WO2023058780A1 - Method for manufacturing product having complex internal shape - Google Patents

Method for manufacturing product having complex internal shape Download PDF

Info

Publication number
WO2023058780A1
WO2023058780A1 PCT/JP2022/038494 JP2022038494W WO2023058780A1 WO 2023058780 A1 WO2023058780 A1 WO 2023058780A1 JP 2022038494 W JP2022038494 W JP 2022038494W WO 2023058780 A1 WO2023058780 A1 WO 2023058780A1
Authority
WO
WIPO (PCT)
Prior art keywords
manufacturing
product
internal shape
molten metal
aluminum alloy
Prior art date
Application number
PCT/JP2022/038494
Other languages
French (fr)
Japanese (ja)
Inventor
恭子 廣川
俊 洙 金
Original Assignee
恭子 廣川
俊 洙 金
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 恭子 廣川, 俊 洙 金 filed Critical 恭子 廣川
Publication of WO2023058780A1 publication Critical patent/WO2023058780A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/22Dies; Die plates; Die supports; Cooling equipment for dies; Accessories for loosening and ejecting castings from dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/30Accessories for supplying molten metal, e.g. in rations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/007Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C

Definitions

  • the present invention relates to a method for manufacturing a product having a complicated internal shape, and more particularly, to a method for manufacturing a product having a complicated internal shape by die-casting a component having a complicated internal shape and then brazing it. It relates to a method of manufacturing a product having
  • the die casting method is a method in which molten metal is injected into the die casting mold at high speed. , Air bubbles are generated on the surface, so there is a problem that brazing is difficult.
  • the present invention was invented to solve the above-mentioned problems, and after manufacturing parts by die casting using a new aluminum alloy, they are joined by brazing to realize a complicated shape inside.
  • the aim is to provide a manufacturing method capable of producing manufactured products.
  • a method for manufacturing a product having a complicated internal shape is provided by injecting molten metal prepared from an aluminum alloy into a die casting mold to form a pair of molds. It can be performed including a part manufacturing process for manufacturing a part and a part joining process for brazing a pair of parts. More specifically, the manufacturing process of the component includes a gas injection step of injecting a reactive gas that causes an exothermic reaction with the molten metal into the die casting mold, and when the reactive gas is injected into the die casting mold, It can be carried out including a molten metal pouring step of immediately pouring the molten metal.
  • the fluidity of the molten metal can be ensured by the reaction heat generated by the exothermic reaction between the reactive gas injected into the die casting mold and the molten metal.
  • oxygen is used as the reactive gas, and the molten metal reacts with the oxygen to be solidified. It can be manufactured so as not to generate air bubbles.
  • the component bonding process may be performed by brazing a pair of components using a filler material that melts at 540°C to 580°C.
  • the aluminum alloy can be prepared so that the eutectic point is 600° C. or higher.
  • the aluminum alloy contains 1.2 to 2.2% by weight of iron (Fe), 0.8 to 2.8% by weight of silicon (Si), and 0.2 to 0.2% by weight of titanium (Ti). 6% by weight, the balance being aluminum (Al) and unavoidable impurities.
  • the aluminum alloy may further contain nickel (Ni) in an amount of 0.2 to 0.4% by weight.
  • the aluminum alloy may contain 0.05 to 0.1% by weight of bismuth (Bi).
  • the inevitable impurities include at least one of magnesium (Mg), copper (Cu), and zinc (Zn), and the content of each is 0.05 with respect to the weight of the entire aluminum alloy. less than % by weight.
  • a new aluminum alloy with a high eutectic point is manufactured by a die-casting method using a reactive gas into a part without bubbles, and then brazed. It is possible to obtain the effect of being able to rapidly and accurately mass-produce products having complicated internal shapes through simple processes.
  • FIG. 1 is a flow chart schematically illustrating a method for manufacturing a product having a complex internal shape according to an embodiment of the invention
  • FIG. 3 is a thermal analysis graph of an aluminum alloy used in a method for manufacturing a product having a complex internal shape according to an embodiment of the present invention
  • FIG. 4 is a thermal analysis graph according to an embodiment of the present invention
  • FIG. 1 is a flow chart schematically showing a method of manufacturing a product having a complex internal shape according to an embodiment of the present invention
  • FIG. 2 is a flow chart schematically showing the steps of manufacturing a part by the manufacturing method. be.
  • FIG. 3 is a thermal analysis graph of the aluminum alloy used in the above manufacturing method
  • FIG. 4 is a cross section of the product manufactured by the above manufacturing method. Referring to FIGS.
  • a method for manufacturing a product having a complicated internal shape is to manufacture a pair of parts by injecting molten metal prepared from an aluminum alloy into a die casting mold. It includes a manufacturing process (S110) for parts to be joined together and a part joining process (S120) for joining a pair of parts by brazing.
  • a pair of parts manufactured in the parts manufacturing process (S110) are brought into contact with each other so that a part having a complicated shape is positioned inside, and then a filler material is used for the contacting parts. and braze joints to produce products with complex internal geometries.
  • a die casting method is used so that complicated shapes can be easily manufactured.
  • the component manufacturing step (S110) includes a gas injection step (S111) of injecting a reactive gas that causes an exothermic reaction with the molten metal into the die casting mold, and a gas injection step (S111) of injecting the reactive gas into the die casting mold.
  • a molten metal injection step (S112) of injecting the molten metal immediately after the gas is injected can be included.
  • the part manufacturing step (S110) may further include a step of evacuating the inside of the die-casting mold before injecting the reactive gas into the die-casting mold.
  • a vacuum means such as a vacuum pump can be connected to the die casting mold to evacuate the air present in the space formed inside the die casting mold so that the inside of the die casting mold can be brought into a vacuum state.
  • the gas injection process (S111) can be performed together with the inside of the die casting mold being evacuated. For example, air can be discharged from one side of the die casting mold by a vacuum pump, and reactive gas can be injected from the other side. Therefore, the decompression process and the gas injection process can be performed simultaneously.
  • the molten metal injection step (S112) is performed so as to inject the molten metal as soon as the reactive gas is injected into the die casting mold. At this time, the molten metal can be rapidly injected into the die casting mold through a device for forcibly injecting the molten metal. That is, when the molten metal is poured into the die casting mold, solidification is initiated, and the molten metal can be injected more quickly via a separate forced injection device.
  • Oxygen (O2) can be used as a reactive gas used in the gas injection step (S111).
  • Al aluminum
  • oxygen (O2) react to form aluminum oxide (Al2O3).
  • the reaction between aluminum (Al) and oxygen (O2) generates reaction heat through an exothermic reaction, and the reaction heat generated at this time acts as a heat source for the injected molten metal, thereby solidifying the molten metal.
  • the fluidity of the molten metal can be ensured.
  • the molten metal reacts with the oxygen and solidifies, the degree of vacuum inside the die casting mold increases, and the molten metal is filled to prevent the generation of air bubbles. That is, the aluminum (Al) of the molten metal reacts with oxygen (O2) and solidifies with aluminum oxide (Al2O3), and the space where oxygen existed is instantaneously brought to an ultra-vacuum state, and the molten metal is rapidly filled.
  • the reactive gas is not limited to oxygen, and any gas can be applied as long as it solidifies while exothermically reacting with aluminum.
  • An aluminum alloy having a eutectic point of 600° C. or higher is applied to the molten metal used in the manufacturing method of the present invention. That is, the filler used for brazing is a filler that is melted at 540-580° C. and has excellent bonding strength and chemical properties. Therefore, in the present invention, an aluminum alloy having a eutectic point of 600° C. or higher is used so that the part, which is the base material, does not melt during brazing joining the base material by melting the filler material.
  • ADC12 and ADC10 aluminum alloys which are mainly used in the die casting method, have a high silicon (Si) content and excellent fluidity, but their eutectic point is low, and the base material melts during brazing. There is a problem that the brazing joint cannot be applied.
  • aluminum alloys such as A1100, A3003, and A6063, which can be brazed, are difficult to die-cast due to fluidity of molten metal and seizure with a mold. Therefore, in the present invention, a new aluminum alloy has been developed that allows both die-casting and brazing.
  • the aluminum alloy contains 1.2 to 2.2% by weight of iron (Fe), 0.8 to 2.8% by weight of silicon (Si), and 0.2 to 0.2% by weight of titanium (Ti). 6% by weight, the balance being aluminum (Al) and unavoidable impurities.
  • the content of iron (Fe) is limited to 1.2 to 2.2% by weight.
  • the content of iron (Fe) is less than 1.2% by weight, the product is seized on the surface of the mold during the die casting process in which molten aluminum alloy is injected into the mold at high speed and high pressure. There's a problem.
  • iron (Fe) When the content of iron (Fe) is 1.2% by weight or more, very fine particles of iron (Fe)-aluminum (Al)-silicon (Si) system are required in a process such as die-casting, which requires a high cooling rate. After the intermetallic compound is formed, it plays a role of enhancing the high-temperature strength without lowering the eutectic point in the temperature range (540-580° C.) where the brazing process is performed. Also, if the iron (Fe) content exceeds 2.2% by weight, the alloy becomes very brittle, and there is a problem that cracks occur in the parts manufactured by the die casting process. The content of silicon (Si) is limited to 0.8 to 2.8% by weight.
  • Silicon (Si) improves the diffusion of the filler during brazing and forms a fine intermetallic compound that improves the high-temperature strength of the product together with iron (Fe). Prevent deformation.
  • the content of silicon (Si) is less than 0.6% by weight, the aforementioned effects are reduced, and the flowability of the molten metal is lowered, which makes it difficult to mold the product in the die casting process.
  • the silicon (Si) content exceeds 2.8% by weight, an Al—Si structure that melts at 540° C. is generated, and local melting occurs in the brazing joint temperature range (540 to 580° C.).
  • the content of titanium (Ti) is limited to 0.2 to 0.6% by weight. Without lowering the eutectic point containing 0.2 to 0.6% by weight of titanium (Ti), the structure of the aluminum alloy and the formed shape of the aluminum (Al)-iron (Fe) intermetallic compound are refined. It is possible to obtain the effect of preventing cracks that occur during solidification. Also, when titanium (Ti) is added, the diffusibility of the filler material is improved during brazing, and the joining strength can be improved.
  • titanium (Ti) when the content of titanium (Ti) is less than 0.2% by weight, the effect of refining the structure of the aluminum alloy can be obtained, but an iron (Fe)-aluminum (Al) intermetallic compound is produced. There is a problem that the shape improvement effect is low. Further, when the content of titanium (Ti) exceeds 0.6% by weight, a coarse aluminum (Al)-titanium (Ti) intermetallic compound is formed, which reduces the fluidity of the molten metal and causes cracks during the solidification process. There is a problem that arises.
  • iron (Fe) 1.2 to 2.2% by weight, silicon (Si) 0.8 to 2.8% by weight, titanium (Ti) 0.2 to 0.6% by weight, the balance
  • An aluminum alloy containing aluminum (Al) and inevitable impurities was used as the molten metal.
  • an aluminum alloy containing 1.8% by weight of iron (Fe), 2.2% by weight of silicon (Si), 0.5% by weight of titanium (Ti), and the balance aluminum (Al) was manufactured. Afterwards, a thermal analysis was performed and shown in FIG.
  • thermoanalytical method used here is differential scanning calorimetry (DSC) in which the difference in energy input between a sample and a reference material is measured as a function of temperature while the temperature of the sample and reference material is varied. It is a method of measuring as Referring to FIG. 3, as a result of thermal analysis, the change in temperature rise curve is first initiated at 615° C., and three peak points at 620° C., 642° C. and 649° C. are displayed. can know. First, it indicates that the aluminum (Al)-silicon (Si)-based intermetallic compound, which tends to preferentially change at 615° C., begins to melt. The peak points indicated at 642° C. and 649° C.
  • the aluminum alloy used in the manufacturing method of the present invention may further contain nickel (Ni) at 0.2-0.4% by weight.
  • nickel (Ni) When nickel (Ni) is contained in an amount of 0.2 to 0.4% by weight, a fine intermetallic compound of aluminum (Al)-nickel (Ni) is generated, and strength at high temperatures can be further improved.
  • the aluminum (Al)-nickel (Ni) intermetallic compound improves the bonding strength during brazing without lowering the melting temperature of the product.
  • the nickel (Ni) content is less than 0.2% by weight, the effect of improving the high-temperature strength of the aluminum alloy is low, When the content of nickel (Ni) exceeds 0.6% by weight, the fluidity of the aluminum alloy is deteriorated, and cracks may occur during solidification after the die casting process.
  • the nickel (Ni) content is limited to 0.2 to 0.4% by weight.
  • the aluminum alloy used in the manufacturing method of the present invention may further contain 0.05-0.1% by weight of bismuth (Bi).
  • the surface tension of the aluminum alloy containing 0.05 to 0.1% by weight of bismuth (Bi) is reduced, the fluidity of the filler material is improved during brazing, and the brazing properties can be improved.
  • the content of bismuth (Bi) is less than 0.05% by weight, there is a problem that the effect of improving the wettability of the filler material is lowered.
  • the content of bismuth (Bi) exceeds 0.1% by weight, the eutectic point of the aluminum alloy becomes low, and local melting occurs during brazing, resulting in a decrease in brazing joint strength. be. Therefore, in the present invention, when bismuth (Bi) is additionally contained, the content of bismuth (Bi) is limited to 0.05 to 0.1% by weight.
  • the inevitable impurities contained in the aluminum alloy may include at least one of magnesium (Mg), copper (Cu), and zinc (Zn). When magnesium (Mg), copper (Cu), and zinc (Zn) are included as the inevitable impurities, the content of each is less than 0.05% by weight with respect to the weight of the entire aluminum alloy. be.
  • the manufacturing method according to the embodiment of the present invention it is possible to manufacture a part with a complicated structure without generating air bubbles by a die casting method using a reactive gas. Parts can be manufactured and brazed, and products with complex internal shapes can be mass-produced quickly and accurately in a simple process.
  • the present invention has been described in detail through specific examples, the present invention is not limited to this, and the present invention is based on the technical idea of the present invention. It is clear that variations and improvements can be made by those of ordinary skill in the art. All simple variations or modifications of the present invention shall fall within the scope of the present invention, and the specific protection scope of the present invention will be made clear by the appended claims.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

The present invention relates to a method for manufacturing a product having a complex internal shape, the method including: a component manufacturing step for manufacturing a pair of components by injecting molten metal prepared using an aluminum alloy into a die casting mold; and a component joining step for brazing the pair of components into a brazed joint. In this manufacturing method, a simple step, in which a die casting method that uses reactive gas is used to manufacture a new aluminum alloy having a high eutectic point into components in which no bubbling occurs, after which the components are brazed into a brazed joint, makes it possible to obtain the effect of being able to quickly and accurately mass-produce a product having a complex internal shape.

Description

複雑な内部形状を有する製品の製造方法Manufacturing method for products with complex internal shapes
本発明は、複雑な内部形状を有する製品の製造方法に関するものであり、より詳細には、複雑な内部形状を有する部品をダイカストで製造した後、ろう付け接合して製造する複雑な内部形状を有する製品の製造方法に関するものである。 TECHNICAL FIELD The present invention relates to a method for manufacturing a product having a complicated internal shape, and more particularly, to a method for manufacturing a product having a complicated internal shape by die-casting a component having a complicated internal shape and then brazing it. It relates to a method of manufacturing a product having
従来は、ヒートシンク(heatsink)またはマニホールド(manifold)などのように、内部の形状が非常に複雑な製品は、アルミニウム合金の鍛造材または圧延材を利用して、複雑な部分の内部形状を機械加工した後、ろう付け、溶接、または機械的締結方法で締結して製造している。
 このように、複雑な内部構造を機械加工を通じて具現しなければならない為、製造工程が複雑であり大量生産が難しい問題がある。
 米国登録特許第5725044号及び韓国公開特許第2002−0044007号では、崩壊性中子を用いたダイカスト製造方法が開示されている。
このような方法を介して、複雑な形状を有する製品を製作することはできますが、内部は複雑な構造に適用が難しい問題があり、形状が精密な場合には鋳造工程で中子が破損するなどの問題で技術的精度の限界がある。
 そこで、生産性に優れたダイカスト工法で、複雑な形状を有する製品を一対に分割製造した後、ろう付け接合して内部に複雑な形状を有する製品を製造する方法を検討することができる。
 しかし、ダイカスト工法で主に使用されるADC12のアルミニウム合金、ADC10アルミニウム合金などの金属は、シリコン(Si)の含有量が高く、流動性が優れているが、共晶点が低く、ろう付け接合時に母材が溶融してろう付け接合を適正にすることができない問題がある。
 また、ダイカスト工法は重力鋳造や溶湯鍛造とは異なり、高速で溶湯をダイカスト金型内に注入する方法で溶湯注入時に空気などが混入して400℃程度に加熱すると混入された空気の熱膨張により、表面に気泡が発生しますので、ろう付け接合が難しい問題がある。
Conventionally, products with very complicated internal shapes, such as heatsinks or manifolds, use aluminum alloy forgings or rolled materials to machine the internal shapes of the complicated parts. After that, it is manufactured by brazing, welding, or mechanical fastening.
Since the complicated internal structure must be realized through machining, the manufacturing process is complicated and mass production is difficult.
US Patent No. 5,725,044 and Korean Patent Publication No. 2002-0044007 disclose a die casting method using a collapsible core.
Through this method, it is possible to manufacture products with complex shapes, but there is a problem that it is difficult to apply to complex internal structures, and if the shape is precise, the core will be damaged during the casting process. There is a limit to technical precision due to problems such as
Therefore, it is possible to consider a method in which a product having a complicated shape is split into a pair by the die casting method, which has excellent productivity, and then joined by brazing to manufacture a product having a complicated shape inside.
However, metals such as ADC12 aluminum alloy and ADC10 aluminum alloy, which are mainly used in the die casting method, have a high silicon (Si) content and excellent fluidity, but have a low eutectic point and are not suitable for brazing. There is sometimes a problem that the base material melts and the braze joint cannot be properly obtained.
In addition, unlike gravity casting and molten metal forging, the die casting method is a method in which molten metal is injected into the die casting mold at high speed. , Air bubbles are generated on the surface, so there is a problem that brazing is difficult.
米国特許第5725044号(1998.03.10)U.S. Pat. No. 5,725,044 (1998.03.10) 韓国公開特許第2002−0044007号(2002.06.14)Korean Patent Publication No. 2002-0044007 (2002.06.14)
 本発明は、前記のような問題点を解決するために創案されたものであり、新たなアルミニウム合金を用いてダイカスト工法で部品を製作した後、ろう付け接合して内部に複雑な形状が具現された製品を製造することができる製造方法を提供することにその目的がある。 The present invention was invented to solve the above-mentioned problems, and after manufacturing parts by die casting using a new aluminum alloy, they are joined by brazing to realize a complicated shape inside. The aim is to provide a manufacturing method capable of producing manufactured products.
 前記のような目的を達成するために、本発明の好ましい実施形態による、複雑な内部形状を有する製品の製造方法は、ダイカスト金型にアルミ二ウム合金で用意された溶湯を注入して一対の部品を製造する部品の製造工程と一対の部品をろう付け接合する部品接合工程を含めて行うことができる。
 より具体的には、前記の部品の製造工程は、前記ダイカスト金型に前記溶湯と発熱反応を起こす反応性ガスを注入するガス注入工程、前記ダイカスト金型に前記反応性ガスが注入されるとすぐ前記溶湯を注入する溶湯注入工程を含めて行うことができる。
 ここで、前記部品の製造工程は、前記ダイカスト金型に注入された前記反応性ガスと前記溶湯の発熱反応で発生した反応熱により前記溶湯の流動性を確保することができる。
 また、前記部品の製造工程は前記反応性ガスとして酸素を使用して、前記溶湯が前記酸素と反応して固化され、前記ダイカスト金型の内部の真空度が高くなり、前記溶湯が充填されて気泡が発生しないように製造することができる。
 そして、前記部品接合工程は、540℃~580℃で溶融される溶加材を利用して、一対の部品をろう付け接合するように行うことができる。
 前記アルミニウム合金は、共晶点が600℃以上になるように行うことができる。
 より具体的には、前記アルミニウム合金は、鉄(Fe)1.2~2.2重量%、ケイ素(Si)0.8~2.8重量%、チタン(Ti)、0.2~0.6重量%、残部アルミニウム(Al)と不可避不純物を含むように行うことができる。
 そして、前記アルミニウム合金は、ニッケル(Ni)、0.2~0.4重量%をさらに含むように行うことができる。
 または、前記アルミニウム合金は、ビスマス(Bi)0.05~0.1重量%含むように行われることもある。
 そして、前記不可避不純物は、マグネシウム(Mg)、銅(Cu)、亜鉛(Zn)のうちの少なくともいずれか一つを含み、それぞれの含有量は、アルミニウム合金全体の重量に対して、0.05重量%未満で含有されるようになる。
In order to achieve the object as described above, a method for manufacturing a product having a complicated internal shape according to a preferred embodiment of the present invention is provided by injecting molten metal prepared from an aluminum alloy into a die casting mold to form a pair of molds. It can be performed including a part manufacturing process for manufacturing a part and a part joining process for brazing a pair of parts.
More specifically, the manufacturing process of the component includes a gas injection step of injecting a reactive gas that causes an exothermic reaction with the molten metal into the die casting mold, and when the reactive gas is injected into the die casting mold, It can be carried out including a molten metal pouring step of immediately pouring the molten metal.
Here, in the manufacturing process of the component, the fluidity of the molten metal can be ensured by the reaction heat generated by the exothermic reaction between the reactive gas injected into the die casting mold and the molten metal.
In addition, in the manufacturing process of the component, oxygen is used as the reactive gas, and the molten metal reacts with the oxygen to be solidified. It can be manufactured so as not to generate air bubbles.
In addition, the component bonding process may be performed by brazing a pair of components using a filler material that melts at 540°C to 580°C.
The aluminum alloy can be prepared so that the eutectic point is 600° C. or higher.
More specifically, the aluminum alloy contains 1.2 to 2.2% by weight of iron (Fe), 0.8 to 2.8% by weight of silicon (Si), and 0.2 to 0.2% by weight of titanium (Ti). 6% by weight, the balance being aluminum (Al) and unavoidable impurities.
The aluminum alloy may further contain nickel (Ni) in an amount of 0.2 to 0.4% by weight.
Alternatively, the aluminum alloy may contain 0.05 to 0.1% by weight of bismuth (Bi).
The inevitable impurities include at least one of magnesium (Mg), copper (Cu), and zinc (Zn), and the content of each is 0.05 with respect to the weight of the entire aluminum alloy. less than % by weight.
 本発明による複雑な内部形状を有する製品の製造方法によると、共晶点が高い新しいアルミニウム合金を反応性ガスを用いたダイカスト工法で気泡が発生していない部品に製造した後、ろう付け接合することができ、簡単な工程で、複雑な内部形状を有する製品を迅速かつ正確に大量に生産することができるという効果を得ることができる。 According to the method of manufacturing a product having a complicated internal shape according to the present invention, a new aluminum alloy with a high eutectic point is manufactured by a die-casting method using a reactive gas into a part without bubbles, and then brazed. It is possible to obtain the effect of being able to rapidly and accurately mass-produce products having complicated internal shapes through simple processes.
 図1は、本発明の実施例による、複雑な内部形状を有する製品の製造方法を概略的に示すフローチャート
 図2は、本発明の実施例による、複雑な内部形状を有する製品の製造方法で部品の製造手順を概略的に示すフローチャート
 図3は、本発明の実施例による、複雑な内部形状を有する製品の製造方法に使用されるアルミニウム合金の熱分析グラフ
 図4は、本発明の実施例による、複雑な内部形状を有する製品の製造方法によって製造された製品の断面である。
FIG. 1 is a flow chart schematically illustrating a method for manufacturing a product having a complex internal shape according to an embodiment of the invention; FIG. FIG. 3 is a thermal analysis graph of an aluminum alloy used in a method for manufacturing a product having a complex internal shape according to an embodiment of the present invention; FIG. 4 is a thermal analysis graph according to an embodiment of the present invention; , a cross-section of a product manufactured by a method for manufacturing a product with a complex internal shape;
 以下、添付された図面を参照して、本発明の好ましい実施例を詳細に説明することにする。
 本発明は、様々な変更を加えることができ、いくつかの実施例を有することができるが、特定の実施例を図面に例示して詳細な説明に具体的に説明する。これは、本発明を特定の実施形態について限定しようとする意図はなく、本発明の思想及び技術範囲に含まれるすべての変更、均等物から代替物を含むものと解釈されるべきである。
 本出願で使用した用語は、単に特定の実施例を説明するために使用されたもので、本発明を限定する意図ではない。単数の表現は、文脈上明らかに別の方法で意味ない限り、複数の表現を含むことができる。
 別の方法で定義されない限り、技術的または科学的な用語を含めてここで使用されるすべての用語は、本発明が属する技術分野で通常の知識を有する者によって一般的に理解されるのと同じ意味を持つことができる。一般的に使用される事前に定義されているような用語は、関連技術の文脈上持つ意味と一致する意味を有するものと解釈されることができ、本出願で明白に定義しない限り、理想的または過度に形式的な意味として解釈されないことがあります。
 以下では、添付された図面を参照して、本発明の具体的な実施例について説明する。
 図1は、本発明の実施例による、複雑な内部形状を有する製品の製造方法を概略的に示すフローチャートであり、図2は、前記の製造方法で部品の製造手順を概略的に示すフローチャートである。
 そして、図3は、前記の製造方法に使用されるアルミニウム合金の熱分析グラフであり、図4は、前記の製造方法により製造された製品の断面である。
 図1~図4を参照すると、本発明の実施例による、複雑な内部形状を有する製品の製造方法は、ダイカスト金型にアルミ二ウム合金で用意された溶湯を注入して一対の部品を製造する部品の製造工程(S110)と、一対の部品をろう付け接合する部品接合工程(S120)を含んでいる。
 ここで、部品製造工程(S110)で製造された一対の部品から複雑な形成が具現された部分が内部に位置するように一対の部品を当接した後、触れ合った部分に溶加材を利用して、ろう付け接合して、複雑な内部形状を有する製品を製造することができる。
 前記部品の製造工程(S110)は、複雑な形状を容易に製作することができるようダイカスト工法を用いた。そして、溶湯の流動性を確保しながら、気泡が発生しないように反応性ガスを用いた。すなわち、前記ダイカスト金型の内部に溶湯を入れながら同時にまたは少なくとも事前に反応性ガスを注入して反応性気体の少なくとも一部が溶湯と反応するようにした。
 より具体的には、前記の部品の製造工程(S110)は、前記ダイカスト金型に前記溶湯と発熱反応を起こす反応性ガスを注入するガス注入工程(S111)と、前記ダイカスト金型に前記反応性ガスが注入されるとすぐ、前記溶湯を注入する溶湯注入工程(S112)を含めて行うことができる。
 そして、前記部品の製造工程(S110)は、前記ダイカスト金型に反応性ガスを注入する前に、前記ダイカスト金型の内部を真空状態にする工程をさらに含めて行うことができる。
 つまり、真空ポンプのような真空手段を前記ダイカスト金型に接続して、内部に形成されている空間に存在する空気を排気して前記ダイカスト金型の内部を真空状態にすることができる。
 この時、前記ダイカスト金型の内部を真空状態にするとし前記ガス注入工程(S111)を一緒に進行することができる。
 例えば、前記ダイカスト金型の一側から真空ポンプによって空気が排出され、他側での反応性ガスが注入されるように行うことができる。したがって、減圧過程とガス注入工程は、同時に行うことができる。
 そして、前記溶湯注入工程(S112)は、前記ダイカスト金型に前記反応性ガスが注入されるとすぐ前記溶湯を注入するように行われます。
 この時、前記溶湯を強制的に注入する装置を介して、前記ダイカスト金型に前記溶湯を迅速に注入するように行うことができる。すなわち、前記溶湯を前記ダイカスト金型に注入すると、凝固が開始されるので、別の強制注入装置を介して溶湯をより迅速に注入するように行うことができる。
 そして、前記ガス注入工程(S111)で使用される反応性ガスとして酸素(O2)を使用することができる。
 前記ダイカスト金型に酸素を注入した後、前記溶湯を注入すると、アルミニウム(Al)と酸素(O2)が反応して酸化アルミニウム(Al2O3)を形成することになる。
 このように、アルミニウム(Al)と酸素(O2)の反応は、発熱反応で反応熱を発生させ、この時発生した反応熱は、注入された溶湯の熱源として作用して溶湯が凝固されていることを遅延させて溶湯の流動性を確保することができている。
 また、前記溶湯が前記酸素と反応して固化され、前記ダイカスト金型の内部の真空度が高くなり、前記溶湯が充填されて気泡が発生しなくなる。
 すなわち、前記溶湯のアルミニウム(Al)が酸素(O2)と反応して酸化アルミニウム(Al2O3)で固化され、酸素が存在していた空間は、瞬間的に超真空状態にされ、溶湯が急速に充填されるため、組織内に気泡が発生することを遮断することができる。
 もちろん、前記の反応性ガスが酸素に限定されるものではなく、アルミニウムと発熱反応しながら固化されれば、いかなる気体も適用することができる。
 本発明の製造方法で使用される前記溶湯は、共晶点が600℃以上になるアルミニウム合金が適用される。
 つまり、ろう付け接合時に使われている溶加材は接合強度と化学的特性に優れする540℃~580℃で溶融される溶加材を使用する。
 したがって、本発明では、前記溶加材を溶融させて母材を接合するろう付け接合時に母材である前記部品が溶融しないように共晶点が600℃以上であるアルミニウム合金を使用した。
 従来、ダイカスト工法で主に使用されるADC12、ADC10アルミニウム合金は、シリコン(Si)の含有量が高く、流動性が優れているが、共晶点が低く、ろう付け接合時に母材が溶融してろう付け接合を適用することができない問題がある。
 また、ろう付け接合が可能なA1100、A3003、A6063などのアルミニウム合金は、溶湯の流動性と金型との焼付きなどの問題でダイカスト工程が難しい問題がある。
 そこで、本発明では、ダイカスト工程とろう接合がすべて可能な新しいアルミニウム合金を開発した。
 より具体的には、前記アルミニウム合金は、鉄(Fe)1.2~2.2重量%、ケイ素(Si)0.8~2.8重量%、チタン(Ti)、0.2~0.6重量%、残部アルミニウム(Al)と不可避不純物を含んでなる。
 鉄(Fe)は、その含有量を1.2~2.2重量%に限定する。
 ここで、鉄(Fe)の含有量が1.2重量%未満になると、高速および高圧で金型内に溶融したアルミニウム合金を注入するダイカスト工程で金型の表面に製品の焼付きが発生する問題がある。
 そして、鉄(Fe)の含有量が1.2重量%以上になると、ダイカストのように冷却速度が速い工程では、鉄(Fe)−アルミニウム(Al)−シリコン(Si)系の非常に微細な金属間化合物が生成された後、工程であるろう付け接合が実施される温度範囲(540~580℃)で共晶点を低下させず、高温強度を強化させる役割をする。
 そして、鉄(Fe)の含有量が2.2重量%を超えると、合金が非常に脆弱になり、ダイカスト工程で製作した部品に亀裂が発生する問題がある。
 シリコン(Si)は、その含有量を0.8~2.8重量%に限定する。
 シリコン(Si)は、ろう付け接合時に溶加材の拡散力を向上させ、鉄(Fe)と一緒に製品の高温強度を向上させる微細な金属間化合物を形成してろう付け温度範囲でも製品の変形を防止する。
 ここで、シリコン(Si)の含有量が0.6重量%未満になると、前記した効果が低くなり、溶湯の流動性が低下してダイカスト工程で製品の成形が難しくなるという問題がある。
 また、シリコン(Si)の含有量が2.8重量%を超えると、540℃で溶融されるAl−Si組織が生成され、ろう付け接合部温度範囲(540~580℃)で局所的な溶融が発生するようになってろう付け接合強度が低下する問題がある。
 チタン(Ti)は、その含有量を0.2~0.6重量%に限定する。
 チタン(Ti)を0.2~0.6重量%含有する共晶点を低下させずに、アルミニウム合金の組織とアルミニウム(Al)−鉄(Fe)系金属間化合物の生成形状を微細化させて凝固中に発生する亀裂を防止する効果を得ることができる。
 また、チタン(Ti)を添加すると、ろう付け接合時に溶加材の拡散性が向上され、接合力を向上させることができる。
 ここで、チタン(Ti)の含有量が0.2重量%未満の場合には、アルミニウム合金の組織の微細化効果は得られるが、鉄(Fe)−アルミニウム(Al)系金属間化合物の生成形態の改良効果が低い問題がある。
 また、チタン(Ti)の含有量が0.6重量%を超えると、粗大なアルミニウム(Al)−チタン(Ti)金属間化合物が生成され、溶湯の流動性が低下して凝固過程で亀裂が発生する問題がある。
 そこで、本発明では、鉄(Fe)1.2~2.2重量%、ケイ素(Si)0.8~2.8重量%、チタン(Ti)、0.2~0.6重量%、残部アルミニウム(Al)と不可避不純物を含んでなるアルミニウム合金を溶湯に使用した。
 一例として、鉄(Fe)1.8重量%、ケイ素(Si)2.2重量%、チタン(Ti)0.5重量%、残部アルミニウム(Al)と不可避不純物を含んでいるアルミニウム合金に製作した後、熱分析を実行して図3に示した。
 ここで使用された熱分析方法は、示差走査熱量分析(Differential ScanningCalorimetry;DSC)で試料と基準物質の温度を変化させながら、その試料と基準物質のエネルギー(energy)の入力の差を温度の関数として測定する方法である。
 図3を参考にすれば、熱分析の結果として温度上昇曲線に変化が615℃で最初に起動され、そして620℃、642℃、649℃での3つのピーク(peak)点が表示されていることを知ることができる。
 まず、615℃での変化が優先的に発生しやすいアルミニウム(Al)−シリコン(Si)系金属間化合物が溶融が始まることを示している。
 また、642℃と649℃に表示されるピーク点は、それぞれアルミニウム(Al)−鉄(Fe)系とアルミニウム(Al)−チタン(Ti)系金属間化合物の融解潜熱によって示される変曲点である。
 また、653℃で完全に液状に相変化を知ることができる。
 すなわち、前記のアルミニウム合金は、615℃まで共晶(eutectic)もしくは溶融されないため、540から580℃の温度範囲でろう付け接合が可能であることをよく示している。
 これらの、前記アルミニウム合金を溶湯にしてダイカスト金型の一対の部品を製造した後、ろう付け接合に一対の部品を接合して製品を製造する。この製造方法で製造された製品の断面を図4に示した。
 図4に示された製品は、溶加材を560℃で溶融し、一対の部品をろう付け接合した。
 図4に示すように、溶加材が溶融され、上部部品(110)と下部部品(120)との間の隙間に毛細管現象により浸透して凝固し接合組織(130)を示している。
 上部部品(110)と下部部品(120)は、気泡が形成されておらず、接合部で局部的な溶融も発生せず、健全な接合組織(130)を形成していることを確認することができる。
 本発明の製造方法で使用されるアルミニウム合金は、ニッケル(Ni)、0.2~0.4重量%をさらに含んでなることができる。
 ニッケル(Ni)を0.2~0.4重量%含むと、アルミニウム(Al)−ニッケル(Ni)の微細な金属間化合物が生成され、高温での強度をより向上させることができる。また、アルミニウム(Al)−ニッケル(Ni)の金属間化合物は、製品の溶融温度を低下させずに、ろう付け接合時の結合力を向上させる。
 ここで、ニッケル(Ni)の含有量が0.2重量%未満の場合には、アルミニウム合金の高温強度向上効果が低く、
 そして、ニッケル(Ni)の含有量が0.6重量%を超えると、アルミニウム合金の流動性が低下してダイカスト工程の後、凝固時に亀裂が発生する問題がある。
 したがって、本発明では、ニッケル(Ni)を追加で含有する場合には、ニッケル(Ni)を0.2~0.4重量%含有するように限定している。
 さらに、本発明の製造方法で使用されるアルミニウム合金は、ビスマス(Bi)0.05~0.1重量%をさらに含むことができる。
 ビスマス(Bi)を0.05~0.1重量%含有するアルミニウム合金の表面張力を減少させ、ろう付け接合時に溶加材の流動性が向上し、ろう付け接合特性を向上させることができる。
 ここで、ビスマス(Bi)の含有量が0.05重量%未満の場合には、溶加材の濡れ性改良効果が低くなる問題がある。
 また、ビスマス(Bi)の含有量が0.1重量%を超えると、アルミニウム合金の共晶点が低くなり、ろう付け接合時に局部的な溶融が発生してろう付け接合強度が低下する問題がある。
 したがって、本発明では、ビスマス(Bi)を追加で含有する場合には、ビスマス(Bi)を0.05~0.1重量%含有するように限定している。
 そして、前記アルミニウム合金に含まれる前記不可避不純物は、マグネシウム(Mg)、銅(Cu)、亜鉛(Zn)のうちの少なくともいずれか一つを含むように行うことができる。
 前記不可避不純物としてマグネシウム(Mg)、銅(Cu)、亜鉛(Zn)が含まれている場合には、それぞれの含有量は、アルミニウム合金全体の重量に対して0.05重量%未満で含有される。
 すなわち、銅(Cu)、亜鉛(Zn)の場合、それぞれのその含有量が0.05重量%を超えて含有されると、共晶点が低くなりろう付け接合部温度で局部的に溶融されている部分が発生している問題がある。
 そして、マグネシウム(Mg)は、その含有量が0.05重量%を超えて含有されると、高温酸化が激しく発生してろう付け接合時に溶加材の結合強度を著しく低下させる問題がある。
 したがって本発明では、不可避不純物としてマグネシウム(Mg)、銅(Cu)、亜鉛(Zn)のうちの少なくともいずれか一つを含む場合にはそれぞれの含有量をアルミニウム合金全体の重量に対して、0.05重量%未満で含有するように限定している。
 このように、本発明の実施例による製造方法によると、反応性ガスを用いたダイカスト工法で気泡が発生しないように構造が複雑な部品を製造することができ、共晶点が高い新しいアルミニウム合金部品を製造してろう付け接合することができ、簡単な工程で、複雑な内部形状を有する製品を迅速かつ正確に大量に生産することができる。
 以上、本発明を具体的な実施例を通じて詳細に説明したが、これは本発明を具体的に説明するためのもので、本発明はこれに限定されず本発明は、本発明の技術的思想内で当該分野の通常の知識を有する者によってその変形や改良が可能であることは明らかである。
 本発明の単純な変形ないし変更はすべて、本発明の範囲に属するものと、本発明の具体的な保護範囲は添付された特許請求の範囲によって明確になるだろう。
Preferred embodiments of the present invention will now be described in detail with reference to the accompanying drawings.
Although the present invention is susceptible to various modifications and has several embodiments, specific embodiments will be illustrated in the drawings and will be described in detail in the detailed description. This is not intended to limit the invention to any particular embodiment, but should be construed to include all modifications, equivalents and alternatives falling within the spirit and scope of the invention.
The terminology used in this application is merely used to describe particular embodiments and is not intended to limit the invention. Singular expressions can include plural expressions unless the context clearly dictates otherwise.
Unless defined otherwise, all terms, including technical or scientific terms, used herein are commonly understood by one of ordinary skill in the art to which this invention belongs. can have the same meaning. Commonly used terms such as pre-defined may be construed to have a meaning consistent with the meaning they have in the context of the relevant art, and unless expressly defined in this application, ideally or may not be interpreted as an overly formal meaning.
Specific embodiments of the present invention will now be described with reference to the accompanying drawings.
FIG. 1 is a flow chart schematically showing a method of manufacturing a product having a complex internal shape according to an embodiment of the present invention, and FIG. 2 is a flow chart schematically showing the steps of manufacturing a part by the manufacturing method. be.
FIG. 3 is a thermal analysis graph of the aluminum alloy used in the above manufacturing method, and FIG. 4 is a cross section of the product manufactured by the above manufacturing method.
Referring to FIGS. 1 to 4, a method for manufacturing a product having a complicated internal shape according to an embodiment of the present invention is to manufacture a pair of parts by injecting molten metal prepared from an aluminum alloy into a die casting mold. It includes a manufacturing process (S110) for parts to be joined together and a part joining process (S120) for joining a pair of parts by brazing.
Here, a pair of parts manufactured in the parts manufacturing process (S110) are brought into contact with each other so that a part having a complicated shape is positioned inside, and then a filler material is used for the contacting parts. and braze joints to produce products with complex internal geometries.
In the part manufacturing process (S110), a die casting method is used so that complicated shapes can be easily manufactured. Then, a reactive gas was used so as not to generate bubbles while ensuring fluidity of the molten metal. That is, at least a part of the reactive gas reacts with the molten metal by injecting the reactive gas at the same time or at least in advance while the molten metal is being poured into the die casting mold.
More specifically, the component manufacturing step (S110) includes a gas injection step (S111) of injecting a reactive gas that causes an exothermic reaction with the molten metal into the die casting mold, and a gas injection step (S111) of injecting the reactive gas into the die casting mold. A molten metal injection step (S112) of injecting the molten metal immediately after the gas is injected can be included.
The part manufacturing step (S110) may further include a step of evacuating the inside of the die-casting mold before injecting the reactive gas into the die-casting mold.
In other words, a vacuum means such as a vacuum pump can be connected to the die casting mold to evacuate the air present in the space formed inside the die casting mold so that the inside of the die casting mold can be brought into a vacuum state.
At this time, the gas injection process (S111) can be performed together with the inside of the die casting mold being evacuated.
For example, air can be discharged from one side of the die casting mold by a vacuum pump, and reactive gas can be injected from the other side. Therefore, the decompression process and the gas injection process can be performed simultaneously.
The molten metal injection step (S112) is performed so as to inject the molten metal as soon as the reactive gas is injected into the die casting mold.
At this time, the molten metal can be rapidly injected into the die casting mold through a device for forcibly injecting the molten metal. That is, when the molten metal is poured into the die casting mold, solidification is initiated, and the molten metal can be injected more quickly via a separate forced injection device.
Oxygen (O2) can be used as a reactive gas used in the gas injection step (S111).
When the molten metal is injected after injecting oxygen into the die casting mold, aluminum (Al) and oxygen (O2) react to form aluminum oxide (Al2O3).
In this way, the reaction between aluminum (Al) and oxygen (O2) generates reaction heat through an exothermic reaction, and the reaction heat generated at this time acts as a heat source for the injected molten metal, thereby solidifying the molten metal. By delaying this process, the fluidity of the molten metal can be ensured.
Further, the molten metal reacts with the oxygen and solidifies, the degree of vacuum inside the die casting mold increases, and the molten metal is filled to prevent the generation of air bubbles.
That is, the aluminum (Al) of the molten metal reacts with oxygen (O2) and solidifies with aluminum oxide (Al2O3), and the space where oxygen existed is instantaneously brought to an ultra-vacuum state, and the molten metal is rapidly filled. Therefore, it is possible to block the generation of air bubbles in the tissue.
Of course, the reactive gas is not limited to oxygen, and any gas can be applied as long as it solidifies while exothermically reacting with aluminum.
An aluminum alloy having a eutectic point of 600° C. or higher is applied to the molten metal used in the manufacturing method of the present invention.
That is, the filler used for brazing is a filler that is melted at 540-580° C. and has excellent bonding strength and chemical properties.
Therefore, in the present invention, an aluminum alloy having a eutectic point of 600° C. or higher is used so that the part, which is the base material, does not melt during brazing joining the base material by melting the filler material.
Conventionally, ADC12 and ADC10 aluminum alloys, which are mainly used in the die casting method, have a high silicon (Si) content and excellent fluidity, but their eutectic point is low, and the base material melts during brazing. There is a problem that the brazing joint cannot be applied.
In addition, aluminum alloys such as A1100, A3003, and A6063, which can be brazed, are difficult to die-cast due to fluidity of molten metal and seizure with a mold.
Therefore, in the present invention, a new aluminum alloy has been developed that allows both die-casting and brazing.
More specifically, the aluminum alloy contains 1.2 to 2.2% by weight of iron (Fe), 0.8 to 2.8% by weight of silicon (Si), and 0.2 to 0.2% by weight of titanium (Ti). 6% by weight, the balance being aluminum (Al) and unavoidable impurities.
The content of iron (Fe) is limited to 1.2 to 2.2% by weight.
Here, if the content of iron (Fe) is less than 1.2% by weight, the product is seized on the surface of the mold during the die casting process in which molten aluminum alloy is injected into the mold at high speed and high pressure. There's a problem.
When the content of iron (Fe) is 1.2% by weight or more, very fine particles of iron (Fe)-aluminum (Al)-silicon (Si) system are required in a process such as die-casting, which requires a high cooling rate. After the intermetallic compound is formed, it plays a role of enhancing the high-temperature strength without lowering the eutectic point in the temperature range (540-580° C.) where the brazing process is performed.
Also, if the iron (Fe) content exceeds 2.2% by weight, the alloy becomes very brittle, and there is a problem that cracks occur in the parts manufactured by the die casting process.
The content of silicon (Si) is limited to 0.8 to 2.8% by weight.
Silicon (Si) improves the diffusion of the filler during brazing and forms a fine intermetallic compound that improves the high-temperature strength of the product together with iron (Fe). Prevent deformation.
Here, if the content of silicon (Si) is less than 0.6% by weight, the aforementioned effects are reduced, and the flowability of the molten metal is lowered, which makes it difficult to mold the product in the die casting process.
In addition, when the silicon (Si) content exceeds 2.8% by weight, an Al—Si structure that melts at 540° C. is generated, and local melting occurs in the brazing joint temperature range (540 to 580° C.). There is a problem that the brazing joint strength is lowered due to the occurrence of
The content of titanium (Ti) is limited to 0.2 to 0.6% by weight.
Without lowering the eutectic point containing 0.2 to 0.6% by weight of titanium (Ti), the structure of the aluminum alloy and the formed shape of the aluminum (Al)-iron (Fe) intermetallic compound are refined. It is possible to obtain the effect of preventing cracks that occur during solidification.
Also, when titanium (Ti) is added, the diffusibility of the filler material is improved during brazing, and the joining strength can be improved.
Here, when the content of titanium (Ti) is less than 0.2% by weight, the effect of refining the structure of the aluminum alloy can be obtained, but an iron (Fe)-aluminum (Al) intermetallic compound is produced. There is a problem that the shape improvement effect is low.
Further, when the content of titanium (Ti) exceeds 0.6% by weight, a coarse aluminum (Al)-titanium (Ti) intermetallic compound is formed, which reduces the fluidity of the molten metal and causes cracks during the solidification process. There is a problem that arises.
Therefore, in the present invention, iron (Fe) 1.2 to 2.2% by weight, silicon (Si) 0.8 to 2.8% by weight, titanium (Ti) 0.2 to 0.6% by weight, the balance An aluminum alloy containing aluminum (Al) and inevitable impurities was used as the molten metal.
As an example, an aluminum alloy containing 1.8% by weight of iron (Fe), 2.2% by weight of silicon (Si), 0.5% by weight of titanium (Ti), and the balance aluminum (Al) was manufactured. Afterwards, a thermal analysis was performed and shown in FIG.
The thermoanalytical method used here is differential scanning calorimetry (DSC) in which the difference in energy input between a sample and a reference material is measured as a function of temperature while the temperature of the sample and reference material is varied. It is a method of measuring as
Referring to FIG. 3, as a result of thermal analysis, the change in temperature rise curve is first initiated at 615° C., and three peak points at 620° C., 642° C. and 649° C. are displayed. can know.
First, it indicates that the aluminum (Al)-silicon (Si)-based intermetallic compound, which tends to preferentially change at 615° C., begins to melt.
The peak points indicated at 642° C. and 649° C. are inflection points indicated by the latent heat of fusion of the aluminum (Al)-iron (Fe) system and aluminum (Al)-titanium (Ti) system intermetallic compounds, respectively. be.
In addition, a phase change can be seen at 653° C. to a completely liquid state.
That is, the aluminum alloy is not eutectic or melted up to 615°C, which is a good indication that braze joints are possible in the temperature range of 540 to 580°C.
After manufacturing a pair of parts of a die-cast mold by using these aluminum alloys as molten metal, the pair of parts are joined by brazing to produce a product. A cross section of a product manufactured by this manufacturing method is shown in FIG.
The product shown in FIG. 4 was made by melting the filler material at 560° C. and brazing the pair of parts together.
As shown in FIG. 4, the filler material is melted and has permeated the gap between the upper part (110) and the lower part (120) by capillary action and solidified to reveal a connective tissue (130).
Ensure that the upper part (110) and the lower part (120) are free of bubbles, no localized melting at the joint, and a healthy joint structure (130). can be done.
The aluminum alloy used in the manufacturing method of the present invention may further contain nickel (Ni) at 0.2-0.4% by weight.
When nickel (Ni) is contained in an amount of 0.2 to 0.4% by weight, a fine intermetallic compound of aluminum (Al)-nickel (Ni) is generated, and strength at high temperatures can be further improved. In addition, the aluminum (Al)-nickel (Ni) intermetallic compound improves the bonding strength during brazing without lowering the melting temperature of the product.
Here, when the nickel (Ni) content is less than 0.2% by weight, the effect of improving the high-temperature strength of the aluminum alloy is low,
When the content of nickel (Ni) exceeds 0.6% by weight, the fluidity of the aluminum alloy is deteriorated, and cracks may occur during solidification after the die casting process.
Therefore, in the present invention, when nickel (Ni) is additionally contained, the nickel (Ni) content is limited to 0.2 to 0.4% by weight.
Furthermore, the aluminum alloy used in the manufacturing method of the present invention may further contain 0.05-0.1% by weight of bismuth (Bi).
The surface tension of the aluminum alloy containing 0.05 to 0.1% by weight of bismuth (Bi) is reduced, the fluidity of the filler material is improved during brazing, and the brazing properties can be improved.
Here, when the content of bismuth (Bi) is less than 0.05% by weight, there is a problem that the effect of improving the wettability of the filler material is lowered.
In addition, when the content of bismuth (Bi) exceeds 0.1% by weight, the eutectic point of the aluminum alloy becomes low, and local melting occurs during brazing, resulting in a decrease in brazing joint strength. be.
Therefore, in the present invention, when bismuth (Bi) is additionally contained, the content of bismuth (Bi) is limited to 0.05 to 0.1% by weight.
The inevitable impurities contained in the aluminum alloy may include at least one of magnesium (Mg), copper (Cu), and zinc (Zn).
When magnesium (Mg), copper (Cu), and zinc (Zn) are included as the inevitable impurities, the content of each is less than 0.05% by weight with respect to the weight of the entire aluminum alloy. be.
That is, in the case of copper (Cu) and zinc (Zn), if the content of each exceeds 0.05% by weight, the eutectic point becomes low and local melting occurs at the brazing joint temperature. That part is causing the problem.
Also, if the content of magnesium (Mg) exceeds 0.05% by weight, high-temperature oxidation occurs violently, which significantly reduces the bond strength of the filler during brazing.
Therefore, in the present invention, when at least one of magnesium (Mg), copper (Cu), and zinc (Zn) is included as inevitable impurities, the content of each is reduced to 0 with respect to the weight of the entire aluminum alloy. The content is limited to less than 0.05% by weight.
As described above, according to the manufacturing method according to the embodiment of the present invention, it is possible to manufacture a part with a complicated structure without generating air bubbles by a die casting method using a reactive gas. Parts can be manufactured and brazed, and products with complex internal shapes can be mass-produced quickly and accurately in a simple process.
Although the present invention has been described in detail through specific examples, the present invention is not limited to this, and the present invention is based on the technical idea of the present invention. It is clear that variations and improvements can be made by those of ordinary skill in the art.
All simple variations or modifications of the present invention shall fall within the scope of the present invention, and the specific protection scope of the present invention will be made clear by the appended claims.
 110:上部部品
 120:下部部品
 130:接合組織
110: Upper part 120: Lower part 130: Connective tissue

Claims (10)

  1. ダイカスト金型にアルミニウム合金の溶湯を注入して一対の部品を
    製造する部品の製造工程と
    一対の部品をろう付け接合する部品接合工程を
    含む複雑な内部形状を有する製品の製造方法。
    A method of manufacturing a product having a complicated internal shape, including a part manufacturing process of injecting a molten aluminum alloy into a die-cast mold to manufacture a pair of parts and a part joining process of joining the pair of parts by brazing.
  2. 第1項において、
    前記部品の製造工程では、
    前記ダイカスト金型に前記溶湯と発熱反応を起こす反応性ガスを注入するガス注入工程と
    前記ダイカスト金型に前記反応性ガスが注入されるとすぐ前記溶湯を注入する溶湯注入工程を
    含むことを特徴とする複雑な内部形状を有する製品の製造方法。
    In paragraph 1,
    In the manufacturing process of the parts,
    The method includes a gas injection step of injecting a reactive gas that causes an exothermic reaction with the molten metal into the die casting mold, and a molten metal injection step of injecting the molten metal into the die casting mold as soon as the reactive gas is injected into the die casting mold. A method of manufacturing a product having a complicated internal shape.
  3. 第2項において、
    前記部品の製造工程では、
    前記ダイカスト金型に注入された前記反応性ガスと前記溶湯の発熱反応で発生した反応熱により前記溶湯の流動性を確保することができることを特徴とする複雑な内部形状を有する製品の製造方法。
    In paragraph 2,
    In the manufacturing process of the parts,
    A method for manufacturing a product having a complicated internal shape, characterized in that fluidity of the molten metal can be ensured by reaction heat generated by an exothermic reaction between the reactive gas injected into the die casting mold and the molten metal.
  4. 第2項において、
    前記部品の製造工程では、
    前記反応性ガスとして酸素を使用して、前記溶湯が前記酸素と反応して固化され、前記ダイカスト金型の内部の真空度が高くなり、前記溶湯が充填されて気泡が発生しないことを特徴とする複雑な内部形状を有する製品の製造方法。
    In paragraph 2,
    In the manufacturing process of the parts,
    Oxygen is used as the reactive gas, the molten metal reacts with the oxygen and is solidified, the vacuum degree inside the die casting mold increases, and the molten metal is filled without generating bubbles. A method of manufacturing a product with a complex internal shape that
  5. 第1項において、
    前記部品接合工程は、
    540℃~580℃で溶融される溶加材を利用して、一対の部品をろう付け接合することを特徴とする複雑な内部形状を有する製品の製造方法。
    In paragraph 1,
    The component bonding step includes:
    A method of manufacturing a product having a complicated internal shape, characterized by brazing a pair of parts using a filler material that melts at 540°C to 580°C.
  6. 第1項において、
    前記アルミニウム合金は、
    共晶点が600℃以上になるように行われることを特徴とする複雑な内部形状を有する製品の製造方法。
    In paragraph 1,
    The aluminum alloy is
    A method of manufacturing a product having a complicated internal shape, wherein the eutectic point is 600° C. or higher.
  7. 第1項において、
    前記アルミニウム合金は、
    鉄(Fe)1.2~2.2重量%、ケイ素(Si)0.8~2.8重量%、チタン(Ti)0.2~0.6重量%、残部アルミニウム(Al)と不可避不純物を含んでいることを特徴とする複雑な内部形状を有する製品の製造方法。
    In paragraph 1,
    The aluminum alloy is
    Iron (Fe) 1.2 to 2.2 wt%, silicon (Si) 0.8 to 2.8 wt%, titanium (Ti) 0.2 to 0.6 wt%, balance aluminum (Al) and unavoidable impurities A method of manufacturing a product having a complex internal shape, comprising:
  8. 第7項において、
    前記アルミニウム合金は、
    ニッケル(Ni)、0.2~0.4重量%をさらに含むことを特徴とする複雑な内部形状を有する製品の製造方法。
    In Section 7,
    The aluminum alloy is
    A method for producing a product having a complicated internal shape, further comprising nickel (Ni) in an amount of 0.2 to 0.4% by weight.
  9. 第7項において、
    前記アルミニウム合金は、
    ビスマス(Bi)0.05~0.1重量%をさらに含むことを特徴とする複雑な内部形状を有する製品の製造方法。
    In Section 7,
    The aluminum alloy is
    A method for producing a product having a complicated internal shape, further comprising 0.05 to 0.1% by weight of bismuth (Bi).
  10. 第7項において、
    前記不可避不純物は、
    マグネシウム(Mg)、銅(Cu)、亜鉛(Zn)のうちの少なくともいずれか一つを含み、それぞれの含有量はアルミニウム合金全体の重量に対して、0.05重量%未満で含有されていることを特徴とする複雑な内部形状を有する製品の製造方法。
    In Section 7,
    The inevitable impurities are
    At least one of magnesium (Mg), copper (Cu), and zinc (Zn) is included, and each content is less than 0.05% by weight based on the weight of the entire aluminum alloy A method of manufacturing a product having a complicated internal shape, characterized by:
PCT/JP2022/038494 2021-10-07 2022-10-06 Method for manufacturing product having complex internal shape WO2023058780A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210132947A KR102602006B1 (en) 2021-10-07 2021-10-07 Manufacturing method for products with complex internal shapes
KR10-2021-0132947 2021-10-07

Publications (1)

Publication Number Publication Date
WO2023058780A1 true WO2023058780A1 (en) 2023-04-13

Family

ID=85804407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/038494 WO2023058780A1 (en) 2021-10-07 2022-10-06 Method for manufacturing product having complex internal shape

Country Status (2)

Country Link
KR (1) KR102602006B1 (en)
WO (1) WO2023058780A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5021145B1 (en) * 1970-08-18 1975-07-21
JPH0881726A (en) * 1994-09-14 1996-03-26 Showa Denko Kk Aluminum alloy for casting
JPH0925531A (en) * 1995-07-10 1997-01-28 Keihin Sangyo Kk Cast aluminum alloy material for brazing and brazing method therefor
JPH11170089A (en) * 1997-11-12 1999-06-29 Kin Meichin Brazing filler metal green compact molding, brazing filler metal calcined compact and their production
JP2007111730A (en) * 2005-10-19 2007-05-10 Toyota Motor Corp Brazing method of aluminum die-casting article

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020044007A (en) 2000-12-05 2002-06-14 이계안 Method of making a rear cover of power steering pump using an aluminum die casting
JP2004141920A (en) * 2002-10-24 2004-05-20 Nissan Motor Co Ltd Center pillar made from aluminum-alloy die casting and its manufacturing method
FR2862894B1 (en) * 2003-11-28 2007-02-16 Pechiney Rhenalu ALLUMINIUM ALLOY BAND FOR BRAZING
KR20130137922A (en) * 2012-06-08 2013-12-18 엘지전자 주식회사 Heat exchanger and manufacturing method of the same
JP6148385B2 (en) * 2015-10-19 2017-06-14 株式会社神戸製鋼所 Aluminum structural member
KR102282585B1 (en) * 2016-04-12 2021-07-28 주식회사 에스피텍 Corrosion resistant heat exchanger using the control of alloy composition and potential
KR102210374B1 (en) * 2019-08-19 2021-02-02 한국생산기술연구원 Auxiliary device for diecasting and diecasting method using it

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5021145B1 (en) * 1970-08-18 1975-07-21
JPH0881726A (en) * 1994-09-14 1996-03-26 Showa Denko Kk Aluminum alloy for casting
JPH0925531A (en) * 1995-07-10 1997-01-28 Keihin Sangyo Kk Cast aluminum alloy material for brazing and brazing method therefor
JPH11170089A (en) * 1997-11-12 1999-06-29 Kin Meichin Brazing filler metal green compact molding, brazing filler metal calcined compact and their production
JP2007111730A (en) * 2005-10-19 2007-05-10 Toyota Motor Corp Brazing method of aluminum die-casting article

Also Published As

Publication number Publication date
KR102602006B1 (en) 2023-11-14
KR20230049893A (en) 2023-04-14

Similar Documents

Publication Publication Date Title
CN109295351B (en) Die-casting aluminum alloy and preparation method and application thereof
JP6495246B2 (en) Aluminum alloy and die casting method
CN105834609A (en) Continuous brazing composite aluminum-based brazing wire applying nanometer aluminum trioxide and preparation method of continuous brazing composite aluminum-based brazing wire applying nanometer aluminum trioxide
CN105364335A (en) Al-Ag-Cu-Mg aluminium base alloy-state brazing filler metal and preparation method thereof
US9789564B2 (en) Manufacturing method of heat exchanger, and heat exchanger manufactured by such manufacturing method
Wang’ombe et al. Effect of Iron-intermetallics on the Fluidity of Recycled Aluminium Silicon Cast Alloys
WO2023058780A1 (en) Method for manufacturing product having complex internal shape
KR101052517B1 (en) High strength aluminum alloy casting
US5787961A (en) Thixocasting process, for a thixocasting alloy material
JP2005281829A (en) Al-si based alloy and alloy member made of the alloy
CN109266886B (en) Method for refining intermetallic compound phase of manganese-iron-containing aluminum alloy
CN106756293B (en) A kind of preparation method of ferro-silicon-aluminium copper magnesium alloy
JPH06304740A (en) Cast-in method
JP3864176B1 (en) Casting apparatus, method for producing mold periphery member, and mold periphery member
JP4608622B2 (en) Mold and manufacturing method thereof
CN101829775A (en) Production method of stainless steel/copper composite material heat exchange pipe fitting
JP5472273B2 (en) Magnesium composite material and method for producing the same
JP2023086541A (en) To-be-bonded member and method for producing the same, and method for producing composite member using to-be-bonded member
WO2021117731A1 (en) Method for manufacturing enamel-coated frying pan manufactured using enamel-coating aluminum alloy and die casting method, and enamel-coated frying pan
JP3339333B2 (en) Method for forming molten metal
JP2832691B2 (en) Thixocasting method
JP2005205466A (en) Filler metal wire for brazing aluminum alloy
CN114559180B (en) Silicon carbide particle reinforced magnesium alloy brazing filler metal and preparation method and application thereof
KR102487981B1 (en) Cast iron-aluminum bimetallic members having good interfacial bonding strength and heat transfer characteristic and method of manufacturing the same
KR101904927B1 (en) Hybrid material and method of fabricating the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22878647

Country of ref document: EP

Kind code of ref document: A1