WO2023060799A1 - 一种量子点匀光复合材料及其制备工艺 - Google Patents

一种量子点匀光复合材料及其制备工艺 Download PDF

Info

Publication number
WO2023060799A1
WO2023060799A1 PCT/CN2022/072543 CN2022072543W WO2023060799A1 WO 2023060799 A1 WO2023060799 A1 WO 2023060799A1 CN 2022072543 W CN2022072543 W CN 2022072543W WO 2023060799 A1 WO2023060799 A1 WO 2023060799A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dot
composite material
layer
substrate
substrate layer
Prior art date
Application number
PCT/CN2022/072543
Other languages
English (en)
French (fr)
Inventor
张恒
方宗豹
陈林森
朱雷
司群英
Original Assignee
苏州大学
苏州维旺科技有限公司
盐城维盛新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学, 苏州维旺科技有限公司, 盐城维盛新材料有限公司 filed Critical 苏州大学
Publication of WO2023060799A1 publication Critical patent/WO2023060799A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses

Definitions

  • the invention relates to the technical field of backlight display, in particular to a quantum dot uniform light composite material and a preparation process thereof.
  • the backlight module includes a light-emitting diode array, at least two optical films located above the light-emitting diode array, and a pair of brightness enhancement films located above the at least two optical films. Since the original LED light basically emits blue light, a quantum dot film is generally provided in the backlight module. Quantum dot film can convert blue light into white light, and has the function of spectral conversion. In the backlight module of LCD, combined with blue LED, it can produce red, green and blue light sources with sharp peaks, which can effectively improve the color gamut of LCD.
  • the energy in the central area of the light emitting surface is greater than the energy in the surrounding area, and the distance between the lamp bead chips is more than 1cm, so the array light composed of multiple LED chips will make the screen There are periodic bright and dark areas, and the visual effect is poor, which affects the user experience.
  • Traditional technology usually covers the light emitting surface of the LED with a uniform film to achieve light diffusion and light mixing, so as to achieve uniform light output on the exit surface.
  • the light uniform film is limited by its structure and thickness, it often requires at least two uniform light films to To meet the uniform light requirements, this is not conducive to the ultra-thin design of the entire backlight module.
  • the purpose of the present invention is to provide a kind of quantum dot uniform light composite material, realize the functional effect of uniform light by setting microstructure on the quantum dot film (plate), realize the quantum dot film (plate) and uniform light film (plate)
  • the integrated material after using the material, can reduce the use of at least one layer of uniform film in the backlight module, thereby reducing the thickness of the entire backlight module.
  • the present invention provides a quantum dot homogeneous composite material, which includes a quantum dot substrate and several microstructures arranged on the quantum dot substrate, and the microstructure includes a microlens structure and/or a concave mirror structure, the microlens structure includes a concave structure and/or a convex structure, adjacent microlens structures are partially overlapped, and the concave mirror structure includes several concave mirror bodies with a predetermined shape.
  • the quantum dot substrate includes a substrate layer and a quantum dot layer disposed on one side of the substrate layer, the microstructure is disposed on the side of the quantum dot layer away from the substrate layer, and/ Or the microstructure is arranged on the side of the substrate layer away from the quantum dot layer.
  • the quantum dot substrate includes a substrate layer and quantum dot materials mixed in the substrate layer, and the microstructure is provided on one side or both sides of the substrate layer.
  • the concave surface of the concave structure is a curved surface
  • the convex surface of the convex structure is a curved surface
  • the concave mirror body is one or more of prism, pyramid or cone, or a compound shape composed of one or more of the above-mentioned shapes according to the set rules.
  • the thickness of the quantum dot substrate is not less than 0.1 mm.
  • the depth of the concave mirror body is 10 ⁇ m-50 ⁇ m, and when the concave mirror body is conical, the included angle at the tip is 60-120 degrees.
  • the size of the microlens structure is 30 ⁇ m-100 ⁇ m, the depth or height of the microlens structure is 15 ⁇ m-50 ⁇ m; the overlapping range of two adjacent microlens structures is 5%-25%.
  • the present invention also provides a preparation process for the above-mentioned quantum dot homogeneous composite material, which is characterized in that it includes: providing two mold rolls, at least one surface of the two mold rolls is provided with several microstructure shapes Corresponding to the graphic structure, embossing or extruding the material used to form the quantum dot homogeneous composite material to obtain a quantum dot homogeneous composite material with a microstructure on one side or both sides of the surface, wherein, when the When the microstructure is a microlens structure, adjacent graphic structures partially overlap each other.
  • the material used to form the quantum dot homogeneous composite material includes diffusion particles and transparent organic polymer materials, and the step also includes: adding quantum dot materials to the diffusion particles, and adding the diffusion particles with quantum dot materials The particles are mixed with transparent organic polymer materials and melted to a melt state; the melted material is extruded through the flow channel formed between two mold rollers; after cooling and solidifying, one side or both sides surfaces have microscopic Structured Quantum Dot Homogenous Composite Materials.
  • the material used to form the quantum dot homogeneous composite material includes a substrate layer and a quantum dot glue layer, and the step further includes: uniformly coating quantum dot glue on the surface of the substrate layer, and coating the quantum dot glue on the substrate layer
  • the surface of the layer forms a quantum dot glue layer; the mold roll with a pattern structure is bonded to the substrate layer coated with quantum dot glue, and the quantum dot glue layer on the surface of the substrate layer is cured.
  • a solid quantum dot glue layer is formed on the surface of the base material layer, and a microstructure is formed on one side or both sides of the quantum dot homogeneous composite material.
  • the material used to form the quantum dot homogeneous composite material includes a base material layer, a quantum dot layer and a photosensitive glue layer, and the step further includes: a uniform surface on the side of the base material layer away from the quantum dot layer Coating photosensitive glue, forming an optical glue layer on the surface of the base material layer away from the quantum dot layer; attaching the mold roll with a pattern structure to the base material layer coated with photosensitive glue, to the The optical glue layer on the surface of the base material layer is cured, a solid optical glue layer is formed on the surface of the base material layer, and a microstructure is formed on the optical glue layer of the quantum dot homogeneous composite material.
  • the quantum dot homogeneous composite material of the present application is equipped with quantum dot material, which can convert blue light into white light and has a spectrum conversion function.
  • quantum dot material which can convert blue light into white light and has a spectrum conversion function.
  • the backlight module of a liquid crystal display it can be combined with a blue LED to produce
  • the sharp peak-shaped red, green and blue light source can effectively improve the color gamut of the liquid crystal display.
  • the quantum dot uniform light composite material of the present application can reduce the use of at least one layer of uniform light film in the backlight module, thereby reducing the thickness of the entire backlight module;
  • the quantum dot homogenizing composite material of the present application is provided with a microstructure, especially when preparing a thicker quantum dot homogenizing composite material, it can reduce the amount of diffusion particles added, while ensuring a higher haze It can also have a high light transmittance, which in turn can reduce the demand for LED power, thereby reducing power consumption and heat dissipation, prolonging its service life, and being more environmentally friendly;
  • the quantum dot homogenizing composite material of the present application when its microstructure is a microlens structure, the microlens structures partially overlap, so that the microstructure duty cycle on the quantum dot homogenizing composite material can reach 100%, and at the same time It can also overcome the positioning error of the laser head of the lithography machine;
  • the creative microlens structure design can ensure that it does not need to be aligned when installed in the backlight module, and only needs to be cut to a suitable size It only needs to be installed at a certain angle, which greatly improves the assembly efficiency and difficulty of the backlight module.
  • the microstructure of the quantum dot uniform light composite material of the present application is a conical concave mirror body, it can be placed at any angle with the light uniform sheet in the backlight module, and there is no orthogonal limitation.
  • FIG. 1 is a schematic structural diagram of a quantum dot substrate provided in Embodiment 1 of the present application;
  • FIG. 2 is another structural schematic diagram of the quantum dot substrate provided in Embodiment 1 of the present application.
  • FIG. 3 is a schematic structural diagram of the quantum dot uniform light composite material provided in Embodiment 1 of the present application.
  • Figures 4a-4c are schematic diagrams of the partial arrangement of the microlens structure of the quantum dot homogenizing composite material provided in Embodiment 1 of the present application;
  • FIG. 5 is a schematic diagram of a partial cross-sectional structure of a quantum dot uniform light composite material provided in Embodiment 1 of the present application;
  • Figures 6a and 6b are the effect diagrams of the microlens structure arrangement of the quantum dot uniform light composite material provided in Embodiment 1 of the present application;
  • Fig. 7 is a schematic diagram of a partial cross-sectional structure of a quantum dot homogenizing composite material provided in Embodiment 1 of the present application when there is an error;
  • Figure 8a and Figure 8b are the microlens structure arrangement effect diagrams of the quantum dot uniform light composite material provided by the first embodiment of the present application when there is an error;
  • Fig. 9 is a schematic structural diagram of a device for preparing quantum dot homogeneous composite materials provided in Embodiment 1 of the present application.
  • Fig. 10 is a schematic structural diagram of a quantum dot homogeneous composite material prepared by the equipment shown in Fig. 9 in Example 1 of the present application;
  • Fig. 11 is a schematic structural diagram of another device for preparing quantum dot homogeneous composite materials provided in Embodiment 1 of the present application;
  • Fig. 12 is a schematic structural view of the quantum dot homogeneous composite material prepared by the equipment shown in Fig. 11 according to Embodiment 1 of the present application;
  • Fig. 13 is a schematic structural view of the quantum dot homogenizing composite material provided in Embodiment 2 of the present application;
  • Fig. 14 is a schematic structural diagram of the quantum dot uniform light composite material provided in Example 3 of the present application.
  • Figure 15 is a schematic structural view of the quantum dot uniform light composite material provided in Embodiment 4 of the present application when the concave mirror body is a triangular pyramid;
  • Fig. 16 is a schematic structural view of the quantum dot uniform light composite material provided in Embodiment 4 of the present application when the concave mirror body is a quadrangular pyramid;
  • Figure 17 is a top view of the quantum dot uniform light composite material shown in Figure 16;
  • Figure 18 is a schematic diagram of the three-dimensional structure of the quantum dot uniform light composite material provided in Embodiment 4 of the present application when the concave mirror body is conical;
  • Fig. 19 is a schematic diagram of a partial cross-sectional structure of the quantum dot homogeneous composite material shown in Fig. 18;
  • FIG. 20 is a schematic diagram of a partial cross-sectional structure of the quantum dot homogeneous composite material provided in Embodiment 5 of the present application.
  • 1-quantum dot substrate 11-substrate layer, 12-quantum dot layer, 121-quantum dot material, 13-microlens structure, 131-protrusion structure, 132-depression structure, 14-concave mirror body, 2 - Convex structure, 3 - Concave structure, 4 - Melt material, 5 - Die roll, 6 - Glue head, 7 - Squeeze roll, 8 - Guide roll, 9 - UV lamp.
  • This embodiment provides a quantum dot homogeneous composite material, which includes a quantum dot substrate 1 and several microstructures arranged on one or both sides of the quantum dot substrate 1 .
  • the quantum dot substrate 1 can be a composite structure composed of a substrate layer 11 and a quantum dot layer 12, as shown in Figure 1, a quantum dot substrate 1 is schematically shown in the figure, and the quantum dot layer 12 is arranged on the One side of the substrate layer 11. A microstructure is provided on the side of the quantum dot layer 12 away from the substrate layer 11 .
  • the quantum dot homogeneous composite material mentioned in this patent is thin, for example, when the thickness is less than 0.5mm, it can be called quantum dot uniform film, and when the thickness is greater than 0.5mm, it can be called quantum dot uniform film. Light plate or quantum dot uniform film.
  • the above-mentioned structure is more suitable for a thinner quantum dot uniform light composite material, that is, a quantum dot uniform light film.
  • another quantum dot substrate 1 is schematically shown in the figure, which is formed by mixing the material for preparing the substrate layer 11 and the quantum dot material 121 .
  • the quantum dot material 121 can be added to the diffusion particles added in the base material layer 11 , and this structure is more suitable for a thicker quantum dot dodging composite material, that is, a quantum dot dodging sheet or a quantum dot dodging plate.
  • the microstructure in this embodiment is a microlens structure 13 , and several microlens structures 13 are provided on both sides of the quantum dot substrate 1 .
  • the microlens structure 13 schematically shown in the figure is a circular concave structure 132 .
  • the concave surface of the microlens structure 13 is preferably a curved surface.
  • Several microlens structures 13 are arranged in multiple rows, and several microlens structures 13 in two adjacent rows are arranged in a staggered manner, as shown in Figure 4a, or arranged randomly, as shown in Figure 4b, or Orthogonal arrangement, as shown in Figure 4c. Two adjacent microlens structures 13 are partially overlapped, as shown in FIG. 4a to FIG. 4c and FIG.
  • the overlapping range between adjacent microlens structures 13 is 5%-25%, preferably 10%. Adjacent microlens structures 13 are partially overlapped.
  • the coverage of the microlens structures 13 on the quantum dot uniform light composite material can be effectively improved, and the duty cycle can reach 100%, as shown in Figures 6a and 6b;
  • it can also overcome the positioning error of the laser head of the lithography machine.
  • the positioning accuracy that can be achieved is about 4um-5um.
  • a convex platform structure 2 or a concave structure 3 is formed, as shown in FIG.
  • the diffusion effect of the quantum dot uniform light composite material is related to the radius of curvature and size of the microlens structure 13, preferably, the size of the microlens structure 13 is 30 ⁇ m-100 ⁇ m, and the depth is 15 ⁇ m-50 ⁇ m. It should be noted that the above ranges of relevant parameters of the microlens structure 13 are only the preferred ranges of the present application, and in actual implementation, the relevant parameters of the microlens structure 13 can be designed according to needs.
  • the size of the microlens structures 13 on both sides of the quantum dot homogeneous composite material can be the same or different, and the microlens structures 13 on both sides can also be aligned or staggered.
  • the thickness of the quantum dot substrate 1 is not less than 0.1 mm, wherein the thicker the quantum dot substrate 1 is, the better the atomization effect of the quantum dot uniform light composite material is, and the thinner the quantum dot substrate 1 is, the better the quantum dot uniform light composite material is. The higher the light transmittance of the material.
  • the quantum dot uniform light composite material of the present application is provided with microlens structures 13 respectively on both sides of the quantum dot substrate 1, which can not only ensure the haze of the quantum dot uniform light composite material, but also improve the light transmission of the quantum dot uniform light composite material Rate.
  • diffusion particles when preparing a thicker quantum dot uniform light composite material (thickness greater than 0.5mm), diffusion particles will be added to the material for preparing the quantum dot uniform light composite material, and quantum dot materials 121 will be added to the diffusion particles at the same time. It can guarantee the haze of the quantum dot uniform light composite material, but the diffusion particles will absorb light, which will affect the light transmittance of the quantum dot uniform light composite material.
  • the microlens structure 13 of the quantum dot homogeneous composite material of the present application can reduce the amount of diffusion particles added during the production of the film, reduce the degree of absorption of light by the diffusion particles, and greatly improve the haze of the quantum dot homogeneous composite material while ensuring the haze of the quantum dot uniform light composite material.
  • the light transmittance of the quantum dot homogeneous composite material was studied. The increase in light transmittance can reduce the demand for LED power, thereby reducing power consumption and heat dissipation, while prolonging the service life of LED lights, and being more environmentally friendly to a certain extent.
  • the quantum dot homogenizing composite material described in the above embodiments is provided with microlens structures 13 on both sides, and in specific implementation, the quantum dot homogenizing composite material of the present application can also only be placed on the One side is provided with a microlens structure 13 .
  • a preparation process of quantum dot homogeneous composite material is also provided, which specifically includes the following steps:
  • Step S1 photoetching several graphic structures corresponding to the shape of the microlens structure 13 on one side of the photoresist piece, and adjacent graphic structures partially overlap each other.
  • the photoresist can be a glass substrate coated with photoresist on one side. Afterwards, the photoresist layer is exposed according to the required pattern, and after development, several concave pattern structures are formed on the photoresist layer.
  • the photoetching part can also be made of mirror metal material, which can be stainless steel, nickel, copper, etc., and directly focus on the surface of the metal substrate through a high-power pulse laser through a shaping optical path for photolithography to form the required pattern structure.
  • Step S2 Transfer the obtained graphic structure on the photoresist to the template by using UV transfer printing technology or metal growth technology to obtain a template with a graphic structure.
  • the concave pattern structure on the photoresist is transferred to the surface of the template by means of UV transfer printing, so as to obtain a template with a convex pattern structure on the surface.
  • a template with a protruding pattern structure on the surface can be obtained by electroforming using metal growth.
  • other methods can also be used to obtain the template with protruding graphic structures on the surface, and no more examples will be given here.
  • Step S3 Wrap the template on the mold roll 5, emboss or extrude the material used to form the quantum dot dodging composite material, and obtain the quantum dot dodging composite material with the microlens structure 13 on the surface.
  • step S3 if the thicker quantum dot homogeneous composite material is prepared, it is preferable to use extrusion to integrally form it, and this method needs to be completed by extrusion equipment.
  • the extrusion equipment includes two die rolls 5 for extrusion, the two die rolls 5 are arranged in parallel and spaced apart, and an extrusion flow channel is formed between them.
  • a template is wrapped around the outside of the two mold rolls 5, and the graphic structure on the template faces outward, as shown in FIG. 9 .
  • the materials used to form the uniform quantum dot composite material include diffusion particles and transparent organic polymer materials, and quantum dot materials 121 are added to the diffusion particles.
  • the organic polymer material is any one of PET, PC, and PMMA, but not limited thereto, and will not be listed here.
  • the diffusion particles can be PET diffusion particles, PC diffusion particles, PMMA diffusion particles, etc., and the diffusion particles are white diffusion particles or yellow diffusion particles, preferably white diffusion particles, but are not limited thereto, and can also be diffusion particles of other colors. particle. Concrete preparation steps are as follows:
  • Step S311 providing diffusion particles and a transparent polymer material, adding quantum dot material 121 to the diffusion particles, mixing the diffusion particles added with quantum dot material 121 and transparent organic polymer material, and then melting to a melt state;
  • Step S312 Add the melted melt material 4 into the extrusion channel of the extrusion equipment for extrusion molding, and adjust the distance between the two mold rollers 5 to obtain uniform quantum dot dots of corresponding thickness Composite semi-finished products;
  • Step S313 After cooling and solidifying, the finished quantum dot homogeneous composite material with microlens structure 13 on the surface is obtained, as shown in FIG. 10 .
  • the cooling method may be natural cooling or cooling by cooling rolls, but it is not limited thereto, and other cooling methods may also be used.
  • one of the two mold rolls 5 does not cover the template or covers a template without a pattern structure when preparing a quantum dot homogeneous composite material with a microlens structure on only one side, then through the above-mentioned
  • the quantum dot homogeneous composite material prepared by the process has a microlens structure on one side.
  • This embodiment also provides another preparation method, which is more suitable for preparing thin quantum dot uniform light composite material.
  • the materials used in this method to form the uniform quantum dot composite material include a substrate layer 11 and a quantum dot glue layer. As shown in Figure 11, the specific preparation steps are as follows:
  • Step S321 Provide a substrate layer 11; the substrate layer 11 can be any one of PET, PC, PMMA, but not limited thereto, and will not be listed here; In 11, the diffusion material of diffusion particles was added.
  • Step S322 Uniformly coating quantum dot glue on the surface of the substrate layer 11 .
  • the composition of quantum dots includes additives such as quantum dots, diluents and film-forming agents.
  • the specific coating method can be to apply quantum dot glue on the surface of the substrate layer 11 through the glue head 6 as shown in Figure 11, and then optionally pre-cure the quantum dot glue by using ultraviolet pre-curing equipment , forming a semi-solid quantum dot glue layer on the surface of the substrate layer 11 .
  • the ultraviolet pre-curing device is, for example, a low-power ultraviolet lamp 9, which can make the liquid quantum dot glue into a semi-solid state, which is convenient for imprinting.
  • Step S323 Using the mold roll 5 with a pattern structure on the surface to emboss the quantum dot glue layer, the mold roll 5 is manufactured in the same way as the previous steps S1 to S3. During embossing, the side of the mold roll 5 provided with the pattern structure is in close contact with the quantum dot layer through the squeeze roller 7, and then irradiated by an ultraviolet lamp 9 to make the pattern structure on the quantum dot glue peel off from the mold Preforming is to transfer the graphic structure on the surface of the mold roll 5 to the surface of the substrate layer 11 . That is, a quantum dot layer with a microlens structure is formed on the surface of one side of the substrate layer 11 .
  • Step S324 by using the guide roller 8 to turn over the substrate layer 11, and evenly coating the photosensitive glue on the surface of the other side of the substrate layer 11, attaching the mold roller 5 to the substrate layer 11 coated with the photosensitive glue, The photosensitive glue on the surface of the substrate layer 11 is cured to form a solid optical glue layer on the other surface of the substrate layer 11 to obtain a quantum dot substrate 1 with microlens structures 13 on both surfaces.
  • Step S325 Use a strong curing device and a cooling device to harden and shape the quantum dot glue layer printed with the microlens structure 13, and then obtain a uniform quantum dot composite material with the microlens structure 13 on the surface, as shown in FIG. 12 .
  • the strong curing device includes at least one set of high-power ultraviolet lamps, and the cooling device may be an air cooling device or a water cooling device.
  • both sides of the prepared quantum dot homogeneous composite material have microlens structures 13, so when performing embossing, it can be made by sequential single-sided embossing, or double-sided simultaneous embossing.
  • embossing principles of the two are basically the same, so I won’t repeat them here.
  • the mold roll 5 can be made by attaching a template with the required graphic structure on its surface, or can directly make the required graphic structure on the surface of the mold roll 5 .
  • the material of template or mold roll 5 can be materials such as nickel, steel, copper.
  • step S323 Just go to step S325 directly.
  • step S323 Just go to step S325 directly.
  • step S323 directly coat photosensitive glue on one side of the finished quantum dot film (plate), and perform the embossing and curing step described in step S324.
  • step S323 and step S324 When the microlens structure is embossed on both sides of the quantum dot uniform light composite material, the order of coating optical glue and quantum dot glue in step S323 and step S324 can be changed as required. In addition, when the microlens structure is embossed on both sides of the uniform quantum dot composite material, optical glue may not be coated in step S324, and it can be directly embossed on the substrate layer by a mold roll.
  • the quantum dot homogeneous composite material of the present application is equipped with quantum dot material, which can convert blue light into white light and has a spectrum conversion function.
  • quantum dot material which can convert blue light into white light and has a spectrum conversion function.
  • the backlight module of a liquid crystal display it can be combined with a blue LED to produce
  • the sharp peak-shaped red, green and blue light source can effectively improve the color gamut of the liquid crystal display.
  • the quantum dot uniform light composite material of the present application can reduce the use of at least one layer of uniform light film in the backlight module, thereby reducing the thickness of the entire backlight module;
  • the quantum dot homogenizing composite material of the present application has microstructures on both sides, especially when preparing a thicker quantum dot homogenizing composite material, it can reduce the amount of diffusion particles added, and ensure higher fog At the same time, it can have a high light transmittance, which can reduce the demand for LED power, thereby reducing power consumption and heat dissipation, prolonging its service life, and being more environmentally friendly;
  • the quantum dot homogenizing composite material of the present application when its microstructure is a microlens structure, the microlens structures partially overlap, so that the microstructure duty cycle on the quantum dot homogenizing composite material can reach 100%, and at the same time It can also overcome the positioning error of the laser head of the lithography machine;
  • the creative microlens structure design can ensure that it does not need to be aligned when installed in the backlight module, and only needs to be cut to a suitable size It only needs to be installed at a certain angle, which greatly improves the assembly efficiency and difficulty of the backlight module.
  • the microlens structure 13 on the quantum dot uniform light composite material in this embodiment is a circular convex structure 131 .
  • FIG. 13 shows a quantum dot homogeneous composite material with protruding structures 131 microlens structures 13 on both sides.
  • the protruding surface of the microlens structure 13 is preferably a curved surface, and is in the shape of a protruding hemisphere on one side of the quantum dot substrate 1 .
  • the microlens structure 13 of the quantum dot homogeneous composite material with the microlens structure 13 on one side can also be a convex structure 131 .
  • the preparation method of the quantum dot homogeneous composite material in this embodiment is the same as that in Embodiment 1, and will not be repeated here.
  • the microlens structure 13 on one side of the quantum dot uniform light composite material in this embodiment is a circular convex structure 131, and the microlens structure 13 on the other side is circular.
  • the recessed structure 132 is shown in FIG. 14 .
  • the preparation method of the quantum dot homogeneous composite material in this embodiment is the same as that in Embodiment 1, and will not be repeated here.
  • one side of the uniform quantum dot composite material in this embodiment is a microlens structure 13, and the other side is a concave mirror structure.
  • the microlens structure 13 in this embodiment can be either a hemispherical convex structure 131 or a hemispherical concave structure 132 .
  • the concave mirror structure can be a concave mirror body 14 of any shape in prism, pyramid and conical shape, and can also be a composite shape formed by combining one or more concave mirror bodies 14 of the above-mentioned shapes in a certain way.
  • the concave mirror body 14 is a prism (such as a triangular prism, etc.) or a semi-cylindrical shape
  • each concave mirror body 14 is arranged in parallel and continuously on one side of the quantum dot substrate 1, and the axis direction is the same as that of the quantum dot substrate. Assuming that the surfaces are parallel, the bases of two adjacent concave mirror bodies 14 intersect.
  • concave mirror body 14 is a pyramid, such as when being an inverted triangular pyramid shape, as shown in Figure 15, or when being an inverted quadrangular pyramid shape, as shown in Figure 16 etc., between each concave mirror body 14, arrange continuously, phase The bases of two adjacent concave mirror bodies 14 intersect, and the two intersecting bases coincide with the intersection line, as shown in FIG. 17 .
  • the concave mirror body 14 can also be in other pyramid shapes, and the situation is basically the same, so it will not be repeated here.
  • the concave mirror body 14 is a cone, as shown in Figure 18 to Figure 19, the bottom part of each concave mirror body 14 overlaps, the same as the microlens structure 13, can improve the concave mirror body 14 on the quantum dot uniform light composite material. coverage, the duty cycle can reach 100%.
  • the size of the concave mirror body 14 is on the order of microns, and the height of the concave mirror body 14 is preferably 30 ⁇ m.
  • the included angle at its tip is preferably 60-120 degrees.
  • the quantum dot homogeneous composite material of this embodiment is provided with microlens structures 13 and concave mirror structures on both sides of the quantum substrate, which can also ensure the haze of the quantum dot uniform light composite material and improve the quantum dot uniform light composite material.
  • the effect of light transmittance is provided with microlens structures 13 and concave mirror structures on both sides of the quantum substrate, which can also ensure the haze of the quantum dot uniform light composite material and improve the quantum dot uniform light composite material. The effect of light transmittance.
  • the preparation method of the quantum dot homogeneous composite material in this embodiment is the same as that in Embodiment 1, and will not be repeated here.
  • the photolithographic piece can also adopt engraving techniques other than photolithography.
  • the concave mirror body 14 is a quadrangular pyramid or a prism. When it is equal, it can be obtained by turning out the corresponding shape on the substrate of the metal material.
  • the microstructure of the quantum dot uniform light composite material in this embodiment is a conical concave mirror body 14, it can be placed at any angle with the light uniform sheet in the backlight module, and there is no orthogonal limitation.
  • both sides of the quantum dot uniform light composite material in this embodiment are concave mirror structures, as shown in FIG. 20 .
  • the shape and preparation process of the concave mirror body 14 and the preparation process of the quantum dot homogeneous composite material are basically the same as those in Embodiment 4, and will not be repeated here.
  • Embodiment 4 The difference between this embodiment and Embodiment 4 is that only one side of the uniform quantum dot composite material in this embodiment has a microstructure, and it is a concave mirror structure.
  • the shape and preparation process of the concave mirror body 14 and the preparation process of the uniform quantum dot composite material are basically the same as those of the quantum dot uniform light composite material with microstructures on one side in Embodiment 4, and will not be repeated here.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

一种量子点匀光复合材料及其制备工艺,量子点匀光复合材料包括量子点基底(1)和设于量子点基底(1)上的若干个微结构,微结构包括微透镜结构(13)和/或凹镜结构,微透镜结构(13)包括凹陷结构(132)和/或凸起结构(131),相邻的微透镜结构(13)之间部分重叠,凹镜结构包括若干个具有设定形状的凹镜体(14)。通过在量子点膜上设置微结构来实现匀光膜的效果,可以在背光模组中减少使用至少一层匀光膜,从而降低整个背光模组的厚度。

Description

一种量子点匀光复合材料及其制备工艺 技术领域
本发明涉及背光显示技术领域,尤其涉及一种量子点匀光复合材料及其制备工艺。
背景技术
现有市场上的液晶显示设备大部分为背光显示,其包括壳体、设于壳体内的液晶面板及设于壳体内的背光模组。由于液晶面板本身不发光,需要借由背光模组提供的光源来正常显示影像。因此,背光模组为液晶显示器的关键组件之一。背光模组包括发光二极管阵列、位于发光二极管阵列上方的至少两个光学薄膜以及位于至少两个光学薄膜上方的一对亮度增强薄膜。由于原始的LED灯基本是发蓝光,因此在背光模组内一般还会设置有量子点膜。量子点膜可以将蓝光转变成白光,具有光谱转换功能,在液晶显示屏的背光模组中,与蓝光LED组合能够产生拥有尖锐峰形的红绿蓝光源,能有效提升液晶显示器的色域。
由于单个LED点光源发出的光线的发散角度有限,使得出光面出现中心区域能量大周围区域能量,且灯珠芯片之间的距离在1cm以上,因此多个LED芯片组成的阵列光会使得屏幕上出现周期性明暗区域,视觉效果较差,影响用户的体验感。传统技术通常在LED的出射面上方覆盖匀光膜,实现对光的扩散和混光,从而实现出射面出光均匀,不过由于匀光膜受其结构和厚度的限制,往往需要至少两张匀光膜才能满足匀光要求,这不利于整个背光模组的超薄化设计。
因此,结合上述存在的技术问题,有必要提出一种新的技术方案。
发明内容
本发明的目的在于提供一种量子点匀光复合材料,通过在量子点膜(板)上设置微结构来实现匀光的功能效果,实现量子点膜(板)和匀光膜(板)的一体化材料,使用该材料后,可以在背光模组中减少使用至少一层匀光膜,从而降低整个背光模组的厚度。
为实现发明目的,本发明提供一种量子点匀光复合材料,其包括量子点基 底和设于所述量子点基底上的若干个微结构,所述微结构包括微透镜结构和/或凹镜结构,所述微透镜结构包括凹陷结构和/或凸起结构,相邻的微透镜结构之间部分重叠,所述凹镜结构包括若干个具有设定形状的凹镜体。
进一步的,所述量子点基底包括基材层和设于所述基材层一侧的量子点层,所述微结构设于所述量子点层远离所述基材层的一侧,和/或所述微结构设于所述基材层远离所述量子点层的一侧。
进一步的,所述量子点基底包括基材层和混合在所述基材层内的量子点材料,所述微结构设于所述基材层的一侧或两侧。
进一步的,所述凹陷结构的凹陷面为曲面,所述凸起结构的凸起面为曲面。
进一步的,所述凹镜体为棱柱形、棱锥形或圆锥形中一种或几种,或者为由前述一种或几种形状按设定规律组成的复合形状。
进一步的,所述量子点基底的厚度不小于0.1mm。
进一步的,所述凹镜体的深度为10μm-50μm,所述凹镜体为锥形时,其尖端夹角为60-120度。
进一步的,所述微透镜结构的大小为30μm-100μm,所述微透镜结构的深度或高度为15μm-50μm;相邻两个微透镜结构的重叠范围在5%-25%。
本发明还提供一种上述的量子点匀光复合材料的制备工艺,其特征在于,其包括:提供两个模具辊,两个模具辊中至少有一个表面设有若干个与所述微结构形状对应的图形结构,对用于形成所述量子点匀光复合材料的材料进行压印或挤压,获得一侧表面或两侧表面具有微结构的量子点匀光复合材料,其中,当所述微结构为微透镜结构时,相邻的图形结构之间部分重叠。
进一步的,用于形成所述量子点匀光复合材料的材料包括扩散粒子和透明有机高分子材料,步骤还包括:在所述扩散粒子中添加量子点材料,并将添加有量子点材料的扩散粒子与透明有机高分子材料混合后熔融至熔体状态;将熔融后的材料经两个模具辊间形成的流道进行挤压成型;经冷却固型后获得一侧表面或两侧表面具有微结构的量子点匀光复合材料。
进一步的,用于形成所述量子点匀光复合材料的材料包括基材层和量子点胶层,步骤还包括:在所述基材层的表面均匀涂布量子点胶,在所述基材层的 表面形成量子点胶层;将带有图形结构的模具辊与涂布有量子点胶的基材层贴合在一起,对所述基材层表面的量子点胶层进行固化,在所述基材层表面形成呈固体状的量子点胶层,在量子点匀光复合材料的一侧或两侧形成微结构。
进一步的,用于形成所述量子点匀光复合材料的材料包括基材层、量子点层和感光胶水层,步骤还包括:在所述基材层远离所述量子点层的一侧表面均匀涂布感光胶水,在所述基材层远离所述量子点层的表面形成光学胶层;将带有图形结构的模具辊与涂布有感光胶水的基材层贴合在一起,对所述基材层表面的光学胶层进行固化,在所述基材层表面形成呈固体状的光学胶层,在量子点匀光复合材料的光学胶层上形成微结构。
本申请的量子点匀光复合材料至少具有如下一个或多个有益效果:
(1)本申请的量子点匀光复合材料,其内设有量子点材料,可以将蓝光转变成白光,具有光谱转换功能,在液晶显示屏的背光模组中,与蓝光LED组合能够产生拥有尖锐峰形的红绿蓝光源,有效提升液晶显示器的色域,同时在其两侧设置有若干微结构,使膜片具有较高的雾度,可以有效保证量子点匀光复合材料对LED灯珠所发光线的扩散效果;
(2)本申请的量子点匀光复合材料,其可以在背光模组中减少使用至少一层匀光膜,从而降低整个背光模组的厚度;
(3)本申请的量子点匀光复合材料,其设置有微结构,特别是在制备较厚的量子点匀光复合材料时,可以减少扩散粒子的添加量,在保证较高雾度的同时还能够有很高的透光率,进而可以降低对LED功率的需求,从而降低功耗和散热,延长其使用寿命,且更加环保;
(4)本申请的量子点匀光复合材料,其微结构为微透镜结构时,微透镜结构之间部分重叠,使量子点匀光复合材料上的微结构占空比可以达到100%,同时还可以克服光刻机激光头的定位误差;
(5)本申请的量子点匀光复合材料,其微结构为微透镜结构时,创造性的微透镜结构设计可以保证在安装在背光模组内时不需要对准,只需要裁切至合适尺寸按一定摆放角度安装即可,大大提高了背光模组的组装效率和组装难度。
(6)本申请的量子点匀光复合材料,其微结构为锥形凹镜体时,可以与背光模组中的匀光片之间任意角度摆放,不存在正交限制。
附图说明
图1为本申请实施例一提供的量子点基底的一种结构示意图;
图2为本申请实施例一提供的量子点基底的另一种结构示意图;
图3为本申请实施例一提供的量子点匀光复合材料的结构示意图;
图4a-图4c为本申请实施例一提供的量子点匀光复合材料的微透镜结构的局部排布示意图;
图5为本申请实施例一提供的量子点匀光复合材料的局部截面结构示意图;
图6a和6b为本申请实施例一提供的量子点匀光复合材料的微透镜结构排布效果图;
图7为本申请实施例一提供的在存在误差时量子点匀光复合材料的局部截面结构示意图;
图8a和图8b为本申请实施例一提供的在存在误差时量子点匀光复合材料的微透镜结构排布效果图;
图9为本申请实施例一提供的一种用于制备量子点匀光复合材料的设备结构示意图;
图10为本申请实施例一通过图9中所示设备制备的量子点匀光复合材料的结构示意图;
图11为本申请实施例一提供的另一种用于制备量子点匀光复合材料的设备结构示意图;
图12为本申请实施例一通过图11中所示设备制备的量子点匀光复合材料的结构示意图;
图13为本申请实施例二提供的量子点匀光复合材料的结构示意图;
图14为本申请实施例三提供的量子点匀光复合材料的结构示意图;
图15为本申请实施例四提供的量子点匀光复合材料在凹镜体为三棱锥形时的结构示意图;
图16为本申请实施例四提供的量子点匀光复合材料在凹镜体为四棱锥形时的结构示意图;
图17为图16所示量子点匀光复合材料的俯视图;
图18为本申请实施例四提供的量子点匀光复合材料在凹镜体为圆锥形时的立体结构示意图;
图19为图18所示量子点匀光复合材料的局部截面结构示意图;
图20为本申请实施例五提供的量子点匀光复合材料的局部截面结构示意图。
其中,1-量子点基底,11-基材层,12-量子点层,121-量子点材料,13-微透镜结构,131-凸起结构,132-凹陷结构,14-凹镜体,2-凸台状结构,3-凹陷状结构,4-熔体材料,5-模具辊,6-胶头,7-挤压辊,8-导向辊,9-紫外灯。
具体实施方式
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合附图及较佳实施例,对依据本发明的具体实施方式、结构、特征及其功效,详细说明如下。
实施例一
本实施例提供一种量子点匀光复合材料,其包括量子点基底1和设于所述量子点基底1一侧或两侧的若干个微结构。
所述量子点基底1可以为基材层11和量子点层12构成的复合结构,如图1所示,图中示意性展示了一种量子点基底1,所述量子点层12设于所述基材层11的一侧。在所述量子点层12远离所述基材层11的一侧设有微结构。需要说明的是,本专利中所提到的量子点匀光复合材料在厚度较薄时,比如厚度小于0.5mm时可称作量子点匀光膜,厚度大于0.5mm时可称作量子点匀光板或量子点匀光片。而上述结构更适合于较薄的量子点匀光复合材料,即量子点匀光膜。如图2所示,图中示意性展示了另一种量子点基底1,由制备基材层11的材料和量子点材料121混合而成。量子点材料121可以增加在所述基材层11内添加的扩散粒子中,此种结构更适合于较厚的量子点匀光复合材料,即量子点匀光片或量子点匀光板。
本实施例中所述微结构为微透镜结构13,所述量子点基底1的两侧均设置有若干个微透镜结构13。如图3所示,图中示意性展示的微透镜结构13为圆形的凹陷结构132。所述微透镜结构13的凹陷面优选为曲面。若干个所述微透镜结构13排成多行,相邻两行中的若干个所述微透镜结构13呈交错排布,如图4a所示、或随机排布,如图4b所示、或正交排布,如图4c所示。相邻的两个微透镜结构13之间部分重叠,如图4a至图4c及图5所示。相邻微透镜结构13之间的重叠范围在5%-25%,优选为10%。相邻微透镜结构13之间采用部 分重叠设计,一方面可以有效提高量子点匀光复合材料上微透镜结构13的覆盖范围,占空比可以达到100%,如图6a和6b所示;另一方面还可以克服光刻机激光头的定位误差。就目前市场上光刻机来说,所能达到的定位精度大概在4um-5um,在对光刻件进行光刻时,定位误差则会有可能导致光刻形成的图形结构之间产生间隙,故而形成一凸台状结构2或凹陷状结构3,如图7所示,此结构在压印或挤压形成量子点匀光复合材料上的微透镜结构13时,则将会造成所述量子点匀光复合材料上会存在没有微透镜结构13的区域,如图8a和8b所示,故而会影响量子点匀光复合材料的扩散效果。
所述量子点匀光复合材料的扩散效果与所述微透镜结构13的曲率半径和大小有关,优选的,所述微透镜结构13的大小为30μm-100μm,深度为15μm-50μm。需要说明的是,以上微透镜结构13的相关参数范围仅是本申请的优选范围,在具体实施时,所述微透镜结构13的相关参数均可以根据需要进行设计。所述量子点匀光复合材料两侧的微透镜结构13,尺寸可相同也可不同,两侧的微透镜结构13也可以为对齐设置,亦可以为错开设置。
所述量子点基底1的厚度不小于0.1mm,其中所述量子点基底1越厚,则量子点匀光复合材料的雾化效果越好,量子点基底1越薄,则量子点匀光复合材料的透光率越高。本申请的量子点匀光复合材料在量子点基底1的两侧设置分别设置微透镜结构13,既可以保证量子点匀光复合材料的雾度,又可以提高量子点匀光复合材料的透光率。比如在制备较厚的量子点匀光复合材料(厚度大于0.5mm)时,会在制备量子点匀光复合材料的材料中添加扩散粒子,同时在扩散粒子中增加量子点材料121,添加扩散粒子可以保证量子点匀光复合材料的雾度,但是扩散粒子则会吸收光,会影响量子点匀光复合材料的透光率。本申请量子点匀光复合材料的微透镜结构13可以降低在生产膜片时扩散粒子的添加量,减少扩散粒子对光线的吸收程度,在保证量子点匀光复合材料雾度的同时,大大提高了量子点匀光复合材料的透光率。透光率的提高,可以减少对LED功率的需求,从而降低功耗和散热,同时延长LED灯的使用寿命,并在一定程度上更加环保。
需要说明的是,以上实施例内容中所述的量子点匀光复合材料是在两侧均设置有微透镜结构13,而在具体实施时,本申请的量子点匀光复合材料也可以 仅在一侧设置有微透镜结构13。
在本实施例中还提供一种量子点匀光复合材料的制备工艺,具体包括如下步骤:
步骤S1:在光刻件的一侧光刻若干个与所述微透镜结构13形状对应的图形结构,相邻的图形结构之间部分重叠。所述光刻件可以为一侧涂覆有光刻胶的玻璃基板。之后根据所需图形对光刻胶层进行曝光,经显影后,在光刻胶层上形成若干个凹陷的图形结构。所述光刻件也可以由镜面金属材料制成,该金属材料可以是不锈钢、镍、铜等,直接通过大功率脉冲激光器经整形光路聚焦于金属基材表面进行光刻,形成所需要的图形结构。
步骤S2:通过UV转印技术或金属生长技术,将所获得的光刻件上的图形结构转移至模板,获得具有图形结构的模板。本实施例中,通过UV转印的方式,将光刻件上凹陷的图形结构转移至模板表面,从而获得表面具有凸出的图形结构的模板。又或通过电铸使用金属生长的方式获得表面具有凸出的图形结构的模板。当然,亦可以通过其他方式获得表面具有凸出的图形结构的模板,此处不再一一举例。
步骤S3:将所述模板包裹至模具辊5上,对用于形成量子点匀光复合材料的材料进行压印或挤压,获得表面具有微透镜结构13的量子点匀光复合材料。
其中,在步骤S3中,如果在制备较厚的量子点匀光复合材料时,优选采用挤压的方式一体成型,该方式需要采用挤压设备完成。所述挤压设备包括两个用于挤压的模具辊5,两个模具辊5之间平行间隔设置,两者之间形成挤压流道。在两个模具辊5的外部均包裹有一模板,且模板上的图形结构朝外,如图9所示。用于形成所述量子点匀光复合材料的材料包括扩散粒子和透明有机高分子材料,同时在所述扩散粒子中增加量子点材料121。所述有机高分子材料为PET、PC、PMMA中的任一种,但不仅限于此,在此不再一一列举。所述扩散粒子可以为PET扩散粒子、PC扩散粒子,PMMA扩散粒子等,且扩散粒子为白色扩散粒子或黄色扩散粒子,优选为白色扩散粒子,但亦不限于此,也可以为其他颜色的扩散粒子。具体制备步骤如下:
步骤S311:提供扩散粒子和透明高分子材料,在所述扩散粒子中添加量子点材料121,并将添加有量子点材料121的扩散粒子与透明有机高分子材料混合后熔融至熔体状态;
步骤S312:将熔融后的熔体材料4加入至所述挤压设备的挤压流道内挤压成型,通过调整两个模具辊5之间的距离,以获得对应厚度且均匀的量子点匀光复合材料半成品;
步骤S313:经冷却固型后获得表面具有微透镜结构13的量子点匀光复合材料成品,如图10所示。需要说明的是,在本步骤中,冷却方式可以采用自然冷却的方式,亦可以通过冷却辊冷却,但亦不限于此,也可以为其他的冷却方式。
需要说明的是,如果在制备仅有一侧具有微透镜结构的量子点匀光复合材料时,两个模具辊5中的其中一个不包覆模板或包覆不带图形结构的模板,这样通过上述工艺制备的量子点匀光复合材料即为单侧具有微透镜结构。
本实施例还提供了另外一种制备方法,此方法较为适合制备较薄的量子点匀光复合材料。此方法采用的用于形成所述量子点匀光复合材料的材料包括基材层11和量子点胶层。如图11所示,具体制备步骤如下:
步骤S321:提供一基材层11;所述基材层11可以为PET、PC、PMMA中的任一种,但不仅限于此,在此不再一一列举;也可以是在上述基材层11中添加了扩散粒子的扩散材料。
步骤S322:在基材层11表面均匀涂布上量子点胶。量子点胶的组成包含量子点、稀释剂和成膜剂等助剂。具体涂布方式可以是通过如图11中所示的胶头6,将量子点胶涂布在所述基材层11表面,之后可选的再利用紫外预固化设备对量子点胶进行预固化,在所述基材层11表面形成呈半固体状的量子点胶层。该紫外预固化设备譬如是一低功率的紫外灯9,可以使原本液态的量子点胶变成半固体状,便于压印。
步骤S323:使用表面带有图形结构的模具辊5对所述量子点胶层进行压印,模具辊5的制作方式同前步骤S1至S3。压印时,通过挤压辊7使模具辊5设有图形结构的一侧与所述量子点胶层紧密接触,然后通过一紫外灯9照射,使量子点胶上的图形结构在与模具剥离前成型,将模具辊5表面的图形结构转印到基材层11表面。即在所述基材层11一侧表面形成带有微透镜结构的量子点层。
步骤S324:通过使用导向辊8翻转基材层11,并在基材层11另一面的表 面均匀涂布感光胶水,将模具辊5与涂布有感光胶水的基材层11贴合在一起,对基材层11表面的感光胶水进行固化,在基材层11另一面的表面形成呈固体状的光学胶层,获得双面表面具有微透镜结构13的量子点基底1。
步骤S325:使用强固化装置和冷却装置对已经印有微透镜结构13的量子点胶层进行硬化定型,进而获得表面具有微透镜结构13的量子点匀光复合材料,如图12所示。该强固化装置包括至少一套大功率的紫外灯,该冷却装置可以为风冷装置或者水冷装置。
此制备方法中,所制备的量子点匀光复合材料的两侧均具有微透镜结构13,故而在进行压印时,可以采用依次单面压印制得,也可以采用双面同时压印制得,两者的压印原理基本一致,在此不在赘述。
需要注意的是,上述两种制备方法中,模具辊5可以通过在其表面贴敷一张设有所需图形结构的模板制得,也可以直接在模具辊5的表面制作所需的图形结构,模板或模具辊5的材质可以是镍、钢、铜等材料。
另外,还需要注意的是,上述通过压印技术制备较薄的量子点匀光复合材料时,同样也可以仅在量子点匀光复合材料的一侧压印微透镜结构,即在步骤S323之后直接进行步骤S325即可。又或者直接在成品的量子点膜(板)的一侧涂布感光胶水,进行步骤S324中所述的压印固化步骤。
而在量子点匀光复合材料的两侧均压印微透镜结构时,步骤S323和步骤S324中涂布光学胶水和量子点胶的顺序可以根据需要进行调换。另外,在量子点匀光复合材料的两侧均压印微透镜结构时,步骤S324中也可以不涂布光学胶水,直接在所述基材层上通过模具辊压印获得。
本申请的量子点匀光复合材料至少具有如下一个或多个有益效果:
(1)本申请的量子点匀光复合材料,其内设有量子点材料,可以将蓝光转变成白光,具有光谱转换功能,在液晶显示屏的背光模组中,与蓝光LED组合能够产生拥有尖锐峰形的红绿蓝光源,有效提升液晶显示器的色域,同时在其两侧设置有若干微结构,使膜片具有较高的雾度,可以有效保证量子点匀光复合材料对LED灯珠所发光线的扩散效果;
(2)本申请的量子点匀光复合材料,其可以在背光模组中减少使用至少一层匀光膜,从而降低整个背光模组的厚度;
(3)本申请的量子点匀光复合材料,其两侧分别设有微结构,特别是在制 备较厚的量子点匀光复合材料时,可以减少扩散粒子的添加量,在保证较高雾度的同时还能够有很高的透光率,进而可以降低对LED功率的需求,从而降低功耗和散热,延长其使用寿命,且更加环保;
(4)本申请的量子点匀光复合材料,其微结构为微透镜结构时,微透镜结构之间部分重叠,使量子点匀光复合材料上的微结构占空比可以达到100%,同时还可以克服光刻机激光头的定位误差;
(5)本申请的量子点匀光复合材料,其微结构为微透镜结构时,创造性的微透镜结构设计可以保证在安装在背光模组内时不需要对准,只需要裁切至合适尺寸按一定摆放角度安装即可,大大提高了背光模组的组装效率和组装难度。
实施例二
本实施例与实施例一不同的是,本实施例中的量子点匀光复合材料上的微透镜结构13为圆形的凸起结构131。图13所示的为两侧具有凸起结构131型微透镜结构13的量子点匀光复合材料。所述微透镜结构13的凸出面优选为曲面,在所述量子点基底1的一侧呈凸出的半球状。当然,单侧具有微透镜结构13的量子点匀光复合材料,其微透镜结构13亦可以为凸起结构131。本实施例中的量子点匀光复合材料制备方法同实施例一,在此不在赘述。
实施例三
本实施例与实施例一和二不同的是,本实施例中的量子点匀光复合材料的一侧微透镜结构13为圆形的凸起结构131,另一侧微透镜结构13为圆形的凹陷结构132,如图14所示。本实施例中的量子点匀光复合材料制备方法同实施例一,在此不在赘述。
实施例四
本实施例与实施例一、二、三不同的是,本实施例中的量子点匀光复合材料的一侧为微透镜结构13,另一侧为凹镜结构。需要说明的是,本实施例中的微透镜结构13既可以是呈半球形的凸起结构131,亦可以为呈半球形的凹陷结构132。
所述凹镜结构可以为棱柱形、棱锥形和圆锥形中任意形状的凹镜体14,也 可以是由一种或多种上述形状凹镜体14按某种方式组合而成的复合形状。其中,在所述凹镜体14为棱柱形(比如三棱柱等)或半圆柱形时,各凹镜体14平行且连续的排列在所述量子点基底1的一侧,且轴线方向与所设面平行,相邻的两个凹镜体14的底边相交。所述凹镜体14为棱锥时,比如为倒置三棱锥形时,如图15所示,或为倒置四棱锥形时,如图16所示等,各凹镜体14之间连续排列,相邻的两个凹镜体14的底边相交,且两条相交的底边与相交线重合,如图17所示。当然,所述凹镜体14也可以为其它的棱锥形状,情况基本相同,在此不再赘述。所述凹镜体14为圆锥时,如图18至图19所示,各凹镜体14的底部部分重合,同微透镜结构13一样,可以提高量子点匀光复合材料上凹镜体14的覆盖范围,占空比可以达到100%。所述凹镜体14的尺寸为微米级别,优选所述凹镜体14的高度为30μm。当所述凹镜体14为锥形时,其尖端夹角优选为60-120度。本实施例的量子点匀光复合材料在量子基底两侧分别设置微透镜结构13和凹镜结构,同样可以实现既可以保证量子点匀光复合材料雾度,也可以提高量子点匀光复合材料透光率的效果。
本实施例中的量子点匀光复合材料制备方法同实施例一,在此不在赘述。不过需要说明的是,在制备压印凹镜体14所用的压辊时,光刻件也可以采用除光刻技术之外的雕刻技术,比如,所述凹镜体14为四棱锥或棱柱形等时,可以通过在金属材料的基板上车出对应形状的方式获得等。本实施例的量子点匀光复合材料,其微结构为锥形凹镜体14时,可以与背光模组中的匀光片之间任意角度摆放,不存在正交限制。
实施例五
本实施例与实施四不同的是,本实施例中的量子点匀光复合材料的两侧均为凹镜结构,如图20所示。所述凹镜体14的形状以及制备工艺以及量子点匀光复合材料的制备工艺与实施例四基本相同,在此不再赘述。
实施例六
本实施例与实施四不同的是,本实施例中的量子点匀光复合材料仅有一侧具有微结构,且为凹镜结构。所述凹镜体14的形状以及制备工艺以及量子点匀光复合材料的制备工艺与实施例四中单侧设有微结构的量子点匀光复合材料制 备工艺基本相同,在此不再赘述。
在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,除了包含所列的那些要素,而且还可包含没有明确列出的其他要素。
在本文中,所涉及的前、后、上、下等方位词是以附图中零部件位于图中以及零部件相互之间的位置来定义的,只是为了表达技术方案的清楚及方便。应当理解,所述方位词的使用不应限制本申请请求保护的范围。
在不冲突的情况下,本文中上述实施例及实施例中的特征可以相互结合。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (12)

  1. 一种量子点匀光复合材料,其特征在于,其包括量子点基底和设于所述量子点基底上的若干个微结构,所述微结构包括微透镜结构和/或凹镜结构,所述微透镜结构包括凹陷结构和/或凸起结构,相邻的微透镜结构之间部分重叠,所述凹镜结构包括若干个具有设定形状的凹镜体。
  2. 根据权利要求1所述的量子点匀光复合材料,其特征在于,所述量子点基底包括基材层和设于所述基材层一侧的量子点层,所述微结构设于所述量子点层远离所述基材层的一侧,和/或所述微结构设于所述基材层远离所述量子点层的一侧。
  3. 根据权利要求1所述的量子点匀光复合材料,其特征在于,所述量子点基底包括基材层和混合在所述基材层内的量子点材料,所述微结构设于所述基材层的一侧或两侧。
  4. 根据权利要求1所述的量子点匀光复合材料,其特征在于,所述凹陷结构的凹陷面为曲面,所述凸起结构的凸起面为曲面。
  5. 根据权利要求1所述的量子点匀光复合材料,其特征在于,所述凹镜体为棱柱形、棱锥形或圆锥形中一种或几种,或者为由前述一种或几种形状按设定规律组成的复合形状。
  6. 根据权利要求1所述的量子点匀光复合材料,其特征在于,所述量子点基底的厚度不小于0.1mm。
  7. 根据权利要求5所述的量子点匀光复合材料,其特征在于,所述凹镜体的深度为10μm-50μm,所述凹镜体为锥形时,其尖端夹角为60-120度。
  8. 根据权利要求1所述的量子点匀光复合材料,其特征在于,所述微透镜结构的大小为30μm-100μm,所述微透镜结构的深度或高度为15μm-50μm;
    相邻两个微透镜结构的重叠范围在5%-25%。
  9. 一种如权利要求1所述的量子点匀光复合材料的制备工艺,其特征在于,其包括:
    提供两个模具辊,两个模具辊中至少有一个表面设有若干个与所述微结构形状对应的图形结构,
    对用于形成所述量子点匀光复合材料的材料进行压印或挤压,获得一侧表面或两侧表面具有微结构的量子点匀光复合材料,
    其中,当所述微结构为微透镜结构时,相邻的图形结构之间部分重叠。
  10. 根据权利要求9所述的量子点匀光复合材料的制备工艺,其特征在于,用于形成所述量子点匀光复合材料的材料包括扩散粒子和透明有机高分子材料,步骤还包括:
    在所述扩散粒子中添加量子点材料,并将添加有量子点材料的扩散粒子与透明有机高分子材料混合后熔融至熔体状态;
    将熔融后的材料经两个模具辊间形成的流道进行挤压成型;
    经冷却固型后获得一侧表面或两侧表面具有微结构的量子点匀光复合材料。
  11. 根据权利要求9所述的量子点匀光复合材料的制备工艺,其特征在于,用于形成所述量子点匀光复合材料的材料包括基材层和量子点胶层,步骤还包括:
    在所述基材层的表面均匀涂布量子点胶,在所述基材层的表面形成量子点胶层;
    将带有图形结构的模具辊与涂布有量子点胶的基材层贴合在一起,对所述基材层表面的量子点胶层进行固化,在所述基材层表面形成呈固体状的量子点胶层,在量子点匀光复合材料的一侧或两侧形成微结构。
  12. 根据权利要求9所述的量子点匀光复合材料的制备工艺,其特征在于,用于形成所述量子点匀光复合材料的材料包括基材层、量子点层和感光胶水层,步骤还包括:
    在所述基材层远离所述量子点层的一侧表面均匀涂布感光胶水,在所述基材层远离所述量子点层的表面形成光学胶层;
    将带有图形结构的模具辊与涂布有感光胶水的基材层贴合在一起,对所述基材层表面的光学胶层进行固化,在所述基材层表面形成呈固体状的光学胶层,在量子点匀光复合材料的光学胶层上形成微结构。
PCT/CN2022/072543 2021-10-14 2022-01-18 一种量子点匀光复合材料及其制备工艺 WO2023060799A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111198001.8 2021-10-14
CN202111198001.8A CN113985650A (zh) 2021-10-14 2021-10-14 一种量子点匀光复合材料及其制备工艺

Publications (1)

Publication Number Publication Date
WO2023060799A1 true WO2023060799A1 (zh) 2023-04-20

Family

ID=79738610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/072543 WO2023060799A1 (zh) 2021-10-14 2022-01-18 一种量子点匀光复合材料及其制备工艺

Country Status (2)

Country Link
CN (1) CN113985650A (zh)
WO (1) WO2023060799A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114578619A (zh) * 2022-03-14 2022-06-03 重庆翰博显示科技研发中心有限公司 一种复合型分光膜片

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108387957A (zh) * 2018-02-27 2018-08-10 宁波激智科技股份有限公司 一种高遮盖高辉度的量子点扩散膜及其制备方法和应用
TWI636278B (zh) * 2017-11-10 2018-09-21 瑩耀科技股份有限公司 Brightening film structure with quantum dots and manufacturing method thereof
CN109849388A (zh) * 2019-02-18 2019-06-07 南通创亿达新材料股份有限公司 量子点光学功能板、制备方法及制备装置
CN110643349A (zh) * 2019-10-17 2020-01-03 武汉珈源同创科技有限公司 一种量子点光扩散剂及其制备方法
CN110692010A (zh) * 2017-08-28 2020-01-14 深圳创维-Rgb电子有限公司 显示系统
CN111393578A (zh) * 2020-03-11 2020-07-10 宁波东旭成新材料科技有限公司 一种高折射率量子点uv树脂及其广色域复合膜
KR102202101B1 (ko) * 2019-11-28 2021-01-14 주식회사 신아티앤씨 다관능 아크릴레이트 화합물, 이를 포함하는 양자점층 형성용 조성물 및 광학 필름
CN113009605A (zh) * 2021-03-19 2021-06-22 苏州维旺科技有限公司 一种Mini LED微透镜匀光片及其制备工艺、背光模组
CN113156550A (zh) * 2021-03-19 2021-07-23 苏州维旺科技有限公司 一种Mini LED匀光片及其制备工艺、背光模组
CN216387660U (zh) * 2021-10-14 2022-04-26 苏州大学 一种量子点匀光复合材料

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110692010A (zh) * 2017-08-28 2020-01-14 深圳创维-Rgb电子有限公司 显示系统
TWI636278B (zh) * 2017-11-10 2018-09-21 瑩耀科技股份有限公司 Brightening film structure with quantum dots and manufacturing method thereof
CN108387957A (zh) * 2018-02-27 2018-08-10 宁波激智科技股份有限公司 一种高遮盖高辉度的量子点扩散膜及其制备方法和应用
CN109849388A (zh) * 2019-02-18 2019-06-07 南通创亿达新材料股份有限公司 量子点光学功能板、制备方法及制备装置
CN110643349A (zh) * 2019-10-17 2020-01-03 武汉珈源同创科技有限公司 一种量子点光扩散剂及其制备方法
KR102202101B1 (ko) * 2019-11-28 2021-01-14 주식회사 신아티앤씨 다관능 아크릴레이트 화합물, 이를 포함하는 양자점층 형성용 조성물 및 광학 필름
CN111393578A (zh) * 2020-03-11 2020-07-10 宁波东旭成新材料科技有限公司 一种高折射率量子点uv树脂及其广色域复合膜
CN113009605A (zh) * 2021-03-19 2021-06-22 苏州维旺科技有限公司 一种Mini LED微透镜匀光片及其制备工艺、背光模组
CN113156550A (zh) * 2021-03-19 2021-07-23 苏州维旺科技有限公司 一种Mini LED匀光片及其制备工艺、背光模组
CN216387660U (zh) * 2021-10-14 2022-04-26 苏州大学 一种量子点匀光复合材料

Also Published As

Publication number Publication date
CN113985650A (zh) 2022-01-28

Similar Documents

Publication Publication Date Title
WO2022193824A1 (zh) 一种Mini LED扩散片及其制备工艺、背光模组
US8027090B2 (en) Optical element, replica substrate configured to form optical element
CN113156550A (zh) 一种Mini LED匀光片及其制备工艺、背光模组
CN101216573A (zh) 一种复合式导光板及制造方法
CN215729185U (zh) 一种Mini LED匀光片及背光模组
WO2023060799A1 (zh) 一种量子点匀光复合材料及其制备工艺
KR100976808B1 (ko) 롤투롤 방식을 이용한 도광판 제조방법
WO2020029534A1 (zh) 背光源及液晶显示器
CN101169496A (zh) 制作复合光学膜的方法
CN113009605A (zh) 一种Mini LED微透镜匀光片及其制备工艺、背光模组
CN216387660U (zh) 一种量子点匀光复合材料
CN108845461A (zh) 背光模组及液晶显示装置
CN210573093U (zh) 调光膜片、背光模块及显示设备
CN102305371A (zh) 具有间隔体颈套环的漫射板
KR101447479B1 (ko) 마이크로 구조의 광제어 패턴이 형성된 디스플레이용 도광 시트의 제조방법
CN215728917U (zh) 一种Mini LED扩散片及背光模组
CN215678833U (zh) 一种Mini LED微透镜匀光片及背光模组
KR101273272B1 (ko) 높이 단차를 갖는 육각 셀 병합 패턴이 구비된 광학 필름의 제조방법 및 이에 의해 제조된 광학 필름
US10782469B2 (en) Light guide plate and its fabricating method, as well as backlight module
CN115220265B (zh) 含有环形导光圈的背光模组
CN208737151U (zh) 背光模组及液晶显示装置
CN215849653U (zh) 一种用于光固化三维成型的光学系统
CN108919559B (zh) 一种聚合物阵列多组件集成的高密度像素显示及背光模块
CN103364865A (zh) 一种导光板的制造方法
JP2009018461A (ja) 液晶ディスプレイ機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22879752

Country of ref document: EP

Kind code of ref document: A1