WO2023060705A1 - 基于scada数据的母线/线路接地选线轮切方法 - Google Patents

基于scada数据的母线/线路接地选线轮切方法 Download PDF

Info

Publication number
WO2023060705A1
WO2023060705A1 PCT/CN2021/132239 CN2021132239W WO2023060705A1 WO 2023060705 A1 WO2023060705 A1 WO 2023060705A1 CN 2021132239 W CN2021132239 W CN 2021132239W WO 2023060705 A1 WO2023060705 A1 WO 2023060705A1
Authority
WO
WIPO (PCT)
Prior art keywords
grounding
line
bus
phase
busbar
Prior art date
Application number
PCT/CN2021/132239
Other languages
English (en)
French (fr)
Inventor
姚雨
王家军
李波
樊国盛
杨礼顺
毛建维
王昆伦
饶宏宇
冷贵峰
黄佐林
糟海钰
Original Assignee
贵州电网有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 贵州电网有限责任公司 filed Critical 贵州电网有限责任公司
Publication of WO2023060705A1 publication Critical patent/WO2023060705A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/16Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/54Testing for continuity
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0092Details of emergency protective circuit arrangements concerning the data processing means, e.g. expert systems, neural networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/22Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for distribution gear, e.g. bus-bar systems; for switching devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/003Load forecast, e.g. methods or systems for forecasting future load demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/04Circuit arrangements for ac mains or ac distribution networks for connecting networks of the same frequency but supplied from different sources
    • H02J3/06Controlling transfer of power between connected networks; Controlling sharing of load between connected networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/40Display of information, e.g. of data or controls
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Definitions

  • the invention relates to a SCADA data-based busbar/line grounding line selection wheel cutting method, belonging to the technical field of power system grounding line selection wheel cutting.
  • grounding line selection devices Most of the small-current grounding line selection devices currently used in substations can only be used to detect single-phase ground faults, and there are problems such as device failure, long maintenance time, grounding false alarms, wheel cuts, and selection failures. In addition, device crashes, program jams, etc. lead to ground leakage and false alarms from time to time.
  • the present invention provides a SCADA data-based busbar/line grounding line selection and wheel cutting method, which is different from the substation small current grounding line selection device. Real-time data collection, real-time monitoring of substation bus/line grounding from the dispatching side, and auxiliary decision-making for production maintenance and power dispatching.
  • the technical scheme of the present invention is: the busbar/line grounding line selection and wheel cutting method based on SCADA data, wherein the method includes:
  • SCADA collects various data in real time
  • the SCADA is arranged at the power dispatching end
  • the various data are the data of the power plant station end
  • the SCADA is connected to the power plant station end by communication;
  • SCADA periodically calculates whether there is bus/line grounding
  • the influencing factors include line/main transformer three sides/section/bus coupler/side bus circuit breaker;
  • the various types of data include bus voltage, line voltage, line current and signals sent by line protection devices.
  • the busbar/line grounding calculation method includes a single-phase grounding starting criterion, a bus phase failure grounding determination method, and a small resistance grounding system grounding fault determination method.
  • the single-phase grounding startup criterion is to use the zero-sequence voltage of the bus in the main network system, the three-phase power grid of the bus, the grounding alarm of the bus, the grounding alarm of the line, and the "wave recording blocking" or “recording block” in the distribution network system.
  • Wave start” signal is then combined with logical AND, OR, and non-combination of the scene as the start criterion for single-phase grounding.
  • the set number of calculations is started. If the calculation results are all "true", the bus is judged grounded, otherwise it is determined that the bus is not grounded.
  • the method for judging bus phase failure is:
  • ground phase bus voltage is less than the first predetermined value, and the non-ground phase bus voltage is greater than the second predetermined value, it is determined that the bus phase is broken; or the absolute value of the difference between any two phases of the bus voltage is greater than the third predetermined value, then Determine that the bus is out of phase; or when any one of the bus voltages is less than the fourth predetermined value, and at least one of the other two phase voltages is greater than the fifth predetermined value, then it is determined that the bus is out of phase;
  • busbar grounding For busbar grounding, the method for judging busbar grounding is as follows:
  • the grounded phase of the bus voltage is less than the sixth predetermined value, and the non-grounded phase voltages are greater than the seventh predetermined value, it is determined that the bus is grounded; or if any phase voltage of the bus voltage is greater than the eighth predetermined value, the difference between the other two phase voltages The absolute value of is greater than the ninth predetermined value, then it is determined that the bus bar is grounded.
  • the method for judging the grounding fault of the grounding system through a small resistance is to calculate the real-time data according to the power flow, and analyze the current direction of each line on the same bus, wherein the current direction of the faulty line is opposite to that of other non-faulty lines, thus judging the faulty line.
  • the method of calculating the possible influencing factors that may cause grounding is to count the number of historical faults of the bus/line, sort according to the frequency of grounding, and sort according to the preset line type and line load when the frequency is the same
  • the remote control opening includes a manual wire selection wheel cutting method and an automatic wire selection wheel cutting method.
  • the manual line selection and wheel cutting method is a wheel cutting mode in which lines of the same type are sorted from high to low according to the failure rate of the device statistics according to the overhead first and then the cable.
  • the automatic wire selection wheel cutting method is:
  • the present invention utilizes the scada system to realize real-time monitoring of substation busbar/line grounding conditions and automatic processing of grounding faults, jumping out of the conventional way and realizing grounding alarm and fault handling by installing a small current grounding line selection device in the substation , to present data such as primary data of the plant and station, automation data, line protection, reclosing action, low-frequency and low-voltage load shedding action, and backup and self-switching action in the scada system, and communicate with the network topology, dispatcher power flow, state estimation,
  • the combination of short-circuit current calculation and other technologies realizes the automatic, timely and accurate removal of the bus/line grounding faults of all substations in the whole network at the dispatching end at the technical level, which improves the reliability of power supply and reduces multiple small currents in multiple substations
  • the device purchase cost and manpower maintenance cost of the grounding line selection device provide auxiliary decision-making for production maintenance and power dispatching.
  • Fig. 1 is the flow chart of the method of the embodiment of the present invention.
  • FIG. 2 is a functional architecture diagram of an embodiment of the present invention
  • Fig. 3 is a specific case diagram of the embodiment of the present invention.
  • a busbar/line grounding line selection wheel cutting method based on SCADA data wherein the method includes:
  • the SCADA collects various data in real time.
  • the SCADA is arranged at the power dispatching end, and the various data are the data of the power plant station end.
  • the SCADA is connected to the power plant station end by communication.
  • SCADA is deployed at the power dispatching end, including modules such as SCADA data processing and monitoring, pre-acquisition, network topology, load forecasting, short-circuit current calculation, dispatcher power flow and state estimation, among which SCADA data processing and monitoring is the main control module, respectively It is electrically connected with modules such as pre-acquisition, network topology, load forecasting, short-circuit current calculation, dispatcher power flow, and state estimation.
  • the pre-acquisition module communicates with the telecontrol module at the station end of the power plant. All kinds of data at the station end can also transmit control information to the station end of the power plant through the telecontrol module for execution.
  • SCADA system data acquisition, data processing, data monitoring, data real-time monitoring and control.
  • Pre-acquisition It is mainly connected with the remote control module at the plant station to collect various data and transmit command information at the same time.
  • Network topology the electrical island connection relationship formed by all substations in the region, and the electrical connection relationship formed within each substation.
  • State Estimation (SE for short), based on the real-time information provided by SCADA, the state estimation gives the optimal estimated value of each bus voltage (amplitude and phase) and power flow in the power grid. State estimation is analyzed and calculated based on SCADA real-time telemetry data to obtain a relatively accurate and complete operation mode, which can calculate all bus voltages and all loads. At the same time, the SCADA telemetry is verified, and the telemetry points that may be abnormal are proposed, and the calculation results and measurement quality signs are returned to SCADA. The calculation results of state estimation can be used by other application software in a real-time manner. For example, dispatcher power flow can perform simulation operation calculations on the basis of state estimation calculation results.
  • Dispatcher Flow is one of the most basic applications of PAS. Through the online power flow calculation, the method can be adjusted at any time to make the distribution of active power more reasonable. By using the estimated data for power flow calculation, dispatchers can have a theoretical basis for future arrangement, which is more accurate, more reliable, and more truly reflect the state of the power grid than offline calculation. In the process of switching operation and accident handling, dispatcher power flow can play a very good auxiliary decision-making role. Dispatcher power flow is a comprehensive application, including several sub-applications, such as dispatcher power flow, short-circuit calculation, static safety analysis, and reactive power optimization. Each sub-application has its own independent screen and its own independent main screen. In the offline analysis screen, the relationship between each module and the data flow are introduced.
  • the offline analysis software obtains the latest power grid model, and then obtains the power grid model after There are many ways to obtain historical cross-sections, such as historical cross-sections, real-time cross-sections, and historical point-by-point cross-sections. After obtaining the power grid model and section, the offline analysis software can perform calculations, and the calculated results can be displayed on different screens.
  • Load Forecasting The function of load forecasting is to forecast the future load of the user-defined forecasting measurement points.
  • Short-circuit current calculation The short-circuit current calculation is used to correct the overcurrent generated when a short circuit is caused in the circuit due to a fault or a wrong connection.
  • the current that flows when an abnormal connection (short circuit) occurs between phases or between phases and ground (or neutral) during operation of the power system is called short circuit current.
  • the basic types of short circuits that occur in a three-phase system are three-phase short-circuit, two-phase short-circuit, single-phase-to-ground short-circuit and two-phase-to-ground short-circuit.
  • the three-phase short circuit is called a symmetrical short circuit because the three-phase circuit is still symmetrical during the short circuit; other short circuits make the three-phase circuit asymmetrical, so it is called an asymmetrical short circuit.
  • the phase-to-ground short-circuit fault is the most, accounting for about 90% of all short-circuit faults.
  • short-circuit faults are mainly various phase-to-phase short circuits.
  • the magnitude of the short-circuit current depends on the electrical distance between the short-circuit point and the power supply. For example, when a short-circuit occurs at the generator end, the maximum instantaneous value of the short-circuit current flowing through the generator can reach 10 to 15 times the rated current of the generator. In power systems, the short-circuit current can be as high as tens of thousands of amperes.
  • Dispatcher Training Simulator can provide dispatchers with a comprehensive power system simulation tool for training, assessment and anti-accident drills, so as to improve the professional level of power grid dispatching and management personnel and work skills; in addition, it should also be used as an analysis and research tool for power grid operation, support, and decision-making personnel.
  • the training functions mainly include power grid dispatching operation control simulation training, EMS system application operation simulation training.
  • the dispatcher training simulation system must be able to simulate various operating states of the power system, including normal state, emergency state, fault state and accident recovery process, so that trainees can perform normal operations, accident handling and System recovery training, so as to master the various functional modules of EMS, be familiar with various operations, and experience the changes of the system in a highly realistic manner while observing the system status and implementing control measures.
  • AVC programs run in regional dispatch centers, substations, and centralized control stations, mainly to control the voltage and reactive power of regional power grids, substations, and centralized control stations. Area map or 17 area map control, and increase or decrease related blocking conditions. Every time it runs, a topology analysis is performed to make the control more reliable.
  • the AVC program can run on multiple nodes, but generally runs on two hosts, one for standby and the other for duty, the duty machine sends commands, and the standby machine synchronizes the information of the duty machine. When the on-duty machine fails, the standby machine is automatically upgraded to the on-duty node.
  • the real-time power flow calculation data is used to analyze the voltage of each central point in real time, analyze the voltage changes of each busbar in the whole network, and identify the busbars with abnormal phase voltage and abnormal zero-sequence voltage.
  • the network topology calculation it is analyzed in real time that a certain busbar on the network is grounded, which may lead to the grounding of each 220kV busbar connected to it in the entire network, as well as other 220kV substation areas connected to the 220kV busbar, and 110kV and 35kV substation areas.
  • DTS Dispatcher Training Simulation System
  • SOE provides substation hard contact signals or soft contact signals, including signals such as switch, switch position, and line protection actions, such as “protection action”, “reclosing action”, “PT disconnection”, “device call”, “switching Simultaneous action of the relay”, “switch jumping”, “switch closing”, “control circuit disconnection”, “spring not storing energy”, etc.
  • line protection actions such as "protection action”, “reclosing action”, “PT disconnection”, “device call”, “switching Simultaneous action of the relay”, “switch jumping”, “switch closing”, “control circuit disconnection”, “spring not storing energy”, etc.
  • the scada system collects substation remote signal and telemetry in real time, and has the function of remote control to the switch of the factory station.
  • Remote signaling includes protection hard contacts and soft messages, switch SOE and remote signaling displacement signals
  • telemetry includes real-time sections under SCADA and PAS applications.
  • Remote signaling and telemetry data provide rich data for real-time diagnosis of bus/line grounding source.
  • Real-time PAS and SCADA models provide a complete grid model for real-time diagnosis of busbar/line grounding and automatic recovery of ground faults.
  • the Scada system's real-time diagnosis of bus/line grounding and the remote control function of the plant switch provide decision-making and decision-making execution for the judgment of ground faults and automatic processing and recovery.
  • bus voltage includes line voltage Uab, Ubc, Uca, phase voltage Ua, Ub, Uc, zero sequence voltage Uo;
  • line voltage includes but not limited to Ua, Ub, Uc, Uab, Ubc, Uca, U, Uo, 3Uo;
  • the line current includes but not limited to Ia, Ib, Ic, Iab, Ibc, Ica, Io, 3Io;
  • the signal sent by the line protection device includes "over-current first-stage action", “over-current second-stage action”, “zero-sequence voltage Action”, "protection action", "primary/secondary reclosing action” and other signals.
  • SCADA periodically calculates whether there is bus/line grounding.
  • the busbar/line grounding calculation method includes the single-phase grounding start criterion, the busbar phase failure grounding judgment method and the grounding fault judgment method of the small resistance grounding system.
  • the single-phase grounding start criterion is to use the zero-sequence voltage of the bus in the main network system, the three-phase power grid of the bus, the bus grounding alarm, the line grounding
  • the logical AND, OR, and NOT combination of the scene is used as the starting criterion for single-phase grounding.
  • the set number of calculations is started. If the calculation results are all "true", the bus is judged to be grounded, otherwise the bus is judged to be grounded. The busbar is not grounded.
  • the single-phase grounding start criterion refers to the use of 10kV/35kV bus zero-sequence voltage (3U0), 10kV/35kV bus three-phase grid (Ua/Ub/Uc), 10kV/35kV bus grounding alarm, 10kV/35kV line grounding alarm and use the "wave recording lockout" or "wave recording start” signal in the distribution network system and then pass through the logical AND, OR, and non-combination of the scene as the starting criterion for single-phase grounding.
  • Condition 1 x1 represents the zero-sequence voltage (3U0) of the 10kV bus of the main network; condition 2: x2 represents the voltage of phase A of the 10kV bus of the main network; condition 3: x3 represents the voltage of phase B of the 10kV bus of the main network; condition 4: x4 represents the voltage of the main 10kV bus C-phase voltage of the network, condition 5: x5 means the main network 10kV bus grounding alarm action, condition 6: x6 means the signal action of "wave recording lock" or "wave recording start” in the distribution network system, expression of 10kV single-phase grounding start condition
  • the formula is: x1>30
  • the method for judging bus phase failure is as follows: if the ground phase bus voltage is less than the first predetermined value, and the non-ground phase bus voltages are all greater than the second predetermined value, then determine the bus phase failure; or the bus voltage is arbitrary If the absolute value of the difference between the two phases is greater than the third predetermined value, it will be determined that the bus is open; or if any voltage of the bus voltage is less than the fourth predetermined value, and at least one of the other two phase voltages is greater than the fifth predetermined value, then it will be judged that the bus is open. Bus phase failure.
  • x1 is the real-time value of Ua
  • x2 is the real-time value of Ub
  • x3 is the real-time value of Uc.
  • the method for judging bus grounding is as follows: if the bus voltage ground phase is less than the sixth predetermined value, and the non-ground phase voltage is greater than the seventh predetermined value, then determine that the bus is grounded; or if any phase voltage of the bus voltage is greater than the eighth predetermined value, and the absolute value of the difference between the other two phase voltages is greater than the ninth predetermined value, then it is determined that the bus bar is grounded.
  • the ground fault judgment method of the small resistance grounding system is to calculate the real-time data according to the power flow and analyze the current direction of each line on the same bus. Among them, the current direction of the fault line is opposite to that of other non-fault lines.
  • the above three bus/line grounding calculation methods are configured in the Scada system at the same time, and one or several combined calculation methods are selected during specific operation, and can be selected through the man-machine interface.
  • the scada system after calculating that there is a busbar/line grounding, if the busbar grounding is determined through the single-phase grounding start criterion and the bus failure phase grounding determination method, the scada system immediately calls the bus zero sequence voltage, zero Millisecond-level data of real-time measurement information such as sequence current, phase voltage, and phase current, etc., analyze the millisecond-level data waveform, analyze the millisecond-level data waveform, and perform fault location.
  • the millisecond-level time series data in the time series database is equivalent to the fault recording data, and the data of the time series database can be stored in raid5 (or other raid with fault-tolerant function) disk arrays, so the fault recording function based on the time series database is more powerful.
  • the wave length is longer, the recording resolution is higher, and the fault recording data is stored for a longer time, which is convenient for statistical analysis.
  • Time series data is reliably stored in raid5 (or other raid with fault-tolerant function) disk array, so the recorded data is not easy to lose.
  • the time series database is integrated in the scada system, there is no data interface, and the data calling speed is fast, and the data reading speed is fast.
  • ground fault is obtained by the ground fault judgment method of the small resistance grounding system, it can be detected that the current direction of the fault line is opposite to that of other non-fault lines, and thus the position of the fault line can be judged.
  • the alarm signal can be pushed on the dispatcher screen and the alarm window, so that relevant personnel can know the grounding alarm information in time.
  • the influencing factors include the line/three sides of the main transformer/section/bus coupler/side bus circuit breaker.
  • the method of calculating the possible influencing factors that may cause grounding is to count the number of historical faults of the bus/line, sort according to the frequency of grounding, and sort according to the preset line type and line load when the frequency is the same.
  • the system automatically counts the number of fault points that have had ground faults in the past, and counts the number of ground faults caused by each line/main transformer three sides/section/bus coupler/side bus circuit breaker at the station end.
  • circuit breakers with high grounding frequency/three sides of the main transformer/section/bus coupler/side bus are given priority to switch on.
  • the frequency is the same, it is considered to follow the overhead first, then the cable, first the line, then the section/bus coupler/side bus, and finally the three sides of the main transformer (to reduce the load loss).
  • the failure rate of the same type of line according to the device statistics is from high to low Round cut mode for low sorting. In addition, it is also necessary to consider the nature of the load and the importance of the load.
  • the sequence of the third-level load first, the second-level load, and the last-level load is grounded (the power load is divided into the first-level load according to the power supply level, which refers to the power supply interruption. Loads that cause personal casualties, major economic losses, serious confusion in public order, and major political influence; second-level loads refer to loads that will cause greater political impact, greater economic losses, and public order disruption due to power supply interruption; third-level loads do not belong to There are no special requirements for power supply for primary and secondary loads, and it is allowed to suspend power supply when the system fails.). Based on the above three aspects, the grounding switch sequence is finally determined, and the ground switch sequence table is formed, which is updated in real time according to the adjustment of the grid structure operation mode and the change of the load nature.
  • the circuit breakers corresponding to the influencing factors are opened by remote control in sequence, and it is judged whether the grounding fault is eliminated until the grounding fault is eliminated.
  • Remote control opening includes manual wire selection wheel cutting method and automatic wire selection wheel cutting method.
  • the method of manual line selection and wheel cutting is the wheel cutting mode in which the failure rate of the same type of line is sorted from high to low according to the failure rate of the device statistics. Wheel cut function and action behavior in cooperation with line protection reclosing. Or the on-duty dispatcher manually remotely opens the circuit breaker in turn according to experience until the grounding is eliminated.
  • the method of automatic line selection and wheel switching is to first check whether the line protection is activated, and if so, calculate whether the ground fault is eliminated, otherwise, pull the next circuit breaker in the ground switch sequence table, and so on, until the ground fault is eliminated. Specifically, first check whether the line protection is in the first stage of overcurrent operation/second stage of overcurrent operation/zero-sequence voltage operation, whether the low-frequency and low-voltage load shedding device is in operation, whether the backup self-injection device is in operation, yes (continue to calculate U0, I0 to detect whether the grounding is Eliminate), no (according to the failure rate statistics table and the accident power limit sequence table, first cut off the line with a high failure rate and not an important load), detect the reclosing action, the low-frequency and low-voltage load shedding action, and the standby automatic switching action.
  • grounding fault Whether the grounding fault is eliminated, if it is not eliminated, close the last opened line to restore power supply, and continue to pull the next line. Detect whether the line protection is active, if so, calculate whether the grounding is eliminated, otherwise, pull the next line in the emergency power limit sequence table (the grounding is still not eliminated after pulling all the intervals on the bus, then pull the section switch on the bus running in parallel / bus tie switch, pull the line on the bus running in parallel, pull the line on the upper level bus, or pull the three-side switch of the main transformer)... and so on until the ground fault is eliminated.
  • the invention utilizes the scada system to realize real-time monitoring of the grounding condition of the substation busbar/line and automatic processing of grounding faults, and jumps out of the conventional way to realize grounding alarm and fault handling by installing a small current grounding line selection device in the substation, and converts the primary data of the plant station , automation data, line protection, reclosing action, low-frequency and low-voltage load shedding action, standby automatic switching action and other data are presented in the scada system, and are integrated with the network topology, dispatcher power flow, state estimation, and short-circuit current calculation in the scada system.
  • the automatic, timely and accurate removal of the bus/line grounding faults of all substations in the whole network is realized at the dispatching end, which improves the reliability of power supply and reduces the purchase of multiple small current grounding line selection devices in multiple substations Cost and manpower maintenance costs, providing auxiliary decision-making for production maintenance and power scheduling.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

本发明公开了一种基于SCADA数据的母线/线路接地选线轮切方法,包括:S1,SCADA实时采集各类数据;S2,SCADA周期性计算是否有母线/线路接地;S3,如果有母线/线路接地,则进行故障定位并推送接地报警信号;S4,计算出引起接地可能的影响因素,形成接地拉闸序位表;S5,根据接地拉闸序位表,依次遥控分闸所述影响因素对应的断路器,并判断接地故障是否消除,直至接地故障消除;S6,如果接地故障已消除,则重复步骤S2至S5。本发明有别于变电站小电流接地选线装置,采用调度端接收的远动远传数据,利用scada系统中各个变电站的实时采集数据,从调度侧实现对变电站母线/线路接地情况的实时监测,为生产检修及电力调度提供辅助决策。

Description

基于SCADA数据的母线/线路接地选线轮切方法 技术领域
本发明涉及一种基于SCADA数据的母线/线路接地选线轮切方法,属于电力系统接地选线轮切技术领域。
背景技术
电力系统母线、线路在实际运行中,时常会发生单相或三相接地故障,特别是在雨季、大风和冰雹等恶劣天气条件下,母线、线路接地故障更是频繁发生。此外,小动物、树障等原因造成的小电流接地故障也频频发生。调度监控值班人员在复杂的电网网络架构下,面对大量的监视信息,时常不能及时发现接地故障的发生,不能及时安排检修,导致故障影响范围扩大。
目前变电站在用的小电流接地选线装置,大部分只能用于检测单相接地故障,且存在装置故障、检修耗时长,接地误报、轮切、选跳失败等问题。另外,装置死机、程序卡死等导致接地漏发、漏报的情况也时有发生。
发明内容
基于上述,本发明提供一种基于SCADA数据的母线/线路接地选线轮切方法,有别于变电站小电流接地选线装置,采用调度端接收的远动远传数据,利用scada系统中各个变电站的实时采集数据,从调度侧实现对变电站母线/线路接地情况的实时监测,为生产检修及电力调度提供辅助决策。
本发明的技术方案是:基于SCADA数据的母线/线路接地选线轮切方法,其中,所述方法包括:
S1,SCADA实时采集各类数据,所述SCADA布设于电力调度端,所述各类数据为电力厂站端的数据,所述SCADA与所述电力厂站端通讯连接;
S2,SCADA周期性计算是否有母线/线路接地;
S3,如果有母线/线路接地,则进行故障定位并推送接地报警信号;
S4,计算出引起接地可能的影响因素,形成接地拉闸序位表,所述影响因素包括线路/主变三侧/分段/母联/旁母断路器;
S5,根据接地拉闸序位表,依次遥控分闸所述影响因素对应的断路器,并判断接地故障是否消除,直至接地故障消除;
S6,如果接地故障已消除,则重复步骤S2至S5。
可选的,所述各类数据包括母线电压、线路电压、线路电流和线路保护装置发出的信号。
可选的,所述母线/线路接地计算方法包括单相接地启动判据、母线断相接地判定方法和经小电阻接地系统接地故障判定方法。
可选的,所述单相接地启动判据为,利用主网系统中母线零序电压、母线三相电网、母线接地告警、线路接地告警和利用配网系统中“录波闭锁”或者“录波启动”信号再经过场景的逻辑与、或、非组合作为单相接地的启动判据,在周期性计算中,启动设定次数计算,如果计算结果均为“真”,则判定该条母线接地,否则判定该条母线未接地。
可选的,对于母线断相来说,所述母线断相判定方法为:
如果接地相母线电压小于第一预定值,且非接地相母线电压均大于第二预定值时,则判定该母线断相;或者母线电压任意两相之差的绝对值大于第三预定值,则判定该母线断相;或者母线电压任意一项电压小于第四预定值,另外两相电压至少一相大于第五预定值时,则判定该母线断相;
对于母线接地来说,所述母线接地判定方法为:
如果母线电压接地相小于第六预定值,且非接地相电压均大于第七预定值时,则判定该母线接地;或者如果母线电压任意一相电压大于第八预定值,另外两相电压之差的绝对值大于第九预定值,则判定该母线接地。
可选的,所述经小电阻接地系统接地故障判定方法为,根据潮流计算实时数据,分析同一条母线上各个线路电流方向,其中,故障线与其他非故障线电流方向相反,由此判断出该故障线路。
可选的,计算出引起接地可能的影响因素方法为,统计该母线/线路历史故障次数,根据发生接地频率高低进行排序,当频率相同时根据预先设定的线路类型和线路负荷进行排序
可选的,所述遥控分闸包括手动选线轮切方法和自动选线轮切方法。
可选的,所述手动选线轮切方法为,按照先架空后电缆,同类型线路按装置统计的故障率由高到低排序进行的轮切模式。
可选的,所述自动选线轮切方法为,
首先检测线路保护是否动作,是则计算接地故障是否消除,否则拉开接地拉 闸序位表中下一个断路器,如此循环,直到接地故障消除。
本发明的有益效果是:本发明利用scada系统实现对变电站母线/线路接地情况的实时监测及接地故障的自动处理,跳出常规方式通过变电站加装小电流接地选线装置来实现接地报警及故障处置,将厂站端一次数据、自动化数据、线路保护、重合闸动作、低频低压减载动作、备自投动作等数据呈现于scada系统,并与scada系统中网络拓扑、调度员潮流、状态估计、短路电流计算等相融合,从技术层面上在调度端实现对全网内所有变电站的母线/线路接地故障的自动、及时、准确切除,提高了供电可靠性,减少多个变电站内多个小电流接地选线装置的装置购买成本及人力维护费用,为生产检修及电力调度提供辅助决策。
附图说明
图1为本发明实施例方法流程图;
图2为本发明实施例功能架构图;
图3为本发明实施例具体案例图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施的限制。
本实施例一种基于SCADA数据的母线/线路接地选线轮切方法,其中,所述方法包括:
S1,SCADA实时采集各类数据,所述SCADA布设于电力调度端,所述各类数据为电力厂站端的数据,所述SCADA与所述电力厂站端通讯连接。
SCADA布设于电力调度端,包括SCADA数据处理与监控、前置采集、网络拓扑、负荷预测、短路电流计算、调度员潮流和状态估计等模块,其中,SCADA数据处理与监控作为主控模块,分别与前置采集、网络拓扑、负荷预测、短路电流计算、调度员潮流和状态估计等模块电气连接,前置采集模块与电力厂站端的远动模块通信连接,既可以通过远动模块接收电力厂站端的各类数据,也可以通过远动模块将控制信息传输给电力厂站端执行。
下面对上述各功能模块进行解释说明:
SCADA系统:数据采集、数据处理、数据监视、数据实时监视控制。
前置采集:主要与厂站端的远动模块通信连接,用于采集各种数据,同时传输命令信息等。
网络拓扑:区域内所有变电站构成的电气岛连接关系,以及各个变电站内部构成的电气连接关系。
状态估计:状态估计(State Estimation,简称SE),状态估计根据SCADA提供的实时信息,给出电网内各母线电压(幅值和相位)和潮流的最优估计值。状态估计根据SCADA实时遥信遥测数据进行分析计算,得到一个相对准确并且完整的运行方式,它能够计算出所有母线电压和所有负荷大小。同时对SCADA遥信遥测进行校验,提出可能不正常的遥测点,并将计算结果及量测质量标志返送给SCADA。状态估计的计算结果可以被其他应用软件作为实时方式使用,如调度员潮流可在状态估计计算结果基础上进行模拟操作计算等。
调度员潮流:调度员潮流是PAS最基本的应用之一。通过在线潮流计算,可以随时进行方式的调整,使有功分配更合理。通过使用估计数据进行潮流计算,可使调度人员对未来进行的方式安排有个理论依据,它比离线计算更准确、更可靠、更能真实地反映电网状态。在倒闸操作和事故事故处理过程中,调度员潮流可以起到很好的辅助决策作用。调度员潮流是一个综合应用,包括几个子应用,如调度员潮流、短路计算、静态安全分析、无功优化。每一个子应用都有自己独立的画面,有自己独立的主画面。在离线分析画面中介绍了各个模块之间的关系以及数据流程,首先离线分析软件(调度员潮流、静态安全分析、短路计算、无功优化)获取最新的电网模型,在获取电网模型以后再获取历史断面,断面获取也有很多方式,如取历史断面、取实时断面、历史整点断面等。在获取电网模型、断面以后离线分析软件就可以进行计算,计算后的结果就可以在不同的画面上显示。
负荷预测:负荷预测的功能是:对用户定义的预测测点的未来负荷进行预测。
短路电流计算:短路电流计算为了修正由于故障或连接错误而在电路中造成短路时所产生的过电流。电力系统在运行中相与相之间或相与地(或中性线)之间发生非正常连接(短路)时流过的电流称为短路电流。在三相系统中发生短路 的基本类型有三相短路、两相短路、单相对地短路和两相对地短路。三相短路因短路时的三相回路依旧是对称的,故称为对称短路;其他几种短路均使三相电路不对称,故称为不对称短路。在中性点直接接地的电网中,以一相对地的短路故障为最多,约占全部短路故障的90%。在中性点非直接接地的电力网络中,短路故障主要是各种相间短路。发生短路时,由于电源供电回路阻抗的减小以及突然短路时的暂态过程,使短路回路中的电流大大增加,可能超过回路的额定电流许多倍。短路电流的大小取决于短路点距电源的电气距离,例如,在发电机端发生短路时,流过发电机的短路电流最大瞬时值可达发电机额定电流的10~15倍,在大容量的电力系统中,短路电流可高达数万安培。
调度员培训与仿真:调度员培训仿真(Dispatcher Training Simulator,简称DTS)能够为调度员提供一个综合的电力系统仿真工具进行培训、考核和进行反事故演习,以提高电网调度和管理人员的专业水平和工作技能;除此以外还要作为电网运行、支持、决策人员的分析研究工具。培训功能主要包括电网调度运行控制模拟培训、EMS系统应用操作模拟培训。调度员培训仿真系统要能够模拟电力系统各种运行状态,包括正常状态,紧急状态、故障状态以及事故恢复过程,使学员能在与实际调度中心完全相同的调度环境中进行正常操作、事故处理及系统恢复的培训,从而掌握EMS的各项功能模块,熟悉各种操作,在观察系统状态和实施控制措施的同时,高度逼真地体验系统的变化情况。
自动无功控制:AVC程序运行在地区调度中心、变电站、集控站中,主要是控制地区电网、变电站、集控站的电压和无功,软件内含自动控制策略,同时也支持用户进行9区图或17区图的控制,并增减了相关的闭锁条件。每次运行时,都要进行拓扑分析,使控制更加可靠。AVC程序可以运行在多个节点上,但一般运行在两台主机上,一个备用一个值班,由值班机发命令,备用机同步值班机信息。当值班机故障时备用机自动升级为值班节点。
在SCADA系统中,通过实时潮流计算数据实时分析各中枢点电压,分析全网各条母线电压变化,对异常相电压、异常零序电压的母线进行识别。利用网络拓扑计算,实时分析出网上某一条母线接地,可能导致的全网内与其相连的各个220kV母线接地,以及与220kV母线相连的其他220kV变电站区域、110kV和35kV变电站区域接地,根据可能发生的区域接地事件,发出紧急报警,定位 出接地暹罗或接地母线,执行遥控分断路器,及时切除接地线路,必要时进行轮切。利用状态估计,估算出某个变电站内母线电压变化时,引发的全站、甚至全网的电压电流、或P、Q变化,接地故障消缺过程中断路器合闸、分闸引起的全站、全网负荷变化。利用调度员培训仿真系统(DTS),对全网内可能发生母线/线路接地的故障点进行接地模拟仿真,实现母线/线路接地故障“故障定义-故障发生-故障分析-故障判断-故障分析处理-故障切除”的全过程仿真模拟,实现仿真环境下的母线/线路接地故障后选线拉路或轮切模拟。利用事故反演(PDR)、SOE的故障(事后)分析方法,事故反演(PDR)提供电力系统事故发生前、发生时、发生后一段时间内的模拟量变化。SOE提供变电站硬接点信号或软接点信号,包含开关、刀闸变位、线路保护动作等信号,如“保护动作”、“重合闸动作”、“PT断线”、“装置呼唤”、“切换继电器同时动作”、“开关跳位”、“开关合位”、“控制回路断线”、“弹簧未储能”等。该分析方法中通过统一时标,找到断路器跳闸合闸时间点,以及模拟量明显变化时间点,分析关键时间节点处,动作的顺序即模拟量大小变化,分析出故障事件发生的可能原因。
本发明中scada系统实时采集变电站遥信、遥测、具备对厂站开关的遥控功能。遥信包括保护的硬接点和软报文、开关的SOE和遥信变位信号,遥测包括SCADA和PAS应用下的实时断面,遥信和遥测数据为母线/线路接地的实时诊断提供了丰富的数据来源。实时的PAS和SCADA模型为母线/线路接地的实时诊断及接地故障的自动恢复提供了完整的电网模型。Scada系统对母线/线路接地的实时诊断和具备对厂站开关的遥控功能为接地故障的判断及自动处理恢复提供了决策和决策的执行。
各类数据包括母线电压、线路电压、线路电流和线路保护装置发出的信号。具体而言,母线电压包括线电压Uab、Ubc、Uca,相电压Ua、Ub、Uc、零序电压Uo;线路电压包括但不限于Ua、Ub、Uc、Uab、Ubc、Uca、U、Uo、3Uo;线路电流包括但不限于Ia、Ib、Ic、Iab、Ibc、Ica、Io、3Io;线路保护装置发出的信号包括“过流一段动作”、“过流二段动作”、“零序电压动作”、“保护动作”、“一次/二次重合闸动作”等信号。
S2,SCADA周期性计算是否有母线/线路接地。
在得到各类数据后,SCADA对这些数据进行周期性的计算,得到整个电网 中所有母线接地情况。母线/线路接地计算方法包括单相接地启动判据、母线断相接地判定方法和经小电阻接地系统接地故障判定方法。
单相接地启动判据为,利用主网系统中母线零序电压、母线三相电网、母线接地告警、线路接地告警和利用配网系统中“录波闭锁”或者“录波启动”信号再经过场景的逻辑与、或、非组合作为单相接地的启动判据,在周期性计算中,启动设定次数计算,如果计算结果均为“真”,则判定该条母线接地,否则判定该条母线未接地。
具体而言,单相接地启动判据是指利用主网系统中10kV/35kV母线零序电压(3U0)、10kV/35kV母线三相电网(Ua/Ub/Uc)、10kV/35kV母线接地告警、10kV/35kV线路接地告警和利用配网系统中“录波闭锁”或者“录波启动”信号再经过场景的逻辑与、或、非组合作为单相接地的启动判据。例:条件1:x1表示主网10kV母线零序电压(3U0),条件2:x2表示主网10kV母线A相电压,条件3:x3表示主网10kV母线B相电压,条件4:x4表示主网10kV母线C相电压,条件5:x5表示主网10kV母线接地告警动作,条件6:x6表示配网系统中“录波闭锁”或者“录波启动”信号动作,10kV单相接地启动条件表达式为:x1>30||((x2<4.8&&x3>7.0&&x4>7.0)||(x2>7.0&&x3<4.8&&x4>7.0)||(x2>7.0&&x3>7.0&&x4<4.8))||x5||x6,依次类推,35kV单相接地启动条件表达式为:x1>30||((x2<16.0&&x3>24.5&&x4>24.5)||(x2>24.5&&x3<16.0&&x4>24.5)||(x2>24.5&&x3>24.5&&x4<16.0))||x5||x6。在采集周期内,启动3次计算,3次表达式计算结果均成立,即计算结果为“真”,则判断该条母线接地;若连续3次计算中,至少有一次表达式计算结果不成立,即计算结果为“假”,则判断该条母线未接地。
对于母线断相来说,母线断相判定方法为:如果接地相母线电压小于第一预定值,且非接地相母线电压均大于第二预定值时,则判定该母线断相;或者母线电压任意两相之差的绝对值大于第三预定值,则判定该母线断相;或者母线电压任意一项电压小于第四预定值,另外两相电压至少一相大于第五预定值时,则判定该母线断相。
以下表达式中,x1为Ua实时值,x2为Ub实时值,x3为Uc实时值。
例:计算母线断相,用作母线接地的辅助计算,具体方法如下:
10kV母线断相:
(x1<4.5&x2>5.3&x3>5.3)||(x2<4.5&x1>5.3&x3>5.3)||(x3<4.5&x1>5.3&x2>5.3)(即10kV接地相母线电压小于4.5kV,且非接地相母线电压均大于5.3kV时,判定该10kV母线断相。)或(abs(x1-x2)>0.5)||(abs(x2-x3)>0.5)||(abs(x1-x3)>0.5)(即10kV母线电压任意两相之差的绝对值大于0.5kV,则判定该10kV母线断相。)或(x1<4.5&(x2>5.3||x3>5.3))||(x2<4.5&(x1>5.3||x3>5.3))||(x3<4.5&(x1>5.3||x2>5.3))(即当10kV母线电压任意一相电压小于4.5kV时,如果另外两相电压至少一相大于5.3kV,则判定该10kV母线断相。)。
35kV母线断相:
(x1<15&(x2>19||x3>19))||(x2<15&(x1>19||x3>19))||(x3<15&(x1>19||x2>19))(即当35kV母线电压任意一相电压小于15kV时,如果另外两相电压至少一相大于19kV,则判定该35kV母线断相)。
对于母线接地来说,母线接地判定方法为:如果母线电压接地相小于第六预定值,且非接地相电压均大于第七预定值时,则判定该母线接地;或者如果母线电压任意一相电压大于第八预定值,另外两相电压之差的绝对值大于第九预定值,则判定该母线接地。
例:计算母线接地,具体方法如下:
10kV母线接地:
(x1>6.3&x2>6.3&x3<5.2)||(x1>6.3&x3>6.3&x2<5.2)||(x2>6.3&x3>6.3&x1<5.2)(即10kV母线电压接地相小于5.2kV,且非接地相电压均大于6.3kV时,判定该10kV母线接地。),或((x1>6.5)&abs(x2-x3)>0.6)||((x2>6.5)&abs(x1-x3)>0.6)||((x3>6.5)&abs(x1-x2)>0.6)(即当10kV母线电压任意一相电压大于6.5kV时,如果另外两相电压之差的绝对值大于0.6kV,则判定该10kV母线接地。)。
35kV母线接地:
(x1>23&x2>23&x3<18)||(x1>23&x3>23&x2<18)||(x2>23&x3>23&x1<18)(即35kV母线电压任意一相母线电压小于18kV,且另外两项相母线电压均大于23kV时,判定该35kV母线接地。),或x1>26||x2>26||x3>26||abs(x1-x2)>10.5||abs(x1-x3)>10.5||abs(x2-x3)>10.5(即当35kV母线电压任意一相母线电压大于26kV,或任意两相之差的绝对值大于10.5kV,则判定该35kV母线接地)。
经小电阻接地系统,发生接地时,故障线电流方向(Io的方向)与非故障线电流方向相反,即一正一负。因此经小电阻接地系统接地故障判定方法为,根据潮流计算实时数据,分析同一条母线上各个线路电流方向,其中,故障线与其他非故障线电流方向相反,由此判断出该故障线路。
Scada系统中同时配置以上三种母线/线路接地计算方法,具体运行时选用某种或某几种组合计算方法,通过人机界面可选。
S3,如果有母线/线路接地,则进行故障定位并推送接地报警信号。
具体而言,在计算到有母线/线路接地后,如果是通过单相接地启动判据和母线断相接地判定方法判定出母线接地后,scada系统立即调用时序数据库中母线零序电压、零序电流、相电压、相电流等实时量测信息的毫秒级数据,解析毫秒级数据波形,分析毫秒级数据波形,进行故障定位。
时序数据库中毫秒级时序数据,相当于故障录波数据,且时序数据库的数据可存储于raid5(或其他具有容错功能的raid)磁盘阵列中,因此基于时序数据库的故障录波功能更强大,录波长度更长,录波分辨率更高,故障录波数据保存时间更久,便于统计分析。时序数据可靠保存在raid5(或其他具有容错功能的raid)磁盘阵列中,因此,已记录的数据不易丢失。时序数据库集成于scada系统中,不存在数据接口,数据调用速度快、数据读取速度快。
如果是经小电阻接地系统接地故障判定方法得到的接地故障,可检测到故障线与其他非故障线电流方向相反,由此可判断出该故障线路的位置。
并且,可将报警信号在调度员画面及告警窗进行推送,以便相关人员能够及时知晓接地报警信息。
S4,计算出引起接地可能的影响因素,形成接地拉闸序位表,所述影响因素包括线路/主变三侧/分段/母联/旁母断路器。
具体而言,计算出引起接地可能的影响因素方法为,统计该母线/线路历史故障次数,根据发生接地频率高低进行排序,当频率相同时根据预先设定的线路类型和线路负荷进行排序。
系统自动统计以往发生过接地故障的故障点次数,统计厂站端各线路/主变三侧/分段/母联/旁母断路器等引起的接地次数,根据发生接地频率高低,在接地故障轮切时对接地频率高的线路/主变三侧/分段/母联/旁母等断路器优先拉闸。 当频率相同时,考虑按照先架空后电缆,先线路、后分段/母联/旁母、最后主变三侧(以减少负荷损失量),同类型线路按装置统计的故障率由高到低排序进行的轮切模式。另外,还需要考虑负荷性质、负荷重要性,先三级负荷、后二级负荷、最后一级负荷的排序进行接地拉闸(用电负荷按供电级别分为:一级负荷,指供电中断将造成人身伤亡、重大经济损失、公共秩序严重混乱、重大政治影响的负荷;二级负荷,指供电中断将造成较大政治影响、较大经济损失、公共秩序混乱的负荷;三级负荷,不属于一级、二级的负荷,对供电无特殊要求,允许系统故障时暂停供电。)。综合以上三个方面,最终确定接地拉闸顺序,形成接地拉闸序位表,并根据电网架构运行方式调整、负荷性质变化等实时更新。
S5,根据接地拉闸序位表,依次遥控分闸所述影响因素对应的断路器,并判断接地故障是否消除,直至接地故障消除。
遥控分闸包括手动选线轮切方法和自动选线轮切方法。
手动选线轮切方法为,按照先架空后电缆,同类型线路按装置统计的故障率由高到低排序进行的轮切模式。轮切功能及与线路保护重合闸配合的动作行为。或者由值班调度员依据经验依次人工遥控分闸断路器,直到接地消除。
自动选线轮切方法为,首先检测线路保护是否动作,是则计算接地故障是否消除,否则拉开接地拉闸序位表中下一个断路器,如此循环,直到接地故障消除。具体而言,首先检测线路保护是否过流一段动作/过流二段动作/零序电压动作,低频低压减载装置是否动作,备自投装置是否动作,是(继续计算U0、I0检测接地是否消除),否(按照故障率统计表和事故限电序位表,首先切除故障率较高且不为重要负荷的线路),检测重合闸动作,低频低压减载动作,备自投动作,检测接地故障是否消除,未消除则合上上一条拉开的线路恢复供电,继续拉下一条线路。检测线路保护是否动作,是则计算接地是否消除,否则拉开事故限电序位表中下一条线路(拉完本母线上所有间隔后接地仍然未消除,则拉并列运行母线上的分段开关/母联开关,拉并列运行母线上线路,拉上一级母线上线路,或拉主变三侧开关)……如此循环,直到接地故障消除。
S6,如果接地故障已消除,则重复步骤S2至S5,即计算新的接地。
本发明利用scada系统实现对变电站母线/线路接地情况的实时监测及接地故障的自动处理,跳出常规方式通过变电站加装小电流接地选线装置来实现接地 报警及故障处置,将厂站端一次数据、自动化数据、线路保护、重合闸动作、低频低压减载动作、备自投动作等数据呈现于scada系统,并与scada系统中网络拓扑、调度员潮流、状态估计、短路电流计算等相融合,从技术层面上在调度端实现对全网内所有变电站的母线/线路接地故障的自动、及时、准确切除,提高了供电可靠性,减少多个变电站内多个小电流接地选线装置的装置购买成本及人力维护费用,为生产检修及电力调度提供辅助决策。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 基于SCADA数据的母线/线路接地选线轮切方法,其中,所述方法包括:
    S1,SCADA实时采集各类数据,所述SCADA布设于电力调度端,所述各类数据为电力厂站端的数据,所述SCADA与所述电力厂站端通讯连接;
    S2,SCADA周期性计算是否有母线/线路接地;
    S3,如果有母线/线路接地,则进行故障定位并推送接地报警信号;
    S4,计算出引起接地可能的影响因素,形成接地拉闸序位表,所述影响因素包括线路/主变三侧/分段/母联/旁母断路器;
    S5,根据接地拉闸序位表,依次遥控分闸所述影响因素对应的断路器,并判断接地故障是否消除,直至接地故障消除;
    S6,如果接地故障已消除,则重复步骤S2至S5。
  2. 根据权利要求1所述的基于SCADA数据的母线/线路接地选线轮切方法,其中,所述各类数据包括母线电压、线路电压、线路电流和线路保护装置发出的信号。
  3. 根据权利要求1所述的基于SCADA数据的母线/线路接地选线轮切方法,其中,所述母线/线路接地计算方法包括单相接地启动判据、母线断相接地判定方法和经小电阻接地系统接地故障判定方法。
  4. 根据权利要求3所述的基于SCADA数据的母线/线路接地选线轮切方法,其中,所述单相接地启动判据为,利用主网系统中母线零序电压、母线三相电网、母线接地告警、线路接地告警和利用配网系统中“录波闭锁”或者“录波启动”信号再经过场景的逻辑与、或、非组合作为单相接地的启动判据,在周期性计算中,启动设定次数计算,如果计算结果均为“真”,则判定该条母线接地,否则判定该条母线未接地。
  5. 根据权利要求3所述的基于SCADA数据的母线/线路接地选线轮切方法,其中,对于母线断相来说,所述母线断相判定方法为:
    如果接地相母线电压小于第一预定值,且非接地相母线电压均大于第二预定值时,则判定该母线断相;或者母线电压任意两相之差的绝对值大于第三预定值,则判定该母线断相;或者母线电压任意一项电压小于第四预定值,另外两相电压至少一相大于第五预定值时,则判定该母线断相;
    对于母线接地来说,所述母线接地判定方法为:
    如果母线电压接地相小于第六预定值,且非接地相电压均大于第七预定值时,则判定该母线接地;或者如果母线电压任意一相电压大于第八预定值,另外两相电压之差的绝对值大于第九预定值,则判定该母线接地。
  6. 根据权利要求3所述的基于SCADA数据的母线/线路接地选线轮切方法,其中,所述经小电阻接地系统接地故障判定方法为,根据潮流计算实时数据,分析同一条母线上各个线路电流方向,其中,故障线与其他非故障线电流方向相反,由此判断出该故障线路。
  7. 根据权利要求3所述的基于SCADA数据的母线/线路接地选线轮切方法,其中,计算出引起接地可能的影响因素方法为,统计该母线/线路历史故障次数,根据发生接地频率高低进行排序,当频率相同时根据预先设定的线路类型和线路负荷进行排序。
  8. 根据权利要求1所述的基于SCADA数据的母线/线路接地选线轮切方法,其中,所述遥控分闸包括手动选线轮切方法和自动选线轮切方法。
  9. 根据权利要求8所述的基于SCADA数据的母线/线路接地选线轮切方法,其中,所述手动选线轮切方法为,按照先架空后电缆,同类型线路按装置统计的故障率由高到低排序进行的轮切模式。
  10. 根据权利要求8所述的基于SCADA数据的母线/线路接地选线轮切方法,其中,所述自动选线轮切方法为,
    首先检测线路保护是否动作,是则计算接地故障是否消除,否则拉开接地拉闸序位表中下一个断路器,如此循环,直到接地故障消。
PCT/CN2021/132239 2021-10-15 2021-11-23 基于scada数据的母线/线路接地选线轮切方法 WO2023060705A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111201248.0A CN113922326B (zh) 2021-10-15 2021-10-15 基于scada数据的母线/线路接地选线轮切方法
CN202111201248.0 2021-10-15

Publications (1)

Publication Number Publication Date
WO2023060705A1 true WO2023060705A1 (zh) 2023-04-20

Family

ID=79240705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/132239 WO2023060705A1 (zh) 2021-10-15 2021-11-23 基于scada数据的母线/线路接地选线轮切方法

Country Status (2)

Country Link
CN (1) CN113922326B (zh)
WO (1) WO2023060705A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117330896A (zh) * 2023-10-08 2024-01-02 国网安徽省电力有限公司怀远县供电公司 一种小电流接地选线告警的快速预警系统
CN117872228A (zh) * 2024-03-12 2024-04-12 武汉格蓝若智能技术股份有限公司 一种变电站内电压并列装置错误闭合在线诊断方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08130828A (ja) * 1994-11-04 1996-05-21 Hitachi Ltd 電力系統の電圧安定度監視方法およびその装置
CN105259480A (zh) * 2015-11-27 2016-01-20 国家电网公司 一种调度端小电流单相接地选线方法和系统
CN205157709U (zh) * 2015-11-27 2016-04-13 国家电网公司 一种调度端小电流单相接地选线系统
CN109031044A (zh) * 2018-08-09 2018-12-18 国网浙江省电力有限公司温州供电公司 一种调度端变电站小电流单相接地自动选线方法
CN112415425A (zh) * 2020-11-16 2021-02-26 贵州电网有限责任公司 一种10kv配网小电流单相接地故障检测方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104951990B (zh) * 2014-03-28 2018-06-05 国际商业机器公司 电网数据处理方法及设备
CN106918758B (zh) * 2017-02-17 2020-03-20 国电南瑞科技股份有限公司 一种基于电气量和非电气量的小电流接地综合选线方法
CN111007427B (zh) * 2019-11-23 2021-05-04 清华大学 配电线路单相接地故障选线方法及计算机可读存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08130828A (ja) * 1994-11-04 1996-05-21 Hitachi Ltd 電力系統の電圧安定度監視方法およびその装置
CN105259480A (zh) * 2015-11-27 2016-01-20 国家电网公司 一种调度端小电流单相接地选线方法和系统
CN205157709U (zh) * 2015-11-27 2016-04-13 国家电网公司 一种调度端小电流单相接地选线系统
CN109031044A (zh) * 2018-08-09 2018-12-18 国网浙江省电力有限公司温州供电公司 一种调度端变电站小电流单相接地自动选线方法
CN112415425A (zh) * 2020-11-16 2021-02-26 贵州电网有限责任公司 一种10kv配网小电流单相接地故障检测方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117330896A (zh) * 2023-10-08 2024-01-02 国网安徽省电力有限公司怀远县供电公司 一种小电流接地选线告警的快速预警系统
CN117330896B (zh) * 2023-10-08 2024-04-09 国网安徽省电力有限公司怀远县供电公司 一种小电流接地选线告警的快速预警系统
CN117872228A (zh) * 2024-03-12 2024-04-12 武汉格蓝若智能技术股份有限公司 一种变电站内电压并列装置错误闭合在线诊断方法及系统

Also Published As

Publication number Publication date
CN113922326A (zh) 2022-01-11
CN113922326B (zh) 2022-09-09

Similar Documents

Publication Publication Date Title
CN102035202B (zh) 一种网络重构系统
CN104198884B (zh) 基于差动原理的大规模电网智能故障诊断方法
CN103607042B (zh) 面向城郊长架空线路故障指示器的配电网故障处理方法
WO2023060705A1 (zh) 基于scada数据的母线/线路接地选线轮切方法
O'Brien et al. Catching falling conductors in midair—detecting and tripping broken distribution circuit conductors at protection speeds
CN106124935A (zh) 中低压配电网络故障定位方法
CN103023149A (zh) 一种基于iec61850标准的智能配电终端及智能配电系统
CN113433419B (zh) 基于多态数据协同处理的智能告警方法及系统
CN112595930B (zh) 含分布式电源花瓣式城市电网区域后备保护方法
CN109521348A (zh) 一种直流断路器用igbt模块的可靠性测试及寿命评估方法
CN111049112B (zh) 一种10kV环网配电线路自动化故障隔离及自愈的控制系统及方法
CN107561408B (zh) 一种提高小电流接地故障选线准确率的方法
CN108011358A (zh) 一种基于态势感知的配电网多节点故障智能诊断方法
Sarathkumar et al. A technical review on self-healing control strategy for smart grid power systems
CN112421761B (zh) 一种枢纽牵引供电系统继电保护重构自愈方法
CN107843800A (zh) 供电网络监控方法、装置及系统
CN113341272A (zh) 基于暂态量的配电网单相接地故障区段定位系统及方法
CN201398071Y (zh) 基于线路重合器的小电流接地故障自动隔离装置
CN204497849U (zh) 一种兼顾集中式、就地式馈线自动化的测控装置
CN108847656B (zh) 基于自适应动态贡献率的配网接地选线保护系统
CN113866677B (zh) 基于scada数据的接地故障切除正确性校验方法
CN113884942B (zh) 基于scada数据的接地选线报警正确性校验方法
CN113013871A (zh) 一种配电网设备故障、检修时的负荷转供方法
Ivanković et al. Advanced and Rapid Tool in Control Room to Determine the Cause and Location of Events in transmission network
Silva-Saravia et al. Islanding detection and resynchronization based upon wide-area monitoring and situational awareness in the Dominican Republic

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21960432

Country of ref document: EP

Kind code of ref document: A1