameters of the first service may include one or more of the following: PQI of the first service, or bit rate of the first service.
  • the service type of the first service may include one or more of the following: video, voice, or critical service, ProSe service type (ProSe service type), service provider service identifier (provider service identifier, PSID), Or intelligent transport systems application identifier (ITS-AID).
  • ProSe service type may be used to identify a service whose service type is ProSe.
  • the service identifier of the first service may be a ProSe identifier (ProSe identifier), or a flow description (traffic descriptor) of the first service.
  • the flow description of the first service may be an IP description (IP descriptor) corresponding to the first service, or a domain description (domain descriptor), where the domain description is, for example, a fully qualified domain name (FQDN).
  • IP descriptor IP description
  • domain descriptor domain description
  • FQDN fully qualified domain name
  • step 502 UE1 transmits service data of the first service with UE2 in a first spectrum manner according to the service information of the first service.
  • the service data of the first service is carried on the sidelink between UE1 and UE2.
  • the sidelink between UE1 and UE2 may be a PC5 link (PC5link), or a Layer-2 link (Layer-2link), or a PC5 unicast link (PC5unicast link).
  • UE1 can transmit the service data of the first service with UE2 using the first spectrum method according to the service information of the first service.
  • the service can be transmitted between UE1 and UE2 through a spectrum method more suitable for service characteristics. Data, which helps to better meet business needs and rationally utilize licensed and unlicensed spectrum.
  • the foregoing method further includes: UE1 determining the first spectrum mode according to service information of the first service.
  • UE1 may determine the first spectrum mode according to the correspondence between the service information and the spectrum mode, and the service information of the first service. As follows, first explain the corresponding relationship between service information and spectrum mode:
  • the spectrum modes in the corresponding relationship may include one or more of the following: licensed spectrum mode, unlicensed spectrum mode, licensed spectrum and unlicensed spectrum mode, licensed spectrum mode in priority, or unlicensed spectrum mode in priority.
  • the licensed spectrum mode, the unlicensed spectrum mode, the licensed spectrum mode and the unlicensed spectrum mode can all refer to the description of the first spectrum mode above, and the explanation of the priority licensed spectrum mode and the priority unlicensed spectrum mode is as follows:
  • the preferred authorized spectrum mode can be understood as UE1 and UE2 can transmit service data through licensed spectrum mode or unlicensed spectrum mode, but the licensed spectrum mode is preferred to transmit service data.
  • UE1 may first determine whether to transmit service data through licensed spectrum, and if so, transmit service data through licensed spectrum; otherwise, UE1 may transmit service data through unlicensed spectrum.
  • the implementation manner of UE1 determining whether to transmit service data in a licensed spectrum mode may refer to the description in the following embodiments.
  • the method of prioritizing the unlicensed spectrum can be understood as that UE1 and UE2 can transmit service data through the unlicensed spectrum or the authorized spectrum, but the service data is preferentially transmitted through the unlicensed spectrum.
  • UE1 may first determine whether to transmit service data through unlicensed spectrum, and if so, transmit service data through unlicensed spectrum; otherwise, UE1 may transmit service data through licensed spectrum.
  • the implementation manner of UE1 determining whether to transmit service data through unlicensed spectrum may refer to the description in the following embodiments.
  • the service information in the corresponding relationship may include one or more of PC5QoS parameters, service types, and service identifiers.
  • PC5QoS parameters for specific descriptions, please refer to the description in the service information of the first service above, which will not be repeated here.
  • the service information in the corresponding relationship may be PC5QoS parameters.
  • the service information in the corresponding relationship may specifically be the PQI in the PC5QoS parameter, that is, the PQI may correspond to the spectrum mode.
  • each service information in the corresponding relationship may also include multiple PQIs.
  • the service information in the corresponding relationship may specifically be the bit rate in the PC5QoS parameter, that is, the bit rate may correspond to the spectrum mode.
  • GBR may correspond to a licensed spectrum method, or a priority licensed spectrum method, or a licensed spectrum and an unlicensed spectrum method; for another example, Non-GBR may correspond to an unlicensed spectrum method, or a priority unlicensed spectrum method.
  • the service information in the correspondence relationship may be a service type, that is, the service type may correspond to a spectrum mode.
  • the service types in the corresponding relationship may include video, key service, ProSe service type and service provider service identification, wherein, the video may correspond to the unlicensed spectrum mode, or the priority unlicensed spectrum mode, or the licensed spectrum and the unlicensed spectrum mode Spectrum mode; key business can correspond to licensed spectrum mode, or authorized spectrum mode, or licensed spectrum and unlicensed spectrum mode; ProSe service type can correspond to priority unlicensed spectrum mode; service provider business identification can correspond to licensed spectrum mode, Or give priority to spectrum authorization.
  • the 5 business information can be video 1, video 2, key business 1, ProSe business type 1 and service provider business identification 1, such as Table 2
  • Video 1 corresponds to the unlicensed spectrum mode
  • video 2 corresponds to the priority unlicensed spectrum mode.
  • the service information in the corresponding relationship may be a service identifier, that is, the service identifier may correspond to a spectrum mode.
  • the service identifier in the corresponding relationship may include a flow description.
  • the table 3 includes 5 pieces of business information, and the 5 pieces of business information can be flow description 1 to flow description 5 respectively, where flow description 1 corresponds to the authorized spectrum mode, flow Description 2 corresponds to the unlicensed spectrum mode, and flow description 3 corresponds to the licensed spectrum mode and the unlicensed spectrum mode, etc.
  • the service information in the corresponding relationship may also include a plurality of PC5QoS parameters, service types, and service identifiers.
  • the service information in the corresponding relationship may include PC5QoS parameters and service types, or include PC5QoS parameters, service types and service identifiers, and so on.
  • the service information in the corresponding relationship includes PC5QoS parameters and service types as follows, where the PC5QoS parameter is PQI, and the service type is video or key service as an example.
  • the PC5QoS parameter is PQI
  • the service type is video or key service as an example.
  • PC5QoS parameters and service types may respectively correspond to their own spectrum modes.
  • the service information in the corresponding relationship includes PC5QoS parameters and service types, and the PC5QoS parameters and service types may jointly correspond to a spectrum mode.
  • the above corresponding relationship may be pre-configured in UE1, or obtained by UE1 from an application server, or obtained by UE1 from a core network device (such as PCF), without limitation.
  • UE1 may obtain the corresponding relationship from the PCF during the registration process. Specifically, UE1 sends the 5G ProSe capability (5G ProSe capability) to AMF, AMF transfers the 5G ProSe capability to PCF, and PCF sends the corresponding relationship to UE1 in response to the 5G ProSe capability. Further, the corresponding relationship may be generated by the PCF, or obtained by the PCF from the AF or UDR.
  • 5G ProSe capability 5G ProSe capability
  • PCF sends the corresponding relationship to UE1 in response to the 5G ProSe capability.
  • the corresponding relationship may be generated by the PCF, or obtained by the PCF from the AF or UDR.
  • UE1 may determine the first spectrum mode according to the correspondence between the service information of the first service and the first spectrum mode, and the service information of the first service.
  • the service information of the first service in the corresponding relationship corresponds to the licensed spectrum mode, or the unlicensed spectrum mode, or the licensed spectrum and the unlicensed spectrum mode
  • UE1 can use the spectrum mode corresponding to the service information of the first service in the corresponding relationship , as the first spectrum mode.
  • the ProSe layer of UE1 can obtain the service information of the first service from the application layer, and obtain the corresponding relationship between the service information and the spectrum mode.
  • UE1 can determine the first spectrum method by the ProSe layer or AS layer of UE1, and the following two methods can be referred to:
  • the ProSe layer determines the first spectrum method according to the service information and corresponding relationship of the first service
  • Method 2 The AS layer obtains the service information and corresponding relationship of the first service from the ProSe layer, and the AS layer determines the first spectrum mode according to the service information and corresponding relationship of the first service.
  • UE1 determines the second spectrum mode according to the correspondence between the service information of the first service and the second spectrum mode, and the service information of the first service; UE1 then determines the second spectrum mode according to the second spectrum mode and the first information to determine the first spectrum mode.
  • the service information of the first service in the corresponding relationship corresponds to the preferential licensed spectrum mode or the preferential unlicensed spectrum mode
  • UE1 can determine the second spectrum mode according to the service information of the first service and the corresponding relationship, and the second spectrum mode The way is to give priority to authorized spectrum or to give priority to unlicensed spectrum.
  • UE1 may determine the first spectrum mode according to the second spectrum mode and the first information.
  • the first information may include at least one of the following (a) to (d):
  • Usage status of authorized spectrum resources may include usage rate and/or idle rate of licensed spectrum resources;
  • Utilization status of unlicensed spectrum resources may include usage rate and/or idle rate of unlicensed spectrum resources;
  • Authorized spectrum method or called allowed spectrum method, that is, the authorized spectrum method authorized by network equipment (such as RAN or core network equipment) or allowed to be used by UE1, where the authorized spectrum method can be authorized spectrum method, or non-authorized spectrum method.
  • Licensed spectrum mode or one or more of licensed spectrum mode and unlicensed spectrum mode.
  • UE1 can combine the second spectrum method according to one or more of the usage status of the licensed spectrum resource, the usage status of the unlicensed spectrum resource, the proposed spectrum method, and the authorized spectrum method, more flexibly and reasonably A first spectrum mode is determined.
  • the UE may acquire the first information in the following two possible ways:
  • UE1 may receive first information from a network device.
  • the first information may include at least one of the following (a) to (d): (a) usage status of authorized spectrum resources, (b) usage status of unlicensed spectrum resources, (c) suggested spectrum mode , (d) Authorized spectrum method.
  • UE1 may receive first information from a network device.
  • the first information may be obtained after the UE1 requests the network device, or may be actively sent to the UE1 by the network device.
  • the network device may be a RAN or a core network device, and the core network device is, for example, a PCF.
  • UE1 may receive a suggested spectrum mode from the RAN.
  • the RAN may determine a suggested spectrum mode according to the usage status of licensed spectrum or unlicensed spectrum resources in the serving cell of UE1, and send the suggested spectrum mode to UE1. For example, the RAN knows that in the serving cell of UE1, the idle rate of the licensed spectrum resource is less than or equal to the first idle rate threshold, and the spectrum mode suggested by the RAN to UE1 is an unlicensed spectrum mode; or, the RAN knows that the serving cell of UE1 , the idle rate of the licensed spectrum resources is greater than the first idle rate threshold, and the spectrum mode suggested by the RAN to the UE1 is the licensed spectrum mode.
  • UE1 may receive the usage status of the licensed spectrum resource from the RAN, and/or UE1 may receive the usage status of the unlicensed spectrum resource from the RAN.
  • UE1 may receive the authorized spectrum mode from the RAN or core network equipment.
  • the RAN or core network equipment may also indicate that UE1 cannot use one or more spectrum methods.
  • the spectrum method authorized by the RAN to UE1 is a licensed spectrum method, that is, the RAN indicates to UE1 that UE1 cannot use an unlicensed spectrum method, or cannot Use licensed spectrum and unlicensed spectrum.
  • the licensed spectrum mode may also be replaced by a prohibited or unlicensed spectrum mode, and the authorized spectrum mode is used as an example for description below.
  • UE1 may monitor resources in the resource pool to obtain the first information.
  • the first information may include at least one of the following (a) or (b): (a) usage status of licensed spectrum resources, (b) usage status of unlicensed spectrum resources.
  • UE1 may monitor the authorized spectrum resources in the resource pool to obtain the usage rate and/or idle rate of the authorized spectrum resources.
  • the resource pool includes 10MHz authorized spectrum resources, and UE1 monitors that 1MHz licensed spectrum resources are usable or idle, and UE1 determines that the licensed spectrum resource usage rate is 90% or the licensed spectrum resource idle rate is 10%.
  • UE1 may monitor the unlicensed spectrum resources in the resource pool to obtain the usage rate and/or idle rate of the unlicensed spectrum resources.
  • the resource pool includes 50MHz of unlicensed spectrum resources, and UE1 monitors that 10MHz of unlicensed spectrum resources can be used or is idle, and UE1 determines that the utilization rate of unlicensed spectrum resources is 40% or the idle rate of unlicensed spectrum resources is 60%. .
  • UE1 determines the first spectrum mode according to the second spectrum mode and the first information, at least the following examples:
  • Example 1 when the second spectrum mode is the licensed spectrum mode with priority, and the idle rate of the licensed spectrum resources is greater than the first idle rate threshold, UE1 determines that the first spectrum mode is the licensed spectrum mode.
  • Example 2 when the second spectrum mode is a preferential unlicensed spectrum mode, and the idle rate of unlicensed spectrum resources is greater than the second idle rate threshold, UE1 determines that the first spectrum mode is an unlicensed spectrum mode.
  • Example 3 when the second spectrum mode is the priority licensed spectrum mode, and the suggested spectrum mode is the licensed spectrum mode, UE1 determines that the first spectrum mode is the licensed spectrum mode.
  • Example 4 when the second spectrum mode is the preferred unlicensed spectrum mode, and the suggested spectrum mode is the unlicensed spectrum mode, UE1 determines that the first spectrum mode is the unlicensed spectrum mode.
  • Example 5 in the case that the second spectrum mode is the priority licensed spectrum mode, and the authorized spectrum mode is the licensed spectrum mode, UE1 determines that the first spectrum mode is the licensed spectrum mode.
  • Example 6 when the second spectrum mode is the preferential unlicensed spectrum mode, and the licensed spectrum mode is the unlicensed spectrum mode, UE1 determines that the first spectrum mode is the unlicensed spectrum mode.
  • Example 7 when the second spectrum method is the priority licensed spectrum method, but the recommended spectrum method is the unlicensed spectrum method, UE1 can compare the priorities of the two, for example, the priority of the second spectrum method is higher than the recommended spectrum method priority, then UE1 may determine that the first spectrum mode is the licensed spectrum mode. Alternatively, based on the proposed spectrum mode, UE1 may determine that the first spectrum mode is an unlicensed spectrum mode.
  • the second spectrum mode is the priority licensed spectrum mode, but the authorized spectrum mode is the unlicensed spectrum mode, UE1 may determine that the first spectrum mode is the unlicensed spectrum mode.
  • the second spectrum mode is the priority licensed spectrum mode, but when the idle rate of licensed spectrum resources is less than or equal to the first idle rate threshold, UE1 may determine that the first spectrum mode is the unlicensed spectrum mode.
  • the ProSe layer of UE1 can obtain the service information of the first service from the application layer, and obtain the corresponding relationship between the service information and the spectrum mode.
  • the AS layer of UE1 may receive the first information from the RAN or core network equipment, or monitor unlicensed spectrum resources and/or licensed spectrum resources in the resource pool to obtain the first information.
  • the determination of the first spectrum method can be specifically implemented by the ProSe layer or the AS layer of UE1, and the following three methods can be referred to:
  • Method 1 The ProSe layer determines the second spectrum mode according to the service information and corresponding relationship of the first service; the AS layer obtains the second spectrum mode from the ProSe layer, and the AS layer determines the first spectrum mode according to the second spectrum mode and the first information Way;
  • the ProSe layer determines the second spectrum mode according to the service information and corresponding relationship of the first service; the ProSe layer obtains the first information from the AS layer, and the ProSe layer determines the first spectrum mode according to the second spectrum mode and the first information ;
  • Method 3 The AS layer obtains the service information and corresponding relationship of the first service from the ProSe layer, and the AS layer determines the second spectrum mode according to the service information and corresponding relationship of the first service; the AS layer determines the second spectrum mode according to the second spectrum mode and the first information , to determine the first spectrum mode.
  • the service information of the first service may be the service identifier of the first service.
  • service identifier 1 is bound to authorized spectrum
  • service identifier 2 is bound to unlicensed spectrum
  • service identifier 3 is bound to authorized spectrum and Unlicensed spectrum binding.
  • the above method further includes: UE1 sends second information to UE2; wherein, the second information is used to instruct UE1 to transmit service data of the first service in the first spectrum mode .
  • the second information includes the identifier of the first spectrum mode
  • UE1 sends the second information and the service identifier of the first service to UE2, and UE2 can, according to the first spectrum included in the second information, The identification of the mode and the service identification of the first service, and the service data of the first service is transmitted in the first spectrum mode.
  • the second information includes the service identifier of the first service and the identifier of the first spectrum mode
  • UE1 sends the second information to UE2
  • UE2 can
  • the service identifier and the identifier of the first spectrum method are used to transmit the service data of the first service in the first spectrum method.
  • the second information may be carried in a PC5 signaling message, and the PC5 signaling message may be transmitted through the sidelink between UE1 and UE2. This is explained with the 2nd possible example as follows:
  • the second information may be a notification message, and the notification message may be used to notify UE2 that UE1 transmits service data of the first service with UE2 through the first frequency spectrum.
  • the second information may also be a request message, and the request message may be used for UE1 to request UE2 whether to transmit service data of the first service through the first frequency spectrum.
  • UE2 After receiving the request message, UE2 sends a response message to UE1, and the response message may be an acceptance response or a rejection response.
  • the acceptance response may be used to instruct UE2 to accept the transmission of service data with UE1 through the first spectrum method; the rejection response may be used to instruct UE2 to refuse to transmit service data with UE1 through the first spectrum method.
  • the response message may be 1 bit. For example, when the value of the 1 bit is 1, it indicates that the response is accepted, and when the value of the 1 bit is 0, it indicates that the response is rejected.
  • the request message or the response message may be a PC5 signaling message, and the PC5 signaling message is transmitted through the side link between UE1 and UE2, and the request message is such as a direct communication request (direct communication ruqest) message, The response message is such as a direct communication accept message.
  • UE2 may also determine a spectrum mode (which may be referred to as a third spectrum mode) for transmitting service data of the first service according to the service information of the first service and the corresponding relationship.
  • UE2 can determine whether to transmit the service data of the first service with UE1 through the first spectrum method according to the third spectrum method, and the identifier of the first spectrum method and the service identifier of the first service in the request message, and then UE2 sends a rejection message to UE1 Respond or accept the response.
  • UE2 may also be pre-configured with a corresponding relationship between service information and spectrum mode, and the pre-configured corresponding relationship in UE2 may be the same as or different from the pre-configured corresponding relationship in UE1.
  • the third The spectrum mode may be the same as or different from the first spectrum mode indicated by UE1.
  • the first spectrum mode determined by UE1 is a licensed spectrum mode
  • the third spectrum mode determined by UE2 is also a licensed spectrum mode.
  • UE1 sends a request message to UE2, UE2 determines that the third spectrum mode is the same as the first spectrum mode according to the identifier of the first spectrum mode and the service ID of the first service in the request message, and UE2 sends an acceptance response to UE1.
  • the response message sent by UE2 to UE1 may also include the identifier of the third spectrum mode, so that UE2 may inform UE1 that currently UE2 can transmit service data of the first service with UE1 through the third spectrum mode.
  • the first spectrum mode determined by UE1 is a licensed spectrum mode
  • the third spectrum mode determined by UE2 is also a licensed spectrum mode.
  • UE1 may send a request message to UE2, where the request message includes the service identifier of the first service and the identifier of the first spectrum mode, where the identifier of the first spectrum mode is used to indicate the licensed spectrum mode. After receiving the request message, UE2 sends a response message to UE1.
  • the response message includes the service ID of the first service and the ID of the third spectrum mode.
  • the ID of the third spectrum mode is also used to indicate the licensed spectrum mode.
  • UE1 determines according to the response message that UE2 can transmit the service data of the first service with UE1 through the first spectrum mode (ie, the licensed spectrum mode).
  • the first spectrum mode is the unlicensed spectrum mode, or the licensed spectrum mode and the unlicensed spectrum mode
  • UE1 can not only send the second information to UE2, but also send the first unlicensed spectrum resource to UE2.
  • the information of the first unlicensed spectrum resource may be used to instruct UE1 and UE2 to transmit service data of the first service through the first unlicensed spectrum resource.
  • UE2 may listen to the first unlicensed spectrum resource, so as to receive service data of the first service from UE1.
  • the unlicensed spectrum may include multiple unlicensed frequency bands
  • UE1 may select one of the unlicensed frequency bands from the multiple unlicensed frequency bands
  • UE1 sends the identification or number of the unlicensed frequency band to UE2, and the unlicensed frequency band It is the first unlicensed spectrum resource, and the identifier or number of the unlicensed frequency band is the information of the first unlicensed spectrum resource.
  • the unlicensed spectrum includes unlicensed frequency band 1 (such as 5.15GHz-5.35GHz) and unlicensed frequency band 2 (such as 5.725GHz-5.85GHz), UE1 can select unlicensed frequency band 1 as the first unlicensed spectrum resource , and then UE1 sends the identifier or number of the unlicensed frequency band 1 to UE2.
  • unlicensed frequency band 1 such as 5.15GHz-5.35GHz
  • unlicensed frequency band 2 such as 5.725GHz-5.85GHz
  • UE1 can randomly select one of the multiple unlicensed frequency bands; or UE1 obtains the utilization rate and/or idleness of spectrum resources in each unlicensed frequency band rate, and select an unlicensed frequency band with a relatively low usage rate or a relatively high idle rate.
  • UE1 may also determine the resource location of the first unlicensed spectrum resource from multiple unlicensed frequency bands of the unlicensed spectrum, and send the resource location of the first unlicensed spectrum resource to UE2.
  • UE1 may also send the information of the first unlicensed spectrum resource to UE2 without sending the second information to UE2.
  • UE2 receives the information of the first service from UE1 according to the information of the first unlicensed spectrum resource. business data.
  • UE2 can only listen to whether there is service data of the first service on the first unlicensed spectrum resource, without listening to resources on all unlicensed spectrum resources, thereby helping to reduce energy consumption of UE2.
  • the side link between UE1 and UE2 may include multiple QoS flows, and the service data transmitted between UE1 and UE2 may be carried by a certain QoS flow in the side link (which may be recorded as the first QoS flow )middle.
  • UE1 and UE2 use the first spectrum method to transmit the service data of the first service, which can be understood as: UE1 and UE2 use the first spectrum method to transmit the first QoS flow in the sidelink, where the Service data of the first service is carried in the first QoS flow.
  • multiple QoS flows between UE1 and UE2 can respectively carry service data corresponding to different service information, and different QoS flows can correspond to different spectrum modes, thereby helping to improve the flexibility of service data transmission.
  • UE1 can associate the first service with the first QoS flow according to the first spectrum method and the spectrum method corresponding to the first QoS flow, so that when UE1 sends the service data of the first service to UE2, the The service data of the first service is carried in the first QoS flow.
  • UE1 associates the first service with the first QoS flow, specifically in the following two possible ways:
  • the QoS flows included in the sidelinks of UE1 and UE2 can correspond to their respective spectrum methods, for example, a certain QoS flow corresponds to a licensed spectrum method, or corresponds to an unlicensed spectrum method, or corresponds to a licensed spectrum method and unlicensed spectrum approach.
  • the spectrum mode corresponding to the QoS flow indicates that the QoS flow is transmitted using this spectrum mode. For example, if the spectrum mode corresponding to the QoS flow is a licensed spectrum mode, then the QoS flow is transmitted using the licensed spectrum mode.
  • UE1 can first determine whether there is a QoS flow corresponding to the first spectrum mode among the multiple QoS flows included in the sidelink according to the first spectrum mode and the spectrum modes corresponding to the multiple QoS flows in the sidelink. Corresponding (or associated) QoS flow. If it exists, select the QoS flow corresponding to the first spectrum mode as the first QoS flow; if it does not exist, generate a new QoS flow according to the first spectrum mode, and the new QoS flow is consistent with the first spectrum mode Corresponding to the method, the new QoS flow is the first QoS flow. Then UE1 associates the first service with the first QoS flow.
  • UE1 may generate the first QoS flow according to the first spectrum mode, where the first QoS flow corresponds to (or is associated with) the first spectrum mode. Then UE1 associates the first service with the first QoS flow.
  • the first QoS flow corresponds to the first spectrum mode, and there are two examples as follows:
  • the spectrum mode corresponding to the first QoS flow is the same as the first spectrum mode.
  • the spectrum mode corresponding to the first QoS flow is a licensed spectrum mode, and the first spectrum mode is also a licensed spectrum mode; or, the first QoS flow corresponds to The spectrum mode is the unlicensed spectrum mode, and the first spectrum mode is also the unlicensed spectrum mode; or, the spectrum mode corresponding to the first QoS flow is the licensed spectrum mode and the unlicensed spectrum mode, and the first spectrum mode is also the licensed spectrum mode and the unlicensed spectrum mode.
  • Authorized spectrum mode, etc., UE1 can determine that the first QoS flow corresponds to the first spectrum mode.
  • the spectrum mode corresponding to the first QoS flow includes the first spectrum mode, for example, the spectrum mode corresponding to the first QoS flow is a licensed spectrum mode and an unlicensed spectrum mode, and the first spectrum mode is a licensed spectrum mode; or, the first The spectrum modes corresponding to a QoS flow are licensed spectrum mode and unlicensed spectrum mode, the first spectrum mode is unlicensed spectrum mode, and UE1 can determine that the first QoS flow corresponds to the first spectrum mode.
  • the first QoS flow not only corresponds to the first spectrum mode, but also needs to meet the PC5QoS parameters of the first service.
  • the service information of the first service includes the PC5QoS parameters of the first service
  • UE1 can first determine the first spectrum mode according to the PC5QoS parameters of the first service and the corresponding relationship, and then select the first spectrum mode from the sidelink
  • the QoS flow corresponding to the mode and satisfying the PC5QoS parameters of the first service is used as the first QoS flow.
  • UE1 can associate services corresponding to the same PC5QoS parameters to the same QoS flow. It is also understandable that if different services correspond to the same PC5QoS parameters, then the different services can be associated to the same QoS flow.
  • a QoS flow can carry the service data corresponding to the different services.
  • UE1 can first determine the first spectrum mode according to the service type and the corresponding relationship of the first service, and then select the first spectrum mode from the sidelink
  • the QoS flow corresponding to the mode and satisfying the PC5QoS parameters of the first service is used as the first QoS flow.
  • different types of services correspond to the same PC5QoS parameters, they may also correspond to different first spectrum modes, that is, they may be associated with different QoS flows, and it is also understandable that they can be associated with the same QoS flow
  • the different businesses of different businesses must have the same PC5QoS parameters and the same corresponding relationship between business types and spectrum modes.
  • the second information may include the identifier of the first spectrum method, and UE1 sends the second information and the identifier of the first QoS flow to UE2.
  • UE2 may and the first QoS flow, the first QoS flow is transmitted in the first spectrum mode.
  • the second information includes the identifier of the first QoS flow and the identifier of the first spectrum mode, and UE1 sends the second information to UE2.
  • UE2 may use the identifier of the first QoS flow included in the second information and the An identifier of a spectrum mode, the first QoS flow is transmitted in the first spectrum mode.
  • the first QoS flow may specifically be PC5QoS flow.
  • UE1 transmits the service data of the first service with UE2 using the first spectrum mode. Specifically, UE1 requests the spectrum resources corresponding to the first spectrum mode from the RAN, and then UE1 Sending service data of the first service to UE2; or, UE1 listens to and preempts spectrum resources corresponding to the first spectrum mode, and then UE1 sends service data of the first service to UE2 according to the spectrum resources preempted by listening.
  • UE2 may perform detection on the spectrum resource corresponding to the first spectrum mode, so as to receive service data of the first service from UE1.
  • the following is an example to illustrate two implementations in which UE1 adopts the first frequency spectrum method and UE2 transmits the service data of the first service:
  • Implementation 1 when the first spectrum mode is the licensed spectrum mode, UE1 sends resource request information to the RAN, and the resource request information is used to request licensed spectrum resources for transmitting service data of the first service between UE1 and UE2.
  • the RAN allocates the authorized spectrum resource to UE1 according to the resource request information, and indicates the resource location of the authorized spectrum resource (such as time-frequency resource location information) to UE1.
  • UE1 sends service data of the first service to UE2 on the authorized spectrum resource corresponding to the resource location.
  • RAN may also allocate unlicensed spectrum resources to UE1, and UE1 transmits service data of the first service with UE2 based on the unlicensed spectrum resources allocated by RAN.
  • Implementation 2 when the first spectrum mode is an unlicensed spectrum mode, UE1 listens to the unlicensed spectrum resource in the preempted resource pool, and determines the resource location of the unlicensed spectrum resource used to transmit the service data of the first service. UE1 transmits service data of the first service with UE2 on the unlicensed spectrum resource corresponding to the resource location.
  • UE1 may also send PC5 QoS parameters and link information to RAN, where the link information is, for example, a PC5 link identifier or a destination layer 2 identifier.
  • RAN sends AS layer configuration to UE1 according to PC5 QoS parameters and link information.
  • the RAN authorizes the PC5QoS parameters provided by the UE according to the authorized PC5QoS parameters obtained from the PCF, and sends the AS layer configuration corresponding to the PC5QoS parameters and link information to UE1 after the authorization is passed.
  • UE1 can also send the identifier of the first spectrum mode to the RAN, and the RAN judges whether to reserve licensed spectrum resources or unlicensed spectrum resources for UE1 and UE2 to transmit the service data of the first service according to the identifier of the first spectrum mode. Spectrum resources.
  • FIG. 6 exemplarily provides an implementation manner of transmitting service data of the first service between UE1 and UE2 in a specific application scenario provided by the present application.
  • Step 601 UE1 sends 5G ProSe capability to PCF. Specifically, UE1 sends the 5G ProSe capability to the PCF through the AMF during the registration process.
  • step 602 the PCF sends the correspondence between service information and spectrum modes to UE1. Specifically, the PCF sends the correspondence between the service information and the spectrum mode to UE1 through the AMF.
  • Step 603 the RAN broadcasts the first information.
  • UE1 receives the first information.
  • This step may also be replaced by: the UE1 requests the RAN for the first information, and the RAN sends the first information to the UE1.
  • Step 604 UE1 determines the first spectrum mode according to the service information of the first service.
  • UE1 determines the first spectrum mode according to the correspondence between service information and spectrum modes, and service information of the first service.
  • UE1 determines the second spectrum mode according to the correspondence between service information and spectrum modes, and the service information of the first service; UE1 then determines the first spectrum mode according to the second spectrum mode and the first information.
  • Step 605 UE1 sends a request message to UE2, and the request message includes the identifier of the first QoS flow and the identifier of the first spectrum mode.
  • Step 606 UE2 sends a response message to UE1 in response to the request message of UE1, and the response message includes the identifier of the first QoS flow and the identifier of the first spectrum mode. It can be understood that the response message is used to instruct UE2 to accept the transmission of the first QoS flow with UE1 through the first frequency spectrum.
  • Step 607 UE1 sends an information report to the RAN, and the information report includes the identifier of the first spectrum mode, PC5 QoS parameters and link information, where the link information is, for example, the PC5 link identifier or the destination layer 2 identifier.
  • the identifier of the first frequency spectrum mode, PC5QoS parameters and link information are stored in the RAN.
  • Step 608 RAN sends AS layer configuration to UE1.
  • Step 609 UE1 transmits the first QoS flow with UE2 using the first spectrum method, wherein the first QoS flow carries the service data of the first service.
  • step 603 is an optional step.
  • the RAN may send the first information to UE1.
  • the PCF may also send the authorized spectrum mode of UE1 to UE1. Specifically, in the correspondence between service information and spectrum mode, if the service information of the first service corresponds to the second spectrum mode, Then the PCF may send the authorized spectrum mode of the UE1 to the UE1, where the authorized spectrum mode is the first information. The first information is used by UE1 to determine the first spectrum mode in step 604 .
  • step 601 For details not described in step 601, refer to the description in step 501.
  • step 602 to step 604 For details not described in step 602 to step 604, reference may be made to the description in related embodiments of determining the first frequency spectrum mode in step 502.
  • step 605 and step 606 For details not described in step 605 and step 606, reference may be made to the description in related embodiments in step 502 about UE1 and UE2 negotiating the first frequency spectrum mode.
  • step 607 to step 609 For details not described in step 607 to step 609, refer to the description in the related embodiment in step 502 that UE1 and UE2 transmit the service data of the first service through the first frequency spectrum.
  • Fig. 7 to Fig. 9 show multiple implementations of transmitting service data of the first service between UE1 and UE2 provided in this application.
  • UE2 may also include the ProSe layer and AS layer (not shown in the figure).
  • ProSe layer and AS layer see the interaction between the ProSe layer and the AS layer in UE1.
  • ProSe layer and AS layer can be understood as the ProSe layer and AS layer of UE1.
  • the ProSe layer may determine the first spectrum mode according to the service information of the first service.
  • Step 701 the AS layer sends the first information to the ProSe layer.
  • Step 701 is an optional step.
  • the AS layer may send the first information to the ProSe layer.
  • Step 702 the ProSe layer determines the first spectrum mode according to the service information of the first service.
  • the ProSe layer determines the first spectrum mode according to the correspondence between the service information of the first service and the first spectrum mode, and the service information of the first service.
  • the ProSe layer determines the second spectrum mode according to the correspondence between the service information of the first service and the second spectrum mode, and the service information of the first service; the ProSe layer further determines the second spectrum mode according to the second spectrum mode and the first information , to determine the first spectrum mode.
  • Step 703 the ProSe layer associates the first QoS flow with the first spectrum mode according to the service information of the first service and the first spectrum mode.
  • the ProSe layer sends the identifier of the first QoS flow and the identifier of the first spectrum mode to the AS layer.
  • Step 704 the AS layer stores the identifier of the first QoS flow and the identifier of the first spectrum mode correspondingly.
  • Step 705 the ProSe layer sends the service data of the first service and the identifier of the first QoS flow to the AS layer.
  • Step 706 the AS layer determines the first spectrum mode according to the first QoS flow identifier.
  • Step 707 the AS layer transmits the first QoS flow with UE2 through the first frequency spectrum, and the first QoS flow carries the service data of the first service.
  • step 701 and step 702 refer to the description in related embodiments of determining the first spectrum mode in step 502.
  • step 703 and step 704 For details not described in step 703 and step 704, please refer to the description in step 502 about UE1 associating the first QoS flow with the first spectrum mode in related embodiments.
  • step 502 For content not described in detail in steps 705 to 707, refer to the description in related embodiments in step 502 about UE1 and UE2 transmitting service data of the first service through the first frequency spectrum.
  • the ProSe layer determines the first spectrum mode according to the service information of the first service, sends the first QoS flow identifier and the first spectrum mode identifier to the AS layer; and sends the first service service data and the AS layer to the AS layer.
  • the AS layer can transmit the first QoS flow with UE2 through the first frequency spectrum, and the first QoS flow carries the service data of the first service. In this way, the functions of the ProSe layer and the AS layer are clearly divided.
  • the AS layer may determine the first frequency spectrum mode according to the service information of the first service.
  • Step 801 the ProSe layer sends the first configuration information and the second configuration information to the AS layer
  • the first configuration information may include the QoS flow identifier and the PC5QoS parameters corresponding to the QoS flow identifier
  • the second configuration information may include service information and spectrum mode Correspondence.
  • the first configuration information and the second configuration information may be carried in the same message or in different messages.
  • Step 802 the ProSe layer sends the service information of the first service to the AS layer.
  • step 803 the AS layer determines the first spectrum mode according to the service information of the first service.
  • the AS layer determines the first spectrum mode according to the correspondence between the service information of the first service and the first spectrum mode, and the service information of the first service.
  • the AS layer determines the second spectrum mode according to the correspondence between the service information of the first service and the second spectrum mode, and the service information of the first service; the AS layer further determines the second spectrum mode according to the second spectrum mode and the first information , to determine the first spectrum mode.
  • Step 804 the AS layer associates the first QoS flow with the first spectrum mode according to the service information of the first service and the first spectrum mode.
  • the AS layer correspondingly stores the identifier of the first QoS flow and the identifier of the first spectrum mode.
  • Step 805 the ProSe layer sends the service data of the first service and the identifier of the first QoS flow to the AS layer.
  • Step 806 the AS layer determines the first spectrum mode according to the first QoS flow identifier.
  • Step 807 the AS layer transmits the first QoS flow with UE2 through the first frequency spectrum, and the first QoS flow carries the service data of the first service.
  • step 801 to step 803 reference may be made to the description in related embodiments of determining the first frequency spectrum mode in step 502.
  • step 804 For content not described in detail in step 804, refer to the description in the related embodiments of UE1 associating the first QoS flow and the first spectrum mode in step 502.
  • step 805 to step 807 please refer to the description in the related embodiment of UE1 and UE2 transmitting the service data of the first service in the first spectrum mode in step 502.
  • the AS layer obtains the corresponding relationship between the service information and the spectrum mode from the ProSe layer, and the AS layer obtains the service information of the first service from the ProSe layer, and then the AS layer can, according to the corresponding relationship between the service information and the spectrum mode, and the second The service information of a service determines the first frequency spectrum mode.
  • the ProSe layer does not need to participate in the determination process of the spectrum mode.
  • the ProSe layer may determine the second spectrum mode according to the service information of the first service, and the AS layer further determines the first spectrum mode according to the second spectrum mode and the first information.
  • Step 901 the ProSe layer sends the first configuration information to the AS layer, and the first configuration information may include the QoS flow identifier and the PC5QoS parameters corresponding to the QoS flow identifier.
  • Step 902 the ProSe layer determines the second spectrum mode according to the correspondence between the service information of the first service and the second spectrum mode, and the service information of the first service.
  • Step 903 the ProSe layer indicates the second spectrum mode to the AS layer.
  • Step 904 the AS layer determines the first spectrum mode according to the second spectrum mode and the first information.
  • Step 905 the AS layer associates the first QoS flow with the first spectrum mode according to the service information of the first service and the first spectrum mode.
  • the AS layer correspondingly stores the identifier of the first QoS flow and the identifier of the first spectrum mode.
  • Step 906 the ProSe layer sends the service data of the first service and the identifier of the first QoS flow to the AS layer.
  • Step 907 the AS layer determines the first spectrum mode according to the first QoS flow identifier.
  • Step 908 the AS layer transmits the first QoS flow with UE2 through the first frequency spectrum, and the first QoS flow carries the service data of the first service.
  • step 901 to step 904 reference may be made to the description in related embodiments of determining the first frequency spectrum manner in step 502.
  • step 905 For content not described in detail in step 905, refer to the description in related embodiments of UE1 associating the first QoS flow and the first spectrum mode in step 502.
  • step 502 For content not described in detail in steps 906 to 908, refer to the description in related embodiments in step 502 about UE1 and UE2 transmitting service data of the first service through the first frequency spectrum.
  • the ProSe layer determines the second spectrum mode according to the service information of the first service
  • the AS layer determines the first spectrum mode according to the second spectrum mode and the first information.
  • the AS layer does not need to provide the first information to the ProSe layer.
  • FIG. 10 shows another communication method of the present application.
  • UE1 can transmit service data of the first service with UE2 in the first spectrum mode according to the spectrum mode subscribed by UE1, as described below.
  • Step 1001 UE1 acquires the spectrum mode subscribed by UE1.
  • the spectrum mode subscribed by UE1 may include one or more of the following spectrum modes: licensed spectrum mode, unlicensed spectrum mode, licensed spectrum mode with priority, unlicensed spectrum mode with priority, or licensed spectrum mode and unlicensed spectrum mode.
  • the contracted spectrum mode can also be understood as the authorized spectrum mode, that is, the UE1 can obtain the spectrum mode authorized by the network device to the UE1 (or allowed to be used by the network device).
  • UE1 can also obtain the area information corresponding to the spectrum mode subscribed by UE1. It can be understood that the spectrum mode that UE can use in different areas is different.
  • the licensed spectrum mode corresponds to area 1, and UE1 uses the licensed spectrum mode in area 1.
  • the unlicensed spectrum mode corresponds to area 2, UE1 uses the unlicensed spectrum mode in area 2, and so on.
  • the spectrum mode subscribed by UE1 may be received by UE1 from the PCF.
  • UE1 sends the 5G ProSe capability to the AMF, and the AMF transfers the 5G ProSe capability to the PCF.
  • the PCF sends to UE1 the spectrum mode subscribed by UE1.
  • the spectrum mode subscribed by UE1 may be generated by the PCF, or obtained by the PCF from the UDR or the AF.
  • the spectrum mode subscribed by UE1 may also be acquired by UE from UDM, or pre-configured by UE1.
  • UE1 can also obtain the area information corresponding to the spectrum mode subscribed by UE1 through any of the above methods, which will not be repeated here.
  • step 1002 UE1 transmits service data of a first service with UE2 in a first spectrum mode according to the spectrum mode subscribed by UE1.
  • the service data can be transmitted between UE1 and UE2 through a spectrum mode that is more suitable for the characteristics of UE1, which is helpful for better transmission of service data and rational use of licensed spectrum and unlicensed spectrum.
  • the above method further includes: UE1 determining the first spectrum mode according to the spectrum mode subscribed by UE1. Two situations are described as follows:
  • UE1 may determine the UE1 contracted spectrum mode as the first spectrum mode. For example, UE1 signs a licensed spectrum mode, then UE1 may determine that the licensed spectrum mode is the first spectrum mode.
  • UE1 may determine the first spectrum mode according to the second spectrum mode and the first information. For example, UE1 subscribes to the priority authorized spectrum mode (that is, the second spectrum mode), and the idle rate of the licensed spectrum resource included in the first information is greater than the first idle rate threshold, UE1 can according to the idle rate of the licensed spectrum resource and the priority authorized spectrum mode, Select an authorized spectrum mode (that is, the first spectrum mode).
  • UE1 may determine the first spectrum mode from the multiple spectrum modes subscribed by UE1. Specifically, there are two examples:
  • UE1 may determine the first spectrum mode from multiple spectrum modes subscribed by UE1 according to the first area information and area information corresponding to the spectrum mode subscribed by UE1.
  • the first area information may be used to characterize the area where UE1 is located.
  • UE1 may determine the first area information according to the area where UE1 is located, or UE1 may receive the first area information from the RAN. In this way, UE1 can better determine the first spectrum mode suitable for the area where UE1 is located.
  • the area information corresponding to the spectrum mode may be at cell granularity, and the area information corresponding to the spectrum mode may include one or more cells; or, the area information corresponding to the spectrum mode may also be at the tracking area (tracking area, TA) granularity , the area information corresponding to the spectrum mode may include one or more TAs.
  • the first area information may be of cell granularity, and the first area information may be used to indicate which cell UE1 is in; or, the first area information may be of TA granularity, and the first area information may be used to indicate which TA UE1 is in.
  • UE1 can sign up for licensed spectrum mode, unlicensed spectrum mode, licensed spectrum mode and unlicensed spectrum mode.
  • the licensed spectrum mode corresponds to TA#1
  • the unlicensed spectrum mode corresponds to TA#2
  • the licensed spectrum mode mode and unlicensed spectrum mode correspond to TA#3.
  • UE1 can determine the first area information according to the area where UE1 is located.
  • the first area information is TA#1, and UE1 can select the authorized Spectrum mode (that is, the first spectrum mode).
  • the first area information is cell #1, and the cell #1 belongs to TA #1, then UE1 can select the authorized spectrum mode according to the first area information (that is, cell #1) and the area information corresponding to the spectrum mode subscribed by UE1 (i.e. the first spectrum mode).
  • UE1 can also sign up for the priority licensed spectrum mode and the priority unlicensed spectrum mode.
  • the priority licensed spectrum mode corresponds to TA#4
  • the priority unlicensed spectrum mode corresponds to TA#5.
  • UE1 may select the preferentially authorized spectrum mode (ie, the second spectrum mode) according to the first area information and the area information corresponding to the spectrum mode subscribed by UE1. In this case, UE1 may further determine the first spectrum mode according to the second spectrum mode and the first information.
  • UE1 can also subscribe to one or more of the licensed spectrum mode, the unlicensed spectrum mode, the licensed spectrum mode and the unlicensed spectrum mode, and one or more of the licensed spectrum mode and the priority unlicensed spectrum mode.
  • the implementation of determining the first spectrum mode in the contracted spectrum mode is similar to the above.
  • UE1 randomly determines a spectrum mode from the spectrum modes subscribed by the UE, and the determined spectrum mode may be the first spectrum mode or the second spectrum mode. In the case that the determined spectrum mode is the second spectrum mode, UE1 may further determine the first spectrum mode according to the second spectrum mode and the first information.
  • UE1 may transmit service data of the first service with UE2 using the determined first frequency spectrum mode.
  • the ProSe layer of UE1 may acquire the spectrum mode subscribed by UE1.
  • the AS layer may receive the first information from the RAN or core network equipment, or monitor the unlicensed spectrum resources and/or licensed spectrum resources in the resource pool to obtain the first information.
  • Determining the first spectrum method can be specifically implemented by the ProSe layer or AS layer of UE1, and the following five methods can be referred to:
  • the ProSe layer determines the first spectrum mode according to the spectrum mode subscribed by UE1, the area information corresponding to the spectrum mode subscribed by UE1, and the first area information; where the first area information may be received by the AS layer from the RAN, or,
  • the AS layer is determined according to the area where UE1 is located, and correspondingly, the ProSe layer may obtain the first area information from the AS layer.
  • the first area information may be determined by the ProSe layer according to the area where UE1 is located.
  • the AS layer receives from the ProSe layer the UE1-subscribed spectrum mode, the area information corresponding to the UE1-subscribed spectrum mode, and the AS layer according to the UE1-subscribed spectrum mode, the area information corresponding to the UE1-subscribed spectrum mode, and the first area information , to determine the first spectrum mode; wherein the first area information may be received by the AS layer from the RAN, or determined by the AS layer according to the area where UE1 is located; or in other examples, the first area information may be determined by the ProSe layer according to UE1 The area is determined. Correspondingly, the first area information may be acquired by the AS layer from the ProSe layer.
  • the ProSe layer determines the second spectrum mode according to the spectrum mode signed by UE1; the AS layer receives the second spectrum mode from the ProSe layer, and determines the first spectrum mode according to the second spectrum mode and the first information.
  • Mode 4 The ProSe layer determines the second spectrum mode according to the spectrum mode subscribed by UE1; the ProSe layer receives the first information from the AS layer, and the ProSe layer determines the first spectrum mode according to the second spectrum mode and the first information.
  • the AS layer receives the spectrum mode subscribed by UE1 from the ProSe layer, and the AS layer determines the second spectrum mode according to the spectrum mode subscribed by UE1; the AS layer determines the first spectrum mode according to the second spectrum mode and the first information.
  • UE1 obtaining the first information UE1 obtaining the first information
  • UE1 determining the first spectrum mode according to the second spectrum mode and the first information all can refer to the above step 502 about determining the first spectrum mode. The description in the implementation manner will not be repeated here.
  • UE1 subscribes to a spectrum mode, and the subscribed spectrum mode is a licensed spectrum mode, an unlicensed spectrum mode, or a licensed spectrum and an unlicensed spectrum mode, Then UE1 can directly use a spectrum method subscribed by UE1 to transmit service data of the first service with UE2.
  • the above method further includes: UE1 sends second information to UE2, and the second information is used to instruct UE1 to transmit service data of the first service in the first spectrum mode.
  • UE1 sends second information to UE2, and the second information is used to instruct UE1 to transmit service data of the first service in the first spectrum mode.
  • the second information is used to instruct UE1 to transmit service data of the first service in the first spectrum mode.
  • UE1 when the first spectrum mode is the unlicensed spectrum mode, or the licensed spectrum mode and the unlicensed spectrum mode, UE1 can not only send the second information to UE2, but also send the first unlicensed spectrum resource to UE2. For details, refer to the description of the information about the first unlicensed spectrum resource in step 502.
  • UE1 can also bind the first spectrum method with the sidelink between UE1 and UE2, that is, the service data of the first service is transmitted between UE1 and UE2 through the sidelink, and the sidelink can be Spectrum resources corresponding to the first spectrum mode are occupied.
  • UE1 sends second information to UE2 through the sidelink between UE1 and UE2, and the second information includes the identifier of the first spectrum mode.
  • UE2 can An identifier of a spectrum mode, binding the sidelink between UE1 and UE2 with the first spectrum mode.
  • UE1 can transmit service data in the sidelink with UE2 through the spectrum resources corresponding to the first spectrum method.
  • the sidelink can include one or more QoS flows, and the one One or more QoS flows can be transmitted through spectrum resources corresponding to the first spectrum mode.
  • Fig. 11 is an implementation manner of UE1 and UE2 transmitting service data of the first service in another specific application scenario provided by the present application as an example.
  • Step 1101 UE1 sends 5G ProSe capability to PCF. Specifically, UE1 sends the 5G ProSe capability to the PCF through the AMF during the registration process.
  • the PCF sends the spectrum mode subscribed by UE1 and the area information corresponding to the spectrum mode subscribed by UE1 to UE1.
  • the PCF sends the spectrum mode subscribed by UE1 and the area information corresponding to the spectrum mode subscribed by UE1 to UE1 through the AMF.
  • Step 1103 the RAN broadcasts the first information.
  • UE1 receives the first information.
  • This step may also be replaced by: the UE1 requests the RAN for the first information, and the RAN sends the first information to the UE1.
  • Step 1104 UE1 determines the first spectrum mode according to the spectrum mode subscribed by UE1 and the first area information.
  • UE1 determines the first spectrum mode according to the spectrum mode subscribed by UE1, the area information corresponding to the spectrum mode subscribed by UE1, and the first area information.
  • UE1 determines the second spectrum mode according to the spectrum mode subscribed by UE1, the area information corresponding to the spectrum mode subscribed by UE1, and the first area information; UE1 then determines the first spectrum mode according to the second spectrum mode and the first information. Spectrum way.
  • Step 1105 UE1 sends a request message to UE2 through the sidelink between UE1 and UE2, and the request message includes the identifier of the first spectrum mode.
  • Step 1106 UE2 sends an acceptance response to UE1 in response to the request message of UE1.
  • Step 1107 UE1 sends an information report to the RAN, and the information report includes the identifier of the first spectrum mode, PC5 QoS parameters and link information, wherein the link information is such as the PC5 link identifier or the destination layer 2 identifier.
  • the identifier of the first frequency spectrum mode, PC5QoS parameters and link information are stored in the RAN.
  • Step 1109 UE1 transmits service data of the first service with UE2 using the first frequency spectrum method.
  • step 1103 is an optional step, and UE1 may receive the first information.
  • the first information is used by UE1 to determine the first spectrum mode in step 1104 .
  • step 1101 and step 1102 refer to the description in step 1001.
  • step 1103 and step 1104 For details not described in step 1103 and step 1104, refer to the description in related embodiments of determining the first frequency spectrum mode in step 1002.
  • step 1105 and step 1106 For details not described in step 1105 and step 1106, refer to the description in related embodiments of UE1 and UE2 negotiating the first frequency spectrum mode in step 1002.
  • step 1107 to step 1109 For details not described in step 1107 to step 1109, refer to the description in the related embodiment in step 1002 in which UE1 and UE2 transmit service data through the first frequency spectrum.
  • Fig. 12 shows an implementation manner of transmitting service data of the first service between UE1 and UE2 provided in this application.
  • the ProSe layer and AS layer in UE1 are mainly explained.
  • UE2 can also include ProSe layer and AS layer (not shown in the figure).
  • the interaction between ProSe layer and AS layer in UE2 can be found in ProSe layer in UE1.
  • Layer and AS layer interaction For convenience of description, the following ProSe layer and AS layer can be understood as the ProSe layer and AS layer of UE1.
  • the ProSe layer may determine the first spectrum mode according to the spectrum mode subscribed by UE1.
  • Step 1201 the AS layer sends the first information to the ProSe layer.
  • Step 1201 is an optional step.
  • Step 1202 the ProSe layer determines the first spectrum mode according to the spectrum mode subscribed by UE1.
  • the ProSe layer determines the first spectrum mode according to the spectrum mode subscribed by UE1.
  • the ProSe layer determines the second spectrum mode according to the spectrum mode subscribed by UE1; the ProSe layer then determines the first spectrum mode according to the second spectrum mode and the first information.
  • the ProSe layer can obtain the first area information from the AS layer.
  • Step 1203 the ProSe layer associates the sidelink between UE1 and UE2 with the first spectrum mode.
  • the ProSe layer sends the first link identifier and the identifier of the first spectrum mode to the AS layer, where the first link identifier is used to identify the side link between UE1 and UE2, and the first link identifier is for example a PC5 link identifier or The destination layer 2 identifier of the PC5 link.
  • Step 1204 the AS layer stores the first link ID and the ID of the first frequency spectrum correspondingly.
  • Step 1205 the ProSe layer sends the service data of the first service and the first link identifier to the AS layer.
  • Step 1206 the AS layer determines the first spectrum mode according to the first link identifier.
  • Step 1207 the AS layer transmits the service data of the first service with UE2 through the first frequency spectrum, wherein the service data of the first service is carried on the sidelink between UE1 and UE2.
  • step 1201 and step 1202 refer to the description in related embodiments of determining the first spectrum mode in step 1002.
  • step 1203 and step 1204 For details not described in step 1203 and step 1204, reference may be made to the description in related embodiments of UE1 associating the sidelink between UE1 and UE2 and the first spectrum mode in step 1002.
  • step 1205 to step 1207 For details not described in step 1205 to step 1207, refer to the description in the related embodiment in step 1002 in which UE1 and UE2 transmit service data through the first frequency spectrum.
  • the ProSe layer determines the first spectrum mode according to the spectrum mode subscribed by UE1, and the ProSe layer sends the first link identifier and the identifier of the first spectrum mode to the AS layer. Subsequently, the ProSe layer sends the service data of the first service and the first link identifier to the AS layer.
  • the AS layer can send the service data of the first service to UE2 through the first frequency spectrum, and the service data of the first service bears On the sidelink between UE1 and UE2. In this way, the functions of the ProSe layer and the AS layer are clearly divided.
  • the AS layer may determine the first spectrum mode according to the spectrum mode subscribed by UE1, or the ProSe layer may determine the second spectrum mode according to the spectrum mode subscribed by UE1, and the ProSe layer indicates the second spectrum mode to the AS layer, and then AS The layer determines the first spectrum mode according to the first spectrum mode and the first information.
  • the implementation manner in FIG. 12 , or FIG. 8 , or FIG. 9 may be combined, and details are not repeated here.
  • FIG. 13 and FIG. 14 are schematic structural diagrams of possible communication devices provided in the present application. These communication apparatuses may be used to realize the functions of the first terminal device or the core network device in the foregoing method embodiments, and thus also realize the beneficial effects of the foregoing method embodiments.
  • the communication device may be a terminal device, or a module (such as a chip) in the terminal device, such as the UE in FIG. 1 .
  • the communication device may also be a core network device, or a module (such as a chip) in the core network device, such as the PCF or UDM in FIG. 1 .
  • the communication device 1300 includes a processing module 1301 and a transceiver module 1302 .
  • the communication device 1300 When the communication device 1300 is used to implement the functions of the first terminal device (such as UE1) in the method embodiments shown in FIGS. 5 to 9 above:
  • the processing module 1301 is configured to obtain the service information of the first service; the processing module 1301 is also used to control the transceiver module 1302 to transmit the service data of the first service in the first spectrum mode according to the service information , the service data of the first service is carried on the sidelink between the communication device 1300 and the second terminal device, and the first spectrum mode is a licensed spectrum mode, or an unlicensed spectrum mode, or a licensed spectrum mode and an unlicensed spectrum mode.
  • the service information includes at least one of the following: PC5QoS parameters, service type, or service identifier.
  • the processing module 1301 is further configured to: determine the first frequency spectrum mode according to the service information.
  • the processing module 1301 is specifically configured to: determine the first spectrum mode according to the correspondence between service information and the first spectrum mode and the service information.
  • the processing module 1301 is specifically configured to: control the adjacent service layer to determine the first spectrum mode according to the correspondence between service information and the first spectrum mode, and the service information; or control the access layer to determine the first spectrum mode according to the service information The correspondence relationship with the first spectrum mode and the service information determine the first spectrum mode.
  • the processing module 1301 is specifically configured to: determine the second spectrum mode according to the correspondence between service information and the second spectrum mode and the service information; determine the second spectrum mode according to the second spectrum mode and the first information.
  • a spectrum mode wherein, the second spectrum mode is a priority licensed spectrum mode, or a priority unlicensed spectrum mode; the first information includes at least one of the following: the use status of licensed spectrum resources, the use status of unlicensed spectrum resources, and the proposed spectrum way, or authorized spectrum way.
  • the processing module 1301 is further configured to: acquire one or more items of the usage status of the licensed spectrum resource and the usage status of the unlicensed spectrum resource.
  • the processing module 1301 is further configured to: control the transceiving module 1302 to receive the first information.
  • the processing module 1301 is specifically configured to: control the adjacent service layer to determine the second spectrum mode according to the correspondence between service information and the second spectrum mode, as well as the service information; mode and the first information to determine the first spectrum mode; or, control the adjacent service layer to determine the second spectrum mode according to the corresponding relationship between the service information and the second spectrum mode and the service information; control the adjacent service layer to determine the second spectrum mode according to the second spectrum mode and The first information determines the first spectrum mode; or, the control access layer determines the second spectrum mode according to the correspondence between the service information and the second spectrum mode and the service information; the control access layer determines the second spectrum mode according to the second spectrum mode and the first information to determine the first spectrum mode.
  • the processing module 1301 is further configured to: control the transceiver module 1302 to send the second information to the second terminal device; where the second information is used to instruct the communication device 1300 to transmit the first service in the first spectrum mode business data.
  • the processing module 1301 is further configured to: determine the first unlicensed spectrum resource from the unlicensed spectrum resources.
  • the licensed spectrum resource and the first unlicensed spectrum resource are used to transmit service data of the first service between the communication apparatus 1300 and the second terminal device; the control transceiver module 1302 sends information of the first unlicensed spectrum resource to the second terminal device.
  • the service data of the first service is carried on the first QoS flow in the sidelink.
  • the processing module 1301 is further configured to: associate the first service with the first QoS flow according to the first frequency spectrum method and the spectrum method corresponding to the first QoS flow.
  • the processing module 1301 is further configured to: generate the first QoS flow according to the first frequency spectrum mode.
  • the communication device 1300 When the communication device 1300 is used to implement the functions of the first terminal device (such as UE1) in the above method embodiments shown in FIG. 10 to FIG. 12 :
  • the processing module 1301 is configured to obtain the spectrum mode subscribed by the communication device 1300; the processing module 1301 is also configured to control the transceiver module 1302 to use the first spectrum mode to transmit
  • the service data of the first service, the service data of the first service is carried on the sidelink between the communication device 1300 and the second terminal equipment, and the first spectrum mode is a licensed spectrum mode, or an unlicensed spectrum mode, or a licensed spectrum mode and unlicensed spectrum approach.
  • the spectrum mode signed by the communication device 1300 includes at least one of the following: licensed spectrum mode, unlicensed spectrum mode, licensed spectrum mode and unlicensed spectrum mode, licensed spectrum mode with priority, or unlicensed spectrum mode with priority .
  • the processing module 1301 is further configured to: determine the first spectrum mode according to the spectrum mode subscribed by the communication device 1300 .
  • the processing module 1301 is specifically configured to: determine the first spectrum mode according to the area information corresponding to the spectrum mode signed by the communication device 1300 and the first area information, and the first area information is used to characterize the communication device The area where 1300 is located.
  • the processing module 1301 is specifically configured to: control the adjacent service layer to determine the first spectrum method according to the region information corresponding to the spectrum method subscribed by the communication device 1300 and the first region information; or control the access layer
  • the first spectrum mode is determined according to the area information corresponding to the spectrum mode subscribed by the communication device 1300 and the first area information.
  • the processing module 1301 is specifically configured to: determine the second spectrum mode according to the spectrum mode subscribed by the communication device 1300; determine the first spectrum mode according to the first information and the second spectrum mode; wherein, the second spectrum mode The mode is a way of giving priority to authorized spectrum or giving priority to unlicensed spectrum; the first information includes at least one of the following: usage status of licensed spectrum resources, usage status of unlicensed spectrum resources, suggested spectrum mode, or authorized spectrum mode.
  • the processing module 1301 is further configured to: acquire one or more items of the usage status of the licensed spectrum resource and the usage status of the unlicensed spectrum resource.
  • the processing module 1301 is further configured to: control the transceiving module 1302 to receive the first information.
  • the processing module 1301 is specifically configured to: control the adjacent service layer to determine the second spectrum mode according to the spectrum mode signed by the communication device 1300; control the access layer to determine the second spectrum mode according to the second spectrum mode and the first information.
  • the first spectrum mode; or, the control adjacent service layer determines the second spectrum mode according to the spectrum mode signed by the communication device 1300; the control adjacent service layer determines the first spectrum mode according to the second spectrum mode and the first information; or, the control access layer
  • the access layer determines the second spectrum mode according to the spectrum mode subscribed by the communication device 1300; the control access layer determines the first spectrum mode according to the second spectrum mode and the first information.
  • the processing module 1301 is further configured to: control the transceiver module 1302 to send the second information to the second terminal device; where the second information is used to instruct the communication device 1300 to transmit the first service in the first spectrum mode business data.
  • the processing module 1301 is further configured to: determine the first unlicensed spectrum resource from the unlicensed spectrum resources.
  • the licensed spectrum resource and the first unlicensed spectrum resource are used to transmit service data of the first service between the communication apparatus 1300 and the second terminal device; the control transceiver module 1302 sends information of the first unlicensed spectrum resource to the second terminal device.
  • the communication device 1300 When the communication device 1300 is used to implement the functions of the core network equipment (such as PCF) in the method embodiments shown in FIGS.
  • a spectrum mode corresponding to the service information and controlling the transceiver module 1302 to send the service information and the spectrum mode corresponding to the service information to the first terminal device.
  • the service information and the spectrum mode corresponding to the service information are used by the first terminal device to determine the first spectrum mode, and the first spectrum mode is a licensed spectrum mode, an unlicensed spectrum mode, or a licensed spectrum and an unlicensed spectrum mode Authorized spectrum method.
  • the processing module 1301 is used to obtain A spectrum mode signed by the device, and controlling the transceiver module 1302 to send the spectrum mode signed by the first terminal device to the first terminal device.
  • the spectrum mode subscribed by the first terminal device is used by the first terminal device to determine the first spectrum mode, and the first spectrum mode is a licensed spectrum mode, an unlicensed spectrum mode, or a licensed spectrum mode and an unlicensed spectrum mode. Spectrum way.
  • FIG. 14 is an apparatus 1400 provided in the embodiment of the present application.
  • the apparatus shown in FIG. 14 may be a hardware circuit implementation manner of the apparatus shown in FIG. 13 .
  • the apparatus may be applicable to the flow chart shown above to execute the functions of the first terminal device or the second terminal device in the foregoing method embodiments.
  • FIG. 14 For ease of illustration, only the main components of the device are shown in FIG. 14 .
  • the device 1400 shown in FIG. 14 includes a communication interface 1410, a processor 1420, and a memory 1430, wherein the memory 1430 is used for storing program instructions and/or data.
  • Processor 1420 may cooperate with memory 1430 .
  • Processor 1420 may execute program instructions stored in memory 1430 . When the instructions or programs stored in the memory 1430 are executed, the processor 1420 is used to perform the operations performed by the processing module 1301 in the above embodiments, and the communication interface 1410 is used to perform the operations performed by the transceiver module 1302 in the above embodiments.
  • the memory 1430 is coupled to the processor 1420 .
  • the coupling in the embodiments of the present application is an indirect coupling or a communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • At least one of the memories 1430 may be included in the processor 1420 .
  • the communication interface may be a transceiver, a circuit, a bus, a module, or other types of communication interfaces.
  • the transceiver when the communication interface is a transceiver, the transceiver may include an independent receiver and an independent transmitter; it may also be a transceiver integrated with a transceiver function, or be a communication interface.
  • Apparatus 1400 may also include a communication link 1440 .
  • the communication interface 1410, the processor 1420 and the memory 1430 can be connected to each other through the communication line 1440;
  • the communication line 1440 can be a peripheral component interconnect standard (peripheral component interconnect, referred to as PCI) bus or an extended industry standard architecture (extended industry standard architecture , referred to as EISA) bus and so on.
  • PCI peripheral component interconnect
  • EISA extended industry standard architecture
  • the communication line 1440 can be divided into address bus, data bus, control bus and so on. For ease of representation, only one thick line is used in FIG. 14 , but it does not mean that there is only one bus or one type of bus.
  • the embodiment of the present application provides a computer-readable storage medium, on which a computer program or instruction is stored, and when the computer program or instruction is executed, the computer executes the above-mentioned information related to FIG. 5 to FIG. 12 .
  • the embodiment of the present application provides a computer program product.
  • the computer reads and executes the computer program product, the computer executes the first terminal device in the above-mentioned method embodiments related to FIG. 5 to FIG. 12 (such as UE1), or execute the method of the core network device (such as PCF) in the above method embodiments related to FIG. 5 to FIG. 12 .
  • the first terminal device such as UE1
  • the core network device such as PCF
  • an embodiment of the present application provides a communication system, the communication system includes a core network device and a first terminal device, and the first terminal device is used to execute the method in the above-mentioned embodiments related to Fig. 5 to Fig. 9
  • the core network device is used to execute the method in the above-mentioned method embodiments related to FIG. 5 to FIG. 9;
  • the first terminal device is configured to execute the method in the above method embodiment related to FIG. 10 to FIG. 12
  • the core network device is configured to execute the method in the above method embodiment related to FIG. 10 to FIG. 12 .

Abstract

一种通信方法及装置,用于合理地确定出发送端和接收端之间传输业务数据的频谱方式。在本申请中,方法包括:第一终端设备获取第一业务的业务信息;第一终端设备根据第一业务的业务信息,采用第一频谱方式传输第一业务的业务数据,第一业务的业务数据承载在第一终端设备与第二终端设备之间的侧行链路上,第一频谱方式为授权频谱方式,或非授权频谱方式,或授权频谱和非授权频谱方式。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2021年10月14日提交中国专利局、申请号为202111196242.9、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
随着移动通信的高速发展,新业务类型,如视频聊天、虚拟现实(virtual reality,VR)/增强现实(augmented reality,AR)等数据业务的普遍使用提高了用户对带宽的需求。设备到设备(device-to-device,D2D)通信允许终端设备之间直接进行通信,可以在小区网络的控制下与小区用户共享频谱资源,有效的提高频谱资源的利用率。D2D通信包括一对多通信(one to many communication)以及一对一通信(one to one communication)。一对多通信对应于组播和广播通信,一对一通信对应于单播通信。在一对一通信中,若两个终端设备之间的距离小于预设距离,则二者可在相互发现之后建立邻近业务通信5(prose communication 5,PC5)连接,并通过PC5接口进行直接通信。
两个终端设备可分别为业务数据的发送端和接收端,发送端和接收端可通过授权频谱方式相互传输业务数据,具体地,授权频谱方式对应于授权频谱,发送端可从授权频谱中确定出授权频谱资源,然后在该确定出的授权频谱资源上向接收端发送业务数据。由于授权频谱受限,目前引入发送端和接收端通过非授权频谱方式相互传输业务数据的实现方式。
如此,发送端和接收端之间传输业务数据的频谱方式可以是授权频谱方式或非授权频谱方式,如何合理地确定出该频谱方式成为亟待解决的技术问题。
发明内容
本申请提供一种通信方法及装置,用于合理地确定出发送端和接收端之间传输业务数据的频谱方式。
第一方面,本申请提供一种通信方法,该通信方法可以由第一终端设备或第一终端设备中的模块(如芯片)执行,该第一终端设备可以是业务数据的发送端。如下以第一终端设备执行该通信方法为例说明。
在一种可能的实现方式中,方法包括:第一终端设备获取第一业务的业务信息;第一终端设备根据第一业务的业务信息,采用第一频谱方式传输第一业务的业务数据,第一业务的业务数据承载在第一终端设备与第二终端设备之间的侧行链路上,第一频谱方式为授权频谱方式,或非授权频谱方式,或授权频谱和非授权频谱方式。
上述技术方案中,第一终端设备可根据第一业务的业务信息,采用第一频谱方式与第二终端设备传输第一业务的业务数据,如此,第一终端设备和第二终端设备之间可通过更 适用于业务特征的频谱方式来传输业务数据,有助于更好地满足业务需求以及合理地利用授权频谱和非授权频谱。
在一种可能的实现方式中,业务信息包括以下至少一项:PC5业务质量(quality of service,QoS)参数,业务类型,或业务标识。
在一种可能的实现方式中,第一业务的PC5QoS参数中包括PQI(全称为PC5 5QI,其中5QI为5G QoS指示符(5G QoS indicator))和比特速率中的一项或多项;第一业务的业务类型中可包括以下一项或多项:视频、语音、关键业务。
在一种可能的实现方式中,方法还包括:第一终端设备根据业务信息,确定第一频谱方式。上述技术方案中,第一终端设备可以在获取第一业务的业务信息之后,确定第一业务的业务信息对应的第一频谱方式,从而在需要与第二终端设备传输第一业务的业务数据时,通过第一频谱方式进行传输。
在一种可能的实现方式中,第一终端设备根据业务信息,确定第一频谱方式,包括:第一终端设备根据业务信息与第一频谱方式的对应关系,以及业务信息,确定第一频谱方式。上述技术方案中,第一终端设备中包括有第一业务的业务信息与第一频谱方式的对应关系,第一终端设备可以根据第一业务的业务信息和该对应关系,确定第一频谱方式。
在一种可能的实现方式中,第一终端设备根据业务信息与第一频谱方式的对应关系,以及业务信息,确定第一频谱方式,包括:第一终端设备的邻近业务层根据业务信息与第一频谱方式的对应关系,以及业务信息,确定第一频谱方式;或第一终端设备的接入层根据业务信息与第一频谱方式的对应关系,以及业务信息,确定第一频谱方式。上述技术方案中,基于第一终端设备中邻近业务层和接入层的不同功能,二者均可确定第一频谱方式。
在一种可能的实现方式中,第一终端设备根据业务信息,确定第一频谱方式,包括:第一终端设备根据业务信息与第二频谱方式的对应关系,以及业务信息,确定第二频谱方式;第一终端设备根据第二频谱方式和第一信息,确定第一频谱方式;其中,第二频谱方式为优先授权频谱方式,或优先非授权频谱方式;第一信息包括以下至少一项:授权频谱资源的使用状态,非授权频谱资源的使用状态,建议的频谱方式,或授权的频谱方式。
上述技术方案中,第一业务的业务信息还可对应于第二频谱方式,其中第二频谱方式为优先授权频谱方式,或优先非授权频谱方式;第一终端设备可进一步结合授权频谱资源的使用状态,非授权频谱资源的使用状态,建议的频谱方式,或授权的频谱方式中的一个或多个,确定出第一频谱方式。该方式中第一终端设备可以根据网络侧建议或授权的频谱方式,以及实际频谱资源的使用状态,更灵活且合理地确定出第一频谱方式。
在一种可能的实现方式中,方法还包括:第一终端设备获取授权频谱资源的使用状态、非授权频谱资源的使用状态中的一项或多项。上述技术方案中,第一终端设备可根据授权频谱资源的使用状态、非授权频谱资源的使用状态中的一项或多项,以及第二频谱方式,灵活且合理地确定出第一频谱方式。
在一种可能的实现方式中,方法还包括:第一终端设备接收第一信息。上述技术方案中,第一终端设备可从网络设备(比如无线接入网设备或核心网设备)中获取第一信息,从而第一终端设备可根据第一信息和第二频谱方式,灵活且合理地确定出第一频谱方式。
在一种可能的实现方式中,第一终端设备根据业务信息与第二频谱方式的对应关系,以及业务信息,确定第二频谱方式;第一终端设备根据第二频谱方式和第一信息,确定第一频谱方式,包括:第一终端设备的邻近业务层根据业务信息与第二频谱方式的对应关系, 以及业务信息,确定第二频谱方式;第一终端设备的接入层根据第二频谱方式和第一信息,确定第一频谱方式;或,第一终端设备的邻近业务层根据业务信息与第二频谱方式的对应关系,以及业务信息,确定第二频谱方式;第一终端设备的邻近业务层根据第二频谱方式和第一信息,确定第一频谱方式;或,第一终端设备的接入层根据业务信息与第二频谱方式的对应关系,以及业务信息,确定第二频谱方式;第一终端设备的接入层根据第二频谱方式和第一信息,确定第一频谱方式。上述技术方案中,基于第一终端设备中邻近业务层和接入层的不同功能,邻近业务层或接入层均可先确定第二频谱方式,进而根据第二频谱方式和第一信息确定第一频谱方式;或者,邻近业务层可先确定第二频谱方式,然后接入层根据第二频谱方式和第一信息确定第一频谱方式。
在一种可能的实现方式中,方法还包括:第一终端设备向第二终端设备发送第二信息,其中,第二信息用于指示第一终端设备采用第一频谱方式传输第一业务的业务数据。上述技术方案中,第一终端设备可向第二终端设备指示第一频谱方式,从而实现第一终端设备和第二终端设备可在第一频谱方式对应的频谱资源上传输第一业务的业务数据,即第二终端设备只需要在第一频谱方式对应的频谱资源上接收第一业务的业务数据,有助于降低第二终端设备的能耗。
在一种可能的实现方式中,第一终端设备向第二终端设备发送第二信息和第一业务的业务标识,其中第二信息包括第一频谱方式的标识。在一种可能的实现方式中,第二信息中包括第一频谱方式的标识和第一业务的业务标识。上述技术方案中,第一终端设备可向第二终端设备指示第一频谱方式和第一业务,从而实现第一终端设备和第二终端设备可在第一频谱方式对应的频谱资源上传输第一业务的业务数据。
在一种可能的实现方式中,在第一频谱方式为非授权频谱方式,或为授权频谱和非授权频谱方式的情况下,方法还包括:第一终端设备从非授权频谱资源中确定第一非授权频谱资源,第一非授权频谱资源用于第一终端设备与第二终端设备之间传输第一业务的业务数据;第一终端设备向第二终端设备发送第一非授权频谱资源的信息。上述技术方案中,第一终端设备可从非授权频谱中确定第一非授权频谱资源,然后第一终端设备向第二终端设备发送第一非授权频谱资源的信息,从而第二终端设备无需在所有非授权频谱资源上检测或接收来自于第一终端设备的业务数据,有助于进一步地降低第二终端设备的能耗。
在一种可能的实现方式中,第一业务的业务数据承载在侧行链路中的第一QoS flow(QoS流)上。上述技术方案中,第一终端设备与第二终端设备之间的侧行链路中包括多个QoS flow,多个QoS flow中可承载有不同业务信息对应的业务数据,且不同QoS flow可对应于不同的频谱方式,从而有助于提高业务数据传输的灵活性。
在一种可能的实现方式中,方法还包括:第一终端设备根据第一频谱方式和第一QoS flow对应的频谱方式,将第一业务关联到第一QoS flow。在一种可能的实现方式中,方法还包括:第一终端设备根据第一频谱方式,生成第一QoS flow。上述技术方案中,第一终端设备可将第一业务关联到第一QoS flow,从而在第一终端设备向第二终端设备发送第一业务的业务数据时,可将第一业务的业务数据承载于第一QoS flow中。
在一种可能的实现方式中,第一终端设备向第二终端设备发送第二信息和第一QoS flow的标识,第二信息中包括第一频谱方式的标识。在一种可能的实现方式中,第二信息中包括第一频谱方式的标识和第一QoS flow的标识。上述技术方案中,第一终端设备可向第二终端设备指示第一频谱方式和第一QoS flow,从而实现第一终端设备和第二终端设备 可在第一频谱方式对应的频谱资源上传输第一QoS flow,其中第一QoS flow中承载有第一业务的业务数据。
第二方面,本申请提供一种通信方法,该通信方法可以由第一终端设备或第一终端设备中的模块(如芯片)执行,该第一终端设备可以是业务数据的发送端。如下以第一终端设备执行该通信方法为例说明。
在一种可能的实现方式中,方法包括:第一终端设备获取第一终端设备签约的频谱方式;第一终端设备根据第一终端设备签约的频谱方式,采用第一频谱方式传输第一业务的业务数据,第一业务的业务数据承载在第一终端设备与第二终端设备之间的侧行链路上,第一频谱方式为授权频谱方式,或非授权频谱方式,或授权频谱和非授权频谱方式。
上述技术方案中,第一终端设备可根据第一终端设备签约的频谱方式,采用第一频谱方式传输第一业务的业务数据,如此,第一终端设备和第二终端设备之间可通过更适用于第一终端设备特征的频谱方式来传输该业务数据,有助于更好地传输业务数据以及合理地利用授权频谱和非授权频谱。
在一种可能的实现方式中,第一终端设备签约的频谱方式包括以下至少一项:授权频谱方式,非授权频谱方式,授权频谱和非授权频谱方式,优先授权频谱方式,或优先非授权频谱方式。
在一种可能的实现方式中,方法还包括:第一终端设备根据第一终端设备签约的频谱方式,确定第一频谱方式。上述技术方案中,第一终端设备可以确定出第一频谱方式,从而在需要与第二终端设备传输第一业务的业务数据时,通过第一频谱方式进行传输。
在一种可能的实现方式中,第一终端设备根据第一终端设备签约的频谱方式,确定第一频谱方式,包括:第一终端设备根据第一终端设备签约的频谱方式对应的区域信息,以及第一区域信息,确定第一频谱方式,第一区域信息用于表征第一终端设备所在的区域。
上述技术方案中,第一终端设备可根据第一终端设备签约的频谱方式对应的区域信息,以及第一终端设备所在的区域,确定第一频谱方式,该第一频谱方式可更好且灵活的适用于不同区域中的终端设备。
在一种可能的实现方式中,第一终端设备根据第一终端设备签约的频谱方式对应的区域信息,以及第一区域信息,确定第一频谱方式,包括:第一终端设备的邻近业务层根据第一终端设备签约的频谱方式对应的区域信息,以及第一区域信息,确定第一频谱方式;或第一终端设备的接入层根据第一终端设备签约的频谱方式对应的区域信息,以及第一区域信息,确定第一频谱方式。上述技术方案中,基于第一终端设备中邻近业务层和接入层的不同功能,二者均可确定第一频谱方式。
在一种可能的实现方式中,第一终端设备根据第一终端设备签约的频谱方式,确定第一频谱方式,包括:第一终端设备根据第一终端设备签约的频谱方式确定第二频谱方式;第一终端设备根据第一信息和第二频谱方式确定第一频谱方式;其中,第二频谱方式为优先授权频谱方式,或优先非授权频谱方式;第一信息包括以下至少一项:授权频谱资源的使用状态,非授权频谱资源的使用状态,建议的频谱方式,或授权的频谱方式。
上述技术方案中,第一终端设备可根据授权频谱资源的使用状态,非授权频谱资源的使用状态,建议的频谱方式,或授权的频谱方式中的一个或多个,和第二频谱方式,确定第一频谱方式。该方式中第一终端设备可以根据网络侧建议或授权的频谱方式,以及实际 频谱资源的使用状态,更灵活且合理地确定出第一频谱方式。
在一种可能的实现方式中,方法还包括:第一终端设备获取授权频谱资源的使用状态、非授权频谱资源的使用状态中的一项或多项。上述技术方案中,第一终端设备可根据授权频谱资源的使用状态、非授权频谱资源的使用状态中的一项或多项,以及第二频谱方式,灵活且合理地确定出第一频谱方式。
在一种可能的实现方式中,方法还包括:第一终端设备接收第一信息。上述技术方案中,第一终端设备可从网络设备(比如无线接入网设备或核心网设备)中获取第一信息,从而第一终端设备可根据第一信息和第二频谱方式,灵活且合理地确定出第一频谱方式。
在一种可能的实现方式中,第一终端设备根据第一终端设备签约的频谱方式确定第二频谱方式;第一终端设备根据第一信息和第二频谱方式确定第一频谱方式,包括:第一终端设备的邻近业务层根据第一终端设备签约的频谱方式,确定第二频谱方式;第一终端设备的接入层根据第二频谱方式和第一信息,确定第一频谱方式;或,第一终端设备的邻近业务层根据第一终端设备签约的频谱方式,确定第二频谱方式;第一终端设备的邻近业务层根据第二频谱方式和第一信息,确定第一频谱方式;或,第一终端设备的接入层根据第一终端设备签约的频谱方式,确定第二频谱方式;第一终端设备的接入层根据第二频谱方式和第一信息,确定第一频谱方式。上述技术方案中,基于第一终端设备中邻近业务层和接入层的不同功能,邻近业务层或接入层均可先确定第二频谱方式,进而根据第二频谱方式和第一信息确定第一频谱方式;或者,邻近业务层可先确定第二频谱方式,然后接入层根据第二频谱方式和第一信息确定第一频谱方式。
在一种可能的实现方式中,方法还包括:第一终端设备向第二终端设备发送第二信息;其中,第二信息用于指示第一终端设备采用第一频谱方式传输第一业务的业务数据。上述技术方案中,第一终端设备可向第二终端设备指示第一频谱方式,从而实现第一终端设备和第二终端设备可在第一频谱方式对应的频谱资源上传输第一业务的业务数据,即第二终端设备只需要在第一频谱方式对应的频谱资源上接收第一业务的业务数据,有助于降低第二终端设备的能耗。
在一种可能的实现方式中,第一终端设备通过第一终端设备和第二终端设备之间的侧行链路向第二终端设备发送第二信息,第二信息中包括第一频谱方式的标识。上述技术方案中,第一终端设备可通过第一终端设备和第二终端设备之间的侧行链路向第二终端设备指示第一频谱方式,从而实现第一终端设备和第二终端设备可在第一频谱方式对应的频谱资源上,通过该侧行链路传输第一业务的业务数据。
在一种可能的实现方式中,在第一频谱方式为非授权频谱方式,或为授权频谱和非授权频谱方式的情况下,方法还包括:第一终端设备从非授权频谱资源中确定第一非授权频谱资源,第一非授权频谱资源用于第一终端设备与第二终端设备之间传输第一业务的业务数据;第一终端设备向第二终端设备发送第一非授权频谱资源的信息。上述技术方案中,第一终端设备可从非授权频谱中确定第一非授权频谱资源,然后第一终端设备向第二终端设备发送第一非授权频谱资源的信息,从而第二终端设备可无需在所有非授权频谱资源上检测或接收来自于第一终端设备的业务数据,有助于进一步降低第二终端设备的能耗。
第三方面,本申请提供一种通信方法,该通信方法可以由核心网设备或核心网设备中的模块(如芯片)执行。如下以核心网设备执行该通信方法为例说明。
在一种可能的实现方式中,方法包括:核心网设备获取业务信息和业务信息对应的频谱方式,向第一终端设备发送业务信息和业务信息对应的频谱方式。在一种可能的实现方式中,业务信息和业务信息对应的频谱方式可用于第一终端设备确定第一频谱方式,第一频谱方式为授权频谱方式,或非授权频谱方式,或授权频谱和非授权频谱方式。
上述技术方案中,核心网设备可以控制不同业务使用不同的频谱方式,避免终端设备使用不合适的频谱方式传输业务。
在一种可能的实现方式中,该核心网设备可以是策略控制功能(policy control function,PCF)网元或统一数据管理(unified data management,UDM)网元。
第四方面,本申请提供一种通信方法,该通信方法可以由核心网设备或核心网设备中的模块(如芯片)执行。如下以核心网设备执行该通信方法为例说明。
在一种可能的实现方式中,方法包括:核心网设备获取第一终端设备签约的频谱方式,向第一终端设备发送第一终端设备签约的频谱方式。在一种可能的实现方式中,第一终端设备签约的频谱方式可用于第一终端设备确定第一频谱方式,第一频谱方式为授权频谱方式,或非授权频谱方式,或授权频谱和非授权频谱方式。
上述技术方案中,核心网设备可以控制终端设备的频谱方式,避免终端设备使用非授权(或非签约)的频谱方式传输业务。
在一种可能的实现方式中,该核心网设备可以是PCF网元或UDM网元。
第五方面,本申请实施例提供一种通信装置,该通信装置具有实现上述第一方面或第一方面的任一种可能的实现方式中第一终端设备的功能,该装置可以为终端设备,也可以为终端设备中的模块(如芯片)。
在一种可能的实现方式中,通信装置包括:处理模块,用于获取第一业务的业务信息;处理模块,还用于根据业务信息,控制收发模块采用第一频谱方式传输第一业务的业务数据,第一业务的业务数据承载在通信装置与第二终端设备之间的侧行链路上,第一频谱方式为授权频谱方式,或非授权频谱方式,或授权频谱和非授权频谱方式。
在一种可能的实现方式中,业务信息包括以下至少一项:PC5QoS参数,业务类型,或业务标识。
在一种可能的实现方式中,处理模块还用于:根据业务信息,确定第一频谱方式。
在一种可能的实现方式中,处理模块具体用于:根据业务信息与第一频谱方式的对应关系,以及业务信息,确定第一频谱方式。
在一种可能的实现方式中,处理模块具体用于:控制邻近业务层根据业务信息与第一频谱方式的对应关系,以及业务信息,确定第一频谱方式;或控制接入层根据业务信息与第一频谱方式的对应关系,以及业务信息,确定第一频谱方式。
在一种可能的实现方式中,处理模块具体用于:根据业务信息与第二频谱方式的对应关系,以及业务信息,确定第二频谱方式;根据第二频谱方式和第一信息,确定第一频谱方式;其中,第二频谱方式为优先授权频谱方式,或优先非授权频谱方式;第一信息包括以下至少一项:授权频谱资源的使用状态,非授权频谱资源的使用状态,建议的频谱方式,或授权的频谱方式。
在一种可能的实现方式中,处理模块还用于:获取授权频谱资源的使用状态、非授权 频谱资源的使用状态中的一项或多项。
在一种可能的实现方式中,处理模块还用于:控制收发模块接收第一信息。
在一种可能的实现方式中,处理模块具体用于:控制邻近业务层根据业务信息与第二频谱方式的对应关系,以及业务信息,确定第二频谱方式;控制接入层根据第二频谱方式和第一信息,确定第一频谱方式;或,控制邻近业务层根据业务信息与第二频谱方式的对应关系,以及业务信息,确定第二频谱方式;控制邻近业务层根据第二频谱方式和第一信息,确定第一频谱方式;或,控制接入层根据业务信息与第二频谱方式的对应关系,以及业务信息,确定第二频谱方式;控制接入层根据第二频谱方式和第一信息,确定第一频谱方式。
在一种可能的实现方式中,处理模块还用于:控制收发模块向第二终端设备发送第二信息;其中,第二信息用于指示通信装置采用第一频谱方式传输第一业务的业务数据。
在一种可能的实现方式中,在第一频谱方式为非授权频谱方式,或为授权频谱和非授权频谱方式的情况下,处理模块还用于:从非授权频谱资源中确定第一非授权频谱资源,第一非授权频谱资源用于通信装置与第二终端设备之间传输第一业务的业务数据;控制收发模块向第二终端设备发送第一非授权频谱资源的信息。
在一种可能的实现方式中,第一业务的业务数据承载在侧行链路中的第一QoS flow上。
在一种可能的实现方式中,处理模块还用于:根据第一频谱方式和第一QoS flow对应的频谱方式,将第一业务关联到第一QoS flow。
在一种可能的实现方式中,处理模块还用于:根据第一频谱方式,生成第一QoS flow。
第六方面,本申请实施例提供一种通信装置,该通信装置具有实现上述第二方面或第二方面的任一种可能的实现方式中第一终端设备的功能,该装置可以为终端设备,也可以为终端设备中的模块(如芯片)。
在一种可能的实现方式中,处理模块,用于获取通信装置签约的频谱方式;处理模块,还用于根据通信装置签约的频谱方式,控制收发模块采用第一频谱方式传输第一业务的业务数据,第一业务的业务数据承载在通信装置与第二终端设备之间的侧行链路上,第一频谱方式为授权频谱方式,或非授权频谱方式,或授权频谱和非授权频谱方式。
在一种可能的实现方式中,通信装置签约的频谱方式包括以下至少一项:授权频谱方式,非授权频谱方式,授权频谱和非授权频谱方式,优先授权频谱方式,或优先非授权频谱方式。
在一种可能的实现方式中,处理模块还用于:根据通信装置签约的频谱方式,确定第一频谱方式。
在一种可能的实现方式中,处理模块具体用于:根据通信装置签约的频谱方式对应的区域信息,以及第一区域信息,确定第一频谱方式,第一区域信息用于表征通信装置所在的区域。
在一种可能的实现方式中,处理模块具体用于:控制邻近业务层根据通信装置签约的频谱方式对应的区域信息,以及第一区域信息,确定第一频谱方式;或控制接入层根据通信装置签约的频谱方式对应的区域信息,以及第一区域信息,确定第一频谱方式。
在一种可能的实现方式中,处理模块具体用于:根据通信装置签约的频谱方式确定第二频谱方式;根据第一信息和第二频谱方式确定第一频谱方式;其中,第二频谱方式为优 先授权频谱方式,或优先非授权频谱方式;第一信息包括以下至少一项:授权频谱资源的使用状态,非授权频谱资源的使用状态,建议的频谱方式,或授权的频谱方式。
在一种可能的实现方式中,处理模块还用于:获取授权频谱资源的使用状态、非授权频谱资源的使用状态中的一项或多项。
在一种可能的实现方式中,处理模块还用于:控制收发模块接收第一信息。
在一种可能的实现方式中,处理模块具体用于:控制邻近业务层根据通信装置签约的频谱方式,确定第二频谱方式;控制接入层根据第二频谱方式和第一信息,确定第一频谱方式;或,控制邻近业务层根据通信装置签约的频谱方式,确定第二频谱方式;控制邻近业务层根据第二频谱方式和第一信息,确定第一频谱方式;或,控制接入层根据通信装置签约的频谱方式,确定第二频谱方式;控制接入层根据第二频谱方式和第一信息,确定第一频谱方式。
在一种可能的实现方式中,处理模块还用于:控制收发模块向第二终端设备发送第二信息;其中,第二信息用于指示通信装置采用第一频谱方式传输第一业务的业务数据。
在一种可能的实现方式中,在第一频谱方式为非授权频谱方式,或为授权频谱和非授权频谱方式的情况下,处理模块还用于:从非授权频谱资源中确定第一非授权频谱资源,第一非授权频谱资源用于通信装置与第二终端设备之间传输第一业务的业务数据;控制收发模块向第二终端设备发送第一非授权频谱资源的信息。
第七方面,本申请实施例提供一种通信装置,该通信装置具有实现上述第三方面或第三方面的任一种可能的实现方式中核心网设备的功能,该装置可以为核心网设备,也可以为核心网设备中的模块(如芯片)。
在一种可能的实现方式中,处理模块用于,获取业务信息和业务信息对应的频谱方式,以及控制收发模块向第一终端设备发送业务信息和业务信息对应的频谱方式。在一种可能的实现方式中,业务信息和业务信息对应的频谱方式可用于第一终端设备确定第一频谱方式,第一频谱方式为授权频谱方式,或非授权频谱方式,或授权频谱和非授权频谱方式。
第八方面,本申请实施例提供一种通信装置,该通信装置具有实现上述第四方面或第四方面的任一种可能的实现方式中核心网设备的功能,该装置可以为核心网设备,也可以为核心网设备中的模块(如芯片)。
在一种可能的实现方式中,处理模块用于,获取第一终端设备签约的频谱方式,以及控制收发模块向第一终端设备发送第一终端设备签约的频谱方式。在一种可能的实现方式中,第一终端设备签约的频谱方式可用于第一终端设备确定第一频谱方式,第一频谱方式为授权频谱方式,或非授权频谱方式,或授权频谱和非授权频谱方式。
第九方面,本申请实施例提供一种芯片系统,包括:处理器,处理器与存储器耦合,存储器用于存储程序或指令,当程序或指令被处理器执行时,使得该芯片系统实现上述第一方面或第一方面的任一种可能的实现方式中的方法,或实现上述第二方面或第二方面的任一种可能的实现方式中的方法,或者执行上述第三方面或第三方面的任一种可能的实现方式中的方法,或者执行上述第四方面或第四方面的任一种可能的实现方式中的方法。
可选地,该芯片系统还包括接口电路,该接口电路用于交互代码指令至所述处理器。
可选地,该芯片系统中的处理器可以为一个或多个,该处理器可以通过硬件实现也可以通过软件实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等。当通过软件实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现。
可选地,该芯片系统中的存储器也可以为一个或多个。该存储器可以与处理器集成在一起,也可以和处理器分离设置。示例性的,存储器可以是非瞬时性处理器,例如只读存储器ROM,其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上。
第十方面,本申请实施例提供一种计算机可读存储介质,其上存储有计算机程序或指令,当该计算机程序或指令被执行时,使得计算机执行上述第一方面或第一方面的任一种可能的实现方式中的方法,或执行上述第二方面或第二方面的任一种可能的实现方式中的方法,或者执行上述第三方面或第三方面的任一种可能的实现方式中的方法,或者执行上述第四方面或第四方面的任一种可能的实现方式中的方法。
第十一方面,本申请实施例提供一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得计算机执行上述第一方面或第一方面的任一种可能的实现方式中的方法,或执行上述第二方面或第二方面的任一种可能的实现方式中的方法,或者执行上述第三方面或第三方面的任一种可能的实现方式中的方法,或者执行上述第四方面或第四方面的任一种可能的实现方式中的方法。
第十二方面,本申请实施例提供一种通信系统,该通信系统包括核心网设备和第一终端设备,第一终端设备用于执行上述第一方面或第一方面的任一种可能的实现方式中的方法,核心网设备用于执行上述第三方面或第三方面的任一种可能的实现方式中的方法;
或,第一终端设备用于执行上述第二方面或第二方面的任一种可能的实现方式中的方法,核心网设备用于执行上述第四方面或第四方面的任一种可能的实现方式中的方法。
上述第五方面至第十二方面中任一方面可以达到的技术效果,均可以参照上述第一方面至第四方面中相关有益效果的描述,此处不再重复赘述。
附图说明
图1为提供的一种通信系统的架构图;
图2为提供的一种基于QoS flow的5G QoS模型的示意图;
图3为提供的一种D2D通信中基于QoS flow的QoS模型;
图4为提供的一种建立PC5链路的流程示意图;
图5为本申请提供的一种通信方法的流程示意图;
图6为本申请提供的一种具体应用场景下UE1与UE2传输业务数据的流程示意图;
图7为本申请提供的一种ProSe层确定第一频谱方式的流程示意图;
图8为本申请提供的一种AS层确定第一频谱方式的流程示意图;
图9为本申请提供的一种ProSe层和AS层确定第一频谱方式的流程示意图;
图10为本申请提供的另一种通信方法的流程示意图;
图11为本申请提供的再一种具体应用场景下UE1与UE2传输业务数据的流程示意图;
图12为本申请提供的再一种ProSe层确定第一频谱方式的流程示意图;
图13为本申请提供的一种通信装置的结构示意图;
图14为本申请提供的再一种通信装置的结构示意图。
具体实施方式
下面将结合附图,对本申请实施例进行详细描述。
图1为本申请通信方法使用的系统架构,该系统中包含的网络功能和实体主要有:终端设备(user equipment,UE)、无线接入网(radio access network,RAN)设备、用户面功能(user plane function,UPF)网元、数据网络(data network,DN)、接入和移动性管理功能(access and mobility management function,AMF)网元、会话管理功能(session management function,SMF)网元、网络暴露功能(network exposure function,NEF)网元、策略控制功能(policy control function,PCF)网元、应用功能(application function,AF)网元、网络切片选择功能(network slice selection function,NSSF)网元、认证服务器功能(authentication server function,AUSF)网元、统一数据管理(unified data management,UDM)网元、网络存储功能(network repository function,NRF)网元和统一数据存储功能(unified data repository,UDR)网元。
进一步的,图1中展示了网络功能和实体之间的交互关系以及对应的接口,例如终端设备和AMF网元之间可以通过N1接口进行交互,交互消息称为N1Message。部分接口可以采用服务化接口的方式实现。
用户的数据流可以通过终端设备和DN之间建立的协议数据单元(protocol data unit session,PDU)会话进行传输,具体传输可以经过无线接入网设备和UPF网元。
如下对网络功能和实体解释如下:
终端设备:可以为用户设备、手持终端、笔记本电脑、蜂窝电话、智能电话、平板型电脑、手持设备、AR设备、VR设备、机器类型通信终端或是其他可以接入网络的设备。终端设备与无线接入网设备之间采用某种空口技术(如新空口(new radio,NR)或长期演进(long term evolution,LTE)技术)相互通信。终端设备与终端设备之间也可以采用某种空口技术(如NR或LTE技术)相互通信。在车联网通信中,车辆上载的通信终端可以作为一种终端设备,路边单元(road side unit,RSU)也可以作为一种终端设备。无人机上载有通信终端,也可以看做是一种终端设备。
无线接入网设备:主要负责空口侧的无线资源管理、服务质量管理、数据压缩和加密等功能。无线接入网设备可以包括各种形式的基站,例如:宏基站,微基站,中继站,接入点等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如,在NR系统中,称为gNB。
AMF网元:属于核心网网元,主要负责:接入控制、移动性管理、附着与去附着以及网关选择等功能。在AMF网元为终端设备的会话提供服务的情况下,具体可以为会话提供控制面的存储资源,该存储资源可以用来存储会话的标识、与会话关联的SMF网元的标识等。
SMF网元:负责用户面网元选择,用户面网元重定向,因特网协议(internet protocol,IP)地址分配,承载的建立、修改和释放以及QoS控制等。
UPF网元:负责终端设备中用户数据的转发和接收。例如,UPF网元可以从DN接收用户数据,通过无线接入网设备传输给终端设备;UPF网元还可以通过无线接入网设备从终端设备接收用户数据,转发到DN。UPF网元为终端设备提供服务的传输资源和调度功能。
NEF网元:用于支持第三代伙伴计划(The 3rd Generation Partnership Project,3GPP) 网络和第三方应用安全的交互。
AF网元:用于提供服务,还可以向网络侧提供第三方的一些服务。
PCF网元:负责策略控制的决策,提供控制平面功能的策略规则,以及基于流量的计费控制功能等。
NSSF网元:主要负责网络切片选择,根据终端设备的切片选择辅助信息、签约信息等确定终端设备允许接入的网络切片实例。
UDM网元:主要负责终端设备的签约数据管理,包括终端设备标识的存储和管理,终端设备的接入授权等。
AUSF网元:支持3GPP和非3GPP的接入认证。
NRF网元:支持网络功能的注册和发现。
UDR网元:存储和获取UDM网元和PCF网元使用的签约数据。
需要说明的是,核心网中的各个网元也可以称为功能实体或者设备,既可以是在专用硬件上实现的网络元件,也可以是在专用硬件上运行的软件实例,或者是在适当平台上虚拟化功能的实例。
图1所示的通信系统的架构中不限于仅包含图中所示的网元,还可以包含其它未在图中表示的设备,具体本申请在此处不再一一列举。本申请实施例并不限定各个网元的分布形式,图1所示的分布形式只是示例性的,本申请不作限定。
图1所示的通信系统并不构成本申请实施例能够适用的通信系统的限定。图1所示的通信系统架构为5G系统架构,可选的,本申请实施例的方法还适用于未来的各种通信系统,例如6G或者其他通信网络等。
为方便说明,本申请后续均以图1所示的网元为例进行说明,并将“XX网元”直接简称为“XX”,比如将AMF网元简称为AMF,以及将“无线接入网设备”直接简称为“RAN”。应理解,本申请中所有网元的名称仅仅作为示例,在未来通信中还可以称为其它名称,或者在未来通信中本申请涉及的网元还可以通过其它具有相同功能的实体或者设备等来替代,本申请对此均不作限定。
为方便对本申请实施例的理解,首先介绍一下本申请实施例涉及到的概念和基础知识。
1、5G QoS管理
在5G系统中,为了保证业务端到端的服务质量,提出了基于QoS flow的5G QoS模型,可参见图2所示。该5G QoS模型支持保证比特速率(guaranteed bit rate,GRB)的QoS flow(GBR QoS flow)和不保证比特速率的QoS flow(Non-GBR QoS flow),使用同一个QoS flow控制的数据包接收相同的传输处理(如调度、准入门限等)。
对于一个终端设备,其可以与5G网络建立一个或者多个PDU会话;每个PDU会话中可以建立一个或者多个QoS flow。每个QoS flow由一个QoS flow标识(QoS flow identifier,QFI)识别,QoS flow标识在PDU会话中唯一标识一个QoS flow。一个QoS flow为GBR QoS flow还是Non-GBR QoS flow,由对应的QoS配置文件(QoS profile)确定。
对于GBR QoS flow,GBR QoS flow对应的QoS配置文件中必须包含以下QoS参数:5G QoS指示符(5G QoS identifier,5QI)、分配保持优先级(allocation and retention priority,ARP)、保证流比特速率(guaranteed flow bit rate,GFBR)和最大流比特速率(maximum flow bit rate,MFBR)。可选的,GBR QoS flow对应的QoS配置文件还可包含QoS通知控制(QoS  notification control,QNC)。根据QoS配置文件是否包含QNC将GBR QoS flow分为需要QNC的GRB QoS flow和不需要QNC的GBR QoS flow。对于需要QNC的GBR QoS flow,当RAN检测到对应的QoS flow资源不能被满足时,RAN通知SMF该事件,再通知PCF。进一步的,SMF可以发起QoS flow删除或者修改流程。
对于Non-GBR QoS flow,Non-GBR QoS flow对应的QoS配置文件中必须包含以下QoS参数:5QI、ARP;可选的,Non-GBR QoS flow对应的QoS配置文件中还可包含反转QoS属性(Reflective QoS Attribute,RQA)。
具体地QoS参数定义如下:
5QI:是一个标量,用于索引到对应的5G QoS特征;5QI分为标准化的5QI、预配置的5QI和动态分配的5QI。对于标准化的5QI,与一组标准化的5G QoS特征值一一对应;对于预配置的5QI,对应的5G QoS特征值预配置在接入网络节点(AN);对于动态分配的5QI,对应的5G QoS特征包含在QoS配置文件中发送给AN。QoS特征值包括资源类型(resource type,资源类型分为GBR和Non-GBR),优先级级别(priority level),数据包时延预算(packet delay budget,可理解为数据包从终端设备到UPF的时延),数据包错误概率(packet error rate),最大数据突发量(maximum data burst volume),平均窗口(averaging window,可用于计算GBR对应的速率)。
ARP:包含优先等级、抢占能力和被抢占能力;
RQA:用于指示使用对应QoS flow传输的业务使用反转QoS;
QNC:用于指示RAN在QoS flow的使用期当GFBR不能满足时是否通知网络;
GFBR:代表期望提供给GBR QoS flow的比特速率;
MFBR:限制提供给GBR QoS flow的比特速率,即提供给GBR QoS flow的最大比特速率。如超过该比特速率时,数据包可以被丢弃。
5G网络可以通过信令面执行QoS控制的管理流程,SMF基于QoS和业务需求进行业务数据流(service data flow,SDF)到QoS flow的绑定。SMF根据本地策略或者PCF发送的策略与计费控制(policy and charging control,PCC)规则,为SDF分配新QoS flow的QoS flow标识,推算出QoS配置文件和相应的数据包检测规则(packet detection rule,PDR)信息。其中,PCC规则包括两种类型:动态PCC规则和预定义的PCC规则。动态PCC规则由PCF提供给SMF,预定义的PCC规则配置在SMF上。PCC规则中包括业务数据流检测相关、计费相关和策略控制(policy control)相关等。业务数据流检测相关包括业务数据流模板(SDF template,一个PCC规则中的业务数据流模板检测出的数据包形成一个SDF)及模板优先级。策略控制相关包括Gate status(业务数据流可通过或丢弃)、被授权的QoS参数(5QI、ARP、maximum bitrate,guaranteed bitrate等)、QNC、Reflective QoS Control。其中,maximum bitrate为该业务数据流最大的比特速率,guaranteed bitrate为该业务数据流保证的比特速率。
2、D2D QoS管理
在5G的D2D通信中,两个终端设备(可分别表示为UE1和UE2)之间可建立一个或者多个PC5链路,该PC5链路可以是PC5单播链路(unicast link)。进一步的,每个PC5链路与一对应用层标识(APP Layer ID)对应。如图3为本申请示例性提供的一种D2D通信中基于QoS flow的QoS模型,其中PC5链路1与应用层标识1、应用层标识2相对应, 其中应用层标识1是UE1的应用层标识,应用层标识2是UE2的应用层标识。
每个PC5链路中可以建立一个或者多个QoS flow,如图3示出的例子中,PC5链路1中建立有PC5QoS flow#1至PC5QoS flow#3。进一步的,每个PC5QoS flow由一个PC5QoS flow标识(PC5QoS flow identifier,PFI)识别,PC5QoS flow标识在PC5链路中唯一标识一个PC5QoS flow。D2D QoS支持GBR QoS flow和Non-GBR QoS flow。
PC5QoS参数包括PQI(PC5 5QI)、PC5流比特速率(PC5flow bit rate)和PC5链路聚合比特速率(PC5link aggregated bit rates)。其中,PQI是一种特殊的5QI,每一个PQI值与QoS特征值一一对应,QoS特征值包括资源类型,优先级级别,数据包时延预算,数据包错误概率,最大数据突发量,平均窗口。PC5流比特速率包括保证流比特速率和最大流比特速率,PC5QoS参数中内容均可参见上述5G QoS管理中相关解释。
对于D2D场景下QoS管理,终端设备在注册过程中可从PCF获取QoS映射配置,QoS映射配置包括在终端设备策略中。QoS映射配置包括:配置1)业务类型或业务需求(优先级、可靠性、时延等)与PC5QoS参数(如PQI,MFBR/GFBR等)的对应关系;配置2)PC5QoS参数与侧行链路无线承载(side link radio bear,SLRB)的对应关系。其中PC5QoS参数为网络授权的PC5QoS参数。其中,配置1)可用于终端设备在网络服务和不在网络服务下场景,配置2)可用于终端设备不在网络服务下场景。PCF在向终端设备提供授权的PC5QoS参数的同时,也将授权的PC5QoS参数通过AMF发送给终端设备所驻留的RAN。值得注意的是,发送给终端设备和RAN的PC5QoS参数都是用于终端设备间直接通信的PC5QoS参数。用于终端设备间直接通信的PC5QoS参数可以理解为该PC5QoS参数用于终端设备间直接通信的PC5链路。
终端设备间在建立链路或更新链路流程中,协商PC5QoS flow信息,建立PC5QoS flow。具有相同PC5QoS参数的不同业务关联到同一个PC5QoS flow中。对于每个PC5QoS flow,PC5QoS flow信息包括PC5QoS flow标识以及PC5QoS flow标识对应的PC5QoS参数信息。终端设备推导出QoS规则(QoS rule),表示PC5数据包过滤集合(PC5Packet Filter Set)与PC5QoS flow标识的对应关系。PC5数据包过滤集合可以包括业务类型、源层2标识(Source layer-2identifier,Source L2ID)/目的层2标识(Destination layer-2identifier,Destination L2ID)、应用层ID的任意组合。PC5数据包过滤集合可以是IP数据包过滤集合,包括源/目的IP地址、源/目的端口号等任意组合。
终端设备协商PC5QoS参数信息之后,终端设备在网络服务下,终端设备向RAN提供PC5QoS参数信息和链路信息(如PC5链路标识(PC5link ID)或目的层2标识),从而终端设备从RAN中获取PC5QoS参数对应的接入层(access stratum,AS)层配置(如逻辑信道配置或无线承载配置)。RAN根据从PCF获取的授权的PC5QoS参数对终端设备提供的PC5QoS参数进行授权,授权通过后再提供AS层配置。
3、PC5链路建立
在5G系统中,两个终端设备(可分别表示为UE1和UE2)之间建立PC5链路的流程示意图可参见图4所示,其中UE1和UE2之间建立的PC5链路可以是PC5单播链路。
步骤401,UE1发送直接通信请求消息。
该直接通信请求消息中包括UE2的应用层标识。具体地,UE1使用源层2标识和目的层2标识发送该直接通信请求消息,该直接通信请求消息可以为广播消息。其中,源层2 标识为UE1自己分配的层2地址,目的层2标识为广播的层2地址。在UE1发送直接通信请求消息之前,UE2确定用于接收直接通信请求消息的层2地址,将UE2的层2地址配置在UE2侧。
步骤402,UE1与UE2之间建立安全通道。
步骤403,UE2接收UE1广播的直接通信请求消息,确定直接通信请求消息中包括UE2的应用层标识,UE2响应于该直接通信请求消息,向UE1发送直接通信响应消息。示例性的,直接通信响应消息可以是直接通信接受消息。该直接通信响应消息对应的源层2标识为UE2自己分配的层2地址,目的层2标识为步骤401中UE1的层2地址。
可选的,在步骤401和步骤403中,UE1与UE2之间还可以协商PC5QoS flow信息,PC5QoS flow信息中可包括PC5QoS flow标识以及PC5QoS flow标识对应的PC5QoS参数信息。
步骤404,在UE1与UE2之间建立完成PC5链路之后,UE1与UE2之间可以相互传输业务数据,其中业务数据又可称为是侧行数据、侧行业务数据、或邻近业务(proximity-based services,ProSe)数据等。
需要指出的是,UE1和UE2还会分别分配PC5链路标识来标识该PC5链路,其中PC5链路标识是每个终端设备单独分配的,只在终端设备内部层间交互使用。以其中任一个终端设备,比如UE1为例,该UE1中包括ProSe层和AS层,ProSe层与另外一个终端设备(即UE2)建立完PC5链路后,ProSe层将PC5链路标识、该PC5链路使用的源层2标识及目的层2标识发送给AS层。AS层存储PC5链路标识、源层2标识及目的层2标识的对应关系。ProSe层建立完PC5QoS flow后,将PC5QoS flow标识和对应的PC5QoS参数发送到AS层,AS层保存PC5QoS flow标识对应的PC5QoS参数,根据PC5QoS参数生成AS层配置(如逻辑信道配置或无线承载配置)。
在UE1发送数据包时,ProSe层确定数据包对应的PC5链路标识和PC5QoS flow标识,向AS层随数据包携带有PC5链路标识和PC5QoS flow标识,AS层根据PC5链路标识确定源层2标识和目的层2标识,AS层根据PC5QoS flow标识确定AS层配置,AS层利用源层2标识和目的层2标识、AS层配置发送相应数据。在UE1接收数据包时,UE1的AS层可接收所有终端设备发送的数据包,确定目的层2标识是否为自己分配的L2ID,若是,则判断自己为数据的接收端,递交上层进一步处理;若否,则丢弃该数据包。
4、授权频谱、非授权频谱、频谱资源
授权频谱(licensed spectrum):目前公众移动通信网均使用授权频谱,由各国电信或频率管理部门分配授权,在授权频谱范围内不允许其他技术和网络使用,以确保移动网络的质量和安全。通过授权频谱中的频谱资源传输业务可以保障业务的可靠性等需求。
非授权频谱(unlicensed spectrum):非授权频谱的使用无需申请并且免费。其中,无线保真(wireless fidelity,WiFi)、紫蜂协议(zigbee)等技术使用的是非授权频谱。通过非授权频谱中的频谱资源传输业务时业务的可靠性等需求不易保障。在本申请中,非授权频谱又可以称为免授权频谱。
频谱资源(spectrum resource):指传输无线电磁波所用的频率资源,可以是一段频谱资源或某些特定的频率资源。例如,授权频谱中的频谱资源可以是3500MHz-3600MHz共100MHz带宽中的频率资源,非授权频谱中的频谱资源可以是5.15GHz-5.35GHz共200MHz 带宽中的频率资源。
两个终端设备之间建立PC5链路之后,两个终端设备即可以通过侧行链路相互传输业务数据。本申请提供的通信方法可用于合理确定出频谱方式,从而该两个终端设备可以采用确定出的频谱方式传输业务数据。
本申请中,两个终端设备可分别是第一终端设备和第二终端设备,其中第一终端设备可以是业务数据的发送端,第二终端设备可以是业务数据的接收端。为方便描述,如下将第一终端设备简称为UE1,第二终端设备简称为UE2。
UE1与UE2传输的业务数据可称为是第一业务的业务数据;UE1与UE2传输第一业务的业务数据的频谱方式,可称为是第一频谱方式,第一频谱方式可以是授权频谱方式,或非授权频谱方式,或授权频谱和非授权频谱(licensed spectrum and unlicensed spectrum)方式。具体地,当第一频谱方式是授权频谱方式时,UE1与UE2可通过授权频谱传输第一业务的业务数据;当第一频谱方式是非授权频谱方式时,UE1与UE2可通过非授权频谱传输第一业务的业务数据;当第一频谱方式是授权频谱和非授权频谱方式时,UE1与UE2可通过授权频谱和非授权频谱传输第一业务的业务数据。示例性的,UE1可基于载波聚合(carrier aggregation,CA)方式,实现同时使用授权频谱和非授权频谱与UE2传输第一业务的业务数据。
图5示出了本申请的一种通信方法,在该通信方法中,UE1可根据第一业务的业务信息,与UE2采用第一频谱方式传输第一业务的业务数据,具体如下所述。
步骤501,UE1获取第一业务的业务信息。
可选的,在UE1的应用层发起第一业务的请求时,UE1的应用层可生成第一业务的业务信息,并将该第一业务的业务信息发送给UE1的ProSe层。相应的,UE1的ProSe层可从UE1的应用层获取第一业务的业务信息。
其中,第一业务的业务信息可以包括以下(1)至(3)中的至少一项:
(1)第一业务的PC5QoS参数
其中,第一业务的PC5QoS参数中可包括以下一项或多项:第一业务的PQI、或第一业务的比特速率。
(2)第一业务的业务类型
其中,第一业务的业务类型可包括以下一项或多项:视频、语音、或关键业务(critical service)、ProSe业务类型(ProSe service type)、服务商业务标识(provider service identifier,PSID)、或智能交通系统应用标识(intelligent transport systems application identifier,ITS-AID)。其中,ProSe业务类型可以用于标识业务类型为ProSe的业务。
(3)第一业务的业务标识
其中,第一业务的业务标识可以是,ProSe标识(ProSe identifier),或者第一业务的流描述(traffic descriptor)。
其中,第一业务的流描述可以是,第一业务对应的IP描述(IP descriptor),或域描述(domain descriptor),其中域描述比如是全限定域名(fully qualified domain name,FQDN)。
步骤502,UE1根据第一业务的业务信息,采用第一频谱方式与UE2传输第一业务的业务数据。
其中,UE1与UE2传输第一业务的业务数据,可以理解为第一业务的业务数据承载于 UE1与UE2之间的侧行链路上。本申请中,UE1与UE2之间的侧行链路可以是PC5链路(PC5link)、或层2链路(Layer-2link)、或PC5单播链路(PC5unicast link)。
上述技术方案中,UE1可根据第一业务的业务信息,采用第一频谱方式与UE2传输第一业务的业务数据,如此,UE1和UE2之间可通过更适用于业务特征的频谱方式来传输业务数据,有助于更好地满足业务需求以及合理地利用授权频谱和非授权频谱。
可选地,在上述实施例的第一种实施场景下,上述方法还包括:UE1根据第一业务的业务信息,确定第一频谱方式。
具体地,UE1可以根据业务信息与频谱方式的对应关系,以及第一业务的业务信息,确定第一频谱方式。如下,先对业务信息与频谱方式的对应关系解释:
该对应关系中的频谱方式可以包括如下中的一项或多项:授权频谱方式、非授权频谱方式、授权频谱和非授权频谱方式、优先授权频谱方式、或优先非授权频谱方式。其中授权频谱方式、非授权频谱方式、授权频谱和非授权频谱方式均可参见上述关于第一频谱方式中的描述,如下对优先授权频谱方式和优先非授权频谱方式解释:
优先授权频谱方式,可理解为,UE1与UE2可通过授权频谱方式,也可通过非授权频谱方式来传输业务数据,但优先通过授权频谱方式传输业务数据。示例性的,UE1可先确定是否通过授权频谱方式来传输业务数据,若是,则通过授权频谱方式来传输业务数据;否则,UE1可通过非授权频谱方式传输业务数据。其中,UE1确定是否通过授权频谱方式传输业务数据的实现方式,可参见下述实施例中描述。
优先非授权频谱方式,可理解为,UE1与UE2可通过非授权频谱方式,也可通过授权频谱方式传输业务数据,但优先通过非授权频谱方式传输业务数据。示例性的,UE1可先确定是否通过非授权频谱方式传输业务数据,若是,则通过非授权频谱方式传输业务数据;否则,UE1可通过授权频谱方式传输业务数据。其中,UE1确定是否通过非授权频谱方式传输业务数据的实现方式,可参见下述实施例中描述。
该对应关系中的业务信息可以包括PC5QoS参数、业务类型、业务标识中的一项或多项,具体描述均可参见上述第一业务的业务信息中描述,此处不再赘述。
基于对应关系中的业务信息为PC5QoS参数、或业务类型、或业务标识,如下分三种可能实现方式示例性的解释说明:
在第1种可能的实现方式中,该对应关系中的业务信息可为PC5QoS参数。
对应关系中的业务信息具体可以为PC5QoS参数中的PQI,即PQI可对应于频谱方式。结合表1示例性示出的例子解释,该表1中包括5个业务信息,该5个业务信息可具体包括PQI=90、PQI=91、PQI=58、PQI=59和PQI=70。进一步的,每个业务信息(即每个PQI)可分别对应于各自的频谱方式,比如PQI=90对应于授权频谱方式,再比如,PQI=59对应于优先非授权频谱方式。
表1
业务信息 频谱方式
PQI=90 授权频谱方式
PQI=91 优先授权频谱方式
PQI=58 非授权频谱方式
PQI=59 优先非授权频谱方式
PQI=70 授权频谱和非授权频谱方式
需要指出的是,表1仅是示例性的解释说明,对应关系中的每个业务信息还可包括多个PQI,比如业务信息中包括PQI=90和PQI=91,该PQI=90和PQI=91可对应于授权频谱方式;比如业务信息中包括PQI=58和PQI=59,该PQI=58和PQI=59可对应于非授权频谱方式;又或者,对应关系中的业务信息还可以是一个PQI区间,比如业务信息包括PQI区间[90-93],该PQI区间[90-93]可对应于授权频谱方式,比如业务信息包括PQI区间[58-60],该PQI区间[58-60]对应于非授权频谱方式。又或者,对应关系中的每个业务信息可以对应于多个频谱方式,比如PQI=90可对应于授权频谱方式,或授权频谱和非授权频谱方式;PQI=91可对应于优先授权频谱方式,或授权频谱和非授权频谱方式。需要指出的是,该说明同样适用于下面表2至表5相关示例中,即下述表2至表5中的对应关系同样是示例性的说明,不构成对本申请的限定。
此外,对应关系中的业务信息具体还可以为PC5QoS参数中的比特速率,即比特速率可对应于频谱方式。比如,GBR可对应于授权频谱方式,或优先授权频谱方式,或授权频谱和非授权频谱方式;再比如,Non-GBR可对应于非授权频谱方式,或优先非授权频谱方式等。
在第2种可能的实现方式中,该对应关系中的业务信息可为业务类型,即业务类型可对应于频谱方式。示例性的,对应关系中的业务类型可包括视频、关键业务、ProSe业务类型和服务商业务标识,其中,视频可对应于非授权频谱方式,或优先非授权频谱方式,或授权频谱和非授权频谱方式;关键业务可对应于授权频谱方式,或优先授权频谱方式,或授权频谱和非授权频谱方式;ProSe业务类型可对应于优先非授权频谱方式;服务商业务标识可对应于授权频谱方式,或优先授权频谱方式。
结合表2示例性示出的例子解释,其中包括5个业务信息,该5个业务信息可分别为视频1、视频2、关键业务1、ProSe业务类型1和服务商业务标识1,比如表2中视频1对应于非授权频谱方式,视频2对应于优先非授权频谱方式。
表2
业务信息 频谱方式
视频1 非授权频谱方式
视频2 优先非授权频谱方式
关键业务1 授权频谱和非授权频谱方式
ProSe业务类型1 优先非授权频谱方式
服务商业务标识1 优先授权频谱方式
在第3种可能的实现方式中,该对应关系中的业务信息可为业务标识,即业务标识可对应于频谱方式。示例性的,对应关系中的业务标识可包括流描述。结合表3示例性示出的对应关系解释,该表3中包括5个业务信息,该5个业务信息可分别为流描述1至流描述5,其中,流描述1对应于授权频谱方式,流描述2对应于非授权频谱方式,流描述3对应于授权频谱和非授权频谱方式等。
表3
业务信息 频谱方式
流描述1 授权频谱方式
流描述2 非授权频谱方式
流描述3 授权频谱和非授权频谱方式
流描述4 优先授权频谱方式
流描述5 优先非授权频谱方式
需要说明的是,该对应关系中的业务信息还可包括PC5QoS参数、业务类型、业务标识中的多个。示例性的,对应关系中的业务信息可包括PC5QoS参数和业务类型,或者包括PC5QoS参数、业务类型和业务标识,等等。如下以对应关系中的业务信息包括PC5QoS参数和业务类型,其中PC5QoS参数为PQI,业务类型为视频或关键业务为例说明,具体可参见下述第4种可能的实现方式和第5种可能的实现方式。
在第4种可能的实现方式中,PC5QoS参数和业务类型可分别对应于自己的频谱方式。结合表4示例性示出的对应关系解释,该表4中包括5个业务信息,该5个业务信息中包括3个PC5QoS参数和2个业务类型,该3个PC5QoS参数具体为PQI=90、PQI=91和PQI=58,该2个业务类型具体为视频1和关键业务1。进一步的,每个业务信息(PC5QoS参数或者业务类型)可分别对应于各自的频谱方式,比如PQI=90对应于授权频谱方式,再比如,视频1对应于非授权频谱方式。
表4
业务信息 频谱方式
PQI=90 授权频谱方式
PQI=91 优先授权频谱方式
PQI=58 非授权频谱方式
视频1 非授权频谱方式
关键业务1 授权频谱方式
在第5种可能的实现方式中,对应关系中的业务信息包括PC5QoS参数和业务类型,PC5QoS参数和业务类型可个共同对应于频谱方式。结合表5示例性示出的对应关系解释,该表5中包括2个业务信息,该2个业务信息可分别表示为PQI=90和关键业务1,以及PQI=91和视频1。进一步的,PQI=90和关键业务1可对应于授权频谱方式;PQI=91和视频可对应于授权频谱和非授权频谱方式。
表5
业务信息 频谱方式
PQI=90和关键业务1 授权频谱方式
PQI=91和视频1 授权频谱和非授权频谱方式
当然,上述关于对应关系的第1种至第5种可能的实现方式,仅仅用于解释说明本申请中的对应关系,不够成对本申请的限定,本申请的对应关系还可以是其他形式。
其中,上述对应关系可以预先配置在UE1,或是由UE1从应用服务器获取的,或是由UE1从核心网设备(如PCF)获取,不做限制。
示例性的,UE1可在注册过程中从PCF获取该对应关系。具体地,UE1向AMF发送5G邻近服务能力(5G ProSe capability),AMF将5G邻近服务能力转给PCF,PCF响应于该5G邻近服务能力向UE1发送对应关系。进一步的,该对应关系可以是PCF生成的,或 者是PCF从AF或者UDR中获取的。
基于上述关于对应关系的描述,如下解释说明UE1根据业务信息与频谱方式的对应关系,以及第一业务的业务信息,确定第一频谱方式的两种具体实施场景:
在第一个具体实施场景中,UE1可以根据第一业务的业务信息与第一频谱方式的对应关系,以及第一业务的业务信息,确定第一频谱方式。
解释为,该对应关系中第一业务的业务信息对应于授权频谱方式、或非授权频谱方式、或授权频谱和非授权频谱方式,UE1可将对应关系中第一业务的业务信息对应的频谱方式,作为第一频谱方式。
结合表1中例子,第一业务的业务信息中包括PQI=90,那么UE1可根据PQI=90和对应关系,确定第一频谱方式为授权频谱方式;或者结合表2中例子,第一业务的业务信息中包括视频1,那么UE1可根据视频1和对应关系,确定第一频谱方式为非授权频谱方式;或者结合表3中例子,第一业务的业务信息中包括流描述1,那么UE1可根据流描述1和对应关系,确定第一频谱方式为授权频谱方式。
本申请中,UE1的ProSe层可从应用层获取第一业务的业务信息,以及获取业务信息与频谱方式的对应关系。在第一个具体实施场景中,UE1确定第一频谱方式可以由UE1的ProSe层或者AS层来实现,可参照如下两种方式:
方式一、ProSe层根据第一业务的业务信息和对应关系,确定第一频谱方式;
方式二、AS层从ProSe层获取第一业务的业务信息和对应关系,AS层根据第一业务的业务信息和对应关系,确定第一频谱方式。
在第二个具体实施场景中,UE1根据第一业务的业务信息与第二频谱方式的对应关系,以及第一业务的业务信息,确定第二频谱方式;UE1再根据第二频谱方式和第一信息,确定第一频谱方式。
解释为,该对应关系中第一业务的业务信息对应于优先授权频谱方式或优先非授权频谱方式,UE1可根据第一业务的业务信息和对应关系,确定出第二频谱方式,该第二频谱方式即为优先授权频谱方式或优先非授权频谱方式。
结合表1中例子,第一业务的业务信息中包括PQI=91,那么UE1可根据PQI=91和对应关系,确定第二频谱方式为优先授权频谱方式;或者结合表2中例子,第一业务的业务信息中包括视频2,那么UE1可根据视频2和对应关系,确定第二频谱方式为优先非授权频谱方式;或者结合表3中例子,第一业务的业务信息中包括流描述4,那么UE1可根据流描述4和对应关系,确定第二频谱方式为优先授权频谱方式。
进一步的,UE1可根据第二频谱方式和第一信息,确定第一频谱方式。
其中,第一信息中可包括以下(a)至(d)中的至少一项:
(a)授权频谱资源的使用状态:可包括授权频谱资源的使用率和/或空闲率;
(b)非授权频谱资源的使用状态:可包括非授权频谱资源的使用率和/或空闲率;
(c)建议的频谱方式:即网络设备(比如RAN或核心网设备)向UE1建议的频谱方式,其中建议的频谱方式可以是授权频谱方式、或非授权频谱方式、或授权频谱和非授权频谱方式中的一个或多个;或,
(d)授权的频谱方式:或称为允许的频谱方式,即网络设备(比如RAN或核心网设备)授权或者允许UE1使用的授权频谱方式,其中授权的频谱方式可以是授权频谱方式、 或非授权频谱方式、或授权频谱和非授权频谱方式中的一个或多个。
该方式中,UE1可以根据授权频谱资源的使用状态、非授权频谱资源的使用状态、建议的频谱方式、授权的频谱方式中的一项或多项,结合第二频谱方式,更灵活且合理地确定出第一频谱方式。
进一步的,UE可以通过如下两种可能方式获取第一信息:
可能方式1,UE1可接收来自网络设备的第一信息。
其中,第一信息中可包括以下(a)至(d)中的至少一项:(a)授权频谱资源的使用状态、(b)非授权频谱资源的使用状态、(c)建议的频谱方式、(d)授权的频谱方式。
具体地,UE1可接收来自网络设备的第一信息。该第一信息可以是UE1向网络设备请求之后获取的,或者是网络设备主动发送给UE1的。其中,网络设备可以是RAN或核心网设备,核心网设备比如是PCF。
具体可参见下述三个示例:
示例1,UE1可从RAN接收建议的频谱方式。一个具体实现中,RAN可根据UE1的服务小区中的授权频谱或非授权频谱资源的使用状态,确定建议的频谱方式,将建议的频谱方式发送给UE1。举例来说,RAN已知UE1的服务小区中,授权频谱资源的空闲率小于或等于第一空闲率阈值,RAN向UE1建议的频谱方式为非授权频谱方式;或者,RAN已知UE1的服务小区中,授权频谱资源的空闲率大于第一空闲率阈值,RAN向UE1建议的频谱方式为授权频谱方式。
示例2,UE1可从RAN接收授权频谱资源的使用状态,和/或,UE1可从RAN接收非授权频谱资源的使用状态。
示例3,UE1可从RAN或核心网设备接收授权的频谱方式。应理解,RAN或核心网设备还可指示UE1不能使用一种或多种频谱方式,比如RAN向UE1授权的频谱方式为授权频谱方式,即RAN向UE1指示UE1不能使用非授权频谱方式,或者不能使用授权频谱和非授权频谱方式。在另外的实现方式中,授权的频谱方式,也可以替换为,禁止的或非授权的频谱方式,如下均以授权的频谱方式为例说明。
可能方式2,UE1可监测资源池中的资源,以获取第一信息。
其中,第一信息中可包括以下(a)或(b)中的至少一项:(a)授权频谱资源的使用状态、(b)非授权频谱资源的使用状态。
具体可参见下述两个示例:
示例1,UE1可监测资源池中的授权频谱资源,得到授权频谱资源的使用率和/或空闲率。例如,资源池中包括10MHz的授权频谱资源,UE1监测有1MHz的授权频谱资源可以使用或空闲,UE1确定授权频谱资源的使用率为90%或授权频谱资源的空闲率为10%。
示例2,UE1可监测资源池中的非授权频谱资源,得到非授权频谱资源的使用率和/或空闲率。例如,资源池中包括50MHz的非授权频谱资源,UE1监测有10MHz的非授权频谱资源可以使用或空闲,UE1确定非授权频谱资源的使用率为40%或非授权频谱资源的空闲率为60%。
本申请中,UE1根据第二频谱方式和第一信息,确定第一频谱方式,至少有如下举例:
例子1,在第二频谱方式为优先授权频谱方式,且授权频谱资源的空闲率大于第一空闲率阈值的情况下,UE1确定第一频谱方式为授权频谱方式。
例子2,在第二频谱方式为优先非授权频谱方式、且非授权频谱资源的空闲率大于第 二空闲率阈值的情况下,UE1确定第一频谱方式为非授权频谱方式。
例子3,在第二频谱方式为优先授权频谱方式,且建议的频谱方式为授权频谱方式的情况下,UE1确定第一频谱方式为授权频谱方式。
例子4,在第二频谱方式为优先非授权频谱方式,且建议的频谱方式为非授权频谱方式的情况下,UE1确定第一频谱方式为非授权频谱方式。
例子5,在第二频谱方式为优先授权频谱方式,且授权的频谱方式为授权频谱方式的情况下,UE1确定第一频谱方式为授权频谱方式。
例子6,在第二频谱方式为优先非授权频谱方式,且授权的频谱方式为非授权频谱方式的情况下,UE1确定第一频谱方式为非授权频谱方式。
当然,本申请中还可能存在第二频谱方式与第一信息存在冲突的情况,可参见例子7至例子9。
例子7,第二频谱方式为优先授权频谱方式,但是建议的频谱方式为非授权频谱方式的情况下,UE1可比较二者的优先级,比如第二频谱方式的优先级高于建议的频谱方式的优先级,那么UE1可确定第一频谱方式为授权频谱方式。或者,以建议的频谱方式为准,那么UE1可确定第一频谱方式为非授权频谱方式。
例子8,第二频谱方式为优先授权频谱方式,但是授权的频谱方式为非授权频谱方式,UE1可确定第一频谱方式为非授权频谱方式。
例子9,第二频谱方式为优先授权频谱方式,但是授权频谱资源的空闲率小于或等于第一空闲率阈值的情况下,UE1可确定第一频谱方式为非授权频谱方式。
需要说明的是,上述例子1至例子9仅是示例性说明UE1如何根据第二频谱方式和第一信息确定第一频谱方式,本申请还有其他的实现方式,此处不再赘述。
本申请中,UE1的ProSe层可从应用层获取第一业务的业务信息,以及获取业务信息与频谱方式的对应关系。UE1的AS层可从RAN或核心网设备接收第一信息,或者监测资源池中非授权频谱资源和/或授权频谱资源,得到第一信息。
在第二个具体实施场景中,确定第一频谱方式具体可以由UE1的ProSe层或AS层来实现,可参照如下三种方式:
方式一、ProSe层根据第一业务的业务信息和对应关系,确定第二频谱方式;AS层从ProSe层中获取第二频谱方式,AS层根据第二频谱方式和第一信息,确定第一频谱方式;
方式二、ProSe层根据第一业务的业务信息和对应关系,确定第二频谱方式;ProSe层从AS层中获取第一信息,ProSe层根据第二频谱方式和第一信息,确定第一频谱方式;
方式三、AS层从ProSe层中获取第一业务的业务信息和对应关系,AS层根据第一业务的业务信息和对应关系,确定第二频谱方式;AS层根据第二频谱方式和第一信息,确定第一频谱方式。
可选地,在上述实施例的第二种实施场景下,UE1可以在获取到第一业务的业务信息之后,即可采用第一频谱方式向UE2传输第一业务的业务数据(而无需根据第一业务的业务信息,确定第一频谱方式)。在该实施场景中,第一业务的业务信息可以是第一业务的业务标识,比如业务标识1与授权频谱方式绑定,业务标识2与非授权频谱方式绑定,业务标识3与授权频谱和非授权频谱方式绑定。如此,UE1若需要发送某个业务的业务数据时,直接根据与业务绑定的频谱方式向UE2传输业务数据,比如第一业务的业务标识为业务标识1,那么UE1采用授权频谱方式与UE2传输第一业务的业务数据。
可选地,在上述实施例的第三种实施场景下,上述方法还包括:UE1向UE2发送第二信息;其中,第二信息用于指示UE1采用第一频谱方式传输第一业务的业务数据。
基于第二信息中携带的不同信息,可以有如下两个可能示例:
在第1个可能示例中,第二信息中包括第一频谱方式的标识,UE1向UE2发送第二信息和第一业务的业务标识,相应的,UE2可根据第二信息中包括的第一频谱方式的标识,以及第一业务的业务标识,采用第一频谱方式传输第一业务的业务数据。
在第2个可能示例中,第二信息中包括第一业务的业务标识和第一频谱方式的标识,UE1向UE2发送第二信息,相应的,UE2可根据第二信息中包括的第一业务的业务标识和第一频谱方式的标识,采用第一频谱方式传输第一业务的业务数据。
第二信息可以承载在PC5信令消息中,该PC5信令消息可通过UE1与UE2之间的侧行链路进行传输。如下以第2个可能示例解释说明:
第二信息可以是一个通知消息,该通知消息可用于通知UE2:UE1通过第一频谱方式与UE2传输第一业务的业务数据。
或者,第二信息还可以是一个请求消息,该请求消息可用于UE1向UE2请求:是否可通过第一频谱方式传输第一业务的业务数据。UE2接收到该请求消息之后,向UE1发送响应消息,该响应消息可以是接受响应或拒绝响应。
其中接受响应可用于指示UE2接受通过第一频谱方式与UE1传输业务数据;拒绝响应可用于指示UE2拒绝通过第一频谱方式与UE1传输业务数据。示例性的,该响应消息可以是1个比特,比如该1比特取值为1时表示接受响应,该1比特取值为0时表示拒绝响应。示例性的,该请求消息或响应消息均可以是PC5信令消息,该PC5信令消息通过UE1与UE2之间的侧行链路进行传输,请求消息如直接通信请求(direct communication ruqest)消息,响应消息如直接通信接受(direct communication accept)消息。
在一种可能方式中,UE2也可以根据该第一业务的业务信息和对应关系,确定用于传输第一业务的业务数据的频谱方式(可称为第三频谱方式)。UE2可根据第三频谱方式,以及请求消息中第一频谱方式的标识和第一业务的业务标识,确定是否通过第一频谱方式与UE1传输第一业务的业务数据,然后UE2再向UE1发送拒绝响应或接受响应。
此处可以理解,UE2中也可以预先配置有业务信息与频谱方式的对应关系,UE2中预配置的对应关系与UE1中预配置的对应关系可以相同或不同,相应的,UE2确定出的第三频谱方式与UE1指示的第一频谱方式可以相同或不同。举例来说,UE1确定的第一频谱方式为授权频谱方式,UE2确定的第三频谱方式同样为授权频谱方式。UE1向UE2发送请求消息,UE2根据请求消息中的第一频谱方式的标识和第一业务的业务标识,确定第三频谱方式与第一频谱方式相同,UE2向UE1发送接受响应。
此外,UE2向UE1发送的响应消息中也可以包括第三频谱方式的标识,从而UE2可告知UE1当前UE2可通过第三频谱方式与UE1传输第一业务的业务数据。举例来说,UE1确定的第一频谱方式为授权频谱方式,UE2确定的第三频谱方式同样为授权频谱方式。UE1可向UE2发送请求消息,该请求消息中包括第一业务的业务标识和第一频谱方式的标识,其中第一频谱方式的标识用于指示授权频谱方式。UE2在接收到该请求消息之后向UE1发送响应消息,该响应消息中包括第一业务的业务标识和第三频谱方式的标识,第三频谱方式的标识同样用于指示授权频谱方式。相应的,UE1根据响应消息确定UE2可通过第一频谱方式(即授权频谱方式)与UE1传输第一业务的业务数据。
需要补充的是,在第一频谱方式是非授权频谱方式,或者为授权频谱和非授权频谱方式的情况下,UE1不仅可以向UE2发送第二信息,还可向UE2发送第一非授权频谱资源的信息,该第一非授权频谱资源的信息可用于指示UE1与UE2通过第一非授权频谱资源传输第一业务的业务数据。相应的,UE2接收到第二信息之后,可以收听该第一非授权频谱资源,以接收来自于UE1的第一业务的业务数据。
在该实现方式中,非授权频谱可以包括多个非授权频段,UE1可以从多个非授权频段中选择其中一个非授权频段,UE1向UE2发送该非授权频段的标识或编号,该非授权频段即为第一非授权频谱资源,该非授权频段的标识或编号即为第一非授权频谱资源的信息。举例来说,非授权频谱中包括非授权频段1(比如5.15GHz-5.35GHz),和非授权频段2(比如5.725GHz-5.85GHz),UE1可选择非授权频段1作为第一非授权频谱资源,然后UE1向UE2发送该非授权频段1的标识或编号。
UE1在从多个非授权频段中选择其中一个非授权频段的过程中,UE1可以从多个非授权频段中随机选择一个;或者UE1获取每个非授权频段中频谱资源的使用率和/或空闲率,从中选择一个使用率相对较低或空闲率相对较高的非授权频段。在另外的示例中,UE1还可以从非授权频谱的多个非授权频段中,确定第一非授权频谱资源的资源位置,将该第一非授权频谱资源的资源位置发送至UE2。此外,UE1也可以向UE2发送第一非授权频谱资源的信息,而无需向UE2发送第二信息,相应的,UE2根据该第一非授权频谱资源的信息,接收来自于UE1的第一业务的业务数据。
如此,UE2可以仅收听第一非授权频谱资源上是否有第一业务的业务数据,而无需收听所有非授权频谱上的资源,从而有助于减少UE2的能耗。
此外,UE1与UE2之间的侧行链路中可包括多个QoS flow,UE1与UE2之间传输的业务数据可承载于侧行链路中的某一个QoS flow(可以记为第一QoS flow)中。在此种情况下,UE1与UE2之间采用第一频谱方式传输第一业务的业务数据,可以理解为:UE1与UE2在侧行链路中采用第一频谱方式传输第一QoS flow,其中该第一QoS flow中承载有第一业务的业务数据。如此,UE1与UE2之间的多个QoS flow中可分别承载有不同业务信息对应的业务数据,且不同QoS flow可对应于不同的频谱方式,从而助于提高业务数据传输的灵活性。
在该实现方式中,UE1可根据第一频谱方式和第一QoS flow对应的频谱方式,将第一业务关联到第一QoS flow,从而在UE1向UE2发送第一业务的业务数据时,可将第一业务的业务数据承载于第一QoS flow中。
其中,UE1将第一业务关联到第一QoS flow,具体可以有如下两种可能方式:
预先说明的是,UE1与UE2的侧行链路中包括的QoS flow可对应于各自的频谱方式,比如某个QoS flow对应于授权频谱方式,或对应于非授权频谱方式,或对应于授权频谱和非授权频谱方式。QoS flow对应的频谱方式表示使用该频谱方式传输该QoS flow。例如,QoS flow对应的频谱方式为授权频谱方式,则使用授权频谱方式传输该QoS flow。
可能方式一,UE1可以先根据第一频谱方式,以及侧行链路中多个QoS flow分别对应的频谱方式,确定侧行链路中包括的多个QoS flow中是否存在与第一频谱方式相对应(或相关联)的QoS flow。若存在,则从中选择出与第一频谱方式相对应的QoS flow作为第一QoS flow;若不存在,则根据第一频谱方式,生成一个新的QoS flow,该新的QoS flow与第一频谱方式相对应,该新的QoS flow即为第一QoS flow。然后UE1将第一业务关联至 该第一QoS flow。
可能方式二,UE1可根据第一频谱方式,生成第一QoS flow,其中第一QoS flow与第一频谱方式相对应(或相关联)。然后UE1将第一业务关联至该第一QoS flow。
本申请中,第一QoS flow与第一频谱方式相对应,可以有如下两种示例:
一个示例中,第一QoS flow对应的频谱方式与第一频谱方式相同,比如第一QoS flow对应的频谱方式为授权频谱方式,第一频谱方式同样为授权频谱方式;或者,第一QoS flow对应的频谱方式为非授权频谱方式,第一频谱方式同样为非授权频谱方式;又或者,第一QoS flow对应的频谱方式为授权频谱和非授权频谱方式,第一频谱方式同样为授权频谱和非授权频谱方式,等等,UE1可以确定第一QoS flow与第一频谱方式相对应。
再一个示例中,第一QoS flow对应的频谱方式中包括第一频谱方式,比如第一QoS flow对应的频谱方式为授权频谱和非授权频谱方式,第一频谱方式为授权频谱方式;或者,第一QoS flow对应的频谱方式为授权频谱和非授权频谱方式,第一频谱方式为非授权频谱方式,UE1可以确定第一QoS flow与第一频谱方式相对应。
进一步需要说明的是,第一QoS flow不仅与第一频谱方式相对应,该第一QoS flow还需要满足第一业务的PC5QoS参数。
当第一业务的业务信息中包括第一业务的PC5QoS参数的情况下,UE1可以先根据第一业务的PC5QoS参数和对应关系确定第一频谱方式,然后从侧行链路中选择与第一频谱方式相对应、且满足第一业务的PC5QoS参数的QoS flow,作为第一QoS flow。
进一步的,UE1可以将对应于相同PC5QoS参数的业务关联至同一个QoS flow中,也可理解,不同业务若对应于相同的PC5QoS参数,那么该不同业务可以关联至同一个QoS flow中,该同一个QoS flow中可承载该不同业务分别对应的业务数据。
当第一业务的业务信息中包括第一业务的业务类型的情况下,UE1可以先根据第一业务的业务类型和对应关系确定第一频谱方式,然后从侧行链路中选择与第一频谱方式相对应、且满足第一业务的PC5QoS参数的QoS flow,作为第一QoS flow。
进一步的,不同类型的业务在对应于相同PC5QoS参数的情况下,也可能会对应于不同的第一频谱方式,即可能关联至不同的QoS flow中,也可理解,能够关联到同一个QoS flow的不同业务既要PC5QoS参数相同,又要业务类型与频谱方式的对应关系相同。
在该可能方式中,第二信息中可包括第一频谱方式的标识,UE1向UE2发送第二信息和第一QoS flow的标识,相应的,UE2可根据第二信息中包括的第一频谱方式的标识,以及第一QoS flow的标识,采用第一频谱方式传输第一QoS flow。又或者,第二信息中包括第一QoS flow的标识和第一频谱方式的标识,UE1向UE2发送第二信息,相应的,UE2可根据第二信息中包括的第一QoS flow的标识和第一频谱方式的标识,采用第一频谱方式传输第一QoS flow。进一步的,第一QoS flow具体可以是PC5QoS flow。
可选的,在步骤502中,UE1采用第一频谱方式与UE2传输第一业务的业务数据,具体可以是,UE1向RAN请求第一频谱方式对应的频谱资源,然后UE1根据请求到的频谱资源向UE2发送第一业务的业务数据;或者还可以是,UE1收听抢占第一频谱方式对应的频谱资源,然后UE1根据收听抢占的频谱资源向UE2发送第一业务的业务数据。相应的,UE2可以在第一频谱方式对应的频谱资源上进行检测,以接收到来自于UE1的第一业务的业务数据。如下示例性说明UE1采用第一频谱方式与UE2传输第一业务的业务数据的两种实现方式:
实现方式1,在第一频谱方式为授权频谱方式的情况下,UE1向RAN发送资源请求信息,该资源请求信息用于请求UE1与UE2之间传输第一业务的业务数据的授权频谱资源。相应的,RAN根据该资源请求信息,向UE1分配授权频谱资源,并将授权频谱资源的资源位置(如时频资源位置信息)指示给UE1。UE1在该资源位置对应的授权频谱资源上,向UE2发送第一业务的业务数据。在该实现方式中,若UE1向RAN请求授权频谱资源失败,RAN还可以向UE1分配非授权频谱资源,UE1基于RAN分配的非授权频谱资源,与UE2传输第一业务的业务数据。
实现方式2,在第一频谱方式为非授权频谱方式的情况下,UE1收听抢占资源池中的非授权频谱资源,确定出用于传输第一业务的业务数据的非授权频谱资源的资源位置。UE1在该资源位置对应的非授权频谱资源上,与UE2传输第一业务的业务数据。
可选的,在步骤502之前,UE1还可以向RAN发送PC5QoS参数和链路信息,其中链路信息比如是PC5链路标识或目的层2标识。RAN根据PC5QoS参数和链路信息,向UE1发送AS层配置。具体地,RAN根据从PCF中获取的授权的PC5QoS参数对UE提供的PC5QoS参数进行授权,授权通过后向UE1发送PC5QoS参数和链路信息对应的AS层配置。在该步骤中,UE1还可向RAN发送第一频谱方式的标识,RAN根据该第一频谱方式的标识判断是否预留用于UE1与UE2传输第一业务的业务数据的授权频谱资源或非授权频谱资源。
为了更好地解释本申请实施例,图6为本申请示例性提供的一种具体应用场景下的UE1与UE2传输第一业务的业务数据的实现方式。
步骤601,UE1向PCF发送5G邻近服务能力。具体地,UE1在注册流程中通过AMF向PCF发送5G邻近服务能力。
步骤602,PCF向UE1发送业务信息与频谱方式的对应关系。具体地,PCF通过AMF向UE1发送业务信息与频谱方式的对应关系。
步骤603,RAN广播第一信息。对应地,UE1接收第一信息。该步骤还可以替换为:UE1向RAN请求第一信息,RAN再向UE1发送第一信息。
步骤604,UE1根据第一业务的业务信息确定第一频谱方式。
示例性的,UE1根据业务信息与频谱方式的对应关系,以及第一业务的业务信息确定第一频谱方式。
再示例性的,UE1根据业务信息与频谱方式的对应关系,以及第一业务的业务信息确定第二频谱方式;UE1再根据第二频谱方式和第一信息,确定第一频谱方式。
步骤605,UE1向UE2发送请求消息,请求消息中包括第一QoS flow的标识和第一频谱方式的标识。
步骤606,UE2响应于UE1的请求消息,向UE1发送响应消息,响应消息中包括第一QoS flow的标识和第一频谱方式的标识。可以理解,该响应消息用于指示UE2接受通过第一频谱方式与UE1传输第一QoS flow。
步骤607,UE1向RAN发送信息报告,信息报告中包括第一频谱方式的标识、PC5QoS参数和链路信息,其中链路信息比如是PC5链路标识或目的层2标识。RAN中存储第一频谱方式的标识、PC5QoS参数和链路信息。
步骤608,RAN向UE1发送AS层配置。
步骤609,UE1采用第一频谱方式与UE2传输第一QoS flow,其中该第一QoS flow中承载有第一业务的业务数据。
需要指出的是,步骤603为可选步骤,在业务信息与频谱方式的对应关系中,若第一业务的业务信息与第二频谱方式相对应,则RAN可向UE1发送第一信息。
此外,在步骤602中,PCF还可向UE1发送该UE1的授权的频谱方式,具体地,在业务信息与频谱方式的对应关系中,若第一业务的业务信息与第二频谱方式相对应,则PCF可向UE1发送该UE1的授权的频谱方式,其中该授权的频谱方式即第一信息。该第一信息用于UE1在步骤604中确定第一频谱方式。
还需要指出的是,图6中未详细描述的内容均可参见图5相关实施例中的描述。
具体地,步骤601中未详细描述的内容可参见步骤501中描述。
步骤602至步骤604中未详细描述的内容均可参见步骤502中关于确定第一频谱方式的相关实施例中的描述。
步骤605和步骤606中未详细描述的内容可参见步骤502中关于UE1与UE2协商第一频谱方式的相关实施例中的描述。
步骤607至步骤609中未详细描述的内容可参见步骤502中UE1与UE2通过第一频谱方式传输第一业务的业务数据的相关实施例中的描述。
基于ProSe层和AS层的不同功能,如图7至图9为本申请提供的UE1与UE2传输第一业务的业务数据的多种实现方式。
需要指出的是,图7至图9示出的多种实现方式中,主要以UE1中的ProSe层和AS层解释说明,UE2中同样可包括ProSe层和AS层(图中未画出),UE2中ProSe层和AS层的交互,均可参见UE1中ProSe层和AS层的交互。
为方便描述,如下的ProSe层和AS层均可理解为UE1的ProSe层和AS层。
如图7示例性示出的流程中,ProSe层可根据第一业务的业务信息确定第一频谱方式。
步骤701,AS层向ProSe层发送第一信息。步骤701为可选步骤,在第一业务信息对应于第二频谱方式时,AS层可向ProSe层发送第一信息。
步骤702,ProSe层根据第一业务的业务信息确定第一频谱方式。
一个具体示例中,ProSe层根据第一业务的业务信息与第一频谱方式的对应关系,以及第一业务的业务信息,确定第一频谱方式。
再一个具体示例中,ProSe层根据第一业务的业务信息与第二频谱方式的对应关系,以及第一业务的业务信息,确定第二频谱方式;ProSe层进而根据第二频谱方式和第一信息,确定第一频谱方式。
步骤703,ProSe层根据第一业务的业务信息和第一频谱方式,关联第一QoS flow与第一频谱方式。ProSe层向AS层发送第一QoS flow的标识和第一频谱方式的标识。
步骤704,AS层将第一QoS flow的标识和第一频谱方式的标识对应存储。
步骤705,ProSe层向AS层发送第一业务的业务数据以及第一QoS flow的标识。
步骤706,AS层根据第一QoS flow的标识,确定第一频谱方式。
步骤707,AS层通过第一频谱方式与UE2传输第一QoS flow,该第一QoS flow中承载有第一业务的业务数据。
需要指出的是,图7所示流程中未详细描述的内容均可参见图5相关实施例中的描述。
具体地,步骤701和步骤702中未详细描述的内容可参见步骤502中关于确定第一频 谱方式的相关实施例中的描述。
步骤703和步骤704中未详细描述的内容可参见步骤502中关于UE1关联第一QoS flow和第一频谱方式的相关实施例中的描述。
步骤705至步骤707中未详细描述的内容可参见步骤502中关于UE1与UE2通过第一频谱方式传输第一业务的业务数据的相关实施例中的描述。
上述技术方案中,ProSe层根据第一业务的业务信息确定第一频谱方式,向AS层发送第一QoS flow的标识和第一频谱方式的标识;以及向AS层发送第一业务的业务数据以及第一QoS flow的标识。相应的,AS层可通过第一频谱方式与UE2传输第一QoS flow,该第一QoS flow中承载有第一业务的业务数据。如此,ProSe层和AS层的功能划分明确。
如图8示例性示出的流程中,AS层可根据第一业务的业务信息确定第一频谱方式。
步骤801,ProSe层向AS层发送第一配置信息和第二配置信息,第一配置信息中可包括QoS flow标识和QoS flow标识对应的PC5QoS参数,第二配置信息中可包括业务信息与频谱方式对应关系。第一配置信息和第二配置信息可承载于同一条消息或不同消息中。
步骤802,ProSe层向AS层发送第一业务的业务信息。
步骤803,AS层根据第一业务的业务信息确定第一频谱方式。
一个具体示例中,AS层根据第一业务的业务信息与第一频谱方式的对应关系,以及第一业务的业务信息,确定第一频谱方式。
再一个具体示例中,AS层根据第一业务的业务信息与第二频谱方式的对应关系,以及第一业务的业务信息,确定第二频谱方式;AS层进而根据第二频谱方式和第一信息,确定第一频谱方式。
步骤804,AS层根据第一业务的业务信息和第一频谱方式,关联第一QoS flow与第一频谱方式。AS层对应存储第一QoS flow的标识和第一频谱方式的标识。
步骤805,ProSe层向AS层发送第一业务的业务数据以及第一QoS flow的标识。
步骤806,AS层根据第一QoS flow的标识,确定第一频谱方式。
步骤807,AS层通过第一频谱方式与UE2传输第一QoS flow,该第一QoS flow中承载有第一业务的业务数据。
需要指出的是,图8所示流程中未详细描述的内容均可参见图5相关实施例中的描述。
具体地,步骤801至步骤803中未详细描述的内容可参见步骤502中关于确定第一频谱方式的相关实施例中的描述。
步骤804中未详细描述的内容可参见步骤502中关于UE1关联第一QoS flow和第一频谱方式的相关实施例中的描述。
步骤805至步骤807中未详细描述的内容可参见步骤502中关于UE1与UE2通过第一频谱方式传输第一业务的业务数据的相关实施例中的描述。
上述技术方案中,AS层从ProSe层中获取业务信息与频谱方式对应关系,以及AS层从ProSe层中获取第一业务的业务信息,进而AS层可根据业务信息与频谱方式对应关系,和第一业务的业务信息确定第一频谱方式。如此,ProSe层无需参与频谱方式的确定过程。
如图9示例性示出的流程中,ProSe层可根据第一业务的业务信息确定第二频谱方式,AS层进一步根据第二频谱方式和第一信息确定第一频谱方式。
步骤901,ProSe层向AS层发送第一配置信息,第一配置信息中可包括QoS flow标识和QoS flow标识对应的PC5QoS参数。
步骤902,ProSe层根据第一业务的业务信息与第二频谱方式的对应关系,以及第一业务的业务信息,确定第二频谱方式。
步骤903,ProSe层向AS层指示第二频谱方式。
步骤904,AS层根据第二频谱方式和第一信息确定第一频谱方式。
步骤905,AS层根据第一业务的业务信息和第一频谱方式,关联第一QoS flow与第一频谱方式。AS层对应存储第一QoS flow的标识和第一频谱方式的标识。
步骤906,ProSe层向AS层发送第一业务的业务数据以及第一QoS flow的标识。
步骤907,AS层根据第一QoS flow的标识,确定第一频谱方式。
步骤908,AS层通过第一频谱方式与UE2传输第一QoS flow,该第一QoS flow中承载有第一业务的业务数据。
需要指出的是,图9所示流程中未详细描述的内容均可参见图5相关实施例中的描述。
具体地,步骤901至步骤904中未详细描述的内容可参见步骤502中关于确定第一频谱方式的相关实施例中的描述。
步骤905中未详细描述的内容可参见步骤502中关于UE1关联第一QoS flow和第一频谱方式的相关实施例中的描述。
步骤906至步骤908中未详细描述的内容可参见步骤502中关于UE1与UE2通过第一频谱方式传输第一业务的业务数据的相关实施例中的描述。
上述技术方案中,ProSe层根据第一业务的业务信息确定第二频谱方式,AS层根据第二频谱方式和第一信息,确定第一频谱方式。如此,AS层不需要向ProSe层提供第一信息。
图10示出了本申请的另一种通信方法,在该通信方法中,UE1可根据UE1签约的频谱方式,与UE2采用第一频谱方式传输第一业务的业务数据,具体如下所述。
步骤1001,UE1获取UE1签约的频谱方式。
UE1签约的频谱方式可包括如下频谱方式中的一个或多个:授权频谱方式、非授权频谱方式、优先授权频谱方式、优先非授权频谱方式、或授权频谱和非授权频谱方式。
其中签约的频谱方式也可理解为授权的频谱方式,即UE1可获取网络设备授权给UE1(或网络设备允许UE1使用)的频谱方式。
进一步的,UE1还可获取UE1签约的频谱方式对应的区域信息,可以理解,UE在不同区域时可使用的频谱方式不同,比如授权频谱方式对应于区域1,UE1在区域1中使用授权频谱方式;非授权频谱方式对应于区域2,UE1在区域2中使用非授权频谱方式等。
在一种可能方式中,UE1签约的频谱方式可以是UE1从PCF接收的。示例性的,在注册过程中,UE1向AMF发送5G邻近服务能力,AMF将5G邻近服务能力转给PCF。PCF响应于该5G邻近服务能力,向UE1发送UE1签约的频谱方式。其中,UE1签约的频谱方式可以是PCF生成的,或者是PCF从UDR或者AF中获取的。在另外的实现方式中,UE1签约的频谱方式还可以是UE从UDM中获取,或者是UE1预配置的。UE1还可以通过上述的任一种方式获取UE1签约的频谱方式对应的区域信息,不再赘述。
步骤1002,UE1根据UE1签约的频谱方式,采用第一频谱方式与UE2传输第一业务的业务数据。
上述技术方案中,UE1和UE2之间可通过更适用于UE1特征的频谱方式来传输该业务数据,有助于更好地传输业务数据以及合理地利用授权频谱和非授权频谱。
可选地,在上述实施例的第1种实施场景下,上述方法还包括:UE1根据UE1签约的频谱方式,确定第一频谱方式。如下分两种情况说明:
在UE1签约一个频谱方式的情况中:
若UE1签约授权频谱方式、或签约非授权频谱方式、或签约授权频谱和非授权频谱方式,UE1可将UE1签约频谱方式确定为第一频谱方式。比如UE1签约授权频谱方式,那么UE1可确定授权频谱方式为第一频谱方式。
若UE1签约优先授权频谱方式、或签约优先非授权频谱方式(即第二频谱方式),UE1可根据第二频谱方式和第一信息,确定第一频谱方式。比如,UE1签约优先授权频谱方式(即第二频谱方式),第一信息中包括的授权频谱资源的空闲率大于第一空闲率阈值,UE1可根据授权频谱资源的空闲率和优先授权频谱方式,选择授权频谱方式(即第一频谱方式)。
在UE1签约多个频谱方式的情况中:
UE1可从UE1签约的多个频谱方式中确定出第一频谱方式。具体可以有如下两个示例:
在一个示例中,UE1可根据第一区域信息,以及UE1签约的频谱方式对应的区域信息,从UE1签约的多个频谱方式中确定出第一频谱方式。第一区域信息可用于表征UE1所在的区域。UE1可根据UE1所在的区域确定第一区域信息,或UE1从RAN接收第一区域信息。如此,UE1可更好地确定出与UE1所在区域相适应的第一频谱方式。
进一步的,频谱方式对应的区域信息可以是小区粒度的,频谱方式对应的区域信息可包括一个或多个小区;或者,频谱方式对应的区域信息还可以是跟踪区(tracking area,TA)粒度的,频谱方式对应的区域信息可包括一个或多个TA。
第一区域信息可以是小区粒度的,第一区域信息可用于指示UE1处于哪个小区;或者,第一区域信息还可以TA粒度的,第一区域信息可用于指示UE1处于哪个TA。
举例来说,UE1可以签约授权频谱方式、非授权频谱方式、授权频谱和非授权频谱方式中的多个,比如授权频谱方式对应于TA#1,非授权频谱方式对应于TA#2,授权频谱方式和非授权频谱方式对应于TA#3。UE1可根据UE1所处区域确定第一区域信息,比如第一区域信息为TA#1,UE1可根据第一区域信息(即TA#1),以及UE1签约的频谱方式对应的区域信息,选择授权频谱方式(即第一频谱方式)。再比如,第一区域信息为小区#1,该小区#1属于TA#1,则UE1可根据第一区域信息(即小区#1)和UE1签约的频谱方式对应的区域信息,选择授权频谱方式(即第一频谱方式)。
在上述例子中,UE1还可以签约优先授权频谱方式和优先非授权频谱方式,比如优先授权频谱方式对应于TA#4,优先非授权频谱方式对应于TA#5,UE1还可根据UE1所处区域确定第一区域信息,比如第一区域信息指示TA#4,则UE1可根据第一区域信息和UE1签约的频谱方式对应的区域信息,选择优先授权频谱方式(即第二频谱方式)。在该情况中,UE1还可进一步根据第二频谱方式和第一信息,确定第一频谱方式。
当然,UE1还可签约授权频谱方式、非授权频谱方式、授权频谱和非授权频谱方式中的一个或多个,以及签约优先授权频谱方式和优先非授权频谱方式中的一个或多个,UE1从该签约的频谱方式中确定第一频谱方式的实现方式与上述类似。
在另一个示例中,UE1从UE签约的频谱方式中随机确定一个频谱方式,该确定出的频谱方式可以是第一频谱方式或第二频谱方式。在该确定出的频谱方式为第二频谱方式的 情况下,UE1可以根据第二频谱方式和第一信息,进一步确定第一频谱方式。
随后,UE1可采用确定出的第一频谱方式,与UE2传输第一业务的业务数据。
进一步的,UE1的ProSe层可获取UE1签约的频谱方式。AS层可从RAN或核心网设备接收第一信息,或者监测资源池中非授权频谱资源和/或授权频谱资源,得到第一信息。
确定第一频谱方式具体可以由UE1的ProSe层或AS层来实现,可参照如下五种方式:
方式1、ProSe层根据UE1签约的频谱方式、UE1签约的频谱方式对应的区域信息以及第一区域信息,确定第一频谱方式;其中,第一区域信息可以是AS层从RAN接收的,或者,AS层根据UE1所处的区域确定的,相应的,ProSe层可从AS层获取第一区域信息。或者在其他示例中,第一区域信息可以是ProSe层根据UE1所处区域确定的。
方式2、AS层接收来自于ProSe层的UE1签约的频谱方式、UE1签约的频谱方式对应的区域信息,AS层根据UE1签约的频谱方式、UE1签约的频谱方式对应的区域信息以及第一区域信息,确定第一频谱方式;其中第一区域信息可以是AS层从RAN接收的,或者,AS层根据UE1所处的区域确定的;或者在其他示例中,第一区域信息可以是ProSe层根据UE1所处区域确定的,相应的,第一区域信息可以是AS层从ProSe层获取。
方式3、ProSe层根据UE1签约的频谱方式,确定第二频谱方式;AS层接收来自于ProSe层的第二频谱方式,根据第二频谱方式和第一信息,确定第一频谱方式。
方式4、ProSe层根据UE1签约的频谱方式,确定第二频谱方式;ProSe层从AS层中接收第一信息,ProSe层根据第二频谱方式和第一信息,确定第一频谱方式。
方式5、AS层接收来自于ProSe层的UE1签约的频谱方式,AS层根据UE1签约的频谱方式,确定第二频谱方式;AS层根据第二频谱方式和第一信息,确定第一频谱方式。
本申请实施例中,第一信息、UE1获取第一信息、以及UE1根据第二频谱方式和第一信息确定第一频谱方式的具体说明,均可参见上述步骤502中关于确定第一频谱方式的实现方式中的描述,不再赘述。
可选地,在上述实施例的第2种实施场景下,若UE1签约一个频谱方式,且该签约的一个频谱方式为授权频谱方式、或非授权频谱方式、或授权频谱和非授权频谱方式,那么UE1可直接采用UE1签约的一个频谱方式,与UE2传输第一业务的业务数据。
可选地,上述方法还包括:UE1向UE2发送第二信息,第二信息用于指示UE1采用第一频谱方式传输第一业务的业务数据,具体可参见步骤502中关于第二信息的描述。
需要补充的是,在第一频谱方式是非授权频谱方式,或者为授权频谱和非授权频谱方式的情况下,UE1不仅可以向UE2发送第二信息,还可向UE2发送第一非授权频谱资源的信息,具体可参见步骤502中关于第一非授权频谱资源的信息的描述。
此外,UE1还可将第一频谱方式与UE1与UE2之间的侧行链路绑定,即UE1与UE2之间通过侧行链路传输第一业务的业务数据,且该侧行链路可占用第一频谱方式对应的频谱资源。一个具体是实现中,UE1通过UE1和UE2之间的侧行链路向UE2发送第二信息,第二信息中包括第一频谱方式的标识,相应的,UE2可根据第二信息中包括的第一频谱方式的标识,将UE1与UE2之间的侧行链路与第一频谱方式绑定。
本申请实施中,UE1可以通过第一频谱方式对应的频谱资源,与UE2传输侧行链路中的业务数据,也可以理解,该侧行链路中可包括一个或多个QoS flow,该一个或多个QoS flow均可通过第一频谱方式对应的频谱资源传输。
为了更好地解释本申请实施例,图11为本申请示例性提供的再一种具体应用场景下的 UE1与UE2传输第一业务的业务数据的实现方式。
步骤1101,UE1向PCF发送5G邻近服务能力。具体地,UE1在注册流程中通过AMF向PCF发送5G邻近服务能力。
步骤1102,PCF向UE1发送UE1签约的频谱方式和UE1签约的频谱方式对应的区域信息。可选地,PCF响应于5G邻近服务能力,通过AMF向UE1发送UE1签约的频谱方式和UE1签约的频谱方式对应的区域信息。
步骤1103,RAN广播第一信息。相应地,UE1接收第一信息。该步骤还可以替换为:UE1向RAN请求第一信息,RAN再向UE1发送第一信息。
步骤1104,UE1根据UE1签约的频谱方式和第一区域信息确定第一频谱方式。
示例性的,UE1根据UE1签约的频谱方式和UE1签约的频谱方式对应的区域信息,以及第一区域信息,确定第一频谱方式。
再示例性的,UE1根据UE1签约的频谱方式和UE1签约的频谱方式对应的区域信息,以及第一区域信息,确定第二频谱方式;UE1再根据第二频谱方式和第一信息,确定第一频谱方式。
步骤1105,UE1通过UE1与UE2之间的侧行链路向UE2发送请求消息,请求消息包括第一频谱方式的标识。
步骤1106,UE2响应于UE1的请求消息,向UE1发送接受响应。
步骤1107,UE1向RAN发送信息报告,信息报告中包括第一频谱方式的标识、PC5QoS参数和链路信息,其中链路信息如PC5链路标识或目的层2标识。RAN中存储第一频谱方式的标识、PC5QoS参数和链路信息。
步骤1108,RAN向UE1发送AS层配置。
步骤1109,UE1采用第一频谱方式与UE2传输第一业务的业务数据。
需要指出的是,步骤1103为可选步骤,在UE1签约的频谱方式中包括优先授权频谱方式,或优先非授权频谱方式中的一个或多个的情况下,UE1可接收来自于RAN的第一信息。该第一信息用于UE1在步骤1104中确定第一频谱方式。
还需要指出的是,图11中未详细描述的内容均可参见图10相关实施例的描述。
具体地,步骤1101和步骤1102中未详细描述的内容可参见步骤1001中描述。
步骤1103和步骤1104中未详细描述的内容均可参见步骤1002中关于确定第一频谱方式的相关实施例中的描述。
步骤1105和步骤1106中未详细描述的内容可参见步骤1002中关于UE1与UE2协商第一频谱方式的相关实施例中的描述。
步骤1107至步骤1109中未详细描述的内容可参见步骤1002中UE1与UE2通过第一频谱方式传输业务数据的相关实施例中的描述。
基于ProSe层和AS层的不同功能,如图12为本申请提供的UE1与UE2传输第一业务的业务数据的一种实现方式。图12中主要以UE1中的ProSe层和AS层解释说明,UE2中同样可包括ProSe层和AS层(图中未画出),UE2中ProSe层和AS层的交互,均可参见UE1中ProSe层和AS层的交互。为方便描述,如下的ProSe层和AS层均可理解为UE1的ProSe层和AS层。
如图12示例性示出的流程中,ProSe层可根据UE1签约的频谱方式确定第一频谱方式。
步骤1201,AS层向ProSe层发送第一信息。步骤1201为可选步骤。
步骤1202,ProSe层根据UE1签约的频谱方式确定第一频谱方式。
一个具体示例中,ProSe层根据UE1签约的频谱方式,确定第一频谱方式。
再一个具体示例中,ProSe层根据UE1签约的频谱方式,确定第二频谱方式;ProSe层再根据第二频谱方式和第一信息,确定第一频谱方式。
其中,ProSe层可以从AS层获取第一区域信息。
步骤1203,ProSe层关联UE1与UE2之间的侧行链路与第一频谱方式。ProSe层向AS层发送第一链路标识和第一频谱方式的标识,其中第一链路标识用于标识UE1与UE2之间的侧行链路,第一链路标识例如PC5链路标识或该PC5链路的目的层2标识。
步骤1204,AS层将第一链路标识和第一频谱方式的标识对应存储。
步骤1205,ProSe层向AS层发送第一业务的业务数据以及第一链路标识。
步骤1206,AS层根据第一链路标识,确定第一频谱方式。
步骤1207,AS层通过第一频谱方式与UE2传输第一业务的业务数据,其中第一业务的业务数据承载在UE1与UE2之间的侧行链路上。
需要指出的是,图12中未详细描述的内容均可参见图10相关实施例的描述。
具体地,步骤1201和步骤1202中未详细描述的内容均可参见步骤1002中关于确定第一频谱方式的相关实施例中的描述。
步骤1203和步骤1204中未详细描述的内容可参见步骤1002中关于UE1关联UE1与UE2之间的侧行链路和第一频谱方式的相关实施例中的描述。
步骤1205至步骤1207中未详细描述的内容可参见步骤1002中UE1与UE2通过第一频谱方式传输业务数据的相关实施例中的描述。
上述技术方案中,ProSe层根据UE1签约的频谱方式确定第一频谱方式,ProSe层向AS层发送第一链路标识和第一频谱方式的标识。随后,ProSe层向AS层发送第一业务的业务数据以及第一链路标识,相应的,AS层可通过第一频谱方式向UE2发送第一业务的业务数据,该第一业务的业务数据承载在UE1与UE2之间的侧行链路上。如此,ProSe层和AS层的功能划分明确。
此外,本申请中还可以是AS层根据UE1签约的频谱方式确定第一频谱方式,或者ProSe层根据UE1签约的频谱方式确定第二频谱方式,ProSe层向AS层指示第二频谱方式,然后AS层根据第一频谱方式和第一信息确定第一频谱方式。具体可结合图12,或图8,或图9中的实现方式,此处不再赘述。
基于上述内容和相同构思,图13和图14为本申请的提供的可能的通信装置的结构示意图。这些通信装置可以用于实现上述方法实施例中第一终端设备或核心网设备的功能,因此也能实现上述方法实施例所具备的有益效果。
在本申请中,该通信装置可以是终端设备,也可以是终端设备中的模块(如芯片),该通信装置比如是图1中的UE。该通信装置也可以是核心网设备,也可以是核心网设备中的模块(如芯片),该通信装置比如是图1中的PCF或UDM。
如图13所示,该通信装置1300包括处理模块1301和收发模块1302。
在通信装置1300用于实现上述图5至图9所示的方法实施例中第一终端设备(比如UE1)的功能时:
在一种可能的实现方式中,处理模块1301,用于获取第一业务的业务信息;处理模块1301,还用于根据业务信息,控制收发模块1302采用第一频谱方式传输第一业务的业务数据,第一业务的业务数据承载在通信装置1300与第二终端设备之间的侧行链路上,第一频谱方式为授权频谱方式,或非授权频谱方式,或授权频谱和非授权频谱方式。
在一种可能的实现方式中,业务信息包括以下至少一项:PC5QoS参数,业务类型,或业务标识。
在一种可能的实现方式中,处理模块1301还用于:根据业务信息,确定第一频谱方式。
在一种可能的实现方式中,处理模块1301具体用于:根据业务信息与第一频谱方式的对应关系,以及业务信息,确定第一频谱方式。
在一种可能的实现方式中,处理模块1301具体用于:控制邻近业务层根据业务信息与第一频谱方式的对应关系,以及业务信息,确定第一频谱方式;或控制接入层根据业务信息与第一频谱方式的对应关系,以及业务信息,确定第一频谱方式。
在一种可能的实现方式中,处理模块1301具体用于:根据业务信息与第二频谱方式的对应关系,以及业务信息,确定第二频谱方式;根据第二频谱方式和第一信息,确定第一频谱方式;其中,第二频谱方式为优先授权频谱方式,或优先非授权频谱方式;第一信息包括以下至少一项:授权频谱资源的使用状态,非授权频谱资源的使用状态,建议的频谱方式,或授权的频谱方式。
在一种可能的实现方式中,处理模块1301还用于:获取授权频谱资源的使用状态、非授权频谱资源的使用状态中的一项或多项。
在一种可能的实现方式中,处理模块1301还用于:控制收发模块1302接收第一信息。
在一种可能的实现方式中,处理模块1301具体用于:控制邻近业务层根据业务信息与第二频谱方式的对应关系,以及业务信息,确定第二频谱方式;控制接入层根据第二频谱方式和第一信息,确定第一频谱方式;或,控制邻近业务层根据业务信息与第二频谱方式的对应关系,以及业务信息,确定第二频谱方式;控制邻近业务层根据第二频谱方式和第一信息,确定第一频谱方式;或,控制接入层根据业务信息与第二频谱方式的对应关系,以及业务信息,确定第二频谱方式;控制接入层根据第二频谱方式和第一信息,确定第一频谱方式。
在一种可能的实现方式中,处理模块1301还用于:控制收发模块1302向第二终端设备发送第二信息;其中,第二信息用于指示通信装置1300采用第一频谱方式传输第一业务的业务数据。
在一种可能的实现方式中,在第一频谱方式为非授权频谱方式,或为授权频谱和非授权频谱方式的情况下,处理模块1301还用于:从非授权频谱资源中确定第一非授权频谱资源,第一非授权频谱资源用于通信装置1300与第二终端设备之间传输第一业务的业务数据;控制收发模块1302向第二终端设备发送第一非授权频谱资源的信息。
在一种可能的实现方式中,第一业务的业务数据承载在侧行链路中的第一QoS flow上。
在一种可能的实现方式中,处理模块1301还用于:根据第一频谱方式和第一QoS flow对应的频谱方式,将第一业务关联到第一QoS flow。
在一种可能的实现方式中,处理模块1301还用于:根据第一频谱方式,生成第一QoS flow。
在通信装置1300用于实现上述图10至图12所示的方法实施例中第一终端设备(比如UE1)的功能时:
在一种可能的实现方式中,处理模块1301,用于获取通信装置1300签约的频谱方式;处理模块1301,还用于根据通信装置1300签约的频谱方式,控制收发模块1302采用第一频谱方式传输第一业务的业务数据,第一业务的业务数据承载在通信装置1300与第二终端设备之间的侧行链路上,第一频谱方式为授权频谱方式,或非授权频谱方式,或授权频谱和非授权频谱方式。
在一种可能的实现方式中,通信装置1300签约的频谱方式包括以下至少一项:授权频谱方式,非授权频谱方式,授权频谱和非授权频谱方式,优先授权频谱方式,或优先非授权频谱方式。
在一种可能的实现方式中,处理模块1301还用于:根据通信装置1300签约的频谱方式,确定第一频谱方式。
在一种可能的实现方式中,处理模块1301具体用于:根据通信装置1300签约的频谱方式对应的区域信息,以及第一区域信息,确定第一频谱方式,第一区域信息用于表征通信装置1300所在的区域。
在一种可能的实现方式中,处理模块1301具体用于:控制邻近业务层根据通信装置1300签约的频谱方式对应的区域信息,以及第一区域信息,确定第一频谱方式;或控制接入层根据通信装置1300签约的频谱方式对应的区域信息,以及第一区域信息,确定第一频谱方式。
在一种可能的实现方式中,处理模块1301具体用于:根据通信装置1300签约的频谱方式确定第二频谱方式;根据第一信息和第二频谱方式确定第一频谱方式;其中,第二频谱方式为优先授权频谱方式,或优先非授权频谱方式;第一信息包括以下至少一项:授权频谱资源的使用状态,非授权频谱资源的使用状态,建议的频谱方式,或授权的频谱方式。
在一种可能的实现方式中,处理模块1301还用于:获取授权频谱资源的使用状态、非授权频谱资源的使用状态中的一项或多项。
在一种可能的实现方式中,处理模块1301还用于:控制收发模块1302接收第一信息。
在一种可能的实现方式中,处理模块1301具体用于:控制邻近业务层根据通信装置1300签约的频谱方式,确定第二频谱方式;控制接入层根据第二频谱方式和第一信息,确定第一频谱方式;或,控制邻近业务层根据通信装置1300签约的频谱方式,确定第二频谱方式;控制邻近业务层根据第二频谱方式和第一信息,确定第一频谱方式;或,控制接入层根据通信装置1300签约的频谱方式,确定第二频谱方式;控制接入层根据第二频谱方式和第一信息,确定第一频谱方式。
在一种可能的实现方式中,处理模块1301还用于:控制收发模块1302向第二终端设备发送第二信息;其中,第二信息用于指示通信装置1300采用第一频谱方式传输第一业务的业务数据。
在一种可能的实现方式中,在第一频谱方式为非授权频谱方式,或为授权频谱和非授权频谱方式的情况下,处理模块1301还用于:从非授权频谱资源中确定第一非授权频谱资源,第一非授权频谱资源用于通信装置1300与第二终端设备之间传输第一业务的业务数据;控制收发模块1302向第二终端设备发送第一非授权频谱资源的信息。
在通信装置1300用于实现上述图5至图9所示的方法实施例中核心网设备(比如PCF)的功能时:在一种可能的实现方式中,处理模块1301用于,获取业务信息和业务信息对应的频谱方式,以及控制收发模块1302向第一终端设备发送业务信息和业务信息对应的频谱方式。在一种可能的实现方式中,业务信息和业务信息对应的频谱方式用于第一终端设备确定第一频谱方式,第一频谱方式为授权频谱方式,或非授权频谱方式,或授权频谱和非授权频谱方式。
在通信装置1300用于实现上述图10至图12所示的方法实施例中核心网设备(比如PCF)的功能时:在一种可能的实现方式中,处理模块1301用于,获取第一终端设备签约的频谱方式,以及控制收发模块1302向第一终端设备发送第一终端设备签约的频谱方式。在一种可能的实现方式中,第一终端设备签约的频谱方式用于第一终端设备确定第一频谱方式,第一频谱方式为授权频谱方式,或非授权频谱方式,或授权频谱和非授权频谱方式。
如图14所示为本申请实施例提供的装置1400,图14所示的装置可以为图13所示的装置的一种硬件电路的实现方式。该装置可适用于前面所示出的流程图中,执行上述方法实施例中第一终端设备或者第二终端设备的功能。
为了便于说明,图14仅示出了该装置的主要部件。
图14所示的装置1400包括通信接口1410、处理器1420和存储器1430,其中存储器1430用于存储程序指令和/或数据。处理器1420可能和存储器1430协同操作。处理器1420可能执行存储器1430中存储的程序指令。存储器1430中存储的指令或程序被执行时,该处理器1420用于执行上述实施例中处理模块1301执行的操作,通信接口1410用于执行上述实施例中收发模块1302执行的操作。
存储器1430和处理器1420耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。所述存储器1430中的至少一个可以包括于处理器1420中。
在本申请实施例中,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口。在本申请实施例中,通信接口为收发器时,收发器可以包括独立的接收器、独立的发射器;也可以集成收发功能的收发器、或者是通信接口。
装置1400还可以包括通信线路1440。其中,通信接口1410、处理器1420以及存储器1430可以通过通信线路1440相互连接;通信线路1440可以是外设部件互连标准(peripheral component interconnect,简称PCI)总线或扩展工业标准结构(extended industry standard architecture,简称EISA)总线等。所述通信线路1440可以分为地址总线、数据总线、控制总线等。为便于表示,图14中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
基于上述内容和相同构思,本申请实施例提供一种计算机可读存储介质,其上存储有计算机程序或指令,当该计算机程序或指令被执行时,使得计算机执行上述图5至图12相关的方法实施例中第一终端设备(比如UE1)的方法,或者执行上述图5至图12相关的方法实施例中核心网设备(比如PCF)的方法。
基于上述内容和相同构思,本申请实施例提供一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得计算机执行上述图5至图12相关的方法实施例中第一终端设备(比如UE1)的方法,或者执行上述图5至图12相关的方法实施例中核心网设 备(比如PCF)的方法。
基于上述内容和相同构思,本申请实施例提供一种通信系统,该通信系统包括核心网设备和第一终端设备,第一终端设备用于执行上述图5至图9相关的方法实施例中的方法,核心网设备用于执行上述图5至图9相关的方法实施例中的方法;
或者,第一终端设备用于执行上述图10至图12相关的方法实施例中的方法,核心网设备用于执行上述图10至图12相关的方法实施例中的方法。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的保护范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (28)

  1. 一种通信方法,其特征在于,包括:
    第一终端设备获取第一业务的业务信息;
    所述第一终端设备根据所述业务信息,采用第一频谱方式传输所述第一业务的业务数据,所述第一业务的业务数据承载在所述第一终端设备与第二终端设备之间的侧行链路上,所述第一频谱方式为授权频谱方式,或非授权频谱方式,或授权频谱和非授权频谱方式。
  2. 如权利要求1所述的方法,其特征在于,所述业务信息包括以下至少一项:邻近业务通信5业务质量PC5 QoS参数,业务类型,或业务标识。
  3. 如权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备根据所述业务信息,确定所述第一频谱方式。
  4. 如权利要求3所述的方法,其特征在于,所述第一终端设备根据所述业务信息,确定所述第一频谱方式,包括:
    所述第一终端设备根据所述业务信息与所述第一频谱方式的对应关系,以及所述业务信息,确定所述第一频谱方式。
  5. 如权利要求4所述的方法,其特征在于,所述第一终端设备根据所述业务信息与所述第一频谱方式的对应关系,以及所述业务信息,确定所述第一频谱方式,包括:
    所述第一终端设备的邻近业务层根据所述业务信息与所述第一频谱方式的对应关系,以及所述业务信息,确定所述第一频谱方式;或
    所述第一终端设备的接入层根据所述业务信息与所述第一频谱方式的对应关系,以及所述业务信息,确定所述第一频谱方式。
  6. 如权利要求3所述的方法,其特征在于,所述第一终端设备根据所述业务信息,确定所述第一频谱方式,包括:
    所述第一终端设备根据所述业务信息与第二频谱方式的对应关系,以及所述业务信息,确定所述第二频谱方式;
    所述第一终端设备根据所述第二频谱方式和第一信息,确定所述第一频谱方式;
    其中,所述第二频谱方式为优先授权频谱方式,或优先非授权频谱方式;
    所述第一信息包括以下至少一项:授权频谱资源的使用状态,非授权频谱资源的使用状态,建议的频谱方式,或授权的频谱方式。
  7. 如权利要求6所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备获取所述授权频谱资源的使用状态、所述非授权频谱资源的使用状态中的一项或多项。
  8. 如权利要求6所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备接收所述第一信息。
  9. 如权利要求6至8任一项所述的方法,其特征在于,所述第一终端设备根据所述业务信息与第二频谱方式的对应关系,以及所述业务信息,确定所述第二频谱方式;所述第一终端设备根据所述第二频谱方式和第一信息,确定所述第一频谱方式,包括:
    所述第一终端设备的邻近业务层根据所述业务信息与第二频谱方式的对应关系,以及所述业务信息,确定所述第二频谱方式;所述第一终端设备的接入层根据所述第二频谱方式和所述第一信息,确定所述第一频谱方式;或,
    所述第一终端设备的邻近业务层根据所述业务信息与第二频谱方式的对应关系,以及所述业务信息,确定所述第二频谱方式;所述第一终端设备的邻近业务层根据所述第二频谱方式和所述第一信息,确定所述第一频谱方式;或,
    所述第一终端设备的接入层根据所述业务信息与第二频谱方式的对应关系,以及所述业务信息,确定所述第二频谱方式;所述第一终端设备的接入层根据所述第二频谱方式和所述第一信息,确定所述第一频谱方式。
  10. 如权利要求1至9任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备向所述第二终端设备发送第二信息;
    其中,所述第二信息用于指示所述第一终端设备采用所述第一频谱方式传输所述第一业务的业务数据。
  11. 如权利要求1至10任一项所述的方法,其特征在于,在所述第一频谱方式为非授权频谱方式,或为授权频谱和非授权频谱方式的情况下,所述方法还包括:
    所述第一终端设备从非授权频谱资源中确定第一非授权频谱资源,所述第一非授权频谱资源用于所述第一终端设备与所述第二终端设备之间传输所述第一业务的业务数据;
    所述第一终端设备向所述第二终端设备发送所述第一非授权频谱资源的信息。
  12. 如权利要求1至11任一项所述的方法,其特征在于,所述第一业务的业务数据承载在所述侧行链路中的第一业务质量QoS流上。
  13. 如权利要求12所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备根据所述第一频谱方式和所述第一QoS流对应的频谱方式,将所述第一业务关联到所述第一QoS流。
  14. 如权利要求12所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备根据所述第一频谱方式,生成所述第一QoS流。
  15. 一种通信方法,其特征在于,包括:
    第一终端设备获取所述第一终端设备签约的频谱方式;
    所述第一终端设备根据所述第一终端设备签约的频谱方式,采用第一频谱方式传输所述第一业务的业务数据,所述第一业务的业务数据承载在所述第一终端设备与第二终端设备之间的侧行链路上,所述第一频谱方式为授权频谱方式,或非授权频谱方式,或授权频谱和非授权频谱方式。
  16. 如权利要求15所述的方法,其特征在于,所述第一终端设备签约的频谱方式包括以下至少一项:授权频谱方式,非授权频谱方式,授权频谱和非授权频谱方式,优先授权频谱方式,或优先非授权频谱方式。
  17. 如权利要求15或16所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备根据所述第一终端设备签约的频谱方式,确定所述第一频谱方式。
  18. 如权利要求17所述的方法,其特征在于,所述第一终端设备根据所述第一终端设备签约的频谱方式,确定所述第一频谱方式,包括:
    所述第一终端设备根据所述第一终端设备签约的频谱方式对应的区域信息,以及第一区域信息,确定所述第一频谱方式,所述第一区域信息用于表征所述第一终端设备所在的区域。
  19. 如权利要求18所述的方法,其特征在于,所述第一终端设备根据所述第一终端设备签约的频谱方式对应的区域信息,以及第一区域信息,确定所述第一频谱方式,包括:
    所述第一终端设备的邻近业务层根据所述第一终端设备签约的频谱方式对应的区域信息,以及所述第一区域信息,确定所述第一频谱方式;或
    所述第一终端设备的接入层根据所述第一终端设备签约的频谱方式对应的区域信息,以及所述第一区域信息,确定所述第一频谱方式。
  20. 如权利要求17所述的方法,其特征在于,所述第一终端设备根据所述第一终端设备签约的频谱方式,确定所述第一频谱方式,包括:
    所述第一终端设备根据所述第一终端设备签约的频谱方式确定第二频谱方式;
    所述第一终端设备根据第一信息和所述第二频谱方式确定所述第一频谱方式;
    其中,所述第二频谱方式为优先授权频谱方式,或优先非授权频谱方式;
    所述第一信息包括以下至少一项:授权频谱资源的使用状态,非授权频谱资源的使用状态,建议的频谱方式,或授权的频谱方式。
  21. 如权利要求20所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备获取所述授权频谱资源的使用状态、所述非授权频谱资源的使用状态中的一项或多项。
  22. 如权利要求20所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备接收所述第一信息。
  23. 如权利要求20至22任一项所述的方法,其特征在于,所述第一终端设备根据所述第一终端设备签约的频谱方式确定第二频谱方式;所述第一终端设备根据第一信息和所述第二频谱方式确定所述第一频谱方式,包括:
    所述第一终端设备的邻近业务层根据所述第一终端设备签约的频谱方式,确定所述第二频谱方式;所述第一终端设备的接入层根据所述第二频谱方式和所述第一信息,确定所述第一频谱方式;或,
    所述第一终端设备的邻近业务层根据所述第一终端设备签约的频谱方式,确定所述第二频谱方式;所述第一终端设备的邻近业务层根据所述第二频谱方式和所述第一信息,确定所述第一频谱方式;或,
    所述第一终端设备的接入层根据所述第一终端设备签约的频谱方式,确定所述第二频谱方式;所述第一终端设备的接入层根据所述第二频谱方式和所述第一信息,确定所述第一频谱方式。
  24. 如权利要求15至23任一项所述的方法,其特征在于,还包括:
    所述第一终端设备向所述第二终端设备发送第二信息;
    其中,所述第二信息用于指示所述第一终端设备采用所述第一频谱方式传输所述第一业务的业务数据。
  25. 如权利要求15至24任一项所述的方法,其特征在于,在所述第一频谱方式为非授权频谱方式,或为授权频谱和非授权频谱方式的情况下,所述方法还包括:
    所述第一终端设备从非授权频谱资源中确定第一非授权频谱资源,所述第一非授权频谱资源用于所述第一终端设备与所述第二终端设备之间传输所述第一业务的业务数据;
    所述第一终端设备向所述第二终端设备发送所述第一非授权频谱资源的信息。
  26. 一种通信装置,其特征在于,包括处理器和存储器,所述存储器用于存储指令,所述处理器用于执行所述存储器中存储的指令,以实现如权利要求1至14中任一项所述的方法,或者权利要求15至25中任一项所述的方法。
  27. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有指令,当所述指令被通信装置执行时,实现如权利要求1至14中任一项所述的方法,或者权利要求15至25中任一项所述的方法。
  28. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如权利要求1至14中任一项所述的方法,或者权利要求15至25中任一项所述的方法。
PCT/CN2022/119431 2021-10-14 2022-09-16 一种通信方法及装置 WO2023061152A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111196242.9A CN115988561A (zh) 2021-10-14 2021-10-14 一种通信方法及装置
CN202111196242.9 2021-10-14

Publications (1)

Publication Number Publication Date
WO2023061152A1 true WO2023061152A1 (zh) 2023-04-20

Family

ID=85964776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/119431 WO2023061152A1 (zh) 2021-10-14 2022-09-16 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN115988561A (zh)
WO (1) WO2023061152A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102917456A (zh) * 2011-08-02 2013-02-06 华为技术有限公司 一种通信方法、多模终端和基站及系统
CN107231634A (zh) * 2017-05-31 2017-10-03 北京邮电大学 一种车载通信系统中的频谱资源分配方法及装置
CN107846434A (zh) * 2016-09-19 2018-03-27 中兴通讯股份有限公司 一种车联网业务处理方法、装置及车联网系统
CN109792662A (zh) * 2016-10-31 2019-05-21 华为技术有限公司 一种频谱资源的指示方法、装置及系统
CN111182633A (zh) * 2018-11-13 2020-05-19 华为技术有限公司 一种通信方法及装置
US20200305025A1 (en) * 2017-12-21 2020-09-24 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Service flow offload method, network device, and terminal device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102917456A (zh) * 2011-08-02 2013-02-06 华为技术有限公司 一种通信方法、多模终端和基站及系统
CN107846434A (zh) * 2016-09-19 2018-03-27 中兴通讯股份有限公司 一种车联网业务处理方法、装置及车联网系统
CN109792662A (zh) * 2016-10-31 2019-05-21 华为技术有限公司 一种频谱资源的指示方法、装置及系统
CN107231634A (zh) * 2017-05-31 2017-10-03 北京邮电大学 一种车载通信系统中的频谱资源分配方法及装置
US20200305025A1 (en) * 2017-12-21 2020-09-24 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Service flow offload method, network device, and terminal device
CN111182633A (zh) * 2018-11-13 2020-05-19 华为技术有限公司 一种通信方法及装置

Also Published As

Publication number Publication date
CN115988561A (zh) 2023-04-18

Similar Documents

Publication Publication Date Title
WO2020221015A1 (zh) 直通链路通信方法、装置和存储介质
WO2020030165A1 (zh) 数据传输方法及装置,业务切换方法及装置
WO2019157893A1 (zh) 会话建立方法和设备
EP3101969B1 (en) A resource allocation method, apparatus, system and computer storage medium thereof
WO2016161886A1 (zh) 在设备直通系统中用户终端与中继节点的通信方法和装置
CN106162930B (zh) 在设备直通系统中承载的管理方法和装置
EP2830337A1 (en) Broadband digital trunking service implementation method and trunking scheduling management centre
WO2021109043A1 (zh) 数据处理方法及装置、通信设备
WO2020164443A1 (zh) 单播传输的方法和通信装置
WO2020030163A1 (zh) 通信控制方法、装置、系统、终端、基站及存储介质
WO2017177224A1 (en) Wireless data priority services
WO2019153234A1 (zh) 一种数据传输方法和装置
WO2015062260A1 (zh) 设备到设备组播/广播通信处理方法、装置及用户设备
WO2020224412A1 (zh) 一种通信方法及装置
CN111556540A (zh) Smf实体执行的方法及smf实体、pcf实体执行的方法及pcf实体
WO2012136087A1 (zh) 一种资源调度的方法及系统及一种终端
WO2021114107A1 (zh) 一种数据传输方法及装置
WO2020252710A1 (zh) 无线通信方法和设备
CN113596929A (zh) 一种通信方法及装置
KR20230004776A (ko) 브로드캐스트/멀티캐스트 서비스 관리 방법, 장치, 전자 설비, 저장 매체
US20150080010A1 (en) Method, device, and system for applying for frequency spectrum
WO2021244299A1 (zh) 通信方法及通信设备
WO2022012361A1 (zh) 一种通信方法及装置
WO2023061152A1 (zh) 一种通信方法及装置
WO2017101121A1 (zh) 传输信令、传输数据和建立gtp隧道的方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22880092

Country of ref document: EP

Kind code of ref document: A1