WO2023060832A1 - 连接器的非完全配合距离的测量装置 - Google Patents

连接器的非完全配合距离的测量装置 Download PDF

Info

Publication number
WO2023060832A1
WO2023060832A1 PCT/CN2022/080745 CN2022080745W WO2023060832A1 WO 2023060832 A1 WO2023060832 A1 WO 2023060832A1 CN 2022080745 W CN2022080745 W CN 2022080745W WO 2023060832 A1 WO2023060832 A1 WO 2023060832A1
Authority
WO
WIPO (PCT)
Prior art keywords
veneer
fixing
measuring device
distance sensor
single board
Prior art date
Application number
PCT/CN2022/080745
Other languages
English (en)
French (fr)
Inventor
晏政
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023060832A1 publication Critical patent/WO2023060832A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/66Testing of connections, e.g. of plugs or non-disconnectable joints
    • G01R31/68Testing of releasable connections, e.g. of terminals mounted on a printed circuit board
    • G01R31/69Testing of releasable connections, e.g. of terminals mounted on a printed circuit board of terminals at the end of a cable or a wire harness; of plugs; of sockets, e.g. wall sockets or power sockets in appliances
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/14Measuring arrangements characterised by the use of optical techniques for measuring distance or clearance between spaced objects or spaced apertures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • G01R1/0408Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets

Definitions

  • the present application relates to the field of measurement technology, in particular to a measuring device for the incomplete mating distance of a connector.
  • the circuit board In order to realize the connection between the circuit board and the circuit board, the circuit board is usually equipped with connectors (one male and one female) to cooperate; for the system architecture, the design tolerance and deformation accumulation of sub-boxes or cabinets and single boards or network boards A non-ideal application scenario will inevitably occur at the mating position of the connector, that is, the connector works under a de-mate state. This non-complete mating distance (Demating value) will cause the degradation of the high-speed signal integrity performance of the connector in the high frequency band. Whether the Demating value of the connector mating can be accurately obtained is of great significance for connector selection and system architecture design.
  • measuring the demating value of connectors needs to be carried out in subracks or cabinets.
  • the measurement space is narrow and closed, and the industry lacks efficient means of measuring demating values.
  • An embodiment of the present application provides a device for measuring an incomplete mating distance of a connector.
  • An embodiment of the present application provides a measuring device for an incomplete mating distance of a connector connecting a first veneer and a second veneer
  • the measuring device includes: a first housing socketed on The periphery of the connector joint of the first single board, the first housing includes a first fixing member, and the first fixing member is connected with the first single board to fix the first housing to the The first veneer; the distance sensor is arranged on the first housing, and the sensing probe of the distance sensor faces the second veneer; the data transmission device is connected to the distance sensor, and is used to obtain and send out Forwarding the distance sensing value of the distance sensor.
  • FIG. 1 is a structural diagram of a measurement device under a backplane connection framework provided in Embodiment 1 of the present application;
  • FIG. 2 is an exploded view of the measuring device provided in Embodiment 1 of the present application.
  • FIG. 3 is a structural diagram of a measuring device under an orthogonal connection architecture provided in Embodiment 2 of the present application;
  • FIG. 4 is a structural diagram of a measurement device under the backplane connection framework provided in Embodiment 3 of the present application;
  • FIG. 5 is an exploded view of the measuring device provided in Embodiment 3 of the present application.
  • FIG. 6 is a structural diagram of a measuring device under an orthogonal connection architecture provided in Embodiment 4 of the present application.
  • FIG. 7 is a structural diagram of the measurement device under the backplane connection framework provided in Embodiment 5 of the present application.
  • Fig. 8 is an exploded view of the measuring device provided in Embodiment 5 of the present application.
  • FIG. 9 is a structural diagram of a measurement device under an orthogonal connection architecture provided in Embodiment 6 of the present application.
  • Fig. 10 is an exploded view of the measuring device provided in Embodiment 6 of the present application.
  • FIG. 11 is a structural diagram of a measuring device under an orthogonal connection architecture provided in Embodiment 7 of the present application.
  • Fig. 12 is an exploded view of the measuring device provided in Embodiment 7 of the present application.
  • At least one (item) means one or more, and “multiple” means two or more.
  • “And/or” is used to describe the association relationship of associated objects, indicating that there can be three types of relationships, for example, “A and/or B” can mean: only A exists, only B exists, and A and B exist at the same time , where A and B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an “or” relationship.
  • At least one of the following” or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • At least one item (piece) of a, b or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c ", where a, b, c can be single or multiple.
  • multiple means more than two, greater than, less than, exceeding, etc. are understood as not including the original number, and above, below, within, etc. are understood as including the original number.
  • the traditional Demating value measurement equipment takes up a large space and is often embedded in the connector, which requires the connector to be disassembled and embedded for measurement. After the measurement is completed, the connector is disassembled again.
  • the measurement environment is different from the actual application scenario, and this measurement method can only be used for static scenarios. When the environment around the connector changes and the connection gap of the connector is affected, the previous measurement value loses its reference value.
  • the embodiment of the present application provides a measuring device for the incomplete mating distance of the connector.
  • the connector connects the first veneer 1 and the second veneer 2.
  • the measuring device includes:
  • the first housing 100 is sleeved on the periphery of the connector joint of the first single board 1, the first housing 100 includes a first fixing member 110, and the first fixing member 110 is connected with the first single board 1 to connect the first housing
  • the body 100 is fixed on the first veneer 1;
  • the distance sensor 300 is arranged on the first housing 100, and the inductive probe of the distance sensor 300 faces the second single board 2;
  • the data transmission device is connected to the distance sensor 300 and is used for acquiring and forwarding the distance sensing value of the distance sensor 300 to the outside.
  • the measuring device Through the first housing 100 that is socketed on the connector joint, the space occupied by the measuring device is reduced, and at the same time, the measuring device is used to fix the distance sensor 300 to realize the measurement of the Demating value of the connector between two boards, and a corresponding The data transmission device obtains the sensing value of the distance sensor 300 in real time, and realizes static and dynamic measurement.
  • Various application scenarios of the measuring device are described below through several embodiments.
  • Fig. 1 is the mating connection diagram of the measuring device and the connector when the second veneer 2 is used as a backplane and connected to the first veneer 1
  • Fig. 2 is an exploded view of the measuring device, wherein The measuring device comprises a first housing 100, a distance sensor 300 and a data transmission device (not shown in the figure), the first housing 100 is socketed on the periphery of the connector joint of the first veneer 1, as shown in the exploded view of Fig.
  • the first housing 100 includes two first fixing pieces 110 and a first connecting piece 120
  • the first fixing piece 110 is connected with the first board 1 to fix the whole first housing 100 on the first board 1
  • the two first fixing parts 110 are arranged side by side, respectively arranged on both sides of the connector joint of the first veneer 1
  • the first connecting part 120 is also arranged between the two first fixing parts 110
  • the two first fixing parts The piece 110 is respectively connected to two sides of the first connecting piece 120 .
  • the first housing also includes a second fixing piece 130.
  • the second fixing piece 130 is also arranged between the two first fixing pieces 110, so that the second fixing piece 130 is connected to the first connecting piece 120 and the first fixing piece.
  • the components 110 are connected to form the first housing 100 , and are reversed to the connector joint of the first single board 1 .
  • the second fixing member 130 has a gap facing the second veneer 2, and a space for accommodating the distance sensor 300 is formed between the gap and one of the first fixing members 110; the shape and size of the gap can be Adjust according to actual needs.
  • the notch is rectangular, so that the second fixing member 130 is at a right angle. One side of the notch is blocked by the first fixing member 110, and the remaining side faces the second veneer 2; because the second fixing member 130 With a certain thickness, the distance sensor 300 can be fixed on the side of the second fixing member 130 and located in the notch, so that the distance sensor 300 does not protrude from the first housing 100 .
  • the distance sensor 300 in this embodiment is a contact-type displacement sensor, and the sensing probe of the displacement sensor is pushed against the surface of the second veneer 2.
  • the displacement of the sensor determines the non-complete mating distance of the connector, that is, the Demating value. It can be understood that since the displacement sensor is always on the second veneer 2, if there is a displacement between the second veneer 2 and the first veneer 1 due to changes in the external environment or vibration, the displacement measured by the displacement sensor will also be the same. Therefore, the demating value can be obtained in real time through the data transmission device, and the static and dynamic demating value measurement can be realized.
  • the first fixing part 110 has a fixing part 111 extending toward the direction of the first board 1, and the fixing part 111 is provided with a threaded hole 112, and the threaded hole 112 can be Align the side of the first veneer 1, so as to fix the first veneer 1 with the first veneer 1 through the screw holes 112, so as to realize the installation of the first housing 100.
  • first fixing part 110 has different shapes and sizes
  • first connecting part 120 can be set according to different connectors, which is not limited here.
  • first fixing part 110 and the first connecting part 120 between the first fixing part 110 and the second fixing part 130, and between the first connecting part 120 and the second fixing part 130, all can be fastened by screws or connect in other ways.
  • Fig. 3 is a diagram of the mating connection between the measuring device and the connector when the first board 1 and the second board 2 are connected orthogonally.
  • the measuring device includes a first housing 100, a distance sensor 300 and a data transmission device (not shown in the figure), and the first housing 100 is socketed on the connector joint of the first veneer 1
  • the first housing 100 includes two first fixing parts 110 and a first connecting part 120, the first fixing part 110 is connected with the first single board 1 to fix the whole first housing 100 on the first single board 1
  • two first fixing parts 110 are arranged side by side, respectively arranged on both sides of the connector joint of the first veneer 1, and the first connecting part 120 is also arranged between the two first fixing parts 110, and the two first The fixing part 110 is respectively connected to two sides of the first connecting part 120 .
  • the first housing also includes a second fixing piece 130.
  • the second fixing piece 130 is also arranged between the two first fixing pieces 110, so that the second fixing piece 130 is connected to the first connecting piece 120 and the first fixing piece.
  • the components 110 are connected to form the first housing 100 , and are reversed to the connector joint of the first single board 1 .
  • the second fixing part 130 has a gap facing the second veneer 2, and a space for accommodating the distance sensor 300 is formed between the gap and one of the first fixing parts 110; the shape and size of the gap can be according to actual needs Adjustment, in this embodiment, the notch is rectangular, so that the second fixing member 130 is at a right angle, one side of the notch is blocked by the first fixing member 110, and the remaining side faces the second veneer 2; since the second fixing member 130 has a certain thickness, the distance sensor 300 can be fixed on the side of the first fixing part 110 or the side of the second fixing part 130, so that the distance sensor 300 is not higher than the first housing 100, further saving the occupied space of the measuring device.
  • the distance sensor 300 in this embodiment is a contact-type displacement sensor, and the sensing probe of the displacement sensor is pushed against the surface of the second veneer 2.
  • the displacement of the sensor determines the non-mating distance of the connector. It can be understood that since the displacement sensor is always on the second veneer 2, if there is a displacement between the second veneer 2 and the first veneer 1 due to changes in the external environment or vibration, the displacement measured by the displacement sensor will also be the same. Therefore, the demating value can be obtained in real time through the data transmission device, and the static and dynamic demating value measurement can be realized.
  • the distance sensor 300 can only face the side of the second veneer 2, and the second veneer 2 is usually thinner, so the contact type
  • the displacement sensor needs to align the sensing probe with the side of the second veneer 2, therefore, by adjusting the first housing 100 and/or changing the fixed position of the displacement sensor, the sensing probe can be made to face the side of the second veneer 2, Realize distance measurement.
  • the first fixing part 110 has a fixing part 111 extending toward the direction of the first board 1, and the fixing part 111 is provided with a threaded hole 112, and the threaded hole 112 can be Align the side of the first veneer 1, so as to fix the first veneer 1 with the first veneer 1 through the screw holes 112, so as to realize the installation of the first housing 100.
  • first fixing part 110 has different shapes and sizes
  • first connecting part 120 and the second fixing part 130 can be set according to different connectors, which is not limited here.
  • first fixing part 110 and the first connecting part 120 between the first fixing part 110 and the second fixing part 130, between the first connecting part 120 and the second fixing part 130 can be fastened by screws or Connect by other means.
  • Fig. 4 is a mating connection diagram of the measuring device and the connector when the second veneer 2 is used as a backplane and connected to the first veneer 1, wherein the first veneer 1 has two
  • the connector joints (hereinafter referred to as a group of connector joints) respectively correspond to the other two connector joints on the second single board 2, and the connector joints on the two single boards are connected in one-to-one correspondence.
  • Figure 5 shows the dual distance sensor 300
  • the measuring device includes a first housing 100, two distance sensors 300 and a data transmission device (not shown in the figure), the first housing 100 is socketed on the group of the first veneer 1
  • the periphery of the connector joint as can be seen from the exploded view of Figure 5, the first housing 100 includes two first fixing parts 110 and a first connecting part 120, the first fixing part 110 is connected with the first single board 1 to connect the entire second
  • a housing 100 is fixed on the first veneer 1
  • two first fixing members 110 are arranged side by side, and are respectively arranged on both sides of the group of connector joints of the first veneer 1
  • the first connecting member 120 is also arranged on both sides. Between the two first fixing pieces 110, two first fixing pieces 110 are respectively connected to both sides of the first connecting piece 120.
  • the first housing also includes a second fixing piece 130.
  • the second fixing piece 130 is also arranged between the two first fixing pieces 110, so that the second fixing piece 130 is connected to the first connecting piece 120 and the first fixing piece.
  • the components 110 are connected to form the first housing 100 , and are reversed to the set of connector joints of the first single board 1 .
  • the second fixing part 130 has a gap facing the second veneer 2, and a space for accommodating the distance sensor 300 is formed between the gap and one of the first fixing parts 110; the shape and size of the gap can be Adjust according to actual needs.
  • the notch is rectangular, so that the second fixing member 130 is at a right angle.
  • the distance sensor 300 can be fixed on the side of the second fixing member 130 and located in the gap, so that the distance sensor 300 can not protrude from the first housing 100, and of course the distance sensor 300 can also be fixed on the The side of the first fixing part 110 is not located in the notch, and the two distance sensors 300 of the group may be respectively fixed on the side of the first fixing part 110 and the side of the second fixing part 130 .
  • the distance sensor 300 in this embodiment is a contact-type displacement sensor, and the sensing probe of the displacement sensor is pushed against the surface of the second veneer 2.
  • the displacement of the sensor determines the non-mating distance of the connector. It can be understood that since the displacement sensor is always on the second veneer 2, if there is a displacement between the second veneer 2 and the first veneer 1 due to changes in the external environment or vibration, the displacement measured by the displacement sensor will also be the same. Therefore, the demating value can be obtained in real time through the data transmission device, and the static and dynamic demating value measurement can be realized.
  • the first fixing part 110 has a fixing part 111 extending toward the direction of the first board 1, and the fixing part 111 is provided with a threaded hole 112, and the threaded hole 112 can be Align the side of the first veneer 1, so as to fix the first veneer 1 with the first veneer 1 through the screw holes 112, so as to realize the installation of the first housing 100.
  • first fixing part 110 has different shapes and sizes
  • first connecting part 120 and the second fixing part 130 can be set according to different connectors, which is not limited here.
  • first fixing part 110 and the first connecting part 120 between the first fixing part 110 and the second fixing part 130, between the first connecting part 120 and the second fixing part 130 can be fastened by screws or Connect by other means.
  • Fig. 6 is a mating connection diagram of the measuring device and the connector in the case of the orthogonal connection between the first veneer 1 and the second veneer 2.
  • the first veneer 1 has two connector joints (hereinafter referred to as a set of connector joints), corresponding to A connector joint on each of the two second single boards 2, wherein the measuring device includes a first housing 100, two distance sensors 300 and a data transmission device (not shown in the figure), the first housing 100 is socketed in On the periphery of the set of connector joints of the first single board 1, the first housing 100 includes two first fixing parts 110 and a first connecting part 120, and the first fixing part 110 is connected with the first single board 1 to connect the entire second board 1.
  • a housing 100 is fixed on the first veneer 1, two first fixing members 110 are arranged side by side, and are respectively arranged on both sides of the group of connector joints of the first veneer 1, and the first connecting member 120 is also arranged on both sides. Between the two first fixing pieces 110, two first fixing pieces 110 are respectively connected to both sides of the first connecting piece 120.
  • the first housing also includes a second fixing piece 130.
  • the second fixing piece 130 is also arranged between the two first fixing pieces 110, so that the second fixing piece 130 is connected to the first connecting piece 120 and the first fixing piece.
  • the components 110 are connected to form the first housing 100 , and are reversed to the set of connector joints of the first single board 1 .
  • the second fixing part 130 has a gap facing the second veneer 2, and a space for accommodating the distance sensor 300 is formed between the gap and one of the first fixing parts 110; the shape and size of the gap can be determined according to actual needs. Adjustment, in this embodiment, the notch is rectangular, so that the second fixing member 130 is at a right angle, one side of the notch is blocked by the first fixing member 110, and the remaining side faces the second veneer 2; since the second fixing member 130 has a certain Thickness, the distance sensor 300 can be fixed on the side of the second fixing member 130 and located in the gap, so that the distance sensor 300 can not protrude from the first housing 100, of course the distance sensor 300 can also be fixed on the first fixing
  • the side of the part 110 is located in the gap, and the two distance sensors 300 of the group can also be respectively fixed on the side of the first fixing part 110 and the side of the second fixing part 130, which can be determined according to the positions of the two connector joints. Fixed position of distance sensor 300 .
  • the distance sensor 300 in this embodiment is a contact-type displacement sensor, and the sensing probe of the displacement sensor is pushed against the surface of the second veneer 2.
  • the displacement of the sensor determines the non-mating distance of the connector. It can be understood that since the displacement sensor is always on the second veneer 2, if there is a displacement between the second veneer 2 and the first veneer 1 due to changes in the external environment or vibration, the displacement measured by the displacement sensor will also be the same. Therefore, the demating value can be obtained in real time through the data transmission device, and the static and dynamic demating value measurement can be realized.
  • the distance sensor 300 can only face the side of the second veneer 2 , and the second veneer 2 is usually thinner, so the contact type
  • the displacement sensor needs to align the sensing probe with the side of the second veneer 2, therefore, by adjusting the first housing 100 and/or changing the fixed position of the displacement sensor, the sensing probe can be made to face the side of the second veneer 2, Realize distance measurement.
  • the first fixing part 110 has a fixing part 111 extending toward the direction of the first board 1, and the fixing part 111 is provided with a threaded hole 112, and the threaded hole 112 can be Align the side of the first veneer 1, so as to fix the first veneer 1 with the first veneer 1 through the screw holes 112, so as to realize the installation of the first housing 100.
  • first fixing part 110 has different shapes and sizes
  • first connecting part 120 and the second fixing part 130 can be set according to different connectors, which is not limited here.
  • first fixing part 110 and the first connecting part 120 between the first fixing part 110 and the second fixing part 130, between the first connecting part 120 and the second fixing part 130 can be fastened by screws or Connect by other means.
  • Fig. 7 is a mating connection diagram of the measuring device and the connector when the second veneer 2 is used as a backplane and connected to the first veneer 1
  • Fig. 8 is an exploded view of the measuring device, wherein The measuring device comprises a first housing 100, a distance sensor 300 and a data transmission device (not shown in the figure), the first housing 100 is sleeved on the periphery of the connector joint of the first veneer 1, as shown in the exploded view of Fig.
  • the first housing 100 includes two first fixing pieces 110 and a first connecting piece 120
  • the first fixing piece 110 is connected with the first board 1 to fix the whole first housing 100 on the first board 1
  • the two first fixing parts 110 are arranged side by side, respectively arranged on both sides of the connector joint of the first veneer 1
  • the first connecting part 120 is also arranged between the two first fixing parts 110
  • the two first fixing parts The piece 110 is respectively connected to two sides of the first connecting piece 120 .
  • the first housing also includes a second fixing piece 130.
  • the second fixing piece 130 is also arranged between the two first fixing pieces 110, so that the second fixing piece 130 is connected to the first connecting piece 120 and the first fixing piece.
  • the components 110 are connected to form the first housing 100 , and are reversed to the connector joint of the first single board 1 .
  • the second fixing member 130 includes the limiting portion 131 of the fixing hole 132 , and the distance sensor 300 is fixed through the fixing hole 132 so that the sensing probe of the distance sensor 300 faces the second single board 2 .
  • the main body of the second fixing member 130 is parallel to the surface of the first veneer 1, and the limiting portion 131 is arranged on the main body of the second fixing member 130, and the limiting portion 131 is perpendicular to the main body of the second fixing member 130, limiting A fixing hole 132 is provided on the bit part 131.
  • an annular assembly is added, which includes a nut and a tubular body 133 with external threads.
  • the distance sensor 300 is in a loose state of the tubular body 133.
  • the tube body 133 is inserted into the tube body 133 , and the tube body 133 can be tightened by turning a nut on the external thread of the tube body 133 , thereby fixing the distance sensor 300 .
  • the tube body 133 can generally be made of soft plastic, and a plurality of notches extending along the length direction of the tube body 133 are arranged at the end of the tube body 133 to improve usability .
  • the first fixing member 110 has a first slot 113 extending toward the direction of the first single board 1 , and the notch of the first slot 113 Facing the first veneer 1 to insert the edge of the first veneer 1 .
  • the width of the slot is greater than or equal to the thickness of the first veneer 1 , and the two sides of the slot are respectively located on the front and back of the first veneer 1 .
  • a guide rail 140 and a fastener 150 are provided on the first fixing member 110 and the second fixing member 130, and the guide rail 140 is directed toward the second fixing member 130.
  • the direction of the two single boards 2 extends, so that the first fixing member 110 and the second fixing member 130 can be close to or away from the second single board 2 to adapt to different connector joints, while the fastener 150 passes through the guide rail 140 to connect the first
  • the connecting piece 120 fixes the first fixing piece 110 or the second fixing piece 130 respectively.
  • the distance sensor 300 in this embodiment is a contact-type displacement sensor, and the sensing probe of the displacement sensor is pushed against the surface of the second veneer 2.
  • the displacement of the sensor determines the non-mating distance of the connector. It can be understood that since the displacement sensor is always on the second veneer 2, if there is a displacement between the second veneer 2 and the first veneer 1 due to changes in the external environment or vibration, the displacement measured by the displacement sensor will also be the same. Therefore, the demating value can be obtained in real time through the data transmission device, and the static and dynamic demating value measurement can be realized.
  • the sensing probe of the displacement sensor is covered with a flexible bellows 310 to protect the exposed sensing probe.
  • the first housing 100 surrounded by the first fixing member 110, the second fixing member 130 and the first connecting member 120 in this embodiment is in the shape of a frame and does not completely cover or mostly cover the connector. joints, which can reduce the use of materials for the measuring device and obtain a relatively light weight; but in practical applications, the first housing 100 is not limited to the above-mentioned structural form, and can be adjusted and deformed to the structural form of Embodiment 1 or other structures form, without giving too many examples here.
  • Fig. 9 is a mating connection diagram of the measuring device and the connector when the first veneer 1 and the second veneer 2 are connected orthogonally
  • Fig. 10 is an exploded view of the measuring device, wherein the measuring device Including a first housing 100, a second housing 200, a distance sensor 300 and a data transmission device (not shown in the figure), the first housing 100 is sleeved on the periphery of the connector joint of the first single board 1, as shown in FIG.
  • the first casing 100 includes two first fixing pieces 110 and a first connecting piece 120, and the first fixing piece 110 is connected with the first single board 1 to fix the entire first casing 100 on the first
  • two first fixing parts 110 are arranged side by side, respectively arranged on both sides of the connector joint of the first single board 1
  • the first connecting part 120 is also arranged between the two first fixing parts 110.
  • the two first fixing parts 110 are respectively connected to both sides of the first connecting part 120
  • the second housing 200 is sleeved on the periphery of the connector joint of the second single board 2.
  • the second housing 200 200 is socketed on the periphery of the connector joint of the second single board 2, the second housing 200 includes a baffle 230, the baffle 230 is arranged in the sensing direction of the sensing probe of the distance sensor 300, and the second connector 220 is connected to the baffle 230 and the third fixing member 210.
  • the first housing also includes a second fixing piece 130.
  • the second fixing piece 130 is also arranged between the two first fixing pieces 110, so that the second fixing piece 130 is connected to the first connecting piece 120 and the first fixing piece.
  • the components 110 are connected to form the first housing 100 , and are reversed to the connector joint of the first single board 1 .
  • the second fixing member 130 includes a limiting portion 131 provided with a fixing hole 132 , and the distance sensor 300 is fixed through the fixing hole 132 so that the sensing probe of the distance sensor 300 faces the second board 2 .
  • the main body of the second fixing member 130 is parallel to the surface of the first veneer 1, and the limiting portion 131 is arranged on the main body of the second fixing member 130, and the limiting portion 131 is perpendicular to the main body of the second fixing member 130, limiting A fixing hole 132 is provided on the bit part 131.
  • an annular assembly is added, which includes a nut and a tubular body 133 with external threads.
  • the distance sensor 300 is in a loose state of the tubular body 133.
  • the tube body 133 is inserted into the tube body 133 , and the tube body 133 can be tightened by turning a nut on the external thread of the tube body 133 , thereby fixing the distance sensor 300 .
  • the tube body 133 can generally be made of soft plastic, and a plurality of notches extending along the length direction of the tube body 133 are arranged at the end of the tube body 133 to improve usability .
  • the first fixing member 110 has a first slot 113 extending toward the direction of the first single board 1 , and the notch of the first slot 113 Facing the first veneer 1 to insert the edge of the first veneer 1 .
  • the width of the slot is greater than or equal to the thickness of the first veneer 1 , and the two sides of the slot are respectively located on the front and back of the first veneer 1 .
  • the third fixing member 210 has a second slot 211 extending toward the direction of the second veneer 2, the notch of the second slot 211 faces the second veneer 2 to be inserted into the edge of the second veneer 2, the slot
  • the width of the groove is greater than or equal to the thickness of the second veneer 2, and the two sides of the groove are respectively located on the front and back sides of the second veneer 2.
  • a guide rail 140 and a fastener 150 are provided on the first fixing member 110 and the second fixing member 130, and the guide rail 140 is directed toward the second fixing member 130.
  • the direction of the two single boards 2 extends, so that the first fixing member 110 and the second fixing member 130 can be close to or away from the second single board 2 to adapt to different connector joints, while the fastener 150 passes through the guide rail 140 to connect the first
  • the connecting piece 120 fixes the first fixing piece 110 or the second fixing piece 130 respectively.
  • the distance sensor 300 in this embodiment is a contact type displacement sensor. Under the orthogonal system structure, if the sensing probe of the contact type displacement sensor is directly pushed against the edge of the second veneer 2, the measuring device and the connector The requirements for structural fit are quite high, so the second housing 200 is used in this embodiment to solve the above problems. Specifically, the sensing probe of the contact displacement sensor is not aligned with the edge of the second veneer 2, but is aligned with the baffle 230 on the second housing 200, and the position of the baffle 230 is equivalent to the position of the second veneer 2. 2, since the baffle plate 230 is set parallel to the first veneer 1, the baffle plate 230 has a larger accessible area than the edge of the second veneer 2, which reduces the structural coordination requirements of the measuring device and the connector .
  • the displacement sensor since the baffle plate 230 and the second veneer 2 are relatively fixed, if a displacement occurs between the second veneer 2 and the first veneer 1 due to changes in the external environment or vibration, the displacement sensor will The measured displacement also changes accordingly, so the demating value can be obtained in real time through the data transmission device to realize static and dynamic demating value measurement.
  • the sensing probe of the displacement sensor is covered with a flexible bellows 310 to protect the exposed sensing probe.
  • the baffle plate 230 is provided with a third slot 231, and the notch of the third slot 231 faces the second board 2 to be inserted into the edge of the second board 2.
  • the second slot 211 and the third slot 231 are used to fix the second veneer 2 , strengthen the connection between the second housing 200 and the second veneer 2 , and through the limitation of the two slots, it is also beneficial to improve the measurement accuracy of the Demating value.
  • the second housing 200 surrounded by 230 is in the shape of a frame, and does not completely cover or mostly cover the connector joints, which can reduce the use of materials for the measuring device and obtain a relatively light weight; but in practical applications, the first A casing 100 is not limited to the above-mentioned structural form, and can be adjusted and deformed to the structural form of Embodiment 1 or other structural forms, and no more examples are given here.
  • Fig. 11 is a mating connection diagram of the measuring device and the connector when the first veneer 1 and multiple second veneers 2 are orthogonally connected, wherein the multiple second veneers 2 are in pairs Parallel to each other, the number of connector joints on the first single board 1 is equal to that of the second single board 2 (the following is a set of connector joints), which respectively correspond to a connector joint on different second single boards 2, as shown in Figure 12
  • An exploded view of the measuring device wherein the measuring device includes a first housing 100, a distance sensor 300 and a data transmission device (not shown in the figure), and the first housing 100 is socketed on the set of connector joints of the first single board 1 From the exploded view of Figure 12, it can be seen that the first housing 100 includes two first fixing pieces 110 and a first connecting piece 120, the first fixing piece 110 is connected with the first veneer 1 to connect the entire first housing 100 is fixed on the first veneer 1, two first fixing parts 110 are arranged side by side, and are respectively arranged on both sides of the group of
  • the first connecting piece 120 in this embodiment is located above the group of connector joints, and the two first fixing pieces 110 straddle the entire first single board 1 and are respectively located at two corners of the first single board 1 (Assume that the first veneer 1 is a rectangular plate), so the first connecting piece 120 and the two first fixing pieces 110 form a flyover structure, surrounding the group of connector joints under the flyover structure.
  • the first housing also includes a second fixing part 130.
  • the second fixing part 130 is also arranged between the two first fixing parts 110 and stacked with the first connecting part 120 to fix multiple distance sensors. 300.
  • an accommodating cavity is formed between the second fixing part 130 and the first connecting part 120, and the distance sensor 300 is fixed through the accommodating cavity.
  • the distance sensor 300 in this embodiment is a long cylindrical device
  • the first connecting part 120 is provided with a semicircular groove
  • the second fixing part 130 is also provided with a semicircular groove, through which the upper and lower semicircular grooves With the fit, the distance sensor 300 is fixed.
  • the first connecting piece 120 and the second fixing piece 130 are provided with a plurality of screw holes, and the screws are used to pass through the upper and lower screw holes in turn, so that the first connecting piece 120 and the second fixing piece can 130, thereby clamping the distance sensor 300.
  • the first fixing member 110 has a first slot 113 extending toward the direction of the first single board 1 , and the notch of the first slot 113 Facing the first veneer 1 to insert the edge of the first veneer 1 .
  • the width of the slot is greater than or equal to the thickness of the first veneer 1 , and the two sides of the slot are respectively located on the front and back of the first veneer 1 .
  • the distance sensor 300 in this embodiment is a non-contact image sensor or a non-contact laser sensor, and the inductive probe of the image sensor or laser sensor does not need to be in contact with the second single board 2, so the position of the distance sensor 300 can be adjusted according to the needs. Adjustment, for example, the sensing probe of the image sensor is directed towards the joint of the connector joint, and the Demating value is obtained through image recognition technology. Another example, the sensing probe of the laser sensor is directed towards the joint of the connector joint, and the three-dimensional imaging model is obtained through laser scanning technology. So as to get the Demating value. Similarly, the non-contact distance sensor 300 can also realize real-time measurement of the Demating value (such as scanning once at a fixed interval) through continuous sensing. In this embodiment, the sensing probe of the displacement sensor is covered with a soft bellows 310 to protect the exposed sensing probe.
  • the first housing 100 surrounded by the first fixing member 110, the second fixing member 130 and the first connecting member 120 in this embodiment is in the shape of a frame and does not completely cover or mostly cover the connector. joints, which can reduce the use of materials for the measuring device and obtain a relatively light weight; but in practical applications, the first housing 100 is not limited to the above-mentioned structural form, and can be adjusted and deformed to the structural form of Embodiment 1 or other structures form, without giving too many examples here.
  • the measurement device provided by the embodiment of the present application has at least the following beneficial effects: by designing a measurement device including a distance sensor and a structural member clamped and fixed with the connector joint, it can be applied to the incomplete inspection of the connector in a small closed space. Measuring with the distance realizes the measurement of demating value with high efficiency, high coverage and high accuracy, and the distance sensor of this measuring device continuously monitors the data, so it can realize the static measurement and dynamic measurement of the connector demating value, and the measurement application The scene range is wide.
  • the shell is used as a clamped and fixed structural part, without destroying or removing key components in the measurement environment, which ensures the consistency between the measurement environment and the application environment.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

一种连接器的非完全配合距离的测量装置,其中,测量装置包括第一壳体(100)、距离传感器(300)和数据传输装置,第一壳体(100)套接在第一单板(1)的连接器接头的外围,第一壳体(100)包括第一固定件(110),第一固定件(110)与第一单板(1)连接以将第一壳体(100)固定于第一单板(1);距离传感器(300)设置于第一壳体(100)上,距离传感器(300)的感应探头朝向第二单板(2);数据传输装置连接距离传感器(300),用于获取并向外转发距离传感器(300)的距离感应值。

Description

连接器的非完全配合距离的测量装置
相关申请的交叉引用
本申请基于申请号为202111199823.8、申请日为2021年10月14日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及测量技术领域,尤其涉及一种连接器的非完全配合距离的测量装置。
背景技术
为了实现电路板与电路板之间的连接,电路板上通常设置有连接器(一公头一母头)配合;对于系统架构,插箱或机柜以及单板或网板的设计公差和变形累计会不可避免地在连接器的配合位置处产生非理想的应用场景,即连接器处于非完全配合状态(de-mate)下工作。这个非完全配合距离(Demating值)会引起连接器在高频段的高速信号完整性能的劣化,能否准确获取连接器配合时的Demating值,对连接器选型和系统架构设计来说意义重大。
目前测量连接器的Demating值需要在插箱或机柜内进行,但是由于插箱或机柜内各种元器件的阻挡,测量空间狭小封闭,业界也缺乏高效的Demating值测量手段。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请实施例提供了一种连接器的非完全配合距离的测量装置。
本申请实施例提供了一种连接器的非完全配合距离的测量装置,所述连接器连接第一单板和第二单板,其中,所述测量装置包括:第一壳体,套接在所述第一单板的连接器接头的外围,所述第一壳体包括第一固定件,所述第一固定件与所述第一单板连接以将所述第一壳体固定于所述第一单板;距离传感器,设置于所述第一壳体上,所述距离传感器的感应探头朝向所述第二单板;数据传输装置,连接所述距离传感器,用于获取并向外转发所述距离传感器的距离感应值。
本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本申请技术方案的进一步理解,并且构成说明书的一部分,与本申请的示例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1是本申请实施例一提供的背板连接架构下测量装置的结构图;
图2是本申请实施例一提供的测量装置的爆炸图;
图3是本申请实施例二提供的正交连接架构下测量装置的结构图;
图4是本申请实施例三提供的背板连接架构下测量装置的结构图;
图5是本申请实施例三提供的测量装置的爆炸图;
图6是本申请实施例四提供的正交连接架构下测量装置的结构图;
图7是本申请实施例五提供的背板连接架构下测量装置的结构图;
图8是本申请实施例五提供的测量装置的爆炸图;
图9是本申请实施例六提供的正交连接架构下测量装置的结构图;
图10是本申请实施例六提供的测量装置的爆炸图;
图11是本申请实施例七提供的正交连接架构下测量装置的结构图;
图12是本申请实施例七提供的测量装置的爆炸图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
本申请的说明书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例,例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或装置不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或装置固有的其他步骤或单元。
应当理解,在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
应当理解,在本申请实施例的描述中,多个(或多项)的含义是两个以上,大于、小于、超过等理解为不包括本数,以上、以下、以内等理解为包括本数。
随着通讯设备高带宽传输、高性能计算的需求的快速增加,高速系统架构中业务板或者线卡与网络接口板之间的信号速率和带宽要求越来越高,因此对于系统架构来说,包括背板架构设计和正交架构设计,机柜以及单板或网络接口板的设计公差和变形累积会不可避免地在连接器的配合界面产生非理想的应用场景,即连接器在非完成全配合状态(de-mate)下工作,这个非完全配合距离会引起连接器在高频段的高速信号完整性能的劣化。
考虑到当前机柜或者插箱中空间狭小,传统的Demating值测量设备占用较大空间,并且往往要嵌入到连接器中,这就需要拆开连接器嵌入测量,测量结束后再次拆开连接器,使得测量环境跟实际应用场景产生差异,并且这种测量方式只能针对静态场景,在连接器周围环境变动而影响连接器的连接间隙的情况下,先前的测量值就失去了参考价值。
基于此,本申请实施例提供了一种连接器的非完全配合距离的测量装置,连接器连接第一单板1和第二单板2,测量装置包括:
第一壳体100,套接在第一单板1的连接器接头的外围,第一壳体100包括第一固定件110,第一固定件110与第一单板1连接以将第一壳体100固定于第一单板1;
距离传感器300,设置于第一壳体100上,距离传感器300的感应探头朝向第二单板2;
数据传输装置,连接距离传感器300,用于获取并向外转发距离传感器300的距离感应值。
通过套接在连接器接头上的第一壳体100,降低测量装置对空间的占用,同时利用测量装置固定距离传感器300,实现两块单板之间连接器的Demating值测量,还设置有相应的数据传输装置,实时获取距离传感器300的感应值,实现了静态和动态测量。下面通过几个实施例对测量装置的各种应用场景进行说明。
实施例一:
参照图1和图2,图1为在第二单板2作为背板与第一单板1连接的情况下,测量装置与连接器的配合连接图,图2为测量装置的爆炸图,其中测量装置包括第一壳体100、距离传感器300和数据传输装置(图中未示出),第一壳体100套接在第一单板1的连接器接头的外围,由图2的爆炸图可知,第一壳体100包括两个第一固定件110和第一连接件120,第一固定件110与第一单板1连接以将整个第一壳体100固定在第一单板1上,两个第一固定件110并排设置,分别设置在第一单板1的连接器接头的两侧,第一连接件120同样设置在两个第一固定件110之间,两个第一固定件110分别与第一连接件120的两侧连接。
第一外壳还包括第二固定件130,本实施例中,第二固定件130同样设置在两个第一固定件110之间,从而第二固定件130与第一连接件120、第一固定件110连接构成第一壳体100,倒扣于第一单板1的连接器接头。
根据图1和图2可知,第二固定件130开设有朝向第二单板2的缺口,缺口与其中一个第一固定件110之间形成容置距离传感器300的空间;缺口的形状和大小可以根据实际需要调整,在本实施例中缺口呈矩形,使得第二固定件130呈一直角,缺口的一边被第一固定件110挡住,余下一边朝向第二单板2;由于第二固定件130具有一定的厚度,可以将距离传感器300固定在第二固定件130的侧面并位于缺口之中,这样,距离传感器300可以不凸出于第一壳体100。
本实施例中的距离传感器300为接触式的位移传感器,位移传感器的感应探头顶在第二单板2的表面,第一单板1和第二单板2之间连接的情况下,通过位移传感器的位移量确定连接器的非完全配合距离,即Demating值。可以理解的是,由于位移传感器一直顶在第二单板2上,第二单板2和第一单板1之间如果因外部环境变化或震动等原因发生位移,位移传感器测得位移量也相应变化,因此可以通过数据传输装置实时得到Demating值,实现静态和动态的Demating值测量。
为了使得第一壳体100固定在第一单板1上,第一固定件110向第一单板1的方向延伸有固定部111,固定部111开设有螺纹孔112,该螺纹孔112可以对准第一单板1的侧面,从而通过螺钉穿过螺纹孔112与第一单板1固定,实现第一壳体100的安装。
可以理解的是,不同的连接器的形状和大小不相同,第一固定件110、第一连接件120和第二固定件130的形状可以根据不同的连接器设置,在此不作限定。另外,第一固定件110 与第一连接件120之间、第一固定件110与第二固定件130之间、第一连接件120与第二固定件130之间,都可以通过螺钉紧固或其他方式连接。
实施例二
参照图3,图3为第一单板1和第二单板2正交连接的情况下,测量装置与连接器的配合连接图,正交连接架构下,本实施例与实施例一的区别在于两块单板互相垂直,其中测量装置包括第一壳体100、距离传感器300和数据传输装置(图中未示出),第一壳体100套接在第一单板1的连接器接头的外围,第一壳体100包括两个第一固定件110和第一连接件120,第一固定件110与第一单板1连接以将整个第一壳体100固定在第一单板1上,两个第一固定件110并排设置,分别设置在第一单板1的连接器接头的两侧,第一连接件120同样设置在两个第一固定件110之间,两个第一固定件110分别与第一连接件120的两侧连接。
第一外壳还包括第二固定件130,本实施例中,第二固定件130同样设置在两个第一固定件110之间,从而第二固定件130与第一连接件120、第一固定件110连接构成第一壳体100,倒扣于第一单板1的连接器接头。
根据图3可知,第二固定件130开设有朝向第二单板2的缺口,缺口与其中一个第一固定件110之间形成容置距离传感器300的空间;缺口的形状和大小可以根据实际需要调整,在本实施例中缺口呈矩形,使得第二固定件130呈一直角,缺口的一边被第一固定件110挡住,余下一边朝向第二单板2;由于第二固定件130具有一定的厚度,可以将距离传感器300固定在第一固定件110的侧面或者第二固定件130的侧面,使得距离传感器300不高出于第一壳体100,进一步节省测量装置的占用空间。
本实施例中的距离传感器300为接触式的位移传感器,位移传感器的感应探头顶在第二单板2的表面,第一单板1和第二单板2之间连接的情况下,通过位移传感器的位移量确定连接器的非完全配合距离。可以理解的是,由于位移传感器一直顶在第二单板2上,第二单板2和第一单板1之间如果因外部环境变化或震动等原因发生位移,位移传感器测得位移量也相应变化,因此可以通过数据传输装置实时得到Demating值,实现静态和动态的Demating值测量。
参照图3,由于第一单板1和第二单板2是正交连接架构,使得距离传感器300只能朝向第二单板2的侧面,而第二单板2通常较薄,因此接触式的位移传感器需要将感应探头对准第二单板2的侧面,因此,通过调整第一壳体100和/或改变位移传感器的固定位置,可以使得感应探头正对第二单板2的侧面,实现距离测量。
为了使得第一壳体100固定在第一单板1上,第一固定件110向第一单板1的方向延伸有固定部111,固定部111开设有螺纹孔112,该螺纹孔112可以对准第一单板1的侧面,从而通过螺钉穿过螺纹孔112与第一单板1固定,实现第一壳体100的安装。
可以理解的是,不同的连接器的形状和大小不相同,第一固定件110第一连接件120和第二固定件130的形状可以根据不同的连接器设置,在此不作限定。另外,第一固定件110与第一连接件120之间、第一固定件110与第二固定件130之间第一连接件120与第二固定件130之间,都可以通过螺钉紧固或其他方式连接。
实施例三
参照图4和图5,图4为在第二单板2作为背板与第一单板1连接的情况下,测量装置与连接器的配合连接图,其中第一单板1上具有两个连接器接头(下面称为一组连接器接头), 分别对应第二单板2上另外两个连接器接头,两块单板上的连接器接头一一对应连接,图5为双距离传感器300的测量装置的爆炸图,其中测量装置包括第一壳体100、两个距离传感器300和数据传输装置(图中未示出),第一壳体100套接在第一单板1的该组连接器接头的外围,由图5的爆炸图可知,第一壳体100包括两个第一固定件110和第一连接件120,第一固定件110与第一单板1连接以将整个第一壳体100固定在第一单板1上,两个第一固定件110并排设置,分别设置在第一单板1的该组连接器接头的两侧,第一连接件120同样设置在两个第一固定件110之间,两个第一固定件110分别与第一连接件120的两侧连接。
第一外壳还包括第二固定件130,本实施例中,第二固定件130同样设置在两个第一固定件110之间,从而第二固定件130与第一连接件120、第一固定件110连接构成第一壳体100,倒扣于第一单板1的该组连接器接头。
根据图4和图5可知,第二固定件130开设有朝向第二单板2的缺口,缺口与其中一个第一固定件110之间形成容置距离传感器300的空间;缺口的形状和大小可以根据实际需要调整,在本实施例中缺口呈矩形,使得第二固定件130呈一直角,缺口的一边被第一固定件110挡住,余下一边朝向第二单板2;由于第二固定件130具有一定的厚度,可以将距离传感器300固定在第二固定件130的侧面并位于缺口之中,这样,距离传感器300可以不凸出于第一壳体100,当然也可以将距离传感器300固定在第一固定件110的侧面并位于缺口之中,也可以该组的两个距离传感器300分别固定在第一固定件110的侧面和第二固定件130的侧面。
本实施例中的距离传感器300为接触式的位移传感器,位移传感器的感应探头顶在第二单板2的表面,第一单板1和第二单板2之间连接的情况下,通过位移传感器的位移量确定连接器的非完全配合距离。可以理解的是,由于位移传感器一直顶在第二单板2上,第二单板2和第一单板1之间如果因外部环境变化或震动等原因发生位移,位移传感器测得位移量也相应变化,因此可以通过数据传输装置实时得到Demating值,实现静态和动态的Demating值测量。
为了使得第一壳体100固定在第一单板1上,第一固定件110向第一单板1的方向延伸有固定部111,固定部111开设有螺纹孔112,该螺纹孔112可以对准第一单板1的侧面,从而通过螺钉穿过螺纹孔112与第一单板1固定,实现第一壳体100的安装。
可以理解的是,不同的连接器的形状和大小不相同,第一固定件110第一连接件120和第二固定件130的形状可以根据不同的连接器设置,在此不作限定。另外,第一固定件110与第一连接件120之间、第一固定件110与第二固定件130之间第一连接件120与第二固定件130之间,都可以通过螺钉紧固或其他方式连接。
实施例四
参照图6,图6为第一单板1和第二单板2正交连接的情况下,测量装置与连接器的配合连接图,正交连接架构下,本实施例与实施例一的区别在于第一单板1与第二单板2互相垂直,两块第二单板2互相平行,第一单板1上具有两个连接器接头(下面称为一组连接器接头),分别对应两块第二单板2上各自的一个连接器接头,其中测量装置包括第一壳体100、两个距离传感器300和数据传输装置(图中未示出),第一壳体100套接在第一单板1的该组连接器接头的外围,第一壳体100包括两个第一固定件110和第一连接件120,第一固定件110与第一单板1连接以将整个第一壳体100固定在第一单板1上,两个第一固定件110并 排设置,分别设置在第一单板1的该组连接器接头的两侧,第一连接件120同样设置在两个第一固定件110之间,两个第一固定件110分别与第一连接件120的两侧连接。
第一外壳还包括第二固定件130,本实施例中,第二固定件130同样设置在两个第一固定件110之间,从而第二固定件130与第一连接件120、第一固定件110连接构成第一壳体100,倒扣于第一单板1的该组连接器接头。
根据图6可知,第二固定件130开设有朝向第二单板2的缺口,缺口与其中一个第一固定件110之间形成容置距离传感器300的空间;缺口的形状和大小可以根据实际需要调整,在本实施例中缺口呈矩形,使得第二固定件130呈一直角,缺口的一边被第一固定件110挡住,余下一边朝向第二单板2;由于第二固定件130具有一定的厚度,可以将距离传感器300固定在第二固定件130的侧面并位于缺口之中,这样,距离传感器300可以不凸出于第一壳体100,当然也可以将距离传感器300固定在第一固定件110的侧面并位于缺口之中,也可以该组的两个距离传感器300分别固定在第一固定件110的侧面和第二固定件130的侧面,具体可以根据两个连接器接头的位置确定距离传感器300的固定位置。
本实施例中的距离传感器300为接触式的位移传感器,位移传感器的感应探头顶在第二单板2的表面,第一单板1和第二单板2之间连接的情况下,通过位移传感器的位移量确定连接器的非完全配合距离。可以理解的是,由于位移传感器一直顶在第二单板2上,第二单板2和第一单板1之间如果因外部环境变化或震动等原因发生位移,位移传感器测得位移量也相应变化,因此可以通过数据传输装置实时得到Demating值,实现静态和动态的Demating值测量。
参照图6,由于第一单板1和第二单板2是正交连接架构,使得距离传感器300只能朝向第二单板2的侧面,而第二单板2通常较薄,因此接触式的位移传感器需要将感应探头对准第二单板2的侧面,因此,通过调整第一壳体100和/或改变位移传感器的固定位置,可以使得感应探头正对第二单板2的侧面,实现距离测量。
为了使得第一壳体100固定在第一单板1上,第一固定件110向第一单板1的方向延伸有固定部111,固定部111开设有螺纹孔112,该螺纹孔112可以对准第一单板1的侧面,从而通过螺钉穿过螺纹孔112与第一单板1固定,实现第一壳体100的安装。
可以理解的是,不同的连接器的形状和大小不相同,第一固定件110第一连接件120和第二固定件130的形状可以根据不同的连接器设置,在此不作限定。另外,第一固定件110与第一连接件120之间、第一固定件110与第二固定件130之间第一连接件120与第二固定件130之间,都可以通过螺钉紧固或其他方式连接。
实施例五
参照图7和图8,图7为在第二单板2作为背板与第一单板1连接的情况下,测量装置与连接器的配合连接图,图8为测量装置的爆炸图,其中测量装置包括第一壳体100、距离传感器300和数据传输装置(图中未示出),第一壳体100套接在第一单板1的连接器接头的外围,由图8的爆炸图可知,第一壳体100包括两个第一固定件110和第一连接件120,第一固定件110与第一单板1连接以将整个第一壳体100固定在第一单板1上,两个第一固定件110并排设置,分别设置在第一单板1的连接器接头的两侧,第一连接件120同样设置在两个第一固定件110之间,两个第一固定件110分别与第一连接件120的两侧连接。
第一外壳还包括第二固定件130,本实施例中,第二固定件130同样设置在两个第一固 定件110之间,从而第二固定件130与第一连接件120、第一固定件110连接构成第一壳体100,倒扣于第一单板1的连接器接头。
根据图7和图8可知,第二固定件130包括固定孔132的限位部131,通过该固定孔132固定距离传感器300,使得距离传感器300的感应探头朝向第二单板2。具体来说,第二固定件130的主体与第一单板1的表面平行,在第二固定件130的主体设置有限位部131,限位部131垂直于第二固定件130的主体,限位部131上开设有固定孔132,为了进一步固定距离传感器300,附加一个环状组件,该环状组件包括螺母和具有外螺纹的管体133,距离传感器300在该管体133松弛的状态下套入该管体133,通过在管体133的外螺纹上旋动螺母,可以将该管体133收紧,从而固定距离传感器300。可以理解的是,为了实现管体133的松弛和收紧,管体133通常可以使用软性塑料,并且在管体133的端部设置多个沿管体133长度方向延伸的缺口,以提高可用性。
可以理解的是,为了使得第一壳体100固定在第一单板1上,第一固定件110向第一单板1的方向延伸有第一插槽113,第一插槽113的槽口朝向第一单板1以插入第一单板1的边缘。插槽的宽度大于或等于第一单板1的厚度,且槽的两侧分别位于第一单板1的正反两面。
为了方便调节第一固定件110和第二固定件130的安装位置,本实施例中,第一固定件110和第二固定件130上都开设有导轨140和紧固件150,导轨140向第二单板2的方向延伸,从而使得第一固定件110和第二固定件130可以靠近或远离第二单板2,以适应不同连接器接头,同时紧固件150穿过导轨140连接第一连接件120,将第一固定件110或第二固定件130分别固定。
本实施例中的距离传感器300为接触式的位移传感器,位移传感器的感应探头顶在第二单板2的表面,第一单板1和第二单板2之间连接的情况下,通过位移传感器的位移量确定连接器的非完全配合距离。可以理解的是,由于位移传感器一直顶在第二单板2上,第二单板2和第一单板1之间如果因外部环境变化或震动等原因发生位移,位移传感器测得位移量也相应变化,因此可以通过数据传输装置实时得到Demating值,实现静态和动态的Demating值测量。在本实施例中,位移传感器的感应探头套有软性波纹管310,以保护外露的感应探头。
可以理解的是,本实施例的第一固定件110、第二固定件130和第一连接件120围成的第一壳体100,呈一框架状,并不是完全覆盖或大部分覆盖连接器接头的,这样可以减少测量装置的材料使用,获得比较轻的重量;但在实际应用中,第一壳体100并不限定于上述结构形式,可以调整变形到实施例一的结构形式或者其他结构形式,在此不作过多举例。
实施例六
参照图9和图10,图9为第一单板1和第二单板2正交连接的情况下,测量装置与连接器的配合连接图,图10为测量装置的爆炸图,其中测量装置包括第一壳体100、第二壳体200、距离传感器300和数据传输装置(图中未示出),第一壳体100套接在第一单板1的连接器接头的外围,由图10的爆炸图可知,第一壳体100包括两个第一固定件110和第一连接件120,第一固定件110与第一单板1连接以将整个第一壳体100固定在第一单板1上,两个第一固定件110并排设置,分别设置在第一单板1的连接器接头的两侧,第一连接件120同样设置在两个第一固定件110之间,两个第一固定件110分别与第一连接件120的两侧连接,第二 壳体200套接在第二单板2的连接器接头的外围,由图10的爆炸图可知,第二壳体200套接在第二单板2的连接器接头的外围,第二壳体200包括挡板230,挡板230设置在距离传感器300的感应探头的感应方向上,第二连接件220连接挡板230和第三固定件210。通过第一壳体100和第二壳体200之间配合,即使距离传感器300不正对第二单板2的侧面,也可以实现Demating值的测量。
第一外壳还包括第二固定件130,本实施例中,第二固定件130同样设置在两个第一固定件110之间,从而第二固定件130与第一连接件120、第一固定件110连接构成第一壳体100,倒扣于第一单板1的连接器接头。
根据图9和图10可知,第二固定件130包括设置有固定孔132的限位部131,通过该固定孔132固定距离传感器300,使得距离传感器300的感应探头朝向第二单板2。具体来说,第二固定件130的主体与第一单板1的表面平行,在第二固定件130的主体设置有限位部131,限位部131垂直于第二固定件130的主体,限位部131上开设有固定孔132,为了进一步固定距离传感器300,附加一个环状组件,该环状组件包括螺母和具有外螺纹的管体133,距离传感器300在该管体133松弛的状态下套入该管体133,通过在管体133的外螺纹上旋动螺母,可以将该管体133收紧,从而固定距离传感器300。可以理解的是,为了实现管体133的松弛和收紧,管体133通常可以使用软性塑料,并且在管体133的端部设置多个沿管体133长度方向延伸的缺口,以提高可用性。
可以理解的是,为了使得第一壳体100固定在第一单板1上,第一固定件110向第一单板1的方向延伸有第一插槽113,第一插槽113的槽口朝向第一单板1以插入第一单板1的边缘。插槽的宽度大于或等于第一单板1的厚度,且槽的两侧分别位于第一单板1的正反两面。同样地,第三固定件210向第二单板2的方向延伸有第二插槽211,第二插槽211的槽口朝向第二单板2以插入第二单板2的边缘,插槽的宽度大于或等于第二单板2的厚度,且槽的两侧分别位于第二单板2的正反两面。
为了方便调节第一固定件110和第二固定件130的安装位置,本实施例中,第一固定件110和第二固定件130上都开设有导轨140和紧固件150,导轨140向第二单板2的方向延伸,从而使得第一固定件110和第二固定件130可以靠近或远离第二单板2,以适应不同连接器接头,同时紧固件150穿过导轨140连接第一连接件120,将第一固定件110或第二固定件130分别固定。
本实施例中的距离传感器300为接触式的位移传感器,在正交系统结构下,如果要接触式的位移传感器的感应探头直接顶在第二单板2的边缘,则对测量装置和连接器的结构配合要求相当高,因此本实施例采用第二壳体200解决上述问题。具体来说,接触式的位移传感器的感应探头不对准第二单板2的边缘,而是对准第二壳体200上的挡板230,将挡板230的位置等效为第二单板2所在的位置,由于挡板230是平行第一单板1设置的,因此挡板230相比第二单板2的边缘具有较大的可接触面积,降低测量装置和连接器的结构配合要求。同样地,由于挡板230与第二单板2之间是相对固定不动的,因此第二单板2和第一单板1之间如果因外部环境变化或震动等原因发生位移,位移传感器测得位移量也相应变化,因此可以通过数据传输装置实时得到Demating值,实现静态和动态的Demating值测量。在本实施例中,位移传感器的感应探头套有软性波纹管310,以保护外露的感应探头。
另外,挡板230开设有第三插槽231,第三插槽231的槽口朝向第二单板2以插入第二 单板2的边缘,此时,第二插槽211和第三插槽231都用于固定第二单板2,加强第二壳体200与第二单板2之间的连接,通过两个插槽的限位,也有利于提高Demating值的测量精度。
可以理解的是,本实施例的第一固定件110、第二固定件130和第一连接件120围成的第一壳体100,以及第二连接件220、第三固定件210和挡板230围成的第二壳体200,都呈框架状,并不是完全覆盖或大部分覆盖连接器接头的,这样可以减少测量装置的材料使用,获得比较轻的重量;但在实际应用中,第一壳体100并不限定于上述结构形式,可以调整变形到实施例一的结构形式或者其他结构形式,在此不作过多举例。
实施例七
参照图11和图12,图11为第一单板1与多块第二单板2正交连接的情况下,测量装置与连接器的配合连接图,其中多块第二单板2两两互相平行,第一单板1上具有与第二单板2的数量相等的连接器接头(下面成为一组连接器接头),分别对应不同第二单板2上一个连接器接头,图12为测量装置的爆炸图,其中测量装置包括第一壳体100、距离传感器300和数据传输装置(图中未示出),第一壳体100套接在第一单板1的该组连接器接头的外围,由图12的爆炸图可知,第一壳体100包括两个第一固定件110和第一连接件120,第一固定件110与第一单板1连接以将整个第一壳体100固定在第一单板1上,两个第一固定件110并排设置,分别设置在第一单板1的该组连接器接头的两侧,第一连接件120同样设置在两个第一固定件110之间,两个第一固定件110分别与第一连接件120的两侧连接。
本实施例的第一连接件120位于该组连接器接头的上方,而两个第一固定件110横跨整块第一单板1而分别处于第一单板1的两个角的位置处(假设第一单板1是矩形板),因此第一连接件120和两个第一固定件110形成天桥结构,包围天桥结构下的该组连接器接头。
第一外壳还包括第二固定件130,本实施例中,第二固定件130同样设置在两个第一固定件110之间,并且与第一连接件120叠放设置,固定多个距离传感器300。根据图11和图12可知,第二固定件130和第一连接件120之间形成容置腔,距离传感器300通过容置腔固定。具体来说,本实施例中距离传感器300为长条圆柱形装置,第一连接件120上开设有半圆凹槽,第二固定件130上也开设有半圆凹槽,通过上下两个半圆凹槽的配合,固定距离传感器300。为了进一步稳定距离传感器300的位置,第一连接件120和第二固定件130上开设有多个螺钉孔,利用螺钉依次穿过上下两个螺钉孔,可以第一连接件120和第二固定件130,从而夹紧距离传感器300。
可以理解的是,为了使得第一壳体100固定在第一单板1上,第一固定件110向第一单板1的方向延伸有第一插槽113,第一插槽113的槽口朝向第一单板1以插入第一单板1的边缘。插槽的宽度大于或等于第一单板1的厚度,且槽的两侧分别位于第一单板1的正反两面。
本实施例中的距离传感器300为非接触式的图像传感器或非接触式的激光传感器,图像传感器或者激光传感器的感应探头不需要跟第二单板2接触,因此距离传感器300的位置可根据需要调整,例如,图像传感器的感应探头朝向连接器接头的连接处,通过图像识别技术得到Demating值,又如,激光传感器的感应探头朝向连接器接头的连接处,通过激光扫描技术得到三维成像模型,从而得到Demating值。同样地,非接触式的距离传感器300通过不断感测,也可以实现实时测量Demating值(如每隔一个固定间隔时间扫描一次)在本实施例中,位移传感器的感应探头套有软性波纹管310,以保护外露的感应探头。
可以理解的是,本实施例的第一固定件110、第二固定件130和第一连接件120围成的第一壳体100,呈一框架状,并不是完全覆盖或大部分覆盖连接器接头的,这样可以减少测量装置的材料使用,获得比较轻的重量;但在实际应用中,第一壳体100并不限定于上述结构形式,可以调整变形到实施例一的结构形式或者其他结构形式,在此不作过多举例。
本申请实施例提供的测量装置,至少具有如下有益效果:通过设计一种包括距离传感器和与连接器接头装夹固定的结构件的测量装置,可以适用于狭小封闭空间中对连接器的非完全配合距离进行测量,实现了高效、高覆盖率和高准确率的Demating值测量,并且本测量装置的距离传感器是持续监测数据的,因此可实现连接器Demating值的静态测量及动态测量,测量应用场景范围广,另一方面,外壳作为装夹固定的结构件,无需破坏或拆除测量环境中的关键元器件,保证了测量环境与应用环境的一致性。
以上是对本申请的一些实施进行了具体说明,但本申请并不局限于上述实施方式,熟悉本领域的技术人员在不违背本申请范围的前提下还可作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

Claims (11)

  1. 一种连接器的非完全配合距离的测量装置,所述连接器连接第一单板和第二单板,其特征在于,所述测量装置包括:
    第一壳体,套接在所述第一单板的连接器接头的外围,所述第一壳体包括第一固定件,所述第一固定件与所述第一单板连接以将所述第一壳体固定于所述第一单板;
    距离传感器,设置于所述第一壳体上,所述距离传感器的感应探头朝向所述第二单板;
    数据传输装置,连接所述距离传感器,用于获取并向外转发所述距离传感器的距离感应值。
  2. 根据权利要求1所述的测量装置,其中,所述第一壳体还包括第一连接件,所述第一固定件设置有两个,两个所述第一固定件分别设置在所述第一单板的连接器接头的两侧,所述第一连接件设置在两个所述第一固定件之间并分别与两个所述第一固定件连接。
  3. 根据权利要求2所述的测量装置,其中,所述第一壳体还包括第二固定件,所述第二固定件与所述第一连接件、所述第一固定件连接构成所述第一壳体。
  4. 根据权利要求3所述的测量装置,其中,
    所述第二固定件开设有朝向所述第二单板的缺口,所述距离传感器容置于所述缺口;
    或者,
    所述第二固定件包括设置有固定孔的限位部,所述距离传感器穿过所述固定孔;
    或者,
    所述第二固定件和所述第一连接件之间形成容置腔,所述距离传感器通过所述容置腔固定。
  5. 根据权利要求3或4所述的测量装置,其中,所述第一固定件和/或所述第二固定件包括导轨和紧固件,所述导轨向所述第二单板的方向延伸,所述紧固件穿过所述导轨连接所述第一连接件。
  6. 根据权利要求1或2所述的测量装置,其中,所述第一固定件向所述第一单板的方向延伸有固定部,所述固定部开设有螺纹孔,以利用螺钉通过所述螺纹孔与所述第一单板紧固连接。
  7. 根据权利要求1或2所述的测量装置,其中,所述第一固定件向所述第一单板的方向延伸有第一插槽,所述第一插槽的槽口朝向所述第一单板以插入所述第一单板的边缘。
  8. 根据权利要求1所述的测量装置,其中,所述测量装置还包括第二壳体,在所述第一单板和所述第二单板正交连接的情况下,所述第二壳体套接在所述第二单板的连接器接头的外围,所述第二壳体包括挡板,所述挡板设置在所述距离传感器的感应探头的感应方向上。
  9. 根据权利要求8所述的测量装置,其中,所述第二壳体还包括第二连接件和第三固定件,所述第二连接件连接所述挡板和所述第三固定件,所述第三固定件向所述第二单板的方向延伸有第二插槽,所述第二插槽的槽口朝向所述第二单板以插入所述第二单板的边缘。
  10. 根据权利要求8所述的测量装置,其中,所述挡板开设有第三插槽,所述第三插槽的槽口朝向所述第二单板以插入所述第二单板的边缘。
  11. 根据权利要求1所述的测量装置,其中,所述距离传感器为接触式的位移传感器或者非接触式的长度测量模块。
PCT/CN2022/080745 2021-10-14 2022-03-14 连接器的非完全配合距离的测量装置 WO2023060832A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111199823.8A CN113640711B (zh) 2021-10-14 2021-10-14 连接器的非完全配合距离的测量装置
CN202111199823.8 2021-10-14

Publications (1)

Publication Number Publication Date
WO2023060832A1 true WO2023060832A1 (zh) 2023-04-20

Family

ID=78426910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/080745 WO2023060832A1 (zh) 2021-10-14 2022-03-14 连接器的非完全配合距离的测量装置

Country Status (2)

Country Link
CN (1) CN113640711B (zh)
WO (1) WO2023060832A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113640711B (zh) * 2021-10-14 2022-01-21 中兴通讯股份有限公司 连接器的非完全配合距离的测量装置
US20230273050A1 (en) * 2022-02-25 2023-08-31 Huawei Technologies Co., Ltd. Distance measurement method, apparatus, and device, and computer-readable storage medium

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014117446A (ja) * 2012-12-17 2014-06-30 Olympus Corp 挿入装置
CN104521072A (zh) * 2012-07-11 2015-04-15 康姆艾德控股公司 用于高压连接器的间隙测量传感器
CN109737911A (zh) * 2019-01-07 2019-05-10 烽火通信科技股份有限公司 一种校准工装、盲插连接器互配间隙的测量装置及方法
CN110768068A (zh) * 2019-10-30 2020-02-07 中航光电科技股份有限公司 一种插合距离可测的连接器及插合距离的测试方法
CN111504243A (zh) * 2019-01-31 2020-08-07 泰科电子(上海)有限公司 适用于检测电缆连接器的端子装配深度的检测装置及其检测方法
CN112630701A (zh) * 2020-12-17 2021-04-09 浙江盘毂动力科技有限公司 端子插接检测装置及系统
CN213124948U (zh) * 2020-11-03 2021-05-04 苏州瑞可达连接系统股份有限公司 一种测距浮动装置
CN113640711A (zh) * 2021-10-14 2021-11-12 中兴通讯股份有限公司 连接器的非完全配合距离的测量装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4291931A (en) * 1979-02-12 1981-09-29 Bunker Ramo Corporation Shear plane separable connector
CN101806573B (zh) * 2009-02-16 2013-04-10 鸿富锦精密工业(深圳)有限公司 接触式测量装置
CN207703466U (zh) * 2017-10-31 2018-08-07 无锡瑞林控制软件有限公司 一种汽车尾门锁功能检验机构
CN112003050B (zh) * 2019-05-27 2024-05-28 中兴通讯股份有限公司 交换板组件及具有其的箱体
KR20210057503A (ko) * 2019-11-12 2021-05-21 현대자동차주식회사 연료 전지에 탈착 가능한 셀 모니터링 커넥터
CN213021448U (zh) * 2020-09-02 2021-04-20 河北宝德精工电力科技有限公司 一种静态位移检测装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104521072A (zh) * 2012-07-11 2015-04-15 康姆艾德控股公司 用于高压连接器的间隙测量传感器
JP2014117446A (ja) * 2012-12-17 2014-06-30 Olympus Corp 挿入装置
CN109737911A (zh) * 2019-01-07 2019-05-10 烽火通信科技股份有限公司 一种校准工装、盲插连接器互配间隙的测量装置及方法
CN111504243A (zh) * 2019-01-31 2020-08-07 泰科电子(上海)有限公司 适用于检测电缆连接器的端子装配深度的检测装置及其检测方法
CN110768068A (zh) * 2019-10-30 2020-02-07 中航光电科技股份有限公司 一种插合距离可测的连接器及插合距离的测试方法
CN213124948U (zh) * 2020-11-03 2021-05-04 苏州瑞可达连接系统股份有限公司 一种测距浮动装置
CN112630701A (zh) * 2020-12-17 2021-04-09 浙江盘毂动力科技有限公司 端子插接检测装置及系统
CN113640711A (zh) * 2021-10-14 2021-11-12 中兴通讯股份有限公司 连接器的非完全配合距离的测量装置

Also Published As

Publication number Publication date
CN113640711B (zh) 2022-01-21
CN113640711A (zh) 2021-11-12

Similar Documents

Publication Publication Date Title
WO2023060832A1 (zh) 连接器的非完全配合距离的测量装置
KR100443846B1 (ko) 커넥터 조립체 부유 장착대
EP0678941B1 (en) Adaptor with electromagnetic shielding capabilities
US6913487B2 (en) Plug-in connector module
US11058017B2 (en) Video converter with integrated power supply
US20090116185A1 (en) Small form-factor pluggable transceiver module housing
US5807140A (en) Signal coupler with a common ground plane
US10939582B2 (en) Methodology for blindmating and cooling electronic modules
US11705662B2 (en) Connector and connector assembly
US5356315A (en) Modular connector system
CN109561627B (zh) 一种端面自密封盒式插件单元
US20110114576A1 (en) Rack enclosure
US20100124030A1 (en) Floating front enclosure for pluggable module
US9583862B1 (en) Connector assembly and retention mechanism configured to maintain a mated relationship
KR101628333B1 (ko) 광 인터페이스 장치
WO2020238322A1 (zh) 交换板组件及具有交换板组件的箱体
US9291785B2 (en) Optical module
EP0250849A2 (en) Cable clamp assembly
CN221328262U (zh) 一种电缆连接器
CN219577163U (zh) 一种用于快速定位相机的装置
US9167734B2 (en) Circuit board and connector shielding apparatus
TWI661622B (zh) 連接器組件及電子裝置
US8284551B2 (en) Apparatus with data storage devices
US20220312600A1 (en) Subrack And Module Assembly Comprising The Subrack
US20040251798A1 (en) Fastening structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22879783

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22879783

Country of ref document: EP

Kind code of ref document: A1