WO2023058798A1 - Multilayer copper particles having excellent corrosion resistance - Google Patents

Multilayer copper particles having excellent corrosion resistance Download PDF

Info

Publication number
WO2023058798A1
WO2023058798A1 PCT/KR2021/013909 KR2021013909W WO2023058798A1 WO 2023058798 A1 WO2023058798 A1 WO 2023058798A1 KR 2021013909 W KR2021013909 W KR 2021013909W WO 2023058798 A1 WO2023058798 A1 WO 2023058798A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
copper particles
silver
nickel
silver oxide
Prior art date
Application number
PCT/KR2021/013909
Other languages
French (fr)
Korean (ko)
Inventor
김상호
최성웅
조형근
최윤호
Original Assignee
주식회사 씨앤씨머티리얼즈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 씨앤씨머티리얼즈 filed Critical 주식회사 씨앤씨머티리얼즈
Priority to KR1020247010422A priority Critical patent/KR20240050418A/en
Priority to PCT/KR2021/013909 priority patent/WO2023058798A1/en
Publication of WO2023058798A1 publication Critical patent/WO2023058798A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/22Sheathing; Armouring; Screening; Applying other protective layers
    • H01B13/222Sheathing; Armouring; Screening; Applying other protective layers by electro-plating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/10Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/15Nickel or cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/25Noble metals, i.e. Ag Au, Ir, Os, Pd, Pt, Rh, Ru
    • B22F2301/255Silver or gold

Definitions

  • the present invention relates to a copper particle having a multi-layered structure having a nickel coating layer on the surface.
  • a bonding layer containing silver oxide is first formed on the surface of the copper particle, and then a nickel metal layer with improved compactness and bonding property is formed on the surface, thereby improving electrical conductivity and It relates to copper particles having a multilayer structure with improved oxidation resistance and a method for producing the same.
  • Conductive particles are widely used in electronic materials. Among them, copper particles have high conductivity and are highly competitive in price, so they are widely used in films, adhesives, and coating slurries that require electrical conductivity in many electronic parts.
  • these copper particles have high electrical conductivity close to that of silver, and are very low in price compared to silver, but have poor oxidation resistance. Due to the problem of low reliability due to such low oxidation resistance, the field to which copper particles can be applied is very limited.
  • a protective coating layer having high oxidation resistance and electrical conductivity can be formed on the surface, this low reliability problem can be solved.
  • a coating layer made of nickel or silver is applied as such a protective coating layer.
  • pinholes or low-density protective coatings should not be formed. This is because if there are pinholes or low density in the protective coating layer, rapid oxidation of copper particles, which are cores, may occur.
  • the important point for copper particles with a protective coating layer is the formation of a defect-free protective coating layer with a tight density.
  • An object of the present invention is to provide a copper particle having a nickel metal layer having excellent electrical conductivity and excellent corrosion resistance and bonding strength with the copper particle at the same time.
  • Another object of the present invention is to provide a method for manufacturing composite copper particles capable of forming a nickel metal layer having excellent electrical conductivity and excellent corrosion resistance and bonding strength with copper particles on the surface of copper particles at low cost.
  • the present invention provides a copper particle having a multi-layer structure including a first layer containing silver oxide formed on the surface of the copper particle and a second layer containing nickel while being formed on the first layer. can do.
  • the shape of the copper particles is any one selected from the group consisting of a spherical shape, a plate shape, a dendrite shape, or a combination thereof, and the particle size of the copper particles is analyzed by a laser scattering type particle size analyzer
  • D 50 may be in the range of 0.1 ⁇ 100 ⁇ m.
  • the first layer further includes metallic silver, and the molar ratio of the silver element in the silver oxide to the silver element in the metallic silver (Ag x + /Ag 0 ( 0 ⁇ x ⁇ 3 )) It may range from 10 to 100.
  • the first layer may further include tin.
  • the first layer may include a tin layer formed on the surface of the copper particle and a silver oxide layer formed on the tin layer.
  • the content of silver included in the first layer may be 10 to 1,000 ppm based on the total weight of the oxide-resistant copper particles.
  • the first layer may have a discontinuous island shape on the surface of the copper particle.
  • the second layer may further include phosphorus together with the nickel, and the amount of phosphorus in the second layer may be 0.1 to 13% by weight.
  • a method for manufacturing a multi-layered copper particle according to the present invention includes (a) forming a first layer of coating silver oxide on the surface of the copper particle, and (b) electrolessly plating nickel on the first layer to form a second layer containing nickel. It may include forming a layer.
  • tin may be coated with silver oxide at all times.
  • step (a) a step of forming a tin layer may be further included.
  • the multi-layered copper particles according to the present invention are inexpensive and have excellent electrical conductivity and corrosion resistance, so that they can be applied to various electronic parts that require electrical conductivity, and the bonding strength of the surface metal layer is excellent, thereby reducing the weight of the applied parts and improving conductivity and reliability. be able to achieve
  • the method for manufacturing multilayered copper particles provided by the present invention enables mass production of multilayered copper particles having excellent conductivity and reliability through a low-cost process.
  • Figure 2 shows the analysis results according to the X-ray photoelectron spectroscopy (XPS) for the multi-layered copper particles in one embodiment according to the present invention.
  • XPS X-ray photoelectron spectroscopy
  • Copper particles can be made into particles of various shapes and sizes. However, since oxidation resistance, corrosion resistance, chemical resistance, etc. are very low due to the nature of the material, it cannot be prevented from rapidly deteriorating electrical conductivity over time and the use environment. To overcome this, if a conductive metal layer is formed on the surface as a protective layer, it is possible to impart a high level of oxidation resistance to copper particles of various shapes and sizes. Nickel or silver is often used as such a protective layer. Since silver is a precious metal and has a high price problem, many attempts have been made to form nickel as a protective layer.
  • nickel when nickel is applied as the protective layer, it is important that the nickel protective layer is densely formed without defects such as pinholes, since corrosion proceeds rapidly around these defects.
  • the present invention may provide a copper particle having a multilayer structure including a first layer containing silver oxide formed on the surface of the copper particle and a second layer containing nickel formed on the first layer.
  • the inventors of the present invention found that when a bonding layer containing silver oxide is formed before the formation of the nickel protective layer, the density of the final nickel protective layer is improved and the bonding force with copper particles is also increased.
  • a bonding layer containing silver oxide in the middle rather than forming a protective layer containing silver oxide, it is possible to develop copper particles having a multilayer structure in which a nickel protective layer is densely formed without pinholes.
  • Copper particles serving as cores in the present invention may be particles of various shapes, and may be any one selected from the group consisting of spherical, plate-shaped, dendrite-shaped, or combinations thereof. Copper particles used in various industrial fields may be spherical, plate, dendrite, etc. depending on the field to which they are applied, and they may be mixed and used. On the other hand, when the size of these particles is analyzed with a laser scattering type particle size analyzer, D 50 may be in the range of 0.1 to 100 ⁇ m, where D 50 refers to the particle size when the cumulative percentage of the particles reaches 50%. .
  • the particle size of the copper particles is less than 0.1 ⁇ m based on D 50 , the aggregation between the particles is severe, making it difficult to handle and difficult to form a surface nickel layer due to the increased specific surface area.
  • the particle size exceeds 100 ⁇ m, the weight of the particles increases, making it difficult to smoothly apply them to electronic parts.
  • the first layer containing silver oxide may further include tin.
  • Tin is an element used to induce silver oxide to be smoothly attached to the surface of copper particles, and when the coating operation is performed in an aqueous solution, copper of silver element It aids adhesion to the particle surface.
  • Such tin may form a first layer together with silver oxide, or may be formed between the first layer containing silver oxide and the surface of the copper particle.
  • the first layer including silver oxide may further include metal silver together with the silver oxide, and when metal silver is further included, bonding with nickel, which is a metal included in the second layer, may be stronger.
  • Silver oxide strengthens the bond with copper, and metal silver strongly bonds with the silver oxide and at the same time provides a strong bond with nickel, which is the same metal. As a result, the bonding force between the second layer containing nickel and the copper particles is further strengthened. do.
  • the molar ratio (Ag x+ /Ag 0 ( 0 ⁇ x ⁇ 3 )) of the silver element in the silver oxide to the silver element of the metal silver in the first layer is in the range of 10 to 100.
  • the molar ratio of the silver element in the metallic silver to the silver element in the silver oxide is preferably 10 to 100 so that the ratio of the silver element in the silver oxide is higher. Measurement of this molar ratio can be measured by X-ray Photoelectron Spectroscopy (XPS).
  • the oxidation number of silver in silver oxide can be from +1 to +3, and since the oxidation number of silver in the amorphous phase may not be an integer, the oxidation number of silver in silver oxide can exceed 0 and be 3 or less.
  • the amount of silver included in the first layer may be 10 to 1,000 ppm of the total weight of the multi-layered copper particles.
  • the amount of metallic silver or silver oxide formed in the first layer must be greater than a certain amount to provide a satisfactory binding force to the second layer, and an excessively large amount is undesirable because process costs increase. More preferably, it may be 10 to 500 ppm.
  • the first layer may have an island shape discontinuously formed on the surface of the copper particle.
  • the first layer is a layer that reinforces the bonding strength of the second layer that imparts oxidation resistance to copper particles, which are cores, and can sufficiently provide bonding strength to the second layer even if it is in the form of a discontinuous island.
  • the first layer may be in the form of a continuous film, in which case the first layer occupies at least 50% of the surface area of the copper particles. This is because, even in the case of a continuous film form, sufficient binding force can be provided to the second layer only when it is at least 50% or more of the particle surface area.
  • the second layer containing nickel may further include phosphorus as well as nickel. Inclusion of phosphorus lowers electrical conductivity somewhat, but improves chemical resistance and oxidation resistance, so when used in parts where reliability is important, It is preferable to include phosphorus together with nickel in the second layer.
  • the content of phosphorus in the second layer is preferably 0.1 to 13.0% by weight. If it is too low, the desired improvement in chemical resistance and oxidation resistance is not achieved, and if it contains more than 13% by weight of phosphorus, sufficient electricity This is because conductivity cannot be obtained.
  • the phosphorus content in the nickel layer is preferably 0.1 to 6% by weight in areas where electrical conductivity is important.
  • a copper particle having a multi-layer structure including (a) forming a first layer of coating silver oxide on the surface of the copper particle, and (b) forming a second layer of electroless plating nickel on the first layer.
  • a manufacturing method can be provided.
  • a first layer containing silver oxide is formed on the surface of the copper particle, and tin may be coated together with the silver oxide. Tin can increase the binding force of silver oxide on the surface of copper particles.
  • a tin layer may be first formed on the surface of the copper particle, and then a first layer containing silver oxide may be formed.
  • Formation of the first layer containing silver oxide may be performed in an alkaline aqueous solution having a pH of 8 or higher. This is because silver oxide is well formed in an alkaline atmosphere of pH 8 or higher. More preferably, it may be made in an aqueous solution in the pH range of 8 to 10.
  • step (a) and before step (b) the copper particles having the first layer containing the silver oxide are stirred in an aqueous solution having a pH of 8 to 11 and a temperature of 20 to 80 ° C.
  • a post-treatment step of adjusting the amount of silver oxide may be further included.
  • the amount of silver oxide can be controlled by treating the silver oxide in an alkali aqueous solution at an appropriate temperature to increase the silver oxide content to a desired level.
  • the recovered copper particles were added to a silver nitrate solution in which 0.15 g of silver nitrate (AgNO 3 ) was dissolved in 100 g of deionized water and stirred. At this time, 28% concentration of ammonia water was added dropwise to adjust the pH to 9.1.
  • AgNO 3 silver nitrate
  • the temperature was maintained at 40°C and stirred for 1 hour to form a silver oxide layer. After 1 hour, it was collected by filtration, and then washed three times by stirring in 200 g of deionized water, and then recovered. A portion of the powder having the silver oxide layer was collected and surface analysis was performed through X-ray Photoelectron Spectroscopy (XPS).
  • XPS X-ray Photoelectron Spectroscopy
  • the powder formed up to the silver oxide layer was recovered, and a nickel coating layer was formed using an electroless plating method.
  • a nickel coating layer was formed using an electroless plating method.
  • 300 g of deionized water solution 20 g of nickel chloride (NiCl 2 6H 2 O), 10 g of sodium acetate, 5 g of maleic acid, 30 g of sodium hypophosphate as a reducing agent, and 3 lead acetate
  • the powder formed up to the silver oxide layer was added to the nickel plating solution composed of ml, stirred, and electroless plating was performed at 70 to 90 ° C. for 2 hours.
  • a pretreatment for removing organic matter or impurities attached to the surface of the copper particles was performed in the same manner as in Example 1, and then a tin layer was formed.
  • the tin layer was formed by adding copper particles to an aqueous solution in which 1.5 g of stannous chloride (SnCl 2 2H 2 O) and 1 ml of hydrochloric acid (HCl 35% solution) were dissolved in 100 g of deionized water and stirred for 30 minutes. The temperature of the aqueous solution was maintained at 35°C. Thereafter, the first layer containing silver oxide and the second layer containing nickel were formed in the same manner as in Example 1.
  • Pretreatment and formation of the first layer were performed in the same manner as in Example 1. After that, the formation of the nickel layer was performed using 300 g of deionized water solution, 20 g of nickel chloride (NiCl 2 6H 2 O), 10 g of sodium acetate, 3 g of ammonia water, 10 g of sodium hypophosphate and 10 g of hydrazine as a reducing agent. , The powder formed up to the silver oxide layer was added to the nickel plating solution composed of 1 ml of lead acetate, stirred, and electroless plating was performed at 40 to 60 ° C. for 1 hour.
  • Copper particles were pretreated in the same manner as in Example 1. Thereafter, electroless plating was directly performed without forming a silver oxide layer to form a second layer containing nickel. Electroless plating of nickel was performed in the same manner as in Example 1.
  • Example 2 In the same manner as in Example 1, a first layer containing silver oxide was formed on the surface of the copper particle. Thereafter, ascorbic acid was added to the aqueous solution to convert silver oxide on the surface into a metallic silver state, and then electroless plating was performed to form a second layer containing nickel. Electroless plating of nickel was performed in the same manner as in Example 1.
  • the silver element ratio analysis of silver oxide and metallic silver, analysis of nickel content and phosphorus content, and observation of the coating state through a scanning electron microscope (SEM) were performed.
  • the silver element ratio was analyzed by taking a sample after forming the first layer and using XPS.
  • Nickel content and phosphorus content were analyzed through an inductively coupled plasma mass spectrometer (ICP).
  • Reliability is measured through a reflow test in which copper particles made in Examples and Comparative Examples are mixed with an acrylic binder in a certain amount, applied on a polyimide film, dried, held on molten lead for 30 seconds, and then conductivity is measured. evaluated.
  • the nickel content represents the weight percent occupied by the nickel element based on the copper particles of the entire multilayer structure
  • the phosphorus content represents the content in the second layer containing nickel as a weight percent.
  • FIG. 1 shows a scanning electron micrograph of multi-layered copper particles according to an embodiment.
  • 1 (a) and (b) are scanning electron microscope images of samples according to Examples 1 and 2, respectively, and
  • FIG. 1 (c) and (d) are scanning electron microscope images of samples according to Comparative Examples 1 and 2. This is an electron microscope image.
  • FIG. 2 is a result of measuring a ratio of silver elements of silver oxide and metallic silver in a first layer in a sample according to Example 21.
  • FIG. 2 As a result of the XPS, it is possible to measure the silver ratio in the reduced state and the silver ratio in the oxidized state through the peak ratio.
  • Their molar ratio (Ag x+ /Ag 0 ) in Example 1 was 92.4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Powder Metallurgy (AREA)

Abstract

The purpose of the present invention is to provide copper particles having formed on the surface thereof a nickel metal layer having excellent electrical conductivity as well as excellent corrosion resistance and adhesiveness to the copper particles. In order to achieve said purpose, the present invention may provide multilayer copper particles comprising a second layer which is formed on a first layer and comprises nickel.

Description

내식성이 우수한 다층 구조의 구리 입자Multi-layered copper particles with excellent corrosion resistance
본 발명은 표면에 니켈 코팅층을 가지는 다층 구조의 구리 입자에 관한 것으로, 특히 구리 입자 표면에 먼저 산화은을 포함하는 결합층을 형성하고 이후 치밀성과 결합성이 향상된 니켈 금속층이 표면에 형성됨으로써 전기 전도성과 내산화성이 향상된 다층 구조의 구리 입자 및 그 제조 방법에 관한 것이다.The present invention relates to a copper particle having a multi-layered structure having a nickel coating layer on the surface. In particular, a bonding layer containing silver oxide is first formed on the surface of the copper particle, and then a nickel metal layer with improved compactness and bonding property is formed on the surface, thereby improving electrical conductivity and It relates to copper particles having a multilayer structure with improved oxidation resistance and a method for producing the same.
전도성 입자는 전자재료에서 매우 광범위하게 사용되고 있다. 그중 구리 입자는 높은 전도성을 가지고 있으며, 가격 경쟁력 또한 높기 때문에 많은 전자부품의 전기 전도성이 필요한 필름, 접착제, 코팅 슬러리 등에 다양하게 활용이 되고 있다.Conductive particles are widely used in electronic materials. Among them, copper particles have high conductivity and are highly competitive in price, so they are widely used in films, adhesives, and coating slurries that require electrical conductivity in many electronic parts.
그런데, 이러한 구리 입자는 은에 근접하는 높은 전기 전도도를 가지고 있고, 가격은 은과 비교할 때 매우 낮지만 내산화성이 떨어지는 문제가 있다. 이러한 낮은 내산화성으로 인한 신뢰성이 떨어지는 문제로 구리 입자가 적용될 수 있는 분야는 매우 제한적이다. However, these copper particles have high electrical conductivity close to that of silver, and are very low in price compared to silver, but have poor oxidation resistance. Due to the problem of low reliability due to such low oxidation resistance, the field to which copper particles can be applied is very limited.
따라서, 표면에 내산화성이 높으면서 전기 전도성을 가지는 보호 코팅층을 형성할 수 있으면 이러한 낮은 신뢰성 문제를 해결할 수 있게 된다. 이러한 보호 코팅층으로는 니켈 또는 은으로 이루어지는 코팅층이 적용된다.Therefore, if a protective coating layer having high oxidation resistance and electrical conductivity can be formed on the surface, this low reliability problem can be solved. As such a protective coating layer, a coating layer made of nickel or silver is applied.
이러한 코팅층에 있어서 관건은 핀홀이나 낮은 밀도의 보호 코팅층이 형성되지 않아야 하는 것인데, 보호 코팅층에 핀홀이 있거나 밀도가 낮으면 이로 인해 코어인 구리 입자의 급속한 산화가 일어날 수 있기 때문이다.The key to such a coating layer is that pinholes or low-density protective coatings should not be formed. This is because if there are pinholes or low density in the protective coating layer, rapid oxidation of copper particles, which are cores, may occur.
따라서, 보호 코팅층이 있는 구리 입자에서 중요한 점은 치밀한 밀도의 결함이 없는 보호 코팅층의 형성에 있게 된다. Therefore, the important point for copper particles with a protective coating layer is the formation of a defect-free protective coating layer with a tight density.
본 발명은 표면에 전기 전도성이 우수하면서 동시에 내식성과 구리 입자와의 결합력이 우수한 니켈 금속층이 형성된 구리 입자를 제공하는 것을 목적으로 한다. An object of the present invention is to provide a copper particle having a nickel metal layer having excellent electrical conductivity and excellent corrosion resistance and bonding strength with the copper particle at the same time.
본 발명의 또 다른 목적은 구리 입자 표면에 전기 전도성이 우수하면서 동시에 내식성과 구리 입자와의 결합력이 우수한 니켈 금속층을 저가에 형성할 수 있는 복합 구리 입자 제조 방법을 제공하는 것이다.Another object of the present invention is to provide a method for manufacturing composite copper particles capable of forming a nickel metal layer having excellent electrical conductivity and excellent corrosion resistance and bonding strength with copper particles on the surface of copper particles at low cost.
상기와 같은 목적을 달성하기 위해, 본 발명에서는 구리 입자 표면에 형성되는 산화은을 포함하는 제 1 층과 상기 제 1 층 위에 형성되면서 니켈을 포함하는 제 2 층을 포함하는 다층 구조의 구리 입자를 제공할 수 있다.In order to achieve the above object, the present invention provides a copper particle having a multi-layer structure including a first layer containing silver oxide formed on the surface of the copper particle and a second layer containing nickel while being formed on the first layer. can do.
본 발명의 일 실시예에서, 상기 구리 입자의 형상은, 구상, 판상, 덴드라이트상 또는 이들의 조합으로 이루어지는 군에서 선택되는 어느 하나이고, 상기 구리 입자의 입도는 레이저 산란 방식의 입도분석기로 분석할 때 D50이 0.1~100㎛ 범위일 수 있다.In one embodiment of the present invention, the shape of the copper particles is any one selected from the group consisting of a spherical shape, a plate shape, a dendrite shape, or a combination thereof, and the particle size of the copper particles is analyzed by a laser scattering type particle size analyzer When D 50 may be in the range of 0.1 ~ 100㎛.
본 발명의 일 실시예에서, 상기 제 1 층은 금속 은을 더 포함하고, 상기 금속 은에서 은 원소에 대한 상기 산화은에서 은 원소의 몰 비율(Agx+/Ag0 ( 0< x ≤3 ))이 10~100범위일 수 있다. In one embodiment of the present invention, the first layer further includes metallic silver, and the molar ratio of the silver element in the silver oxide to the silver element in the metallic silver (Ag x + /Ag 0 ( 0 < x ≤ 3 )) It may range from 10 to 100.
본 발명의 일 실시예에서, 상기 제 1 층은 주석을 더 포함할 수 있다. In one embodiment of the present invention, the first layer may further include tin.
본 발명의 일 실시예에서, 상기 제 1 층은 상기 구리 입자 표면에 형성되는 주석층과 상기 주석층 위에 형성된 산화은층을 포함할 수 있다. In one embodiment of the present invention, the first layer may include a tin layer formed on the surface of the copper particle and a silver oxide layer formed on the tin layer.
본 발명의 일 실시예에서, 상기 제 1 층에 포함되는 은의 함량은 상기 내산화 구리 입자 전체 중량의 10~1,000 ppm일 수 있다. In one embodiment of the present invention, the content of silver included in the first layer may be 10 to 1,000 ppm based on the total weight of the oxide-resistant copper particles.
본 발명의 일 실시예에서, 상기 제 1 층은 상기 구리 입자 표면에서 불연속적인 아일랜드 형태일 수 있다. In one embodiment of the present invention, the first layer may have a discontinuous island shape on the surface of the copper particle.
본 발명의 일 실시예에서, 상기 제 2 층은 상기 니켈과 함께 인을 더 포함할 수 있고, 상기 제 2 층에서 상기 인은 0.1~13 중량%일 수 있다.In one embodiment of the present invention, the second layer may further include phosphorus together with the nickel, and the amount of phosphorus in the second layer may be 0.1 to 13% by weight.
본 발명에 따른 다층 구조의 구리 입자 제조 방법은, (a) 구리 입자 표면에 산화은을 코팅하는 제 1 층 형성 단계 및 (b) 상기 제 1 층 위에 니켈을 무전해 도금하여 니켈을 포함하는 제 2 층을 형성하는 단계를 포함할 수 있다. A method for manufacturing a multi-layered copper particle according to the present invention includes (a) forming a first layer of coating silver oxide on the surface of the copper particle, and (b) electrolessly plating nickel on the first layer to form a second layer containing nickel. It may include forming a layer.
또한, (a)단계에서 상시 산화은과 함께 주석을 코팅할 수 있다.In addition, in step (a), tin may be coated with silver oxide at all times.
또한, 상기 (a)단계 전에, 주석층을 형성하는 단계를 더 포함할 수 있다. In addition, before step (a), a step of forming a tin layer may be further included.
본 발명에 따른 다층 구조의 구리 입자는 저가이면서 전기 전도도와 내식성이 우수하여 전기 전도도가 필요한 다양한 전자부품에 적용이 가능하고, 표면 금속층의 결합력이 우수하여 적용되는 부품의 경량화와 전도성 및 신뢰성 향상을 이룰 수 있게 된다. The multi-layered copper particles according to the present invention are inexpensive and have excellent electrical conductivity and corrosion resistance, so that they can be applied to various electronic parts that require electrical conductivity, and the bonding strength of the surface metal layer is excellent, thereby reducing the weight of the applied parts and improving conductivity and reliability. be able to achieve
또한, 본 발명에서 제공하는 다층 구조의 구리 입자 제조 방법을 통해 저가의 공정을 통해 전도성과 신뢰성이 우수한 다층 구조의 구리 입자의 대량 생산이 가능하게 된다. In addition, the method for manufacturing multilayered copper particles provided by the present invention enables mass production of multilayered copper particles having excellent conductivity and reliability through a low-cost process.
도 1은 본 발명에 따른 실시예와 비교예에 따른 다층 구조 구리 입자의 주사전자현미경 이미지이다.1 is a scanning electron microscope image of multi-layered copper particles according to Examples and Comparative Examples according to the present invention.
도 2는 본 발명에 따른 일 실시예에서의 다층 구조 구리 입자에 대한 X-선 광전자분광법(X-ray Photoelectron Spectroscopy, XPS)에 따른 분석 결과를 나타낸다. Figure 2 shows the analysis results according to the X-ray photoelectron spectroscopy (XPS) for the multi-layered copper particles in one embodiment according to the present invention.
이하 본 발명의 실시예에 대하여 첨부된 도면을 참고로 그 구성 및 작용을 설명하기로 한다. 하기에서 본 발명을 설명함에 있어, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 또한, 어떤 부분이 어떤 구성요소를 '포함'한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.Hereinafter, the configuration and operation of embodiments of the present invention will be described with reference to the accompanying drawings. In the following description of the present invention, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description will be omitted. In addition, when a certain part 'includes' a certain component, this means that it may further include other components without excluding other components unless otherwise stated.
구리 입자는 다양한 형상과 크기의 입자를 만들 수 있다. 하지만, 재료의 특성상 내산화성, 내식성, 내화학성 등은 매우 낮기 때문에 사용환경과 시간의 경과에 따라 빠르게 전기 전도성이 낮아지는 것을 막을 수 없다. 이를 극복하기 위해 표면에 보호층으로 전도성 금속층을 형성하면 다양한 형상과 크기의 구리 입자에 높은 수준의 내산화성 등을 부여할 수 있게 된다. 이러한 보호층으로 니켈이나 은이 많이 사용되는데, 은은 귀금속으로 가격이 높은 문제가 있어 니켈을 보호층으로 형성하고자 하는 시도가 많이 있다.Copper particles can be made into particles of various shapes and sizes. However, since oxidation resistance, corrosion resistance, chemical resistance, etc. are very low due to the nature of the material, it cannot be prevented from rapidly deteriorating electrical conductivity over time and the use environment. To overcome this, if a conductive metal layer is formed on the surface as a protective layer, it is possible to impart a high level of oxidation resistance to copper particles of various shapes and sizes. Nickel or silver is often used as such a protective layer. Since silver is a precious metal and has a high price problem, many attempts have been made to form nickel as a protective layer.
한편, 보호층으로 니켈이 적용되는 경우에는 니켈 보호층이 핀홀과 같은 결함이 없이 치밀하게 형성되는 것이 중요한데 핀홀과 같은 결함이 있게 되면 이를 중심으로 급속도로 부식이 진행되기 때문이다. On the other hand, when nickel is applied as the protective layer, it is important that the nickel protective layer is densely formed without defects such as pinholes, since corrosion proceeds rapidly around these defects.
이를 위해 본 발명에서는, 구리 입자 표면에 형성되는 산화은을 포함하는 제 1 층과 상기 제 1 층 위에 형성되면서 니켈을 포함하는 제 2 층을 포함하는 다층 구조의 구리 입자를 제공할 수 있다. To this end, the present invention may provide a copper particle having a multilayer structure including a first layer containing silver oxide formed on the surface of the copper particle and a second layer containing nickel formed on the first layer.
본 발명의 발명자들은 니켈 보호층의 형성 전에 산화은을 포함하는 결합층이 형성되면 최종 니켈 보호층의 치밀성 향상되고 구리 입자와의 결합력도 증가하는 것을 알게 되었고, 이로부터 구리 입자의 표면에 직접 니켈을 포함하는 보호층을 형성하기 보다는 중간에 산화은을 포함하는 결합층을 형성함으로써 니켈 보호층이 핀홀 없이 치밀하게 형성되는 다층 구조의 구리 입자를 개발할 수 있게 되었다. The inventors of the present invention found that when a bonding layer containing silver oxide is formed before the formation of the nickel protective layer, the density of the final nickel protective layer is improved and the bonding force with copper particles is also increased. By forming a bonding layer containing silver oxide in the middle rather than forming a protective layer containing silver oxide, it is possible to develop copper particles having a multilayer structure in which a nickel protective layer is densely formed without pinholes.
본 발명에서 코어가 되는 구리 입자는 다양한 형상의 입자가 될 수 있는데, 구상, 판상, 덴드라이트상 또는 이들의 조합으로 이루어지는 군에서 선택되는 어느 하나일 수 있다. 다양한 산업 분야에 사용되는 구리 입자는 그 적용되는 분야에 따라 구상, 판상, 덴드라이트상 등이 사용될 수 있고 이들을 서로 혼합하여 사용할 수도 있다. 한편, 이들 입자의 크기는 레이저 산란 방식의 입도분석기로 분석할 때 D50이 0.1~100㎛ 범위일 수 있는데, 여기서 D50은 입자들의 누적 백분율이 50%에 도달할 때의 해당 입도를 의미한다. D50 기준으로 구리 입자의 입도가 0.1 ㎛미만이면 입자 간의 응집이 심하여 취급이 어렵고 증가하는 비표면적으로 인해 표면 니켈층 형성에 어려움이 있게 된다. 한편 100 ㎛을 초과하면 입자의 무게가 증가하여 전자부품 등에 원활하게 적용하기 어려울 수 있다. Copper particles serving as cores in the present invention may be particles of various shapes, and may be any one selected from the group consisting of spherical, plate-shaped, dendrite-shaped, or combinations thereof. Copper particles used in various industrial fields may be spherical, plate, dendrite, etc. depending on the field to which they are applied, and they may be mixed and used. On the other hand, when the size of these particles is analyzed with a laser scattering type particle size analyzer, D 50 may be in the range of 0.1 to 100 μm, where D 50 refers to the particle size when the cumulative percentage of the particles reaches 50%. . When the particle size of the copper particles is less than 0.1 μm based on D 50 , the aggregation between the particles is severe, making it difficult to handle and difficult to form a surface nickel layer due to the increased specific surface area. On the other hand, if the particle size exceeds 100 μm, the weight of the particles increases, making it difficult to smoothly apply them to electronic parts.
본 발명에서, 산화은을 포함하는 제 1 층은 주석을 더 포함할 수 있는데, 주석은 산화은이 원활하게 구리 입자 표면에 부착되도록 유도하기 위해 사용되는 원소로 수용액에서 코팅 작업을 진행하는 경우 은 원소의 구리 입자 표면으로의 부착을 돕게 된다. 이러한 주석은 산화은과 함께 제 1 층을 이룰 수도 있고, 산화은을 포함하는 제 1 층과 구리 입자 표면 사이에 형성될 수도 있다. In the present invention, the first layer containing silver oxide may further include tin. Tin is an element used to induce silver oxide to be smoothly attached to the surface of copper particles, and when the coating operation is performed in an aqueous solution, copper of silver element It aids adhesion to the particle surface. Such tin may form a first layer together with silver oxide, or may be formed between the first layer containing silver oxide and the surface of the copper particle.
본 발명에서 산화은을 포함하는 제 1 층은 산화은과 함께 금속 은을 더 포함할 수 있는데, 금속 은이 더 포함되면 제 2 층에 포함되는 금속인 니켈과의 결합을 보다 더 강하게 할 수 있다. 산화은은 구리와의 결합을 강하게 하고, 금속 은은 이러한 산화은과의 강하게 결합되면서 동시에 같은 금속인 니켈과의 강한 결합을 제공함으로써 결과적으로 니켈을 포함하는 제 2 층과 구리 입자와의 결합력을 더 강화시키게 된다.In the present invention, the first layer including silver oxide may further include metal silver together with the silver oxide, and when metal silver is further included, bonding with nickel, which is a metal included in the second layer, may be stronger. Silver oxide strengthens the bond with copper, and metal silver strongly bonds with the silver oxide and at the same time provides a strong bond with nickel, which is the same metal. As a result, the bonding force between the second layer containing nickel and the copper particles is further strengthened. do.
이때, 제 1 층에서 금속 은의 은 원소에 대한 산화은에서의 은 원소의 몰 비율(Agx+/Ag0 ( 0< x ≤3 ))이 10~100범위인 것이 바람직하다. At this time, it is preferable that the molar ratio (Ag x+ /Ag 0 ( 0 < x ≤ 3 )) of the silver element in the silver oxide to the silver element of the metal silver in the first layer is in the range of 10 to 100.
상술한 바와 같이 금속 은을 포함하는 것이 산화은을 포함하는 제 1 층과 니켈을 포함하는 제 2 층의 결합을 강하게 하지만, 산화은에서의 은 원소에 비해 금속 은에서의 은 원소의 비율이 너무 높으면 그만큼 산화은을 통한 제 1 층의 구리 입자 표면과의 결합력이 낮아지기 때문에 바람직하지 않다. 따라서, 산화은의 은 원소에 대한 금속 은에서의 은 원소의 몰 비율은 산화은에서의 은 원소의 비율이 더 높도록 10~100인 것이 바람직하다. 이러한 몰 비율의 측정은 X선 광전자 분광법(X-ray Photoelectron Spectroscopy, XPS)으로 측정될 수 있다.As described above, although the inclusion of metallic silver strengthens the bond between the first layer containing silver oxide and the second layer containing nickel, if the ratio of the silver element in the metallic silver compared to the silver element in the silver oxide is too high, This is not preferable because the bonding force of the first layer with the surface of the copper particles through the silver oxide is lowered. Therefore, the molar ratio of the silver element in the metallic silver to the silver element in the silver oxide is preferably 10 to 100 so that the ratio of the silver element in the silver oxide is higher. Measurement of this molar ratio can be measured by X-ray Photoelectron Spectroscopy (XPS).
여기서, 산화은에서 은의 산화수는 +1 ~ +3까지 가능하고, 비정질상에서는 산화수가 정수가 아닐 수도 있기 때문에 산화은에서 은의 산화수는 0을 초과하면서 3이하일 수 있게 된다.Here, the oxidation number of silver in silver oxide can be from +1 to +3, and since the oxidation number of silver in the amorphous phase may not be an integer, the oxidation number of silver in silver oxide can exceed 0 and be 3 or less.
또한, 제 1 층에 포함되는 은의 함량은 상기 다층 구조 구리 입자 전체 중량의 10~1,000 ppm 일 수 있다.In addition, the amount of silver included in the first layer may be 10 to 1,000 ppm of the total weight of the multi-layered copper particles.
제 1 층에 형성되는 금속 은 또는 산화은은 일정 함량 이상이어야 제 2 층에 만족할 만한 결합력을 제공할 수 있고, 너무 많으면 공정 비용이 높아지기 때문에 바람직하지 않기 때문이다. 보다 바람직하게는 10~500 ppm일 수 있다.This is because the amount of metallic silver or silver oxide formed in the first layer must be greater than a certain amount to provide a satisfactory binding force to the second layer, and an excessively large amount is undesirable because process costs increase. More preferably, it may be 10 to 500 ppm.
또한, 본 발명에서 제 1 층은 구리 입자 표면에 불연속적으로 형성되는 아일랜드 형태일 수 있다. 제 1 층은 내산화성을 부여하는 제 2 층에 코어인 구리 입자와의 결합력을 강화시키는 층으로서 불연속적인 아일랜드 형태이어도 충분히 제 2 층에 결합력을 제공할 수 있다.Also, in the present invention, the first layer may have an island shape discontinuously formed on the surface of the copper particle. The first layer is a layer that reinforces the bonding strength of the second layer that imparts oxidation resistance to copper particles, which are cores, and can sufficiently provide bonding strength to the second layer even if it is in the form of a discontinuous island.
한편, 제 1 층은 연속적인 필름 형태일 수도 있는데, 이 경우 제 1 층은 구리 입자 표면적의 최소 50% 이상을 차지하게 된다. 연속적 필름 형태인 경우에도 적어도 입자 표면적의 50%이상이어야 충분한 결합력을 제 2 층에 제공할 수 있기 때문이다.Meanwhile, the first layer may be in the form of a continuous film, in which case the first layer occupies at least 50% of the surface area of the copper particles. This is because, even in the case of a continuous film form, sufficient binding force can be provided to the second layer only when it is at least 50% or more of the particle surface area.
산화은을 포함하는 제 1 층 위에는 내산화성이 우수한 금속인 니켈을 포함하는 제 2 층이 형성된다. 니켈을 내산화성, 내화학성이 우수하면서 동시에 비교적 높은 전기 전도성을 가지기 때문에 다층 구조의 구리 입자가 우수한 전기 전도성과 신뢰성을 동시에 가지도록 한다. A second layer containing nickel, a metal having excellent oxidation resistance, is formed on the first layer containing silver oxide. Since nickel has excellent oxidation resistance and chemical resistance and at the same time relatively high electrical conductivity, the multi-layered copper particles have excellent electrical conductivity and reliability at the same time.
이러한 니켈을 포함하는 제 2 층은 니켈뿐만 아니라 인을 더 포함할 수 있는데, 인이 포함됨으로써 전기 전도도는 다소 낮아지지만 내화학성과 내산화성의 향상이 이루어지기 때문에 신뢰성이 중요한 부품에 사용되는 경우에는 제 2 층에 니켈과 함께 인을 포함하는 것이 바람직하다. 인을 포함하는 경우, 제 2 층에서 인의 함량은 0.1~13.0 중량%인 것이 바람직한데, 너무 낮으면 원하는 내화학성과 내산화성의 향상이 이루어지지 않고, 13 중량%를 넘는 인을 포함하면 충분한 전기 전도성을 얻을 수 없기 때문이다. The second layer containing nickel may further include phosphorus as well as nickel. Inclusion of phosphorus lowers electrical conductivity somewhat, but improves chemical resistance and oxidation resistance, so when used in parts where reliability is important, It is preferable to include phosphorus together with nickel in the second layer. In the case of containing phosphorus, the content of phosphorus in the second layer is preferably 0.1 to 13.0% by weight. If it is too low, the desired improvement in chemical resistance and oxidation resistance is not achieved, and if it contains more than 13% by weight of phosphorus, sufficient electricity This is because conductivity cannot be obtained.
한편, 전기 전도성의 측면에서는 인의 함량은 낮은 것이 유리하기 때문에 전기 전도성이 중요한 분야에서는 니켈층에서의 인의 함량은 0.1~6 중량%인 것이 바람직하다.On the other hand, since a low phosphorus content is advantageous in terms of electrical conductivity, the phosphorus content in the nickel layer is preferably 0.1 to 6% by weight in areas where electrical conductivity is important.
또한, 본 발명에서는 (a) 구리 입자 표면에 산화은을 코팅하는 제 1 층 형성 단계, (b) 상기 제 1 층 위에 니켈을 무전해 도금하는 제 2 층 형성단계를 포함하는 다층 구조의 구리 입자의 제조 방법을 제공할 수 있다.In addition, in the present invention, a copper particle having a multi-layer structure including (a) forming a first layer of coating silver oxide on the surface of the copper particle, and (b) forming a second layer of electroless plating nickel on the first layer. A manufacturing method can be provided.
구리 입자 표면에는 산화은을 포함하는 제 1 층을 형성하는데 산화은과 함께 주석을 함께 코팅할 수 있다. 주석은 구리 입자의 표면에서 산화은의 결합력을 높여줄 수 있게 된다.A first layer containing silver oxide is formed on the surface of the copper particle, and tin may be coated together with the silver oxide. Tin can increase the binding force of silver oxide on the surface of copper particles.
또한, 보다 정밀한 제어를 위해서 구리 입자 표면에 주석층을 먼저 형성한 후 산화은을 포함하는 제 1 층을 형성할 수 있다. In addition, for more precise control, a tin layer may be first formed on the surface of the copper particle, and then a first layer containing silver oxide may be formed.
산화은을 포함하는 제 1 층의 형성은 pH 8이상의 알칼리 수용액에서 이루어질 수 있다. 산화은은 pH 8 이상의 알칼리 분위기에서 잘 형성되기 때문이다. 보다 바람직하게는 pH 8~10 범위의 수용액에서 이루어질 수 있다. Formation of the first layer containing silver oxide may be performed in an alkaline aqueous solution having a pH of 8 or higher. This is because silver oxide is well formed in an alkaline atmosphere of pH 8 or higher. More preferably, it may be made in an aqueous solution in the pH range of 8 to 10.
또한, 다층 구조의 구리 입자 제조 방법에서, (a) 단계 이후 (b) 단계 전에 pH 8~11 이고, 온도 20~80℃인 수용액에서 상기 산화은을 포함하는 제 1 층이 형성된 구리 입자를 교반하여 상기 산화은 양을 조절하는 후처리 단계를 더 포함할 수 있다.In addition, in the method for manufacturing copper particles having a multilayer structure, after step (a) and before step (b), the copper particles having the first layer containing the silver oxide are stirred in an aqueous solution having a pH of 8 to 11 and a temperature of 20 to 80 ° C. A post-treatment step of adjusting the amount of silver oxide may be further included.
수용액 중에서 제 1 층을 형성하는 경우 수용액 중의 은 이온이 환원되어 산화은이 아닌 금속 은으로 구리 입자 표면에 부착될 수 있다. 이러한 금속 은의 비율이 너무 높아지면 구리 입자 및 제 2 층과의 결합력이 낮아질 수 있기 때문에 바람직하지 않다. 따라서, 산화은의 함량을 원하는 수준으로 높이기 위해 적절한 온도의 알칼리 수용액에서 처리함으로써 산화은의 양을 조절할 수 있다.When the first layer is formed in an aqueous solution, silver ions in the aqueous solution are reduced and may be attached to the surface of the copper particles as metallic silver rather than silver oxide. If the ratio of the metal silver is too high, it is undesirable because the bonding force between the copper particles and the second layer may be lowered. Therefore, the amount of silver oxide can be controlled by treating the silver oxide in an alkali aqueous solution at an appropriate temperature to increase the silver oxide content to a desired level.
이렇게 산화은 양을 조절한 후 내산화성이 우수한 니켈을 포함하는 제 2 층을 형성함으로써 전도성을 부여하는 동시에 신뢰성이 높은 다층 구조의 구리 입자를 제공할 수 있게 된다.In this way, by adjusting the amount of silver oxide and forming a second layer containing nickel having excellent oxidation resistance, it is possible to provide conductive and highly reliable multi-layered copper particles.
이하, 본 발명을 충분히 이해하기 위해서 본 발명의 바람직한 실시예를 첨부Hereinafter, preferred embodiments of the present invention are attached in order to fully understand the present invention.
도면을 참조하여 설명한다.It demonstrates with reference to drawings.
본 발명의 실시예는 당해 기술 분야에서 통상의 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위하여 제공되는 것이며, 아래의 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래의 실시예로 한정되는 것은 아니다. 오히려, 이들 실시예는 본 개시를 더욱 충실하고 완전하게 하며 당업자에게 본 발명의 사상을 완전하게 전달하기 위하여 제공되는 것이다.The embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art, and the following examples may be modified in many different forms, and the scope of the present invention It is not limited to the examples below. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the spirit of the invention to those skilled in the art.
[실시예 1][Example 1]
탈이온수 100g에 탈지제(제품명 에이스크린, 일본 오쿠노케미컬사) 20g 을 투입하고 60℃로 승온하였다. 여기에 D50 20㎛인 구형의 구리 입자 20g을 투입하고 교반하면서 30분 구리 입자 표면에 부착된 유기물과 불순물을 제거하는 전처리를 실시하였다. 이후 구리 입자를 회수하고 다시 탈이온수 100g에서 교반하여 3회 세정한 후 회수하였다.20 g of a degreasing agent (product name: A-Screen, Okuno Chemical Co., Japan) was added to 100 g of deionized water, and the temperature was raised to 60°C. 20 g of spherical copper particles having a D of 50 of 20 μm were added thereto, and a pretreatment was performed for 30 minutes while stirring to remove organic matter and impurities attached to the surface of the copper particles. Thereafter, the copper particles were recovered, washed three times by stirring in 100 g of deionized water, and recovered.
회수된 구리 입자를 탈이온수 100g에 질산은(AgNO3) 0.15g을 용해한 질산은 용액에 투입하고 교반하였다. 이때 28% 농도의 암모니아수를 점적방식으로 투입하여 pH를 9.1로 조절하였다.The recovered copper particles were added to a silver nitrate solution in which 0.15 g of silver nitrate (AgNO 3 ) was dissolved in 100 g of deionized water and stirred. At this time, 28% concentration of ammonia water was added dropwise to adjust the pH to 9.1.
온도는 40℃로 유지하고 1시간 교반하여 산화은층을 형성하였다. 1시간 후 여과 회수 하고 이후 탈이온수 200g에서 교반하여 3회 세정한 후 회수하였다. 산화은층이 형성된 분말을 일부 채취하여 X선 광전자 분광법(X-ray Photoelectron Spectroscopy, XPS)를 통한 표면분석을 실시하였다.The temperature was maintained at 40°C and stirred for 1 hour to form a silver oxide layer. After 1 hour, it was collected by filtration, and then washed three times by stirring in 200 g of deionized water, and then recovered. A portion of the powder having the silver oxide layer was collected and surface analysis was performed through X-ray Photoelectron Spectroscopy (XPS).
산화은층까지 형성된 분말을 회수하고, 무전해도금법을 이용하여 니켈 코팅층을 형성하였다. 탈이온수 용액 300g에 염화니켈(NiCl2·6H2O) 20g, 소듐아세테이트(sodium acetate) 10g, 말레인산(Maleic acid) 5g, 환원제인 차아인산나트륨(sodium hypophosphate) 30g, 리드아세테이트(lead acetate) 3㎖를 포함하여 조성된 니켈 도금액에 산화은층까지 형성된 분말을 투입하고 교반하여 70∼90℃로 2시간동안 무전해도금하였다.The powder formed up to the silver oxide layer was recovered, and a nickel coating layer was formed using an electroless plating method. In 300 g of deionized water solution, 20 g of nickel chloride (NiCl 2 6H 2 O), 10 g of sodium acetate, 5 g of maleic acid, 30 g of sodium hypophosphate as a reducing agent, and 3 lead acetate The powder formed up to the silver oxide layer was added to the nickel plating solution composed of ㎖, stirred, and electroless plating was performed at 70 to 90 ° C. for 2 hours.
[실시예 2][Example 2]
구리 입자의 표면에 부착된 유기물이나 불순물을 제거하는 전처리는 실시예 1과 동일하게 진행하였고, 이후 주석층을 형성하였다. 주석층은 구리 입자를 탈이온수 100g에 염화제일주석(SnCl2·2H2O) 1.5g과 염산(HCl 35% 용액) 1ml를 녹인 수용액에 투입하고 30분 동안 교반하여 형성하였다. 수용액의 온도 35℃로 유지하였다. 이후 산화은을 포함하는 제 1 층과 니켈을 포함하는 제 2 층의 형성은 실시예 1과 동일하게 실시하였다. A pretreatment for removing organic matter or impurities attached to the surface of the copper particles was performed in the same manner as in Example 1, and then a tin layer was formed. The tin layer was formed by adding copper particles to an aqueous solution in which 1.5 g of stannous chloride (SnCl 2 2H 2 O) and 1 ml of hydrochloric acid (HCl 35% solution) were dissolved in 100 g of deionized water and stirred for 30 minutes. The temperature of the aqueous solution was maintained at 35°C. Thereafter, the first layer containing silver oxide and the second layer containing nickel were formed in the same manner as in Example 1.
[실시예 3][Example 3]
전처리와 제 1 층 형성은 실시예 1과 동일하게 진행하였다. 이후 니켈층의 형성은 탈이온수 용액 300g에 염화니켈(NiCl2·6H2O) 20g, 소듐아세테이트(sodium acetate) 10g, 암모니아수 3g, 환원제인 차아인산나트륨(sodium hypophosphate) 10g과 하이드라진(Hydrazine) 10g, 리드아세테이트(lead acetate) 1㎖를 포함하여 조성된 니켈 도금액에 산화은층까지 형성된 분말을 투입하고 교반하여 40~60℃로 1시간동안 무전해도금하였다.Pretreatment and formation of the first layer were performed in the same manner as in Example 1. After that, the formation of the nickel layer was performed using 300 g of deionized water solution, 20 g of nickel chloride (NiCl 2 6H 2 O), 10 g of sodium acetate, 3 g of ammonia water, 10 g of sodium hypophosphate and 10 g of hydrazine as a reducing agent. , The powder formed up to the silver oxide layer was added to the nickel plating solution composed of 1 ml of lead acetate, stirred, and electroless plating was performed at 40 to 60 ° C. for 1 hour.
[비교예 1][Comparative Example 1]
실시예 1과 동일하게 구리 입자를 전처리를 하였다. 이후 산화은층을형성하지 않고 바로 무전해도금을 실시하여 니켈을 포함하는 제 2 층을 형성하였다. 니켈의 무전해도금은 실시예 1과 동일하게 진행하였다.Copper particles were pretreated in the same manner as in Example 1. Thereafter, electroless plating was directly performed without forming a silver oxide layer to form a second layer containing nickel. Electroless plating of nickel was performed in the same manner as in Example 1.
[비교예 2][Comparative Example 2]
실시예 1과 동일하게 구리 입자 표면에 산화은을 포함하는 제 1 층까지 형성하였다. 이후 수용액에 아스코르빈산(Ascorbic acid)을 투입하여 표면에 있는 산화은을 금속 은 상태로 만들고, 이후 무전해도금을 실시하여 니켈을 포함하는 제 2 층을 형성하였다. 니켈의 무전해도금은 실시예 1과 동일하게 진행하였다.In the same manner as in Example 1, a first layer containing silver oxide was formed on the surface of the copper particle. Thereafter, ascorbic acid was added to the aqueous solution to convert silver oxide on the surface into a metallic silver state, and then electroless plating was performed to form a second layer containing nickel. Electroless plating of nickel was performed in the same manner as in Example 1.
이렇게 만들어진 다층 구조의 구리 입자에 대해 제 1 층 형성 후 산화은과 금속은의 은 원소비율 분석, 니켈 함량 및 인 함량 분석 그리고 주사전자현미경(Scanning Electron Microscope, SEM)을 통한 코팅상태 관찰을 진행하였다. 은 원소비율은 제 1 층 형성 후 샘플을 채취하여 XPS를 통해 분석하였다. 니켈 함량 및 인 함량은 유도결합플라즈마 질량분석기(Inductively Coupled Plasma Mass Spectrometer, ICP)를 통해 분석을 진행하였다.After the first layer was formed on the multi-layered copper particles thus formed, the silver element ratio analysis of silver oxide and metallic silver, analysis of nickel content and phosphorus content, and observation of the coating state through a scanning electron microscope (SEM) were performed. The silver element ratio was analyzed by taking a sample after forming the first layer and using XPS. Nickel content and phosphorus content were analyzed through an inductively coupled plasma mass spectrometer (ICP).
신뢰성은 실시예와 비교예를 통해 만들어진 구리 입자를 아크릴 바인더와 일정량 혼합하여 폴리이미드 필름 위에 도포하고 건조한 후 이를 용융된 납 위에서 30초 간 유지한 후 전도도를 측정하는 리플로우(reflow) 테스트를 통해 평가하였다. Reliability is measured through a reflow test in which copper particles made in Examples and Comparative Examples are mixed with an acrylic binder in a certain amount, applied on a polyimide film, dried, held on molten lead for 30 seconds, and then conductivity is measured. evaluated.
그 결과는 아래 표 1에서 나타내었다. 여기서 니켈 함량은 전체 다층 구조의 구리 입자를 기준으로 니켈 원소가 차지하는 중량%를 나타낸 것이고, 인 함량은 니켈을 포함하는 제 2 층에서의 함량을 중량%로 나타내었다. The results are shown in Table 1 below. Here, the nickel content represents the weight percent occupied by the nickel element based on the copper particles of the entire multilayer structure, and the phosphorus content represents the content in the second layer containing nickel as a weight percent.
Agx+/Ag0 Ag x + /Ag 0 Ni함량(wt%)Ni content (wt%) P함량(wt%)P content (wt%) 코팅상태coating condition 내식성(mΩ)Corrosion resistance (mΩ)
실시예 1Example 1 40.540.5 19.519.5 9.59.5 양호Good 6060
실시예 2Example 2 92.492.4 20.120.1 10.510.5 양호Good 4545
실시예 3Example 3 33.633.6 19.819.8 3.13.1 양호Good 3333
비교예 1Comparative Example 1 -- -- 불량error 265265
비교예 2Comparative Example 2 0.100.10 19.119.1 9.79.7 불량error 8989
구리 입자copper particles -- -- -- 측정안됨not measured
도 1에서는 실시예에 따른 다층 구조 구리 입자의 주사전자현미경 사진을 나타낸다. 도 1(a) 및 (b)는 각각 실시예 1과 실시예 2에 따른 샘플의 주사전자현미경 이미지이이고, 도 1(c) 및 (d)는 비교예 1 및 비교예 2에 따른 샘플의 주사전자현미경 이미지이다. 1 shows a scanning electron micrograph of multi-layered copper particles according to an embodiment. 1 (a) and (b) are scanning electron microscope images of samples according to Examples 1 and 2, respectively, and FIG. 1 (c) and (d) are scanning electron microscope images of samples according to Comparative Examples 1 and 2. This is an electron microscope image.
실시예 1 및 2에 따른 샘플은 모두 치밀한 코팅층이 형성된 것을 나타내지만, 중간 산화은 층이 없는 비교예 1의 경우 치밀하지 못한 니켈층이 형성된 것을 볼 수 있었다. 또한, 금속은이 대부분인 제 1 층이 형성된 경우 니켈층의 형성이 안정적으로 이루어졌지만 중간에 핀홀이 있는 것을 볼 수 있었다. Samples according to Examples 1 and 2 both show that a dense coating layer was formed, but in the case of Comparative Example 1 without an intermediate silver oxide layer, it could be seen that a non-dense nickel layer was formed. In addition, when the first layer containing most of the metal silver was formed, the nickel layer was stably formed, but it could be seen that there was a pinhole in the middle.
도 2는 실시예 21에 따른 샘플에서 제 1 층의 산화은과 금속은의 은 원소 비율을 측정한 결과이다. XPS결과로 환원된 상태의 은 비율과 산화 상태의 은 비율을 피크 비율을 통해 측정할 수 있게 된다. 실시예 1에서의 이들 몰 비율(Agx+/Ag0 )은 92.4이었다. FIG. 2 is a result of measuring a ratio of silver elements of silver oxide and metallic silver in a first layer in a sample according to Example 21. FIG. As a result of the XPS, it is possible to measure the silver ratio in the reduced state and the silver ratio in the oxidized state through the peak ratio. Their molar ratio (Ag x+ /Ag 0 ) in Example 1 was 92.4.
한편 표 1에서 나타낸 바와 같이 내식성은 리플로우 테스트를 통해 평가하였는데, 실시예 1 내지 3에서는 리플로우 테스트 후에도 다층 구조의 구리 입자를 이용한 필름의 저항은 양호하였으나, 코팅층 형성이 불안정한 비교예 1 및 2에서는 저항이 크게 증가하였고, 보호층이 없는 일반의 구리 입자를 이용한 필름에서는 저항이 너무 높아 측정이 불가능하였다. On the other hand, as shown in Table 1, corrosion resistance was evaluated through a reflow test. In Examples 1 to 3, the resistance of the film using the multi-layered copper particles was good even after the reflow test, but Comparative Examples 1 and 2 with unstable coating layer formation In , the resistance increased significantly, and in the film using general copper particles without a protective layer, the resistance was too high to be measured.

Claims (9)

  1. 구리 입자 표면에 형성되는 산화은을 포함하는 제 1 층과, A first layer containing silver oxide formed on the surface of the copper particle;
    상기 제 1 층 위에 형성되면서 니켈을 포함하는 제 2 층을 포함하는, 다층 구조의 구리 입자.A copper particle having a multilayer structure, comprising a second layer formed on the first layer and containing nickel.
  2. 제 1 항에 있어서,According to claim 1,
    상기 구리 입자의 형상은, 구상, 판상, 덴드라이트상 또는 이들의 조합으로 이루어지는 군에서 선택되는 어느 하나이고, 상기 구리 입자의 입도는 레이저 산란 방식의 입도분석기로 분석할 때 D50이 0.1~100㎛ 범위인, 다층 구조의 구리 입자.The shape of the copper particles is any one selected from the group consisting of a spherical shape, a plate shape, a dendrite shape, or a combination thereof, and when the particle size of the copper particles is analyzed with a laser scattering type particle size analyzer, D 50 is 0.1 to 100. Multi-layered copper particles, in the micrometer range.
  3. 제 1 항에 있어서,According to claim 1,
    상기 제 1 층은 금속 은을 더 포함하고, 상기 금속 은에서 은 원소에 대한 상기 산화은에서 은 원소의 몰 비율(Agx+/Ag0 ( 0< x ≤3 ))이 10 ~ 100범위인, 다층 구조의 구리 입자.The first layer further comprises metallic silver, and the molar ratio of silver element in the silver oxide to silver element in the metallic silver (Ag x + /Ag 0 ( 0 < x ≤ 3 )) is in the range of 10 to 100. copper particles in the structure.
  4. 제 1 항에 있어서,According to claim 1,
    상기 제 1 층은 주석을 더 포함하는, 다층 구조의 구리 입자.The multilayer structure of the copper particles, wherein the first layer further includes tin.
  5. 제 1 항에 있어서,According to claim 1,
    상기 제 1 층에 포함되는 은의 함량은, 상기 내산화 구리 입자 전체 중량의 10~1,000 ppm인, 다층 구조의 구리 입자.The content of silver included in the first layer is 10 to 1,000 ppm of the total weight of the oxidation-resistant copper particles.
  6. 제 1 항에 있어서,According to claim 1,
    상기 제 2 층은 상기 니켈과 함께 인을 더 포함하는, 다층 구조의 구리 입자.The second layer further comprises phosphorus together with the nickel, the multi-layered copper particles.
  7. 제 6 항에 있어서, According to claim 6,
    상기 제 2 층에서 상기 인은 0.1~13 중량%인, 다층 구조의 구리 입자.In the second layer, the phosphorus is 0.1 to 13% by weight, copper particles having a multilayer structure.
  8. (a) 구리 입자 표면에 산화은을 코팅하는 제 1 층 형성 단계; 및(a) forming a first layer of coating silver oxide on surfaces of copper particles; and
    (b) 상기 제 1 층 위에 니켈을 무전해 도금하여 니켈을 포함하는 제 2 층을 형성하는 단계를 포함하는, 다층 구조의 구리 입자 제조 방법.(b) electroless plating nickel on the first layer to form a second layer containing nickel.
  9. 제 8 항에 있어서, According to claim 8,
    상기 (a)단계 전에, 주석층을 형성하는 단계를 더 포함하는, 다층 구조의 구리 입자 제조 방법.A method of manufacturing copper particles having a multilayer structure, further comprising forming a tin layer before the step (a).
PCT/KR2021/013909 2021-10-08 2021-10-08 Multilayer copper particles having excellent corrosion resistance WO2023058798A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020247010422A KR20240050418A (en) 2021-10-08 2021-10-08 Multi-layered copper particles with excellent corrosion resistance
PCT/KR2021/013909 WO2023058798A1 (en) 2021-10-08 2021-10-08 Multilayer copper particles having excellent corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2021/013909 WO2023058798A1 (en) 2021-10-08 2021-10-08 Multilayer copper particles having excellent corrosion resistance

Publications (1)

Publication Number Publication Date
WO2023058798A1 true WO2023058798A1 (en) 2023-04-13

Family

ID=85804387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/013909 WO2023058798A1 (en) 2021-10-08 2021-10-08 Multilayer copper particles having excellent corrosion resistance

Country Status (2)

Country Link
KR (1) KR20240050418A (en)
WO (1) WO2023058798A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010282832A (en) * 2009-06-04 2010-12-16 Hitachi Metals Ltd Bonding material, its manufacturing method, and mounting method using the same
JP4863988B2 (en) * 2005-01-25 2012-01-25 積水化学工業株式会社 Conductive fine particles and anisotropic conductive material
KR20140002725A (en) * 2011-03-31 2014-01-08 도다 고교 가부시끼가이샤 Silver-coated copper powder and method for producing same, silver-coated copper powder-containing conductive paste, conductive adhesive agent, conductive film, and electric circuit
KR20140133483A (en) * 2013-05-10 2014-11-19 주식회사 엘지화학 Copper containing particle and method for preparing the same
KR20200035633A (en) * 2018-09-27 2020-04-06 주식회사 씨앤씨머티리얼즈 Nickel-coated super-abrasive particles with excellent magnetic properties and wire saw using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4863988B2 (en) * 2005-01-25 2012-01-25 積水化学工業株式会社 Conductive fine particles and anisotropic conductive material
JP2010282832A (en) * 2009-06-04 2010-12-16 Hitachi Metals Ltd Bonding material, its manufacturing method, and mounting method using the same
KR20140002725A (en) * 2011-03-31 2014-01-08 도다 고교 가부시끼가이샤 Silver-coated copper powder and method for producing same, silver-coated copper powder-containing conductive paste, conductive adhesive agent, conductive film, and electric circuit
KR20140133483A (en) * 2013-05-10 2014-11-19 주식회사 엘지화학 Copper containing particle and method for preparing the same
KR20200035633A (en) * 2018-09-27 2020-04-06 주식회사 씨앤씨머티리얼즈 Nickel-coated super-abrasive particles with excellent magnetic properties and wire saw using the same

Also Published As

Publication number Publication date
KR20240050418A (en) 2024-04-18

Similar Documents

Publication Publication Date Title
US6841495B2 (en) Glass and conductive paste using the same
KR20010015364A (en) An electronic component comprising on external terminal electrode and a method of manufacturing the component
KR20120003458A (en) Substrate for printed wiring board, printed wiring board, and methods for producing same
KR0183329B1 (en) Electroconductive paste
WO2017026722A1 (en) Production method for silver powder for high-temperature sintering type of electrically-conductive paste
KR20090094803A (en) Surface treated copper foil, surface treated copper foil with very thin primer resin layer, method for manufacturing the surface treated copper foil, and method for manufacturing the surface treated copper foil with very thin primer resin layer
WO2006003755A1 (en) Electroconductive paste and ceramic electronic parts using the same
CN102982957A (en) NiZnCu ferrite material and laminated chip electronic element manufactured by using same
WO2013095072A1 (en) Conversion coating composition, surface treated steel sheet, and method for manufacturing the same
EP3496112A1 (en) Conductive paste
WO2015178696A1 (en) Conductive composition
WO2015102323A1 (en) Copper foil, and electrical component and battery including same
WO2023058798A1 (en) Multilayer copper particles having excellent corrosion resistance
TW202248008A (en) Matte type electromagnetic interference shielding film and preparation method thereof
WO2015003369A1 (en) Printed circuit board preparation method and printed circuit board
WO2023043114A1 (en) Low-melting point high-reliability solder particles and resin composition comprising same
WO2023058797A1 (en) Conductive carbon-based particles having excellent corrosion resistance
WO2014061949A1 (en) Conductive paste printed circuit board having plating layer and method for manufacturing same
WO2023058796A1 (en) Conductive polymer particles with excellent corrosion resistance
WO2022054979A1 (en) Hybrid adhesive composition for blocking electromagnetic waves, method for producing same, and hybrid adhesive film for blocking electromagnetic waves
WO2021221202A1 (en) Metal particles comprising silver coating layer
WO2023120855A1 (en) Surface-treated copper foil having heat resistance, copper clad laminate comprising same, and printed wiring board
JP2589433B2 (en) Plateable thick film copper conductor paste composition
JP3701038B2 (en) Thick film copper conductor paste composition and method for producing circuit board using the same
JPH08167768A (en) Forming method for circuit pattern, and paste used therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21960010

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247010422

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE