WO2023059140A1 - 이차 전지의 활성화 장치와 그 활성화 방법 - Google Patents

이차 전지의 활성화 장치와 그 활성화 방법 Download PDF

Info

Publication number
WO2023059140A1
WO2023059140A1 PCT/KR2022/015161 KR2022015161W WO2023059140A1 WO 2023059140 A1 WO2023059140 A1 WO 2023059140A1 KR 2022015161 W KR2022015161 W KR 2022015161W WO 2023059140 A1 WO2023059140 A1 WO 2023059140A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
battery cell
vacuum
activation
moving member
Prior art date
Application number
PCT/KR2022/015161
Other languages
English (en)
French (fr)
Inventor
박지수
김용남
노소연
이영현
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to EP22878961.6A priority Critical patent/EP4235887A1/en
Priority to CN202280008007.0A priority patent/CN116583993A/zh
Priority to JP2023552066A priority patent/JP2024507590A/ja
Priority to US18/266,171 priority patent/US20240030505A1/en
Publication of WO2023059140A1 publication Critical patent/WO2023059140A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/044Activating, forming or electrochemical attack of the supporting material
    • H01M4/0445Forming after manufacture of the electrode, e.g. first charge, cycling
    • H01M4/0447Forming after manufacture of the electrode, e.g. first charge, cycling of complete cells or cells stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/446Initial charging measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0404Machines for assembling batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0481Compression means other than compression means for stacks of electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/049Processes for forming or storing electrodes in the battery container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/52Removing gases inside the secondary cell, e.g. by absorption
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/317Re-sealable arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an activation device for activating a battery cell of a pouch type secondary battery in an activation process and an activation method thereof.
  • cylindrical batteries, prismatic batteries, or pouch-type batteries are the mainstream, and energy efficiency and energy density are improved or energy inefficiency is improved depending on the structural characteristics corresponding to each type of various types of secondary batteries. Research and development are being conducted to prevent this.
  • Secondary batteries have advantages over other types of energy sources in terms of energy efficiency and density, but studies on stability are being conducted along with continuous development of structures, materials, and processes to secure higher efficiency. In particular, as various processes are performed in the manufacturing process of a secondary battery, precise control of movement, structure, arrangement, and assembly of battery cells is required for each process, so stability is of great importance.
  • a pouch-type battery is a type of battery in which an electrode assembly is accommodated in a pouch-type case and high energy density can be secured by accommodating an electrode assembly in which electrodes and separators are alternately stacked.
  • it is essential to discharge the gas generated in the pouch-type case during charging and discharging during the activation process of the battery cell. It is required.
  • the present invention is intended to solve the above problems, and a secondary battery activation device capable of discharging gases that may be generated in the manufacturing process of secondary batteries during charging/discharging of the activation process to the maximum extent possible and producing secondary batteries that can be stably manufactured/used. and an activation method thereof.
  • An activation device for a secondary battery includes a first transfer unit for transferring battery cells and a first chamber capable of adjusting the degree of vacuum in a space where the first transfer unit is located, and is spatially connected to the first chamber and It includes an activation unit in which the battery cell is disposed so that activation and degassing of the battery cell can be performed, and is spatially connected to a vacuum chamber capable of maintaining a space in which the activation unit is disposed in a vacuum state, the vacuum chamber, A second chamber including a second transfer unit for transporting the battery cells and capable of adjusting the degree of vacuum in a space where the second transfer unit is located, disposed to cross the first chamber, the vacuum chamber, and the second chamber.
  • a movement line connected to the movement line, and a movement member connected to the movement line and moving the battery cell along the movement line, performing piercing on the battery cell in the first chamber, and performing piercing on the battery cell in the activating unit.
  • the activation and the degassing of the cell may be performed, and sealing of the battery cell may be performed in one of the vacuum chamber and the second chamber.
  • the moving member includes a first moving member and a second moving member, the first moving member includes a heating pad on one side and a piercing pin on the other side, and the second moving member has a vacuum pad on one side.
  • the first movable member may be rotatable to enable one of a state in which the piercing pin faces the vacuum pad and a state in which the heating pad faces the vacuum pad.
  • the activation device performs the piercing based on the piercing pin of the first movable member and the vacuum pad of the second movable member, and the heating pad of the first movable member and the vacuum pad of the second movable member.
  • the sealing may be performed based on.
  • the activation unit may include a press jig, and during the activation, the battery cell may be pressurized using the press jig to perform the degassing.
  • a first gate may be formed in the first chamber, and the first gate may be opened when the vacuum level of the first chamber is adjusted to the vacuum state of the vacuum chamber.
  • a second gate may be formed in the second chamber, and the second gate may be opened when the vacuum level of the second chamber is adjusted to the vacuum state of the vacuum chamber.
  • first sealing is performed in a process in which the movable member contacts the battery cell to move the battery cell, and the movable member seals the battery cell.
  • Second sealing may be performed in the process of seating in the second chamber.
  • the first chamber includes a first activation tray, the first activation tray is disposed with the battery cells transported from the first transfer unit, the second chamber includes a second activation tray, and the second activation tray is disposed thereon.
  • the battery cells moved from the vacuum chamber may be disposed on a tray.
  • the battery cell may include a sealing portion in which a degassing portion may be formed, and gas inside the battery cell may be discharged through the degassing portion by pressurizing at least a portion of the sealing portion.
  • the activation of the battery cell may be performed in a state in which the piercing is performed in the activation unit.
  • a method for activating a secondary battery includes the steps of transferring a battery cell to a first chamber capable of adjusting the degree of vacuum in a space where the first transfer unit is located based on a first transfer unit; Performing piercing on the battery cell in a chamber, in a vacuum state including an activation unit capable of activating and degassing the battery cell along a moving line based on the moving member. Moving to a vacuum chamber, performing the activation and degassing of the battery cell in the activating unit of the vacuum chamber, and sealing the battery cell based on the moving member; The method may include moving the battery cell along the moving line based on the moving member to a second chamber capable of adjusting a degree of vacuum.
  • the method of activating the secondary battery may include performing the degassing while pressurizing the battery cell using a pressure jig during the activation.
  • the activation method of the secondary battery may include opening a first gate of the first chamber when the vacuum level of the first chamber is adjusted to the vacuum state of the vacuum chamber.
  • the activation method of the secondary battery may include opening a second gate of the second chamber when the vacuum level of the second chamber is adjusted to the vacuum state of the vacuum chamber.
  • the method of activating the secondary battery may include performing the activation of the battery cell in a state in which the piercing of the battery cell is performed by the activator.
  • the device for activating a secondary battery and the method for activating the secondary battery according to the present invention can provide high stability by efficiently removing gases that may be generated/collected in a pouch during charging/discharging during the activation process of a battery cell of a secondary battery. .
  • the secondary battery activation device and activation method according to the present invention simplifies the process and reduces the size of the battery cell by discharging gas based on a vacuum chamber in the activation process without adding a separate gas removal process.
  • FIG. 1 is a diagram showing a battery cell of a pouch-type secondary battery according to an embodiment of the present invention.
  • FIG. 2 is a view showing a moving member according to an embodiment of the present invention.
  • 3A to 3D are diagrams illustrating a state of a moving member and a state of a battery cell corresponding thereto according to an embodiment of the present invention.
  • FIG. 4 is a diagram illustrating a method of removing gas from a battery cell of a secondary battery according to another embodiment of the present invention.
  • FIG. 5 is a diagram illustrating an activation device for removing gas from a battery cell of a secondary battery according to another embodiment of the present invention.
  • FIG. 1 shows a battery cell of a pouch-type secondary battery according to an embodiment of the present invention.
  • the battery cell 100 may include an electrode assembly 110 , and the electrode assembly 110 may be accommodated in a receiving unit in the pouch 120 .
  • the accommodating portion may have a shape corresponding to the shape of the electrode assembly 110 .
  • the battery cell 100 may include electrode leads 130 and 140 allowing the electrode assembly 110 to be electrically connected to the outside of the battery cell 100 .
  • the electrode leads 130 and 140 may be connected to a part of the electrode assembly 110 and exposed to the outside through the pouch 120 .
  • the pouch 120 may include a sealing portion 150 that seals at least an area around the electrode assembly 110 and collects gas that may occur during the manufacturing process of the battery cell 100 .
  • the sealing unit 150 may seal the battery cell 100 by bonding the exterior materials of the pouch 120 to each other.
  • the sealing part 150 may include a degassing part 160 .
  • the degassing unit 160 may be a portion through which gas collected in the sealing unit 150 is discharged.
  • FIG. 2 shows a moving member according to an embodiment of the present invention.
  • the moving member 200 may be a means for moving the battery cell 100 .
  • the moving member 200 may include a first moving member 210 and a second moving member 220 so as to pick up and move the battery cell 100 .
  • One side of the first movable member 210 and one side of the second movable member 220 contact both surfaces of the battery cell 100 so that the battery cell 100 can be picked up.
  • the first moving member 210 and the second moving member 220 may pick up the battery cell 100 and move it along the moving line.
  • the moving member 200 may perform piercing and sealing of the battery cell 100 .
  • the moving member 200 may include the first moving member 210 and the second moving member 220 .
  • the first moving member 210 may include a piercing pin 211 and a heating pad 212 .
  • the piercing pin 211 may be formed in a direction protruding outward from the first moving member 210 .
  • the piercing pin 211 may be formed on one side of the first moving member 210 .
  • the piercing pin 211 may pierce the sealing portion 150 or the degassing portion 160 of the battery cell 100 .
  • the heating pad 212 may be formed on the other side of the first moving member 210 that is different from the side where the piercing pin 211 is disposed.
  • the heating pad 212 may transfer heat and pressure for sealing the sealing part 150 or the degassing part 160 of the battery cell 100 .
  • the second moving member 220 may include a vacuum pad 221 .
  • the second movable member 220 may include a vacuum pad 221 on one side.
  • the vacuum pad 221 may pierce the battery cell 100 together with the piercing pin 211 .
  • the vacuum pad 221 may seal the battery cell 100 together with the heating pad 212 .
  • the moving member 200 may include a rotating member 230 .
  • the rotating member 230 may be connected/coupled with the first moving member 210 .
  • the rotating member 230 may rotate the first moving member 210 .
  • the rotating member 230 may rotate the first moving member 210 by 360 degrees.
  • the rotating member 230 may rotate the first moving member 210 so that the piercing pin 211 faces the vacuum pad 221 (or faces).
  • the rotating member 230 may rotate the first moving member 210 so that the heating pad 212 faces the vacuum pad 221 (or faces).
  • the moving member 200 may perform piercing and sealing together with the movement of the battery cell 100 .
  • the moving member 200 moves in a state where the battery cell 100 is picked up in a state where the piercing pin 211 of the first moving member 210 and the vacuum pad 221 of the second moving member 220 face each other. By moving along the line, the battery cell 100 may be moved and pierced together.
  • the moving member 200 moves in a state where the battery cell 100 is picked up in a state where the heating pad 212 of the first moving member 210 and the vacuum pad 221 of the second moving member 220 face each other. By moving along the line, the battery cell 100 can be moved and sealed together.
  • 3A to 3D show states of a moving member and corresponding states of a battery cell according to an embodiment of the present invention.
  • 3A and 3B show a state in which the moving member 200 can pierce and move.
  • the piercing pin 211 of the first movable member 210 and the vacuum pad 221 of the second movable member 220 may be coupled while facing each other. At the same time that the piercing pin 211 and the vacuum pad 221 fix the battery cell 100, the degassing part 160 of the battery cell 100 may be pierced.
  • a piercing hole 310 may be formed in the battery cell 100 .
  • the piercing hole 310 may be formed by penetrating a region corresponding to the degassing portion 160 through the piercing pin 211 .
  • Gas collected in the sealing part 150 or the degassing part 160 of the battery cell 100 may be discharged to the outside through the piercing hole 310 formed by the piercing pin 211 .
  • the vacuum pad 221 may suck the discharged gas.
  • 3c and 3d show a state in which the moving member 200 can perform sealing and movement.
  • the heating pad 212 of the first movable member 210 and the vacuum pad 221 of the second movable member 220 may be coupled to face each other. Sealing of the degassing part 160 of the battery cell 100 may be performed while the heating pad 212 and the vacuum pad 211 contact (or fix) the battery cell 100 .
  • a sealing region 320 may be formed in the battery cell 100 .
  • the sealing area 320 may be formed by sealing an area corresponding to the degassing part 160 by the heating pad 212 and the vacuum pad 221 . After the gas is discharged from the sealing part 150 or the degassing part 160 of the battery cell 100, the area of the degassing part 160 is sealed through the heating pad 212 and the vacuum pad 221, thereby sealing.
  • a region 320 may be formed.
  • the sealing area 320 may be formed by sealing the area of the degassing unit 160 by heat and pressure through the heating pad 212 and the vacuum pad 221 .
  • the states of FIGS. 3A and 3B and the states of FIGS. 3C and 3D may be achieved according to the rotation of the rotating member 230, and through the rotating member 230, the first moving member 210 rotates up to a range of 360 degrees. can do.
  • the device for activating a secondary battery according to the present invention may perform a method for degassing a battery cell as will be described later.
  • FIG. 4 The activation method of the activation device of the present invention according to FIG. 4 will be described with reference to FIG. 5 showing an activation device that performs degassing of a battery cell of a secondary battery.
  • the activation device may transfer the battery cell to the first chamber based on the first transfer unit.
  • the activation device 500 may include a first chamber 501 , a second chamber 502 , and a vacuum chamber 503 .
  • the first chamber 501 may adjust the degree of vacuum inside the first chamber 501 .
  • the degree of vacuum inside the first chamber 501 may be adjusted from an atmospheric state to a vacuum state (eg, -40 kpa).
  • a vacuum state eg, -40 kpa
  • the degree of vacuum may be defined according to the design, and in the present invention, -40 kpa is defined as the vacuum state, and there may be no particular limitation.
  • the first chamber 501 may transfer the battery cell 100 from the outside of the activation device 500 to the first chamber 501 through the first transfer unit 510 .
  • the first transfer unit 510 may seat the battery cells 100 outside the activation device 500 on the first activation tray 511 within the first chamber 501 .
  • a plurality of battery cells 100 for activation may be disposed on the first activation tray 511 .
  • the first chamber 501 may adjust the degree of vacuum inside the battery cell 100 before, during, and after the transfer of the battery cell 100 from the outside.
  • the activation device may pierce the battery cell based on the moving member.
  • the activation device 500 may pick up the battery cells 100 disposed on the first activation tray 511 using the moving member 200 .
  • the movable member 200 may be in a state in which the piercing pin 211 of the first movable member 210 and the vacuum pad 221 of the second movable member 220 face each other.
  • the piercing pin 211 of the first movable member 210 and the vacuum pad 221 of the second movable member 220 face each other the piercing pin 211 is applied to the degassing part 160 of the battery cell 100.
  • Piercing can be performed by penetrating.
  • Piercing of a portion of the battery cell 100 may be performed simultaneously with the moving member 200 gripping the battery cell 100 .
  • the activation device may move the pierced battery cell along a moving line into a vacuum chamber.
  • the moving line 520 may be disposed in a form that spatially crosses the first chamber 501 , the second chamber 502 , and the vacuum chamber 503 .
  • the moving line 520 may support the moving member 200 from the top so that it can move.
  • the moving member 200 may be coupled to the moving line 520 .
  • the moving member 200 may be coupled to the movement line and move along the movement line 520 .
  • the moving member 200 may move to the vacuum chamber 503 through the first gate 512 formed between the first chamber 501 and the vacuum chamber 503 along the moving line 520 .
  • the first chamber 501 may adjust the degree of vacuum inside to a vacuum state (eg, -40 kpa).
  • a vacuum state eg, -40 kpa
  • the first gate 512 may be opened.
  • the activation device may perform activation and degassing of the pierced battery cells in a vacuum chamber.
  • the activation device 500 may move the battery cell 100 into the vacuum chamber 503 using the moving member 200, and the battery cell 100 may be placed on the activator 530 using the moving member 200. ) can be settled.
  • the battery cell 100 seated on the activator 530 may be in a piercing state.
  • the activation unit 530 may include a pressure jig, and the battery cell 100 may be pressurized by the pressure jig, and accordingly, at least charging/discharging of the activation process may be performed.
  • the activator 530 may perform pressurization in a high temperature state.
  • the activator 530 may charge/discharge the battery cell 100 in a state in which the battery cell 100 is pressed at a high temperature through a pressure jig. As the battery cell 100 is compressed by the pressure jig during charging/discharging, gas generated from the battery cell 100 may be collected in the degassing unit 160 .
  • the sealing part 150 of the battery cell 100 may be formed so that generated gas can be collected in the degassing part 160, and there may be no particular limitation.
  • the inside of the vacuum chamber 503 may be in a vacuum state (eg, -40 kpa), and the gas collected in the battery cell 100 where the piercing is performed is discharged to the outside of the battery cell 100 by a pressure difference (degas). sing) can be The pressure jig pressurizes the battery cell 100 so that the gas inside the battery cell 100 can be more easily discharged (degassed) to the outside.
  • a vacuum state eg, -40 kpa
  • degas a pressure difference
  • sing can be The pressure jig pressurizes the battery cell 100 so that the gas inside the battery cell 100 can be more easily discharged (degassed) to the outside.
  • the gas collected inside the battery cell 100 has the effect of being easily discharged to the outside by the pressure difference and the pressure of the pressure jig.
  • the activation device may perform sealing on the battery cell based on the moving member.
  • the battery cell 100 which has been activated and degassed by the activator 530 , may be gripped and lifted by the moving member 200 .
  • the heating pad 212 of the first moving member 210 and the vacuum pad 221 of the second moving member 220 are mutually connected to each other. It may be in a face-to-face bonded state. As the heating pad 212 and the vacuum pad 211 come into contact with the battery cell 100 , sealing of the degassing unit 160 of the battery cell 100 may be performed while gripping or fixing the battery cell 100 .
  • the activation device may move the battery cell to the second chamber based on the moving member.
  • the moving member 200 may grip the sealed battery cell 100 and move the battery cell 100 into the second chamber 502 along the moving line 520 .
  • the moving member 200 may move the battery cell 100 into the second chamber 502 through the second gate 542 between the vacuum chamber 503 and the second chamber 502 .
  • the moving member 200 may seat the battery cell 100 on the second activation tray 541 in the second chamber 502 .
  • a plurality of battery cells 100 after activation may be disposed on the second activation tray 541 .
  • the activation device 500 uses the heating pad 212 of the first movable member 210 and the vacuum pad 221 of the second movable member 220 to activate the battery cell 100 even in the second activation tray 541 . Sealing of the degassing unit 160 can be performed.
  • the activation device 500 uses the heating pad 212 and the vacuum pad 221 to set the degassing unit 160 of the battery cell 100 while being seated on the second activation tray 541 of the second chamber 502. Sealing can be performed on
  • the second chamber 502 may adjust the degree of vacuum inside the second chamber 502 .
  • the degree of vacuum inside the second chamber 502 may be adjusted from an atmospheric state to a vacuum state (eg, -40 kpa).
  • a vacuum state eg, -40 kpa
  • the vacuum level inside the second chamber 502 may be adjusted to a vacuum state (eg, -40 kpa).
  • the second gate 542 may be opened.
  • the second chamber 502 may transfer the battery cells 100 disposed on the second activation tray 541 to the outside of the activation device 500 through the second transfer unit 540 .
  • the vacuum level inside the second chamber 502 can be adjusted to the standby state, and after the vacuum level is adjusted to the standby state, the battery cell 100 is activated by the activation device 500 through the second transfer unit 540. ) can be transferred to the outside.
  • the second chamber 502 may adjust the degree of vacuum inside the battery cell 100 before, during, and after the transfer of the battery cell 100 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

본 발명에 따른 이차 전지의 활성화 장치는, 전지 셀을 이송하는 제1 이송부를 포함하고 상기 제1 이송부가 위치한 공간의 진공 정도를 조절할 수 있는 제1 챔버, 상기 제1 챔버와 공간적으로 연결되고 상기 전지 셀에 대한 활성화 및 디가싱이 수행될 수 있도록 상기 전지 셀이 배치되는 활성화부를 포함하며, 상기 활성화부가 배치되는 공간을 진공 상태로 유지할 수 있는 진공 챔버, 상기 진공 챔버와 공간적으로 연결되고, 상기 전지 셀을 이송하는 제2 이송부를 포함하고, 상기 제2 이송부가 위치한 공간의 진공 정도를 조절할 수 있는 제2 챔버, 상기 제1 챔버, 상기 진공 챔버, 및 상기 제2 챔버를 가로지르도록 배치되는 이동 라인, 및 상기 이동 라인에 연결되고, 상기 이동 라인을 따라 상기 전지 셀을 이동시키는 이동 부재를 포함하고, 상기 제1 챔버에서 상기 전지 셀에 대한 피어싱을 수행하고, 상기 활성화부에서 상기 전지 셀에 대한 상기 활성화 및 상기 디가싱을 수행하고, 상기 진공 챔버 및 상기 제2 챔버 중 하나에서 상기 전지 셀에 대한 실링을 수행할 수 있다. 본 발명에 따른 이차 전지의 활성화 장치 및 그 활성화 방법은, 이차 전지의 전지 셀의 활성화 공정 중 충/방전하는 중에 파우치 내에 발생/포집될 수 있는 가스를 효율적으로 제거함으로써 높은 안정성을 제공할 수 있고, 공정을 간소화 함과 동시에 전지 셀의 사이즈를 줄일 수 있다.

Description

이차 전지의 활성화 장치와 그 활성화 방법
관련 출원과의 상호인용
본 출원은 2021년 10월 08일자 한국특허출원 제10-2021-0134412호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 파우치형 이차 전지의 활성화 공정에 있어서 그 이차 전지의 전지 셀을 활성화시키기 위한 활성화 장치와 그 활성화 방법에 관한 것이다.
화석 연료가 점점 고갈되어 가면서 사용 가능한 화석 연료의 양이 제한적이고, 환경 오염의 방지에 대한 중요성이 커지면서 화석 연료를 대체할 수 있는 에너지에 대한 중요도가 증가하고 있다. 이에 따라, 태양열, 수력, 풍력, 해양 에너지, 바이오매스 에너지 등 환경 오염에 미치는 영향이 적은 에너지원에 기반한 전력 생산 기술 연구 및 개발이 활발히 진행되고 있다.
특히, 환경 오염을 방지할 수 있으면서도 높은 에너지 밀도를 제공할 수 있는 반복적인 충전이 가능한 이차 전지에 대한 연구가 가장 활발하게 이루어지고 있다. 이차 전지의 재료, 효율, 구조, 및 공정 등에 대한 물리적, 전기적, 기계적, 시스템적인 연구 및 개발이 다양한 측면에서 수행되고 있다.
이차 전지의 형태 관련해서 원통형 전지, 각형 전지, 또는 파우치형 전지가 주류를 이루고 있으며, 다양한 형태의 이차 전지의 각각의 형태에 대응하는 구조적인 특징에 따라 에너지 효율 및 에너지 밀도를 향상시키거나 에너지 비효율을 방지하기 위한 연구 및 개발이 이루어지고 있다.
이차 전지는 에너지의 효율 및 밀도의 측면에서 다른 형태의 에너지원보다 유리한 점이 있으나, 보다 높은 효율을 확보하기 위한 구조, 재료, 및 공정 측면의 지속적인 개발과 함께 안정성에 대한 연구도 함께 이루어지고 있다. 특히, 이차 전지의 제조 과정에서 다양한 공정들이 수행됨에 따라 각각의 공정마다 전지 셀의 이동, 구조, 배치, 및 조립에 관한 정밀한 제어가 요구되므로, 안정성에 대한 중요도가 크다.
파우치형 전지는 전극 조립체가 파우치형 케이스에 수용된 형태이고, 전극과 분리막이 교대로 적층된 전극 조립체가 케이스 내에 수용됨으로써 높은 에너지 밀도를 확보할 수 있는 형태의 전지이다. 다만, 높은 효율과 함께 높은 안정성을 위해서는 전지 셀에 대한 활성화 공정 중의 충방전 시에 파우치형 케이스 내에 발생되는 가스의 배출이 필수적이며, 가스 배출을 위해서는 이차 전지의 제조 과정에서의 높은 정밀성/기밀성이 요구된다.
그러나 이차 전지의 제조 과정에서, 파우치형 케이스에 포집된 가스를 적절하게 제거하지 못함으로써, 이차 전지의 사용 과정에서 에너지 효율이나 내압 증가로 인한 안정성의 문제가 발생할 수 있다.
본 발명은 위와 같은 문제를 해결하기 위한 것으로서, 이차 전지의 제조 과정에서 발생할 수 있는 가스를 활성화 공정의 충/방전 중에 최대한 배출시키고, 안정적으로 제조/사용 가능한 이차 전지를 생산할 수 있는 이차 전지 활성화 장치 및 그 활성화 방법을 제공하는 것이다.
본 발명에 따른 이차 전지의 활성화 장치는, 전지 셀을 이송하는 제1 이송부를 포함하고 상기 제1 이송부가 위치한 공간의 진공 정도를 조절할 수 있는 제1 챔버, 상기 제1 챔버와 공간적으로 연결되고 상기 전지 셀에 대한 활성화 및 디가싱이 수행될 수 있도록 상기 전지 셀이 배치되는 활성화부를 포함하며, 상기 활성화부가 배치되는 공간을 진공 상태로 유지할 수 있는 진공 챔버, 상기 진공 챔버와 공간적으로 연결되고, 상기 전지 셀을 이송하는 제2 이송부를 포함하고, 상기 제2 이송부가 위치한 공간의 진공 정도를 조절할 수 있는 제2 챔버, 상기 제1 챔버, 상기 진공 챔버, 및 상기 제2 챔버를 가로지르도록 배치되는 이동 라인, 및 상기 이동 라인에 연결되고, 상기 이동 라인을 따라 상기 전지 셀을 이동시키는 이동 부재를 포함하고, 상기 제1 챔버에서 상기 전지 셀에 대한 피어싱을 수행하고, 상기 활성화부에서 상기 전지 셀에 대한 상기 활성화 및 상기 디가싱을 수행하고, 상기 진공 챔버 및 상기 제2 챔버 중 하나에서 상기 전지 셀에 대한 실링을 수행할 수 있다.
상기 이동 부재는 제1 이동 부재 및 제2 이동 부재를 포함하고, 상기 제1 이동 부재는 일 측면에 히팅 패드 및 타 측면에 피어싱 핀을 포함하고, 상기 제2 이동 부재는 일 측면에 진공 패드를 포함하며, 상기 제1 이동 부재는 상기 피어싱 핀이 상기 진공 패드와 마주하는 상태 및 상기 히팅 패드가 상기 진공 패드와 마주하는 상태 중 어느 하나의 상태가 가능하도록 회전 가능할 수 있다.
상기 활성화 장치는, 상기 제1 이동 부재의 상기 피어싱 핀 및 제2 이동 부재의 상기 진공 패드에 기반하여 상기 피어싱을 수행하고, 상기 제1 이동 부재의 상기 히팅 패드 및 상기 제2 이동 부재의 진공 패드에 기반하여 상기 실링을 수행할 수 있다.
상기 활성화부는 가압 지그를 포함하고, 상기 활성화 중에 상기 가압 지그를 이용하여 상기 전지 셀을 가압하며 상기 디가싱을 수행할 수 있다.
상기 제1 챔버에는 제1 게이트가 형성되고, 상기 제1 게이트는 상기 제1 챔버의 상기 진공 정도가 상기 진공 챔버의 상기 진공 상태로 조절된 경우에 개방될 수 있다.
상기 제2 챔버에는 제2 게이트가 형성되고, 상기 제2 게이트는 상기 제2 챔버의 상기 진공 정도가 상기 진공 챔버의 상기 진공 상태로 조절된 경우에 개방될 수 있다.
상기 이동 부재에 의한 상기 전지 셀에 대한 상기 실링에 있어서, 상기 이동 부재가 상기 전지 셀을 이동시키기 위해 상기 전지 셀에 접촉하는 과정에서 제1 실링이 수행되고, 상기 이동 부재가 상기 전지 셀을 상기 제2 챔버에 안착시키는 과정에서 제2 실링이 수행될 수 있다.
상기 제1 챔버는 제1 활성화 트레이를 포함하고, 상기 제1 활성화 트레이는 상기 제1 이송부로부터 이송된 상기 전지 셀이 배치되며, 상기 제2 챔버는 제2 활성화 트레이를 포함하고, 상기 제2 활성화 트레이는 상기 진공 챔버로부터 이동된 상기 전지 셀이 배치될 수 있다.
상기 전지 셀은 디가싱부가 형성될 수 있는 실링부를 포함하고, 상기 전지 셀 내부의 가스는 상기 실링부의 적어도 일부가 가압됨으로써 상기 디가싱부를 통해 배출될 수 있다.
상기 활성화부에서 상기 피어싱이 수행된 상태에서 상기 전지 셀에 대한 상기 활성화가 수행될 수 있다.
본 발명에 따른 이차 전지의 활성화 방법은, 전지 셀을 제1 이송부에 기반하여 상기 제1 이송부가 위치한 공간의 진공 정도를 조절할 수 있는 제1 챔버로 이송시키는 단계, 이동 부재에 기반하여 상기 제1 챔버에서 상기 전지 셀에 대한 피어싱을 수행하는 단계, 상기 전지 셀을 상기 이동 부재에 기반하여 이동 라인을 따라, 상기 전지 셀에 대한 활성화 및 디가싱이 수행될 수 있는 활성화부를 포함하는 진공 상태의 진공 챔버로 이동시키는 단계, 상기 진공 챔버의 상기 활성화부에서 상기 전지 셀에 대한 상기 활성화 및 상기 디가싱을 수행하는 단계, 및 상기 이동 부재에 기반하여 상기 전지 셀에 대한 실링을 수행하는 단계, 상기 전지 셀을 상기 이동 부재에 기반하여 상기 이동 라인을 따라, 진공 정도를 조절할 수 있는 제2 챔버로 이동시키는 단계를 포함할 수 있다.
상기 이차 전지의 상기 활성화 방법은, 상기 활성화 중에 가압 지그를 이용하여 상기 전지 셀을 가압하며 상기 디가싱이 수행되는 단계를 포함할 수 있다.
상기 이차 전지의 상기 활성화 방법은, 상기 제1 챔버의 제1 게이트가, 상기 제1 챔버의 상기 진공 정도가 상기 진공 챔버의 상기 진공 상태로 조절된 경우에 개방되는 단계를 포함할 수 있다.
상기 이차 전지의 상기 활성화 방법은, 상기 제2 챔버의 제2 게이트가, 상기 제2 챔버의 상기 진공 정도가 상기 진공 챔버의 상기 진공 상태로 조절된 경우에 개방되는 단계를 포함할 수 있다.
상기 이차 전지의 상기 활성화 방법은, 상기 활성화부에서 상기 전지 셀에 대한 상기 피어싱이 수행된 상태에서 상기 전지 셀에 대한 상기 활성화가 수행되는 단계를 포함할 수 있다.
본 발명에 따른 이차 전지의 활성화 장치 및 그 활성화 방법은, 이차 전지의 전지 셀의 활성화 공정 중 충/방전하는 중에 파우치 내에 발생/포집될 수 있는 가스를 효율적으로 제거함으로써 높은 안정성을 제공할 수 있다.
본 발명에 따른 이차 전지의 활성화 장치 및 그 활성화 방법은, 별도의 가스 제거 공정을 추가함 없이, 활성화 공정 내에서 진공 챔버에 기반하여 가스를 배출시킴으로써 공정을 간소화 함과 동시에 전지 셀의 사이즈를 줄일 수 있다.
도 1은, 본 발명의 일 실시 예에 따른 파우치형 이차 전지의 전지 셀을 나타내는 도면이다.
도 2는 본 발명의 일 실시 예에 따른 이동 부재를 나타내는 도면이다.
도 3a 내지 도 3d는 본 발명의 일 실시 예에 따른 이동 부재의 상태 및 이에 대응하는 전지 셀의 상태를 나타내는 도면이다.
도 4는 본 발명의 다른 실시 예에 따른 이차 전지의 전지 셀의 가스 제거 방법을 나타내는 도면이다.
도 5는 본 발명의 다른 실시 예에 따른 이차 전지의 전지 셀의 가스 제거를 수행하는 활성화 장치를 나타내는 도면이다.
이하에서는 첨부의 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 바람직한 실시예를 상세하게 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 이하의 실시예에 의해 제한되거나 한정되는 것은 아니다.
본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분 또는 본 발명의 요지를 불필요하게 흐릴 수 있는 관련 공지 기술에 대한 상세한 설명은 생략하였으며, 본 명세서에서 각 도면의 구성요소들에 참조 부호를 부가함에 있어서는, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일 또는 유사한 참조 부호를 붙이도록 한다.
또한, 본 명세서 및 특허청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정하여 해석되어서는 안되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
도 1은, 본 발명의 일 실시 예에 따른 파우치형 이차 전지의 전지 셀을 나타낸다.
전지 셀(100)은 전극 조립체(110)를 포함할 수 있고, 전극 조립체(110)는 파우치(120) 내의 수용부에 수용될 수 있다. 수용부는, 전극 조립체(110)의 형태에 대응하는 형태일 수 있다.
전지 셀(100)은 전극 조립체(110)가 전지 셀(100)의 외부와 전기적으로 연결될 수 있도록 하는 전극 리드(130, 140)를 포함할 수 있다. 전극 리드(130, 140)는 전극 조립체(110)의 일부에 연결되고, 파우치(120)를 거쳐 외부로 노출될 수 있다.
파우치(120)는 전극 조립체(110)의 주위의 영역을 적어도 밀봉하고, 전지 셀(100)의 제조 과정에서 발생할 수 있는 가스가 포집될 수 있는 실링부(150)를 포함할 수 있다. 실링부(150)는 파우치(120)의 외장재가 상호 접합됨으로써 전지 셀(100)을 밀봉할 수 있다.
실링부(150)에는 디가싱부(160)가 포함될 수 있다. 디가싱부(160)는 실링부(150)에 포집된 가스가 배출되는 부분일 수 있다.
도 2는 본 발명의 일 실시 예에 따른 이동 부재를 나타낸다.
본 발명에 따른 이차 전지의 활성화 장치 및 그 활성화 방법에 있어서, 이동 부재(200)는 전지 셀(100)을 이동시키는 수단이 될 수 있다.
이동 부재(200)는, 전지 셀(100)을 집어서 이동시킬 수 있도록, 제1 이동 부재(210) 및 제2 이동 부재(220)로 구성될 수 있다. 제1 이동 부재(210)의 일 측과 제2 이동 부재(220)의 일 측이 전지 셀(100)의 양면과 접촉됨으로써 전지 셀(100)을 집을 수 있다. 제1 이동 부재(210) 및 제2 이동 부재(220)는 전지 셀(100)을 집어서 이동 라인을 따라 이동시킬 수 있다.
이동 부재(200)는, 전지 셀(100)에 대한 피어싱 및 실링을 수행할 수 있다.
이동 부재(200)는, 제1 이동 부재(210) 및 제2 이동 부재(220)를 포함할 수 있음은 상술한 바와 같다.
제1 이동 부재(210)는 피어싱 핀(211) 및 히팅 패드(212)를 포함할 수 있다.
피어싱 핀(211)은 제1 이동 부재(210)에서 외부로 돌출되는 방향으로 형성될 수 있다. 피어싱 핀(211)은 제1 이동 부재(210)의 일 측에 형성될 수 있다. 피어싱 핀(211)은 전지 셀(100)의 실링부(150) 또는 디가싱부(160)에 대한 피어싱을 수행할 수 있다.
히팅 패드(212)는 제1 이동 부재(210)에서 피어싱 핀(211)이 배치되는 측과 다른 타 측에 형성될 수 있다. 히팅 패드(212)는 전지 셀(100)의 실링부(150) 또는 디가싱부(160)에 대해 실링을 수행하기 위한 열과 압력을 전달할 수 있다.
제2 이동 부재(220)는 진공 패드(221)를 포함할 수 있다. 제2 이동 부재(220)는 일 측면에 진공 패드(221)를 포함할 수 있다. 진공 패드(221)는 피어싱 핀(211)와 함께 전지 셀(100)에 대한 피어싱을 수행할 수 있다. 진공 패드(221)는 히팅 패드(212)와 함께 전지 셀(100)에 대한 실링을 수행할 수 있다.
이동 부재(200)는 회전 부재(230)를 포함할 수 있다. 회전 부재(230)는 제1 이동 부재(210)와 연결/결합될 수 있다. 회전 부재(230)는 제1 이동 부재(210)를 회전시킬 수 있다. 회전 부재(230)는 제1 이동 부재(210)를 360도 회전시킬 수도 있다.
회전 부재(230)는 피어싱 핀(211)이 진공 패드(221)와 마주하는 상태(또는 대면하는 상태)가 될 수 있도록 제1 이동 부재(210)를 회전시킬 수 있다. 회전 부재(230)는 히팅 패드(212)가 진공 패드(221)와 마주하는 상태(또는 대면하는 상태)가 될 수 있도록 제1 이동 부재(210)를 회전시킬 수 있다.
이동 부재(200)는, 전지 셀(100)의 이동과 함께 피어싱 및 실링을 수행할 수 있다.
이동 부재(200)는 제1 이동 부재(210)의 피어싱 핀(211)과 제2 이동 부재(220)의 진공 패드(221)가 대면하는 상태로 전지 셀(100)을 집은 상태에서, 이동 라인을 따라 이동함으로써, 전지 셀(100)에 대한 이동 및 피어싱을 함께 수행할 수 있다.
이동 부재(200)는 제1 이동 부재(210)의 히팅 패드(212)와 제2 이동 부재(220)의 진공 패드(221)가 대면하는 상태로 전지 셀(100)을 집은 상태에서, 이동 라인을 따라 이동함으로써, 전지 셀(100)에 대한 이동 및 실링을 함께 수행할 수 있다.
도 3a 내지 도 3d는 본 발명의 일 실시 예에 따른 이동 부재의 상태 및 이에 대응하는 전지 셀의 상태를 나타낸다.
도 3a 및 도 3b는, 이동 부재(200)가 피어싱 및 이동을 수행할 수 있는 상태를 나타낸다.
도 3a을 참조하면, 제1 이동 부재(210)의 피어싱 핀(211) 및 제2 이동 부재(220)의 진공 패드(221)가 서로 대면하며 결합될 수 있다. 피어싱 핀(211) 및 진공 패드(221)가 전지 셀(100)을 고정함과 동시에 전지 셀(100)의 디가싱부(160)에 대한 피어싱이 수행될 수 있다.
도 3b를 참조하면, 전지 셀(100)에는 피어싱 홀(310)이 형성될 수 있다. 피어싱 홀(310)은 디가싱부(160)에 대응하는 영역을 피어싱 핀(211)이 관통됨으로써 형성될 수 있다. 전지 셀(100)의 실링부(150) 또는 디가싱부(160)에 포집된 가스는 피어싱 핀(211)에 의해 형성된 피어싱 홀(310)을 통해 외부로 배출될 수 있다. 진공 패드(221)는 배출된 가스를 흡입할 수 있다.
도 3c 및 도 3d는, 이동 부재(200)가 실링 및 이동을 수행할 수 있는 상태를 나타낸다.
도 3c을 참조하면, 제1 이동 부재(210)의 히팅 패드(212) 및 제2 이동 부재(220)의 진공 패드(221)가 서로 대면하여 결합될 수 있다. 히팅 패드(212) 및 진공 패드(211)가 전지 셀(100)을 접촉(또는 고정)하면서 전지 셀(100)의 디가싱부(160)에 대한 실링이 수행될 수 있다.
도 3d를 참조하면, 전지 셀(100)에는 실링 영역(320)이 형성될 수 있다. 실링 영역(320)은 디가싱부(160)에 대응하는 영역이 히팅 패드(212) 및 진공 패드(221)에 의해 실링됨으로써 형성될 수 있다. 전지 셀(100)의 실링부(150) 또는 디가싱부(160)에서 가스가 배출된 이후에 히팅 패드(212) 및 진공 패드(221)를 통해 디가싱부(160)의 영역이 밀봉됨으로써 실링 영역(320)이 형성될 수 있다. 실링 영역(320)은 히팅 패드(212)와 진공 패드(221)를 통한 열과 압력에 의해 디가싱부(160)의 영역이 밀봉됨으로써 형성될 수 있다.
도 3a 및 도 3b의 상태와, 도 3c 및 도 3d의 상태는 회전 부재(230)의 회전에 따라 이루어질 수 있으며, 회전 부재(230)를 통해 제1 이동 부재(210)는 360도의 범위까지 회전할 수 있다.
도 4는 본 발명의 다른 실시 예에 따른 파우치형 이차 전지의 전지 셀의 가스 제거 방법을 나타낸다. 본 발명에 따른 이차 전지의 활성화 장치는 후술하는 바에 따른 전지 셀의 가스 제거 방법을 수행할 수 있다.
도 4에 따른 본 발명의 활성화 장치의 활성화 방법에 있어서, 이차 전지의 전지 셀의 가스 제거를 수행하는 활성화 장치를 나타내는 도 5를 참조하여 설명한다.
동작 410에서, 활성화 장치는, 전지 셀을 제1 이송부에 기반하여 제1 챔버로 이송할 수 있다.
활성화 장치(500)는 제1 챔버(501), 제2 챔버(502), 및 진공 챔버(503)를 포함하여 구성될 수 있다.
제1 챔버(501)는, 제1 챔버(501) 내부의 진공 정도를 조절할 수 있다. 제1 챔버(501)는 내부의 진공 정도를 대기 상태부터 진공 상태(예: -40kpa)까지 조절할 수 있다. 진공 상태는, 설계에 따라 진공 정도가 정의될 수 있으며, 본 발명에서는 -40kpa를 진공 상태로 정의하였으며, 특별한 제한이 없을 수 있다.
제1 챔버(501)는 제1 이송부(510)를 통해 활성화 장치(500) 외부로부터 제1 챔버(501)로 전지 셀(100)을 이송시킬 수 있다. 제1 이송부(510)는 활성화 장치(500) 외부의 전지 셀(100)을 제1 챔버(501) 내의 제1 활성화 트레이(511)에 안착시킬 수 있다. 제1 활성화 트레이(511)에는, 활성화가 수행되기 위한 복수의 전지 셀(100)이 배치될 수 있다.
제1 챔버(501)는 외부에서 전지 셀(100)이 이송되기 이전, 이송되는 중, 이송된 후에 내부의 진공 정도를 조절할 수 있다.
동작 420에서, 활성화 장치는, 이동 부재에 기반하여 전지 셀에 대한 피어싱을 수행할 수 있다.
활성화 장치(500)는 제1 활성화 트레이(511)에 배치된 전지 셀(100)을 이동 부재(200)를 이용하여 집어 올릴 수 있다. 이 경우에 이동 부재(200)는, 제1 이동 부재(210)의 피어싱 핀(211)과 제2 이동 부재(220)의 진공 패드(221)가 대면하는 상태일 수 있다.
제1 이동 부재(210)의 피어싱 핀(211)과 제2 이동 부재(220)의 진공 패드(221)가 대면하는 상태에서, 피어싱 핀(211)이 전지 셀(100)의 디가싱부(160)를 관통함으로써 피어싱이 수행될 수 있다.
전지 셀(100)의 일부에 대한 피어싱은, 이동 부재(200)가 전지 셀(100)을 파지함과 동시에 이루어질 수 있다.
동작 430에서, 활성화 장치는, 피어싱된 전지 셀을 이동 라인을 따라 진공 챔버로 이동시킬 수 있다.
이동 라인(520)은 제1 챔버(501), 제2 챔버(502), 및 진공 챔버(503)를 공간적으로 가로지르는 형태로 배치될 수 있다. 이동 라인(520)은 이동 부재(200)가 이동할 수 있도록 상부에서 지지할 수 있다.
이동 부재(200)는 이동 라인(520)에 결합될 수 있다. 이동 부재(200)는 이동 라인에 결합되어 이동 라인(520)을 따라 이동할 수 있다.
이동 부재(200)는 이동 라인(520)을 따라 제1 챔버(501) 및 진공 챔버(503) 사이에 형성된 제1 게이트(512)를 통해 진공 챔버(503)로 이동할 수 있다.
이동 부재(200)가 제1 게이트(512)를 통해 진공 챔버(503)로 이동하는 경우, 제1 챔버(501)는 내부의 진공 정도를 진공 상태(예: -40kpa)로 조절할 수 있다. 또는, 제1 챔버(501)의 진공 정도가 진공 상태(예: -40kpa)가 되는 경우, 제1 게이트(512)가 개방될 수 있다.
동작 440에서, 활성화 장치는, 피어싱된 전지 셀에 대해 진공 챔버에서 활성화 및 디가싱을 수행할 수 있다.
활성화 장치(500)는 이동 부재(200)를 이용하여 진공 챔버(503)로 전지 셀(100)을 이동시킬 수 있으며, 이동 부재(200)를 이용하여 활성화부(530) 상에 전지 셀(100)을 안착시킬 수 있다.
활성화부(530) 상에 안착된 전지 셀(100)은 피어싱이 수행된 상태일 수 있다.
활성화부(530)는 가압 지그를 포함할 수 있고, 전지 셀(100)에 대해 가압 지그에 의한 가압이 이루어질 수 있으며, 이에 따른 활성화 공정의 충/방전이 적어도 수행될 수 있다. 활성화부(530)는 전지 셀(100)을 가압함에 있어서, 고온의 상태에서 가압을 수행할 수 있다.
활성화부(530)는 가압 지그를 통해 전지 셀(100)을 고온으로 압착한 상태에서, 전지 셀(100)에 대한 충/방전을 수행할 수 있다. 충/방전을 수행 시에 가압 지그에 의해 전지 셀(100)이 압착됨에 따라, 전지 셀(100)의 발생된 가스가 디가싱부(160)로 모일 수 있다. 전지 셀(100)의 실링부(150)는 발생된 가스가 디가싱부(160)로 모일 수 있도록 형성될 수 있으며, 특별한 제한이 없을 수 있다.
진공 챔버(503)의 내부는 진공 상태(예: -40kpa)일 수 있으며, 피어싱이 수행된 전지 셀(100)에 포집된 가스가 압력 차에 의해 전지 셀(100)의 외부로 배출(디가싱)될 수 있다. 가압 지그가 전지 셀(100)을 가압하여 전지 셀(100) 내부의 가스가 외부로 보다 용이하게 배출(디가싱)될 수 있다.
전지 셀(100) 내부의 포집된 가스는 압력 차 및 가압 지그의 압력에 의해 외부로 용이하게 배출될 수 있는 효과가 있다.
동작 450에서, 활성화 장치는, 이동 부재에 기반하여 전지 셀에 대한 실링을 수행할 수 있다.
활성화부(530)에서 활성화 및 디가싱이 수행된 전지 셀(100)은 이동 부재(200)에 의해 파지되어 올려질 수 있다.
이동 부재(200)가 전지 셀(100)을 집는 경우(또는 파지하는 경우), 제1 이동 부재(210)의 히팅 패드(212) 및 제2 이동 부재(220)의 진공 패드(221)가 서로 대면하여 결합된 상태일 수 있다. 히팅 패드(212) 및 진공 패드(211)가 전지 셀(100)에 접촉됨으로써 파지 또는 고정하면서 전지 셀(100)의 디가싱부(160)에 대한 실링이 수행될 수 있다.
동작 460에서, 활성화 장치는, 이동 부재에 기반하여 전지 셀을 제2 챔버로 이동시킬 수 있다.
이동 부재(200)는 실링된 전지 셀(100)을 파지하여 이동 라인(520)을 따라 전지 셀(100)을 제2 챔버(502)로 이동시킬 수 있다.
이동 부재(200)는 전지 셀(100)을 진공 챔버(503) 및 제2 챔버(502) 사이의 제2 게이트(542)를 통해 제2 챔버(502)로 이동시킬 수 있다.
이동 부재(200)는 전지 셀(100)을 제2 챔버(502) 내의 제2 활성화 트레이(541)에 안착시킬 수 있다. 제2 활성화 트레이(541)에는, 활성화가 수행된 이후의 복수의 전지 셀(100)이 배치될 수 있다. 활성화 장치(500)는 제1 이동 부재(210)의 히팅 패드(212) 및 제2 이동 부재(220)의 진공 패드(221)를 이용하여 제2 활성화 트레이(541)에서도, 전지 셀(100)의 디가싱부(160)에 대한 실링을 수행할 수 있다. 활성화 장치(500)는 히팅 패드(212) 및 진공 패드(221)를 이용하여 제2 챔버(502)의 제2 활성화 트레이(541)에 안착시키는 중에도 전지 셀(100)의 디가싱부(160)에 대한 실링을 수행할 수 있다.
제2 챔버(502)는, 제2 챔버(502) 내부의 진공 정도를 조절할 수 있다. 제2 챔버(502)는 내부의 진공 정도를 대기 상태부터 진공 상태(예: -40kpa)까지 조절할 수 있다. 이동 부재(200)가 제2 게이트(542)를 통해 제2 챔버(502)로 이동하는 경우, 제2 챔버(502)는 내부의 진공 정도를 진공 상태(예: -40kpa)로 조절할 수 있다. 또는, 제2 챔버(502)의 진공 정도가 진공 상태(예: -40kpa)가 되는 경우, 제2 게이트(542)가 개방될 수 있다.
제2 챔버(502)는 제2 이송부(540)를 통해 제2 활성화 트레이(541)에 배치된 전지 셀(100)을 활성화 장치(500) 외부로 이송시킬 수 있다. 이 경우, 제2 챔버(502)는 내부의 진공 정도를 대기 상태로 조절할 수 있고, 진공 정도가 대기 상태로 조절된 이후에 제2 이송부(540)를 통해 전지 셀(100)을 활성화 장치(500)의 외부로 이송시킬 수 있다.
제2 챔버(502)는 전지 셀(100)이 이송되기 이전, 이송되는 중, 이송된 후에 내부의 진공 정도를 조절할 수 있다.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 실시가 가능하다.
[부호의 설명]
100: 전지 셀
110: 전극 조립체
120: 파우치
130: 전극 리드
140: 전극 리드
150: 실링부
160: 디가싱부
200: 이동 부재
210: 제1 이동 부재
211: 피어싱 핀
212: 히팅 패드
220: 제2 이동 부재
221: 진공 패드
230: 회전 부재
310: 피어싱 홀
320: 실링 영역
500: 활성화 장치
501: 제1 챔버
502: 제2 챔버
503: 진공 챔버
510: 제1 이송부
511: 제1 활성화 트레이
512: 제1 게이트
520: 이송 라인
530: 활성화부
540: 제2 이송부
541: 제2 활성화 트레이
542: 제2 게이트

Claims (15)

  1. 전지 셀을 이송하는 제1 이송부를 포함하고, 상기 제1 이송부가 위치한 공간의 진공 정도를 조절할 수 있는 제1 챔버;
    상기 제1 챔버와 공간적으로 연결되고, 상기 전지 셀에 대한 활성화 및 디가싱이 수행될 수 있도록 상기 전지 셀이 배치되는 활성화부를 포함하며, 상기 활성화부가 배치되는 공간을 진공 상태로 유지할 수 있는 진공 챔버;
    상기 진공 챔버와 공간적으로 연결되고, 상기 전지 셀을 이송하는 제2 이송부를 포함하고, 상기 제2 이송부가 위치한 공간의 진공 정도를 조절할 수 있는 제2 챔버;
    상기 제1 챔버, 상기 진공 챔버, 및 상기 제2 챔버를 가로지르도록 배치되는 이동 라인; 및
    상기 이동 라인에 연결되고, 상기 이동 라인을 따라 상기 전지 셀을 이동시키는 이동 부재를 포함하고,
    상기 제1 챔버에서 상기 전지 셀에 대한 피어싱을 수행하고,
    상기 활성화부에서 상기 전지 셀에 대한 상기 활성화 및 상기 디가싱을 수행하고,
    상기 진공 챔버 및 상기 제2 챔버 중 하나에서 상기 전지 셀에 대한 실링을 수행하는 이차 전지의 활성화 장치.
  2. 청구항 1에 있어서,
    상기 이동 부재는 제1 이동 부재 및 제2 이동 부재를 포함하고,
    상기 제1 이동 부재는:
    일 측면에 히팅 패드 및 타 측면에 피어싱 핀을 포함하고,
    상기 제2 이동 부재는:
    일 측면에 진공 패드를 포함하며,
    상기 제1 이동 부재는, 상기 피어싱 핀이 상기 진공 패드와 마주하는 상태 및 상기 히팅 패드가 상기 진공 패드와 마주하는 상태 중 어느 하나의 상태가 가능하도록 회전 가능한, 이차 전지의 활성화 장치.
  3. 청구항 2에 있어서,
    상기 제1 이동 부재의 상기 피어싱 핀 및 제2 이동 부재의 상기 진공 패드에 기반하여 상기 피어싱을 수행하고,
    상기 제1 이동 부재의 상기 히팅 패드 및 상기 제2 이동 부재의 진공 패드에 기반하여 상기 실링을 수행하는, 이차 전지의 활성화 장치.
  4. 청구항 1에 있어서,
    상기 활성화부는 가압 지그를 포함하고,
    상기 활성화 중에 상기 가압 지그를 이용하여 상기 전지 셀을 가압하며 상기 디가싱을 수행하는, 이차 전지의 활성화 장치.
  5. 청구항 1에 있어서,
    상기 제1 챔버에는 제1 게이트가 형성되고,
    상기 제1 게이트는 상기 제1 챔버의 상기 진공 정도가 상기 진공 챔버의 상기 진공 상태로 조절된 경우에 개방되는, 이차 전지의 활성화 장치.
  6. 청구항 1에 있어서,
    상기 제2 챔버에는 제2 게이트가 형성되고,
    상기 제2 게이트는 상기 제2 챔버의 상기 진공 정도가 상기 진공 챔버의 상기 진공 상태로 조절된 경우에 개방되는, 이차 전지의 활성화 장치.
  7. 청구항 1에 있어서,
    상기 이동 부재에 의한 상기 전지 셀에 대한 상기 실링에 있어서,
    상기 이동 부재가 상기 전지 셀을 이동시키기 위해 상기 전지 셀에 접촉하는 과정에서 제1 실링이 수행되고,
    상기 이동 부재가 상기 전지 셀을 상기 제2 챔버에 안착시키는 과정에서 제2 실링이 수행되는, 이차 전지의 활성화 장치.
  8. 청구항 1에 있어서,
    상기 제1 챔버는 제1 활성화 트레이를 포함하고, 상기 제1 활성화 트레이는 상기 제1 이송부로부터 이송된 상기 전지 셀이 배치되며,
    상기 제2 챔버는 제2 활성화 트레이를 포함하고, 상기 제2 활성화 트레이는 상기 진공 챔버로부터 이동된 상기 전지 셀이 배치되는, 이차 전지의 활성화 장치.
  9. 청구항 1에 있어서,
    상기 전지 셀은,
    디가싱부가 형성될 수 있는 실링부를 포함하고,
    상기 전지 셀 내부의 가스는 상기 실링부의 적어도 일부가 가압됨으로써 상기 디가싱부를 통해 배출되는, 이차 전지의 활성화 장치.
  10. 청구항 1에 있어서,
    상기 활성화부에서 상기 피어싱이 수행된 상태에서 상기 전지 셀에 대한 상기 활성화가 수행되는, 이차 전지의 활성화 장치.
  11. 전지 셀을 제1 이송부에 기반하여 상기 제1 이송부가 위치한 공간의 진공 정도를 조절할 수 있는 제1 챔버로 이송시키는 단계;
    이동 부재에 기반하여 상기 제1 챔버에서 상기 전지 셀에 대한 피어싱을 수행하는 단계;
    상기 전지 셀을 상기 이동 부재에 기반하여 이동 라인을 따라, 상기 전지 셀에 대한 활성화 및 디가싱이 수행될 수 있는 활성화부를 포함하는 진공 상태의 진공 챔버로 이동시키는 단계;
    상기 진공 챔버의 상기 활성화부에서 상기 전지 셀에 대한 상기 활성화 및 상기 디가싱을 수행하는 단계; 및
    상기 이동 부재에 기반하여 상기 전지 셀에 대한 실링을 수행하는 단계;
    상기 전지 셀을 상기 이동 부재에 기반하여 상기 이동 라인을 따라, 진공 정도를 조절할 수 있는 제2 챔버로 이동시키는 단계를 포함하는, 이차 전지의 활성화 방법.
  12. 청구항 11에 있어서,
    상기 활성화 중에 가압 지그를 이용하여 상기 전지 셀을 가압하며 상기 디가싱이 수행되는 단계를 포함하는, 이차 전지의 활성화 방법.
  13. 청구항 11에 있어서,
    상기 제1 챔버의 제1 게이트는, 상기 제1 챔버의 상기 진공 정도가 상기 진공 챔버의 상기 진공 상태로 조절된 경우에 개방되는 단계를 포함하는, 이차 전지의 활성화 방법.
  14. 청구항 13에 있어서,
    상기 제2 챔버의 제2 게이트는, 상기 제2 챔버의 상기 진공 정도가 상기 진공 챔버의 상기 진공 상태로 조절된 경우에 개방되는 단계를 포함하는, 이차 전지의 활성화 방법.
  15. 청구항 11에 있어서,
    상기 활성화부에서 상기 전지 셀에 대한 상기 피어싱이 수행된 상태에서 상기 전지 셀에 대한 상기 활성화가 수행되는 단계를 포함하는, 이차 전지의 활성화 방법.
PCT/KR2022/015161 2021-10-08 2022-10-07 이차 전지의 활성화 장치와 그 활성화 방법 WO2023059140A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22878961.6A EP4235887A1 (en) 2021-10-08 2022-10-07 Activation apparatus for secondary battery and activation method therefor
CN202280008007.0A CN116583993A (zh) 2021-10-08 2022-10-07 用于二次电池的激活设备及其激活方法
JP2023552066A JP2024507590A (ja) 2021-10-08 2022-10-07 二次電池の活性化装置およびその活性化方法
US18/266,171 US20240030505A1 (en) 2021-10-08 2022-10-07 Activation apparatus for secondary battery and activation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210134412A KR20230050975A (ko) 2021-10-08 2021-10-08 이차 전지의 활성화 장치와 그 활성화 방법
KR10-2021-0134412 2021-10-08

Publications (1)

Publication Number Publication Date
WO2023059140A1 true WO2023059140A1 (ko) 2023-04-13

Family

ID=85803625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/015161 WO2023059140A1 (ko) 2021-10-08 2022-10-07 이차 전지의 활성화 장치와 그 활성화 방법

Country Status (6)

Country Link
US (1) US20240030505A1 (ko)
EP (1) EP4235887A1 (ko)
JP (1) JP2024507590A (ko)
KR (1) KR20230050975A (ko)
CN (1) CN116583993A (ko)
WO (1) WO2023059140A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015088324A (ja) * 2013-10-30 2015-05-07 日産自動車株式会社 電池の製造方法および製造装置
KR102042775B1 (ko) * 2019-07-02 2019-11-08 (주)하나기술 배터리 셀 디가싱 장치
KR20200059559A (ko) * 2018-11-21 2020-05-29 (주)이티에스 이차전지셀 디가스시스템
KR20200085589A (ko) * 2019-01-07 2020-07-15 주식회사 엘지화학 디가싱장치. 그를 포함하는 이차전지 제조설비 및 제조방법
KR102197731B1 (ko) * 2019-07-24 2021-01-04 정종홍 이차전지 제조용 디가스 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015088324A (ja) * 2013-10-30 2015-05-07 日産自動車株式会社 電池の製造方法および製造装置
KR20200059559A (ko) * 2018-11-21 2020-05-29 (주)이티에스 이차전지셀 디가스시스템
KR20200085589A (ko) * 2019-01-07 2020-07-15 주식회사 엘지화학 디가싱장치. 그를 포함하는 이차전지 제조설비 및 제조방법
KR102042775B1 (ko) * 2019-07-02 2019-11-08 (주)하나기술 배터리 셀 디가싱 장치
KR102197731B1 (ko) * 2019-07-24 2021-01-04 정종홍 이차전지 제조용 디가스 장치

Also Published As

Publication number Publication date
EP4235887A1 (en) 2023-08-30
CN116583993A (zh) 2023-08-11
JP2024507590A (ja) 2024-02-20
US20240030505A1 (en) 2024-01-25
KR20230050975A (ko) 2023-04-17

Similar Documents

Publication Publication Date Title
WO2018101618A1 (ko) 배터리 셀 디가싱 장치
WO2018182129A1 (ko) 전극적층방법 및 이를 수행하는 전극적층장치
WO2018101619A1 (ko) 배터리 셀 디가싱 장치
WO2019172567A1 (ko) 단위셀 정렬장치 및 이를 이용한 전극조립체 제조 방법
WO2021025337A1 (ko) 이차전지의 가스 제거 장치 및 이를 이용한 가스 제거 방법
WO2016056846A1 (ko) 안전성 및 작동 수명이 향상된 배터리 모듈
WO2021194285A1 (ko) 셀 제조 장치 및 방법
WO2021153842A1 (ko) 디개싱 유닛을 구비한 가압 활성화 장치
WO2021194284A1 (ko) 단위 셀 제조 장치 및 방법
WO2015065082A1 (ko) 전지 셀 적층 지그
WO2019045256A1 (ko) 벤팅 유도 장치를 포함하는 파우치형 이차전지
WO2021118160A1 (ko) 이차전지 제조방법 및 이차전지 제조용 프리 디개스 장치
WO2022255592A1 (ko) 진공호퍼 프리챠져
WO2022164257A1 (ko) 분리막 접착장치
WO2023059140A1 (ko) 이차 전지의 활성화 장치와 그 활성화 방법
WO2019164299A1 (ko) 전해질주입장치
WO2022035124A1 (ko) 이차전지용 실링장치
WO2020040515A1 (ko) 고체 산화물 연료전지 셀 소성용 장치 및 소성 방법
WO2021141311A1 (ko) 이차전지 제조장치 및 이차전지 제조방법
WO2018084451A1 (ko) 캡플레이트 반제품의 제조장치
WO2021112551A1 (ko) 전극 조립체 제조장치와, 이를 통해 제조된 전극 조립체 및 이차전지
WO2021225398A1 (ko) 디개싱장치 및 디개싱방법
WO2020106017A1 (ko) 전극 조립체 제조장치 및 전극 조립체 제조방법
WO2022139211A1 (ko) 단위셀의 제조방법 및 제조장치
WO2022085976A1 (ko) 가압 패드를 포함하는 전지 셀의 가압 지그 및 이를 이용한 전지 셀의 디가싱 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22878961

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280008007.0

Country of ref document: CN

Ref document number: 18266171

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022878961

Country of ref document: EP

Effective date: 20230525

WWE Wipo information: entry into national phase

Ref document number: 2023552066

Country of ref document: JP