WO2023059148A1 - Use of 2-chloro-n,n-diethylethylamine hydrochloride for improving anti-cancer treatment - Google Patents

Use of 2-chloro-n,n-diethylethylamine hydrochloride for improving anti-cancer treatment Download PDF

Info

Publication number
WO2023059148A1
WO2023059148A1 PCT/KR2022/015184 KR2022015184W WO2023059148A1 WO 2023059148 A1 WO2023059148 A1 WO 2023059148A1 KR 2022015184 W KR2022015184 W KR 2022015184W WO 2023059148 A1 WO2023059148 A1 WO 2023059148A1
Authority
WO
WIPO (PCT)
Prior art keywords
cancer
formula
uni21
salt
deae
Prior art date
Application number
PCT/KR2022/015184
Other languages
French (fr)
Korean (ko)
Inventor
명경재
위민우
4세아놀드 스캇 그뢸러
쉐러올란도
김건우
최장현
Original Assignee
기초과학연구원
울산과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 기초과학연구원, 울산과학기술원 filed Critical 기초과학연구원
Publication of WO2023059148A1 publication Critical patent/WO2023059148A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/131Amines acyclic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2300/00Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00

Definitions

  • the present invention relates to the use of 2-chloro-N,N-diethylethylamine hydrochloride for improving cancer treatment, and more particularly, to kill cancer cells by alkylating DNA bases using a nitrogen mustard-based compound of Formula 1. It relates to a pharmaceutical composition for preventing or treating cancer that exhibits a synergistic effect by using in combination with an existing PARP inhibitor.
  • PARP Poly (ADP-ribose) polymerase
  • the patient currently has a specific tumor type (e.g., high-grade serous ovarian cancer or triple negative brain cancer) or whose cancer is a subtype of a related molecule (e.g., BRCA1/2-mutated breast cancer, ovarian cancer, pancreatic cancer, or prostate cancer). ) is considered as a PARP inhibitor test.
  • a specific tumor type e.g., high-grade serous ovarian cancer or triple negative brain cancer
  • a subtype of a related molecule e.g., BRCA1/2-mutated breast cancer, ovarian cancer, pancreatic cancer, or prostate cancer.
  • PARP inhibitor (PARPi) monotherapy has shown promising efficacy and safety profiles in the clinic, but their major limitations are the need for HR deficiency and the rapid emergence of resistance. Many tumors that initially respond to PARPi treatment eventually relapse through compensatory mutations that either restore HR activity or stimulate the activation of alternative repair pathways. Therefore, the use of PARP inhibitors is limited to specific tumor types and has a problem in that they cannot be used in any cancer treatment.
  • Korean Patent Publication No. 10-2018-0051500 uses a combination of a debate molecule and a PARP inhibitor for cancer treatment
  • Korean Patent Publication No. 10-2018-0037210 discloses a combination using liposomal irinotecan and a PARP inhibitor for cancer treatment. therapy is initiated.
  • combination therapy is used for a long period of time, there is a problem in that cancer cells resistant to various mutations do not die even after chemotherapy.
  • the present inventors reduced the toxicity by removing one halogen group from the existing highly toxic bis-(2-chloroethyl)ethylamine, and alkylated the DNA base using a compound with significantly reduced toxicity. By doing so, it was confirmed that it is possible to provide a pharmaceutical composition for preventing or treating cancer that can kill cancer cells and produce a synergistic effect by using it in combination with an existing PARP inhibitor, thereby completing the present invention.
  • An object of the present invention is to reduce toxicity by removing one halogen group from bis-(2-chloroethyl)ethylamine, which is highly toxic, and to kill cancer cells by alkylating DNA bases using the compound with significantly reduced toxicity. It is to provide a pharmaceutical composition for preventing or treating cancer that exhibits an effect.
  • Another object of the present invention is to provide a pharmaceutical composition for preventing or treating cancer that produces a synergistic effect by using the compound together with an existing PARP inhibitor.
  • the present invention provides a pharmaceutical composition for preventing or treating cancer comprising a compound represented by Formula 1 or a pharmaceutically acceptable salt thereof.
  • R is a halogen group.
  • the present invention also provides a method for preventing or treating cancer disease comprising the step of administering to a subject a pharmaceutical composition for preventing or treating cancer comprising the compound represented by Formula 1 or a pharmaceutically acceptable salt thereof.
  • the present invention also provides a use of a pharmaceutical composition for preventing or treating cancer comprising the compound represented by Formula 1 or a pharmaceutically acceptable salt thereof.
  • the present invention also provides a use in the manufacture of a drug for preventing or treating cancer comprising the compound represented by Formula 1 or a pharmaceutically acceptable salt thereof.
  • 1A is a diagram showing the structure of UNI21.
  • Figure 1b is a graph in which UNI21 is screened as a drug that increases stress through a Luciferase-ATAD5 assay and an assay capable of measuring DNA replication and repair stress (DNA replication & repair stress) according to an embodiment of the present invention.
  • 5-FUrd is a positive control.
  • 1c is a diagram showing the results of measuring cell viability in various KO HAP1 cell lines according to an embodiment of the present invention.
  • Figure 1d is a diagram showing the results of Western blotting of the cell lines used in Figure 1c according to an embodiment of the present invention.
  • Figure 1e is a view showing the results of measuring the viability of KO cells with increasing concentrations of UNI21 in HAP1, HCT116, and XP2OS cell lines based on the data measured with 20 ⁇ M of UNI21 in Figure 1c according to an embodiment of the present invention.
  • Figure 1f is a diagram showing the results of confirming the synergistic effect (synergistic effect) with the PARP inhibitor (inhibitor) up parip (Olaparib) in PARP1 KO cells according to an embodiment of the present invention.
  • Figure 1g is a diagram showing the results of experiments performed under different conditions for oliparib and UNI21 in Figure 1f.
  • Figure 2a is a schematic diagram showing the in vitro reaction scheme of UNI21 and DNA base according to an embodiment of the present invention.
  • Figure 2b is a diagram showing the results of representative UPLC-HRAM-PRM tracking of DEAE-purine in UNI21-treated CTDNA.
  • alkylated purines were released by thermal hydrolysis and concentrated for analysis as described in Materials and Methods.
  • Red traces show UPLC-HRAM-PRM of DEAE-guanine (panel 2) and DEAE-adenine (panel 4) detected in 1.2 ⁇ g depurinated CTDNA.
  • Figure 2c shows representative UPLC-HRAM-PRM traces of enzymatically released DEAE-pyrimidine from 5 ⁇ g UNI21-treated CTDNA.
  • 3A is a diagram showing the cell cycle of HCT116 after UNI21 treatment according to an embodiment of the present invention.
  • HCT116 wild-type and PARP1 deficient cells were incubated with different doses of UNI21 for 24 hours and the relative percentages of cell cycle phases were calculated with Flow-Jo software.
  • Figure 3b is a diagram showing the result of confirming the occurrence of DSB due to UNI21 processing with g-H2AX.
  • HCT116 wild-type or PARP1 deficient cells were incubated with 80 ⁇ M UNI21 for 24 hours and the indicated protein levels were determined in whole cell extracts.
  • Figure 3c is a view confirming the result that UNI21 treatment improves more DNA damage in PARP1-deficient cells.
  • the tail moment of the CometChip® analysis was calculated using Comet analysis software (Trevigen).
  • 3D is a view confirming the result that UNI21 treatment induces more frequent SCE in HCT116 parp1 KO cells.
  • FIG. 3E is a diagram showing the BX53 distribution of FIG. 3D with SCEs imaged.
  • 3f is a diagram confirming that UNI21 treatment induces abnormal chromosomes in HCT116 parp1 KO cells.
  • Figure 3g is a diagram of chromosomal breaks imaged by the BX53 G distribution in Figure 3F.
  • Figure 3h is a diagram confirming that the percentage of cells with 25 or more breaks per metaphase increased in HCT116 parp1 KO cells.
  • Figure 3i is a diagram confirming that UNI21 treatment induces more apoptosis in PARP1-deficient cells. Apoptotic cell death was quantified using Annexin V Alexa FluorTM 488 conjugate and analyzed by flow cytometry. Data are presented as mean ⁇ SEM.
  • Figure 4a is a schematic diagram showing a mouse xenograft experiment for confirming the in vivo effect of UNNI21 that UNI21 inhibits the growth of PARP1-deficient xenograft tumors in nude mice according to an embodiment of the present invention.
  • Four million cells of either WT HCT116 or PARP1 deficient HCT116 cells were injected subcutaneously into 7-week-old male nude mice.
  • tumor size reached approximately 200 mm 3
  • vehicle (PBS) or UNI21 (6 mg/kg) was injected intratumorally every 3 days for 16 days.
  • the indicated assays were performed after mice were euthanized.
  • Figure 4b is a photograph of a PARP1 KO tumor harvested 16 days after treatment with UNI21 according to an embodiment of the present invention.
  • Figure 4c is a graph showing the tumor volume (tumor volume) of Figure 4b.
  • Figure 4d is a graph showing the results of tracing UNI21 in tumors injected every 3 days according to an embodiment of the present invention.
  • Figure 4e is a view showing the results of H&E staining, TUNEL assay, and ⁇ -H2AX IHC after sectioning the harvested tumor according to an embodiment of the present invention.
  • FIG. 5 is a diagram showing the results of an experiment using a structure in which bromine is bonded instead of chlorine according to another embodiment of the present invention.
  • 6A to 6D are diagrams illustrating results of mass spectrometry performed based on the schematic diagram shown in FIG. 2A.
  • FIG. 7 to 7d are diagrams illustrating the results of mass spectrometry of the red graph shown in FIG. 2b.
  • the pharmaceutical composition for treating cancer comprising the compound of Formula 1 and a pharmaceutically acceptable salt thereof can be applied to various cancer cells resistant to PARP inhibitors to selectively and effectively kill them, and moreover, conventional PARP inhibitors It was confirmed that it exhibits a synergistic effect by using in combination with
  • the present invention relates to a pharmaceutical composition for preventing or treating cancer comprising a compound represented by Formula 1 or a pharmaceutically acceptable salt thereof.
  • R is a halogen group.
  • halogen include fluorine (F), chlorine (Cl), bromine (Br), and iodine (I), and in particular, chlorine (Cl) or bromine (Br).
  • treatment when used on a subject exhibiting symptoms of disease, means stopping or delaying the progression of a disease.
  • composition may include a pharmaceutically acceptable carrier, diluent, excipient, or a combination thereof together with the compound of the present invention, if necessary.
  • pharmaceutically acceptable means a property that does not impair the biological activity and physical properties of a compound.
  • carrier refers to a substance that facilitates the addition of a compound into a cell or tissue.
  • diuent is defined as a substance that is diluted in water that not only stabilizes the biologically active form of the subject compound, but also dissolves the compound.
  • excipients refers to substances that are added for the purpose of giving a drug an appropriate hardness or shape, or to give a certain volume or weight to a size that is easy to handle when the amount of the main agent is small. it means.
  • the present invention relates to a pharmaceutical composition for preventing or treating cancer comprising a compound represented by Formula 1 represented by Formula 1 or a pharmaceutically acceptable salt thereof.
  • R is a halogen group.
  • the compound of Formula 1 may be a compound represented by Formula 2 or Formula 3 below.
  • the compound of Formula 1 may form a pharmaceutically acceptable salt thereof.
  • a pharmaceutically acceptable salt thereof may be used with an acid that forms a non-toxic acid addition salt containing a pharmaceutically acceptable anion, for example, an inorganic acid such as sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, hydrobromic acid, hydroiodic acid, and the like.
  • organic acids such as tartaric acid, formic acid, citric acid, acetic acid, trifluoroacetic acid, gluconic acid, benzoic acid, lactic acid, fumaric acid, lactic acid, malonic acid, malic acid, salicylic acid, succinic acid, oxalic acid, propionic acid, aspartic acid, glutamic acid, citric acid, and the like; It may be an acid addition salt formed with sulfonic acids such as methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, and naphthalenesulfonic acid.
  • the pharmaceutically acceptable salt thereof may be selected from the group consisting of HCl salt, HBr salt, HI salt, H 2 SO 4 salt, HNO 3 salt, and combinations thereof.
  • the compound of Formula 1 according to the present invention may be converted into a salt thereof by a conventional method, and the preparation of the salt may be easily performed by a person skilled in the art based on the structure of Formula 1 without a separate explanation.
  • the compound of Formula 1 includes pharmaceutically acceptable salts thereof, and all of them should be construed as being included in the scope of the present invention. For convenience of explanation, in the present specification, they are simply expressed as compounds of Formula 1.
  • the cancer is squamous cell cancer, small cell lung cancer, non-small cell lung cancer, lung cancer, peritoneal cancer, colon cancer, biliary tract tumor, nasopharyngeal cancer, laryngeal cancer, bronchial cancer, oral cancer, osteosarcoma, gallbladder cancer, kidney cancer, leukemia, bladder cancer, melanoma , brain cancer, glioma, brain tumor, skin cancer, pancreatic cancer, breast cancer, liver cancer, bone marrow cancer, esophageal cancer, colorectal cancer, stomach cancer, cervical cancer, prostate cancer, ovarian cancer, head and neck cancer, and rectal cancer.
  • the present invention can obtain a synergistic effect by using a composition that further includes a PARP inhibitor in combination therapy.
  • the PARP inhibitor is 1 from the group consisting of olaparib, talazoparib, niraparib, rucaparib, veliparib and pamiparib More than one species can be selected.
  • the present invention treats cancer disease comprising the step of administering to a subject a pharmaceutical composition for preventing or treating cancer disease comprising a compound represented by Formula 1 or a pharmaceutically acceptable salt thereof as an active ingredient. or prevention methods.
  • the present invention relates to the use of a pharmaceutical composition for preventing or treating cancer comprising a compound represented by Formula 1 or a pharmaceutically acceptable salt thereof, and a compound represented by Formula 1 or a pharmaceutically acceptable salt thereof. It provides use in the manufacture of a medicament for preventing or treating cancer containing a salt.
  • the present invention relates to a pharmaceutical composition
  • a pharmaceutical composition comprising the compound of Formula 1 or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier, capable of treating or preventing cancer.
  • the compound represented by Formula 1 or a pharmaceutically acceptable salt thereof of the present invention can be used as a cancer treatment agent.
  • the quinoline derivative of Chemical Formula 1 or a pharmaceutically acceptable salt thereof has an activity of inhibiting tumor growth by alkylating DNA.
  • the excellent anticancer effect of the compound of Formula 1 or a pharmaceutically acceptable salt thereof according to the present invention is determined by screening through a luciferase-ATAD5 assay (DNA replication & repair stress assay), repair gene KO HAP1, Measurement of cell viability in HCT116 and U2OS cell lines, synergistic effect in combination therapy with Olaparib, and relative amount of alkylated DNA bases through mass spectrometry It was demonstrated through in vitro experiments such as comparative analysis of alkylation priority (dG>>dA>dC ⁇ dT) and in vivo experiments with nude mouse HCT116 PARP1 KO cell xenotransplantation. This will be described later in the following embodiments.
  • a salt dissolved in a buffer solution is used as a diluent
  • a commonly used buffer solution may be a phosphate buffered saline solution that mimics the salt form of a human solution. Because buffer salts can control the pH of a solution at low concentrations, buffer diluents do not modify the biological activity of the compound.
  • a compound of the present invention may be formulated for use in a pharmaceutical or veterinary composition that also contains a pharmaceutically or veterinarily acceptable carrier or diluent.
  • the composition according to the present invention can be generally prepared according to a conventional method and administered in a pharmaceutically or veterinarily appropriate form.
  • the pharmaceutical composition of the present invention is administered orally in the form of tablets, capsules, sugar-coated, film-coated tablets, liquid solutions or suspensions, or parenterally by way of injection or infusion subcutaneously, intramuscularly or intravenously. can be administered.
  • the dosage may be determined according to various factors including the age, weight and condition of the patient and the route of administration.
  • the daily dose can vary within wide limits and can be adjusted to the individual requirements in each individual case.
  • the dosage adopted for each route of administration is 0.0001 to 50 mg/kg body weight, for example 0.01 to 1 mg/kg in the range of 0.001 to 10 mg/kg body weight. You can do it by weight.
  • Such administration doses may be given, for example, from 1 to 5 times per day.
  • a suitable daily dose is 0.0001 to 1 mg/kg body weight, preferably 0.0001 to 0.1 mg/kg body weight.
  • the daily dose may be administered as a single dose or according to a divided dose schedule.
  • the compounds according to the present invention can specifically alkylate cancer cells.
  • PARP1 which is important for Base Excision Repair (BER), or xeroderma pigmentosum group A protein (XPA), which is important for Nuclear Excision Repair (NER), repairs these alkylated bases
  • XPA xeroderma pigmentosum group A protein
  • NER Nuclear Excision Repair
  • Cancer cells do not properly recover these alkylated bases, and thus have the effect of specifically killing them.
  • HCT116 ATCC
  • XP2OS XPA mutation c.390-1G>C (IVS3-1G>C) to create a splicing acceptor in exon 3
  • XP2OS expressing WT XPA XPA complementary, this example
  • U2OS ATCC ® HTB-96
  • HEK293T ATAD5-LUC Cells were cultured in 10% fetal bovine serum (FBS, Merk), 1% antibiotic-antimycotic (penicillin 10000 units/mL, streptomycin 10000 ⁇ g/mL, Fungizone ® (Amphotericin B) 25 ⁇ g/mL, Gibco ® ) were incubated at 37° C.
  • HAP1 cells were cultured in Iscove's Modified Dulbecco's Medium (IMDM) containing 10% fetal bovine serum and 1% antibiotic-antimycotic at 37°C in the presence of 5% CO 2 .
  • IMDM Iscove's Modified Dulbecco's Medium
  • U2OS cells containing DR-GFP (homologous recombination), SA-GFP (single-stranded annealing), EJ2-GFP (micro-homology mediated end junctions), or EJ5-GFP (non-homologous end junctions) reporters were cultured in 10% fetal bovine serum.
  • DMEM containing 1% penicillin/streptomycin (penicillin 10000 units/mL, streptomycin 10000 ⁇ g/mL, Gibco® ) and 2 ⁇ g/ml puromycin.
  • SV40-transformed human fibroblasts XP2OS (XPA mutant) were cultured in DMEM (Cytiva) supplemented with 10% fetal bovine serum (FBS, millipore) and 1% penicillin/streptomycin at 37°C in the presence of 5% CO 2 . It became.
  • DMEM Cytiva
  • FBS fetal bovine serum
  • penicillin/streptomycin penicillin/streptomycin at 37°C in the presence of 5% CO 2 . It became.
  • 0.75 ⁇ g of the pWPXL expression vector containing the XPA cDNA, 2.25 ⁇ g of the pMD2.G envelope plasmid and 2.25 ⁇ g of the psPAX2 packaging plasmid were established using Lipofectamine 3000 (L3000001, Invitrogen).
  • HEK293T cells were transfected following the protocol and harvested one day later (Salmon, P. et al., Curr Protoc Neurosci, 2006. Chapter 4: p. Unit 4 21).
  • XP2OS cells were seeded in 6-well plates at 50% confluency and incubated with lentivirus at a multiplicity of infection of 2 for 24 hours and then grown as described above.
  • HEK293T ATAD5-LUC cells (Fox, J.T., et al., Proc Natl Acad Sci USA, 2012. 109(14): p. 5423-8) were plated in 96-well white black plates (Costar) at a density of 15,000 cells per well. was plated with After 24 hours, cells were treated with 5-FUrd and UNI21 and incubated for an additional 24 hours. For luciferase activity, One-Glo luciferase reagent (Promega) was added to each well, and the luminescence intensity was measured using a Synergy NEO2 Hybrid Multi-Mode Reader (BioTek).
  • proteins were resolved by SDS-PAGE and transferred to nitrocellulose membranes.
  • Membranes were incubated for 20 minutes in Tris-buffered saline (TBS) containing 0.1% Tween 20 (TBS-T) supplemented with 5% skim milk for blocking, followed by overnight incubation with primary antibodies. Blots were washed and incubated with horseradish peroxidase-conjugated secondary antibody (Enzo Life Sciences) for 1 hour in 1:5,000 diluted TBS-T. Signals were detected using enhanced chemiluminescent reagents (Thermo Fisher Scientific) by an automated imaging system (ChemiDocTM; Bio-Rad Laboratories).
  • Cell death was quantified using a BD FACSVerse instrument with Annexin V Alexa FluorTM 488 conjugate (A13201, Thermo Fisher Scientific) and Flow-Jo software (version 10) according to the manufacturer's instructions.
  • COMET analysis was performed using the CometChip® (Trevigen, Gaithersburg, MD) according to the manufacturer's instructions. Briefly, single cell suspensions were prepared in 6 ml medium with a density of 1.0 X 10 5 cells/ml. Aliquots of 100 ⁇ l cells per well were applied to the CometChip and incubated in a tissue culture incubator for 10 minutes with gentle shaking 3 times at 10 minute intervals to spread the cells evenly. The medium was removed and each CometChip in the 96-well CometChip® system was gently washed twice with 5 mL PBS. The CometChip was then covered with 6 mL of 1% 45°C low-melting agarose in PBS.
  • the slides were immersed in a lysing solution (Trevigen) overnight at 4°C.
  • the CometChip was equilibrated twice in alkaline solution at 4°C for 20 minutes, electrophoresed in alkaline solution at 22V for 50 minutes at 4°C, and neutralized in fresh 0.4M Tris (pH 7.4) buffer for 15 minutes at 4°C. Then, it was equilibrated in 20 mM Tris (pH 7.4) buffer at 4° C. for 30 minutes.
  • the CometChip's DNA was stained with 0.2X SYBR® Gold in 20 mM Tris (pH 7.4) buffer for 2 hours at room temperature. Images were acquired with a fluorescence microscope (BX53; Olympus, Tokyo, Japan) and tail moments were calculated using Comet analysis software (Trevigen).
  • Cells were plated in white hard-bottom 96-well plates at a final density of 5,000 cells per well and incubated for one day before treatment with the indicated compounds. Cell viability was determined 48 hours after treatment using Cell Titer-Glo (Promega) according to the manufacturer's protocol. Viability was quantified on a Synergy NEO2 Hybrid Multi-Mode Reader (BioTek).
  • the compound of Formula 2 (referred to as UNI21) shown in Figure 1a is 2-chloro-N, N-diethylethanamine hydrochloride (2-chloro-N, N-diethylethanamine hydrochloride, SIGMA-ALDRICH) is purchased and used did
  • DEAE-purine nucleobases and DEAE-pyrimidine nucleobases were eluted by adding 500 ⁇ L 100% methanol twice. Collected eluates were concentrated by centrifugal vacuum and stored at -20°C for future analysis.
  • CTDNA calf thymus DNA
  • UNI21 2-chloro- N,N -diethylethanamine hydrochloride
  • the filter was further washed with equal volumes of de-ionized water twice and once with 100 ⁇ L 50:50 Acetonitrile (ACN):DI water. All collected solutions (depurine solutions) were concentrated to dryness by centrifugal vacuum and stored at -20 °C for future experiments.
  • the DNA backbone of the filter was resuspended in 100 ⁇ L water (DNA backbone solution) and recovered from the filter and stored at -20 °C for future experiments.
  • MS mass spectrometry
  • the DEAE-purine and DEAE-pyrimidine nucleobase PRM settings are as follows.
  • ESI + -PRM N7-DEAE-guanine and N9-DEAE-guanine: m/z (+1) 251.1615 at 9-14.0 min;
  • ESI + -PRM N1-DEAE-adenine, N3-DEAE-adenine and N7-DEAE-adenine (N9-DEAE-adenine potential): m/z (+1) 235.1661 at 12-15 min;
  • ESI+-PRM N1-DEAE-thymine and N3-DEAE-thymine: m/z (+1) 226.1547 at 10-13 min.
  • depurine solution was reconstituted in 50 ⁇ L water and measured with a microvolume UV spectrophotometer (Thermo ScientificTM NanoDrop) using the extinction coefficient for guanosine to confirm the presence of nucleobases.
  • An equivalent of 1.2 ⁇ g of CTDNA in depurine solution was analyzed by the DEAE-purine UPLC-HRAM-PRM method described above.
  • the above DNA backbone solution was measured by microvolume UV spectrophotometry and a 25 ⁇ g CTDNA aliquot was diluted in 150 ⁇ L 1X NEB Nucleoside Digestion Mix Reaction Buffer and 2.5 ⁇ L NEB Nucleoside Digestion Mix (1 ⁇ L per 10 ⁇ g CTDNA). mix) for 4 hours at 37°C. After incubation, digestive enzymes were removed by centrifugation at 14,000 rcf for 10 minutes at 4° C. through a Nanosep ® centrifuge with an Omega TM 10 kDa membrane. The filter was further washed once more with the same volume of deionized water and twice more with 100 mL 50:50 ACN:DI water.
  • Hematoxylin and Eosin (H&E) staining and TUNEL and ⁇ -H2AX immunostaining were commercially performed by era (Seoul, Korea). Collected tumors were fixed in formalin and picked up in dozens. Detailed immunostaining procedures can be found on the H historian website (http://www. part.co.kr/).
  • Example 1 UNI21 selectively kills XPA or PARP1 deficient cells.
  • BRCA1-deficient tumors unable to undergo homologous recombination are pathways required for homology-based DNA double-strand break (DSB) repair and are susceptible to DNA DSB-inducing agents such as cisplatin or ionizing radiation. do.
  • DSB DNA double-strand break
  • DNA DSB-inducing agents such as cisplatin or ionizing radiation.
  • HAP1, HCT116 and U2OS cell lines were assessed after co-treatment with a fixed concentration of Olaparib and increasing concentrations of UNI21. Similar to the parp1 KO cell line, co-treatment with Olaparib induced sensitivity to UNI21 in all cell lines tested in a dose-dependent manner (Fig. 1f). Simultaneous treatment with increasing doses of olaparib and fixed concentrations of UNI21 induced sensitivity in a dose-dependent manner in all HAP1, HCT116 and U2OS cell lines (Fig. 1g). Taken together, UNI21 can cause selective lethal effects in cells defective in nucleotide excision repair (NER) or PARP1-dependent repair pathways.
  • NER nucleotide excision repair
  • UNI21 is an antinitrogen mustard and has electrophilic properties when Cl ligands are displaced by an intramolecular ring closure reaction to generate aziridinium ions. These highly reactive electrophiles can alkylate the nucleophilic positions of DNA nucleobases.
  • Fig. 2a we investigated the alkylation of purine and pyrimidine nucleobases by UNI21 (Fig. 2a). 0.2 mmol of each nucleobase and half of 0.2 mmol of UNI21 were carried out according to the conditions described previously (Balcome, S., et al., Chem Res Toxicol, 2004. 17(7): p. 950-62).
  • the reaction mixture was purified by solid phase extraction and analyzed by high resolution accurate mass spectrometry parallel reaction monitoring (UPLC-HRAM-PRM).
  • UPLC-HRAM-PRM high resolution accurate mass spectrometry parallel reaction monitoring
  • Example 3 Identification and characterization of calf thymus DNA (CTDNA) alkylated by 2-chloro- N,N -diethylethanamine hydrochloride (UNI21)
  • CTDNA was incubated with UNI21 for 16 hours. Alkylated purines were released from the DNA backbone by thermal hydrolysis and analyzed by UPLC-HRAM-PRM analysis. When 240 ng of CTDNA was analyzed, the presence of DEAE-guanine was confirmed at 10.3 minutes (FIG. 2b). Since the N9 position of guanine in double-stranded DNA is not accessible, the observed peak at 10.3 min is expected to be N7-DEAE-guanine and the standard peak at 12.1 min is expected to be N9-DEAE-guanine. DEAE-adenine could not be detected while analyzing 240 nanograms of CTDNA.
  • a weak signal for DEAE-adenine could be detected at both 13.1 and 14.3 min when the depurination substrate was increased 5-fold with 1.2 ⁇ g of CTDNA (Fig. 2b). Analysis of the PRM data showed that both peaks had the expected fragmentation pattern.
  • a weak signal at 13.1 min corresponds to N1-DEAE-adenine or N7-DEAE-adenine and a stronger signal at 14.3 min. The signal corresponds to N3-DEAE-adenine.
  • the remaining alkylated DNA backbone was digested with NEB nucleoside digestion mix to generate DEAE-2'-deoxypyrimidines.
  • NEB nucleoside digestion mix When the degradation of 5 ⁇ g of CTDNA was analyzed by the modified DEAE-pyrimidine nucleoside UPLC-HRAM-PRM analysis, two DEAE-dC peaks at 11.9 and 13.3 minutes and one DEAE-dT peak at 12.3 minutes were detected. could (Fig. 2c).
  • the peak observed at 11.9 min is expected to correspond to N 3 -DEAE-dC or O 2 -DEAE-dC, whereas the peak at 12.1 min corresponds to O2 It is expected to correspond to -DEAE-dT, N 3 -DEAE-dT or O 4 -DEAE-dT.
  • UNI21 (2-chloro- N,N -diethylethanamine hydrochloride) is most reactive with 2'-deoxyguanosine, followed by 2'-deoxyadenosine and 2'-deoxypyrimidine. (dG >> dA > dC ⁇ dT).
  • the mutant HAP1 cell line was treated with a UNI21 derivative in which the chloride leaving group was replaced with a bromide leaving group (FIGS. 5d and 5e).
  • the sensitivity of bromide-substituted derivatives did not increase significantly.
  • Example 4 UNI21 induces more DNA cleavage in PARP1 deficient cells
  • UNI21 induces alkylation of nucleobases
  • UNI21 treatment should prevent S-phase progression.
  • the effect of UNI21 on cell cycle progression in HCT116 WT and parp1 KO cell lines was investigated. Both wild-type and parp1 KO cells were arrested in S phase upon treatment with increasing concentrations of UNI21 (Fig. 3a). Since parp1 KO cells were selectively killed by UNI21, DNA damage markers were compared in wild-type cells treated with 80 ⁇ M UNI21 and parp1 KO cells for 24 hours. Consistent with the cell viability results, higher ⁇ H2AX induction was found in UNI21-treated parp1 KO cells (Fig. 3b).
  • the parp1 KO cell line showed significantly increased apoptosis upon treatment with 20 mM UNI21 (FIG. 3i). These results show that UNI21 induces more DNA damage, chromosomal aberrations and apoptosis in PARP1-deficient cells.
  • Example 5 Growth of parp1 KO xenograft tumors is selectively inhibited by UNI21 treatment
  • xenotransplantation was performed using nude mice (Fig. 4a).
  • Four million cells of wild-type or parp1 KO HCT116 were injected subcutaneously into the left flank to form xenograft tumors.
  • tumors reached approximately 200 mm 3
  • vehicle or UNI21 was injected intratumorally.
  • Vehicle-treated wild-type and parp1 KO tumors continued to grow.
  • HCT116 parp1 KO engraftment showed significant delay in tumor growth by UNI21 treatment (FIGS. 4B and 4C).
  • the pharmaceutical composition for treating cancer comprising the compound of Formula 1 and a pharmaceutically acceptable salt thereof according to the present invention can be applied to various cancer cells resistant to PARP inhibitors to selectively and effectively kill them, thereby treating or preventing cancer diseases.

Abstract

The present invention relates to use of 2-chloro-N,N-diethylethylamine hydrochloride for improving anti-cancer treatment, and has the benefits of killing cancer cells by alkylating a DNA base using a nitrogen mustard-based compound of chemical formula 1, and exhibiting a synergistic effect when used in combination with existing PARP inhibitors.

Description

항암 치료 개선을 위한 2-클로로-N,N-디에틸에틸아민 염산염의 용도Use of 2-chloro-N,N-diethylethylamine hydrochloride for improving anti-cancer treatment
본 발명은 암 치료 개선을 위한 2-클로로-N,N-디에틸에틸아민 염산염의 용도에 관한 것으로서, 더욱 상세하게는 화학식 1의 질소 머스타드계 화합물을 이용하여 DNA 염기를 알킬화시킴으로써 암 세포를 사멸시키고 기존의 PARP 저해제와 병용하여 사용함으로써 시너지 효과를 나타내는 암 예방 또는 치료용 약학적 조성물에 관한 것이다.The present invention relates to the use of 2-chloro-N,N-diethylethylamine hydrochloride for improving cancer treatment, and more particularly, to kill cancer cells by alkylating DNA bases using a nitrogen mustard-based compound of Formula 1. It relates to a pharmaceutical composition for preventing or treating cancer that exhibits a synergistic effect by using in combination with an existing PARP inhibitor.
폴리(ADP 리보스)폴리머라제(poly (ADP-ribose) polymerase, 이하, PARP라 칭함)는 DNA 손상에 결합하여 수리 효소를 끌어들이는 ADP-리보스 고분자를 형성함으로써 DNA 수리를 촉진하고, 염기 절단 수리 경로에 의한 단일 가닥 절단의 주요 효소이다. 수리되지 않은 채로 남아있는 경우, 단일 가닥 절단은 복제 중에 상동성 재조합에 의해 필수적으로 수리되는 이중 가닥 절단으로 전환된다. 따라서, PARP를 억제하는 것은 상동성 재조합이 결핍된 세포에서 치명적이다. 이러한 관찰은 이미 상동성 재조합 용량을 사용할 수 없는 돌연변이를 가진 암을 치료하기 위한 PARP 억제제의 개발을 유도하였다.Poly (ADP-ribose) polymerase (hereinafter referred to as PARP) promotes DNA repair by binding to DNA damage and forming ADP-ribose polymers that attract repair enzymes, and base excision repair It is the major enzyme in single-strand cleavage by the pathway. When left unrepaired, single-strand breaks convert to double-strand breaks that are essentially repaired by homologous recombination during replication. Thus, inhibiting PARP is lethal in cells deficient in homologous recombination. These observations have already led to the development of PARP inhibitors to treat cancers with mutations that preclude the use of homologous recombination capacity.
PARP가 다수의 세포 과정에 관여하므로, 종양 세포 내에서 PARP 억제제의 작용 기전은 완전히 밝혀지지 않았다. 환자는 현재 특정 종양 유형 (예컨대, 고등급 장액성 난소암 또는 삼중 음성 뇌암)을 가지거나 이들의 암이 관련 분자의 아형 (예컨대, BRCA1/2-돌연변이된 유방암, 난소암, 췌장암, 또는 전립선 암)에 속할 수 있는 경우에만 PARP 억제제 시험으로 간주된다.As PARP is involved in a number of cellular processes, the mechanism of action of PARP inhibitors in tumor cells is not fully elucidated. The patient currently has a specific tumor type (e.g., high-grade serous ovarian cancer or triple negative brain cancer) or whose cancer is a subtype of a related molecule (e.g., BRCA1/2-mutated breast cancer, ovarian cancer, pancreatic cancer, or prostate cancer). ) is considered as a PARP inhibitor test.
PARP 억제제 (PARPi) 단일 요법은 임상에서 유망한 효능 및 안전성 프로파일을 나타냈지만, 이들의 주요 한계는 HR 결핍의 필요성과 신속한 내성의 출현이다. 초기에 PARPi 치료에 반응하는 많은 종양들은 HR 활성을 회복시키거나 대안적인 수리 경로의 활성을 자극하는 보상적 돌연변이를 통해 결국 재발된다. 따라서, PARP 억제제의 사용은 특정 종양 유형에 제한되며 임의의 암 치료에서 사용될 수 없다는 문제점이 있다.PARP inhibitor (PARPi) monotherapy has shown promising efficacy and safety profiles in the clinic, but their major limitations are the need for HR deficiency and the rapid emergence of resistance. Many tumors that initially respond to PARPi treatment eventually relapse through compensatory mutations that either restore HR activity or stimulate the activation of alternative repair pathways. Therefore, the use of PARP inhibitors is limited to specific tumor types and has a problem in that they cannot be used in any cancer treatment.
이를 해결하기 위하여 현재 PARP 저해제와 병용하여 사용하는 다양한 조성물이 이용되고 있다.In order to solve this problem, various compositions used in combination with PARP inhibitors are currently being used.
대한민국 공개특허 제10-2018-0051500호에서는 암 치료를 위하여 디베이트 분자와 PARP 억제제를 병용하여 사용하고 있고, 대한민국 공개특허 제10-2018-0037210호는 암 치료를 위해 리포좀 이리노테칸과 PARP 저해제를 이용하는 조합요법을 개시하고 있다. 그러나, 이와 같은 병용 요법을 장기간 이용할 경우, 다양한 돌연변이(mutation)를 통해 저항성을 갖는 암세포가 항암치료 후에도 사멸되지 않는 문제점이 있다.Korean Patent Publication No. 10-2018-0051500 uses a combination of a debate molecule and a PARP inhibitor for cancer treatment, and Korean Patent Publication No. 10-2018-0037210 discloses a combination using liposomal irinotecan and a PARP inhibitor for cancer treatment. therapy is initiated. However, when such combination therapy is used for a long period of time, there is a problem in that cancer cells resistant to various mutations do not die even after chemotherapy.
이에, 본 발명자들은 이러한 문제를 해결하기 위해 기존의 독성이 강한 비스-(2-클로로에틸)에틸아민에서 1개의 할로겐기를 제거함으로써 독성을 줄이고, 독성이 확연히 감소된 화합물을 이용하여 DNA 염기를 알킬화시킴으로써 암세포를 사멸시키고 기존의 PARP 저해제와 병용하여 사용함으로써 시너지 효과를 낼 수 있는 암 예방 또는 치료용 약학적 조성물을 제공할 수 있다는 것을 확인하고 본 발명을 완성하게 되었다.Therefore, in order to solve this problem, the present inventors reduced the toxicity by removing one halogen group from the existing highly toxic bis-(2-chloroethyl)ethylamine, and alkylated the DNA base using a compound with significantly reduced toxicity. By doing so, it was confirmed that it is possible to provide a pharmaceutical composition for preventing or treating cancer that can kill cancer cells and produce a synergistic effect by using it in combination with an existing PARP inhibitor, thereby completing the present invention.
[선행기술문헌][Prior art literature]
[특허문헌][Patent Literature]
대한민국 공개특허 2007-0120/163호Republic of Korea Patent Publication No. 2007-0120/163
[비특허문헌][Non-Patent Literature]
R.K. Singh et al., European Journal of Medicinal Chemistry doi: 10.1016/j.ejmech.2018.04.001.R.K. Singh et al., European Journal of Medicinal Chemistry doi: 10.1016/j.ejmech.2018.04.001.
Subhendu Karmakar et al., Dalton Transactions DOI: 10.1039/c8dt04503hSubhendu Karmakar et al., Dalton Transactions DOI: 10.1039/c8dt04503h
Fredrik Lehmann et al., Processes 2021, 9, 377.Fredrik Lehmann et al., Processes 2021, 9, 377.
발명의 요약Summary of Invention
본 발명의 목적은 기존의 독성이 강한 비스-(2-클로로에틸)에틸아민에서 1개의 할로겐기를 제거함으로써 독성을 줄이고, 독성이 확연히 감소된 상기 화합물을 이용하여 DNA 염기를 알킬화시킴으로써 암세포를 사멸시키는 효과를 나타내는 암 예방 또는 치료용 약학적 조성물을 제공하는데 있다.An object of the present invention is to reduce toxicity by removing one halogen group from bis-(2-chloroethyl)ethylamine, which is highly toxic, and to kill cancer cells by alkylating DNA bases using the compound with significantly reduced toxicity. It is to provide a pharmaceutical composition for preventing or treating cancer that exhibits an effect.
본 발명의 다른 목적은 상기 화합물과 함께 기존의 PARP 저해제와 병용하여 사용함으로써 시너지 효과를 발생하는 암 예방 또는 치료용 약학적 조성물을 제공하는데 있다.Another object of the present invention is to provide a pharmaceutical composition for preventing or treating cancer that produces a synergistic effect by using the compound together with an existing PARP inhibitor.
상기 목적을 달성하기 위하여, 본 발명은 화학식 1로 표시되는 화합물 또는 약학적으로 허용가능한 이의 염을 포함하는 암 예방 또는 치료용 약학적 조성물을 제공한다.In order to achieve the above object, the present invention provides a pharmaceutical composition for preventing or treating cancer comprising a compound represented by Formula 1 or a pharmaceutically acceptable salt thereof.
[화학식 1][Formula 1]
Figure PCTKR2022015184-appb-img-000001
Figure PCTKR2022015184-appb-img-000001
화학식 1에서 R은 할로겐기이다.In Formula 1, R is a halogen group.
본 발명은 또한, 상기 화학식 1로 표시되는 화합물 또는 약학적으로 허용가능한 이의 염을 포함하는 암 예방 또는 치료용 약학적 조성물을 객체(subject)에 투여하는 단계를 포함하는 암 질환의 예방 또는 치료방법을 제공한다.The present invention also provides a method for preventing or treating cancer disease comprising the step of administering to a subject a pharmaceutical composition for preventing or treating cancer comprising the compound represented by Formula 1 or a pharmaceutically acceptable salt thereof. provides
본 발명은 또한, 상기 화학식 1로 표시되는 화합물 또는 약학적으로 허용가능한 이의 염을 포함하는 암 예방 또는 치료용 약학적 조성물의 용도를 제공한다.The present invention also provides a use of a pharmaceutical composition for preventing or treating cancer comprising the compound represented by Formula 1 or a pharmaceutically acceptable salt thereof.
본 발명은 또한, 상기 화학식 1로 표시되는 화합물 또는 약학적으로 허용가능한 이의 염을 포함하는 암 예방 또는 치료용 약제의 제조에 있어서의 용도를 제공한다.The present invention also provides a use in the manufacture of a drug for preventing or treating cancer comprising the compound represented by Formula 1 or a pharmaceutically acceptable salt thereof.
도 1a는 UNI21의 구조를 나타낸 도면이다.1A is a diagram showing the structure of UNI21.
도 1b는 본 발명의 일 실시예에 따라 Luciferase-ATAD5 에세이, DNA 복제 및 리페어 스트레스(DNA replication & repair stress)를 측정할 수 있는 에세이를 통하여 UNI21이 스트레스를 증가시키는 약물로 스크리닝된 그래프이다. 5-FUrd는 양성 대조군(positive control)이다.Figure 1b is a graph in which UNI21 is screened as a drug that increases stress through a Luciferase-ATAD5 assay and an assay capable of measuring DNA replication and repair stress (DNA replication & repair stress) according to an embodiment of the present invention. 5-FUrd is a positive control.
도 1c는 본 발명의 일 실시예에 따라 다양한 KO HAP1 세포주에서 세포 생존력(cell viability)을 측정한 결과를 나타낸 도면이다.1c is a diagram showing the results of measuring cell viability in various KO HAP1 cell lines according to an embodiment of the present invention.
도 1d는 본 발명의 일 실시예에 따라 도 1c에서 사용된 세포주들의 웨스턴 블롯팅의 결과를 도시한 도면이다.Figure 1d is a diagram showing the results of Western blotting of the cell lines used in Figure 1c according to an embodiment of the present invention.
도 1e는 본 발명의 일 실시예에 따라 도 1c에서 UNI21 20μM로 측정한 데이터를 바탕으로, HAP1, HCT116, XP2OS 세포주에서 UNI21의 농도를 늘려가며 KO 세포들의 생존력을 측정한 결과를 나타낸 도면이다.Figure 1e is a view showing the results of measuring the viability of KO cells with increasing concentrations of UNI21 in HAP1, HCT116, and XP2OS cell lines based on the data measured with 20 μM of UNI21 in Figure 1c according to an embodiment of the present invention.
도 1f는 본 발명의 일 실시예에 따라 PARP1 KO 세포에서 PARP 저해제(inhibitor) 올라파립(Olaparib)과의 시너지 효과(synergistic effect)를 확인한 결과를 도시한 도면이다.Figure 1f is a diagram showing the results of confirming the synergistic effect (synergistic effect) with the PARP inhibitor (inhibitor) up parip (Olaparib) in PARP1 KO cells according to an embodiment of the present invention.
도 1g는 도 1f에서 올리파립과 UNI21의 조건을 달리하여 실험한 결과를 도시한 도면이다.Figure 1g is a diagram showing the results of experiments performed under different conditions for oliparib and UNI21 in Figure 1f.
도 2a는 본 발명의 일 실시예에 따른 UNI21와 DNA 염기의 in vitro 반응식을 나타낸 모식도이다.Figure 2a is a schematic diagram showing the in vitro reaction scheme of UNI21 and DNA base according to an embodiment of the present invention.
도 2b는 UNI21 처리 CTDNA의 DEAE-퓨린의 대표적인 UPLC-HRAM-PRM 추적한 결과를 도시한 도면이다. 24시간 동안 UNI21과 함께 인큐베이션한 후, 열 가수분해에 의해 알킬화된 퓨린이 방출되었고 재료 및 방법에 설명된 대로 분석을 위해 농축되었다. 검은색 추적은 합성된 DEAE-구아닌(패널 1, m/z = 251.1615) 및 DEAE-아데닌(패널 3, m/z = 235.1662) 표준의 UPLC-HRAM-PRM 분석을 나타내었다. 빨간색 추적은 1.2 ㎍ 탈퓨린화 CTDNA에서 검출된 DEAE-구아닌(패널 2) 및 DEAE-아데닌(패널 4)의 UPLC-HRAM-PRM을 나타내었다.Figure 2b is a diagram showing the results of representative UPLC-HRAM-PRM tracking of DEAE-purine in UNI21-treated CTDNA. After incubation with UNI21 for 24 h, alkylated purines were released by thermal hydrolysis and concentrated for analysis as described in Materials and Methods. Black traces show UPLC-HRAM-PRM analysis of synthesized DEAE-guanine (panel 1, m/z = 251.1615) and DEAE-adenine (panel 3, m/z = 235.1662) standards. Red traces show UPLC-HRAM-PRM of DEAE-guanine (panel 2) and DEAE-adenine (panel 4) detected in 1.2 μg depurinated CTDNA.
도 2c는 5 ㎍ UNI21 처리 CTDNA에서 효소적으로 방출된 DEAE-피리미딘의 대표적인 UPLC-HRAM-PRM 추적한 결과를 도시한 도면이다. 상단 패널은 DEAE-dC(m/z = 327.2027)를 나타내고 하단 패널은 DEAE-dT(m/z = 342.2023)를 나타내었다.Figure 2c shows representative UPLC-HRAM-PRM traces of enzymatically released DEAE-pyrimidine from 5 μg UNI21-treated CTDNA. The top panel shows DEAE-dC ( m/z = 327.2027) and the bottom panel shows DEAE-dT ( m/z = 342.2023).
도 3a는 본 발명의 일 실시예에 따른 UNI21 처리 후 HCT116의 세포 주기를 도시한 도면이다. HCT116 야생형 및 PARP1 결핍 세포를 24시간 동안 다른 용량의 UNI21과 함께 인큐베이션하고 세포 주기 단계의 상대 백분율을 Flow-Jo 소프트웨어로 계산하였다.3A is a diagram showing the cell cycle of HCT116 after UNI21 treatment according to an embodiment of the present invention. HCT116 wild-type and PARP1 deficient cells were incubated with different doses of UNI21 for 24 hours and the relative percentages of cell cycle phases were calculated with Flow-Jo software.
도 3b는 UNI21 처리로 인한 DSB 발생은 g-H2AX로 확인한 결과를 도시한 도면이다. HCT116 야생형 또는 PARP1 결핍 세포를 80μM UNI21과 함께 24시간 동안 인큐베이션하고 표시된 단백질 수준을 전체 세포 추출물에서 결정하였다.Figure 3b is a diagram showing the result of confirming the occurrence of DSB due to UNI21 processing with g-H2AX. HCT116 wild-type or PARP1 deficient cells were incubated with 80 μM UNI21 for 24 hours and the indicated protein levels were determined in whole cell extracts.
도 3c는 UNI21 처리가 PARP1 결핍 세포에서 더 많은 DNA 손상을 향상시킨다는 결과를 확인한 도면이다. CometChip® 분석의 테일 모멘트는 Comet 분석 소프트웨어(Trevigen)를 사용하여 계산되었다.Figure 3c is a view confirming the result that UNI21 treatment improves more DNA damage in PARP1-deficient cells. The tail moment of the CometChip® analysis was calculated using Comet analysis software (Trevigen).
도 3d는 UNI21 처리는 HCT116 parp1 KO 세포에서 더 빈번한 SCE를 유도한다는 결과를 확인한 도면이다.3D is a view confirming the result that UNI21 treatment induces more frequent SCE in HCT116 parp1 KO cells.
도 3e는 SCE가 이미지화된 도 3d의 BX53 분포를 도시한 도면이다.FIG. 3E is a diagram showing the BX53 distribution of FIG. 3D with SCEs imaged.
[규칙 제91조에 의한 정정 28.11.2022] 
도 3f는 UNI21 처리는 HCT116 parp1 KO 세포에서 비정상적인 염색체를 유도한다는 것을 확인한 도면이다. 도 3g는 염색체 파손을 도 3F의 BX53 G 분포에 의해 이미지화시킨 도면이다.
[Correction under Rule 91 28.11.2022]
3f is a diagram confirming that UNI21 treatment induces abnormal chromosomes in HCT116 parp1 KO cells. Figure 3g is a diagram of chromosomal breaks imaged by the BX53 G distribution in Figure 3F.
도 3h는 HCT116 parp1 KO 세포는 중기당 25개 이상의 파손이 있는 세포의 백분율이 증가한다는 것을 확인한 도면이다.Figure 3h is a diagram confirming that the percentage of cells with 25 or more breaks per metaphase increased in HCT116 parp1 KO cells.
도 3i는 UNI21 치료는 PARP1 결핍 세포에서 더 많은 세포 사멸을 유발한다는 것을 확인한 도면이다. 아폽토시스 세포 사멸은 Annexin V Alexa FluorTM 488 접합체를 사용하여 정량화하고 유세포 분석으로 분석하였다. 데이터는 평균 ± SEM으로 표시된다.Figure 3i is a diagram confirming that UNI21 treatment induces more apoptosis in PARP1-deficient cells. Apoptotic cell death was quantified using Annexin V Alexa Fluor™ 488 conjugate and analyzed by flow cytometry. Data are presented as mean ± SEM.
도 4a는 본 발명의 일 실시예에 따라 UNI21이 누드 마우스에서 PARP1-결핍 이종이식(xenograft) 종양의 성장을 억제한다는 UNNI21의 In vivo 효과를 확인하기 위한 마우스 이종이식실험을 도시한 모식도이다. WT HCT116 또는 PARP1 결핍 HCT116 세포 중 4백만 개 세포를 7주 된 수컷 누드 마우스에 피하 주사하였다. 종양 크기가 약 200mm3에 도달하면 비히클(PBS) 또는 UNI21(6mg/kg)을 16일 동안 3일마다 종양 내 주사하였다. 마우스를 안락사시킨 후 지시된 분석을 수행하였다.Figure 4a is a schematic diagram showing a mouse xenograft experiment for confirming the in vivo effect of UNNI21 that UNI21 inhibits the growth of PARP1-deficient xenograft tumors in nude mice according to an embodiment of the present invention. Four million cells of either WT HCT116 or PARP1 deficient HCT116 cells were injected subcutaneously into 7-week-old male nude mice. When tumor size reached approximately 200 mm 3 , vehicle (PBS) or UNI21 (6 mg/kg) was injected intratumorally every 3 days for 16 days. The indicated assays were performed after mice were euthanized.
도 4b는 본 발명의 일 실시예에 따라 UNI21을 처리한 16일 후 수확(harvest)한 PARP1 KO 종양 사진이다.Figure 4b is a photograph of a PARP1 KO tumor harvested 16 days after treatment with UNI21 according to an embodiment of the present invention.
도 4c는 도 4b의 종양 부피(tumor volume)을 그래프로 나타낸 도면이다.Figure 4c is a graph showing the tumor volume (tumor volume) of Figure 4b.
도 4d는 본 발명의 일 실시예에 따라 3일마다 주사(injection)된 종양에서 UNI21를 추적(trace)한 결과를 그래프로 도시한 도면이다.Figure 4d is a graph showing the results of tracing UNI21 in tumors injected every 3 days according to an embodiment of the present invention.
도 4e는 본 발명의 일 실시예에 따라 수확한 종양을 섹션(section)한 후, H&E 염색(staining), TUNEL 에세이, γ-H2AX IHC를 진행한 결과를 도시한 도면이다.Figure 4e is a view showing the results of H&E staining, TUNEL assay, and γ-H2AX IHC after sectioning the harvested tumor according to an embodiment of the present invention.
도 5는 본 발명의 다른 일 실시예에 따라서 염소(chlorine) 대신에 브롬(bromine)이 결합한 구조를 이용하여 실험한 결과를 도시한 도면이다.5 is a diagram showing the results of an experiment using a structure in which bromine is bonded instead of chlorine according to another embodiment of the present invention.
도 6a 내지 도 6d는 도 2a에 나타낸 모식도를 바탕으로 실험한 질량 분석(mass spectrometry)의 결과를 도시한 도면이다.6A to 6D are diagrams illustrating results of mass spectrometry performed based on the schematic diagram shown in FIG. 2A.
도 7 내지 도 7d는 도 2b에 나타낸 빨간색 그래프의 질량 분석(mass spectrometry)의 결과를 도시한 도면이다.7 to 7d are diagrams illustrating the results of mass spectrometry of the red graph shown in FIG. 2b.
발명의 상세한 설명 및 구체적인 구현예DETAILED DESCRIPTION OF THE INVENTION AND SPECIFIC EMBODIMENTS
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술 분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술 분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In general, the nomenclature used herein is one well known and commonly used in the art.
본 발명에서는 화학식 1의 화합물 및 이의 약학적으로 허용가능한 이의 염을 포함하는 암 치료용 약학적 조성물은 PARP 저해제에 저항성을 갖는 다양한 암세포에 적용하여 선택적, 효과적으로 사멸시킬 수 있고, 더욱이 기존의 PARP 저해제와 병용하여 사용함으로써 시너지 효과를 나타낸다는 것을 확인할 수 있었다.In the present invention, the pharmaceutical composition for treating cancer comprising the compound of Formula 1 and a pharmaceutically acceptable salt thereof can be applied to various cancer cells resistant to PARP inhibitors to selectively and effectively kill them, and moreover, conventional PARP inhibitors It was confirmed that it exhibits a synergistic effect by using in combination with
따라서, 본 발명은 일 관점에서 화학식 1로 표시되는 화합물 또는 약학적으로 허용가능한 이의 염을 포함하는 암 예방 또는 치료용 약학적 조성물에 관한 것이다.Accordingly, in one aspect, the present invention relates to a pharmaceutical composition for preventing or treating cancer comprising a compound represented by Formula 1 or a pharmaceutically acceptable salt thereof.
[화학식 1][Formula 1]
Figure PCTKR2022015184-appb-img-000002
Figure PCTKR2022015184-appb-img-000002
화학식 1에서 R은 할로겐기이다.In Formula 1, R is a halogen group.
이하, 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.
본 발명에 따른 화합물을 정의하는데 사용된 용어들은 하기와 같은 의미를 갖는다.The terms used to define the compounds according to the present invention have the following meanings.
용어 “할로겐”의 구체적인 예로는 플루오르(F), 클로린(Cl), 브롬(Br) 및 요오드(I)를 들 수 있고, 특히 클로린(Cl) 또는 브롬(Br)일 수 있다.Specific examples of the term “halogen” include fluorine (F), chlorine (Cl), bromine (Br), and iodine (I), and in particular, chlorine (Cl) or bromine (Br).
용어 “치료”라 함은 발병 증상을 보이는 객체에 사용될 때 질병의 진행을 중단 또는 지연시키는 것을 의미한다.The term "treatment", when used on a subject exhibiting symptoms of disease, means stopping or delaying the progression of a disease.
용어 “약학적 조성물”은 본 발명의 화합물과 함께 필요에 따라 약학적으로 허용가능한 담체, 희석제, 부형제, 또는 이들의 조합을 포함할 수 있다.The term "pharmaceutical composition" may include a pharmaceutically acceptable carrier, diluent, excipient, or a combination thereof together with the compound of the present invention, if necessary.
용어 “약학적으로 허용가능한”이라 함은 화합물의 생물학적 활성과 물성을 손상시키지 않는 성질을 의미한다. The term "pharmaceutically acceptable" means a property that does not impair the biological activity and physical properties of a compound.
용어 “담체(carrier)”라 함은 세포 또는 조직 내로 화합물의 부가를 용이하게 하는 물질을 의미한다.The term "carrier" refers to a substance that facilitates the addition of a compound into a cell or tissue.
용어 “희석제(diluent)”라 함은 대상 화합물의 생물학적 활성 형태를 안정화시킬 뿐만 아니라, 화합물을 용해시키는 물에서 희석되는 물질로 정의된다.The term "diluent" is defined as a substance that is diluted in water that not only stabilizes the biologically active form of the subject compound, but also dissolves the compound.
용어 “부형제(excipients)”라 함은 약제에 적당한 굳기나 형상을 주기 위해서, 또는 주제(主劑)의 양이 적은 경우에 일정 용량, 중량을 주어 취급하기 쉬운 크기로 할 목적으로 첨가되는 물질을 의미한다.The term “excipients” refers to substances that are added for the purpose of giving a drug an appropriate hardness or shape, or to give a certain volume or weight to a size that is easy to handle when the amount of the main agent is small. it means.
기타 본 명세서에서 사용된 용어와 약어들은 달리 정의되지 않는 한 본 발명이 속하는 기술 분야의 통상의 기술자에게 통상적으로 이해되는 의미로서 해석될 수 있다.Other terms and abbreviations used in this specification may be interpreted as meanings commonly understood by those skilled in the art to which the present invention belongs unless otherwise defined.
본 발명은 화학식 1로 표시되는 화학식 1로 표시되는 화합물 또는 약학적으로 허용가능한 이의 염을 포함하는 암 예방 또는 치료용 약학적 조성물에 관한 것이다.The present invention relates to a pharmaceutical composition for preventing or treating cancer comprising a compound represented by Formula 1 represented by Formula 1 or a pharmaceutically acceptable salt thereof.
[화학식 1][Formula 1]
Figure PCTKR2022015184-appb-img-000003
Figure PCTKR2022015184-appb-img-000003
화학식 1에서 R은 할로겐기이다.In Formula 1, R is a halogen group.
보다 구체적인 본 발명의 실시예에 의하면, 상기 화학식 1의 화합물은 하기 화학식 2 또는 화학식 3으로 표시되는 화합물일 수 있다.According to a more specific embodiment of the present invention, the compound of Formula 1 may be a compound represented by Formula 2 or Formula 3 below.
[화학식 2][Formula 2]
Figure PCTKR2022015184-appb-img-000004
Figure PCTKR2022015184-appb-img-000004
[화학식 3][Formula 3]
Figure PCTKR2022015184-appb-img-000005
Figure PCTKR2022015184-appb-img-000005
본 발명에 있어서, 상기 화학식 1의 화합물은 약학적으로 허용가능한 이의 염을 형성할 수 있다. 본 발명에서 약학적으로 허용가능한 이의 염은 약학적으로 허용되는 음이온을 함유하는 무독성 산 부가염을 형성하는 산, 예를 들어, 황산, 염산, 질산, 인산, 브롬화수소산, 요오드화수소산 등과 같은 무기산과, 타르타르산, 포름산, 시트르산, 아세트산, 트리플루오로아세트산, 글루콘산, 벤조산, 락트산, 푸마르산, 젖산, 말론산, 말산, 살리실산, 숙신산, 옥살산, 프로피온산, 아스파르탄산, 글루탐산, 구연산 등과 같은 유기산과, 메탄설폰산, 에탄설폰산, 벤젠설폰산, p-톨루엔설폰산, 나프탈렌설폰산 등과 같은 설폰산 등에 의해 형성된 산부가염일 수 있다. 바람직하게는 상기 약학적으로 허용가능한 이의 염은 HCl 염, HBr 염, HI 염, H2SO4 염 HNO3 염 및 이들의 조합으로 구성된 군에서 선택될 수 있다.In the present invention, the compound of Formula 1 may form a pharmaceutically acceptable salt thereof. In the present invention, a pharmaceutically acceptable salt thereof may be used with an acid that forms a non-toxic acid addition salt containing a pharmaceutically acceptable anion, for example, an inorganic acid such as sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, hydrobromic acid, hydroiodic acid, and the like. organic acids such as tartaric acid, formic acid, citric acid, acetic acid, trifluoroacetic acid, gluconic acid, benzoic acid, lactic acid, fumaric acid, lactic acid, malonic acid, malic acid, salicylic acid, succinic acid, oxalic acid, propionic acid, aspartic acid, glutamic acid, citric acid, and the like; It may be an acid addition salt formed with sulfonic acids such as methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, and naphthalenesulfonic acid. Preferably, the pharmaceutically acceptable salt thereof may be selected from the group consisting of HCl salt, HBr salt, HI salt, H 2 SO 4 salt, HNO 3 salt, and combinations thereof.
본 발명에 따른 화학식 1의 화합물은 통상적인 방법에 의해 그의 염으로 전환될 수 있으며, 염의 제조는 별도의 설명이 없이도 상기 화학식 1의 구조를 바탕으로 당업자에 의해 용이하게 수행될 수 있을 것이다.The compound of Formula 1 according to the present invention may be converted into a salt thereof by a conventional method, and the preparation of the salt may be easily performed by a person skilled in the art based on the structure of Formula 1 without a separate explanation.
이하에서 별도의 설명이 없는 한, 화학식 1의 화합물에는 이의 약학적으로 허용가능한 이의 염이 포함되며, 이들은 모두 본 발명의 범주에 포함되는 것으로 해석되어야 한다. 설명의 편의를 위하여, 본 명세서에서는 이들을 화학식 1의 화합물로 간단히 표현한다.Unless otherwise stated below, the compound of Formula 1 includes pharmaceutically acceptable salts thereof, and all of them should be construed as being included in the scope of the present invention. For convenience of explanation, in the present specification, they are simply expressed as compounds of Formula 1.
상기 암은 편평세포 암, 소형 세포 폐암, 비-소형 세포 폐암, 폐암, 복막암, 결장암, 담도 종양, 비인두암, 후두암, 기관지암, 구강암, 골육종, 담낭암, 신장암, 백혈병, 방광암, 흑색종, 뇌암, 신경 교종, 뇌종양, 피부암, 췌장암, 유방암, 간암, 골수암, 식도암, 대장암, 위암, 자궁경부암, 전립선암, 난소암, 두경부암 및 직장암으로 구성된 군에서 선택될 수 있다.The cancer is squamous cell cancer, small cell lung cancer, non-small cell lung cancer, lung cancer, peritoneal cancer, colon cancer, biliary tract tumor, nasopharyngeal cancer, laryngeal cancer, bronchial cancer, oral cancer, osteosarcoma, gallbladder cancer, kidney cancer, leukemia, bladder cancer, melanoma , brain cancer, glioma, brain tumor, skin cancer, pancreatic cancer, breast cancer, liver cancer, bone marrow cancer, esophageal cancer, colorectal cancer, stomach cancer, cervical cancer, prostate cancer, ovarian cancer, head and neck cancer, and rectal cancer.
또한 본 발명은 PARP 저해제를 추가로 포함한 조성물을 병용 요법에 사용함으로써 시너지 효과를 얻을 수 있다.In addition, the present invention can obtain a synergistic effect by using a composition that further includes a PARP inhibitor in combination therapy.
본 발명에 있어서, 상기 PARP 저해제는 올라파립(olaparib), 탈라조파립(talazoparib), 니라파립(niraparib), 루카파립(rucaparib), 벨리파립(veliparib) 및 파미파립(pamiparib)으로 구성된 군에서 1종 이상 선택될 수 있다.In the present invention, the PARP inhibitor is 1 from the group consisting of olaparib, talazoparib, niraparib, rucaparib, veliparib and pamiparib More than one species can be selected.
본 발명은 다른 관점에서 화학식 1로 표시되는 화합물 또는 이의 약학적으로 허용가능한 이의 염을 유효성분으로 포함하는 암 질환의 예방 또는 치료용 약학적 조성물을 객체에 투여하는 단계를 포함하는 암 질환의 치료 또는 예방방법에 관한 것이다.In another aspect, the present invention treats cancer disease comprising the step of administering to a subject a pharmaceutical composition for preventing or treating cancer disease comprising a compound represented by Formula 1 or a pharmaceutically acceptable salt thereof as an active ingredient. or prevention methods.
본 발명은 또 다른 관점에서 상기 화학식 1로 표시되는 화합물 또는 약학적으로 허용가능한 이의 염을 포함하는 암 예방 또는 치료용 약학적 조성물의 용도 및 상기 화학식 1로 표시되는 화합물 또는 약학적으로 허용가능한 이의 염을 포함하는 암 예방 또는 치료용 약제의 제조에 있어서의 용도를 제공한다.In another aspect, the present invention relates to the use of a pharmaceutical composition for preventing or treating cancer comprising a compound represented by Formula 1 or a pharmaceutically acceptable salt thereof, and a compound represented by Formula 1 or a pharmaceutically acceptable salt thereof. It provides use in the manufacture of a medicament for preventing or treating cancer containing a salt.
구체적으로, 본 발명은 상기 화학식 1의 화합물 또는 이의 약학적으로 허용가능한 이의 염, 및 약학적으로 허용가능한 담체를 포함하는, 암 질환을 치료 또는 예방할 수 있는 약학 조성물에 관한 것이다. 구체적으로, 본 발명의 화학식 1의 화합물 또는 이의 약학적으로 허용가능한 이의 염은 암 질환 치료제로서 사용될 수 있다.Specifically, the present invention relates to a pharmaceutical composition comprising the compound of Formula 1 or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier, capable of treating or preventing cancer. Specifically, the compound represented by Formula 1 or a pharmaceutically acceptable salt thereof of the present invention can be used as a cancer treatment agent.
본 발명에서 상기 화학식 1의 퀴놀린 유도체 또는 이의 약학적으로 허용가능한 이의 염은 DNA를 알킬화시킴으로써 종양의 성장을 억제하는 활성을 가진다.In the present invention, the quinoline derivative of Chemical Formula 1 or a pharmaceutically acceptable salt thereof has an activity of inhibiting tumor growth by alkylating DNA.
본 발명에 따른 상기 화학식 1의 화합물 또는 이의 약학적으로 허용가능한 이의 염의 우수한 항암 효과는 루시퍼라제(Luciferase)-ATAD5 에세이(DNA replication & repair stress assay)를 통한 스크리닝(screening), 리페어 유전자 KO HAP1, HCT116, U2OS 세포주에서의 세포 생존력(cell viability) 측정, 올라파립(Olaparib)과의 병용 요법에서의 시너지 효과(synergistic effect)를 체크, 질량 분석(Mass spectrometry)를 통한 알킬화된 DNA 염기의 상대적인 양을 비교하여 알킬화 우선 순위의 분석(dG>>dA>dC~dT) 등의 in vitro 실험과 누드 마우스 HCT116 PARP1 KO 세포 이종이식 in vivo 실험을 통하여 증명하였다. 이에 대해서는 이하의 실시예에서 후술하기로 한다.The excellent anticancer effect of the compound of Formula 1 or a pharmaceutically acceptable salt thereof according to the present invention is determined by screening through a luciferase-ATAD5 assay (DNA replication & repair stress assay), repair gene KO HAP1, Measurement of cell viability in HCT116 and U2OS cell lines, synergistic effect in combination therapy with Olaparib, and relative amount of alkylated DNA bases through mass spectrometry It was demonstrated through in vitro experiments such as comparative analysis of alkylation priority (dG>>dA>dC~dT) and in vivo experiments with nude mouse HCT116 PARP1 KO cell xenotransplantation. This will be described later in the following embodiments.
본 발명의 일 실시예에 의하면, 버퍼 용액에 용해되어 있는 염을 희석제로 사용하고, 통상 사용되는 버퍼 용액은 인간 용액의 염 형태를 모방하고 있는 포스페이트 버퍼 식염수일 수 있다. 버퍼 염은 낮은 농도에서 용액의 pH를 제어할 수 있기 때문에, 버퍼 희석제가 화합물의 생물학적 활성을 변형시키지 않는다.According to one embodiment of the present invention, a salt dissolved in a buffer solution is used as a diluent, and a commonly used buffer solution may be a phosphate buffered saline solution that mimics the salt form of a human solution. Because buffer salts can control the pH of a solution at low concentrations, buffer diluents do not modify the biological activity of the compound.
본 발명의 화합물은 약학적으로 또는 수의학적으로 허용가능한 담체 또는 희석제를 또한 함유하는 약학적 또는 수의학적 조성물로 사용하기 위해 제형화할 수 있다. 본 발명에 따른 조성물은 통상적인 방법에 따라 일반적으로 제조하여, 약학적으로 또는 수의학적으로 적절한 형태로 투여할 수 있다.A compound of the present invention may be formulated for use in a pharmaceutical or veterinary composition that also contains a pharmaceutically or veterinarily acceptable carrier or diluent. The composition according to the present invention can be generally prepared according to a conventional method and administered in a pharmaceutically or veterinarily appropriate form.
본 발명의 약학 조성물은 정제, 캡슐, 당-코팅, 필름-코팅정제, 액체 용액 또는 현탁액의 형태로 경구적으로 투여하거나, 또는 피하나 근육내로 또는 정맥내로 주사 또는 주입의 방법을 통하여 비경구적으로 투여할 수 있다.The pharmaceutical composition of the present invention is administered orally in the form of tablets, capsules, sugar-coated, film-coated tablets, liquid solutions or suspensions, or parenterally by way of injection or infusion subcutaneously, intramuscularly or intravenously. can be administered.
환자의 연령, 체중 및 상태와 투여경로를 비롯한 각종 요인에 따라 투여량은 결정될 수 있다. 1일 투여용량은 광범위한 한도치 내에서 변할 수 있으며, 각각의 개별 경우에서 개인적 요건에 맞게 조정될 수 있다. 그러나 일반적으로, 본 화합물을 성인에게 단독 투여하는경우, 투여 경로별로 채택된 투여용량은 0.0001 내지 50 mg/kg 체중이며, 0.001 내지 10 mg/kg 체중의 범위에서 예를들면 0.01 내지 1 mg/kg 체중으로 할 수 있다.The dosage may be determined according to various factors including the age, weight and condition of the patient and the route of administration. The daily dose can vary within wide limits and can be adjusted to the individual requirements in each individual case. However, in general, when the present compound is administered alone to an adult, the dosage adopted for each route of administration is 0.0001 to 50 mg/kg body weight, for example 0.01 to 1 mg/kg in the range of 0.001 to 10 mg/kg body weight. You can do it by weight.
이러한 투여 용량은 예를 들면 1 일 1 내지 5회 제공할 수 있다. 정맥내 주사의 경우, 적절한 1 일 용량은 0.0001 내지 1 mg/kg 체중, 바람직하게는 0.0001 내지 0.1 mg/kg 체중이다. 1일 투여용량은 단일 투여분으로서 또는 분할용량 스케줄에 따라 투여할 수 있다.Such administration doses may be given, for example, from 1 to 5 times per day. For intravenous injection, a suitable daily dose is 0.0001 to 1 mg/kg body weight, preferably 0.0001 to 0.1 mg/kg body weight. The daily dose may be administered as a single dose or according to a divided dose schedule.
본 발명에 의한 화합물은 특이적으로 암세포를 알킬화시킬 수 있다. 정상적인 세포에서는 BER(Base Excision Repair)에 중요한 PARP1 또는 NER(Nuclear Excision Repair)에 중요한 XPA (xeroderma pigmentosum group A protein)가 이러한 알킬화된 염기를 복구하는 반면에, PARP1 또는 XPA가 제 역할을 수행하지 못하는 암세포는 이러한 알킬화된 염기를 제대로 복구하지 못하여 특이적으로 사멸하는 효과를 갖는 것이다.The compounds according to the present invention can specifically alkylate cancer cells. In normal cells, PARP1, which is important for Base Excision Repair (BER), or xeroderma pigmentosum group A protein (XPA), which is important for Nuclear Excision Repair (NER), repairs these alkylated bases, whereas PARP1 or XPA, which is important for Nuclear Excision Repair (NER), repairs these alkylated bases. Cancer cells do not properly recover these alkylated bases, and thus have the effect of specifically killing them.
이하, 본 발명의 이해를 돕기 위하여 실시예를 통해 더욱 상세하게 설명하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업계에서 통상의 지식을 가진 자에게 있어서 자명한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.Hereinafter, in order to help the understanding of the present invention, it will be described in more detail through examples, but the following examples are merely illustrative of the present invention, and various changes and modifications are possible within the scope and spirit of the present invention. It is obvious to those skilled in the art, and it is natural that such variations and modifications fall within the scope of the appended claims.
[실시예][Example]
세포주cell line
HCT116(ATCC), XP2OS(엑손 3에서 스플라이싱 수용체를 생성하기 위해 XPA 돌연변이 c.390-1G>C(IVS3-1G>C)), WT XPA를 발현하는 XP2OS(XPA 상보적임, 이 실시예에서 생성됨) [17] U2OS(ATCC® HTB-96쪠), HEK293T ATAD5-LUC [15] 세포를 10% 소태아혈청(FBS, Merk), 1% 항생제-항진균제(페니실린 10000 units/mL, 스트렙토마이신 10000 μg/mL, Fungizone®(암포테리신 B) 25μg/mL, Gibco®)을 37℃, 5% CO2의 존재하에 배양하였다. HAP1 세포는 5% CO2 존재 하에 37℃에서 10% 소태아혈청과 1% 항생제-항진균제가 함유된 IMDM(Iscove's Modified Dulbecco's Medium)에서 배양되었다. DR-GFP(동종 재조합), SA-GFP(단일 가닥 어닐링), EJ2-GFP(마이크로 상동성 매개 말단 접합) 또는 EJ5-GFP(비상동 말단 접합) 리포터를 포함하는 U2OS 세포를 10% 소 태아 혈청, 1% 페니실린/스트렙토마이신(페니실린 10000 units/mL, 스트렙토마이신 10000 μg/mL, Gibco®) 및 2μg/ml 퓨로마이신을 포함하는 DMEM에서 성장시켰다.HCT116 (ATCC), XP2OS (XPA mutation c.390-1G>C (IVS3-1G>C) to create a splicing acceptor in exon 3), XP2OS expressing WT XPA (XPA complementary, this example [17] U2OS (ATCC ® HTB-96), HEK293T ATAD5-LUC [15] Cells were cultured in 10% fetal bovine serum (FBS, Merk), 1% antibiotic-antimycotic (penicillin 10000 units/mL, streptomycin 10000 μg/mL, Fungizone ® (Amphotericin B) 25 μg/mL, Gibco ® ) were incubated at 37° C. in the presence of 5% CO 2 . HAP1 cells were cultured in Iscove's Modified Dulbecco's Medium (IMDM) containing 10% fetal bovine serum and 1% antibiotic-antimycotic at 37°C in the presence of 5% CO 2 . U2OS cells containing DR-GFP (homologous recombination), SA-GFP (single-stranded annealing), EJ2-GFP (micro-homology mediated end junctions), or EJ5-GFP (non-homologous end junctions) reporters were cultured in 10% fetal bovine serum. , DMEM containing 1% penicillin/streptomycin (penicillin 10000 units/mL, streptomycin 10000 μg/mL, Gibco® ) and 2 μg/ml puromycin.
WT XPA와 상보적인 XP2OS 세포를 만들기 위한 렌티바이러스 세포주 형질도입Transduction of lentiviral cell lines to create XP2OS cells complementary to WT XPA
SV40으로 형질전환된 인간 섬유아세포 XP2OS(XPA 돌연변이)는 5% CO2의 존재 하에 37℃에서 10% 소태아혈청(FBS, millipore) 및 1% 페니실린/스트렙토마이신이 보충된 DMEM(Cytiva)에서 배양되었다. 렌티바이러스 형질도입을 위해, XPA cDNA를 함유하는 0.75㎍의 pWPXL 발현 벡터, 2.25㎍의 pMD2.G 엔벨롭 플라스미드 및 2.25 ㎍의 psPAX2 패키징 플라스미드를 리포펙타민 3000 (L3000001, Invitrogen)를 사용하여 확립된 프로토콜을 따라서 HEK293T 세포에 형질감염시키고 하루 후에 수확하였다(Salmon, P. et al., Curr Protoc Neurosci, 2006. Chapter 4: p. Unit 4 21). 형질감염 하루 전, XP2OS 세포를 50% 컨플루언시에서 6-웰 플레이트에 접종하고 24시간 동안 감염 다중도가 2인 렌티바이러스와 함께 인큐베이션한 후 위에서 설명한 대로 성장시켰다.SV40-transformed human fibroblasts XP2OS (XPA mutant) were cultured in DMEM (Cytiva) supplemented with 10% fetal bovine serum (FBS, millipore) and 1% penicillin/streptomycin at 37°C in the presence of 5% CO 2 . It became. For lentiviral transduction, 0.75 μg of the pWPXL expression vector containing the XPA cDNA, 2.25 μg of the pMD2.G envelope plasmid and 2.25 μg of the psPAX2 packaging plasmid were established using Lipofectamine 3000 (L3000001, Invitrogen). HEK293T cells were transfected following the protocol and harvested one day later (Salmon, P. et al., Curr Protoc Neurosci, 2006. Chapter 4: p. Unit 4 21). One day before transfection, XP2OS cells were seeded in 6-well plates at 50% confluency and incubated with lentivirus at a multiplicity of infection of 2 for 24 hours and then grown as described above.
플라스미드, 화학물질 및 항체Plasmids, Chemicals and Antibodies
I-SceI(pCAGGS-I-SceI, pCBASce라고 함), 빈 벡터(pCAGGS-BSKX) 및 dsRED 벡터는 이전에 설명한 대로 제조하였다(Bennardo, N., et al., PLoS Genet, 2008. 4(6): p. e1000110; Bennardo, N., et al., PLoS Genet, 2009. 5(10): p. e1000683; Motegi, A., et al., Proc Natl Acad Sci U S A, 2008. 105(34): p. 12411-6). Bromo-N,N-diethylethanamine hydrobromide, 2-chloro-N,N-diethylethanamine hydrochloride, 2,2,2-trifluoroethanol, 5-FUrd, Adenine, Cytosine, Guanine, Methyl methanesulfonate (MMS), sodium acetate, thymidine을 Sigma-Aldrich에서 구입하였다. 올라파립(Olaparib)은 Selleckchem (AZD2281)에서 구입하였다. 항-XPA(sc-853) 및 항-알파-튜불린(DM1A, sc-32293)은 Santacruz에서 구입하였다. Anti-γH2AX (Ser139, 05-636)는 Merck Millipore에서 구입하였다. Anti-PARP1 (ALX-210-302-R100)은 Enzo Life Sciences에서 구입하였다. I -SceI (pCAGGS-I-SceI, referred to as pCBASce), empty vector (pCAGGS-BSKX) and dsRED vector were prepared as previously described (Bennardo, N., et al., PLoS Genet, 2008. 4(6) ): p. e1000110; Bennardo, N., et al., PLoS Genet, 2009. 5(10): p. e1000683; : p. 12411-6). Bromo- N,N -diethylethanamine hydrobromide, 2-chloro-N,N-diethylethanamine hydrochloride, 2,2,2-trifluoroethanol, 5-FUrd, Adenine, Cytosine, Guanine, Methyl methanesulfonate (MMS), sodium acetate, thymidine were prepared by Sigma - Purchased from Aldrich. Olaparib was purchased from Selleckchem (AZD2281). Anti-XPA (sc-853) and anti-alpha-tubulin (DM1A, sc-32293) were purchased from Santacruz. Anti-γH2AX (Ser139, 05-636) was purchased from Merck Millipore. Anti-PARP1 (ALX-210-302-R100) was purchased from Enzo Life Sciences.
ATAD5-루시페라제 분석ATAD5-luciferase assay
HEK293T ATAD5-LUC 세포(Fox, J.T., et al., Proc Natl Acad Sci U S A, 2012. 109(14): p. 5423-8)는 96-웰 백색 검정 플레이트(Costar)에 웰당 15,000개 세포의 밀도로 플레이팅되었다. 24시간 후, 세포를 5-FUrd 및 UNI21로 처리하고 추가로 24시간 동안 인큐베이션하였다. 루시퍼라제 활성은 One-Glo 루시퍼라제 시약(Promega)을 각 웰에 첨가하고 Synergy NEO2 Hybrid Multi-Mode Reader (BioTek)로 발광 강도를 측정하였다.HEK293T ATAD5-LUC cells (Fox, J.T., et al., Proc Natl Acad Sci USA, 2012. 109(14): p. 5423-8) were plated in 96-well white black plates (Costar) at a density of 15,000 cells per well. was plated with After 24 hours, cells were treated with 5-FUrd and UNI21 and incubated for an additional 24 hours. For luciferase activity, One-Glo luciferase reagent (Promega) was added to each well, and the luminescence intensity was measured using a Synergy NEO2 Hybrid Multi-Mode Reader (BioTek).
면역 블롯 분석Immunoblot analysis
전체 세포 추출물을 분리하고 면역블롯 분석을 이전에 설명한 대로 약간 수정하여 수행하였다(Lee, K.Y., et al., J Cell Biol, 2013. 200(1): p. 31-44). 간단히 말해서, RIPA 완충액 (50mM Tris-HCl(pH 8.0), 150 mM NaCl, 5 mM EDTA, 1% Triton X-100쪠, 0.1% 나트륨 도데실 설페이트, 0.5% 소듐 데옥시콜레이트, Halt쪠 Protease & Phosphatase Single-Use Inhibitor Cocktail))에서 Benzonase® 뉴클레아제와 함께 얼음 위에서 세포를 40분 동안 배양하여 전체 세포 추출물을 분리하고, 초음파 처리 및 원심분리하였다. 면역블롯 분석을 위해 단백질을 SDS-PAGE로 분해하고 니트로셀룰로오스 막으로 옮겼다. 막을 차단용 탈지유 5%가 첨가된 0.1% Tween 20 (TBS-T)을 함유하는 Tris-buffered saline (TBS)에서 20분 동안 인큐베이션한 다음, 1차 항체로 밤새 인큐베이션하였다. 블롯을 세척하고 1:5,000 희석된 TBS-T에서 1시간 동안 양고추냉이 퍼옥시다제-접합 2차 항체(Enzo Life Sciences)와 함께 인큐베이션하였다. 신호는 자동화된 이미징 시스템(ChemiDoc쪠; Bio-Rad Laboratories)에 의해 향상된 화학발광 시약(Thermo Fisher Scientific)을 사용하여 검출되었다.Whole cell extracts were isolated and immunoblot analysis was performed as previously described (Lee, KY, et al., J Cell Biol, 2013. 200(1): p. 31-44). Briefly, RIPA buffer (50 mM Tris-HCl (pH 8.0), 150 mM NaCl, 5 mM EDTA, 1% Triton X-100, 0.1% sodium dodecyl sulfate, 0.5% sodium deoxycholate, Halt's Protease & Phosphatase The whole cell extract was isolated by incubating the cells on ice for 40 min with Benzonase ® nuclease in Single-Use Inhibitor Cocktail), sonicated and centrifuged. For immunoblot analysis, proteins were resolved by SDS-PAGE and transferred to nitrocellulose membranes. Membranes were incubated for 20 minutes in Tris-buffered saline (TBS) containing 0.1% Tween 20 (TBS-T) supplemented with 5% skim milk for blocking, followed by overnight incubation with primary antibodies. Blots were washed and incubated with horseradish peroxidase-conjugated secondary antibody (Enzo Life Sciences) for 1 hour in 1:5,000 diluted TBS-T. Signals were detected using enhanced chemiluminescent reagents (Thermo Fisher Scientific) by an automated imaging system (ChemiDoc™; Bio-Rad Laboratories).
유세포 분석flow cytometry
세포를 PBS로 세척하고 PBS 중 70% 에탄올로 밤새 고정시켰다. 그런 다음 고정된 세포를 PBS로 세척하고 PBS 중 0.2 mg/mL RNase A와 함께 37℃에서 1시간 동안 인큐베이션하였다. DNA는 PBS에서 10 μg/mL 프로피듐 아이오다이드(propidium iodide)로 염색되었다. 유세포 분석은 BD FACSuite™ 소프트웨어(BD Biosciences)를 사용하여 FACSVerse™ 유세포 분석기에서 수행되었다. FlowJo 소프트웨어를 사용하여 데이터 분석을 수행하였다.Cells were washed with PBS and fixed overnight with 70% ethanol in PBS. The fixed cells were then washed with PBS and incubated with 0.2 mg/mL RNase A in PBS at 37°C for 1 hour. DNA was stained with 10 μg/mL propidium iodide in PBS. Flow cytometry was performed on a FACSVerse™ flow cytometer using BD FACSuite™ software (BD Biosciences). Data analysis was performed using FlowJo software.
아폽토시스 분석Apoptosis assay
제조사의 지침에 따라 Annexin V Alexa FluorTM 488 접합체(A13201, Thermo Fisher Scientific)와 Flow-Jo 소프트웨어(버전 10)가 있는 BD FACSVerse 기기를 사용하여 세포 사멸을 정량화하였다.Cell death was quantified using a BD FACSVerse instrument with Annexin V Alexa Fluor™ 488 conjugate (A13201, Thermo Fisher Scientific) and Flow-Jo software (version 10) according to the manufacturer's instructions.
COMET 분석COMET analysis
COMET 분석은 제조업체의 지침에 따라 CometChip®(Trevigen, Gaithersburg, MD)을 사용하여 수행되었다. 간단히 말해서, 단일 세포 현탁액을 1.0 X 105개 cells/ml 밀도를 갖는 6 ml 배지에서 제조하였다. 웰당 100μl 세포의 분취량을 CometChip에 적용하고 세포를 고르게 퍼뜨리기 위해 10분 간격으로 3회 부드럽게 흔들면서 10분 동안 조직 배양 인큐베이터에서 배양하였다. 배지를 제거하고 96웰 CometChip® 시스템의 각 CometChip을 5 mL PBS로 부드럽게 두 번 세척하였다. 그런 다음 CometChip을 PBS 중 1% 45℃ 저융점 아가로스 6 mL로 덮었다. 아가로스의 응고 후, 슬라이드를 4℃에서 밤새 용해 용액(Trevigen)에 침지시켰다. CometChip을 4℃에서 20분 동안 알칼리성 용액에서 2회 평형화하고, 알칼리성 용액에서 22V로 4℃에서 50분 동안 전기영동하고, 새로운 0.4M Tris(pH 7.4) 완충액에서 15분 동안 4℃에서 중화하였다. 그런 다음 20mM Tris(pH 7.4) 완충액에서 4℃에서 30분 동안 평형화하였다. CometChip의 DNA는 실온에서 2시간 동안 20mM Tris(pH 7.4) 완충액에서 0.2X SYBR® Gold로 염색되었다. 형광 현미경(BX53; Olympus, Tokyo, Japan)으로 이미지를 획득하고 Comet 분석 소프트웨어(Trevigen)를 사용하여 테일 모멘트(tail moment)를 계산하였다.COMET analysis was performed using the CometChip® (Trevigen, Gaithersburg, MD) according to the manufacturer's instructions. Briefly, single cell suspensions were prepared in 6 ml medium with a density of 1.0 X 10 5 cells/ml. Aliquots of 100 μl cells per well were applied to the CometChip and incubated in a tissue culture incubator for 10 minutes with gentle shaking 3 times at 10 minute intervals to spread the cells evenly. The medium was removed and each CometChip in the 96-well CometChip® system was gently washed twice with 5 mL PBS. The CometChip was then covered with 6 mL of 1% 45°C low-melting agarose in PBS. After solidification of the agarose, the slides were immersed in a lysing solution (Trevigen) overnight at 4°C. The CometChip was equilibrated twice in alkaline solution at 4°C for 20 minutes, electrophoresed in alkaline solution at 22V for 50 minutes at 4°C, and neutralized in fresh 0.4M Tris (pH 7.4) buffer for 15 minutes at 4°C. Then, it was equilibrated in 20 mM Tris (pH 7.4) buffer at 4° C. for 30 minutes. The CometChip's DNA was stained with 0.2X SYBR® Gold in 20 mM Tris (pH 7.4) buffer for 2 hours at room temperature. Images were acquired with a fluorescence microscope (BX53; Olympus, Tokyo, Japan) and tail moments were calculated using Comet analysis software (Trevigen).
세포 생존력 분석Cell viability assay
세포를 웰당 5,000개 세포의 최종 밀도로 백색의 단단한 바닥 96웰 플레이트에 플레이팅하고 표시된 화합물로 처리하기 전에 하루 동안 인큐베이션하였다. 세포 생존력은 제조자의 프로토콜에 따라 Cell Titer-Glo (Promega)를 사용하여 처리 후 48시간 후에 결정되었다. 생존력은 Synergy NEO2 Hybrid Multi-Mode Reader (BioTek)에서 정량화하였다.Cells were plated in white hard-bottom 96-well plates at a final density of 5,000 cells per well and incubated for one day before treatment with the indicated compounds. Cell viability was determined 48 hours after treatment using Cell Titer-Glo (Promega) according to the manufacturer's protocol. Viability was quantified on a Synergy NEO2 Hybrid Multi-Mode Reader (BioTek).
제조예: 2-클로로-N,N-디에틸에탄-1-아민 염산염을 사용한 핵염기의 알킬화(UNI21)Preparation: Alkylation of nucleobases with 2-chloro- N,N -diethylethane-1-amine hydrochloride (UNI21)
도 1a에 표시된 화학식 2의 화합물(UNI21라 칭함)은 2-클로로-N,N-디에틸에탄아민 하이드로클로라이드(2-chloro-N,N-디diethylethanamine hydrochloride), SIGMA-ALDRICH)를 구매하여 사용하였다.The compound of Formula 2 (referred to as UNI21) shown in Figure 1a is 2-chloro-N, N-diethylethanamine hydrochloride (2-chloro-N, N-diethylethanamine hydrochloride, SIGMA-ALDRICH) is purchased and used did
아데닌과 UNI21의 반응Reaction of adenine with UNI21
Figure PCTKR2022015184-appb-img-000006
Figure PCTKR2022015184-appb-img-000006
2-클로로-N,N-디에틸에탄아민 염산염(UNI21) (28.8 mg, 0.2 mmol, 1.0 eq)을 TFE(2,2,2-Trifluoroethanol) (2.0 mL)에 용해된 아데닌(27.0 mg, 0.2 mmol, 1.0 eq) 용액에 첨가하였다. 아세트산나트륨(24.6 mg, 0.3 mmol, 1.5 당량)을 첨가하여 pH를 중성으로 조정하였다. 반응 혼합물을 37℃ 또는 60℃에서 3일 동안 교반하였다. 조 반응물을 시린지 필터로 여과하였다. 여과된 화학물질은 하기 기술된 바와 같이 UPLC-HRAM-PRM에 의해 특성화하였다.2-Chloro- N,N -diethylethaneamine hydrochloride (UNI21) (28.8 mg, 0.2 mmol, 1.0 eq) was dissolved in adenine (27.0 mg, 0.2 mL) in TFE (2,2,2-trifluoroethanol) (2.0 mL). mmol, 1.0 eq) was added to the solution. The pH was adjusted to neutral by adding sodium acetate (24.6 mg, 0.3 mmol, 1.5 equiv). The reaction mixture was stirred at 37 °C or 60 °C for 3 days. The crude reaction was filtered through a syringe filter. Filtered chemicals were characterized by UPLC-HRAM-PRM as described below.
구아닌과 UNI21의 반응Reaction of Guanine with UNI21
Figure PCTKR2022015184-appb-img-000007
Figure PCTKR2022015184-appb-img-000007
2-클로로-N,N-디에틸에탄아민 염산염(UNI21)(28.8mg, 0.2mmol, 1.0당량)을 TFE (2.0mL)에 용해된 구아닌(30.2 mg, 0.2 mmol, 1.0당량)의 용액에 첨가하였다. 아세트산나트륨(24.6 mg, 0.3 mmol, 1.5 당량)을 첨가하여 pH를 중성으로 조정하였다. 반응 혼합물을 37℃ 또는 60℃에서 3일 동안 교반하였다. 조 반응물을 시린지 필터로 여과하였다. 여과된 화학물질은 하기 기술된 바와 같이 UPLC-HRAM-PRM에 의해 특성화하였다.2-Chloro- N,N -diethylethaneamine hydrochloride (UNI21) (28.8 mg, 0.2 mmol, 1.0 equiv) was added to a solution of guanine (30.2 mg, 0.2 mmol, 1.0 equiv) in TFE (2.0 mL). did The pH was adjusted to neutral by adding sodium acetate (24.6 mg, 0.3 mmol, 1.5 equiv). The reaction mixture was stirred at 37 °C or 60 °C for 3 days. The crude reaction was filtered through a syringe filter. Filtered chemicals were characterized by UPLC-HRAM-PRM as described below.
티민과 UNI21의 반응The reaction of thymine and UNI21
Figure PCTKR2022015184-appb-img-000008
Figure PCTKR2022015184-appb-img-000008
2-클로로-N,N-디에틸에탄아민 염산염(UNI21)(28.8 mg, 0.2 mmol, 1.0당량)을 TFE (2.0 mL)에 용해된 티민(25.2 mg, 0.2 mmol, 1.0당량)의 용액에 첨가하였다. 아세트산나트륨(24.6 mg, 0.3 mmol, 1.5 당량)을 첨가하여 pH를 중성으로 조정하였다. 반응 혼합물을 37℃ 또는 60℃에서 3일 동안 교반하였다. 조 반응물을 시린지 필터로 여과하였다. 여과된 화학물질은 하기 기술된 바와 같이 UPLC-HRAM-PRM에 의해 특성화하였다.2-Chloro- N,N -diethylethaneamine hydrochloride (UNI21) (28.8 mg, 0.2 mmol, 1.0 equiv) was added to a solution of thymine (25.2 mg, 0.2 mmol, 1.0 equiv) in TFE (2.0 mL). did The pH was adjusted to neutral by adding sodium acetate (24.6 mg, 0.3 mmol, 1.5 equiv). The reaction mixture was stirred at 37 °C or 60 °C for 3 days. The crude reaction was filtered through a syringe filter. Filtered chemicals were characterized by UPLC-HRAM-PRM as described below.
시토신과 UNI21의 반응Reaction of cytosine with UNI21
Figure PCTKR2022015184-appb-img-000009
Figure PCTKR2022015184-appb-img-000009
2-클로로-N,N-디에틸에탄아민 염산염(UNI21)(28.8 mg, 0.2 mmol, 1.0당량)을 TFE(2.0 mL)에 용해된 시토신(22.2 mg, 0.2 mmol, 1.0당량)의 용액에 첨가하였다. 아세트산나트륨(24.6 mg, 0.3 mmol, 1.5 당량)을 첨가하여 pH 중성을 조정하였다. 반응 혼합물을 37℃ 또는 60℃에서 3일 동안 교반하였다. 조 반응물을 시린지 필터로 여과하였다. 여과된 화학물질은 하기 기술된 바와 같이 UPLC-HRAM-PRM에 의해 특성화하였다.2-Chloro- N,N -diethylethaneamine hydrochloride (UNI21) (28.8 mg, 0.2 mmol, 1.0 equiv) was added to a solution of cytosine (22.2 mg, 0.2 mmol, 1.0 equiv) in TFE (2.0 mL). did Sodium acetate (24.6 mg, 0.3 mmol, 1.5 equiv) was added to adjust pH neutral. The reaction mixture was stirred at 37 °C or 60 °C for 3 days. The crude reaction was filtered through a syringe filter. Filtered chemicals were characterized by UPLC-HRAM-PRM as described below.
알킬 핵염기의 고체상 추출(Solid-phase extraction, SPE) 정제Solid-phase extraction (SPE) purification of alkyl nucleobases
N-(디에틸아미노-에틸)-핵염기(DEAE-핵염기) 반응의 분취량을 물 중 5% 메탄올 1mL에서 재구성하고 30분 동안 초음파 처리하였다. 초음파 처리 후, 용액을 실온에서 10분 동안 14,000 rcf에서 원심분리하여 고체 침전물을 펠렛화하였다. Oasis® HLB 30 mg 추출 카트리지(Waters, Milford, MA)를 진공 매니폴드에 놓고 물 1 mL를 두 번 첨가한 다음 부드러운 진공이 적용된 메탄올 1 mL를 추가하여 조절하였다. 그런 다음 샘플 용액을 컬럼에 로딩한 다음 물에 용해된 5% 메탄올 2 mL로 두 번 세척하였다. DEAE-퓨린 핵염기와 DEAE-피리미딘 핵염기는 500 μL 100% 메탄올을 두 번 첨가하여 용리되었다. 수집된 용리액은 원심 진공에 의해 농축되었고 향후 분석을 위해 -20℃에 보관되었다.Aliquots of each N- (diethylamino-ethyl)-nucleobase (DEAE-nucleobase) reaction were reconstituted in 1 mL of 5% methanol in water and sonicated for 30 minutes. After sonication, the solution was centrifuged at 14,000 rcf for 10 min at room temperature to pellet the solid precipitate. An Oasis ® HLB 30 mg extraction cartridge (Waters, Milford, MA) was placed on the vacuum manifold and conditioned by adding 1 mL of water twice followed by 1 mL of methanol with gentle vacuum applied. Then, the sample solution was loaded onto the column and washed twice with 2 mL of 5% methanol in water. DEAE-purine nucleobases and DEAE-pyrimidine nucleobases were eluted by adding 500 μL 100% methanol twice. Collected eluates were concentrated by centrifugal vacuum and stored at -20°C for future analysis.
2-클로로-N,N-디에틸에탄아민 염산염(UNI21)을 사용한 송아지 흉선 DNA(CTDNA)의 알킬화Alkylation of calf thymus DNA (CTDNA) with 2-chloro- N,N -diethylethanamine hydrochloride (UNI21)
물 또는 PBS에 녹인 100 μg의 CTDNA 분취량을 190μL의 물 또는 PBS로 희석한 다음, 10μL의 2mM 2-클로로-N,N-디에틸에탄아민 염산염을 첨가하여 최종 농도가 100 μM이 되도록 하였다. 그런 다음 용액을 37℃에서 16시간 동안 인큐베이션하여 뉴클레오티드의 알킬화시킨 다음 70℃에서 1시간 동안 가열하여 DEAE-퓨린 염기를 탈퓨린화하였다. 방출된 DEAE-퓨린 핵염기는 OmegaTM 10kDa 멤브레인이 있는 Nanosep® 원심 분리 장치를 통해 4℃에서 14,000rcf에서 10분 동안 원심분리하여 DNA 백본에서 분리되었다. 동일한 부피의 탈이온수(De-ionized)수를 두 번, 100 μL 50:50 ACN(Acetonitrile):DI water를 한 번 사용하여 필터를 추가로 세척하였다. 수집된 모든 용액(탈퓨린 용액)은 원심 진공에 의해 건조될 때까지 농축되었고 향후 실험을 위해 -20℃에서 보관되었다. 필터의 DNA 백본을 100 μL 물(DNA 백본 용액)에 재현탁하고 필터에서 회수하여 향후 실험을 위해 -20℃에 보관하였다.An aliquot of 100 μg CTDNA in water or PBS was diluted with 190 μL of water or PBS, then 10 μL of 2 mM 2-chloro- N,N -diethylethanamine hydrochloride was added to a final concentration of 100 μM. The solution was then incubated at 37°C for 16 hours to allow alkylation of nucleotides followed by depurination of DEAE-purine bases by heating at 70°C for 1 hour. The released DEAE-purine nucleobases were separated from the DNA backbone by centrifugation at 14,000 rcf for 10 min at 4° C. through a Nanosep ® centrifugal separator with an Omega 10 kDa membrane. The filter was further washed with equal volumes of de-ionized water twice and once with 100 μL 50:50 Acetonitrile (ACN):DI water. All collected solutions (depurine solutions) were concentrated to dryness by centrifugal vacuum and stored at -20 °C for future experiments. The DNA backbone of the filter was resuspended in 100 μL water (DNA backbone solution) and recovered from the filter and stored at -20 °C for future experiments.
초고성능 액체 크로마토그래피-고분해능 정밀 질량 병렬 반응 모니터링(UPLC-HRAM-PRM)을 통한 알킬-핵염기 표준물의 특성화Characterization of Alkyl-Nucleobase Standards by Ultra-Performance Liquid Chromatography-High Resolution Accurate Mass Parallel Reaction Monitoring (UPLC-HRAM-PRM)
2-클로로-N,N-디에틸에탄아민 염산염에 의한 퓨린 및 피리미딘 핵염기의 알킬화는 다음과 같이 양성 모드에서 UPLC-HRAM-PRM 분석에 의해 SPE(solid-phase extraction, 고상 추출)-정제된 반응 생성물을 분석함으로써 확인되었다; Hypersil GOLD 1.9 mm C18 컬럼(100 x 1.0 mm)은 완충액 A (15 mM 암모늄 아세테이트, pH 7.0) 및 완충액 B (100% 아세토니트릴)의 구배를 사용하여 2% 완충액 B에서 2분 동안 시작하여 8분에 걸쳐 25% 완충액 B로 선형 증가시키고, 20분에 걸쳐 50% 완충액 B로 증가시킨 다음 2분에 걸쳐 80% 완충액 B로 증가시키고 2분 동안 80% 완충액 B에서 일정하게 유지하고, 이어서 2분에 걸쳐 2% 완충액으로 감소시키고, 마지막으로 9분 동안 2% 완충액 B에서 재평형화시켰다. 질량 분석(MS) 설정은 다음과 같다. 전자분무 전압(3500V), 모세관 온도 320℃, 전체 스캔 AGC(1e6), 전체 스캔 분해능 70,000, HESI 온도 150℃, 시스 가스(sheath gas), 보조 가스 및 스윕 가스(sweep gas) 유량 각각 35, 10 및 1 임의 단위이다. PRM(parallel reaction monitoring, 병렬 반응 모니터링) MS 설정은 다음과 같다: 35,000에서 PRM AGC(5e4) 및 PRM 분해능. DEAE-퓨린 및 DEAE-피리미딘 핵염기 PRM 설정은 다음과 같다. ESI+-PRM N7-DEAE-구아닌 및 N9-DEAE-구아닌: m/z (+1) = 9-14.0분에서 251.1615; ESI+-PRM N1-DEAE-아데닌, N3-DEAE-아데닌 및 N7-DEAE-아데닌(N9-DEAE-아데닌 가능성): m/z (+1) = 12-15분에서 235.1661; ESI+-PRM N1-DEAE-시토신 및 N3-DEAE-시토신: m/z (+1) = 4-7분 및 8-13분에서 211.1550; 및 ESI+-PRM N1-DEAE-티민 및 N3-DEAE-티민: m/z (+1) = 10-13분에서 226.1547.Alkylation of purine and pyrimidine nucleobases with 2-chloro- N,N -diethylethaneamine hydrochloride was solid-phase extraction (SPE)-purified by UPLC-HRAM-PRM analysis in positive mode as follows. was confirmed by analyzing the reaction product; A Hypersil GOLD 1.9 mm C18 column (100 x 1.0 mm) was run with a gradient of buffer A (15 mM ammonium acetate, pH 7.0) and buffer B (100% acetonitrile), starting at 2% buffer B for 2 minutes and running for 8 minutes. linearly increased to 25% Buffer B over 20 minutes, then to 80% Buffer B over 2 minutes, held constant at 80% Buffer B for 2 minutes, followed by 2 minutes to 2% buffer, and finally re-equilibrated in 2% buffer B for 9 minutes. The mass spectrometry (MS) settings were as follows. Electrospray voltage (3500 V), capillary temperature 320 ° C, full scan AGC (1e 6 ), full scan resolution 70,000, HESI temperature 150 ° C, sheath gas, auxiliary gas and sweep gas flow rates of 35 each; 10 and 1 arbitrary units. Parallel reaction monitoring (PRM) MS settings were as follows: PRM AGC (5e 4 ) and PRM resolution at 35,000. The DEAE-purine and DEAE-pyrimidine nucleobase PRM settings are as follows. ESI + -PRM N7-DEAE-guanine and N9-DEAE-guanine: m/z (+1) = 251.1615 at 9-14.0 min; ESI + -PRM N1-DEAE-adenine, N3-DEAE-adenine and N7-DEAE-adenine (N9-DEAE-adenine potential): m/z (+1) = 235.1661 at 12-15 min; ESI+-PRM N1-DEAE-cytosine and N3-DEAE-cytosine: m/z (+1) = 211.1550 at 4-7 min and 8-13 min; and ESI+-PRM N1-DEAE-thymine and N3-DEAE-thymine: m/z (+1) = 226.1547 at 10-13 min.
UPLC-HRAM-PRM에 의한 2-클로로-N,N-디에틸에탄아민 염산염(UNI21)에 의한 CTDNA 알킬화 분석Analysis of CTDNA Alkylation with 2-Chloro- N,N -diethylethanamine Hydrochloride (UNI21) by UPLC-HRAM-PRM
위의 탈퓨린 용액을 50 μL 물에 재구성하고 핵염기가 존재하는지 확인하기 위해 구아노신에 대한 흡광 계수를 사용하여 마이크로볼륨 UV 분광광도계(Thermo Scientific쪠 NanoDrop)로 측정하였다. 탈퓨린 용액에서 1.2 μg의 CTDNA의 당량을 위에서 설명한 DEAE-퓨린 UPLC-HRAM-PRM 방법으로 분석하였다.The above depurine solution was reconstituted in 50 μL water and measured with a microvolume UV spectrophotometer (Thermo Scientific™ NanoDrop) using the extinction coefficient for guanosine to confirm the presence of nucleobases. An equivalent of 1.2 μg of CTDNA in depurine solution was analyzed by the DEAE-purine UPLC-HRAM-PRM method described above.
위의 DNA 백본 용액을 마이크로볼륨 UV 분광광도계로 측정하고 25 μg의 CTDNA 분취량을 150 μL 1X NEB 뉴클레오사이드 분해 믹스 반응 완충액으로 희석하고 2.5 μL NEB 뉴클레오사이드 분해 믹스(10 μg CTDNA당 1 μL 믹스)와 함께 37℃에서 4시간 동안 인큐베이션시켰다. 인큐베이션 후, OmegaTM 10 kDa 멤브레인이 있는 Nanosep® 원심 장치를 통해 4℃에서 10분 동안 14,000 rcf에서 원심분리하여 소화 효소를 제거하였다. 필터는 동일한 부피의 탈이온수를 한 번 더 사용하고 100 mL 50:50 ACN: DI water를 두 번 더 사용하여 추가로 세척하였다. 수집된 모든 용액을 원심 진공으로 농축 건조시켰다. 생성된 분해물을 25 μL LC-MS 물에 재구성하고 CTDNA의 5 μg 분취량을 설명된 바와 같이 변형된 DEAE-피리미딘 뉴클레오시드 UPLC-HRAM-PRM 분석으로 분석하였다. ESI+-PRM DEAE-2'-데옥시시티딘: m/z (+1) = 11-14.0분에서 327.20270 및 ESI+-PRM DEAE-티미딘: m/z (+1) = 11-14에서 각각 342.20230. UPLC-PRM MS 설정은 위에서 설명한 DEAE-퓨린 염기 분석에 대해 설명한 것과 정확히 동일하였다.The above DNA backbone solution was measured by microvolume UV spectrophotometry and a 25 μg CTDNA aliquot was diluted in 150 μL 1X NEB Nucleoside Digestion Mix Reaction Buffer and 2.5 μL NEB Nucleoside Digestion Mix (1 μL per 10 μg CTDNA). mix) for 4 hours at 37°C. After incubation, digestive enzymes were removed by centrifugation at 14,000 rcf for 10 minutes at 4° C. through a Nanosep ® centrifuge with an Omega 10 kDa membrane. The filter was further washed once more with the same volume of deionized water and twice more with 100 mL 50:50 ACN:DI water. All collected solutions were concentrated to dryness by centrifugal vacuum. The resulting lysate was reconstituted in 25 μL LC-MS water and a 5 μg aliquot of CTDNA was analyzed by a modified DEAE-pyrimidine nucleoside UPLC-HRAM-PRM assay as described. ESI + -PRM DEAE-2'-deoxycytidine: m/z (+1) = 327.20270 at 11-14.0 min and ESI + -PRM DEAE-thymidine: m/z (+1) = at 11-14 342.20230 respectively. The UPLC-PRM MS setup was exactly the same as described for the DEAE-purine base analysis described above.
마우스 이종이식편mouse xenograft
동물 실험은 UNIST 동물실험연구소(IACUC)의 지침에 따라 수행되었다. 7주령 수컷 BALB/c 누드 마우스는 Orient Bio(경기, 한국)에서 구입하였다. 4백만 세포의 WT 또는 PARP1 KO HCT116을 150 μL의 멸균 HBSS(Welgene, 한국 경북)에 현탁하고 왼쪽 옆구리에 피하 주사하였다. 비히클(PBS) 또는 UNI21의 종양 내 주사는 각 종양 크기가 약 200 mm3에 도달한 후 16일 동안 3일마다 수행되었다. 종양 크기는 약물 치료 후 16일 동안 3일마다 캘리퍼스를 사용하여 측정되었다. 종양 부피는 다음 공식에 의해 측정되었다:
Figure PCTKR2022015184-appb-img-000010
모든 마우스를 안락사시켜 면역염색을 위해 종양을 수확하였다.
Animal experiments were performed in accordance with the guidelines of the UNIST Institute for Animal Testing (IACUC). 7-week-old male BALB/c nude mice were purchased from Orient Bio (Gyeonggi, Korea). Four million cells of WT or PARP1 KO HCT116 were suspended in 150 μL of sterile HBSS (Welgene, Gyeongbuk, Korea) and injected subcutaneously into the left flank. Intratumoral injections of vehicle (PBS) or UNI21 were performed every 3 days for 16 days after each tumor reached approximately 200 mm 3 in size. Tumor size was measured using calipers every 3 days for 16 days after drug treatment. Tumor volume was measured by the formula:
Figure PCTKR2022015184-appb-img-000010
All mice were euthanized and tumors were harvested for immunostaining.
면역조직화학immunohistochemistry
Hematoxylin 및 Eosin(H&E) 염색, TUNEL 및 γ-H2AX 면역 염색은 Histoire(서울, 한국)에서 상업적으로 수행하였다. 수집된 종양을 포르말린으로 고정하고 Histoire에서 픽업하였다. 자세한 면역염색 과정은 히스토리아 홈페이지(http://www.histoire.co.kr/)에서 확인할 수 있다.Hematoxylin and Eosin (H&E) staining and TUNEL and γ-H2AX immunostaining were commercially performed by Histoire (Seoul, Korea). Collected tumors were fixed in formalin and picked up in Histoire. Detailed immunostaining procedures can be found on the Historia website (http://www.histoire.co.kr/).
통계 분석statistical analysis
통계 분석은 GraphPad Prism(버전 9.0.0)을 사용하여 수행되었다. 유의성은 p 값으로 표현된다(p>0.5 (ns), p<0.05 (*), p<0.01 (**), p<0.001 (***), p<0.0001 (****)). 단일 통합 분산을 사용하는 일반 일원 분산 분석, Dunnett의 다중 비교 테스트를 사용하여 그룹을 비교하였다(도 1B-C). 일반 양방향 ANOVA, Sidak의 다중 비교 테스트, 단일 통합 분산을 사용하여 그룹을 비교하였다(도 1E-G, 3C, F, H, I). 짝을 이루지 않은 양측 t-검정을 사용하여 그룹을 비교하였다(도 4C, D).Statistical analysis was performed using GraphPad Prism (version 9.0.0). Significance is expressed as a p value: p >0.5 (ns), p <0.05 (*), p <0.01 (**), p <0.001 (***), p <0.0001 (****)). Groups were compared using normal one-way analysis of variance with single integrated variance, Dunnett's multiple comparison test (Figure 1B-C). Groups were compared using ordinary two-way ANOVA, Sidak's multiple comparison test, single integrated variance (Figures 1E-G, 3C, F, H, I). Groups were compared using an unpaired two-tailed t -test (Fig. 4C, D).
실시예 1: UNI21은 XPA 또는 PARP1 결핍 세포를 선택적으로 사멸한다.Example 1: UNI21 selectively kills XPA or PARP1 deficient cells.
이전에 ATAD5 발현을 바이오마커로 사용하여 유전독성 화합물을 식별하는 고처리량 유전독성 스크리닝 분석을 개발하였다(Fox, J.T., et al., Proc Natl Acad Sci U S A, 2012. 109(14): p. 5423-8). 이 분석을 사용하여 2-클로로-N,N-디에틸에탄아민 염산염(UNI21)(도 1a)이 ATAD5-루시페라제 발현을 증가시킨다는 것을 발견하였다(도 1b). 종양은 종종 DNA 손상 복구 경로에 결함이 있고 특정 DNA 손상 인자에 취약해진다. 예를 들어, 상동 재조합을 수행할 수 없는 BRCA1-결핍 종양은 상동성 기반 DNA 이중 가닥 파손(double-strand break, DSB) 복구에 필요한 경로이며 시스플라틴(cisplatin) 또는 이온화 방사선과 같은 DNA DSB 유발 물질에 민감하다. UNI21과 관련된 DNA 손상 복구 경로를 찾기 위해 다른 DNA 손상 복구 경로에 결함이 있는 다른 HAP1 세포주를 UNI21과 함께 48시간 동안 배양한 다음 Cell Titer-Glo 발광 세포 생존력 분석을 사용하여 세포 생존력을 측정하였다. 야생형과 비교하여 xpa KO 및 parp1 KO HAP1 세포주는 20 mM UNI21 처리에 대해 유의한 민감성을 나타냈다(도 1c 및 도 1d). UNI21에 대한 유사한 민감성이 parp1 KO HCT116 세포주에서 용량 의존적 방식으로 관찰되었다(도 1D, E). 또한 XP2OS 세포와 XPA 돌연변이 XP 환자 세포에서 세포 생존력을 측정하였다. 야생형 XPA로 상보적인 XP2OS 세포와 비교하여, XP2OS 세포는 용량 의존적 방식으로 UNI21에 상당한 민감성을 나타냈다(도 1d 및 도 1e).We previously developed a high-throughput genotoxicity screening assay to identify genotoxic compounds using ATAD5 expression as a biomarker (Fox, JT, et al., Proc Natl Acad Sci USA, 2012. 109(14): p. 5423 -8). Using this assay, it was found that 2-chloro- N,N -diethylethanamine hydrochloride (UNI21) (FIG. 1A) increased ATAD5-luciferase expression (FIG. 1B). Tumors often have defective DNA damage repair pathways and become susceptible to specific DNA damaging agents. For example, BRCA1-deficient tumors unable to undergo homologous recombination are pathways required for homology-based DNA double-strand break (DSB) repair and are susceptible to DNA DSB-inducing agents such as cisplatin or ionizing radiation. do. To find the DNA damage repair pathways associated with UNI21, another HAP1 cell line defective in other DNA damage repair pathways was cultured with UNI21 for 48 h and then cell viability was measured using the Cell Titer-Glo Luminescent Cell Viability Assay. Compared to the wild type, xpa KO and parp1 KO HAP1 cell lines showed significant sensitivity to 20 mM UNI21 treatment (Fig. 1c and Fig. 1d). A similar sensitivity to UNI21 was observed in a dose-dependent manner in the parp1 KO HCT116 cell line (Fig. 1D, E). In addition, cell viability was measured in XP2OS cells and XPA mutant XP patient cells. Compared to XP2OS cells complemented with wild-type XPA, XP2OS cells showed significant sensitivity to UNI21 in a dose-dependent manner (FIGS. 1D and 1E).
parp1 KO 세포주에 대한 UNI21의 선택적 민감도를 독립적으로 확인하기 위해 HAP1, HCT116 및 U2OS 세포주의 생존력을 Olaparib의 고정 농도와 증가하는 농도의 UNI21로 공동 처리한 후 평가하였다. parp1 KO 세포주와 유사하게, Olaparib의 공동 처리는 용량 의존적 방식으로 테스트된 모든 세포주에서 UNI21에 대한 민감성을 유도하였다(도 1f). 증가하는 용량의 올라파립과 고정된 농도의 UNI21을 동시에 처리하면 모든 HAP1, HCT116 및 U2OS 세포주에서 용량 의존적 방식으로 감도가 유도되었다(도 1g). 종합하면, UNI21은 NER(nucleotide excision repair) 또는 PARP1 의존적 복구 경로에 결함이 있는 세포에서 선택적으로 치명적인 영향을 일으킬 수 있다.To independently confirm the selective sensitivity of UNI21 against the parp1 KO cell line, the viability of HAP1, HCT116 and U2OS cell lines was assessed after co-treatment with a fixed concentration of Olaparib and increasing concentrations of UNI21. Similar to the parp1 KO cell line, co-treatment with Olaparib induced sensitivity to UNI21 in all cell lines tested in a dose-dependent manner (Fig. 1f). Simultaneous treatment with increasing doses of olaparib and fixed concentrations of UNI21 induced sensitivity in a dose-dependent manner in all HAP1, HCT116 and U2OS cell lines (Fig. 1g). Taken together, UNI21 can cause selective lethal effects in cells defective in nucleotide excision repair (NER) or PARP1-dependent repair pathways.
실시예 2: 2-클로로-N,N-디에틸에탄아민 염산염(UNI21)에 의한 알킬화된 핵염기의 특성화Example 2: Characterization of alkylated nucleobases with 2-chloro- N,N -diethylethanamine hydrochloride (UNI21)
UNI21은 반질소 머스타드이며 Cl 리간드가 분자내 폐환 반응에 의해 치환되어 아지리디늄 이온을 생성할 때 친전자성 특성을 갖는다. 이 반응성이 높은 친전자체는 DNA 핵염기의 친핵성 위치를 알킬화할 수 있다. 이 잠재적 메커니즘을 테스트하기 위해 UNI21에 의한 퓨린 및 피리미딘 핵염기의 알킬화를 조사하였다(도 2a). 각 핵염기 0.2mmol과 UNI21 0.2mmol의 반은 앞서 설명한 조건에 따라 수행되었다(Balcome, S., et al., Chem Res Toxicol, 2004. 17(7): p. 950-62). UNI21에 의한 퓨린 및 피리미딘 핵염기의 알킬화를 확인하기 위해 반응 혼합물을 고체상 추출로 정제하고 고해상도 정밀 질량 분석 병렬 반응 모니터링(UPLC-HRAM-PRM)으로 분석하였다. 이 분석을 사용하여 원하는 디에틸에테나미늄(DEAE)-아데닌(m/z = 235.1671), DEAE-구아닌(m/z = 251.1611), DEAE-티민(m/z = 226.0972) 및 DEAE-시토신(m/z = 211.1551)은 각각 13.1분과 14.3분(약한 피크), 10.2분과 12.1분, 11.0분과 11.5분, 4.8분과 9.2분에서 용리되는 것으로 확인되었다(도 6a). PRM(병렬 반응 모니터링) 단편화는 4개의 DEAE-핵염기 모두가 디에틸 링커에서 동일한 주요 절단 단편을 공유하여 N,N-디에틸에텐아미늄 [M - 염기 + H]+, m/z = 100.1124 및 N-비닐을 생성하는 것으로 나타났다. 핵염기 이온 [M - NC4H11]+; DEAE-아데닌 m/z = 235.1671 ~ 162.0772, DEAE-구아닌 m/z = 251.1611 ~ 178.0721, DEAE-티민 m/z = 226.0972 ~ 153.0656, DEAE-티민 m/z = 226.0972~153.0656. 2-브로모-N,N-디에티에탄-1-아민과 유사한 반응을 하여 동일한 생성물을 얻었지만 매우 감소된 수율로 아세테이트로 켄칭된 2-(디에틸아미노)에틸 아세테이트를 주요 생성물로 사용하였다. UPLC-HRAM-PRM 결과에 기초하여, 유사한 단편화 패턴을 갖는 다중 피크의 관찰은 구아닌의 N1, N3, N7, N9 또는 O 6 위치, 아데닌, 시토신의 N1, O 2 또는 N3, 티민의 N1, O 2, N3 또는 O 4 위치.UNI21 is an antinitrogen mustard and has electrophilic properties when Cl ligands are displaced by an intramolecular ring closure reaction to generate aziridinium ions. These highly reactive electrophiles can alkylate the nucleophilic positions of DNA nucleobases. To test this potential mechanism, we investigated the alkylation of purine and pyrimidine nucleobases by UNI21 (Fig. 2a). 0.2 mmol of each nucleobase and half of 0.2 mmol of UNI21 were carried out according to the conditions described previously (Balcome, S., et al., Chem Res Toxicol, 2004. 17(7): p. 950-62). To confirm the alkylation of purine and pyrimidine nucleobases by UNI21, the reaction mixture was purified by solid phase extraction and analyzed by high resolution accurate mass spectrometry parallel reaction monitoring (UPLC-HRAM-PRM). Using this assay, the desired diethylethenaminium (DEAE)-adenine ( m/z = 235.1671), DEAE-guanine ( m/z = 251.1611), DEAE-thymine (m/z = 226.0972) and DEAE-cytosine (m/z = 211.1551) was found to elute at 13.1 and 14.3 min (weak peak), 10.2 and 12.1 min, 11.0 and 11.5 min, and 4.8 and 9.2 min, respectively (Fig. 6a). Parallel Reaction Monitoring (PRM) fragmentation shows that all four DEAE-nucleobases share the same major cleavage fragment in the diethyl linker so that N,N -diethylethenaminium [M - base + H]+, m/z = 100.1124 and N-vinyl. nucleobase ion [M - NC 4 H 11 ] + ; DEAE-adenine m/z = 235.1671 to 162.0772, DEAE-guanine m/z = 251.1611 to 178.0721, DEAE-thymine m/z = 226.0972 to 153.0656, DEAE-thymine m/z = 226.0972 to 153.0656. A similar reaction with 2-bromo-N,N-diethietan-1-amine gave the same product, but in very reduced yield, 2-(diethylamino)ethyl acetate quenched to acetate was used as the main product. . Based on the UPLC-HRAM-PRM results, the observation of multiple peaks with similar fragmentation patterns is the N1, N3, N7, N9 or O 6 positions of guanine, adenine, N1, O 2 or N3 of cytosine, N1, O of thymine 2 , N3 or O 4 positions.
실시예 3: 2-클로로-N,N-디에틸에탄아민 염산염(UNI21)에 의한 알킬화된 송아지 흉선 DNA(CTDNA)의 확인 및 특성화Example 3: Identification and characterization of calf thymus DNA (CTDNA) alkylated by 2-chloro- N,N -diethylethanamine hydrochloride (UNI21)
이중 가닥 DNA의 뉴클레오티드에 대한 UNI21 알킬화를 추가로 조사하기 위해 CTDNA를 UNI21과 함께 16시간 동안 인큐베이션하였다. 알킬화된 퓨린은 열 가수분해에 의해 DNA 백본에서 방출되었고 UPLC-HRAM-PRM 분석에 의해 분석되었다. 240 ng에 해당하는 CTDNA를 분석했을 때 10.3분에 DEAE-구아닌의 존재를 확인할 수 있었다(도 2b). 이중 가닥 DNA에서 구아닌의 N9 위치에 접근할 수 없기 때문에 10.3분에 관찰된 피크는 N7-DEAE-구아닌일 것으로 예상되고 12.1분에 표준 피크는 N9-DEAE-구아닌일 것으로 예상된다. 240나노그램의 CTDNA를 분석하는 동안 DEAE-아데닌을 검출할 수 없었다. 탈퓨린화 기질이 1.2 μg의 CTDNA로 5배 증가했을 때 13.1분과 14.3분 모두에서 DEAE-아데닌에 대한 약한 신호를 감지할 수 있었다(도 2b). PRM 데이터를 분석한 결과 두 피크 모두 예상되는 단편화 패턴이 있는 것으로 나타났다. 2'-데옥시아데노신의 N3 위치가 DNA의 다른 질소 머스타드와 가장 반응성이 높은 위치임을 감안할 때(Balcome, S., et al., Chem Res Toxicol, 2004. 17(7): p. 950-62; Povirk, L.F. et al., Mutat Res, 1994. 318(3): p. 205-26), 13.1분의 약한 신호가 N1-DEAE-아데닌 또는 N7-DEAE-아데닌에 해당하고 14.3분에 더 강한 신호는 N3-DEAE-아데닌에 해당한다.To further investigate UNI21 alkylation of nucleotides in double-stranded DNA, CTDNA was incubated with UNI21 for 16 hours. Alkylated purines were released from the DNA backbone by thermal hydrolysis and analyzed by UPLC-HRAM-PRM analysis. When 240 ng of CTDNA was analyzed, the presence of DEAE-guanine was confirmed at 10.3 minutes (FIG. 2b). Since the N9 position of guanine in double-stranded DNA is not accessible, the observed peak at 10.3 min is expected to be N7-DEAE-guanine and the standard peak at 12.1 min is expected to be N9-DEAE-guanine. DEAE-adenine could not be detected while analyzing 240 nanograms of CTDNA. A weak signal for DEAE-adenine could be detected at both 13.1 and 14.3 min when the depurination substrate was increased 5-fold with 1.2 μg of CTDNA (Fig. 2b). Analysis of the PRM data showed that both peaks had the expected fragmentation pattern. Considering that the N3 position of 2'-deoxyadenosine is the most reactive position with other nitrogen mustards in DNA (Balcome, S., et al., Chem Res Toxicol, 2004. 17(7): p. 950-62 Povirk, L.F. et al., Mutat Res, 1994. 318(3): p. 205-26), a weak signal at 13.1 min corresponds to N1-DEAE-adenine or N7-DEAE-adenine and a stronger signal at 14.3 min. The signal corresponds to N3-DEAE-adenine.
나머지 알킬화된 DNA 백본을 NEB 뉴클레오사이드 분해 믹스로 분해하여 DEAE-2'-데옥시피리미딘을 생성하였다. 변형된 DEAE-피리미딘 뉴클레오사이드 UPLC-HRAM-PRM 분석으로 5㎍의 CTDNA 분해를 분석했을 때, 11.9분과 13.3분에 2개의 DEAE-dC 피크와 12.3분에 1개의 DEAE-dT 피크를 검출할 수 있었다(도 2c). 11.9분의 DEAE-dC 피크는 2'-데옥시당 [M - dR + H]+의 절단에 해당하는 m/z = 211.1511, 138.0661 및 100.1124의 단편을 생성하고 디에틸 링커에서 N-비닐-시토신 이온 [M - NC4H11 - dR + H]+N,N-디에틸에테나미늄 [M - dC + H]+을 생성한다(도 7). 13.3분의 DEAE-dC 피크는 식별할 수 없는 m/z = 283.17488, 177.11195, 133.08587 및 89.06019의 단편을 산출하였다. 12.3분의 DEAE-dT 피크는 m/z = 226.1547, 153.0656 및 100.1124의 단편을 산출했으며, 이는 2'-데옥시당 [M - dR + H]+의 절단에 해당하고 디에틸 링커에서 N-비닐-시토신 이온 [M - NC4H11 - dR + H]+ 및 N,N-디에틸에테나미늄 [M - dT + H]+을 생성한다(도 7). 이중 가닥 DNA에서 피리미딘의 N1 위치에 접근할 수 없다는 점을 감안할 때 11.9분에 관찰된 피크는 N 3-DEAE-dC 또는 O 2-DEAE-dC에 해당할 것으로 예상되고 12.1분에 피크는 O2에 해당할 것으로 예상된다 -DEAE-dT, N 3-DEAE-dT 또는 O 4-DEAE-dT. 종합하면, UNI21(2-클로로-N,N-디에틸에탄아민 염산염)은 2'-데옥시구아노신에 가장 반응성이 좋고, 그 다음이 2'-데옥시아데노신, 2'-데옥시피리미딘(dG >> dA > dC ~ dT)이다.The remaining alkylated DNA backbone was digested with NEB nucleoside digestion mix to generate DEAE-2'-deoxypyrimidines. When the degradation of 5 μg of CTDNA was analyzed by the modified DEAE-pyrimidine nucleoside UPLC-HRAM-PRM analysis, two DEAE-dC peaks at 11.9 and 13.3 minutes and one DEAE-dT peak at 12.3 minutes were detected. could (Fig. 2c). The DEAE-dC peak at 11.9 min yields fragments of m/z = 211.1511, 138.0661 and 100.1124 corresponding to cleavage of the 2'-deoxysugar [M - dR + H ] + N-vinyl-cytosine at the diethyl linker. ions [M - NC 4 H 11 - dR + H] + and N,N -diethylethenaminium [M - dC + H] + (FIG. 7). The DEAE-dC peak at 13.3 min yielded indistinguishable fragments of m/z = 283.17488, 177.11195, 133.08587 and 89.06019. The DEAE-dT peak at 12.3 min yielded fragments of m/z = 226.1547, 153.0656 and 100.1124, corresponding to cleavage of the 2'-deoxy sugar [M - dR + H] + and N -vinyl in the diethyl linker. -cytosine ion [M - NC 4 H 11 - dR + H]+ and N,N -diethylethenaminium [M - dT + H] + (Fig. 7). Given the inaccessibility of the N1 position of pyrimidines in double-stranded DNA, the peak observed at 11.9 min is expected to correspond to N 3 -DEAE-dC or O 2 -DEAE-dC, whereas the peak at 12.1 min corresponds to O2 It is expected to correspond to -DEAE-dT, N 3 -DEAE-dT or O 4 -DEAE-dT. Taken together, UNI21 (2-chloro- N,N -diethylethanamine hydrochloride) is most reactive with 2'-deoxyguanosine, followed by 2'-deoxyadenosine and 2'-deoxypyrimidine. (dG >> dA > dC ~ dT).
반응성과 알킬화 가능성을 조사하기 위해 돌연변이 HAP1 세포주를 염화물 이탈기를 브로마이드 이탈기로 대체한 UNI21 유도체로 처리하였다(도 5d 및 도 5e). 그러나 UNI21과 비교하여 브로마이드-치환 유도체의 민감도는 유의하게 증가하지 않았다.To investigate the reactivity and alkylation potential, the mutant HAP1 cell line was treated with a UNI21 derivative in which the chloride leaving group was replaced with a bromide leaving group (FIGS. 5d and 5e). However, compared to UNI21, the sensitivity of bromide-substituted derivatives did not increase significantly.
실시예 4: UNI21은 PARP1 결핍 세포에서 더 많은 DNA 절단을 유도한다Example 4: UNI21 induces more DNA cleavage in PARP1 deficient cells
UNI21은 핵염기에 대한 알킬화를 유발하므로 UNI21 치료는 S기 진행을 방해해야 한다. HCT116 WT 및 parp1 KO 세포주에서 세포 주기 진행에 대한 UNI21의 효과를 조사하였다. 야생형 및 parp1 KO 세포는 증가하는 농도의 UNI21 처리 시 S단계에서 모두 정지되었다(도 3a). parp1 KO 세포가 UNI21에 의해 선택적으로 사멸되었기 때문에 야생형에서 80 μM UNI21과 parp1 KO 세포에서 24시간 처리 후 DNA 손상 마커를 비교하였다. 세포 생존율 결과와 일치하게, UNI21 처리된 parp1 KO 세포에서 더 높은 γH2AX 유도를 발견하였다(도 3b). 또한, 알칼리 혜성 분석으로 측정한 실제 DNA 손상은 UNI21 처리 시 야생형 세포에 비해 parp1 KO 세포에서 유도된 DNA 파손이 더 많이 나타났다(도 3c). 게놈 불안정성을 조사하기 위해 80 μM UNI21로 24시간 처리한 후 HCT116 WT 및 parp1 KO 세포에서 자매 염색분체 교환(SCE) 및 염색체 파손을 테스트하였다. 이전 연구에서 PARP1 결핍 세포는 손상 없이 SCE를 증가시킨다(Hochegger, H., et al., EMBO J, 2006. 25(6): p. 1305-14; Wang, Z.Q., et al., Genes Dev, 1997. 11(18): p. 2347-58; de Murcia, J.M., et al., Proc Natl Acad Sci U S A, 1997. 94(14): p. 7303-7; Oikawa, A., et al., Biochem Biophys Res Commun, 1980. 97(4): p. 1311-6). UNI21 처리된 parp1 KO 세포에서 더 빈번한 SCE와 중단을 발견하였다(도 3d, e, f 및 g). 특히, UNI21 처리된 parp1 KO 세포에서 중기당 25개 이상의 중단이 높게 관찰되었다(도 3H). 마지막으로, Annexin V Alexa FluorTM 488 접합체를 사용하여 세포 사멸 세포 사멸을 정량화하였다. 야생형과 비교하여 parp1 KO 세포주는 20 mM UNI21 처리에 대해 유의하게 증가된 세포자멸사를 보였다(도 3i). 이러한 결과는 UNI21이 PARP1 결핍 세포에서 더 많은 DNA 손상, 염색체 이상 및 세포 사멸을 유도한다는 것을 보여준다.Because UNI21 induces alkylation of nucleobases, UNI21 treatment should prevent S-phase progression. The effect of UNI21 on cell cycle progression in HCT116 WT and parp1 KO cell lines was investigated. Both wild-type and parp1 KO cells were arrested in S phase upon treatment with increasing concentrations of UNI21 (Fig. 3a). Since parp1 KO cells were selectively killed by UNI21, DNA damage markers were compared in wild-type cells treated with 80 μM UNI21 and parp1 KO cells for 24 hours. Consistent with the cell viability results, higher γH2AX induction was found in UNI21-treated parp1 KO cells (Fig. 3b). In addition, the actual DNA damage measured by alkaline comet assay showed more DNA breakage induced in parp1 KO cells than in wild-type cells upon UNI21 treatment (Fig. 3c). To investigate genomic instability, sister chromatid exchange (SCE) and chromosome breaks were tested in HCT116 WT and parp1 KO cells after 24 h treatment with 80 μM UNI21. In previous studies, PARP1-deficient cells increased SCE without damage (Hochegger, H., et al., EMBO J, 2006. 25(6): p. 1305-14; Wang, ZQ, et al., Genes Dev, 1997. 11(18): p.2347-58;de Murcia, JM, et al., Proc Natl Acad Sci USA, 1997.94(14): p.7303-7; Biochem Biophys Res Commun, 1980. 97(4): p.1311-6). More frequent SCEs and disruptions were found in UNI21-treated parp1 KO cells (Figures 3d, e, f and g). In particular, a high number of 25 or more disruptions per metaphase was observed in UNI21-treated parp1 KO cells (Fig. 3H). Finally, apoptotic cell death was quantified using Annexin V Alexa Fluor 488 conjugate. Compared to the wild type, the parp1 KO cell line showed significantly increased apoptosis upon treatment with 20 mM UNI21 (FIG. 3i). These results show that UNI21 induces more DNA damage, chromosomal aberrations and apoptosis in PARP1-deficient cells.
실시예 5: parp1 KO 이종이식 종양의 성장은 UNI21 처리에 의해 선택적으로 억제된다Example 5: Growth of parp1 KO xenograft tumors is selectively inhibited by UNI21 treatment
생체 내 UNI21의 효과를 확인하기 위해 누드 마우스를 사용하여 이종이식을 수행하였다(도 4a). 야생형 또는 parp1 KO HCT116의 400만 세포를 왼쪽 옆구리에 피하 주사하여 이종이식 종양을 형성하였다. 종양이 약 200 mm3에 도달했을 때, 비히클 또는 UNI21을 종양내 주사하였다. 비히클 처리된 야생형 및 parp1 KO 종양은 지속적으로 성장하였다. 야생형 종양의 지속적인 성장과 대조적으로, HCT116 parp1 KO 생착은 UNI21 처리에 의해 종양 성장의 현저한 지연을 보여주었다(도 4b 및 도 4c). 각 그룹의 정기적으로 추적된 이종이식 종양의 부피는 UNI21이 PARP1 결핍 HCT116 이종이식 종양의 증식을 선택적으로 지연시킴을 입증하였다(도 4d). TUNEL assay와 γ-H2AX 면역염색으로 세포사멸과 DNA 손상의 조직학을 조사하였다(도 4e). 시험관 내 데이터와 일치하게, UNI21 처리는 세포 사멸을 유발하고 γ-H2AX를 유도하였다. 전체적으로 UNI21은 생체 내에서 PARP1 결핍 종양의 성장을 구체적으로 억제한다.To confirm the effect of UNI21 in vivo, xenotransplantation was performed using nude mice (Fig. 4a). Four million cells of wild-type or parp1 KO HCT116 were injected subcutaneously into the left flank to form xenograft tumors. When tumors reached approximately 200 mm 3 , vehicle or UNI21 was injected intratumorally. Vehicle-treated wild-type and parp1 KO tumors continued to grow. In contrast to the continued growth of wild-type tumors, HCT116 parp1 KO engraftment showed significant delay in tumor growth by UNI21 treatment (FIGS. 4B and 4C). Regularly tracked xenograft tumor volume in each group demonstrated that UNI21 selectively delayed the proliferation of PARP1 deficient HCT116 xenograft tumors (FIG. 4D). The histology of apoptosis and DNA damage was investigated by TUNEL assay and γ-H2AX immunostaining (Fig. 4e). Consistent with the in vitro data, UNI21 treatment induced apoptosis and induced γ-H2AX. Overall, UNI21 specifically inhibits the growth of PARP1-deficient tumors in vivo.
본 발명에 따른 화학식 1의 화합물 및 이의 약학적으로 허용 가능한 염을 포함하는 암 치료용 약학적 조성물은 PARP 저해제에 저항성을 갖는 다양한 암세포에 적용하여 선택적, 효과적으로 사멸시켜 암 질환을 치료 또는 예방하는데 사용할 수 있다.The pharmaceutical composition for treating cancer comprising the compound of Formula 1 and a pharmaceutically acceptable salt thereof according to the present invention can be applied to various cancer cells resistant to PARP inhibitors to selectively and effectively kill them, thereby treating or preventing cancer diseases. can
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.Having described specific parts of the present invention in detail above, it will be clear to those skilled in the art that these specific descriptions are only preferred embodiments, and the scope of the present invention is not limited thereby. will be. Accordingly, the substantial scope of the present invention will be defined by the claims and their equivalents.

Claims (6)

  1. 화학식 1로 표시되는 화합물 또는 약학적으로 허용가능한 이의 염을 포함하는 암 예방 또는 치료용 약학적 조성물.A pharmaceutical composition for preventing or treating cancer comprising a compound represented by Formula 1 or a pharmaceutically acceptable salt thereof.
    [화학식 1][Formula 1]
    Figure PCTKR2022015184-appb-img-000011
    Figure PCTKR2022015184-appb-img-000011
    화학식 1에서 R은 할로겐기이다.In Formula 1, R is a halogen group.
  2. 제1항에 있어서, 상기 화학식 1로 표시되는 화합물은 화학식 2 또는 화학식 3으로 표시되는 화합물인 것을 특징으로 하는 암 예방 또는 치료용 약학적 조성물.The pharmaceutical composition for preventing or treating cancer according to claim 1, wherein the compound represented by Formula 1 is a compound represented by Formula 2 or Formula 3.
    [화학식 2][Formula 2]
    Figure PCTKR2022015184-appb-img-000012
    Figure PCTKR2022015184-appb-img-000012
    [화학식 3][Formula 3]
    Figure PCTKR2022015184-appb-img-000013
    Figure PCTKR2022015184-appb-img-000013
  3. 제1항에 있어서, 상기 염은 HCl 염, HBr 염, HI 염, H2SO4 염 HNO3 염 및 이들의 조합으로 구성된 군에서 선택되는 것을 특징으로 하는 암 예방 또는 치료용 약학적 조성물.The pharmaceutical composition for preventing or treating cancer according to claim 1, wherein the salt is selected from the group consisting of HCl salt, HBr salt, HI salt, H2SO4 salt, HNO3 salt, and combinations thereof.
  4. 제1항에 있어서, 상기 암은 편평세포 암, 소형 세포 폐암, 비-소형 세포 폐암, 폐암, 복막암, 결장암, 담도 종양, 비인두암, 후두암, 기관지암, 구강암, 골육종, 담낭암, 신장암, 백혈병, 방광암, 흑색종, 뇌암, 신경 교종, 뇌종양, 피부암, 췌장암, 유방암, 간암, 골수암, 식도암, 대장암, 위암, 자궁경부암, 전립선암, 난소암, 두경부암 및 직장암으로 구성된 군에서 선택되는 것을 특징으로 하는 암 예방 또는 치료용 약학적 조성물.The method of claim 1, wherein the cancer is squamous cell cancer, small cell lung cancer, non-small cell lung cancer, lung cancer, peritoneal cancer, colon cancer, biliary tract tumor, nasopharyngeal cancer, laryngeal cancer, bronchial cancer, oral cancer, osteosarcoma, gallbladder cancer, kidney cancer, selected from the group consisting of leukemia, bladder cancer, melanoma, brain cancer, glioma, brain tumor, skin cancer, pancreatic cancer, breast cancer, liver cancer, bone marrow cancer, esophageal cancer, colon cancer, stomach cancer, cervical cancer, prostate cancer, ovarian cancer, head and neck cancer, and rectal cancer A pharmaceutical composition for preventing or treating cancer, characterized in that.
  5. 제1항에 있어서, PARP 저해제를 추가로 포함하는 암 예방 또는 치료용 약학적 조성물.The pharmaceutical composition for preventing or treating cancer according to claim 1, further comprising a PARP inhibitor.
  6. 제5항에 있어서, 상기 PARP 저해제는 올라파립(olaparib), 탈라조파립(talazoparib), 니라파립(niraparib), 루카파립(rucaparib), 벨리파립(veliparib) 및 파미파립(pamiparib)으로 구성된 군에서 1종 이상 선택되는 것을 특징으로 하는 암 예방 또는 치료용 약학적 조성물.The method of claim 5, wherein the PARP inhibitor is from the group consisting of olaparib, talazoparib, niraparib, rucaparib, veliparib and pamiparib A pharmaceutical composition for preventing or treating cancer, characterized in that at least one selected.
PCT/KR2022/015184 2021-10-08 2022-10-07 Use of 2-chloro-n,n-diethylethylamine hydrochloride for improving anti-cancer treatment WO2023059148A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0133853 2021-10-08
KR20210133853 2021-10-08

Publications (1)

Publication Number Publication Date
WO2023059148A1 true WO2023059148A1 (en) 2023-04-13

Family

ID=85803629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/015184 WO2023059148A1 (en) 2021-10-08 2022-10-07 Use of 2-chloro-n,n-diethylethylamine hydrochloride for improving anti-cancer treatment

Country Status (2)

Country Link
KR (1) KR20230051101A (en)
WO (1) WO2023059148A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200131251A (en) * 2018-02-15 2020-11-23 센화 바이오사이언시즈 인코포레이티드 Quinolone analogs and salts, compositions, and methods of use thereof
KR20210006945A (en) * 2018-05-08 2021-01-19 퀸스랜드 유니버시티 오브 테크놀로지 Determining the cancer response to treatment
JP2021525284A (en) * 2018-05-30 2021-09-24 ファロス・アイバイオ・カンパニー・リミテッド 2,3,5-substituted thiophene compounds for the prevention, amelioration or treatment of breast cancer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7872050B2 (en) 2005-03-14 2011-01-18 Yaupon Therapeutics Inc. Stabilized compositions of volatile alkylating agents and methods of using thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200131251A (en) * 2018-02-15 2020-11-23 센화 바이오사이언시즈 인코포레이티드 Quinolone analogs and salts, compositions, and methods of use thereof
KR20210006945A (en) * 2018-05-08 2021-01-19 퀸스랜드 유니버시티 오브 테크놀로지 Determining the cancer response to treatment
JP2021525284A (en) * 2018-05-30 2021-09-24 ファロス・アイバイオ・カンパニー・リミテッド 2,3,5-substituted thiophene compounds for the prevention, amelioration or treatment of breast cancer

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HASHIMOTO YOSHIYUKI, SUDO HISAYO, ISHIDATE MORIZO: " Inhibitory effect of carcinostatic agents on antitumor activity of sensitized lymphoid cells", JAPANESE JOURNAL OF CANCER RESEARCH - GANN, vol. 5877118853, no. 615, 1 February 1967 (1967-02-01), pages 31 - 44, XP093056661 *
SAKURAI YOSIO, HIROSHI IMAMURA, AYAKO MORIWAKI: " The Effect of Anti-tumor Agents on the Dehydrogenase Activity of Tumors", CHEMICAL AND PHARMACEUTICAL BULLETIN, vol. 6, no. 5, 1 January 1958 (1958-01-01), pages 501 - 504, XP093056663 *

Also Published As

Publication number Publication date
KR20230051101A (en) 2023-04-17

Similar Documents

Publication Publication Date Title
US11793814B2 (en) Compositions and methods for treating, preventing or reversing age associated inflammation and disorders
AU2016301196B2 (en) Tunable endogenous protein degradation
WO2010041913A2 (en) Novel uses of grs proteins or fragments thereof
WO2014040549A1 (en) Alkynyl heteroaromatic ring compound and application thereof
ES2930106T3 (en) Pyrrole-pyridine derivative compound, process for preparing the same, and pharmaceutical composition containing the same as an active ingredient for the prevention or treatment of protein kinase-related diseases
WO2022191431A1 (en) Nanoliposome carrier composition having kras and p53 gene editing function
WO2016018089A1 (en) Novel biomarker for predicting sensitivity to parp inhibitor, and use thereof
WO2023059148A1 (en) Use of 2-chloro-n,n-diethylethylamine hydrochloride for improving anti-cancer treatment
WO2018155921A1 (en) Pharmaceutical composition for preventing and treating pancreatic cancer, containing gossypol and phenformin as active ingredients
WO2017007241A1 (en) Method for determining sensitivity to simultaneous inhibitor against parp and tankyrase
WO2017023047A1 (en) Composition for preventing or treating inflammatory disease or cancer containing aripiprazole as an active ingredient
WO2021112620A1 (en) Pharmaceutical composition for prevention or treatment of sarcopenia or muscle atrophy
WO2021125762A1 (en) Composition for preventing or treating dementia, containing peptide nucleic acid complex with blood-brain barrier penetration ability as active ingredient
WO2021221447A1 (en) Use of active androgen receptor antagonist for cancer treatment
WO2013176503A1 (en) Tau protein mediated neurodegenerative disease therapeutic agent
WO2021085888A1 (en) Novel heterocyclic-substituted pyrimidine derivative exhibiting cancer cell growth inhibitory effect, and pharmaceutical composition containing same
WO2021002664A1 (en) Composition for preventing, relieving or treating cancer
EP3386988A1 (en) Novel dihydropyranopyrimidinone derivatives, and use thereof
WO2011013912A2 (en) Pharmaceutical composition for enhancing radiation therapy for cancer, and method for screening active material for enhancing radiation therapy for cancer
WO2022245131A1 (en) Parp inhibitor-resistant cancer therapeutic agent
WO2020111325A1 (en) Pharmaceutical composition for preventing or treating cancer, containing activation inhibitor of plk1 as active ingredient
WO2020050602A1 (en) Screening system for human-transformed cartilage cell line-based cartilage disease treatment agents
WO2024085640A1 (en) Composition for killing therapy-induced senescent (tis) cells and use thereof
WO2017164486A1 (en) Composition for inhibiting resistance to anticancer agents, containing tesk1 inhibitor, and method for screening for tesk1 inhibitor
WO2021107730A1 (en) Synthetic-baicalein-derivative as chemotherapeutic agent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22878969

Country of ref document: EP

Kind code of ref document: A1