WO2023058643A1 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
WO2023058643A1
WO2023058643A1 PCT/JP2022/037093 JP2022037093W WO2023058643A1 WO 2023058643 A1 WO2023058643 A1 WO 2023058643A1 JP 2022037093 W JP2022037093 W JP 2022037093W WO 2023058643 A1 WO2023058643 A1 WO 2023058643A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
acid
group
refrigeration cycle
cycle device
Prior art date
Application number
PCT/JP2022/037093
Other languages
English (en)
French (fr)
Inventor
英二 熊倉
拓郎 山田
敦史 吉見
育弘 岩田
啓右 大塚
充司 板野
智行 後藤
立美 土屋
崇 吉村
隆 臼井
翼 仲上
剛夫 安部
ゆみ 戸田
哲志 津田
裕一 柳
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2022/003424 external-priority patent/WO2022163830A1/ja
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2023058643A1 publication Critical patent/WO2023058643A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle

Definitions

  • Patent Document 1 International Publication No. 2012/157765
  • An object of the present disclosure is to provide a refrigeration cycle apparatus using a new refrigerant containing HFO-1132(E).
  • the refrigeration cycle device includes a working fluid for a refrigerator containing a refrigerant composition containing a refrigerant and refrigerating machine oil.
  • the refrigerant is refrigerant A, which will be described later.
  • a refrigerating cycle device is the refrigerating cycle device according to the first aspect, wherein the kinematic viscosity of the refrigerating machine oil at 40° C. is 1 mm 2 /s or more and 750 mm 2 /s or less.
  • a refrigeration cycle device is the refrigeration cycle device of the first aspect or the second aspect of the first group, wherein the kinematic viscosity of the refrigerating machine oil at 100° C. is 1 mm 2 /s or more and 100 mm 2 /s or less.
  • a refrigerating cycle device is the refrigerating cycle device according to any one of the first aspect to the third aspect of the first group, wherein the refrigerating machine oil has a volume resistivity of 1.0 at 25°C. ⁇ 10 12 ⁇ cm or more.
  • a refrigerating cycle device is the refrigerating cycle device according to any one of the first aspect to the fourth aspect of the first group, wherein the refrigerating machine oil has an acid value of 0.1 mgKOH/g or less. be.
  • the refrigeration cycle device is the refrigeration cycle device of any one of the first to fifth aspects of the first group, and the ash content of the refrigerator oil is 100 ppm or less.
  • a refrigeration cycle device is the refrigeration cycle device of any one of the first to seventh aspects of the first group and includes a refrigerant circuit.
  • the refrigerant circuit is configured by connecting a compressor, a condenser, a decompression unit, and an evaporator with refrigerant pipes.
  • a working fluid for a refrigerator circulates inside the refrigerant circuit.
  • a refrigerating cycle device is the refrigerating cycle device according to any one of the first aspect to the eighth aspect of the first group, wherein the blending ratio of refrigerating machine oil in the working fluid for a refrigerating machine is It is 5 mass % or more and 60 mass % or less.
  • a refrigerating cycle device is the refrigerating cycle device according to any one of the first aspect to the ninth aspect of the first group, wherein the refrigerating machine oil comprises an acid scavenger, an extreme pressure agent, an antioxidant at least one additive selected from additives, antifoaming agents, oiliness agents, metal deactivators, antiwear agents and compatibilizers.
  • a ratio of the additive to the mass of the refrigerating machine oil containing the additive is 5% by mass or less.
  • the refrigeration cycle device includes a refrigerant circuit and a refrigerant.
  • the refrigerant circuit has a compressor, a condenser, a decompression section, and an evaporator.
  • the refrigerant is refrigerant A, which will be described later.
  • This refrigeration cycle device can perform a refrigeration cycle using refrigerant A, which will be described later, in a refrigerant circuit having a compressor, a condenser, a decompression section, and an evaporator.
  • the refrigeration cycle device is the refrigeration cycle device of the first aspect of the second group, and the refrigerant circuit further has a low-pressure receiver.
  • the low-pressure receiver is provided in the middle of the refrigerant flow path from the evaporator to the suction side of the compressor.
  • This refrigeration cycle device can perform the refrigeration cycle while accumulating excess refrigerant in the refrigerant circuit in the low-pressure receiver.
  • the refrigeration cycle device is the refrigeration cycle device of the first or second aspect of the second group, and the refrigerant circuit further has a high-pressure receiver.
  • a high-pressure receiver is provided in the middle of the refrigerant flow path from the condenser to the evaporator.
  • a refrigeration cycle device is the refrigeration cycle device according to any one of the first aspect to the third aspect of the second group, wherein the refrigerant circuit includes a first pressure reducing section and a second pressure reducing section. It also has an intermediate pressure receiver.
  • the first pressure reducing section, the second pressure reducing section, and the intermediate pressure receiver are all provided in the middle of the refrigerant flow path from the condenser to the evaporator.
  • the intermediate pressure receiver is provided between the first pressure reducing section and the second pressure reducing section in the refrigerant flow path from the condenser to the evaporator.
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus of any one of the first to fourth aspects of the second group, and further includes a control unit.
  • the refrigerant circuit further has a first pressure reducing section and a second pressure reducing section.
  • the first decompression section and the second decompression section are provided in the middle of the refrigerant flow path from the condenser to the evaporator.
  • the control unit adjusts both the degree of pressure reduction of the refrigerant passing through the first pressure reducing unit and the degree of pressure reduction of the refrigerant passing through the second pressure reducing unit.
  • the refrigerant flow from the condenser to the evaporator is controlled by controlling the degree of pressure reduction of each of the first decompression section and the second decompression section provided in the middle of the refrigerant flow path from the condenser to the evaporator. It is possible to reduce the density of the refrigerant positioned between the first pressure reducing section and the second pressure reducing section in the middle of the path. This makes it easier for the refrigerant enclosed in the refrigerant circuit to exist more in the condenser and/or the evaporator, thereby making it possible to improve the capacity.
  • the refrigerant heading from the evaporator to the compressor is heated by the refrigerant heading from the condenser to the evaporator. Therefore, it is possible to suppress liquid compression in the compressor.
  • a refrigeration cycle apparatus includes a compressor, a condenser, a decompression section, an evaporator, and an injection flow path.
  • the compressor sucks low-pressure refrigerant from a suction passage, compresses the refrigerant, and discharges high-pressure refrigerant.
  • the condenser condenses the high-pressure refrigerant discharged from the compressor.
  • the decompression unit decompresses the high-pressure refrigerant that has exited the condenser.
  • the evaporator is decompressed by the decompression unit to evaporate the refrigerant.
  • the injection channel is at least one of an intermediate injection channel and an intake injection channel.
  • the intermediate injection flow path joins a portion of the refrigerant flowing from the condenser toward the evaporator to the intermediate pressure refrigerant of the compressor.
  • the suction injection channel joins a portion of the refrigerant flowing from the condenser toward the evaporator to the low-pressure refrigerant sucked into the compressor.
  • the refrigerant is refrigerant A, which will be described later.
  • the refrigeration cycle device is the refrigeration cycle device of the first aspect of the third group, further comprising a branch flow path, an opening adjustment valve, and an injection heat exchanger.
  • the branch flow path branches off from the main refrigerant flow path that connects the condenser and the evaporator.
  • the degree-of-opening adjustment valve is provided in the branch flow path.
  • the injection heat exchanger exchanges heat between the refrigerant flowing through the main refrigerant flow path and the refrigerant flowing downstream of the opening adjustment valve of the branch flow path. Refrigerant exiting the injection heat exchanger and flowing through the branch flow path flows into the injection flow path.
  • a refrigeration cycle device is the refrigeration cycle device of the first aspect or the second aspect of the third group, wherein the refrigerant is provided in the main refrigerant flow path connecting the condenser and the evaporator. It also has a storage tank. A gaseous component of the refrigerant accumulated inside the refrigerant storage tank flows through the injection channel.
  • a refrigeration cycle device is the refrigeration cycle device according to any one of the first aspect to the third aspect of the third group, wherein the compressor has a fixed scroll and an orbiting scroll. are doing.
  • the fixed scroll has an end plate and a wrap spirally rising from the end plate.
  • the orbiting scroll forms a compression chamber by meshing with the fixed scroll. Refrigerant flowing through the injection channel joins the compression chamber.
  • the content of the present disclosure is made in view of the points described above, and an object thereof is to provide a heat source unit and a refrigeration cycle device capable of suppressing damage to a connecting pipe when refrigerant A described later is used. .
  • a heat source unit includes a compressor and a heat source side heat exchanger.
  • the heat source unit constitutes a refrigeration cycle device by being connected to the utilization unit via a connecting pipe. It has a user unit and a user side heat exchanger.
  • refrigerant A which will be described later, is used as the refrigerant.
  • the design pressure of the heat source unit is less than 1.5 times the design pressure of the connecting piping.
  • Design pressure means gauge pressure (same below).
  • this heat source unit Since the design pressure of this heat source unit is lower than 1.5 times the design pressure of the connecting pipe, it is operated in a state lower than the withstand pressure of the connecting pipe. Even if there is, it is possible to suppress damage to the connecting pipe.
  • a refrigeration cycle apparatus includes a utilization unit, a connecting pipe, and the heat source unit of the first aspect.
  • the refrigerating cycle device uses refrigerant A, which will be described later.
  • the design pressure of the heat source unit is equivalent to the design pressure in the refrigeration cycle device when refrigerant R22 or refrigerant R407C was used.
  • “Equivalent” here is preferably within a range of ⁇ 10% with respect to the design pressure in the refrigeration cycle device when refrigerant R22 or refrigerant R407C is used.
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus of the second aspect of the fourth group, and the design pressure of the heat source unit is 3.0 MPa or more and 3.7 MPa or less.
  • a refrigeration cycle apparatus includes a utilization unit, a connecting pipe, and the heat source unit of the first aspect.
  • the refrigerating cycle device uses refrigerant A, which will be described later.
  • the design pressure of the heat source unit is equivalent to the design pressure in the refrigeration cycle device when refrigerant R410A or refrigerant R32 was used.
  • “Equivalent” here is preferably within a range of ⁇ 10% with respect to the design pressure in the refrigeration cycle device when refrigerant R410A or refrigerant R32 is used.
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus of the fourth aspect of the fourth group, and the design pressure of the heat source unit is 4.0 MPa or more and 4.8 MPa or less.
  • a refrigeration cycle apparatus includes a heat source unit, a utilization unit, and a connecting pipe.
  • the heat source unit has a compressor and a heat source side heat exchanger.
  • the utilization unit has a utilization side heat exchanger.
  • the communication pipe connects the heat source unit and the utilization unit.
  • Refrigerant A which will be described later, is used in the refrigeration cycle apparatus.
  • the design pressure of the heat source unit is equivalent to the design pressure in the refrigeration cycle device when refrigerant R22 or refrigerant R407C was used.
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus of the sixth aspect of the fourth group, and the design pressure of the heat source unit is 3.0 MPa or more and 3.7 MPa or less.
  • a refrigeration cycle apparatus includes a heat source unit, a utilization unit, and a connecting pipe.
  • a heat source unit has a compressor and a heat source side heat exchanger.
  • the utilization unit has a utilization side heat exchanger.
  • the communication pipe connects the heat source unit and the utilization unit.
  • Refrigerant A which will be described later, is used in the refrigeration cycle apparatus.
  • the design pressure of the heat source unit is equivalent to the design pressure in the refrigeration cycle device when refrigerant R410A or refrigerant R32 was used.
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus of the eighth aspect of the fourth group, and the design pressure of the heat source unit is 4.0 MPa or more and 4.8 MPa or less.
  • a heat source unit includes a compressor, a heat source side heat exchanger, and a control device.
  • the heat source unit constitutes a refrigeration cycle device by being connected to the utilization unit via a connecting pipe.
  • the utilization unit has a utilization side heat exchanger.
  • refrigerant A which will be described later, is used as the refrigerant.
  • the control device is configured such that the upper limit of the control pressure of the refrigerant is set or can be set to be lower than 1.5 times the design pressure of the connecting pipe.
  • a refrigeration cycle apparatus includes a utilization unit, a connecting pipe, and a heat source unit of the tenth aspect of the fourth group.
  • Refrigerant A which will be described later, is used in the refrigeration cycle apparatus.
  • the control device is configured such that the upper limit value of the control pressure of the refrigerant is set or can be set to be equal to the upper limit value of the control pressure in the refrigeration cycle device when refrigerant R22 or refrigerant R407C is used.
  • the heat source unit The upper limit of the control pressure of the refrigerant by the control device is set or can be set to be equal to or the same as the upper limit of the control pressure of the heat source unit of the refrigeration cycle device when refrigerant R22 or refrigerant R407C is used. , it is possible to suppress damage to the connecting pipe.
  • a refrigeration cycle apparatus includes a utilization unit, a connecting pipe, and the heat source unit of the tenth aspect.
  • Refrigerant A which will be described later, is used in the refrigeration cycle apparatus.
  • the control device is configured such that the upper limit value of the control pressure of the refrigerant is set or can be set to be equal to the upper limit value of the control pressure in the refrigeration cycle device when refrigerant R410A or refrigerant R32 is used.
  • the heat source unit The upper limit of the control pressure of the refrigerant by the control device is set or can be set so that it is equal to or the same as the upper limit of the control pressure of the heat source unit of the refrigeration cycle device when refrigerant R410A or refrigerant R32 is used. , it is possible to suppress damage to the connecting pipe.
  • the refrigeration cycle apparatus according to the fourteenth aspect of the fourth group is the refrigeration cycle apparatus of the thirteenth aspect of the fourth group, and the upper limit value of the control pressure is set to 4.0 MPa or more and 4.8 MPa or less.
  • the heat source unit The upper limit of the control pressure of the refrigerant by the control device is set or can be set to be equal to or the same as the upper limit of the control pressure of the heat source unit of the refrigeration cycle device when refrigerant R22 or refrigerant R407C is used. , it is possible to suppress damage to the connecting pipe.
  • “Equivalent” here is preferably within a range of ⁇ 10% with respect to the upper limit of the control pressure in the refrigeration cycle device when refrigerant R410A or refrigerant R32 is used.
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus of the seventeenth aspect of the fourth group, and the upper limit value of the control pressure is set to 4.0 MPa or more and 4.8 MPa or less.
  • LCCP Life Cycle climate Performance
  • TEWI Total Equivalent Warning Impact
  • energy consumption indirect impact
  • direct impact is added, and the unit is kg- CO2 . That is, TEWI is obtained by adding the direct influence and the indirect influence respectively calculated by the required formula.
  • This LCCP is calculated by the following relational expression.
  • LCCP GWPRM x W + GWP x W x (1-R) + N x Q x A
  • GWPRM global warming effect associated with refrigerant production
  • W amount of refrigerant charged
  • R amount of refrigerant recovered when equipment is disposed of
  • N period of equipment usage (years)
  • Q CO2 emission intensity
  • A annual consumption power consumption.
  • the LCCP of the refrigeration cycle device will increase due to the deterioration of the cycle efficiency due to the lack of refrigerant. LCCP increases.
  • refrigerants with a lower GWP than R32 which has been widely used, tend to have a lower heat transfer capacity, and the LCCP tends to increase due to deterioration in cycle efficiency.
  • the content of the present disclosure is made in view of the above points, and a refrigeration cycle device capable of keeping LCCP low when performing a heat cycle using refrigerant A, and a method for determining the amount of refrigerant charged in the refrigeration cycle device. intended to provide
  • the refrigeration cycle apparatus includes a heat source unit, a utilization unit, and refrigerant pipes.
  • the heat source unit has a compressor and a heat source side heat exchanger.
  • the utilization unit has a utilization side heat exchanger.
  • a refrigerant pipe connects the heat source unit and the utilization unit.
  • Refrigerant A which will be described later, is sealed in a refrigerant circuit configured by connecting a compressor, a heat source side heat exchanger, and a user side heat exchanger. The amount of refrigerant charged in the refrigerant circuit satisfies the condition of 160 g or more and 560 g or less per 1 kW of refrigeration capacity of the refrigeration cycle device.
  • the refrigeration capacity of the refrigeration cycle device means the rated refrigeration capacity.
  • the internal volume of the heat source side heat exchanger (the volume of fluid that can be filled inside) is determined by the refrigerant container (low-pressure receiver, high-pressure receiver, etc., excluding the accumulator attached to the compressor) in the refrigerant circuit.
  • the capacity is preferably 0.4 L or more and 2.5 L or less when the refrigerant circuit is not provided, and the capacity is preferably 1.4 L or more and less than 5.0 L when the refrigerant circuit is provided with a refrigerant container.
  • a refrigeration cycle apparatus includes a heat source unit, a first usage unit, a second usage unit, and a refrigerant pipe.
  • the heat source unit has a compressor and a heat source side heat exchanger.
  • the first usage unit has a first usage side heat exchanger.
  • the second usage unit has a second usage side heat exchanger.
  • the refrigerant pipe connects the heat source unit, the first usage unit, and the second usage unit.
  • a refrigerant A which will be described later, is sealed in a refrigerant circuit configured by connecting a first heat exchanger and a second heat exchanger in parallel to a compressor and a heat source side heat exchanger. The amount of refrigerant charged per 1 kW of refrigerating capacity in the refrigerant circuit satisfies the condition of 190 g or more and 1660 g or less.
  • the internal volume of the heat source side heat exchanger (the volume of fluid that can be filled inside) is such that the first usage unit does not have an expansion valve on the liquid side of the first usage side heat exchanger, If the second usage unit does not have an expansion valve on the liquid side of the second usage side heat exchanger, the capacity is preferably 1.4 L or more and less than 5.0 L. For those having an expansion valve on the liquid side of the exchanger and the second utilization unit also having an expansion valve on the liquid side of the second utilization side heat exchanger, the capacity is preferably 5.0 L or more and 38 L or less. .
  • the internal volume of the heat source side heat exchanger of the heat source unit provided with only one fan (the volume of fluid that can be filled inside)
  • the air that has passed through the heat source side heat exchanger on the side in the installed state When the heat source unit has a housing in which an outlet for blowing out is formed (when the heat source unit is a trunk type, etc.), it is preferably 0.4 L or more and less than 3.5 L, and the fan
  • the internal volume of the heat source side heat exchanger of the heat source unit provided with two there is a space for blowing out the air that has passed through the heat source side heat exchanger on the side in the installed state.
  • the heat source unit When the heat source unit has a housing in which an air outlet is formed (when the heat source unit is a trunk type, etc.), it is preferably 3.5 L or more and 7.0 L or less, and the heat source side heat exchanger
  • the internal volume (volume of fluid that can be filled inside) of the heat source side heat exchanger of the heat source unit from which the air that has passed through blows upward is preferably 5.5 L or more and 38 L or less.
  • the content of the present disclosure is made in view of the above points, and an object thereof is to provide a refrigeration cycle device capable of suppressing a decrease in performance when refrigerant A described later is used.
  • the refrigeration cycle device includes a refrigerant circuit to which a compressor, a heat source side heat exchanger, a pressure reducing section, a liquid side refrigerant communication pipe, a user side heat exchanger, and a gas side refrigerant communication pipe are connected. have.
  • the refrigerating cycle device uses refrigerant A, which will be described later.
  • the pipe outer diameter of the liquid-side refrigerant communication pipe and the pipe outer diameter of the gas-side refrigerant communication pipe are D 0 /8 inch (here, "D 0 - 1/8 inch" is the refrigerant when refrigerant R32 is used. and the range of D 0 is "2 ⁇ D 0 ⁇ 4" in the liquid side refrigerant communication pipe, and the range of D 0 in the gas side refrigerant communication pipe is " 3 ⁇ D0 ⁇ 8 ".
  • the decompression unit is not particularly limited, and may be an expansion valve or a capillary tube. It should be noted that the range of D 0 is "2 ⁇ D 0 ⁇ 3" in the liquid-side refrigerant communication pipe, and the range of D 0 is "4 ⁇ D 0 ⁇ 7" in the gas-side refrigerant communication pipe. preferable.
  • the refrigerating cycle device may be the following refrigerating cycle device based on the difference in physical properties between the refrigerant of the present disclosure and the refrigerant R32.
  • the rated refrigeration capacity of the refrigeration cycle device is 6.3 kW or more and 10.0 kW or less
  • the outer diameter of the liquid-side refrigerant communication pipe is D 0 /8 inches. (where "D 0 - 1/8 inch” is the tube outer diameter of the liquid side refrigerant communication pipe when refrigerant R32 is used), and the liquid side refrigerant communication pipe has a D 0 of 3. There may be.
  • the rated refrigeration capacity of the refrigeration cycle device is 15.0 kW or more and 19.0 kW or less
  • the outer diameter of the gas side refrigerant communication pipe is D 0 /8 inches (where "D 0 -1/8 inch" is the tube outer diameter of the gas side refrigerant communication pipe when refrigerant R32 is used)
  • the gas side refrigerant communication pipe has a D 0 of 6. There may be.
  • the rated refrigeration capacity of the refrigeration cycle device is 25.0 kW or more
  • the pipe outer diameter of the gas side refrigerant communication pipe is D 0 /8 inch (here, "D 0 - 1/8 inch” is the pipe outer diameter of the gas side refrigerant communication pipe when refrigerant R32 is used)
  • the gas side refrigerant communication pipe may have a D 0 of 7 .
  • a refrigeration cycle device is the refrigeration cycle device of the first aspect of the sixth group, wherein the rated refrigerating capacity of the refrigeration cycle device is greater than 5.6 kW and less than 11.2 kW, and , the liquid-side refrigerant communication piping has a D0 of 3 (ie, the piping diameter is 3/8 inch). It is preferable that the refrigerating cycle apparatus has a rated refrigerating capacity of 6.3 kW or more and 10.0 kW or less, and that the liquid-side refrigerant communication pipe has D0 of 3 (that is, the pipe diameter is 3/8 inch).
  • the refrigeration cycle device is the refrigeration cycle device of the first aspect of the sixth group, wherein the rated refrigerating capacity of the refrigeration cycle device is greater than 22.4 kW and the gas side refrigerant communication pipe is D 0 is 7 (i.e., the pipe diameter is 7/8 inch), or the rated refrigerating capacity of the refrigeration cycle device is greater than 14.0 kW and less than 22.4 kW, and the gas side refrigerant communication pipe has D0 of 6 (i.e., pipe 6/8 inch), or the rated refrigerating capacity of the refrigeration cycle device is greater than 5.6 kW and less than 11.2 kW, and the gas side refrigerant communication pipe has D0 of 5 (that is, the pipe diameter is 5/8 inch) ), or the rated refrigerating capacity of the refrigeration cycle apparatus is less than 4.5 kW and the gas-side refrigerant communication piping has D0 of 4 (i.e., the piping diameter is 1/2 inch).
  • the rated refrigerating capacity of the refrigerating cycle device is 25.0 kW or more, and the D0 of the gas side refrigerant communication pipe is 7 (that is, the pipe diameter is 7/8 inch), or the rated refrigerating capacity of the refrigerating cycle device is 15.0 kW or more and less than 19.0 kW, and the gas side refrigerant communication pipe has a D0 of 6 (that is, the pipe diameter is 6/8 inch), or the refrigeration cycle device has a rated refrigerating capacity of 6.3 kW or more is less than 10.0 kW, and the gas-side refrigerant communication pipe has D0 of 5 (that is, the pipe diameter is 5/8 inch), or the rated refrigerating capacity of the refrigeration cycle device is less than 4.0 kW, and
  • the gas side refrigerant communication piping preferably either has a D0 of 4 (i.e., the piping diameter is 1/2 inch).
  • a refrigeration cycle device includes a refrigerant circuit to which a compressor, a heat source side heat exchanger, a pressure reducing unit, a liquid side refrigerant communication pipe, a user side heat exchanger, and a gas side refrigerant communication pipe are connected. have.
  • Refrigerant A which will be described later, is used in the cycle device.
  • the outer diameter of the liquid-side refrigerant communication pipe and the outer diameter of the gas-side refrigerant communication pipe are D 0 /8 inches, and in the liquid-side refrigerant communication pipe, the range of D 0 is "2 ⁇ D 0 ⁇ 4", and in the gas-side refrigerant communication pipe, the range of D0 is " 3 ⁇ D0 ⁇ 8 ".
  • the pipe outer diameter of the liquid-side refrigerant communication pipe is the same as the pipe outer diameter of the liquid-side refrigerant communication pipe when refrigerant R410A is used, and the pipe outer diameter of the gas-side refrigerant communication pipe is the same as that when refrigerant R410A is used. It is the same as the pipe outer diameter of the gas side refrigerant communication pipe in the case.
  • the decompression unit is not particularly limited, and may be an expansion valve or a capillary tube. It should be noted that the range of D 0 is "2 ⁇ D 0 ⁇ 3" in the liquid-side refrigerant communication pipe, and the range of D 0 is "4 ⁇ D 0 ⁇ 7" in the gas-side refrigerant communication pipe. preferable.
  • the refrigeration cycle device is the refrigeration cycle device of the fourth aspect of the sixth group, in which the liquid-side refrigerant communication pipe has D0 of 2 (that is, the pipe diameter is 1/4 inch). is.
  • the refrigeration cycle device is the refrigeration cycle device of the fourth aspect of the sixth group, wherein the refrigeration cycle device has a rated refrigerating capacity of 6.3 kW or more, and liquid side refrigerant communication
  • the piping has a D0 of 3 (that is, the piping diameter is 3/8 inch), or the rated refrigerating capacity of the refrigeration cycle device is less than 6.3 kW, and the liquid side refrigerant communication piping has a D0 of 2 ( That is, the pipe diameter is 1/4 inch).
  • the refrigeration cycle device is the refrigeration cycle device of the fourth aspect of the sixth group, wherein the refrigeration cycle device has a rated refrigerating capacity of 6.0 kW or more, and gas side refrigerant communication
  • the piping has a D0 of 4 (that is, the piping diameter is 1/2 inch), or the rated refrigerating capacity of the refrigeration cycle device is less than 6.0 kW, and the gas side refrigerant communication piping has a D0 of 3 ( That is, the pipe diameter is 3/8 inch).
  • the refrigeration cycle device is the refrigeration cycle device of the fourth aspect of the sixth group, wherein the refrigeration cycle device has a rated refrigerating capacity of 25.0 kW or more, and gas side refrigerant communication
  • the pipe has a D0 of 7 (that is, the pipe diameter is 7/8 inches), or the rated refrigerating capacity of the refrigeration cycle device is 15.0 kW or more and less than 25.0 kW, and the gas side refrigerant communication pipe has a D0 6 (that is, the pipe diameter is 6/8 inch), or the rated refrigerating capacity of the refrigeration cycle device is 6.3 kW or more and less than 15.0 kW, and the gas side refrigerant communication pipe has D0 of 5 (that is, the pipe diameter is 5/8 inch), or the rated refrigerating capacity of the refrigeration cycle device is less than 6.3 kW, and the gas side refrigerant communication pipe has a D0 of 4 (that is, the pipe diameter is 1/2 inch) , or
  • the refrigeration cycle device includes a refrigerant circuit to which a compressor, a heat source side heat exchanger, a pressure reducing unit, a liquid side refrigerant communication pipe, a user side heat exchanger, and a gas side refrigerant communication pipe are connected. have.
  • the refrigerating cycle device uses refrigerant A, which will be described later.
  • the outer diameter of the liquid-side refrigerant communication pipe and the outer diameter of the gas-side refrigerant communication pipe are D 0 /8 inches, and in the liquid-side refrigerant communication pipe, the range of D 0 is "2 ⁇ D 0 ⁇ 4", and in the gas-side refrigerant communication pipe, the range of D0 is " 3 ⁇ D0 ⁇ 8 ".
  • the decompression unit is not particularly limited, and may be an expansion valve or a capillary tube. It should be noted that the range of D 0 is "2 ⁇ D 0 ⁇ 3" in the liquid-side refrigerant communication pipe, and the range of D 0 is "4 ⁇ D 0 ⁇ 7" in the gas-side refrigerant communication pipe. preferable.
  • the refrigeration cycle device is the refrigeration cycle device of the ninth aspect of the sixth group, in which the liquid-side refrigerant communication pipe has D0 of 2 (that is, the pipe diameter is 1/4 inch). is.
  • the refrigeration cycle device is the refrigeration cycle device of the ninth aspect of the sixth group, wherein the refrigeration cycle device has a rated refrigerating capacity of 7.5 kW or more, and liquid side refrigerant communication
  • the piping has D0 of 2.5 (that is, the piping diameter is 5/16 inches), or the rated refrigerating capacity of the refrigeration cycle device is 2.6 kW or more and less than 7.5 kW, and the liquid side refrigerant communication piping is D 0 is 2 (that is, the pipe diameter is 1/4 inch), or the rated refrigerating capacity of the refrigeration cycle device is less than 2.6 kW, and the liquid side refrigerant communication pipe has D0 of 1.5 (that is, the pipe diameter is 3/16 inch).
  • a refrigeration cycle device is the refrigeration cycle device of the ninth aspect of the sixth group, wherein the refrigeration cycle device has a rated refrigerating capacity of 6.3 kW or more, and liquid side refrigerant communication
  • the piping has a D0 of 3 (that is, the piping diameter is 3/8 inch), or the rated refrigerating capacity of the refrigeration cycle device is less than 6.3 kW, and the liquid side refrigerant communication piping has a D0 of 2 ( That is, the pipe diameter is 1/4 inch).
  • the refrigeration cycle device is the refrigeration cycle device of the ninth aspect of the sixth group, wherein the refrigeration cycle device has a rated refrigerating capacity of 12.5 kW or more, and liquid side refrigerant communication
  • the pipe has a D0 of 3 (that is, the pipe diameter is 3/8 inch), or the refrigeration cycle device has a rated refrigerating capacity of 6.3 kW or more and less than 12.5 kW, and the liquid side refrigerant communication pipe has a D0 2.5 (that is, the pipe diameter is 5/16 inch), or the rated refrigerating capacity of the refrigeration cycle device is less than 6.3 kW, and the liquid side refrigerant communication pipe has D0 of 2 (that is, the pipe diameter is 1 /4 inch) or
  • a refrigeration cycle device is the refrigeration cycle device of the ninth aspect of the sixth group, wherein the refrigeration cycle device has a rated refrigerating capacity of 6.0 kW or more, and gas side refrigerant communication
  • the piping has a D0 of 4 (that is, the piping diameter is 1/2 inch), or the rated refrigerating capacity of the refrigeration cycle device is less than 6.0 kW, and the gas side refrigerant communication piping has a D0 of 3 ( That is, the pipe diameter is 3/8 inch).
  • a refrigeration cycle device is the refrigeration cycle device of the ninth aspect of the sixth group, wherein the refrigeration cycle device has a rated refrigerating capacity of 6.0 kW or more, and gas side refrigerant communication
  • the piping has D0 of 4 (that is, the piping diameter is 1/2 inch), or the rated refrigerating capacity of the refrigeration cycle device is 3.2 kW or more and less than 6.0 kW, and the gas side refrigerant communication piping has D0 3 (that is, the pipe diameter is 3/8 inch), or the rated refrigerating capacity of the refrigeration cycle device is less than 3.2 kW, and the gas side refrigerant communication pipe has D0 of 2.5 (that is, the pipe diameter is 5 /16 inches).
  • the refrigeration cycle device is the refrigeration cycle device of the ninth aspect of the sixth group, wherein the refrigeration cycle device has a rated refrigerating capacity of 25.0 kW or more, and gas side refrigerant communication
  • the pipe has a D0 of 7 (that is, the pipe diameter is 7/8 inches), or the rated refrigerating capacity of the refrigeration cycle device is 15.0 kW or more and less than 25.0 kW, and the gas side refrigerant communication pipe has a D0 6 (that is, the pipe diameter is 6/8 inch), or the rated refrigerating capacity of the refrigeration cycle device is 6.3 kW or more and less than 15.0 kW, and the gas side refrigerant communication pipe has D0 of 5 (that is, the pipe diameter is 5/8 inch), or the rated refrigerating capacity of the refrigeration cycle device is less than 6.3 kW, and the gas side refrigerant communication pipe has a D0 of 4 (that is, the pipe diameter is 1/2 inch) , or
  • Seventh Group International Publication No. 2015/141678 proposes various low GWP mixed refrigerants that can be substituted for R410A.
  • the content of the present disclosure is made in view of the above points, and provides a refrigeration cycle device capable of reducing the amount of refrigerant to be held while reducing pressure loss when using refrigerant A, which will be described later. for the purpose.
  • the refrigeration cycle device includes a refrigerant circuit and a refrigerant.
  • the refrigerant circuit has a compressor, a heat source side heat exchanger, a pressure reducing section, and a use side heat exchanger.
  • the refrigerant is enclosed in the refrigerant circuit and is refrigerant A described later.
  • the heat source side heat exchanger has heat transfer tubes with a pipe diameter of 6.35 mm or more and less than 10.0 mm.
  • the decompression unit is not particularly limited, and may be an expansion valve or a capillary tube.
  • This refrigeration cycle device can reduce the amount of refrigerant to be stored while reducing pressure loss.
  • the refrigeration cycle device is the refrigeration cycle device of the first aspect of the seventh group, wherein the heat source side heat exchanger has pipe diameters of 6.35 mm, 7.0 mm and 8.0 mm. and 9.5 mm.
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus of the first aspect or the second aspect of the seventh group, wherein the heat source side heat exchanger has a pipe diameter of 7.0 mm or more. It has a hot tube.
  • a refrigeration cycle device includes a refrigerant circuit and a refrigerant.
  • the refrigerant circuit has a compressor, a heat source side heat exchanger, a pressure reducing section, and a use side heat exchanger.
  • the refrigerant is enclosed in the refrigerant circuit and is refrigerant A described later.
  • the utilization-side heat exchanger has heat transfer tubes with a pipe diameter of 4.0 mm or more and less than 10.0 mm.
  • This refrigeration cycle device can reduce the amount of refrigerant to be stored while reducing pressure loss.
  • refrigerants with a low global warming potential (hereinafter referred to as low-GWP refrigerants) have been studied as refrigerants used in air conditioners.
  • Refrigerant A which will be described later, is a promising low-GWP refrigerant.
  • the air conditioner according to the first aspect of the eighth group includes a compressor that compresses refrigerant A, which will be described later, and a power conversion device.
  • the power conversion device is connected between a motor that drives the compressor and the AC power supply and the motor, has a switching element, and controls the switching element so that the output of the motor reaches a target value.
  • the air conditioner according to the second aspect of the eighth group is the air conditioner of the first aspect of the eighth group, and the power conversion device includes a rectifier circuit and a capacitor.
  • the rectifier circuit rectifies the AC voltage of the AC power supply.
  • the capacitor is connected in parallel to the output side of the rectifier circuit and smoothes voltage fluctuations caused by switching of the power converter.
  • This air conditioner does not require an electrolytic capacitor on the output side of the rectifier circuit, so the size and cost of the circuit are suppressed.
  • the air conditioner according to the fourth aspect of the eighth group is the air conditioner of the first or second aspect of the eighth group, and the AC power supply is a three-phase power supply.
  • this air conditioner does not require an electrolytic capacitor on the output side of the rectifier circuit, so the size and cost of the circuit are suppressed.
  • this air conditioner does not require an electrolytic capacitor on the output side of the rectifier circuit, so the size and cost of the circuit are suppressed.
  • the air conditioner according to the seventh aspect of the eighth group is the air conditioner of the first aspect of the eighth group, wherein the compressor is any one of a scroll compressor, a rotary compressor, a turbo compressor, and a screw compressor. is.
  • the air conditioner according to the eighth aspect of the eighth group is the air conditioner according to any one of the first aspect to the seventh aspect of the eighth group, wherein the motor is a permanent magnet synchronous motor having a rotor containing permanent magnets. be.
  • the compressor can be driven without interposing a power conversion device between the AC power supply and the motor, so air conditioning with a relatively inexpensive configuration and consideration for environmental protection. machine can be provided.
  • the air conditioner according to the second aspect of the ninth group is the air conditioner of the first aspect of the ninth group, in which the connection part directly applies the AC voltage of the AC power supply between at least two terminals of the motor.
  • the air conditioner according to the third aspect of the ninth group is the air conditioner of the first aspect or the second aspect of the ninth group, and the AC power supply is a single-phase power supply.
  • the air conditioner according to the fourth aspect of the ninth group is the air conditioner according to any one of the first to third aspects of the ninth group, and a starting circuit is connected in series to one terminal of the motor.
  • the air conditioner according to the fifth aspect of the ninth group is the air conditioner of the fourth aspect of the ninth group, in which the starting circuit is a circuit in which a positive temperature coefficient thermistor and an operating capacitor are connected in parallel.
  • the air conditioner according to the sixth aspect of the ninth group is the air conditioner of the first aspect or the second aspect of the ninth group, and the AC power supply is a three-phase power supply.
  • This air conditioner does not require a starter circuit, so it is relatively inexpensive.
  • the air conditioner of the seventh aspect of the ninth group is the air conditioner of any one of the first to sixth aspects of the ninth group, and the motor is an induction motor.
  • the motor is relatively low cost and high output is possible, so it is possible to improve the efficiency of the air conditioner.
  • the hot water production apparatus uses the later-described refrigerant A as the refrigerant.
  • This hot water producing apparatus includes a compressor, a first heat exchanger on the heat source side, an expansion mechanism, and a second heat exchanger on the use side.
  • the second heat exchanger heats the first water by exchanging heat between the mixed refrigerant flowing therein and the first water.
  • This hot water generator uses the above-mentioned mixed refrigerant as a refrigerant, instead of the carbon dioxide that is often used in the past. This makes it possible to efficiently produce hot water.
  • the hot water producing apparatus is the hot water producing apparatus of the first aspect of the tenth group, further comprising a tank and a circulation flow path.
  • the circulation flow path circulates the first water between the tank and the second heat exchanger.
  • the hot water producing apparatus is the hot water producing apparatus according to the first aspect of the tenth group, comprising a first circulation channel, a second circulation channel, a third heat exchanger, and a tank.
  • the first circulation flow path circulates the first water heated by the second heat exchanger.
  • the second circulation channel is a circulation channel different from the first circulation channel.
  • the third heat exchanger exchanges heat between the first water flowing through the first circulation channel and the second water flowing through the second circulation channel, and the second water flowing through the second circulation channel. of water is heated.
  • a tank stores the second water heated by the third heat exchanger.
  • the hot water producing apparatus is the hot water producing apparatus of the first aspect of the tenth group, further comprising a first circulation flow path and a tank.
  • the first circulation flow path circulates the first water heated by the second heat exchanger.
  • a part of the first circulation channel is arranged in the tank, and by causing heat exchange between the first water flowing through the first circulation channel and the second water in the tank, , to heat the second water in the tank.
  • the hot water producing apparatus is the hot water producing apparatus according to the first aspect of the tenth group, comprising a tank, a first circulation channel, a third heat exchanger, and a second circulation flow It further comprises a channel and a third channel.
  • the first circulation flow path circulates the first water between the second heat exchanger and the tank.
  • the second circulation flow path circulates the first water between the third heat exchanger and the tank.
  • a 3rd flow path is a flow path different from a 1st circulation flow path and a 2nd circulation flow path.
  • the third heat exchanger heats the third water flowing through the third flow path by exchanging heat between the first water flowing from the tank and the third water flowing through the third flow path. do.
  • the hot water producing apparatus is the hot water producing apparatus of the first aspect of the tenth group, further comprising a tank, a first circulation channel, and a second channel.
  • the first circulation flow path circulates the first water between the tank and the second heat exchanger.
  • the second flow path is a flow path different from the first circulation flow path. A portion of the second flow path is disposed within the tank to allow heat exchange between the first water in the tank and the second water flowing through the second flow path, thereby reducing the flow of the second flow. A second water flowing through the channel is heated.
  • the hot water producing apparatus is the hot water producing apparatus according to the first aspect of the tenth group, further comprising a tank for storing the first water and a channel through which the second water flows. Prepare. A portion of the flow path is positioned within the tank. A second heat exchanger heats the first water stored in the tank within the tank. The first water stored in the tank heats the second water flowing through the flow path.
  • the hot water producing apparatus is the hot water producing apparatus according to the first aspect of the tenth group, further comprising a tank and a channel for flowing the first water from the water supply source to the tank.
  • a 2nd heat exchanger heats the 1st water which flows through a flow path.
  • a hot water producing apparatus is the hot water producing apparatus according to any one of the first to eighth aspects of the tenth group, comprising a fourth heat exchanger on the user side and a fourth circulating flow It further comprises a road and a.
  • the fourth heat exchanger is a heat exchanger different from the second heat exchanger.
  • a fourth water for cooling or heating flows through the fourth circulation flow path.
  • the fourth heat exchanger cools or heats the fourth water by exchanging heat between the mixed refrigerant flowing therein and the fourth water flowing through the fourth circulation flow path.
  • a refrigeration cycle device equipped with a heat exchanger has the problem of reducing material costs.
  • this refrigeration cycle device has a plurality of fins made of aluminum or aluminum alloy and a plurality of heat transfer tubes made of aluminum or aluminum alloy, compared to the case of using copper pipes for the heat transfer tubes, for example, The material cost of the heat exchanger can be reduced.
  • the refrigeration cycle device is the refrigeration cycle device of the first aspect of the eleventh group, wherein each of the plurality of fins has a plurality of holes, and the plurality of heat transfer tubes includes a plurality of , and the outer peripheries of the plurality of heat transfer tubes are in close contact with the inner perimeters of the plurality of holes.
  • the refrigeration cycle device is the refrigeration cycle device of the first aspect of the eleventh group, wherein the plurality of heat transfer tubes are a plurality of flat tubes, and the plane portions of the flat tubes adjacent to each other are arranged facing each other.
  • the refrigerating cycle apparatus is the refrigerating cycle apparatus of the third aspect of the eleventh group, wherein each of the plurality of fins is bent into a waveform and is formed on the plane portions of flat tubes adjacent to each other. It is positioned between and connected in a thermally conductive manner to the plane.
  • the refrigeration cycle device is the refrigeration cycle device of the third aspect of the eleventh group, wherein each of the plurality of fins has a plurality of notches, and the plurality of flat tubes are It is inserted into a plurality of cutouts of a plurality of fins and connected to the plurality of fins so as to conduct heat.
  • this air conditioner Compared to an air conditioner in which multiple indoor units are arranged in multiple rooms, this air conditioner has fewer indoor heat exchangers, so it is possible to reduce the amount of refrigerant that fills the air conditioner.
  • the air conditioner according to the second aspect of the twelfth group is the air conditioner of the first aspect of the twelfth group, comprising: a second duct for taking in the first air from the room; A user-side unit configured to connect a casing to the second duct and guide the first air taken in from the room to the user-side heat exchanger; It comprises a heat source side unit separate from the user side unit.
  • the user side unit and the heat source side unit are separate units, making it easy to install the air conditioner.
  • the air conditioner according to the third aspect of the twelfth group is the air conditioner of the first aspect of the twelfth group, comprising: a third duct that takes in the first air from the outside of the room; is connected to the third duct, and the first air taken in from the outdoor is housed in a user-side unit configured to guide the first air taken in from the outdoor to the user-side heat exchanger;
  • the heat source side unit is provided separately from the side unit.
  • the user side unit and the heat source side unit are separate units, making it easy to install the air conditioner.
  • the air conditioner according to the fourth aspect of the twelfth group is the air conditioner of the first aspect of the twelfth group, wherein the air conditioner is connected to a casing and supplies the first air taken in from the room to the user space. wherein the casing partitions the heat source side space through which the second air taken in from the outside passes and the usage side space, and blocks the flow of air between the heat source side space and the usage side space. It has a plate, and the heat source side heat exchanger is arranged in the heat source side space.
  • the user side heat exchanger and the heat source side heat exchanger are housed in the same casing in a user side space and a heat source side space separated by a partition plate. It becomes easy to install the air conditioner using a limited space.
  • a refrigeration cycle apparatus includes a refrigerant circuit including a compressor, a heat source side heat exchanger, an expansion mechanism, and a user side heat exchanger.
  • a refrigerant A which will be described later, is sealed in the refrigerant circuit. At least during a predetermined operation, the flow of the refrigerant and the flow of the heat medium that exchanges heat with the refrigerant are countercurrent in at least one of the heat source side heat exchanger and the user side heat exchanger.
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus of the first aspect of the thirteenth group, wherein the heat source side heat exchange is performed during operation of the refrigeration cycle apparatus using the heat source side heat exchanger as an evaporator.
  • the flow of the refrigerant and the flow of the heat medium that exchanges heat with the refrigerant are countercurrent.
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus of the first or second aspect of the thirteenth group, wherein during operation of the refrigeration cycle apparatus using the heat source side heat exchanger as a condenser, In the heat source side heat exchanger, the flow of the refrigerant and the flow of the heat medium that exchanges heat with the refrigerant are countercurrent.
  • a refrigeration cycle device is the refrigeration cycle device according to any one of the first aspect to the third aspect of the thirteenth group, wherein the refrigeration cycle device uses a utilization side heat exchanger as an evaporator. During operation, the flow of the refrigerant and the flow of the heat medium that exchanges heat with the refrigerant are countercurrent in the heat exchanger on the user side.
  • a refrigeration cycle device is the refrigeration cycle device according to any one of the first aspect to the fourth aspect of the thirteenth group, and is a refrigeration cycle device using a utilization side heat exchanger as a condenser. During operation, the flow of the refrigerant and the flow of the heat medium that exchanges heat with the refrigerant are countercurrent in the heat exchanger on the user side.
  • the refrigeration cycle device according to the sixth aspect of the thirteenth group is the refrigeration cycle device of any one of the first to fifth aspects of the thirteenth group, and the heat medium is air.
  • the refrigeration cycle device according to the seventh aspect of the thirteenth group is the refrigeration cycle device of any one of the first to fifth aspects of the thirteenth group, and the heat medium is liquid.
  • (14) 14th Group As a conventional refrigerating device, there is, for example, a device having a high temperature side (primary side) refrigerating cycle and a low temperature side (secondary side) refrigerating cycle.
  • a device having a high temperature side (primary side) refrigerating cycle and a low temperature side (secondary side) refrigerating cycle For example, there are binary refrigeration systems that use HFC refrigerants (R410A, R32, etc.), HFO refrigerants, etc. as refrigerants in the high temperature side refrigeration cycle, and carbon dioxide refrigerants as refrigerants in the low temperature side refrigeration cycle.
  • HFC refrigerants R410A, R32, etc.
  • HFO refrigerants, etc. as refrigerants in the high temperature side refrigeration cycle
  • carbon dioxide refrigerants as refrigerants in the low temperature side refrigeration cycle.
  • the refrigerating apparatus includes a first cycle and a second cycle.
  • a first cycle is connected to a first compressor, a first radiator, a first expansion mechanism, and a first heat absorber.
  • the first refrigerant circulates.
  • a second cycle is connected to a second radiator and a second heat sink.
  • the second refrigerant circulates.
  • the first heat absorber and the second radiator are heat exchangers. The heat exchanger allows heat exchange between a first refrigerant flowing through the first heat absorber and a second refrigerant flowing through the second radiator. At least one of the first refrigerant and the second refrigerant is refrigerant A described later.
  • the refrigerating apparatus includes a first cycle and a second cycle.
  • a first cycle is connected to a first compressor, a first radiator, a first expansion mechanism, and a first heat absorber.
  • the first refrigerant circulates.
  • a second cycle is connected to a second radiator and a second heat sink.
  • the second refrigerant circulates.
  • the first radiator and the second heat absorber are heat exchangers. The heat exchanger allows heat exchange between a first refrigerant flowing through the first radiator and a second refrigerant flowing through the second heat sink. At least one of the first refrigerant and the second refrigerant is refrigerant A described later.
  • the refrigerating apparatus is the refrigerating apparatus according to the first aspect of the fourteenth group, and the second cycle is a cycle in which a second compressor and a second expansion mechanism are further connected. .
  • the first refrigerant flowing through the first radiator of the first cycle releases heat to the outside air.
  • the first refrigerant is R32.
  • the second refrigerant is refrigerant A, which will be described later.
  • the refrigerating device is the refrigerating device according to the first aspect of the fourteenth group, wherein the first refrigerant flowing through the first radiator of the first cycle releases heat to the outside air. do.
  • the first refrigerant is refrigerant A, which will be described later.
  • the second refrigerant is a liquid medium.
  • the refrigerating apparatus is the refrigerating apparatus according to the second aspect of the fourteenth group, wherein the second cycle is a cycle in which a second compressor and a second expansion mechanism are further connected. .
  • the first refrigerant flowing through the first heat absorber of the first cycle draws heat from the outside air.
  • the first refrigerant is refrigerant A, which will be described later.
  • the second refrigerant is a refrigerant having a lower saturation pressure at a predetermined temperature than refrigerant A, which will be described later.
  • Refrigerant A is trans-1,2-difluoroethylene (HFO-1132(E)), difluoromethane (R32), and 2,3,3,3-tetrafluoro-1-propene (R1234yf).
  • HFO-1132(E) trans-1,2-difluoroethylene
  • R32 difluoromethane
  • R1234yf 2,3,3,3-tetrafluoro-1-propene
  • the coordinates (x, y, z) are point U(32.8, 23.4, 43.8), Point S(32.8, 19.1, 48.1) and Point T(26.6, 23.3, 50.1) is within the range of a figure enclosed by straight lines US, ST, and TU connecting the three points of , respectively, or on the straight lines US, ST, and TU.
  • Refrigerant A further: Acetylene, HFO-1132a, HFO-1141, HFO-1123, HFC-143a, HFC-134a, Z-HFO-1132, HFO-1243zf, HFC-245cb, HCFC-1122, HCFC-124, CFC-1113, HFC- 152a, HFC-161 and at least one additional refrigerant selected from the group consisting of 3,3,3-trifluoropropyne.
  • Refrigerant A can be used as a substitute refrigerant for R32 and/or R410A.
  • FIG. 1 is a ternary diagram showing the composition of compositions of the present disclosure
  • FIG. 1 is a ternary diagram showing the composition of compositions of the present disclosure
  • FIG. 1 is a schematic configuration diagram of a refrigerant circuit according to a first embodiment of a second group of technologies
  • FIG. 2 is a schematic control block configuration diagram of a refrigeration cycle apparatus according to a first embodiment of technology of the second group
  • FIG. 2 is a schematic configuration diagram of a refrigerant circuit according to a second embodiment of a second group of technologies
  • FIG. 10 is a schematic control block configuration diagram of a refrigeration cycle apparatus according to a second embodiment of a technique of the second group
  • FIG. 4 is a schematic configuration diagram of a refrigerant circuit according to a third embodiment of a second group of technologies
  • FIG. 10 is a schematic control block configuration diagram of a refrigeration cycle apparatus according to a third embodiment of the technology of the second group
  • FIG. 11 is a schematic configuration diagram of a refrigerant circuit according to a fourth embodiment of the technology of the second group
  • FIG. 11 is a schematic control block configuration diagram of a refrigeration cycle apparatus according to a fourth embodiment of technology of the second group
  • FIG. 11 is a schematic configuration diagram of a refrigerant circuit according to a fifth embodiment of the technology of the second group
  • FIG. 11 is a schematic control block configuration diagram of a refrigeration cycle apparatus according to a fifth embodiment of the technology of the second group
  • FIG. 11 is a schematic control block configuration diagram of a refrigeration cycle apparatus according to a fifth embodiment of the technology of the second group
  • FIG. 10 is a schematic control block configuration diagram of a refrigeration cycle apparatus according to a third embodiment of the technology of the second group
  • FIG. 11 is a schematic configuration diagram of a refrigerant circuit according to a sixth embodiment of the technology of the second group;
  • FIG. 11 is a schematic control block configuration diagram of a refrigeration cycle apparatus according to a sixth embodiment of technology of the second group;
  • FIG. 11 is a schematic configuration diagram of a refrigerant circuit according to a seventh embodiment of the technology of the second group;
  • FIG. 11 is a schematic control block configuration diagram of a refrigeration cycle apparatus according to a seventh embodiment of technology of the second group;
  • FIG. 11 is a schematic configuration diagram of a refrigerant circuit according to an eighth embodiment of the technology of the second group;
  • FIG. 11 is a schematic control block configuration diagram of a refrigeration cycle apparatus according to an eighth embodiment of technology of the second group;
  • FIG. 11 is a schematic control block configuration diagram of a refrigeration cycle apparatus according to an eighth embodiment of technology of the second group;
  • FIG. 11 is a schematic control block configuration diagram of a refrigeration cycle apparatus according to an eighth embodiment of technology of the second group;
  • FIG. 12 is a schematic configuration diagram of a refrigerant circuit according to a ninth embodiment of the technology of the second group;
  • FIG. 20 is a schematic control block configuration diagram of a refrigeration cycle apparatus according to a ninth embodiment of the technology of the second group;
  • FIG. 11 is a schematic configuration diagram of a refrigerant circuit according to a tenth embodiment of the technology of the second group;
  • FIG. 20 is a schematic control block configuration diagram of a refrigeration cycle apparatus according to a tenth embodiment of technology of the second group;
  • FIG. 11 is a schematic configuration diagram of a refrigerant circuit according to an eleventh embodiment of the technology of the second group;
  • FIG. 11 is a schematic control block configuration diagram of a refrigeration cycle apparatus according to an eleventh embodiment of technology of the second group;
  • FIG. 20 is a schematic configuration diagram of a refrigerant circuit according to a twelfth embodiment of the technology of the second group;
  • FIG. 20 is a schematic control block configuration diagram of a refrigeration cycle apparatus according to a twelfth embodiment of technology of the second group;
  • 1 is a schematic configuration diagram of a refrigerant circuit according to a first embodiment of a technology of a third group;
  • FIG. 1 is a schematic control block configuration diagram of a refrigeration cycle apparatus according to a first embodiment of technology of a third group;
  • FIG. FIG. 11 is a schematic configuration diagram of a refrigerant circuit according to Modification B of the first embodiment of the technology of the third group;
  • FIG. 11 is a side cross-sectional view showing a schematic configuration of a compressor according to Modification B of the first embodiment of the technology of the third group;
  • FIG. 3 is a schematic configuration diagram of a refrigerant circuit according to a second embodiment of a technology of the third group;
  • FIG. 4 is a schematic control block configuration diagram of a refrigeration cycle apparatus according to a second embodiment of technology of the third group;
  • FIG. 11 is a side cross-sectional view showing a schematic configuration of a compressor according to a second embodiment of technology of the third group;
  • FIG. 10 is a cross-sectional plan view showing the periphery of a cylinder chamber of a compressor according to a second embodiment of technology of the third group;
  • FIG. 11 is a schematic configuration diagram of a refrigerant circuit according to a third embodiment of a technology of the fourth group;
  • FIG. 11 is a schematic control block configuration diagram of a refrigeration cycle apparatus according to a third embodiment of technology of the fourth group;
  • FIG. 11 is a schematic configuration diagram of a refrigerant circuit according to a first embodiment of a technology of the fifth group;
  • FIG. 10 is a schematic control block configuration diagram of a refrigeration cycle apparatus according to a first embodiment of technology of the fifth group;
  • FIG. 11 is a schematic configuration diagram of a refrigerant circuit according to a second embodiment of a technology of the fifth group;
  • FIG. 11 is a schematic control block configuration diagram of a refrigeration cycle apparatus according to a second embodiment of the technology of the fifth group;
  • FIG. 11 is a schematic control block configuration diagram of a refrigeration cycle apparatus according to a second embodiment of the technology of the fifth group;
  • FIG. 11 is a schematic configuration diagram of a refrigerant circuit according to a third embodiment of a technology of the fifth group;
  • FIG. 11 is a schematic control block configuration diagram of a refrigeration cycle apparatus according to a third embodiment of the technology of the fifth group;
  • 1 is a schematic configuration diagram of a refrigerant circuit according to a first embodiment of a sixth group of technologies;
  • FIG. 10 is a schematic control block configuration diagram of a refrigeration cycle apparatus according to a first embodiment of technology of the sixth group;
  • FIG. 11 shows a graph of pressure loss during heating operation of the liquid-side refrigerant communication pipe for each pipe outer diameter when refrigerants R410A, R32, and refrigerant X are used in the air conditioner according to the first embodiment of the technology of the sixth group.
  • FIG. 11 shows a graph of pressure loss during heating operation of the liquid-side refrigerant communication pipe for each pipe outer diameter when refrigerants R410A, R32, and refrigerant X are used in the air conditioner according
  • FIG. 11 shows a graph of pressure loss during cooling operation of the gas-side refrigerant communication pipe for each pipe outer diameter when refrigerants R410A, R32, and refrigerant X are used in the air conditioner according to the first embodiment of the technology of the sixth group.
  • FIG. 11 is a schematic configuration diagram of a refrigerant circuit according to a second embodiment of the technology of the sixth group;
  • FIG. 11 is a schematic control block configuration diagram of a refrigeration cycle apparatus according to a second embodiment of the technology of the sixth group;
  • FIG. 11 shows a graph of pressure loss during heating operation of the liquid-side refrigerant communication pipe for each pipe outer diameter when refrigerants R410A, R32, and refrigerant X are used in the air conditioner according to the second embodiment of the technology of the sixth group.
  • FIG. 11 shows a graph of pressure loss during cooling operation of the gas-side refrigerant communication pipe for each pipe outer diameter when refrigerants R410A, R32, and refrigerant X are used in the air conditioner according to the second embodiment of the technology of the sixth group.
  • FIG. 11 is a schematic configuration diagram of a refrigerant circuit according to a third embodiment of the technology of the sixth group; FIG.
  • FIG. 11 is a schematic control block configuration diagram of a refrigeration cycle apparatus according to a third embodiment of technology of the sixth group;
  • FIG. 11 shows a graph of pressure loss during heating operation of the liquid-side refrigerant communication pipe for each pipe outer diameter when refrigerants R410A, R32, and refrigerant X are used in the air conditioner according to the third embodiment of the technology of the sixth group.
  • FIG. 11 shows a graph of pressure loss during cooling operation of the gas-side refrigerant communication pipe for each pipe outer diameter when refrigerants R410A, R32, and refrigerant X are used in the air conditioner according to the third embodiment of the technology of the sixth group.
  • FIG. 11 shows a schematic control block configuration diagram of a refrigeration cycle apparatus according to a third embodiment of technology of the sixth group;
  • FIG. 11 shows a graph of pressure loss during heating operation of the liquid-side refrigerant communication pipe for each pipe outer diameter when refrigerants R410A, R32, and refrigerant X are used in the
  • FIG. 11 is a schematic configuration diagram of a refrigerant circuit according to a first embodiment of a technology of the seventh group;
  • FIG. 11 is a schematic control block configuration diagram of a refrigeration cycle apparatus according to a first embodiment of technology of the seventh group;
  • FIG. 11 is a schematic external perspective view of an outdoor unit according to a first embodiment of technology of the seventh group;
  • FIG. 11 is a perspective view showing a schematic internal structure of an outdoor unit according to a first embodiment of technology of the seventh group;
  • FIG. 11 is a schematic external front view of an indoor unit according to a first embodiment of technology of the seventh group;
  • FIG. 11 is a side cross-sectional view showing the schematic internal structure of the indoor unit according to the first embodiment of the technology of the seventh group;
  • FIG. 11 is a schematic configuration diagram of a refrigerant circuit according to a first embodiment of a technology of the seventh group;
  • FIG. 11 is a schematic control block configuration diagram of a refrigeration cycle apparatus according to a first embodiment of technology of the
  • FIG. 11 is a schematic configuration diagram of a refrigerant circuit according to a second embodiment of the technology of the seventh group;
  • FIG. 11 is a schematic control block configuration diagram of a refrigeration cycle apparatus according to a second embodiment of technology of the seventh group;
  • FIG. 11 is a schematic external perspective view of an outdoor unit according to a second embodiment of technology of the seventh group;
  • FIG. 11 is a perspective view showing a schematic internal structure of an outdoor unit according to a second embodiment of technology of the seventh group;
  • FIG. 11 is a schematic external perspective view of an indoor unit according to a second embodiment of technology of the seventh group;
  • FIG. 11 is a side cross-sectional view showing a schematic internal structure of an indoor unit according to a second embodiment of technology of the seventh group;
  • FIG. 11 is a side cross-sectional view showing a schematic internal structure of an indoor unit according to a second embodiment of technology of the seventh group;
  • FIG. 11 is a side cross-sectional view showing a schematic internal structure of an indoor unit according to
  • FIG. 11 is a schematic configuration diagram of a refrigerant circuit according to a third embodiment of the technology of the seventh group;
  • FIG. 11 is a schematic control block configuration diagram of a refrigeration cycle apparatus according to a third embodiment of technology of the seventh group;
  • FIG. 11 is a schematic external perspective view of an outdoor unit according to a third embodiment of technology of the seventh group;
  • FIG. 11 is an exploded perspective view showing a schematic internal structure of an outdoor unit according to a third embodiment of technology of the seventh group;
  • FIG. 10 is a configuration diagram of an air conditioner according to a first embodiment of technology of the eighth group;
  • FIG. 11 is a circuit block diagram of a power conversion device mounted in a first embodiment of technology of the eighth group;
  • FIG. 11 is a circuit block diagram of a power converter in a modification of the first embodiment of the technology of the eighth group;
  • FIG. 11 is a circuit block diagram of a power conversion device mounted on an air conditioner according to a second embodiment of technology of the eighth group;
  • FIG. 11 is a circuit block diagram of a power conversion device in a modification of the second embodiment of the technology of the eighth group;
  • FIG. 11 is a circuit block diagram of a power conversion device mounted on an air conditioner according to a third embodiment of technology of the eighth group;
  • FIG. 11 is a circuit diagram conceptually showing a bidirectional switch of the eighth group of technologies;
  • FIG. 11 is a circuit diagram showing an example of current directions of a matrix converter of technology of the eighth group;
  • FIG. 12 is a circuit diagram showing an example of another current direction of the matrix converter of the technology of the eighth group;
  • FIG. 11 is a circuit block diagram of a power conversion device in a modification of the third embodiment of the technology of the eighth group;
  • FIG. 11 is a circuit diagram of a clamping circuit of the eighth group of techniques;
  • FIG. 11 is a configuration diagram of an air conditioner according to an embodiment of a ninth group of technologies;
  • FIG. 11 is a circuit diagram of the operation of the compressor motor of the ninth group of technologies;
  • FIG. 11 is a circuit diagram of a motor of a compressor in an air conditioner according to a modification of the technology of the ninth group;
  • FIG. 11 is an external view of a hot water supply system as a hot water producing apparatus according to a first embodiment of a technology of the tenth group; It is a water circuit of the hot-water supply system of 1st Embodiment of the technique of the 10th group, and a refrigerant circuit diagram. It is a control block diagram of the hot water supply system of the first embodiment of the technique of the tenth group.
  • FIG. 11 is a diagram of a water circuit and a refrigerant circuit of a hot water supply system of a first modification of the first embodiment of the technology of the tenth group; It is a water circuit of the hot-water supply system of the 2nd modification of 1st Embodiment of the technique of the 10th group, and a refrigerant circuit diagram.
  • FIG. 11 is a diagram showing a part of the configuration of a hot water circulation heating system as a hot water producing device according to a second embodiment of the technology of the tenth group. It is a figure which shows a part of structure of the hot water circulation heating system of 2nd Embodiment of the technique of the 10th group.
  • FIG. 11 is a schematic configuration diagram of a heat source unit of a hot water supply system according to a third embodiment of technology of the tenth group;
  • FIG. 11 is a control block diagram of a hot water supply system according to a third embodiment of technology of the tenth group;
  • FIG. 11 is a schematic configuration diagram of a refrigerating device according to a first embodiment of the technology of the eleventh group;
  • FIG. 11 is a front view of the outdoor heat exchanger or the indoor heat exchanger of the first embodiment of the eleventh group of technologies;
  • FIG. 11 is a cross-sectional view of a flattened tube of the heat exchanger of the first embodiment of the eleventh group of technologies;
  • FIG. 11 is a schematic perspective view of an outdoor heat exchanger according to a second embodiment of the eleventh group of technologies;
  • FIG. 12 is a partially enlarged view of the heat exchange tube portion of the outdoor heat exchanger of the eleventh group technology cut in the vertical direction;
  • FIG. 11 is a cross-sectional view in the tube axial direction showing the configuration of an internally grooved tube according to a third embodiment of the technology of the eleventh group.
  • FIG. 11F is a cross-sectional view of the internally grooved tube shown in FIG. 11F.
  • 11G is a partial enlarged view showing an enlarged part of the internally grooved tube shown in FIG. 11G.
  • FIG. FIG. 11 is a plan view showing the configuration of plate fins of the technology of the eleventh group;
  • FIG. 12 is a partially enlarged view of the heat exchange tube portion of the outdoor heat exchanger of the eleventh group technology cut in the vertical direction
  • FIG. 11 is a cross-sectional view in the tube axial direction showing the configuration of an internally grooved
  • FIG. 11 is a schematic diagram showing the arrangement of the air conditioner according to the first embodiment of the technology of the 12th group.
  • FIG. 12 is a schematic configuration diagram of an air conditioner of the 12th group of technologies;
  • FIG. 12 is a block diagram showing the electrical connection state of the controller and thermostat in the air conditioning system according to the first embodiment of the technology of the 12th group;
  • FIG. 20 is a perspective view showing an installation state of an air conditioner according to a second embodiment of the technology of the 12th group in a building.
  • FIG. 11 is a perspective view showing the appearance of an air conditioner of the technology of the 12th group;
  • FIG. 11 is a perspective view showing the appearance of an air conditioner of the technology of the 12th group;
  • FIG. 11 is a perspective view showing the appearance of an air conditioner of the technology of the 12th group;
  • FIG. 12 is a schematic configuration of an air conditioner of the 12th group;
  • FIG. 12 is a block diagram showing the electrical connection state of the controller and thermostat in the air conditioning system according to the
  • FIG. 13 is a perspective view for explaining the internal configuration of an air conditioner of the technology of the 12th group;
  • FIG. 13 is a perspective view for explaining the internal configuration of an air conditioner of the technology of the 12th group;
  • FIG. 13 is a perspective view for explaining the internal configuration of an air conditioner of the technology of the 12th group;
  • FIG. 11 is a perspective view for explaining a duct of an air conditioner of technology of the 12th group;
  • FIG. 11 is a diagram for explaining a refrigerant circuit of an air conditioner according to a second embodiment of technology of the 12th group;
  • FIG. 11 is a block diagram for explaining a control system of an air conditioner according to a second embodiment of technology of the 12th group;
  • FIG. 20 is a partially enlarged perspective view showing an enlarged left side periphery of the utilization side heat exchanger of the technology of the 12th group;
  • FIG. 14 is a schematic diagram for explaining the positional relationship between the first opening and the second opening and each member of the technology of the 12th group;
  • FIG. 11 is a schematic diagram showing the configuration of an air conditioner according to a third embodiment of the technology of the 12th group.
  • FIG. 11 is a schematic diagram illustrating an example of a counter-current heat exchanger according to an embodiment of the thirteenth group of techniques;
  • FIG. 12 is a schematic diagram showing another example of a counterflow heat exchanger according to an embodiment of the technology of the thirteenth group, where (a) is a plan view and (b) is a perspective view;
  • FIG. 10 is a refrigerant circuit diagram of a dual refrigeration system, which is a refrigeration system according to a second embodiment of the technology of the fourteenth group;
  • FIG. 11 is a circuit configuration diagram of an air-conditioning and hot water supply system, which is a refrigerating device according to a second embodiment of technology of the fourteenth group;
  • HFO-1132(E) has an unsaturated bond, so it is chemically unstable and may be at risk of disproportionation.
  • the present inventors have made intensive research to solve the above problems, and as a result, in a mixed refrigerant containing HFO-1132 (E), R32 and R1234yf in a specific mixing ratio, the pressure of the mixed refrigerant is 3.0 MPa We found that the disproportionation of HFO-1132(E) was inhibited when .
  • refrigerant includes at least a compound with a refrigerant number (ASHRAE number) starting with R, which indicates the type of refrigerant, defined by ISO817 (International Organization for Standardization), and furthermore, the refrigerant number is Even if they are not attached yet, those having properties as refrigerants equivalent to those are included.
  • refrigerants are roughly classified into “fluorocarbon compounds” and “non-fluorocarbon compounds” in terms of compound structure.
  • Fluorocarbon compounds include chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs).
  • composition containing a refrigerant includes (1) refrigerant itself (including a mixture of refrigerants) and (2) other components, which are mixed with at least refrigerating machine oil. and (3) a working fluid for a refrigerator containing a refrigerator oil.
  • the composition of (2) is referred to as a "refrigerant composition” to distinguish it from the refrigerant itself (including mixtures of refrigerants).
  • the working fluid for a refrigerator (3) is described as a "refrigerating machine oil-containing working fluid” to distinguish it from the "refrigerant composition”.
  • the second refrigerant can be used only by changing a small number of parts (at least one of refrigerating machine oil, gaskets, packing, expansion valves, dryers and other parts) and adjusting the equipment as necessary. means that it can operate under optimum conditions. In other words, this type refers to operating the same equipment by "alternating" the refrigerant.
  • equipment designed to operate with a second refrigerant may be used with a second refrigerant installed for the same use as the existing use of the first refrigerant.
  • alternate This typology refers to providing the same application by "replacement" of the refrigerant.
  • a refrigerator refers to a general device that removes heat from an object or space to make it lower in temperature than the surrounding outside air and maintain this low temperature.
  • a refrigerator is a conversion device that converts energy by obtaining energy from the outside and performing work in order to move heat from a low temperature area to a high temperature area.
  • RCL refrigerant Concentration Limit
  • pressure refers to absolute pressure unless otherwise specified.
  • the refrigerant is "WCF slightly flammable” means that the most flammable composition (Worst case of formulation for flammability; WCF) according to the US ANSI/ASHRAE34-2013 standard has a burning velocity of 10 cm / s or less.
  • the refrigerant is ASHRAE slightly flammable (WCF & WCFF slightly flammable) means that the WCF has a burning rate of 10 cm / s or less, and WCF is used for storage, transportation,
  • the most flammable fraction composition (Worst case of fractionation for flammability; WCFF) specified by performing a leakage test during use has a burning speed of 10 cm/s or less, and meets the American ANSI/ASHRAE34-2013 standard for flammability. It means that the division is judged as "2L class".
  • Refrigerant 1.1 Refrigerant Components The refrigerant of the present disclosure is a mixed refrigerant comprising HFO-1132(E), R32 and R1234yf.
  • the refrigerant of the present disclosure does not require disproportionation measures, has a refrigerating capacity ratio of 76% or more against R32, and has a GWP of 160 or less.
  • the coordinates (x, y, z) are Point W(30.0, 23.4, 46.6), Point S'(30.0, 20.9, 49.1) and Point T(26.6, 23.3, 50.1) is within the range of the figure enclosed by straight lines WS', S'T and TW respectively connecting the three points of , or on the straight lines WS', S'T and TW.
  • the refrigerant of the present disclosure has an RCL of 50 g/m 3 or more, a condensation glide of 4.2 K or less, and a GWP of 160 or less by satisfying the following requirements.
  • the sum of HFO-1132(E), R32 and R1234yf is 100 mass%.
  • the coordinates (x, y, z) are point U(32.8, 23.4, 43.8), Point S(32.8, 19.1, 48.1) and Point Z(27.7, 23.4, 48.9) is within the range of the figure enclosed by the straight lines US, SZ and ZU respectively connecting the three points of , or on the straight lines US, SZ and ZU.
  • the refrigerant of the present disclosure does not require disproportionation measures, has a condensation glide of 4.2K or less, and a GWP of 160 or less.
  • the coordinates (x, y, z) are Point W(30.0, 23.4, 46.6), Point Z'(30.0, 21.5, 48.5) and Point Z(27.7, 23.4, 48.9) within the range of the figure surrounded by straight lines WZ', Z'Z and ZW connecting the three points of , respectively, or on the straight lines WZ', Z'Z and ZW.
  • the refrigerant of the present disclosure has an RCL of 50 g/m 3 or more, a condensation glide of 4.2 K or less, and a GWP of 150 or less by satisfying the following requirements.
  • the coordinates (x, y, z) are point X(32.8, 21.9, 45.3), Point S(32.8, 19.1, 48.1) and Point Y(29.5, 21.9, 48.6) within the range of the figure surrounded by straight lines XS, SY and YX connecting the three points of , respectively, or on the straight lines XS, SY and YX.
  • the refrigerant of the present disclosure does not require disproportionation measures, has an RCL of 50 g/m 3 or more, a condensation glide of 4.2 K or less, and a GWP of 150 or less.
  • the coordinates (x, y, z) are point Y'(30.0, 21.9, 48.1), Point Z'(30.0,21.5,48.5) and Point Y(29.5, 21.9, 48.6) within the range of the figure enclosed by straight lines Y'Z', Z'Y and YY' respectively connecting the three points of , or on the straight lines Y'Z', Z'Y and YY'.
  • the refrigerant of the present disclosure preferably contains 54% by mass or less, more preferably 44% by mass or less, even more preferably 32.8% by mass or less, of HFO-1132(E) with respect to the entire refrigerant. It is most preferable that the content is not more than mass % because countermeasures against disproportionation become unnecessary.
  • the refrigerant of the present disclosure may contain other additional refrigerants in addition to HFO-1132(E), R32 and R1234yf within a range that does not impair the above properties and effects.
  • the refrigerant of the present disclosure preferably contains 99.5% by mass or more, more preferably 99.75% by mass or more, of the total of HFO-1132(E), R32 and R1234yf relative to the total refrigerant, and 99.9% by mass. % or more, more preferably 99.99% by mass or more, and most preferably 99.999% by mass or more.
  • the refrigerants of the present disclosure may consist essentially of HFO-1132(E), R32 and R1234yf, or may consist of HFO-1132(E), R32 and R1234yf. If the refrigerant of the present disclosure consists essentially of HFO-1132(E), R32 and R1234yf, in addition to HFO-1132(E), R32 and R1234yf, it is unavoidably mixed in during the manufacturing process. May contain impurities.
  • the refrigerant of the present disclosure can be preferably used as a working fluid in refrigerators.
  • Refrigerant compositions of the present disclosure comprise at least the refrigerant of the present disclosure and can be used for the same applications as the refrigerant of the present disclosure.
  • the refrigerant composition of the present disclosure can be used to obtain a working fluid for refrigerators by further mixing with at least refrigerator oil.
  • the refrigerant composition of the present disclosure contains at least one other component in addition to the refrigerant of the present disclosure.
  • the refrigerant composition of the present disclosure may optionally contain at least one of the following other components.
  • the refrigerant compositions of the present disclosure are preferably substantially free of refrigerating machine oil.
  • the content of refrigerating machine oil is preferably 1% by mass or less, more preferably 0.1% by mass or less, relative to the entire refrigerant composition.
  • the refrigerant composition of the present disclosure may contain a single tracer, or may contain two or more tracers.
  • the tracer is not particularly limited and can be appropriately selected from commonly used tracers.
  • Tracers include, for example, hydrofluorocarbons, hydrochlorofluorocarbons, chlorofluorocarbons, hydrochlorocarbons, fluorocarbons, deuterated hydrocarbons, deuterated hydrofluorocarbons, perfluorocarbons, fluoroethers, brominated compounds, iodinated compounds, alcohols, Aldehyde, ketone, nitrous oxide (N 2 O) and the like.
  • Hydrofluorocarbons, hydrochlorofluorocarbons, chlorofluorocarbons, hydrochlorocarbons, fluorocarbons and fluoroethers are particularly preferred as tracers.
  • the refrigerant composition of the present disclosure may contain a total tracer of about 10 parts per million (ppm) or more by weight, and may contain about 1000 ppm or less of the total tracer.
  • the refrigerant compositions of the present disclosure preferably contain at least about 30 ppm total tracer, more preferably at least about 50 ppm total tracer, based on the total refrigerant composition.
  • the refrigerant compositions of the present disclosure preferably contain no more than about 500 ppm total tracer, and more preferably no more than about 300 ppm total tracer, based on the total refrigerant composition.
  • the refrigerant composition of the present disclosure may contain one type of ultraviolet fluorescent dye alone, or may contain two or more types thereof.
  • the ultraviolet fluorescent dye is not particularly limited, and can be appropriately selected from commonly used ultraviolet fluorescent dyes.
  • ultraviolet fluorescent dyes examples include naphthalimide, coumarin, anthracene, phenanthrene, xanthene, thioxanthene, naphthoxanthene, fluorescein, and derivatives thereof. Either or both of naphthalimide and coumarin are particularly preferred as UV fluorescent dyes.
  • the refrigerant composition of the present disclosure may contain one stabilizer alone, or may contain two or more stabilizers.
  • the stabilizer is not particularly limited and can be appropriately selected from commonly used stabilizers.
  • stabilizers include nitro compounds, ethers and amines.
  • Ethers include, for example, 1,4-dioxane.
  • amines examples include 2,2,3,3,3-pentafluoropropylamine and diphenylamine.
  • the content of the stabilizer is not particularly limited, and is generally preferably 0.01% by mass or more, more preferably 0.05% by mass or more, relative to the entire refrigerant.
  • the stabilizer content is generally preferably 5% by mass or less, more preferably 2% by mass or less, relative to the entire refrigerant.
  • the refrigerant composition of the present disclosure may contain a single polymerization inhibitor, or may contain two or more polymerization inhibitors.
  • polymerization inhibitors examples include 4-methoxy-1-naphthol, hydroquinone, hydroquinone methyl ether, dimethyl-t-butylphenol, 2,6-di-tert-butyl-p-cresol, and benzotriazole.
  • the content of the polymerization inhibitor is not particularly limited, and is generally preferably 0.01% by mass or more, more preferably 0.05% by mass or more, relative to the entire refrigerant. Generally, it is preferably 5% by mass or less, more preferably 5% by mass or less, with respect to the entire refrigerant.
  • the refrigerating machine oil-containing working fluid of the present disclosure contains at least the refrigerant or refrigerant composition of the present disclosure and refrigerating machine oil, and is used as a working fluid in a refrigerating machine.
  • the refrigerating machine oil-containing working fluid of the present disclosure is obtained by mixing refrigerating machine oil used in a compressor of a refrigerator with a refrigerant or a refrigerant composition.
  • the refrigerating machine oil-containing working fluid generally contains 10% by mass or more and 50% by mass or less of refrigerating machine oil.
  • composition of the present disclosure may contain one type of refrigerating machine oil alone, or may contain two or more types of refrigerating machine oil.
  • the refrigerating machine oil is not particularly limited, and can be appropriately selected from commonly used refrigerating machine oils. In this case, if necessary, it is possible to appropriately select a refrigerating machine oil that is more excellent in terms of the miscibility with the mixture and the effect of improving the stability of the mixture.
  • the base oil of the refrigerator oil for example, at least one selected from the group consisting of polyalkylene glycol (PAG), polyol ester (POE) and polyvinyl ether (PVE) is preferable.
  • PAG polyalkylene glycol
  • POE polyol ester
  • PVE polyvinyl ether
  • the refrigerating machine oil may contain additives in addition to the base oil.
  • the additive may be at least one selected from the group consisting of antioxidants, extreme pressure agents, acid scavengers, oxygen scavengers, copper deactivators, rust inhibitors, oiliness agents and antifoaming agents. .
  • a refrigerating machine oil with a kinematic viscosity of 5 cSt or more at 40°C is preferable in terms of lubrication.
  • the refrigerating machine oil one having a kinematic viscosity of 400 cSt or less at 40° C. is preferable from the viewpoint of lubrication.
  • the refrigerating machine oil-containing working fluid of the present disclosure may further contain at least one additive, if necessary.
  • additives include the following compatibilizers.
  • the working fluid containing refrigerator oil of the present disclosure may contain one type of compatibilizer alone or may contain two or more types of compatibilizer.
  • the compatibilizer is not particularly limited and can be appropriately selected from commonly used compatibilizers.
  • the refrigerator operation method of the present disclosure is a method of operating the refrigerator using the refrigerant of the present disclosure.
  • the method of operating the refrigerator of the present disclosure includes a step of circulating the refrigerant of the present disclosure in the refrigerator.
  • the method for suppressing disproportionation reaction of the present disclosure is a method for suppressing disproportionation reaction of HFO-1132(E) including the step of operating a refrigeration cycle using the refrigerant of the present disclosure. be.
  • disproportionation reaction suppression method of the present disclosure it is possible to operate the refrigeration cycle even in a refrigerator that is not provided with disproportionation reaction suppression means.
  • the effect that the disproportionation reaction of HFO-1132(E) does not occur is obtained especially when the pressure of the refrigerant is 3.0 MPa.
  • a mixed refrigerant was prepared by mixing HFO-1132(E), R32 and R1234yf in mass % shown in Tables 1 to 3 based on the sum of these.
  • Test method A refrigerant composition to be tested was transferred and filled in a test container, heated to 150°C, and then a voltage was applied to the Pt wire in the container to fuse it, thereby giving energy of 30 J to the refrigerant composition. The presence or absence of disproportionation reaction was determined by rapid pressure and temperature rises in the apparatus.
  • Test container 38cc SUS container Test temperature: 150°C Pressure: 3.0MPa (absolute pressure)
  • the burning rate test was performed as follows using the apparatus shown in FIG. 1A.
  • the mixed refrigerant used was made 99.5% pure or better and degassed by repeated freezing, pumping and thawing cycles until no trace of air was visible on the vacuum gauge. Burning rates were measured by the closed method.
  • the initial temperature was ambient temperature. Ignition was achieved by creating an electrical spark between the electrodes in the center of the sample cell.
  • the discharge duration was 1.0-9.9ms and the ignition energy was typically about 0.1-1.0J. Flame propagation was visualized by the Schlieren method.
  • a cylindrical container (inner diameter: 155 mm, length: 198 mm) with two light-transmitting acrylic windows was used as the sample cell, and a xenon lamp was used as the light source. Schlieren images of flames were recorded with a high-speed digital video camera at a framing speed of 600 fps and saved on a PC.
  • the combustion speed (Su (cm/s) is expressed by the volume of unburned gas consumed by a unit area of flame surface per unit time, and is calculated using the following formula.
  • the refrigerant of the present disclosure has a refrigerant concentration limit (RCL) of 50 g/m 3 or more, a refrigerating capacity ratio to R32 of 76% or more, and a GWP of 160 or less. It turns out to be
  • the sum of HFO-1132(E), R32 and R1234yf is 100 mass%.
  • the coordinates (x, y, z) are point U(32.8, 23.4, 43.8), Point S(32.8, 19.1, 48.1) and Point T(26.6, 23.3, 50.1) is within the range of a figure enclosed by straight lines US, ST, and TU connecting the three points of , respectively, or on the straight lines US, ST, and TU.
  • the refrigerant of the present disclosure does not require disproportionation measures, has a refrigerating capacity ratio to R32 of 76% or more, and has a GWP of 160 or less.
  • the sum of HFO-1132(E), R32 and R1234yf is 100 mass%.
  • the coordinates (x, y, z) are point U(32.8, 23.4, 43.8), Point S(32.8, 19.1, 48.1) and Point Z(27.7, 23.4, 48.9) is within the range of the figure enclosed by the straight lines US, SZ and ZU respectively connecting the three points of , or on the straight lines US, SZ and ZU.
  • the refrigerant of the present disclosure does not require disproportionation countermeasures, has a condensation glide of 4.2K or less, and a GWP of 160 or less by satisfying the following requirements.
  • the coordinates (x, y, z) are Point W(30.0, 23.4, 46.6), Point Z'(30.0, 21.5, 48.5) and Point Z(27.7, 23.4, 48.9) within the range of the figure surrounded by straight lines WZ', Z'Z and ZW connecting the three points of , respectively, or on the straight lines WZ', Z'Z and ZW.
  • the refrigerant of the present disclosure has an RCL of 50 g/m 3 or more, a condensation glide of 4.2 K or less, and a GWP of 150 or less by satisfying the following requirements.
  • the refrigerant of the present disclosure does not require disproportionation measures by satisfying the following requirements, has an RCL of 50 g/m 3 or more, a condensation glide of 4.2 K or less, and a GWP of 150 or less. It turns out to be
  • the coordinates (x, y, z) are point Y'(30.0, 21.9, 48.1), Point Z'(30.0,21.5,48.5) and Point Y(29.5, 21.9, 48.6) within the range of the figure enclosed by straight lines Y'Z', Z'Y and YY' respectively connecting the three points of , or on the straight lines Y'Z', Z'Y and YY'.
  • Refrigerating machine oil as a technology of the first group is allowed to coexist with a refrigerant composition to perform a refrigerating cycle, so that it is possible to increase the lubricity in the refrigerating cycle device, resulting in an efficient cycle. It is also possible to exhibit performance.
  • refrigerating machine oils examples include oxygen-containing synthetic oils (ester-based refrigerating machine oils, ether-based refrigerating machine oils, etc.), hydrocarbon-based refrigerating machine oils, and the like. Of these, ester-based refrigerating machine oils and ether-based refrigerating machine oils are preferred from the viewpoint of compatibility with refrigerants or refrigerant compositions. As the refrigerating machine oil, one type may be used alone, or two or more types may be used in combination.
  • Refrigerating machine oil must suppress the deterioration of lubricating properties and compressor airtightness, ensure sufficient compatibility with refrigerant under low temperature conditions, suppress poor lubrication of the compressor, and From the viewpoint of at least one of improving the heat exchange efficiency, the kinematic viscosity at 40° C. is preferably 1 mm 2 /s or more and 750 mm 2 /s or less, and 1 mm 2 /s or more and 400 mm 2 /s or less. It is more preferable to have The kinematic viscosity of the refrigerating machine oil at 100° C. may be, for example, 1 mm 2 /s or more and 100 mm 2 /s or less, and more preferably 1 mm 2 /s or more and 50 mm 2 /s or less.
  • the refrigerating machine oil preferably has an aniline point of -100°C or higher and 0°C or lower.
  • the "aniline point” is, for example, a numerical value that indicates the solubility of a hydrocarbon solvent or the like. It represents the temperature when it disappears and turbidity begins to appear (defined in JIS K 2256). These values are values of the refrigerating machine oil itself in a state in which the refrigerant is not dissolved.
  • the insulating material (insulating coating material, insulating film, etc.) of the electric motor swells and deforms, the insulating properties of the insulating material deteriorate. If the insulating material shrinks and deforms, the insulating material may be damaged in the same manner as in the case of the bearing described above, and in this case also the insulating properties are lowered.
  • a refrigerating machine oil having an aniline point within a predetermined range as described above swelling/contraction deformation of the bearing and insulating material can be suppressed, so that such problems can be avoided.
  • the ester-based refrigerating machine oil includes a dibasic acid ester oil of a dibasic acid and a monohydric alcohol, a polyol ester oil of a polyol and a fatty acid, Alternatively, a complex ester oil of a polyol, a polybasic acid and a monohydric alcohol (or fatty acid), a polyol carbonate oil, or the like can be used as the base oil component.
  • Dibasic acid ester oils include dibasic acids such as oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, phthalic acid, isophthalic acid, and terephthalic acid.
  • dibasic acids with 5 to 10 carbon atoms (glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, etc.) and monohydric alcohols with 1 to 15 carbon atoms having a linear or branched alkyl group
  • Esters with methanol, ethanol, propanol, butanol, pentanol, hexanol, heptanol, octanol, nonanol, decanol, undecanol, dodecanol, tridecanol, tetradecanol, pentadecanol, etc. are preferred.
  • dibasic acid ester oil examples include ditridecyl glutarate, di(2-ethylhexyl) adipate, diisodecyl adipate, ditridecyl adipate, and di(3-ethylhexyl) sebacate.
  • a polyol ester oil is an ester synthesized from a polyhydric alcohol and a fatty acid (carboxylic acid), and has a carbon/oxygen molar ratio of 2 or more and 7.5 or less, preferably 3.2 or more and 5.8 or less. be.
  • Polyhydric alcohols constituting the polyol ester oil include diols (ethylene glycol, 1,3-propanediol, propylene glycol, 1,4-butanediol, 1,2-butanediol, 2-methyl-1,3-propane diol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 2-ethyl-2-methyl-1,3-propanediol, 1,7-heptanediol, 2-methyl-2-propyl- 1,3-propanediol, 2,2-diethyl-1,3-propanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,11-undecanediol, 1, 12-dodecanediol, etc.), polyols having 3 to 20 hydroxyl groups (tri
  • Linear fatty acids and branched fatty acids are preferred.
  • Linear fatty acids include acetic acid, propionic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, tridecanoic acid, tetradecanoic acid, pentadecanoic acid, and hexadecanoic acid.
  • branched fatty acids include 2-methylpropanoic acid, 2-methylbutanoic acid, 3-methylbutanoic acid, 2,2-dimethylpropanoic acid, 2-methylpentanoic acid, 3-methylpentanoic acid, and 4-methylpentanoic acid.
  • the polyhydric alcohol that constitutes the ester may be of one type or a mixture of two or more types.
  • the fatty acid constituting the ester may be a single component, or may be an ester with two or more kinds of fatty acids. Each fatty acid may be of one type or a mixture of two or more types.
  • the polyol ester oil may have a free hydroxyl group.
  • Specific polyol ester oils include neopentyl glycol, trimethylolethane, trimethylolpropane, trimethylolbutane, di-(trimethylolpropane), tri-(trimethylolpropane), pentaerythritol, and di-(pentaerythritol). , tri-(pentaerythritol), etc.
  • esters of neopentyl glycol, trimethylolethane, trimethylolpropane, trimethylolbutane and pentaerythritol, di-(pentaerythritol) are even more preferred, Esters of neopentyl glycol, trimethylolpropane, pentaerythritol, di-(pentaerythritol) and the like with fatty acids having 2 to 20 carbon atoms are preferred.
  • the fatty acid may be only a fatty acid having a linear alkyl group, or may be selected from fatty acids having a branched structure. Mixed esters of linear and branched fatty acids may also be used. Further, two or more fatty acids selected from the above-mentioned fatty acids may be used as the fatty acid constituting the ester.
  • the molar ratio of the linear fatty acid having 4 to 6 carbon atoms and the branched fatty acid having 7 to 9 carbon atoms is 15:85 to 90:10, preferably 15:85 to 85:15, more preferably 20:80 to 80:20, still more preferably 25:75 to 75:25, most preferably 30:70 ⁇ 70:30.
  • the ratio of the total amount of linear fatty acids having 4 to 6 carbon atoms and branched fatty acids having 7 to 9 carbon atoms in the total amount of fatty acids constituting the polyhydric alcohol fatty acid ester is 20 mol% or more. preferable.
  • the molar ratio of the fatty acid having 4 to 6 carbon atoms and the branched fatty acid having 7 to 9 carbon atoms in the fatty acid is 15:85 to 90:10, and the fatty acid having 4 to 6 carbon atoms contains 2-methylpropanoic acid, and the total proportion of fatty acids with 4 to 6 carbon atoms and branched fatty acids with 7 to 9 carbon atoms in the total amount of fatty acids constituting the ester is 20 mol% or more (hereinafter , referred to as "polyhydric alcohol fatty acid ester (A)").
  • the molar ratio of the fatty acid having 4 to 6 carbon atoms and the branched fatty acid having 7 to 9 carbon atoms is 15:85 to 90:10, preferably 15 :85-85:15, more preferably 20:80-80:20, still more preferably 25:75-75:25, most preferably 30:70-70:30.
  • the total ratio of fatty acids having 4 to 6 carbon atoms and branched fatty acids having 7 to 9 carbon atoms in the total amount of fatty acids constituting the polyhydric alcohol fatty acid ester (A) is 20 mol % or more.
  • the refrigerant composition contains difluoromethane
  • sufficient compatibility with the difluoromethane and the viscosity required as a refrigerating machine oil are compatible at a high level. less likely to be
  • the ratio of fatty acids is a value based on the total amount of fatty acids that constitute the polyhydric alcohol fatty acid ester contained in the refrigerating machine oil.
  • fatty acids having 4 to 6 carbon atoms include butanoic acid, 2-methylpropanoic acid, pentanoic acid, 2-methylbutanoic acid, 3-methylbutanoic acid, 2,2-dimethylpropanoic acid, 2-methyl pentanoic acid, 3-methylpentanoic acid, 4-methylpentanoic acid, 2,2-dimethylbutanoic acid, 2,3-dimethylbutanoic acid, 3,3-dimethylbutanoic acid, hexanoic acid and the like.
  • those having a branched alkyl skeleton, such as 2-methylpropanoic acid are preferred.
  • branched fatty acid having 7 to 9 carbon atoms examples include 2-methylhexanoic acid, 3-methylhexanoic acid, 4-methylhexanoic acid, 5-methylhexanoic acid, and 2,2-dimethylpentane.
  • the polyhydric alcohol fatty acid ester (A) has a molar ratio of 15:85 to 90:10 between a fatty acid having 4 to 6 carbon atoms and a branched fatty acid having 7 to 9 carbon atoms, and has 4 to 6 carbon atoms.
  • the fatty acid contains 2-methylpropanoic acid, it may contain fatty acids other than fatty acids with 4 to 6 carbon atoms and branched fatty acids with 7 to 9 carbon atoms as constituent acid components.
  • fatty acids other than the fatty acids having 4 to 6 carbon atoms and branched fatty acids having 7 to 9 carbon atoms include, specifically, fatty acids having 2 to 3 carbon atoms such as acetic acid and propionic acid; heptanoic acid, octanoic acid, Linear fatty acids with 7 to 9 carbon atoms such as nonanoic acid; decanoic acid, undecanoic acid, dodecanoic acid, tridecanoic acid, tetradecanoic acid, pentadecanoic acid, hexadecanoic acid, heptadecanoic acid, octadecanoic acid, nonadecanoic acid, eicosanoic acid, oleic acid, etc. and fatty acids having 10 to 20 carbon atoms.
  • polyhydric alcohol fatty acid esters (A) those whose acid constituents consist only of 2-methylpropanoic acid and 3,5,5-trimethylhexanoic acid ensure the necessary viscosity and contain difluoromethane in the refrigerant composition. It is particularly preferable from the viewpoint of compatibility with the difluoromethane in the case where it is used.
  • the polyhydric alcohol fatty acid ester (A) essentially includes a fatty acid having 4 to 6 carbon atoms and a branched fatty acid having 7 to 9 carbon atoms as an acid component constituting the ester, and optionally other fatty acids. as a component. That is, the polyhydric alcohol fatty acid ester (A) may contain only two types of fatty acids as acid constituents, or may contain three or more types of fatty acids with different structures as acid constituents. , The polyhydric alcohol fatty acid ester preferably contains, as an acid constituent, only a fatty acid in which the carbon atom adjacent to the carbonyl carbon (the ⁇ -position carbon atom) is not a quaternary carbon.
  • the fatty acid constituting the polyhydric alcohol fatty acid ester contains a fatty acid whose ⁇ -position carbon atom is a quaternary carbon, lubrication in the presence of difluoromethane in the case where the refrigerant composition contains difluoromethane tend to be inadequate.
  • polyhydric alcohol constituting the polyol ester according to the present embodiment a polyhydric alcohol having 2 to 6 hydroxyl groups is preferably used.
  • dihydric alcohols include ethylene glycol, 1,3-propanediol, propylene glycol, 1,4-butanediol, 1,2-butanediol, 2-methyl-1,3- Propanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 2-ethyl-2-methyl-1,3-propanediol, 1,7-heptanediol, 2-methyl-2-propyl -1,3-propanediol, 2,2-diethyl-1,3-propanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,11-undecanediol, 1 , 12-dodecanediol and the like.
  • trihydric or higher alcohols include, specifically, trimethylolethane, trimethylolpropane, trimethylolbutane, di-(trimethylolpropane), tri-(trimethylolpropane), pentaerythritol, di-( pentaerythritol), tri-(pentaerythritol), glycerin, polyglycerin (dimer or trimer of glycerin), 1,3,5-pentanetriol, sorbitol, sorbitan, sorbitol glycerin condensate, adonitol, arabitol, xylitol, mannitol sugars such as polyhydric alcohols such as xylose, arabinose, ribose, rhamnose, glucose, fructose, galactose, mannose, sorbose and cellobiose, and partially etherified products thereof.
  • trihydric or higher alcohols include
  • neopentyl glycol, trimethylolethane, trimethylolpropane, trimethylolbutane, di- (trimethylolpropane), tri- (trimethylolpropane), pentaerythritol, di Esters of hindered alcohols such as -(pentaerythritol), tri-(pentaerythritol) are more preferred, esters of neopentyl glycol, trimethylolethane, trimethylolpropane, trimethylolbutane and pentaerythritol, di-(pentaerythritol) is still more preferable, and neopentyl glycol, trimethylolpropane, pentaerythritol, and di-(pentaerythritol) are more preferable, and are particularly excellent in compatibility with refrigerants and hydrolysis stability, so pentaerythritol, di-(pentaery
  • Preferable examples of the acid component constituting the polyhydric alcohol fatty acid ester (A) include the following. (i) butanoic acid, 2-methylpropanoic acid, pentanoic acid, 2-methylbutanoic acid, 3-methylbutanoic acid, 2,2-dimethylpropanoic acid, 2-methylpentanoic acid, 3-methylpentanoic acid, 4-methylpentanoic acid , 2,2-dimethylbutanoic acid, 2,3-dimethylbutanoic acid, 1 to 13 selected from 3,3-dimethylbutanoic acid and hexanoic acid, 2-methylhexanoic acid, 3-methylhexanoic acid, 4- methylhexanoic acid, 5-methylhexanoic acid, 2,2-dimethylpentanoic acid, 2,3-dimethylpentanoic acid, 2,4-dimethylpentanoic acid, 3,3-dimethylpentanoic acid, 3,4-dimethylpentanoic acid
  • the content of the polyhydric alcohol fatty acid ester (A) is 50% by mass or more, preferably 60% by mass or more, more preferably 70% by mass or more, and still more preferably 75% by mass or more based on the total amount of refrigerating machine oil.
  • the refrigerating machine oil according to the present embodiment may contain lubricating base oil and additives other than the polyhydric alcohol fatty acid ester (A) as described later, but the polyhydric alcohol fatty acid ester (A) is 50% by mass. If it is less than that, it becomes impossible to achieve both the required viscosity and compatibility at a high level.
  • the polyhydric alcohol fatty acid ester (A) is mainly used as the base oil.
  • the base oil of the refrigerating machine oil according to the present embodiment only the polyhydric alcohol fatty acid ester (A) may be used alone (that is, the content of the polyhydric alcohol fatty acid ester (A) is 100% by mass).
  • a base oil other than the polyhydric alcohol fatty acid ester (A) may be further contained to the extent that the excellent performance thereof is not impaired.
  • base oils other than the polyhydric alcohol fatty acid ester (A) include hydrocarbon oils such as mineral oils, olefin polymers, alkyldiphenylalkanes, alkylnaphthalenes and alkylbenzenes; polyol esters other than the polyhydric alcohol fatty acid ester (A); Oxygen-containing synthetic oils such as esters, esters such as alicyclic dicarboxylic acid esters, polyglycols, polyvinyl ethers, ketones, polyphenyl ethers, silicones, polysiloxanes, and perfluoroethers (hereinafter sometimes referred to as "other oxygen-containing "synthetic oil”) and the like.
  • hydrocarbon oils such as mineral oils, olefin polymers, alkyldiphenylalkanes, alkylnaphthalenes and alkylbenzenes
  • polyol esters other than the polyhydric alcohol fatty acid ester (A) Oxygen-containing
  • esters other than the polyhydric alcohol fatty acid ester (A), polyglycols, and polyvinyl ethers are preferable, and polyol esters other than the polyhydric alcohol fatty acid ester (A) are particularly preferable.
  • examples of polyol esters other than the polyhydric alcohol fatty acid ester (A) include esters of polyhydric alcohols and fatty acids such as neopentyl glycol, trimethylolethane, trimethylolpropane, trimethylolbutane, pentaerythritol and dipentaerythritol.
  • the neopentyl glycol ester is preferably an ester of neopentyl glycol and a fatty acid having 5 to 9 carbon atoms.
  • Specific examples of such neopentyl glycol esters include neopentyl glycol di3,5,5-trimethylhexanoate, neopentyl glycol di2-ethylhexanoate, neopentyl glycol di2-methylhexanoate.
  • neopentyl glycol di-2-ethylpentanoate esters of neopentyl glycol and 2-methylhexanoic acid/2-ethylpentanoic acid, esters of neopentyl glycol and 3-methylhexanoic acid/5-methylhexanoic acid, Esters of neopentyl glycol and 2-methylhexanoic acid/2-ethylhexanoic acid, esters of neopentyl glycol and 3,5-dimethylhexanoic acid/4,5-dimethylhexanoic acid/3,4-dimethylhexanoic acid, neopentyl glycol dipentanoate, neopentyl glycol di-2-ethylbutanoate, neopentyl glycol di-2-methylpentanoate, neopentyl glycol di-2-methylbutanoate, neopentyl glycol glycol
  • pentaerythritol ester an ester of pentaerythritol and a fatty acid having 5 to 9 carbon atoms is preferable.
  • pentaerythritol esters include pentaerythritol, pentanoic acid, 2-methylbutanoic acid, 3-methylbutanoic acid, hexanoic acid, 2-methylpentanoic acid, 2-ethylbutanoic acid, and 2-ethylpentanoic acid. , 2-methylhexanoic acid, 3,5,5-trimethylhexanoic acid and 2-ethylhexanoic acid.
  • the dipentaerythritol ester is preferably an ester of dipentaerythritol and a fatty acid having 5 to 9 carbon atoms.
  • specific examples of such dipentaerythritol esters include dipentaerythritol, pentanoic acid, 2-methylbutanoic acid, 3-methylbutanoic acid, hexanoic acid, 2-methylpentanoic acid, 2-ethylbutanoic acid, and 2-ethyl Esters with one or more fatty acids selected from pentanoic acid, 2-methylhexanoic acid, 3,5,5-trimethylhexanoic acid and 2-ethylhexanoic acid are included.
  • the content of the oxygen-containing synthetic oil other than the polyhydric alcohol fatty acid ester (A) is there is no particular limitation as long as it does not impair the excellent lubricity and compatibility of the refrigerating machine oil, but when blending a polyol ester other than the polyhydric alcohol fatty acid ester (A), the total amount of the refrigerating machine oil is less than 50% by mass.
  • an oxygen-containing synthetic oil other than polyol ester when blending an oxygen-containing synthetic oil other than polyol ester, it is preferably less than 50% by mass, more preferably 40% by mass or less based on the total amount of refrigerating machine oil. , 30% by mass or less. If the blending amount of the polyol ester other than the pentaerythritol fatty acid ester or the other oxygen-containing synthetic oil is too large, the above effects cannot be sufficiently obtained.
  • the polyol ester other than the polyhydric alcohol fatty acid ester (A) may be a partial ester in which some of the hydroxyl groups of the polyhydric alcohol are not esterified and remain as hydroxyl groups, and all hydroxyl groups are esterified. It may be a complete ester, or a mixture of a partial ester and a complete ester, but the hydroxyl value is preferably 10 mgKOH/g or less, more preferably 5 mgKOH/g or less, Most preferably, it is 3 mg KOH/g or less.
  • the polyol ester is composed of one type of polyol ester having a single structure. It may be contained, or a mixture of two or more polyol esters having different structures may be contained.
  • polyol esters other than the polyhydric alcohol fatty acid ester (A) include esters of one fatty acid and one polyhydric alcohol, esters of two or more fatty acids and one polyhydric alcohol, Either an ester of a fatty acid and two or more polyhydric alcohols or an ester of two or more fatty acids and two or more polyhydric alcohols may be used.
  • the refrigerating machine oil according to the present embodiment may be composed only of the polyhydric alcohol fatty acid ester (A), or may be composed of the polyhydric alcohol fatty acid ester (A) and other base oils. However, it may further contain various additives described later. Also, the working fluid for a refrigerator according to the present embodiment may further contain various additives. In the following description, the content of the additive is shown based on the total amount of refrigerating machine oil, but the content of these components in the working fluid for a refrigerator is preferably described later when based on the total amount of refrigerating machine oil. It is desirable to select within the range.
  • a phosphoric ester In order to further improve the wear resistance and load resistance of the refrigerating machine oil and the working fluid for a refrigerating machine according to the present embodiment, a phosphoric ester, an acidic phosphoric ester, a thiophosphate, an amine salt of an acidic phosphoric ester, and chlorine At least one phosphorus compound selected from the group consisting of monophosphates and phosphites can be blended. These phosphorus compounds are esters of phosphoric acid or phosphorous acid and alkanols, polyether type alcohols, or derivatives thereof.
  • phosphoric acid esters include tributyl phosphate, tripentyl phosphate, trihexyl phosphate, triheptyl phosphate, trioctyl phosphate, trinonyl phosphate, tridecyl phosphate, triundecyl phosphate, tridodecyl phosphate, tritridecyl phosphate, tritetradecyl phosphate, tripentadecyl phosphate, trihexadecyl phosphate, triheptadecyl phosphate, trioctadecyl phosphate, trioleyl phosphate, triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyldiphenyl phosphate, and renyl diphenyl phosphate.
  • Acidic phosphates include monobutyl acid phosphate, monopentyl acid phosphate, monohexyl acid phosphate, monoheptyl acid phosphate, monooctyl acid phosphate, monononyl acid phosphate, monodecyl acid phosphate, monoundecyl acid phosphate, monododecyl Acid phosphate, monotridecyl acid phosphate, monotetradecyl acid phosphate, monopentadecyl acid phosphate, monohexadecyl acid phosphate, monoheptadecyl acid phosphate, monooctadecyl acid phosphate, monooleyl acid phosphate, dibutyl acid phosphate, dipentyl acid phosphate , dihexyl acid phosphate, diheptyl acid phosphate, dioctyl acid phosphate, dinonyl acid phosphate, didecyl acid phosphate,
  • Thiophosphates include tributyl phosphorothionate, tripentyl phosphorothionate, trihexyl phosphorothionate, triheptyl phosphorothionate, trioctyl phosphorothionate, trinonyl phosphorothionate, tridecylphosphothionate follothionate, triundecyl phosphorothionate, tridodecyl phosphorothionate, tritridecyl phosphorothionate, tritetradecyl phosphorothionate, tripentadecyl phosphorothionate, trihexadecyl phosphorothionate, triheptadecyl phosphorothionate, trioctadecyl phosphorothionate, trioleyl phosphorothionate, triphenyl phosphorothionate, tricresyl phosphorothionate, trixylenyl phosphorothionate,
  • amine salts of acidic phosphoric acid esters include amine salts of acidic phosphoric acid esters and amines of primary to tertiary linear or branched alkyl groups having 1 to 24 carbon atoms, preferably 5 to 18 carbon atoms.
  • Amines constituting amine salts of acidic phosphoric esters include linear or branched methylamine, ethylamine, propylamine, butylamine, pentylamine, hexylamine, heptylamine, octylamine, nonylamine, decylamine, undecylamine, and dodecyl.
  • amine tridecylamine, tetradecylamine, pentadecylamine, hexadecylamine, heptadecylamine, octadecylamine, oleylamine, tetracosylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine, dipentylamine, dihexylamine, di Heptylamine, dioctylamine, dinonylamine, didecylamine, diundecylamine, didodecylamine, ditridecylamine, ditetradecylamine, dipentadecylamine, dihexadecylamine, diheptadecylamine, dioctadecylamine, dioleylamine, di Tetracosylamine, trimethylamine, triethylamine, tripropylamine, tributylamine, tripentylamine, trihexy
  • Chlorinated phosphates include tris-dichloropropyl phosphate, tris-chloroethyl phosphate, tris-chlorophenyl phosphate, polyoxyalkylene bis[di(chloroalkyl)] phosphate, and the like.
  • a terpene compound can be added to the refrigerating machine oil and working fluid for refrigerating machines according to the present embodiment in order to further improve their thermal and chemical stability.
  • the term "terpene compound” as used in the present disclosure means a polymerized compound of isoprene and derivatives thereof, and isoprene dimers to octamers are preferably used.
  • terpene compounds include monoterpenes such as geraniol, nerol, linalool, citral (including geranial), citronellol, menthol, limonene, terpinerol, carvone, ionone, thujone, camphor, borneol, farnesene, Sesquiterpenes such as farnesol, nerolidol, juvenile hormone, humulene, caryophyllene, elemen, casinool, cadinene, tutin, diterpenes such as geranylgeraniol, phytol, abietic acid, pimaradien, daphnetoxin, taxol, pimaric acid, geranylfarnesene sesterterpenes such as squalene, limonin, cameliagenin, hopane, triterpenes such as lanosterol, and tetraterpenes such as carotenoids
  • terpene compounds monoterpene, sesquiterpene, diterpene are preferred, sesquiterpene is more preferred, ⁇ -farnesene (3,7,11-trimethyldodeca-1,3,6,10-tetraene) and/or ⁇ -farnesene (7,11-dimethyl-3-methylidendodeca-1,6,10-triene) is particularly preferred.
  • the terpene compounds may be used singly or in combination of two or more.
  • the content of the terpene compound in the refrigerating machine oil according to the present embodiment is not particularly limited. 0.05 to 3% by mass. If the content of the terpene compound is less than 0.001% by mass, the effect of improving the thermal and chemical stability tends to be insufficient, and if it exceeds 10% by mass, the lubricity tends to be insufficient. be. In addition, it is desirable to select the content of the terpene compound in the working fluid for a refrigerator according to the present embodiment so as to be within the above preferable range when the total amount of the refrigerator oil is used as a reference.
  • the refrigerating machine oil and the working fluid for a refrigerating machine according to the present embodiment are further improved in thermal and chemical stability by adding , an allyloxirane compound, an alkyloxirane compound, an alicyclic epoxy compound, an epoxidized fatty acid monoester, and an epoxidized vegetable oil.
  • phenylglycidyl ether type epoxy compound examples include phenylglycidyl ether and alkylphenylglycidyl ether.
  • the alkylphenyl glycidyl ether as used herein includes those having 1 to 3 alkyl groups having 1 to 13 carbon atoms, and among them, those having 1 alkyl group having 4 to 10 carbon atoms, such as n-butylphenyl glycidyl ether, i-butylphenyl glycidyl ether, sec-butylphenyl glycidyl ether, tert-butylphenyl glycidyl ether, pentylphenyl glycidyl ether, hexylphenyl glycidyl ether, heptylphenyl glycidyl ether, octylphenyl glycidyl ether, nonylphenyl glycid
  • alkyl glycidyl ether type epoxy compounds include decyl glycidyl ether, undecyl glycidyl ether, dodecyl glycidyl ether, tridecyl glycidyl ether, tetradecyl glycidyl ether, 2-ethylhexyl glycidyl ether, neopentyl glycol diglycidyl ether, Examples include trimethylolpropane triglycidyl ether, pentaerythritol tetraglycidyl ether, 1,6-hexanediol diglycidyl ether, sorbitol polyglycidyl ether, polyalkylene glycol monoglycidyl ether, and polyalkylene glycol diglycidyl ether.
  • glycidyl ester type epoxy compounds include phenyl glycidyl esters, alkyl glycidyl esters, alkenyl glycidyl esters, etc.
  • Preferred examples include glycidyl-2,2-dimethyloctanoate, glycidyl benzoate and glycidyl acrylate. , glycidyl methacrylate, and the like.
  • allyl oxirane compounds include 1,2-epoxystyrene and alkyl-1,2-epoxystyrene.
  • alkyloxirane compounds include 1,2-epoxybutane, 1,2-epoxypentane, 1,2-epoxyhexane, 1,2-epoxyheptane, 1,2-epoxyoctane, 1,2- Epoxynonane, 1,2-epoxydecane, 1,2-epoxyundecane, 1,2-epoxydodecane, 1,2-epoxytridecane, 1,2-epoxytetradecane, 1,2-epoxypentadecane, 1,2- Examples include epoxyhexadecane, 1,2-epoxyheptadecane, 1,1,2-epoxyoctadecane, 2-epoxynonadecane, and 1,2-epoxyicosane.
  • alicyclic epoxy compounds include 1,2-epoxycyclohexane, 1,2-epoxycyclopentane, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, bis(3,4 -epoxycyclohexylmethyl)adipate, exo-2,3-epoxynorbornane, bis(3,4-epoxy-6-methylcyclohexylmethyl)adipate, 2-(7-oxabicyclo[4.1.0]hept-3- yl)-spiro(1,3-dioxane-5,3′-[7]oxabicyclo[4.1.0]heptane, 4-(1′-methylepoxyethyl)-1,2-epoxy-2-methyl Examples include cyclohexane and 4-epoxyethyl-1,2-epoxycyclohexane.
  • epoxidized fatty acid monoesters include esters of epoxidized fatty acids having 12 to 20 carbon atoms and alcohols, phenols, and alkylphenols having 1 to 8 carbon atoms. Particularly preferred are butyl, hexyl, benzyl, cyclohexyl, methoxyethyl, octyl, phenyl and butylphenyl esters of epoxystearate.
  • epoxidized vegetable oils include epoxy compounds of vegetable oils such as soybean oil, linseed oil, and cottonseed oil.
  • epoxy compounds phenyl glycidyl ether type epoxy compounds, alkyl glycidyl ether type epoxy compounds, glycidyl ester type epoxy compounds, and alicyclic epoxy compounds are preferred.
  • the content of the epoxy compound is not particularly limited, but is 0.01 to 5.0% by mass based on the total amount of the refrigerating machine oil. is preferred, and 0.1 to 3.0% by mass is more preferred.
  • the said epoxy compound may be used individually by 1 type, and may use 2 or more types together.
  • the kinematic viscosity at 40° C. of the refrigerating machine oil containing the polyhydric alcohol fatty acid ester (A) is preferably 20 to 80 mm 2 /s, more preferably 25 to 75 mm 2 /s, most preferably 30 to 70 mm 2 /s.
  • the kinematic viscosity at 100° C. is preferably 2 to 20 mm 2 /s, more preferably 3 to 10 mm 2 /s.
  • the kinematic viscosity is at least the lower limit, it is easy to ensure the viscosity required as a refrigerating machine oil. Compatibility can be sufficient.
  • volume resistivity of the refrigerating machine oil containing the polyhydric alcohol fatty acid ester (A) is not particularly limited, it is preferably 1.0 ⁇ 10 12 ⁇ cm or more, more preferably 1.0 ⁇ 10 13 ⁇ cm or more. , and most preferably 1.0 ⁇ 10 14 ⁇ cm or more. In particular, high electrical insulation tends to be required when used for a closed-type refrigerator.
  • volume resistivity means the value at 25 degreeC measured based on JIS C 2101 "Electrical insulating oil test method.”
  • the water content of the refrigerating machine oil containing the polyhydric alcohol fatty acid ester (A) is not particularly limited, it is preferably 200 ppm or less, more preferably 100 ppm or less, and most preferably 50 ppm or less based on the total amount of refrigerating machine oil. .
  • the water content is required to be small from the viewpoint of the influence on the thermal and chemical stability and electrical insulation of the refrigerator oil.
  • the acid value of the refrigerator oil containing the polyhydric alcohol fatty acid ester (A) is not particularly limited, but is preferably 0.1 mgKOH/g or less, in order to prevent corrosion of the metal used in the refrigerator or piping. More preferably, it can be 0.05 mgKOH/g or less.
  • the acid value means an acid value measured in accordance with JIS K 2501 "Method for testing neutralization value of petroleum products and lubricating oils".
  • the ash content of the refrigerating machine oil containing the polyhydric alcohol fatty acid ester (A) is not particularly limited. It can be 50 ppm or less.
  • the ash content means the value of ash content measured according to JIS K 2272 "Determination of ash content and sulfated ash content of crude oil and petroleum products".
  • Complex ester oils are esters of fatty acids and diacids with monohydric alcohols and polyols.
  • fatty acid dibasic acid, monohydric alcohol, and polyol, the same ones as described above can be used.
  • fatty acid examples include those shown in the polyol ester fatty acid above.
  • Dibasic acids include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, phthalic acid, isophthalic acid, and terephthalic acid.
  • polyols examples include those shown as polyhydric alcohols of the above polyol esters.
  • Complex esters are esters of these fatty acids, dibasic acids, and polyols, and may be single-component esters or esters composed of multiple components.
  • Polyol carbonate oil is an ester of carbonic acid and polyol.
  • Polyols include diols and polyols similar to those described above.
  • the polyol carbonate ester oil may be a ring-opening polymer of a cyclic alkylene carbonate.
  • Ether-Based Refrigerating Machine Oil examples include polyvinyl ether oil and polyoxyalkylene oil.
  • Polyvinyl ether oils include polymers of vinyl ether monomers, copolymers of vinyl ether monomers and hydrocarbon monomers having olefinic double bonds, and copolymers of monomers having olefinic double bonds and polyoxyalkylene chains and vinyl ether monomers. A polymer etc. are mentioned.
  • the carbon/oxygen molar ratio of the polyvinyl ether oil is preferably 2 or more and 7.5 or less, more preferably 2.5 or more and 5.8 or less. When the carbon/oxygen molar ratio is lower than the range, the hygroscopicity increases, and when it is higher than the range, the compatibility decreases.
  • the weight average molecular weight of polyvinyl ether is preferably 200 or more and 3000 or less, more preferably 500 or more and 1500 or less.
  • the polyvinyl ether oil preferably has a pour point of -30°C or lower.
  • the polyvinyl ether oil preferably has a surface tension of 0.02 N/m or more and 0.04 N/m or less at 20°C.
  • the polyvinyl ether oil preferably has a density of 0.8 g/cm 3 or more and 1.8 g/cm 3 or less at 15°C.
  • the polyvinyl ether oil preferably has a saturated water content of 2000 ppm or more at a temperature of 30°C and a relative humidity of 90%.
  • the refrigerator oil may contain polyvinyl ether as a main component.
  • polyvinyl ether which is the main component of the refrigerating machine oil, has compatibility with the HFO-1234yf, and the kinematic viscosity of the refrigerating machine oil at 40 ° C. is 400 mm. If it is 2 /s or less, HFO-1234yf dissolves in the refrigerating machine oil to some extent. Further, when the pour point of the refrigerating machine oil is ⁇ 30° C.
  • the fluidity of the refrigerating machine oil can easily be ensured even in a portion of the refrigerant circuit where the refrigerant composition and the refrigerating machine oil are at a low temperature.
  • the surface tension of the refrigerating machine oil at 20° C. is 0.04 N/m or less, the refrigerating machine oil discharged from the compressor is less likely to form large droplets that are less likely to be washed away by the refrigerant composition. Therefore, the refrigerating machine oil discharged from the compressor is easily dissolved in HFO-1234yf and returned to the compressor together with HFO-1234yf.
  • the kinematic viscosity of the refrigerating machine oil at 40° C. is 30 mm 2 /s or more, insufficient oil film strength due to too low kinematic viscosity is suppressed, and it is easy to ensure lubrication performance.
  • the surface tension of the refrigerating machine oil at 20° C. is 0.02 N/m or more, it is difficult for the oil droplets to form in the gas refrigerant in the compressor, and a large amount of refrigerating machine oil is discharged from the compressor. can be suppressed. Therefore, it is easy to secure a sufficient storage amount of refrigerating machine oil in the compressor.
  • the saturated moisture content of the refrigerator oil is 2000 ppm or more at a temperature of 30°C and a relative humidity of 90%
  • the hygroscopicity of the refrigerator oil can be made relatively high.
  • HFO-1234yf when HFO-1234yf is contained in the refrigerant, it is possible to capture water in HFO-1234yf by the refrigerating machine oil to some extent.
  • HFO-1234yf has a molecular structure that is susceptible to alteration/degradation due to the influence of contained moisture. Therefore, such deterioration can be suppressed due to the moisture absorption effect of the refrigerator oil.
  • the resin functional part is made of polytetrafluoroethylene, polyphenylene sulfide
  • the aniline point of the refrigerating machine oil if it is composed of any one of phenolic resin, polyamide resin, chloroprene rubber, silicon rubber, hydrogenated nitrile rubber, fluororubber, and hydrin rubber, is compatible with the resin functional parts. It is preferable to set the numerical range in consideration of . By setting the aniline point in this way, for example, the compatibility between the bearings constituting the resin functional component and the refrigerator oil is improved.
  • the aniline point if the aniline point is too low, the refrigerating machine oil will easily permeate the bearings and the like, and the bearings and the like will easily swell.
  • the aniline point if the aniline point is too high, it becomes difficult for the refrigerating machine oil to permeate the bearings, etc., and the bearings, etc. tend to shrink. Therefore, by setting the aniline point of the refrigerating machine oil within a predetermined numerical range, the swelling/contraction deformation of the bearing can be prevented.
  • the clearance (gap) at the sliding portion cannot be maintained at a desired length.
  • the vinyl ether monomers may be used singly or in combination of two or more.
  • hydrocarbon monomers having olefinic double bonds include ethylene, propylene, various butenes, various pentenes, various hexenes, various heptenes, various octenes, diisobutylene, triisobutylene, styrene, ⁇ -methylstyrene, and various alkyl-substituted styrenes. is mentioned.
  • Hydrocarbon monomers having an olefinic double bond may be used singly or in combination of two or more.
  • the polyvinyl ether copolymer may be either block or random copolymer.
  • Polyvinyl ether oil may be used alone or in combination of two or more.
  • Polyvinyl ether oil preferably used has a structural unit represented by the following general formula (1).
  • R 1 , R 2 and R 3 may be the same or different and each represents a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms, and R 4 is a divalent hydrocarbon group having 1 to 10 carbon atoms.
  • R 1 to R 5 may be the same or different for each structural unit, and when m is 2 or more in one structural unit, a plurality of R 4 O may be the same or different.
  • alkyl groups cycloalkyl groups, phenyl groups, aryl groups, and arylalkyl groups
  • alkyl groups particularly alkyl groups having 1 to 5 carbon atoms are preferred.
  • the polyvinyl ether oil the ratio of polyvinyl ether oil in which R 5 is an alkyl group having 1 or 2 carbon atoms: polyvinyl ether oil in which R 5 is an alkyl group having 3 or 4 carbon atoms is 40%. : 60% to 100%: preferably contained at 0%.
  • the polyvinyl ether oil in the present embodiment may be a homopolymer having the same structural unit represented by general formula (1), or a copolymer composed of two or more structural units. .
  • the copolymer may be either a block copolymer or a random copolymer.
  • the polyvinyl ether oil according to the present embodiment may be composed only of the structural unit represented by the general formula (1), but further includes a structural unit represented by the following general formula (2). It may be a copolymer. In this case, the copolymer may be either a block copolymer or a random copolymer. (In the formula, R 6 to R 9 may be the same or different, and each represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms.)
  • the terminal of the polyvinyl ether-based compound having the structural unit represented by the above general formula (1) can be converted into a desired structure by the methods shown in the examples of the present disclosure and known methods.
  • Transforming groups can include saturated hydrocarbons, ethers, alcohols, ketones, amides, nitriles, and the like.
  • R 11 , R 21 and R 31 may be the same or different and each represents a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms, and R 41 is a divalent hydrocarbon group having 1 to 10 carbon atoms.
  • R 41 O represents a hydrocarbon group or a divalent ether-bonded oxygen-containing hydrocarbon group having 2 to 20 carbon atoms
  • R 51 represents a hydrocarbon group having 1 to 20 carbon atoms
  • m is the average value of m for polyvinyl ether is 0 ⁇ 10, and when m is 2 or more, a plurality of R 41 O may be the same or different.
  • R 61 , R 71 , R 81 and R 91 may be the same or different, and each represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms.
  • R 12 , R 22 and R 32 may be the same or different and each represents a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms
  • R 42 is a divalent hydrocarbon group having 1 to 10 carbon atoms.
  • R 52 represents a hydrocarbon group having 1 to 20 carbon atoms
  • m is the average value of m for polyvinyl ether is 0 ⁇ 10, and when m is 2 or more, a plurality of R 42 O may be the same or different.
  • R 62 , R 72 , R 82 and R 92 may be the same or different and each represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms.
  • R 13 , R 23 and R 33 may be the same or different and each represents a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms.
  • the polyvinyl ether oil in the present embodiment can be produced by subjecting the above monomers to radical polymerization, cationic polymerization, radiation polymerization, or the like. After the completion of the polymerization reaction, the desired polyvinyl ether compound having the structural unit represented by the general formula (1) can be obtained by subjecting it to a normal separation/purification method as necessary.
  • polyoxyalkylene oil examples include polyoxyalkylene compounds obtained by a method of polymerizing alkylene oxides having 2 to 4 carbon atoms (ethylene oxide, propylene oxide, etc.) using water or a hydroxyl group-containing compound as an initiator. Moreover, the hydroxyl group of the polyoxyalkylene compound may be etherified or esterified.
  • the oxyalkylene units in the polyoxyalkylene oil may be the same in one molecule, or may contain two or more oxyalkylene units. It is preferred that at least an oxypropylene unit is contained in one molecule.
  • R 101 As a specific polyoxyalkylene oil, for example, the following general formula (9) R 101 -[(OR 102 ) k -OR 103 ] l (9) (Wherein, R 101 is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an acyl group having 2 to 10 carbon atoms, or an aliphatic hydrocarbon group having 1 to 10 carbon atoms and having 2 to 6 bonds, R 102 is an alkylene group having 2 to 4 carbon atoms, R 103 is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms or an acyl group having 2 to 10 carbon atoms, l is an integer of 1 to 6, k is the average value of k ⁇ l is a number from 6 to 80.).
  • the alkyl group for R 101 and R 103 may be linear, branched, or cyclic.
  • Specific examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, various butyl groups, various pentyl groups, various hexyl groups, various heptyl groups, various octyl groups, various nonyl groups, and various decyl groups. , a cyclopentyl group, a cyclohexyl group, and the like. If the number of carbon atoms in the alkyl group exceeds 10, the compatibility with the refrigerant is lowered, and phase separation may occur.
  • Preferred alkyl groups have 1 to 6 carbon atoms.
  • the alkyl group portion of the acyl group in R 101 and R 103 may be linear, branched or cyclic. Specific examples of the alkyl group portion of the acyl group include the various groups having 1 to 9 carbon atoms as described above as specific examples of the alkyl group. If the number of carbon atoms in the acyl group exceeds 10, the compatibility with the refrigerant may be lowered and phase separation may occur. Preferred acyl groups have 2 to 6 carbon atoms.
  • R 101 and R 103 are alkyl groups or acyl groups
  • R 101 and R 103 may be the same or different.
  • R 101 is an aliphatic hydrocarbon group having 1 to 10 carbon atoms and having 2 to 6 bonding sites
  • the aliphatic hydrocarbon group may be chain or cyclic. good too.
  • Examples of aliphatic hydrocarbon groups having two bonding sites include ethylene, propylene, butylene, pentylene, hexylene, heptylene, octylene, nonylene, decylene, cyclopentylene, and cyclohexylene. and the like.
  • Aliphatic hydrocarbon groups having 3 to 6 binding sites include, for example, trimethylolpropane, glycerin, pentaerythritol, sorbitol; 1,2,3-trihydroxycyclohexane; 1,3,5-trihydroxycyclohexane.
  • a residue obtained by removing a hydroxyl group from a polyhydric alcohol such as
  • the compatibility with the refrigerant may decrease and phase separation may occur.
  • Preferred carbon number is 2-6.
  • R 102 in the general formula (9) is an alkylene group having 2 to 4 carbon atoms, and the oxyalkylene group of the repeating unit includes an oxyethylene group, an oxypropylene group and an oxybutylene group.
  • the oxyalkylene groups in one molecule may be the same, or two or more kinds of oxyalkylene groups may be contained, but those containing at least oxypropylene units in one molecule are preferred, particularly oxyalkylene units. Those containing 50 mol % or more of oxypropylene units are preferred.
  • l in the general formula (9) is an integer of 1 to 6 and can be determined according to the number of binding sites of R 101 .
  • R 101 is an alkyl group or an acyl group
  • l is 1, and when R 101 is an aliphatic hydrocarbon group having 2, 3, 4, 5 and 6 bonding sites, l is 2, 3, respectively.
  • l is preferably 1 or 2.
  • k is preferably a number such that the average value of k ⁇ l is 6-80.
  • polyoxyalkylene oil is polyoxypropylene diol dimethyl ether represented by the following general formula (10) and poly(oxyethylene/oxypropylene) diol dimethyl ether represented by the following general formula (11). Also, polyoxypropylene diol monobutyl ether represented by the following general formula (12), polyoxypropylene diol monomethyl ether represented by the following general formula (13), and the following general formula Poly (oxyethylene / oxypropylene) diol monomethyl ether represented by (14), poly (oxyethylene / oxypropylene) diol monobutyl ether represented by the following general formula (15), represented by the following general formula (16) polyoxypropylene diol diacetate is preferred from the point of view of economy and the like.
  • hydrocarbon-based refrigerating machine oil for example, alkylbenzene can be used.
  • Alkylbenzenes that can be used include branched alkylbenzenes synthesized from propylene polymer and benzene using a catalyst such as hydrogen fluoride, and straight-chain alkylbenzenes synthesized from normal paraffin and benzene using the same catalyst.
  • the number of carbon atoms in the alkyl group is preferably 1 to 30, more preferably 4 to 20, from the viewpoint of obtaining a suitable viscosity as a lubricating base oil.
  • the number of alkyl groups in one molecule of alkylbenzene is preferably 1 to 4, more preferably 1 to 3, depending on the number of carbon atoms in the alkyl group, in order to keep the viscosity within the set range.
  • the hydrocarbon-based refrigerating machine oil preferably circulates together with the refrigerant in the refrigerating cycle system.
  • Refrigerating machine oil is most preferably in the form of dissolving with the refrigerant, but if it is a refrigerating machine oil that can circulate with the refrigerant in the refrigerating cycle system, for example, a refrigerating machine oil with low solubility (for example, described in Japanese Patent No. 2803451 refrigerating machine oil) can also be used.
  • a refrigerating machine oil with low solubility for example, described in Japanese Patent No. 2803451 refrigerating machine oil
  • the kinematic viscosity of the hydrocarbon-based refrigerator oil is preferably 1 mm 2 /s or more and 50 mm 2 /s or less, more preferably 1 mm 2 /s or more and 25 mm 2 /s or less at 40°C.
  • refrigeration oils may be used singly or in combination of two or more.
  • the content of the hydrocarbon-based refrigerating machine oil in the working fluid for a refrigerator may be, for example, 10 parts by mass or more and 100 parts by mass or less, and 20 parts by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the refrigerant composition. is more preferable.
  • Additives Refrigerant oil may contain one or more additives.
  • Phenyl glycidyl ether, alkyl glycidyl ether, alkylene glycol glycidyl ether, cyclohexene oxide, ⁇ -olefin oxide, epoxy compounds such as epoxidized soybean oil, carbodiimide, and the like can be used as acid scavengers.
  • phenyl glycidyl ether, alkyl glycidyl ether, alkylene glycol glycidyl ether, cyclohexene oxide, and ⁇ -olefin oxide are preferred from the viewpoint of compatibility.
  • the alkyl group of the alkyl glycidyl ether and the alkylene group of the alkylene glycol glycidyl ether may have a branch.
  • the number of carbon atoms is preferably 3 or more and 30 or less, more preferably 4 or more and 24 or less, and even more preferably 6 or more and 16 or less.
  • the ⁇ -olefin oxide may have a total carbon number of 4 or more and 50 or less, more preferably 4 or more and 24 or less, and even more preferably 6 or more and 16 or less. Only one type of acid scavenger may be used, or a plurality of types may be used in combination.
  • phosphate esters for example, one containing phosphate esters can be used.
  • phosphates, phosphates, phosphites, acidic phosphates, acidic phosphites, and the like can be used.
  • Those containing amine salts of phosphites can also be used.
  • Phosphate esters include triaryl phosphate, trialkyl phosphate, trialkylaryl phosphate, triarylalkyl phosphate, trialkenyl phosphate, and the like. Further specific lists of phosphate esters include triphenyl phosphate, tricresyl phosphate, benzyldiphenyl phosphate, ethyl diphenyl phosphate, tributyl phosphate, ethyl dibutyl phosphate, cresyl diphenyl phosphate, dicresylphenyl phosphate, ethylphenyl diphenyl phosphate.
  • diethylphenylphenyl phosphate diethylphenylphenyl phosphate, propylphenyl diphenyl phosphate, dipropylphenyl phenyl phosphate, triethylphenyl phosphate, tripropylphenyl phosphate, butylphenyl diphenyl phosphate, dibutylphenyl phosphate, tributylphenyl phosphate, trihexyl phosphate, tri(2-ethylhexyl) Phosphate, tridecyl phosphate, trilauryl phosphate, trimyristyl phosphate, tripalmityl phosphate, tristearyl phosphate, trioleyl phosphate and the like.
  • acidic phosphates include 2-ethylhexyl acid phosphate, ethyl acid phosphate, butyl acid phosphate, oleyl acid phosphate, tetracosyl acid phosphate, isodecyl acid phosphate, lauryl acid phosphate, tridecyl acid phosphate, Examples include stearyl acid phosphate, isostearyl acid phosphate, and the like.
  • acidic phosphites include dibutyl hydrogen phosphite, dilauryl hydrogen phosphite, dioleyl hydrogen phosphite, distearyl hydrogen phosphite, diphenyl hydrogen phosphite, and the like.
  • phosphoric acid esters oleyl acid phosphate and stearyl acid phosphate are preferred.
  • monosubstituted amines among amines used for amine salts of phosphates, phosphites, acid phosphates or acid phosphites include butylamine, pentylamine, hexylamine, cyclohexylamine, Octylamine, laurylamine, stearylamine, oleylamine, benzylamine and the like.
  • disubstituted amines include dibutylamine, dipentylamine, dihexylamine, dicyclohexylamine, dioctylamine, dilaurylamine, distearylamine, dioleylamine, dibenzylamine, stearyl monoethanolamine, decyl mono ethanolamine, hexyl-monopropanolamine, benzyl-monoethanolamine, phenyl-monoethanolamine, tolyl-monopropanol, and the like.
  • trisubstituted amines include tributylamine, tripentylamine, trihexylamine, tricyclohexylamine, trioctylamine, trilaurylamine, tristearylamine, trioleylamine, tribenzylamine, dioleyl monoethanolamine, Dilauryl Monopropanolamine, Dioctyl Monoethanolamine, Dihexyl Monopropanolamine, Dibutyl Monopropanolamine, Oleyl Diethanolamine, Stearyl Dipropanolamine, Lauryl Diethanolamine, Octyl Dipropanolamine, Butyl Diethanolamine, Benzyl Diethanolamine Diethanolamine, phenyl-diethanolamine, tolyl-dipropanolamine, xylyl-diethanolamine, triethanolamine, tripropanolamine and the like.
  • extreme pressure agents other than the above include monosulfides, polysulfides, sulfoxides, sulfones, thiosulfinates, sulfurized oils and fats, thiocarbonates, thiophenes, thiazoles, and methanesulfonate esters.
  • Extreme pressure agents chlorinated hydrocarbons such as chlorinated paraffin, organic chlorine extreme pressure agents such as chlorinated carboxylic acid derivatives, fluorinated aliphatic carboxylic acids, fluorinated ethylene resins, fluorinated alkylpolysiloxanes, fluorine Organic fluorinated extreme pressure agents such as graphite, alcoholic extreme pressure agents such as higher alcohols, naphthenates (lead naphthenate, etc.), fatty acid salts (fatty acid lead, etc.), thiophosphates (zinc dialkyldithiophosphate) etc.), thiocarbamates, organic molybdenum compounds, organic tin compounds, organic germanium compounds, boric acid esters, and other metal compound-based extreme pressure agents.
  • chlorinated hydrocarbons such as chlorinated paraffin
  • organic chlorine extreme pressure agents such as chlorinated carboxylic acid derivatives, fluorinated aliphatic carboxylic acids, fluorinated ethylene resins, fluorin
  • Phenolic antioxidants include 2,6-di-tert-butyl-4-methylphenol (DBPC), 2,6-di-tert-butyl-4-ethylphenol, 2,2′-methylenebis(4 -methyl-6-tert-butylphenol), 2,4-dimethyl-6-tert-butylphenol, 2,6-di-tert-butylphenol, di-tert-butyl-p-cresol, bisphenol A and the like.
  • DBPC 2,6-di-tert-butyl-4-methylphenol
  • 2,6-di-tert-butyl-4-ethylphenol 2,2′-methylenebis(4 -methyl-6-tert-butylphenol), 2,4-dimethyl-6-tert-butylphenol, 2,6-di-tert-butylphenol, di-tert-butyl-p-cresol, bisphenol A and the like.
  • Amine antioxidants include N,N'-diisopropyl-p-phenylenediamine, N,N'-di-sec-butyl-p-phenylenediamine, phenyl- ⁇ -naphthylamine, N.I. N'-di-phenyl-p-phenylenediamine, N,N-di(2-naphthyl)-p-phenylenediamine and the like.
  • An oxygen scavenger that scavenges oxygen can also be used as the antioxidant.
  • a silicon compound can be used as an antifoaming agent.
  • higher alcohols, fatty acids, and the like can be used as oily agents.
  • Benzotriazole and its derivatives can be used as metal deactivators such as copper deactivators.
  • zinc dithiophosphate or the like can be used as an antiwear agent.
  • the compatibilizer is not particularly limited, and can be appropriately selected from commonly used compatibilizers, and one kind may be used alone, or two or more kinds may be used.
  • Compatibilizers include, for example, polyoxyalkylene glycol ethers, amides, nitriles, ketones, chlorocarbons, esters, lactones, aryl ethers, fluoroethers and 1,1,1-trifluoroalkanes. Polyoxyalkylene glycol ether is particularly preferred as the compatibilizer.
  • the refrigerating machine oil may contain load bearing additives, chlorine scavengers, detergent dispersants, viscosity index improvers, heat resistance improvers, stabilizers, corrosion inhibitors, heat resistance improvers, and pour point depressants as necessary. It is also possible to add an agent, a rust preventive agent, and the like.
  • the blending amount of each of the above additives may be 0.01% by mass or more and 5% by mass or less, preferably 0.05% by mass or more and 3% by mass or less, in the refrigerating machine oil.
  • the mixing ratio of the additive in the working fluid for a refrigerator is preferably 5% by mass or less, more preferably 3% by mass or less.
  • the refrigerating machine oil preferably has a chlorine concentration of 50 ppm or less and a sulfur concentration of 50 ppm or less.
  • the refrigeration cycle devices as the first group technology and the second group technology are air conditioners.
  • FIG. 2A which is a schematic configuration diagram of a refrigerant circuit
  • FIG. 2B which is a schematic control block configuration diagram
  • an air conditioner as a refrigeration cycle device according to a first embodiment. 1 will be explained.
  • the air conditioner 1 is a device that conditions the air in the target space by performing a vapor compression refrigeration cycle.
  • the air conditioner 1 mainly includes an outdoor unit 20, an indoor unit 30, a liquid-side refrigerant communication pipe 6 and a gas-side refrigerant communication pipe 5 that connect the outdoor unit 20 and the indoor unit 30, and an input device and an output device. It has a remote controller (not shown) and a controller 7 that controls the operation of the air conditioner 1 .
  • the air conditioner 1 performs a refrigeration cycle in which the refrigerant enclosed in the refrigerant circuit 10 is compressed, cooled or condensed, decompressed, heated or evaporated, and then compressed again.
  • the refrigerant circuit 10 is filled with refrigerant for performing a vapor compression refrigeration cycle.
  • the refrigerant is any of the refrigerants described in (1), and any one of the refrigerants X, Y, and A to E described above can be used.
  • the refrigerant circuit 10 is filled with refrigerating machine oil together with the mixed refrigerant.
  • Outdoor unit 20 The outdoor unit 20 is connected to the indoor unit 30 via the liquid-side refrigerant communication pipe 6 and the gas-side refrigerant communication pipe 5, and constitutes a part of the refrigerant circuit 10.
  • the outdoor unit 20 mainly includes a compressor 21, a four-way switching valve 22, an outdoor heat exchanger 23, an outdoor expansion valve 24, an outdoor fan 25, a liquid side shutoff valve 29, and a gas side shutoff valve 28. ,have.
  • the compressor 21 is a device that compresses the low-pressure refrigerant in the refrigeration cycle to high pressure.
  • a closed-type compressor is used in which a displacement type compression element (not shown) such as a rotary type or a scroll type is rotationally driven by a compressor motor.
  • the compressor motor is for varying the capacity, and the inverter can control the operating frequency.
  • the compressor 21 is provided with an attached accumulator (not shown) on the suction side (the internal volume of the attached accumulator is smaller than each of the low pressure receiver, the intermediate pressure receiver, and the high pressure receiver, which will be described later, and is preferably less than half).
  • the four-way switching valve 22 connects the discharge side of the compressor 21 and the outdoor heat exchanger 23 and connects the suction side of the compressor 21 and the gas side shutoff valve 28 for cooling operation. and a heating operation connection state in which the suction side of the compressor 21 and the outdoor heat exchanger 23 are connected while the discharge side of the compressor 21 and the gas side shutoff valve 28 are connected.
  • the outdoor heat exchanger 23 is a heat exchanger that functions as a high-pressure refrigerant condenser in the refrigeration cycle during cooling operation, and functions as a low-pressure refrigerant evaporator in the refrigeration cycle during heating operation.
  • the outdoor expansion valve 24 is provided between the liquid side end of the outdoor heat exchanger 23 and the liquid side closing valve 29 .
  • the outdoor expansion valve 24 may be a mechanical expansion valve used together with a capillary tube or a temperature sensing tube, but is preferably an electric expansion valve whose valve opening can be adjusted by control.
  • the liquid-side shut-off valve 29 is a manual valve that is arranged at the connection portion of the outdoor unit 20 with the liquid-side refrigerant communication pipe 6 .
  • the gas-side shut-off valve 28 is a manual valve arranged at the connecting portion between the outdoor unit 20 and the gas-side refrigerant communication pipe 5 .
  • the outdoor unit 20 has an outdoor unit control section 27 that controls the operation of each section that configures the outdoor unit 20 .
  • the outdoor unit control section 27 has a microcomputer including a CPU, memory, and the like.
  • the outdoor unit control section 27 is connected to the indoor unit control section 34 of each indoor unit 30 via a communication line, and transmits and receives control signals and the like.
  • the outdoor unit 20 is provided with a discharge pressure sensor 61, a discharge temperature sensor 62, a suction pressure sensor 63, a suction temperature sensor 64, an outdoor heat exchanger temperature sensor 65, an outside air temperature sensor 66, and the like. Each of these sensors is electrically connected to the outdoor unit control section 27 and transmits detection signals to the outdoor unit control section 27 .
  • the discharge pressure sensor 61 detects the pressure of refrigerant flowing through a discharge pipe that connects the discharge side of the compressor 21 and one of the connection ports of the four-way switching valve 22 .
  • a discharge temperature sensor 62 detects the temperature of the refrigerant flowing through the discharge pipe.
  • the suction pressure sensor 63 detects the pressure of refrigerant flowing through a suction pipe that connects the suction side of the compressor 21 and one of the connection ports of the four-way switching valve 22 .
  • the intake temperature sensor 64 detects the temperature of refrigerant flowing through the intake pipe.
  • the outdoor heat exchanger temperature sensor 65 detects the temperature of the refrigerant flowing through the outlet on the liquid side of the outdoor heat exchanger 23 opposite to the side to which the four-way switching valve 22 is connected.
  • the outdoor air temperature sensor 66 detects the outdoor air temperature before passing through the outdoor heat exchanger 23 .
  • the indoor unit 30 is installed on an indoor wall surface, ceiling, or the like, which is the target space.
  • the indoor unit 30 is connected to the outdoor unit 20 via the liquid-side refrigerant communication pipe 6 and the gas-side refrigerant communication pipe 5, and constitutes part of the refrigerant circuit 10. As shown in FIG.
  • the indoor unit 30 has an indoor heat exchanger 31 and an indoor fan 32.
  • the indoor heat exchanger 31 has a liquid side connected to the liquid side refrigerant communication pipe 6 and a gas side end connected to the gas side refrigerant communication pipe 5 .
  • the indoor heat exchanger 31 is a heat exchanger that functions as a low-pressure refrigerant evaporator in the refrigeration cycle during cooling operation, and functions as a high-pressure refrigerant condenser in the refrigeration cycle during heating operation.
  • the indoor fan 32 draws indoor air into the indoor unit 30, exchanges heat with the refrigerant in the indoor heat exchanger 31, and then generates an air flow for discharging to the outside.
  • the indoor fan 32 is rotationally driven by an indoor fan motor.
  • the indoor unit 30 has an indoor unit control section 34 that controls the operation of each section that constitutes the indoor unit 30 .
  • the indoor unit control section 34 has a microcomputer including a CPU, memory, and the like.
  • the indoor unit control section 34 is connected to the outdoor unit control section 27 via a communication line, and transmits and receives control signals and the like.
  • the indoor unit 30 is provided with an indoor liquid side heat exchanger temperature sensor 71, an indoor air temperature sensor 72, and the like. Each of these sensors is electrically connected to the indoor unit controller 34 and transmits detection signals to the indoor unit controller 34 .
  • the indoor liquid-side heat exchanger temperature sensor 71 detects the temperature of the refrigerant flowing through the liquid-side outlet of the indoor heat exchanger 31 opposite to the side to which the four-way switching valve 22 is connected.
  • the indoor air temperature sensor 72 detects the indoor air temperature before passing through the indoor heat exchanger 31 .
  • Controller 7 In the air conditioner 1, the outdoor unit control section 27 and the indoor unit control section 34 are connected via a communication line, thereby controlling the operation of the air conditioner 1. 7 is configured.
  • the controller 7 mainly has a CPU (Central Processing Unit) and memories such as ROM and RAM. Various processes and controls by the controller 7 are realized by integrally functioning each part included in the outdoor unit control section 27 and/or the indoor unit control section 34 .
  • CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • a cooling operation mode and a heating operation mode are provided as operation modes.
  • the controller 7 determines whether it is the cooling operation mode or the heating operation mode based on the instruction received from the remote control or the like, and executes it.
  • Cooling operation mode In the air conditioning apparatus 1, in the cooling operation mode, the connection state of the four-way switching valve 22 is connected to the discharge side of the compressor 21 and the outdoor heat exchanger 23 while compressing.
  • the suction side of the compressor 21 and the gas side stop valve 28 are connected to the cooling operation connection state, and the refrigerant charged in the refrigerant circuit 10 is mainly supplied to the compressor 21, the outdoor heat exchanger 23, the outdoor expansion valve 24, the indoor The heat exchanger 31 is circulated in order.
  • the refrigerant circuit 10 when the cooling operation mode is started, in the refrigerant circuit 10, the refrigerant is sucked into the compressor 21, compressed, and then discharged.
  • the capacity of the compressor 21 is controlled according to the cooling load required by the indoor unit 30 .
  • the capacity control is not particularly limited. For example, when the air conditioner 1 is controlled so that the indoor air temperature satisfies the set temperature, the discharge temperature (the temperature detected by the discharge temperature sensor 62) and the indoor temperature (the temperature detected by the indoor air temperature sensor 72).
  • the gas refrigerant discharged from the compressor 21 passes through the four-way switching valve 22 and flows into the gas side end of the outdoor heat exchanger 23 .
  • the gas refrigerant that has flowed into the gas side end of the outdoor heat exchanger 23 exchanges heat with the outdoor air supplied by the outdoor fan 25 in the outdoor heat exchanger 23, condenses, becomes liquid refrigerant, and undergoes outdoor heat exchange. It flows out from the liquid side end of the vessel 23 .
  • the refrigerant that has flowed out from the liquid side end of the outdoor heat exchanger 23 is decompressed when passing through the outdoor expansion valve 24 .
  • the outdoor expansion valve 24 is controlled, for example, so that the degree of superheat of the refrigerant sucked into the compressor 21 becomes a predetermined target degree of superheat.
  • the degree of superheat of the refrigerant sucked into the compressor 21 is obtained, for example, by subtracting the saturation temperature corresponding to the suction pressure (detected pressure of the suction pressure sensor 63) from the suction temperature (detected temperature of the suction temperature sensor 62). be able to.
  • the method of controlling the degree of valve opening of the outdoor expansion valve 24 is not particularly limited.
  • the degree of superheat of the refrigerant discharged from may be controlled so as to satisfy a predetermined condition.
  • the refrigerant that has flowed into the indoor unit 30 flows into the indoor heat exchanger 31, where it exchanges heat with the indoor air supplied by the indoor fan 32, evaporates, and becomes a gas refrigerant to generate indoor heat. It flows out from the gas side end of the exchanger 31 .
  • the gas refrigerant flowing out from the gas side end of the indoor heat exchanger 31 flows into the gas side refrigerant communication pipe 5 .
  • the refrigerant that has flowed through the gas-side refrigerant communication pipe 5 passes through the gas-side closing valve 28 and the four-way switching valve 22 and is sucked into the compressor 21 again.
  • the capacity of the compressor 21 is controlled according to the heating load required by the indoor unit 30 .
  • the capacity control is not particularly limited. For example, when the air conditioner 1 is controlled so that the indoor air temperature satisfies the set temperature, the discharge temperature (the temperature detected by the discharge temperature sensor 62) and the indoor temperature (the temperature detected by the indoor air temperature sensor 72).
  • the gas refrigerant discharged from the compressor 21 flows into the indoor unit 30 after flowing through the four-way switching valve 22 and the gas-side refrigerant communication pipe 5 .
  • the refrigerant that has flowed into the indoor unit 30 flows into the gas-side end of the indoor heat exchanger 31, where it exchanges heat with the indoor air supplied by the indoor fan 32 and is condensed.
  • the refrigerant flows out from the liquid side end of the indoor heat exchanger 31 as a phase state refrigerant or a liquid refrigerant.
  • the refrigerant flowing out from the liquid side end of the indoor heat exchanger 31 flows into the liquid side refrigerant communication pipe 6 .
  • the refrigerant that has flowed through the liquid-side refrigerant communication pipe 6 flows into the outdoor unit 20, passes through the liquid-side shutoff valve 29, and is depressurized at the outdoor expansion valve 24 to a low pressure in the refrigeration cycle.
  • the outdoor expansion valve 24 is controlled, for example, so that the degree of superheat of the refrigerant sucked into the compressor 21 becomes a predetermined target degree of superheat.
  • the method of controlling the degree of valve opening of the outdoor expansion valve 24 is not particularly limited.
  • the degree of superheat of the refrigerant discharged from may be controlled so as to satisfy a predetermined condition.
  • the refrigerant that has flowed in from the liquid side end of the outdoor heat exchanger 23 exchanges heat with the outdoor air supplied by the outdoor fan 25 in the outdoor heat exchanger 23, evaporates, and becomes a gas refrigerant, which is then transferred to the outdoor heat exchanger 23. out of the gas side end of the
  • the refrigerant that has flowed out from the gas side end of the outdoor heat exchanger 23 passes through the four-way switching valve 22 and is sucked into the compressor 21 again.
  • the air conditioner 1a differs from the air conditioner 1 of the first embodiment in that the outdoor unit 20 includes a low-pressure receiver 41.
  • FIG. 1a is a diagrammatic Configuration of Air Conditioner 1a.
  • the low-pressure receiver 41 is provided between the suction side of the compressor 21 and one of the connection ports of the four-way switching valve 22, and is a refrigerant container capable of storing excess refrigerant in the refrigerant circuit 10 as liquid refrigerant. be.
  • the suction pressure sensor 63 and the suction temperature sensor 64 are provided so as to detect the refrigerant flowing between the low pressure receiver 41 and the suction side of the compressor 21 .
  • the compressor 21 is provided with an attached accumulator (not shown), and the low-pressure receiver 41 is connected downstream of the attached accumulator.
  • the compressor 21 for example, the evaporation temperature of the refrigerant in the refrigerant circuit 10 is equal to the set temperature and the indoor temperature (indoor air temperature sensor 72
  • the operating frequency is capacity-controlled so that the target evaporation temperature is determined according to the difference from the detected temperature).
  • the evaporation temperature is not particularly limited, it may be grasped as the refrigerant saturation temperature corresponding to the pressure detected by the suction pressure sensor 63, for example.
  • the gas refrigerant discharged from the compressor 21 flows through the four-way switching valve 22, the outdoor heat exchanger 23, and the outdoor expansion valve 24 in this order.
  • the degree of opening of the outdoor expansion valve 24 is controlled so as to satisfy a predetermined condition, for example, the degree of supercooling of the refrigerant flowing through the liquid-side outlet of the outdoor heat exchanger 23 reaches a target value.
  • the degree of subcooling of the refrigerant flowing through the liquid-side outlet of the outdoor heat exchanger 23 is not particularly limited, for example, from the temperature detected by the outdoor heat exchanger temperature sensor 65, the high pressure of the refrigerant circuit 10 (detected by the discharge pressure sensor 61 It can be obtained by subtracting the saturation temperature of the refrigerant corresponding to the pressure).
  • the method of controlling the degree of valve opening of the outdoor expansion valve 24 is not particularly limited.
  • the degree of superheat of the refrigerant discharged from may be controlled so as to satisfy a predetermined condition.
  • the compressor 21 for example, the condensing temperature of the refrigerant in the refrigerant circuit 10 is equal to the set temperature and the indoor temperature (indoor air temperature sensor 72
  • the operating frequency is capacity-controlled so that the target condensing temperature is determined according to the difference from the detected temperature.
  • the condensation temperature is not particularly limited, it may be grasped as the refrigerant saturation temperature corresponding to the pressure detected by the discharge pressure sensor 61, for example.
  • the gas refrigerant discharged from the compressor 21 flows through the four-way switching valve 22 and the gas-side refrigerant communication pipe 5, and then flows into the gas-side end of the indoor heat exchanger 31 of the indoor unit 30. condensed at The refrigerant flowing out from the liquid side end of the indoor heat exchanger 31 flows through the liquid side refrigerant communication pipe 6, flows into the outdoor unit 20, passes through the liquid side stop valve 29, and reaches the low pressure in the refrigeration cycle at the outdoor expansion valve 24. is depressurized until The opening degree of the outdoor expansion valve 24 is controlled so as to satisfy a predetermined condition, for example, the degree of subcooling of the refrigerant flowing through the liquid-side outlet of the indoor heat exchanger 31 becomes a target value.
  • the refrigerant decompressed by the outdoor expansion valve 24 evaporates in the outdoor heat exchanger 23, passes through the four-way switching valve 22 and the low-pressure receiver 41, and is sucked into the compressor 21 again.
  • liquid refrigerant that has not completely evaporated in the outdoor heat exchanger 23 is stored as a surplus refrigerant.
  • control control of the outdoor expansion valve 24 to ensure that the degree of superheat of the refrigerant sucked into the compressor 21 is equal to or higher than a predetermined value is not performed.
  • control control of the outdoor expansion valve 24 to ensure that the degree of superheat of the refrigerant sucked into the compressor 21 is equal to or higher than a predetermined value.
  • the degree of supercooling of the refrigerant flowing through the outlet is can be controlled to sufficiently ensure
  • FIG. 2E which is a schematic configuration diagram of a refrigerant circuit
  • FIG. 2F which is a schematic control block configuration diagram
  • an air conditioner as a refrigeration cycle device according to a third embodiment. 1b will be explained.
  • the difference with the air conditioning apparatus 1a of 2nd Embodiment is mainly demonstrated.
  • the air conditioner 1b differs from the air conditioner 1a of the second embodiment in that a plurality of indoor units are provided in parallel and The unit differs in that an indoor expansion valve is provided on the liquid refrigerant side of the indoor heat exchanger.
  • the air conditioner 1b has a first indoor unit 30 and a second indoor unit 35 that are connected in parallel.
  • the first indoor unit 30 has a first indoor heat exchanger 31 and a first indoor fan 32, as in the above embodiment, and the first indoor expansion valve on the liquid refrigerant side of the first indoor heat exchanger 31. 33 are provided.
  • the first indoor expansion valve 33 is preferably an electric expansion valve whose valve opening degree can be adjusted.
  • the first indoor unit 30 includes a first indoor unit controller 34 and a first indoor liquid side heat exchange temperature sensor 71 electrically connected to the first indoor unit controller 34.
  • a first room air temperature sensor 72 is provided, and a first room gas side heat exchanger temperature sensor 73 and the like are also provided.
  • the first indoor liquid-side heat exchanger temperature sensor 71 detects the temperature of the refrigerant flowing through the liquid refrigerant-side outlet of the first indoor heat exchanger 31 .
  • the first indoor gas side heat exchanger temperature sensor 73 detects the temperature of the refrigerant flowing through the gas refrigerant side outlet of the first indoor heat exchanger 31 .
  • the second indoor unit 35 has a second indoor heat exchanger 36 and a second indoor fan 37 in the same manner as the first indoor unit 30 .
  • An expansion valve 38 is provided.
  • the second indoor expansion valve 38 is preferably an electric expansion valve whose opening degree can be adjusted.
  • the second indoor unit 35 includes a second indoor unit controller 39 and a second indoor liquid side heat exchanger temperature sensor electrically connected to the second indoor unit controller 39 .
  • a sensor 75, a second room air temperature sensor 76 and a second room gas side heat exchanger temperature sensor 77 are provided.
  • the air conditioner 1b is different from the air conditioner 1a of the second embodiment in that the outdoor unit is not provided with the outdoor expansion valve 24, and the bypass pipe 40 having the bypass expansion valve 49 is provided. different in that
  • the bypass pipe 40 includes a refrigerant pipe extending from the liquid refrigerant side outlet of the outdoor heat exchanger 23 to the liquid side shutoff valve 29, and a refrigerant pipe extending from one connection port of the four-way switching valve 22 to the low pressure receiver 41. Refrigerant piping to be connected.
  • the bypass expansion valve 49 is preferably an electric expansion valve whose opening degree can be adjusted.
  • the bypass pipe 40 is not limited to being provided with an electric expansion valve whose opening degree can be adjusted, and may have, for example, a capillary tube and an openable/closable electromagnetic valve.
  • the gas refrigerant discharged from the compressor 21 is condensed in the outdoor heat exchanger 23 via the four-way switching valve 22 .
  • the refrigerant that has flowed through the outdoor heat exchanger 23 is sent to the first indoor unit 30 and the second indoor unit 35 via the liquid side shutoff valve 29 and the liquid side refrigerant communication pipe 6 .
  • the first indoor expansion valve 33 is set so as to satisfy a predetermined condition, for example, the degree of superheat of the refrigerant flowing through the gas-side outlet of the first indoor heat exchanger 31 becomes a target value. , the valve opening is controlled.
  • the degree of superheat of the refrigerant flowing through the gas-side outlet of the first indoor heat exchanger 31 is not particularly limited, for example, from the temperature detected by the first indoor gas-side heat exchanger temperature sensor 73, the low pressure (intake It can be obtained by subtracting the saturation temperature of the refrigerant corresponding to the pressure detected by the pressure sensor 63).
  • the degree of superheat of the refrigerant flowing through the gas side outlet of the second indoor heat exchanger 36 becomes the target value.
  • the valve opening degree is controlled so as to satisfy predetermined conditions such as
  • the degree of superheat of the refrigerant flowing through the gas-side outlet of the second indoor heat exchanger 36 is not particularly limited, either. It can be obtained by subtracting the saturation temperature of the refrigerant corresponding to the pressure detected by the suction pressure sensor 63).
  • both the first indoor expansion valve 33 and the second indoor expansion valve 38 have refrigerant saturation temperature obtained by subtracting the refrigerant saturation temperature corresponding to the pressure detected by the suction pressure sensor 63 from the temperature detected by the suction temperature sensor 64.
  • the degree of valve opening may be controlled so as to satisfy a predetermined condition such as the degree of superheat becoming a target value.
  • the method of controlling the valve opening degrees of the first indoor expansion valve 33 and the second indoor expansion valve 38 is not particularly limited, and for example, the discharge temperature of the refrigerant discharged from the compressor 21 is controlled to a predetermined temperature. Alternatively, the degree of superheat of the refrigerant discharged from the compressor 21 may be controlled so as to satisfy a predetermined condition.
  • the refrigerant decompressed by the first indoor expansion valve 33 evaporates in the first indoor heat exchanger 31
  • the refrigerant decompressed by the second indoor expansion valve 38 evaporates in the second indoor heat exchanger 36, and after joining, It flows into the gas side refrigerant communication pipe 5 .
  • the refrigerant that has flowed through the gas side refrigerant communication pipe 5 passes through the gas side stop valve 28 , the four-way switching valve 22 and the low pressure receiver 41 and is sucked into the compressor 21 again.
  • the low-pressure receiver 41 the liquid refrigerant that has not been evaporated in the first indoor heat exchanger 31 and the second indoor heat exchanger is stored as a surplus refrigerant.
  • bypass expansion valve 49 of the bypass pipe 40 is controlled to be opened or the valve opening degree is increased when a predetermined condition regarding that the amount of refrigerant inside the outdoor heat exchanger 23 functioning as a condenser is excessive. is done.
  • Control of the degree of opening of the bypass expansion valve 49 is not particularly limited. Alternatively, it may be controlled to switch between the open state and the closed state at predetermined time intervals so as to increase the flow rate.
  • the compressor 21 in the heating operation mode, adjusts the operating frequency so that the condensing temperature of the refrigerant in the refrigerant circuit 10 reaches the target condensing temperature.
  • the target condensing temperature is preferably determined according to the indoor unit 30, 35 having the largest difference between the set temperature and the indoor temperature (the indoor unit having the largest load).
  • the condensation temperature is not particularly limited, it may be grasped as the refrigerant saturation temperature corresponding to the pressure detected by the discharge pressure sensor 61, for example.
  • first indoor expansion valve 33 of the first indoor unit 30 is designed so that the degree of supercooling of the refrigerant flowing on the liquid side of the first indoor heat exchanger 31 becomes a predetermined target value, and other predetermined conditions are satisfied. The degree of opening is controlled.
  • second indoor expansion valve 38 of the second indoor unit 35 so that the degree of subcooling of the refrigerant flowing on the liquid side of the second indoor heat exchanger 36 reaches a predetermined target value, Valve opening is controlled.
  • the degree of subcooling of the refrigerant flowing on the liquid side of the first indoor heat exchanger 31 is determined from the temperature detected by the first indoor liquid-side heat exchanger temperature sensor 71 to the high pressure in the refrigerant circuit 10 (the pressure detected by the discharge pressure sensor 61). can be obtained by subtracting the saturation temperature of the refrigerant corresponding to .
  • the degree of subcooling of the refrigerant flowing on the liquid side of the second indoor heat exchanger 36 from the temperature detected by the second indoor liquid-side heat exchanger temperature sensor 75, the high pressure in the refrigerant circuit 10 (the discharge pressure sensor 61 It can be obtained by subtracting the saturation temperature of the refrigerant corresponding to the detected pressure).
  • the bypass expansion valve 49 of the bypass pipe 40 may be maintained in a fully closed state, for example.
  • the air conditioner 1b by providing the low-pressure receiver 41, liquid compression in the compressor 21 can be suppressed. Also, during cooling operation, the first indoor expansion valve 33 and the second indoor expansion valve 38 are controlled for superheating, and during heating operation, the supercooling degree of the first indoor expansion valve 33 and the second indoor expansion valve 38 is controlled. Thus, it is easy to sufficiently exhibit the capabilities of the first indoor heat exchanger 31 and the second indoor heat exchanger 36 .
  • FIG. 2G is a schematic configuration diagram of a refrigerant circuit
  • FIG. 2H which is a schematic control block configuration diagram. 1c will be explained.
  • the difference with the air conditioning apparatus 1a of 2nd Embodiment is mainly demonstrated.
  • the air conditioner 1c is different from the air conditioner 1a of the second embodiment in that the outdoor unit 20 does not have the low pressure receiver 41 and the high pressure receiver 42 is not provided. It is different in that it has an outdoor bridge circuit 26 .
  • the indoor unit 30 includes an indoor liquid-side heat exchanger temperature sensor 71 that detects the temperature of refrigerant flowing on the liquid side of the indoor heat exchanger 31, an indoor air temperature sensor 72 that detects the indoor air temperature, and an indoor heat exchanger. and an indoor gas side heat exchanger temperature sensor 73 that detects the temperature of the refrigerant flowing on the gas side of 31 .
  • the outdoor bridge circuit 26 is provided between the liquid side of the outdoor heat exchanger 23 and the liquid side shutoff valve 29, and has four connection points and a check valve provided between each connection point.
  • Refrigerant piping is connected.
  • the refrigerant pipe extending from the gas region in the internal space of the high-pressure receiver 42 is provided with the outdoor expansion valve 24 in the middle.
  • the compressor 21 for example, the evaporation temperature of the refrigerant in the refrigerant circuit 10 is equal to the set temperature and the indoor temperature (indoor air temperature sensor 72
  • the operating frequency is capacity-controlled so that the target evaporation temperature is determined according to the difference from the detected temperature).
  • the evaporation temperature is not particularly limited, for example, it may be grasped as the temperature detected by the indoor liquid side heat exchanger temperature sensor 71, or it may be grasped as the saturation temperature of the refrigerant corresponding to the pressure detected by the suction pressure sensor 63. good too.
  • the gas refrigerant discharged from the compressor 21 is condensed in the outdoor heat exchanger 23 via the four-way switching valve 22 .
  • the refrigerant that has flowed through the outdoor heat exchanger 23 flows into the high pressure receiver 42 via part of the outdoor bridge circuit 26 .
  • the surplus refrigerant in the refrigerant circuit 10 is stored as liquid refrigerant.
  • the gas refrigerant that has flowed out of the gas region of the high pressure receiver 42 is decompressed in the outdoor expansion valve 24 .
  • the outdoor expansion valve 24 satisfies a predetermined condition, for example, the degree of superheat of the refrigerant flowing through the gas-side outlet of the indoor heat exchanger 31 or the degree of superheat of the refrigerant flowing through the suction side of the compressor 21 becomes a target value.
  • the valve opening is controlled.
  • the degree of superheat of the refrigerant flowing through the gas-side outlet of the indoor heat exchanger 31 is not particularly limited, for example, from the temperature detected by the indoor gas-side heat exchanger temperature sensor 73, the low pressure of the refrigerant circuit 10 (the suction pressure sensor 63 It may be obtained by subtracting the saturation temperature of the refrigerant corresponding to the detected pressure).
  • the degree of superheat of the refrigerant flowing on the suction side of the compressor 21 may be obtained by subtracting the saturation temperature of the refrigerant corresponding to the pressure detected by the suction pressure sensor 63 from the temperature detected by the suction temperature sensor 64 .
  • the method of controlling the degree of valve opening of the outdoor expansion valve 24 is not particularly limited. The degree of superheat of the refrigerant discharged from may be controlled so as to satisfy a predetermined condition.
  • the refrigerant decompressed by the outdoor expansion valve 24 flows through another part of the outdoor bridge circuit 26, flows into the indoor unit 30 via the liquid side shutoff valve 29 and the liquid side refrigerant communication pipe 6, and flows through the indoor heat exchanger 31. evaporates at The refrigerant that has flowed through the indoor heat exchanger 31 passes through the gas side refrigerant communication pipe 5 , the gas side shutoff valve 28 and the four-way switching valve 22 and is sucked into the compressor 21 again.
  • the compressor 21 for example, the condensing temperature of the refrigerant in the refrigerant circuit 10 is equal to the set temperature and the indoor temperature (indoor air temperature sensor 72
  • the operating frequency is capacity-controlled so that the target condensing temperature is determined according to the difference from the detected temperature.
  • the condensation temperature is not particularly limited, it may be grasped as the refrigerant saturation temperature corresponding to the pressure detected by the discharge pressure sensor 61, for example.
  • the gas refrigerant discharged from the compressor 21 flows through the four-way switching valve 22 and the gas-side refrigerant communication pipe 5, and then flows into the gas-side end of the indoor heat exchanger 31 of the indoor unit 30. condensed at The refrigerant flowing out from the liquid side end of the indoor heat exchanger 31 passes through the liquid side refrigerant communication pipe 6, flows into the outdoor unit 20, passes through the liquid side stop valve 29, and flows through a part of the outdoor bridge circuit 26. , into the high pressure receiver 42 . In addition, in the high-pressure receiver 42, the surplus refrigerant in the refrigerant circuit 10 is stored as liquid refrigerant. The gas refrigerant that has flowed out of the gas region of the high-pressure receiver 42 is depressurized at the outdoor expansion valve 24 to a low pressure in the refrigeration cycle.
  • the degree of opening of the outdoor expansion valve 24 is controlled so as to satisfy a predetermined condition, for example, the degree of superheat of the refrigerant sucked by the compressor 21 reaches a target value.
  • the degree of superheat of the refrigerant flowing on the suction side of the compressor 21 is not particularly limited. be able to.
  • the method of controlling the degree of valve opening of the outdoor expansion valve 24 is not particularly limited.
  • the degree of superheat of the refrigerant discharged from may be controlled so as to satisfy a predetermined condition.
  • the refrigerant decompressed by the outdoor expansion valve 24 flows through another part of the outdoor bridge circuit 26, evaporates in the outdoor heat exchanger 23, passes through the four-way switching valve 22, and is sucked into the compressor 21 again.
  • FIG. 2I is a schematic configuration diagram of a refrigerant circuit
  • FIG. 2J which is a schematic control block configuration diagram
  • an air conditioner as a refrigeration cycle device according to a fifth embodiment. 1d will be explained.
  • the difference with the air conditioning apparatus 1c of 4th Embodiment is mainly demonstrated.
  • the air conditioner 1d differs from the air conditioner 1c of the fourth embodiment in that a plurality of indoor units are provided in parallel and The unit differs in that an indoor expansion valve is provided on the liquid refrigerant side of the indoor heat exchanger.
  • the air conditioner 1d has a first indoor unit 30 and a second indoor unit 35 connected in parallel.
  • the first indoor unit 30 has a first indoor heat exchanger 31 and a first indoor fan 32, as in the above embodiment, and the first indoor expansion valve on the liquid refrigerant side of the first indoor heat exchanger 31. 33 are provided.
  • the first indoor expansion valve 33 is preferably an electric expansion valve whose valve opening degree can be adjusted.
  • the first indoor unit 30 includes a first indoor unit controller 34 and a first indoor liquid side heat exchange temperature sensor 71 electrically connected to the first indoor unit controller 34. , a first indoor air temperature sensor 72, a first indoor gas side heat exchanger temperature sensor 73, and the like are provided.
  • the first indoor liquid-side heat exchanger temperature sensor 71 detects the temperature of the refrigerant flowing through the liquid refrigerant-side outlet of the first indoor heat exchanger 31 .
  • the first indoor gas side heat exchanger temperature sensor 73 detects the temperature of the refrigerant flowing through the gas refrigerant side outlet of the first indoor heat exchanger 31 .
  • the second indoor unit 35 has a second indoor heat exchanger 36 and a second indoor fan 37 in the same manner as the first indoor unit 30 .
  • An expansion valve 38 is provided.
  • the second indoor expansion valve 38 is preferably an electric expansion valve whose opening degree can be adjusted.
  • the second indoor unit 35 includes a second indoor unit controller 39 and a second indoor liquid side heat exchanger temperature sensor electrically connected to the second indoor unit controller 39 .
  • a sensor 75, a second room air temperature sensor 76, and a second room gas side heat exchanger temperature sensor 77 are provided.
  • Cooling operation mode In the air conditioner 1c, in the cooling operation mode, the compressor 21 controls the capacity of the operating frequency so that, for example, the evaporation temperature of the refrigerant in the refrigerant circuit 10 reaches the target evaporation temperature. be done.
  • the target evaporation temperature is preferably determined according to the indoor unit 30, 35 with the largest difference between the set temperature and the indoor temperature (the indoor unit with the largest load).
  • the gas refrigerant discharged from the compressor 21 is condensed in the outdoor heat exchanger 23 via the four-way switching valve 22 .
  • the refrigerant that has flowed through the outdoor heat exchanger 23 flows into the high pressure receiver 42 via part of the outdoor bridge circuit 26 .
  • the surplus refrigerant in the refrigerant circuit 10 is stored as liquid refrigerant.
  • the gas refrigerant that has flowed out of the gas region of the high pressure receiver 42 is decompressed in the outdoor expansion valve 24 .
  • the outdoor expansion valve 24 is controlled, for example, so that the valve opening degree is fully open.
  • the refrigerant that has passed through the outdoor expansion valve 24 flows through another part of the outdoor bridge circuit 26, and flows into the first indoor unit 30 and the second indoor unit 35 via the liquid side shutoff valve 29 and the liquid side refrigerant communication pipe 6. do.
  • the refrigerant that has flowed into the first indoor unit 30 is decompressed by the first indoor expansion valve 33 .
  • the degree of opening of the first indoor expansion valve 33 is controlled so that the degree of superheat of the refrigerant flowing through the gas-side outlet of the first indoor heat exchanger 31 satisfies a predetermined condition, such as a target value.
  • a predetermined condition such as a target value.
  • the degree of superheat of the refrigerant flowing through the gas-side outlet of the first indoor heat exchanger 31 is not particularly limited, for example, from the temperature detected by the first indoor gas-side heat exchanger temperature sensor 73, the low pressure (intake It may be obtained by subtracting the saturation temperature of the refrigerant corresponding to the pressure detected by the pressure sensor 63).
  • the refrigerant that has flowed into the second indoor unit 35 is decompressed at the second indoor expansion valve 38 .
  • the degree of opening of the second indoor expansion valve 38 is controlled so that the degree of superheat of the refrigerant flowing through the gas-side outlet of the second indoor heat exchanger 36 satisfies a predetermined condition, such as a target value.
  • a predetermined condition such as a target value.
  • the degree of superheat of the refrigerant flowing through the gas-side outlet of the second indoor heat exchanger 36 is not particularly limited, for example, the temperature detected by the second indoor gas-side heat exchanger temperature sensor 77 indicates that the low pressure (intake It may be obtained by subtracting the saturation temperature of the refrigerant corresponding to the pressure detected by the pressure sensor 63).
  • both the first indoor expansion valve 33 and the second indoor expansion valve 38 have refrigerant saturation temperature obtained by subtracting the refrigerant saturation temperature corresponding to the pressure detected by the suction pressure sensor 63 from the temperature detected by the suction temperature sensor 64.
  • the degree of valve opening may be controlled so as to satisfy a predetermined condition such as the degree of superheat becoming a target value.
  • the method of controlling the valve opening degrees of the first indoor expansion valve 33 and the second indoor expansion valve 38 is not particularly limited, and for example, the discharge temperature of the refrigerant discharged from the compressor 21 is controlled to a predetermined temperature. Alternatively, the degree of superheat of the refrigerant discharged from the compressor 21 may be controlled so as to satisfy a predetermined condition.
  • the gas-side refrigerant communication pipe 5 After merging the refrigerant evaporated in the first indoor heat exchanger 31 and the refrigerant evaporated in the second indoor heat exchanger 36, the gas-side refrigerant communication pipe 5, the gas-side shutoff valve 28, and the four-way switching valve 22 are connected. After passing through, it is sucked into the compressor 21 again.
  • the compressor 21 in the heating operation mode, adjusts the operating frequency so that the condensing temperature of the refrigerant in the refrigerant circuit 10 reaches the target condensing temperature.
  • the target condensing temperature is preferably determined according to the indoor unit 30, 35 having the largest difference between the set temperature and the indoor temperature (the indoor unit having the largest load).
  • the condensation temperature is not particularly limited, it may be grasped as the refrigerant saturation temperature corresponding to the pressure detected by the discharge pressure sensor 61, for example.
  • the gas refrigerant discharged from the compressor 21 flows through the four-way switching valve 22 and the gas-side refrigerant communication pipe 5, and then flows into the first indoor unit 30 and the second indoor unit 35, respectively.
  • the gas refrigerant that has flowed into the first indoor heat exchanger 31 of the first indoor unit 30 is condensed in the first indoor heat exchanger 31 .
  • the refrigerant that has flowed through the first indoor heat exchanger 31 is decompressed at the first indoor expansion valve 33 .
  • the degree of opening of the first indoor expansion valve 33 is controlled so as to satisfy a predetermined condition, such as the degree of supercooling of the refrigerant flowing through the liquid-side outlet of the first indoor heat exchanger 31 becoming a target value.
  • the degree of subcooling of the refrigerant flowing through the liquid-side outlet of the first indoor heat exchanger 31 is determined, for example, from the temperature detected by the first indoor liquid-side heat exchanger temperature sensor 71 to the saturation of the refrigerant corresponding to the pressure detected by the discharge pressure sensor 61. It can be obtained by subtracting the temperature.
  • the gas refrigerant that has flowed into the second indoor heat exchanger 36 of the second indoor unit 35 similarly condenses in the second indoor heat exchanger 36 .
  • the refrigerant that has flowed through the second indoor heat exchanger 36 is decompressed at the second indoor expansion valve 38 .
  • the degree of opening of the second indoor expansion valve 38 is controlled so that the degree of supercooling of the refrigerant flowing through the liquid-side outlet of the second indoor heat exchanger 36 reaches a target value or other predetermined condition.
  • the degree of subcooling of the refrigerant flowing through the liquid-side outlet of the second indoor heat exchanger 36 is, for example, from the temperature detected by the second indoor liquid-side heat exchanger temperature sensor 75 to the saturation of the refrigerant corresponding to the pressure detected by the discharge pressure sensor 61 . It can be obtained by subtracting the temperature.
  • the refrigerant that has flowed into the outdoor unit 20 passes through the liquid side shutoff valve 29, flows through part of the outdoor bridge circuit 26, and flows into the high pressure receiver 42.
  • the surplus refrigerant in the refrigerant circuit 10 is stored as liquid refrigerant.
  • the gas refrigerant that has flowed out of the gas region of the high-pressure receiver 42 is depressurized at the outdoor expansion valve 24 to a low pressure in the refrigeration cycle. That is, during the heating operation, the high-pressure receiver 42 stores a pseudo-intermediate-pressure refrigerant.
  • the degree of opening of the outdoor expansion valve 24 is controlled so as to satisfy a predetermined condition, for example, the degree of superheat of the refrigerant sucked by the compressor 21 reaches a target value.
  • the degree of superheat of the refrigerant sucked by the compressor 21 is not particularly limited. can.
  • the method of controlling the degree of valve opening of the outdoor expansion valve 24 is not particularly limited.
  • the degree of superheat of the refrigerant discharged from may be controlled so as to satisfy a predetermined condition.
  • the refrigerant decompressed by the outdoor expansion valve 24 flows through another part of the outdoor bridge circuit 26, evaporates in the outdoor heat exchanger 23, passes through the four-way switching valve 22, and is sucked into the compressor 21 again.
  • the opening degree of the outdoor expansion valve 24 is controlled by the degree of superheat to ensure the reliability of the compressor 21. Therefore, the first indoor expansion valve 33 and the second indoor expansion valve 38 are , so that the first indoor heat exchanger 31 and the second indoor heat exchanger 36 can fully exhibit their capabilities.
  • FIG. 2K which is a schematic configuration diagram of a refrigerant circuit
  • FIG. 2L which is a schematic control block configuration diagram
  • an air conditioner as a refrigeration cycle device according to a sixth embodiment. 1e will be explained.
  • the difference with the air conditioning apparatus 1a of 2nd Embodiment is mainly demonstrated.
  • the air conditioner 1e is different from the air conditioner 1a of the second embodiment in that the outdoor unit 20 does not have the low pressure receiver 41, and the intermediate pressure receiver 43 , no outdoor expansion valve 24 , and a first outdoor expansion valve 44 and a second outdoor expansion valve 45 .
  • the intermediate pressure receiver 43 is provided between the liquid side of the outdoor heat exchanger 23 and the liquid side shutoff valve 29 in the refrigerant circuit 10, and is a refrigerant capable of storing surplus refrigerant in the refrigerant circuit 10 as liquid refrigerant. is a container.
  • the first outdoor expansion valve 44 is provided in the middle of the refrigerant pipe extending from the liquid side of the outdoor heat exchanger 23 to the intermediate pressure receiver 43 .
  • the second outdoor expansion valve 45 is provided in the middle of the refrigerant pipe extending from the intermediate pressure receiver 43 to the liquid side shutoff valve 29 .
  • Both the first outdoor expansion valve 44 and the second outdoor expansion valve 45 are preferably electric expansion valves capable of adjusting the degree of valve opening.
  • the gas refrigerant discharged from the compressor 21 is condensed in the outdoor heat exchanger 23 after passing through the four-way switching valve 22 .
  • the refrigerant that has flowed through the outdoor heat exchanger 23 is decompressed to an intermediate pressure in the refrigeration cycle at the first outdoor expansion valve 44 .
  • the opening degree of the first outdoor expansion valve 44 is controlled so as to satisfy a predetermined condition, for example, the degree of supercooling of the refrigerant flowing through the liquid-side outlet of the outdoor heat exchanger 23 becomes a target value. .
  • the refrigerant decompressed by the first outdoor expansion valve 44 flows into the intermediate pressure receiver 43 .
  • surplus refrigerant in the refrigerant circuit 10 is stored as liquid refrigerant.
  • the refrigerant that has passed through the intermediate pressure receiver 43 is decompressed to the low pressure of the refrigeration cycle at the second outdoor expansion valve 45 .
  • the second outdoor expansion valve 45 satisfies a predetermined condition, for example, the degree of superheat of the refrigerant flowing on the gas side of the indoor heat exchanger 31 or the degree of superheat of the refrigerant sucked by the compressor 21 becomes a target value.
  • the valve opening is controlled.
  • the method of controlling the degree of valve opening of the second outdoor expansion valve 45 is not particularly limited.
  • the degree of superheat of the refrigerant discharged from the unit 21 may be controlled so as to satisfy a predetermined condition.
  • the refrigerant decompressed to the low pressure of the refrigerating cycle in the second outdoor expansion valve 45 flows into the indoor unit 30 via the liquid side shutoff valve 29 and the liquid side refrigerant communication pipe 6 and evaporates in the indoor heat exchanger 31 .
  • the refrigerant flows through the gas-side refrigerant communication pipe 5 , passes through the gas-side closing valve 28 and the four-way switching valve 22 , and is sucked into the compressor 21 again.
  • the compressor 21 in the heating operation mode, is set so that the condensing temperature of the refrigerant in the refrigerant circuit 10 is equal to the set temperature and the room temperature (of the indoor air temperature sensor 72).
  • the operating frequency is capacity-controlled so that the target condensing temperature is determined according to the difference from the detected temperature.
  • the gas refrigerant discharged from the compressor 21 flows through the four-way switching valve 22 and the gas-side refrigerant communication pipe 5, and then flows into the gas-side end of the indoor heat exchanger 31 of the indoor unit 30. condensed at The refrigerant flowing out from the liquid side end of the indoor heat exchanger 31 flows through the liquid side refrigerant communication pipe 6, flows into the outdoor unit 20, passes through the liquid side stop valve 29, and enters the refrigeration cycle at the second outdoor expansion valve 45. is depressurized to an intermediate pressure at .
  • the degree of opening of the second outdoor expansion valve 45 is controlled so as to satisfy a predetermined condition, for example, the degree of supercooling of the refrigerant flowing through the liquid-side outlet of the indoor heat exchanger 31 becomes a target value. .
  • the refrigerant decompressed by the second outdoor expansion valve 45 flows into the intermediate pressure receiver 43 .
  • surplus refrigerant in the refrigerant circuit 10 is stored as liquid refrigerant.
  • the refrigerant that has passed through the intermediate pressure receiver 43 is decompressed to the low pressure of the refrigeration cycle at the first outdoor expansion valve 44 .
  • the valve opening degree of the first outdoor expansion valve 44 is controlled so as to satisfy a predetermined condition, for example, the degree of superheat of the refrigerant sucked by the compressor 21 reaches a target value.
  • the method of controlling the opening degree of the first outdoor expansion valve 44 is not particularly limited.
  • the discharge temperature of the refrigerant discharged from the compressor 21 may be controlled to a predetermined temperature
  • the degree of superheat of the refrigerant discharged from the unit 21 may be controlled so as to satisfy a predetermined condition.
  • the refrigerant decompressed by the first outdoor expansion valve 44 evaporates in the outdoor heat exchanger 23, passes through the four-way switching valve 22, and is sucked into the compressor 21 again.
  • FIG. 2M is a schematic configuration diagram of a refrigerant circuit
  • FIG. 2N which is a schematic control block configuration diagram. 1f will be explained.
  • the difference with the air conditioning apparatus 1e of 6th Embodiment is mainly demonstrated.
  • the air conditioner 1f differs from the air conditioner 1e of the sixth embodiment in that the first outdoor heat exchanger 23a in which the outdoor units 20 are arranged in parallel with each other and a second outdoor heat exchanger 23b, a first branch outdoor expansion valve 24a on the liquid refrigerant side of the first outdoor heat exchanger 23a, and a liquid refrigerant side of the second outdoor heat exchanger 23b It is different in that it has a second branch outdoor expansion valve 24b.
  • the first branched outdoor expansion valve 24a and the second branched outdoor expansion valve 24b are preferably electric expansion valves capable of adjusting the degree of valve opening.
  • the air conditioner 1f differs from the air conditioner 1e of the sixth embodiment in that a plurality of indoor units are provided in parallel, and in each indoor unit, the liquid refrigerant side of the indoor heat exchanger is connected to the indoor heat exchanger. It differs in that an expansion valve is provided.
  • the air conditioner 1f has a first indoor unit 30 and a second indoor unit 35 that are connected in parallel.
  • the first indoor unit 30 has a first indoor heat exchanger 31 and a first indoor fan 32, as in the above embodiment, and the first indoor expansion valve on the liquid refrigerant side of the first indoor heat exchanger 31. 33 are provided.
  • the first indoor expansion valve 33 is preferably an electric expansion valve whose valve opening degree can be adjusted.
  • the first indoor unit 30 includes a first indoor unit controller 34 and a first indoor liquid side heat exchange temperature sensor 71 electrically connected to the first indoor unit controller 34. , a first indoor air temperature sensor 72, a first indoor gas side heat exchanger temperature sensor 73, and the like are provided.
  • the second indoor unit 35 includes a second indoor unit controller 39 and a second indoor liquid side heat exchanger temperature sensor electrically connected to the second indoor unit controller 39 .
  • a sensor 75, a second room air temperature sensor 76, and a second room gas side heat exchanger temperature sensor 77 are provided.
  • Cooling operation mode In the air conditioner 1f, in the cooling operation mode, the compressor 21 controls the capacity of the operating frequency so that, for example, the evaporation temperature of the refrigerant in the refrigerant circuit 10 reaches the target evaporation temperature. be done.
  • the target evaporation temperature is preferably determined according to the indoor unit 30, 35 with the largest difference between the set temperature and the indoor temperature (the indoor unit with the largest load).
  • the gas refrigerant discharged from the compressor 21 branches into the first outdoor heat exchanger 23a and the second outdoor heat exchanger 23b, and flows through the first outdoor heat exchanger 23a. and second outdoor heat exchanger 23b.
  • the refrigerant that has flowed through the first outdoor heat exchanger 23a is depressurized to an intermediate pressure in the refrigeration cycle at the first branch outdoor expansion valve 24a.
  • the refrigerant that has flowed through the second outdoor heat exchanger 23b is decompressed to an intermediate pressure in the refrigeration cycle at the second branch outdoor expansion valve 24b.
  • first branch outdoor expansion valve 24a and the second branch outdoor expansion valve 24b may be controlled, for example, so that they are both fully open.
  • the first outdoor heat exchanger The valve opening degree of the first branch outdoor expansion valve 24a is controlled so as to satisfy a predetermined condition such that the degree of supercooling of the refrigerant flowing through the liquid side outlet of 23a becomes a common target value, and the liquid of the second outdoor heat exchanger 23b
  • the valve opening degree of the second branch outdoor expansion valve 24b may be controlled so as to satisfy a predetermined condition such that the degree of subcooling of the refrigerant flowing through the side outlets becomes the same common target value. This control makes it possible to suppress the drift of the refrigerant between the first outdoor heat exchanger 23a and the second outdoor heat exchanger 23b.
  • the refrigerant that has passed through the first branch outdoor expansion valve 24 a and the refrigerant that has passed through the second branch outdoor expansion valve 24 b flow into the intermediate pressure receiver 43 after joining.
  • surplus refrigerant in the refrigerant circuit 10 is stored as liquid refrigerant.
  • the refrigerant that has passed through the intermediate pressure receiver 43 flows through the liquid side shutoff valve 29 and the liquid side refrigerant communication pipe 6, and flows into the first indoor unit 31 and the second indoor unit 35, respectively.
  • the refrigerant that has flowed into the first indoor unit 31 is decompressed to the low pressure of the refrigeration cycle at the first indoor expansion valve 33 . Also, the refrigerant that has flowed into the second indoor unit 35 is decompressed to the low pressure of the refrigeration cycle at the second indoor expansion valve 38 .
  • the first indoor expansion valve 33 sets a predetermined condition such that, for example, the degree of superheat of the refrigerant flowing on the gas side of the first indoor heat exchanger 31 or the degree of superheat of the refrigerant sucked by the compressor 21 reaches a target value.
  • the valve opening is controlled so as to satisfy
  • the second indoor expansion valve 38 is also set at a predetermined value such that the degree of superheat of the refrigerant flowing on the gas side of the second indoor heat exchanger 36 or the degree of superheat of the refrigerant sucked by the compressor 21 becomes a target value.
  • the valve opening degree is controlled so as to satisfy the conditions.
  • the method of controlling the valve opening degrees of the first indoor expansion valve 33 and the second indoor expansion valve 38 is not particularly limited.
  • the discharge temperature of the refrigerant discharged from the compressor 21 is controlled to a predetermined temperature.
  • the degree of superheat of the refrigerant discharged from the compressor 21 may be controlled so as to satisfy a predetermined condition.
  • the refrigerant decompressed in the first indoor expansion valve 33 evaporates in the first indoor heat exchanger 31, and the refrigerant decompressed in the second indoor expansion valve 38 evaporates in the second indoor heat exchanger 36 and joins. After that, it is sucked into the compressor 21 again through the gas side refrigerant communication pipe 5 , the gas side shutoff valve 28 and the four-way switching valve 22 .
  • the compressor 21 for example, adjusts the operating frequency so that the condensing temperature of the refrigerant in the refrigerant circuit 10 reaches the target condensing temperature.
  • the target condensing temperature is preferably determined according to the indoor unit 30, 35 having the largest difference between the set temperature and the indoor temperature (the indoor unit having the largest load).
  • the gas refrigerant discharged from the compressor 21 flows through the four-way switching valve 22 and the gas-side refrigerant communication pipe 5, and then flows into the first indoor unit 30 and the second indoor unit 35, respectively.
  • the refrigerant that has flowed into the first indoor unit 30 is condensed in the first indoor heat exchanger 31
  • the refrigerant that has flowed into the second indoor unit 35 is condensed in the second indoor heat exchanger 36 .
  • the refrigerant flowing out from the liquid side end of the first indoor heat exchanger 31 is decompressed in the first indoor expansion valve 33 to the intermediate pressure of the refrigeration cycle.
  • the refrigerant flowing out from the liquid side end of the second indoor heat exchanger 36 is also decompressed by the second indoor expansion valve 38 to the intermediate pressure of the refrigeration cycle.
  • the degree of opening of the first indoor expansion valve 33 is controlled so as to satisfy a predetermined condition, for example, the degree of supercooling of the refrigerant flowing through the liquid-side outlet of the first indoor heat exchanger 31 becomes a target value. be done.
  • the opening degree of the valve is satisfied so as to satisfy a predetermined condition such that the degree of subcooling of the refrigerant flowing through the liquid side outlet of the second indoor heat exchanger 36 reaches a target value. is controlled.
  • the refrigerant that has passed through the first indoor expansion valve 33 and the refrigerant that has passed through the second indoor expansion valve 38 join and flow into the outdoor unit 20 through the liquid-side refrigerant communication pipe 6 .
  • the refrigerant that has flowed into the outdoor unit 20 passes through the liquid side shutoff valve 29 and is sent to the intermediate pressure receiver 43 .
  • surplus refrigerant in the refrigerant circuit 10 is stored as liquid refrigerant.
  • the refrigerant that has passed through the intermediate pressure receiver 43 is separated and flows through the first branch outdoor expansion valve 24a and the second branch outdoor expansion valve 24b.
  • the first branch outdoor expansion valve 24a reduces the pressure of the passing refrigerant to the low pressure of the refrigeration cycle.
  • the second branch outdoor expansion valve 24b reduces the pressure of the refrigerant passing through it to the low pressure of the refrigeration cycle.
  • the first branching outdoor expansion valve 24a and the second branching outdoor expansion valve 24b have valve opening degrees that satisfy a predetermined condition, for example, the degree of superheat of the refrigerant sucked by the compressor 21 is a target value. controlled.
  • the method of controlling the valve opening degree of the first branch outdoor expansion valve 24a and the second branch outdoor expansion valve 24b is not particularly limited. or the degree of superheat of the refrigerant discharged from the compressor 21 may be controlled so as to satisfy a predetermined condition.
  • the refrigerant decompressed by the first branch outdoor expansion valve 24a evaporates in the first outdoor heat exchanger 23a
  • the refrigerant decompressed by the second branch outdoor expansion valve 24b evaporates in the second outdoor heat exchanger 23b
  • the intermediate pressure receiver 43 by providing the intermediate pressure receiver 43, it is possible to store surplus refrigerant in the refrigerant circuit 10. Further, during heating operation, by controlling the degree of subcooling of the first indoor expansion valve 33 and the second indoor expansion valve 38, it becomes possible to make it easier to fully exhibit the capacity of the indoor heat exchanger 31.
  • FIG. 2O which is a schematic configuration diagram of a refrigerant circuit
  • FIG. 2P which is a schematic control block configuration diagram
  • an air conditioner as a refrigeration cycle device according to an eighth embodiment. 1g will be explained.
  • the difference with the air conditioning apparatus 1b of 3rd Embodiment is mainly demonstrated.
  • the air conditioner 1g differs from the air conditioner 1b of the third embodiment in that the bypass pipe 40 having the bypass expansion valve 49 is not provided.
  • a cooling heat exchanger 47 is provided, a supercooling pipe 46 is provided, a first outdoor expansion valve 44 and a second outdoor expansion valve 45 are provided, and a supercooling temperature sensor 67 is provided. It is different in that
  • the subcooling pipe 46 is branched from a branch portion between the first outdoor expansion valve 44 and the second outdoor expansion valve 45 in the refrigerant circuit 10, and is connected to one of the connection ports of the four-way switching valve 22 to the low pressure receiver. It is provided so as to merge with the confluence point up to 41 .
  • a supercooling expansion valve 48 is provided in the supercooling pipe 46 .
  • the supercooling expansion valve 48 is preferably an electric expansion valve whose valve opening degree can be adjusted.
  • the supercooling heat exchanger 47 transfers the refrigerant flowing through the portion between the first outdoor expansion valve 44 and the second outdoor expansion valve 45 in the refrigerant circuit 10 and the junction side of the supercooling expansion valve 48 in the supercooling pipe 46 . It is a heat exchanger that allows heat to be exchanged between the flowing refrigerant.
  • the supercooling heat exchanger 47 is a portion between the first outdoor expansion valve 44 and the second outdoor expansion valve 45, and is located closer to the second outdoor expansion valve 45 than the branch portion of the supercooling pipe 46. located on the side.
  • the subcooling temperature sensor 67 detects a portion of the refrigerant circuit 10 between the first outdoor expansion valve 44 and the second outdoor expansion valve 45 , the refrigerant flowing closer to the second outdoor expansion valve 45 than the supercooling heat exchanger 47 . is a temperature sensor that detects the temperature of
  • Cooling operation mode In the air conditioner 1g, in the cooling operation mode, the compressor 21 controls the capacity of the operating frequency so that, for example, the evaporation temperature of the refrigerant in the refrigerant circuit 10 reaches the target evaporation temperature. be done.
  • the target evaporation temperature is preferably determined according to the indoor unit 30, 35 with the largest difference between the set temperature and the indoor temperature (the indoor unit with the largest load).
  • the gas refrigerant discharged from the compressor 21 is condensed in the outdoor heat exchanger 23 via the four-way switching valve 22 .
  • the refrigerant that has flowed through the outdoor heat exchanger 23 passes through the first outdoor expansion valve 44 .
  • the first outdoor expansion valve 44 is controlled to be fully open.
  • the refrigerant branched and flowed through the supercooling pipe 46 is decompressed in the supercooling expansion valve 48 .
  • heat is exchanged between the refrigerant flowing from the first outdoor expansion valve 44 toward the second outdoor expansion valve 45 side and the refrigerant flowing through the supercooling pipe 46 decompressed by the supercooling expansion valve 48. be done.
  • the refrigerant flowing through the supercooling pipe 46 merges at a junction between one of the connection ports of the four-way switching valve 22 and the low-pressure receiver 41. flow like The refrigerant flowing from the first outdoor expansion valve 44 toward the second outdoor expansion valve 45 side is decompressed in the second outdoor expansion valve 45 after completing heat exchange in the supercooling heat exchanger 47 .
  • the second outdoor expansion valve 45 is controlled so as to satisfy a predetermined condition, such as the degree of supercooling of the refrigerant flowing through the liquid-side outlet of the outdoor heat exchanger 23 becoming a target value.
  • the degree of opening of the supercooling expansion valve 48 reaches the first indoor expansion valve 33 and the second indoor expansion valve 38 from the second outdoor expansion valve 45 in the refrigerant circuit 10 via the liquid-side refrigerant communication pipe 6.
  • Refrigerant reaching at least the first indoor expansion valve 33 and the second indoor expansion valve 38 is controlled to be in a gas-liquid two-phase state so that the entire portion up to is not filled with liquid state refrigerant. .
  • the valve opening degree of the supercooling expansion valve 48 is the refrigerant flowing from the first outdoor expansion valve 44 toward the second outdoor expansion valve 45 side, and the specific enthalpy of the refrigerant that has passed through the supercooling heat exchanger 47 is It is preferably controlled to be greater than the specific enthalpy at the point where the low pressure of the refrigeration cycle and the saturated liquid gland intersect in the Mollier diagram.
  • the controller 7 stores in advance the data of the Mollier diagram corresponding to the refrigerant, and the specific enthalpy of the refrigerant that has passed through the supercooling heat exchanger 47 is determined by the pressure detected by the discharge pressure sensor 61, the supercooling temperature
  • the valve opening degree of the supercooling expansion valve 48 may be controlled using the temperature detected by the sensor 67 and the data of the Mollier diagram corresponding to the refrigerant.
  • the degree of opening of the supercooling expansion valve 48 is the temperature of the refrigerant flowing from the first outdoor expansion valve 44 toward the second outdoor expansion valve 45 and passing through the supercooling heat exchanger 47 (supercooling It is more preferable that the temperature detected by the temperature sensor 67 is controlled so as to satisfy a predetermined condition such as a target value.
  • the refrigerant decompressed by the second outdoor expansion valve 45 is sent to the first indoor unit 30 and the second indoor unit 35 via the liquid side shutoff valve 29 and the liquid side refrigerant communication pipe 6 .
  • the first indoor expansion valve 33 is set so as to satisfy a predetermined condition, for example, the degree of superheat of the refrigerant flowing through the gas-side outlet of the first indoor heat exchanger 31 becomes a target value. , the valve opening is controlled. Also, in the second indoor expansion valve 38 of the second indoor unit 35, similarly to the first indoor expansion valve 33, for example, the degree of superheat of the refrigerant flowing through the gas side outlet of the second indoor heat exchanger 36 becomes the target value.
  • the valve opening degree is controlled so as to satisfy predetermined conditions such as
  • both the first indoor expansion valve 33 and the second indoor expansion valve 38 have refrigerant saturation temperature obtained by subtracting the refrigerant saturation temperature corresponding to the pressure detected by the suction pressure sensor 63 from the temperature detected by the suction temperature sensor 64.
  • the degree of valve opening may be controlled so as to satisfy a predetermined condition such as the degree of superheat becoming a target value.
  • the method of controlling the valve opening degrees of the first indoor expansion valve 33 and the second indoor expansion valve 38 is not particularly limited, and for example, the discharge temperature of the refrigerant discharged from the compressor 21 is controlled to a predetermined temperature. Alternatively, the degree of superheat of the refrigerant discharged from the compressor 21 may be controlled so as to satisfy a predetermined condition.
  • the refrigerant decompressed by the first indoor expansion valve 33 evaporates in the first indoor heat exchanger 31, the refrigerant decompressed by the second indoor expansion valve 38 evaporates in the second indoor heat exchanger 36, and after joining, It flows into the gas side refrigerant communication pipe 5 .
  • the refrigerant flowing through the gas-side refrigerant communication pipe 5 passes through the gas-side closing valve 28 and the four-way switching valve 22 and joins with the refrigerant flowing through the supercooling pipe 46 .
  • the merged refrigerant passes through the low-pressure receiver 41 and is sucked into the compressor 21 again.
  • the liquid refrigerant that has not been completely evaporated in the first indoor heat exchanger 31, the second indoor heat exchanger, and the subcooling heat exchanger 47 is stored as a surplus refrigerant.
  • the compressor 21 for example, adjusts the operating frequency so that the condensing temperature of the refrigerant in the refrigerant circuit 10 reaches the target condensing temperature.
  • the target condensing temperature is preferably determined according to the indoor unit 30, 35 having the largest difference between the set temperature and the indoor temperature (the indoor unit having the largest load).
  • first indoor expansion valve 33 of the first indoor unit 30 is designed so that the degree of supercooling of the refrigerant flowing on the liquid side of the first indoor heat exchanger 31 becomes a predetermined target value, and other predetermined conditions are satisfied. The degree of opening is controlled.
  • second indoor expansion valve 38 of the second indoor unit 35 so that the degree of subcooling of the refrigerant flowing on the liquid side of the second indoor heat exchanger 36 reaches a predetermined target value, Valve opening is controlled.
  • the degree of opening of the first outdoor expansion valve 44 is controlled so as to satisfy a predetermined condition, for example, the degree of superheat of the refrigerant flowing on the suction side of the compressor 21 reaches a target value.
  • the method of controlling the opening degree of the first outdoor expansion valve 44 is not particularly limited.
  • the discharge temperature of the refrigerant discharged from the compressor 21 may be controlled to a predetermined temperature
  • the degree of superheat of the refrigerant discharged from the unit 21 may be controlled so as to satisfy a predetermined condition.
  • the degree of opening of the supercooling expansion valve 48 is controlled so that the degree of superheat of the refrigerant flowing on the suction side of the compressor 21 satisfies a predetermined condition such as a target value.
  • the method of controlling the opening degree of the supercooling expansion valve 48 is not particularly limited.
  • the discharge temperature of the refrigerant discharged from the compressor 21 may be controlled to a predetermined temperature, or The degree of superheat of the refrigerant discharged from 21 may be controlled so as to satisfy a predetermined condition.
  • the supercooling expansion valve 48 may be controlled to be fully closed so that the refrigerant does not flow into the supercooling pipe 46 .
  • the liquid compression in the compressor 21 can be suppressed. Also, during cooling operation, the first indoor expansion valve 33 and the second indoor expansion valve 38 are controlled for superheating, and during heating operation, the supercooling degree of the first indoor expansion valve 33 and the second indoor expansion valve 38 is controlled. Thus, it is easy to sufficiently exhibit the capabilities of the first indoor heat exchanger 31 and the second indoor heat exchanger 36 .
  • the refrigerant passes through the second outdoor expansion valve 45, passes through the liquid-side refrigerant communication pipe 6, and reaches the first indoor expansion valve 33 and the second indoor expansion valve 38.
  • the space inside the pipe is not filled with a liquid state, but is controlled so that at least a portion of the space is filled with gas-liquid two-phase refrigerant.
  • the refrigerant density at that location is can be reduced. Therefore, it is possible to perform the refrigerating cycle while keeping the amount of refrigerant enclosed in the refrigerant circuit 10 small. Therefore, even if the refrigerant leaks from the refrigerant circuit 10, the amount of leakage refrigerant can be kept small.
  • FIG. 2Q which is a schematic configuration diagram of a refrigerant circuit
  • FIG. 2R which is a schematic control block configuration diagram
  • an air conditioner as a refrigeration cycle device according to a ninth embodiment. 1h will be explained.
  • the difference with the air conditioning apparatus 1e of 6th Embodiment is mainly demonstrated.
  • the intake refrigerant heating unit 50 is configured by a portion of a refrigerant pipe extending from one of the connection ports of the four-way switching valve 22 toward the suction side of the compressor 21 is located inside the intermediate pressure receiver 43 .
  • this suction refrigerant heating unit 50 the refrigerant flowing through the refrigerant pipe extending from one of the connection ports of the four-way switching valve 22 toward the suction side of the compressor 21 and the refrigerant existing in the intermediate pressure receiver 43 are separated from each other. , the refrigerants exchange heat with each other without being mixed.
  • Cooling operation mode In the air conditioner 1h, in the cooling operation mode, the compressor 21, for example, the evaporation temperature of the refrigerant in the refrigerant circuit 10 is equal to the set temperature and the indoor temperature (indoor air temperature sensor 72 The operating frequency is capacity-controlled so that the target evaporation temperature is determined according to the difference from the detected temperature).
  • the gas refrigerant discharged from the compressor 21 is condensed in the outdoor heat exchanger 23 after passing through the four-way switching valve 22 .
  • the refrigerant that has flowed through the outdoor heat exchanger 23 is decompressed to an intermediate pressure in the refrigeration cycle at the first outdoor expansion valve 44 .
  • the opening degree of the first outdoor expansion valve 44 is controlled so as to satisfy a predetermined condition, for example, the degree of supercooling of the refrigerant flowing through the liquid-side outlet of the outdoor heat exchanger 23 becomes a target value. .
  • the second outdoor expansion valve 45 satisfies a predetermined condition, for example, the degree of superheat of the refrigerant flowing on the gas side of the indoor heat exchanger 31 or the degree of superheat of the refrigerant sucked by the compressor 21 becomes a target value.
  • the valve opening is controlled.
  • the method of controlling the degree of valve opening of the second outdoor expansion valve 45 is not particularly limited.
  • the degree of superheat of the refrigerant discharged from the unit 21 may be controlled so as to satisfy a predetermined condition.
  • the refrigerant decompressed to the low pressure of the refrigerating cycle in the second outdoor expansion valve 45 flows into the indoor unit 30 via the liquid side shutoff valve 29 and the liquid side refrigerant communication pipe 6 and evaporates in the indoor heat exchanger 31 .
  • the refrigerant flows through the gas-side refrigerant communication pipe 5, passes through the gas-side shutoff valve 28 and the four-way switching valve 22, and flows through the refrigerant pipe passing through the intermediate pressure receiver 43.
  • the refrigerant flowing through the refrigerant pipe passing through the intermediate pressure receiver 43 is heated by performing heat exchange with the refrigerant stored in the intermediate pressure receiver 43 in the suction refrigerant heating unit 50 inside the intermediate pressure receiver 43, and is heated again. , is sucked into the compressor 21 .
  • the gas refrigerant discharged from the compressor 21 flows through the four-way switching valve 22 and the gas-side refrigerant communication pipe 5, and then flows into the gas-side end of the indoor heat exchanger 31 of the indoor unit 30. condensed at The refrigerant flowing out from the liquid side end of the indoor heat exchanger 31 flows through the liquid side refrigerant communication pipe 6, flows into the outdoor unit 20, passes through the liquid side stop valve 29, and enters the refrigeration cycle at the second outdoor expansion valve 45. is depressurized to an intermediate pressure at .
  • the degree of opening of the second outdoor expansion valve 45 is controlled so as to satisfy a predetermined condition, for example, the degree of supercooling of the refrigerant flowing through the liquid-side outlet of the indoor heat exchanger 31 becomes a target value. .
  • the refrigerant decompressed by the second outdoor expansion valve 45 flows into the intermediate pressure receiver 43 .
  • surplus refrigerant in the refrigerant circuit 10 is stored as liquid refrigerant.
  • the refrigerant flowing into the intermediate pressure receiver 43 is cooled by heat exchange with the refrigerant flowing on the suction side of the compressor 21 in the suction refrigerant heating section 50 .
  • the refrigerant cooled in the intake refrigerant heating section 50 in the intermediate pressure receiver 43 is depressurized to the low pressure of the refrigeration cycle in the first outdoor expansion valve 44 .
  • the valve opening degree of the first outdoor expansion valve 44 is controlled so as to satisfy a predetermined condition, for example, the degree of superheat of the refrigerant sucked by the compressor 21 reaches a target value.
  • the method of controlling the opening degree of the first outdoor expansion valve 44 is not particularly limited.
  • the discharge temperature of the refrigerant discharged from the compressor 21 may be controlled to a predetermined temperature
  • the degree of superheat of the refrigerant discharged from the unit 21 may be controlled so as to satisfy a predetermined condition.
  • the refrigerant decompressed by the first outdoor expansion valve 44 evaporates in the outdoor heat exchanger 23 , passes through the four-way switching valve 22 , and flows through the refrigerant pipe passing through the intermediate pressure receiver 43 .
  • the refrigerant flowing through the refrigerant pipe passing through the intermediate pressure receiver 43 is heated by performing heat exchange with the refrigerant stored in the intermediate pressure receiver 43 in the suction refrigerant heating unit 50 inside the intermediate pressure receiver 43, and is heated again. , is sucked into the compressor 21 .
  • the air conditioner 1h by providing the intermediate pressure receiver 43, it is possible to store surplus refrigerant in the refrigerant circuit 10. Further, during cooling operation, by controlling the degree of supercooling of the first outdoor expansion valve 44, the capacity of the outdoor heat exchanger 23 is easily exhibited sufficiently, and during heating operation, the second outdoor expansion valve 45 is controlled. By controlling the degree of supercooling, it is possible to make it easier for the indoor heat exchanger 31 to fully exhibit its ability.
  • the suction refrigerant heating unit 50 since the suction refrigerant heating unit 50 is provided, the refrigerant sucked into the compressor 21 is heated, and the liquid compression in the compressor 21 is suppressed. It is possible to control the degree of superheat of the refrigerant flowing through the outlet of the heat exchanger 31 to a small value. Similarly, in the heating operation, it is possible to control the degree of superheat of the refrigerant flowing through the outlet of the outdoor heat exchanger 23, which functions as an evaporator of the refrigerant, to a small value.
  • FIG. 2S which is a schematic configuration diagram of a refrigerant circuit
  • FIG. 2T which is a schematic control block configuration diagram
  • an air conditioner as a refrigeration cycle apparatus according to a tenth embodiment. 1i will be explained.
  • the difference with the air conditioner 1h of 9th Embodiment is mainly demonstrated.
  • the air conditioner 1i differs from the air conditioner 1h of the ninth embodiment in that a first outdoor expansion valve 44 and a second outdoor expansion valve 45 are provided. , the outdoor expansion valve 24 is provided, a plurality of indoor units (the first indoor unit 30 and the second indoor unit 35) are provided in parallel, and each indoor unit has an indoor heat exchanger The difference is that an indoor expansion valve is provided on the liquid refrigerant side.
  • the outdoor expansion valve 24 is provided in the middle of the refrigerant pipe extending from the liquid-side outlet of the outdoor heat exchanger 23 to the intermediate pressure receiver 43 .
  • the outdoor expansion valve 24 is preferably an electric expansion valve that can adjust the valve opening degree.
  • the first indoor unit 30 has a first indoor heat exchanger 31 and a first indoor fan 32, as in the above embodiment, and the first indoor expansion valve on the liquid refrigerant side of the first indoor heat exchanger 31. 33 are provided.
  • the first indoor expansion valve 33 is preferably an electric expansion valve whose valve opening degree can be adjusted.
  • the first indoor unit 30 includes a first indoor unit controller 34 and a first indoor liquid side heat exchange temperature sensor 71 electrically connected to the first indoor unit controller 34. , a first indoor air temperature sensor 72, a first indoor gas side heat exchanger temperature sensor 73, and the like are provided.
  • the second indoor unit 35 has a second indoor heat exchanger 36 and a second indoor fan 37.
  • the second indoor unit 35 On the liquid refrigerant side of the second indoor heat exchanger 36, the second indoor unit An expansion valve 38 is provided.
  • the second indoor expansion valve 38 is preferably an electric expansion valve whose opening degree can be adjusted.
  • the second indoor unit 35 includes a second indoor unit controller 39 and a second indoor liquid side heat exchanger temperature controller 39 electrically connected to the second indoor unit controller 39 .
  • a sensor 75, a second room air temperature sensor 76, and a second room gas side heat exchanger temperature sensor 77 are provided.
  • Cooling operation mode In the air conditioner 1i, in the cooling operation mode, the compressor 21 controls the capacity of the operating frequency so that, for example, the evaporation temperature of the refrigerant in the refrigerant circuit 10 reaches the target evaporation temperature. be done.
  • the target evaporation temperature is preferably determined according to the indoor unit 30, 35 with the largest difference between the set temperature and the indoor temperature (the indoor unit with the largest load).
  • the gas refrigerant discharged from the compressor 21 is condensed in the outdoor heat exchanger 23 after passing through the four-way switching valve 22 .
  • the refrigerant that has flowed through the outdoor heat exchanger 23 passes through the outdoor expansion valve 24 that is controlled to be fully open.
  • the refrigerant that has passed through the outdoor expansion valve 24 flows into the intermediate pressure receiver 43 .
  • surplus refrigerant in the refrigerant circuit 10 is stored as liquid refrigerant.
  • the refrigerant flowing into the intermediate pressure receiver 43 is cooled by heat exchange with the refrigerant flowing on the suction side of the compressor 21 in the suction refrigerant heating section 50 .
  • the refrigerant cooled in the intake refrigerant heating section 50 in the intermediate pressure receiver 43 flows into the first indoor unit 30 and the second indoor unit 35 via the liquid side shutoff valve 29 and the liquid side refrigerant communication pipe 6, respectively.
  • the refrigerant that has flowed into the first indoor unit 31 is decompressed to the low pressure of the refrigeration cycle at the first indoor expansion valve 33 . Also, the refrigerant that has flowed into the second indoor unit 35 is decompressed to the low pressure of the refrigeration cycle at the second indoor expansion valve 38 .
  • the first indoor expansion valve 33 sets a predetermined condition such that, for example, the degree of superheat of the refrigerant flowing on the gas side of the first indoor heat exchanger 31 or the degree of superheat of the refrigerant sucked by the compressor 21 reaches a target value.
  • the valve opening is controlled so as to satisfy
  • the second indoor expansion valve 38 is also set at a predetermined value such that the degree of superheat of the refrigerant flowing on the gas side of the second indoor heat exchanger 36 or the degree of superheat of the refrigerant sucked by the compressor 21 becomes a target value.
  • the valve opening degree is controlled so as to satisfy the conditions.
  • the refrigerant decompressed in the first indoor expansion valve 33 evaporates in the first indoor heat exchanger 31, and the refrigerant decompressed in the second indoor expansion valve 38 evaporates in the second indoor heat exchanger 36 and joins. After that, it flows through the gas side refrigerant communication pipe 5 , the gas side shutoff valve 28 , the four-way switching valve 22 , and the refrigerant pipe passing through the intermediate pressure receiver 43 .
  • the refrigerant flowing through the refrigerant pipe passing through the intermediate pressure receiver 43 is heated by performing heat exchange with the refrigerant stored in the intermediate pressure receiver 43 in the suction refrigerant heating unit 50 inside the intermediate pressure receiver 43, and is heated again. , is sucked into the compressor 21 .
  • the compressor 21 in the heating operation mode, adjusts the operating frequency so that the condensing temperature of the refrigerant in the refrigerant circuit 10 reaches the target condensing temperature.
  • the target condensing temperature is preferably determined according to the indoor unit 30, 35 having the largest difference between the set temperature and the indoor temperature (the indoor unit having the largest load).
  • the gas refrigerant discharged from the compressor 21 flows through the four-way switching valve 22 and the gas-side refrigerant communication pipe 5, and then flows into the first indoor unit 30 and the second indoor unit 35, respectively.
  • the refrigerant that has flowed into the first indoor unit 30 is condensed in the first indoor heat exchanger 31
  • the refrigerant that has flowed into the second indoor unit 35 is condensed in the second indoor heat exchanger 36 .
  • the refrigerant flowing out from the liquid side end of the first indoor heat exchanger 31 is decompressed in the first indoor expansion valve 33 to the intermediate pressure of the refrigeration cycle.
  • the refrigerant flowing out from the liquid side end of the second indoor heat exchanger 36 is also decompressed by the second indoor expansion valve 38 to the intermediate pressure of the refrigeration cycle.
  • the degree of opening of the first indoor expansion valve 33 is controlled so as to satisfy a predetermined condition, for example, the degree of supercooling of the refrigerant flowing through the liquid-side outlet of the first indoor heat exchanger 31 becomes a target value. be done.
  • the opening degree of the valve is satisfied so as to satisfy a predetermined condition such that the degree of subcooling of the refrigerant flowing through the liquid side outlet of the second indoor heat exchanger 36 reaches a target value. is controlled.
  • the refrigerant that has passed through the first indoor expansion valve 33 and the refrigerant that has passed through the second indoor expansion valve 38 join and flow into the outdoor unit 20 through the liquid-side refrigerant communication pipe 6 .
  • the refrigerant that has flowed into the outdoor unit 20 passes through the liquid side shutoff valve 29 and flows into the intermediate pressure receiver 43 .
  • surplus refrigerant in the refrigerant circuit 10 is stored as liquid refrigerant.
  • the refrigerant flowing into the intermediate pressure receiver 43 is cooled by heat exchange with the refrigerant flowing on the suction side of the compressor 21 in the suction refrigerant heating section 50 .
  • the refrigerant cooled in the intake refrigerant heating section 50 in the intermediate pressure receiver 43 is decompressed to the low pressure of the refrigeration cycle in the outdoor expansion valve 24 .
  • the degree of opening of the outdoor expansion valve 24 is controlled so as to satisfy a predetermined condition, for example, the degree of superheat of the refrigerant sucked by the compressor 21 reaches a target value.
  • the method of controlling the degree of valve opening of the outdoor expansion valve 24 is not particularly limited.
  • the degree of superheat of the refrigerant discharged from may be controlled so as to satisfy a predetermined condition.
  • the refrigerant decompressed by the outdoor expansion valve 24 evaporates in the outdoor heat exchanger 23 , passes through the four-way switching valve 22 , and flows through the refrigerant pipe passing through the intermediate pressure receiver 43 .
  • the refrigerant flowing through the refrigerant pipe passing through the intermediate pressure receiver 43 is heated by performing heat exchange with the refrigerant stored in the intermediate pressure receiver 43 in the suction refrigerant heating unit 50 inside the intermediate pressure receiver 43, and is heated again. , is sucked into the compressor 21 .
  • the air conditioner 1i by providing the intermediate pressure receiver 43, it is possible to store surplus refrigerant in the refrigerant circuit 10. Further, during the heating operation, by controlling the degree of supercooling of the second outdoor expansion valve 45, it is possible to make it easier for the indoor heat exchanger 31 to fully exhibit its ability.
  • the suction refrigerant heating unit 50 since the suction refrigerant heating unit 50 is provided, the refrigerant sucked into the compressor 21 is heated, and the liquid compression in the compressor 21 is suppressed. It is possible to control the degree of superheat of the refrigerant flowing through the outlet of the heat exchanger 31 to a small value. Similarly, in the heating operation, it is possible to control the degree of superheat of the refrigerant flowing through the outlet of the outdoor heat exchanger 23, which functions as an evaporator of the refrigerant, to a small value.
  • the internal heat exchanger 51 extends from one connection port of the four-way switching valve 22 toward the suction side of the compressor 21 with the refrigerant flowing between the first outdoor expansion valve 44 and the second outdoor expansion valve 45 . It is a heat exchanger that exchanges heat with the refrigerant flowing through the refrigerant pipe.
  • Cooling operation mode In the air conditioning apparatus 1j, in the cooling operation mode, the compressor 21, for example, the evaporation temperature of the refrigerant in the refrigerant circuit 10 is equal to the set temperature and the indoor temperature (indoor air temperature sensor 72 The operating frequency is capacity-controlled so that the target evaporation temperature is determined according to the difference from the detected temperature).
  • the gas refrigerant discharged from the compressor 21 is condensed in the outdoor heat exchanger 23 after passing through the four-way switching valve 22 .
  • the refrigerant that has flowed through the outdoor heat exchanger 23 passes through the first outdoor expansion valve 44 that is controlled to be fully open.
  • the refrigerant that has passed through the first outdoor expansion valve 44 is cooled in the internal heat exchanger 51 and is depressurized to the low pressure of the refrigeration cycle in the second outdoor expansion valve 45 .
  • the second outdoor expansion valve 45 satisfies a predetermined condition, for example, the degree of superheat of the refrigerant flowing on the gas side of the indoor heat exchanger 31 or the degree of superheat of the refrigerant sucked by the compressor 21 becomes a target value.
  • the valve opening is controlled.
  • the method of controlling the degree of valve opening of the second outdoor expansion valve 45 is not particularly limited.
  • the degree of superheat of the refrigerant discharged from the unit 21 may be controlled so as to satisfy a predetermined condition.
  • the refrigerant decompressed to the low pressure of the refrigerating cycle in the second outdoor expansion valve 45 flows into the indoor unit 30 via the liquid side shutoff valve 29 and the liquid side refrigerant communication pipe 6 and evaporates in the indoor heat exchanger 31 .
  • the refrigerant flows through the gas-side refrigerant communication pipe 5, passes through the gas-side shut-off valve 28 and the four-way switching valve 22, is heated in the internal heat exchanger 51, and is supplied to the compressor 21 again. is inhaled into
  • the compressor 21 for example, the condensing temperature of the refrigerant in the refrigerant circuit 10 is equal to the set temperature and the indoor temperature (indoor air temperature sensor 72
  • the operating frequency is capacity-controlled so that the target condensing temperature is determined according to the difference from the detected temperature.
  • the gas refrigerant discharged from the compressor 21 flows through the four-way switching valve 22 and the gas-side refrigerant communication pipe 5, and then flows into the gas-side end of the indoor heat exchanger 31 of the indoor unit 30. condensed at The refrigerant flowing out from the liquid side end of the indoor heat exchanger 31 passes through the liquid side refrigerant communication pipe 6, flows into the outdoor unit 20, passes through the liquid side stop valve 29, and enters the second outdoor unit controlled to be fully open. It passes through the expansion valve 45 . The refrigerant that has passed through the second outdoor expansion valve 45 is cooled in the internal heat exchanger 51 and decompressed in the first outdoor expansion valve 44 to an intermediate pressure in the refrigeration cycle.
  • the refrigerant decompressed by the first outdoor expansion valve 44 evaporates in the outdoor heat exchanger 23, passes through the four-way switching valve 22, is heated in the internal heat exchanger 51, and is sucked into the compressor 21 again.
  • the refrigerant sucked into the compressor 21 is heated, and the liquid compression in the compressor 21 is suppressed. It is possible to control the degree of superheat of the refrigerant flowing through the outlet of the indoor heat exchanger 31 functioning as an evaporator to a small value. Similarly, in the heating operation, it is possible to control the degree of superheat of the refrigerant flowing through the outlet of the outdoor heat exchanger 23, which functions as an evaporator of the refrigerant, to a small value.
  • FIG. 2W is a schematic configuration diagram of a refrigerant circuit
  • FIG. 2X which is a schematic control block configuration diagram. 1k will be explained.
  • the difference with the air conditioning apparatus 1j of 10th Embodiment is mainly demonstrated.
  • the air conditioner 1k differs from the air conditioner 1j of the tenth embodiment in that a first outdoor expansion valve 44 and a second outdoor expansion valve 45 are provided. , the outdoor expansion valve 24 is provided, a plurality of indoor units (the first indoor unit 30 and the second indoor unit 35) are provided in parallel, and each indoor unit has an indoor heat exchanger The difference is that an indoor expansion valve is provided on the liquid refrigerant side.
  • the outdoor expansion valve 24 is provided in the middle of the refrigerant pipe extending from the internal heat exchanger 51 to the liquid side shutoff valve 29 .
  • the outdoor expansion valve 24 is preferably an electric expansion valve that can adjust the valve opening degree.
  • the first indoor unit 30 has a first indoor heat exchanger 31 and a first indoor fan 32, as in the above embodiment, and the first indoor expansion valve on the liquid refrigerant side of the first indoor heat exchanger 31. 33 are provided.
  • the first indoor expansion valve 33 is preferably an electric expansion valve whose valve opening degree can be adjusted.
  • the first indoor unit 30 includes a first indoor unit controller 34 and a first indoor liquid side heat exchange temperature sensor 71 electrically connected to the first indoor unit controller 34. , a first indoor air temperature sensor 72, a first indoor gas side heat exchanger temperature sensor 73, and the like are provided.
  • the second indoor unit 35 has a second indoor heat exchanger 36 and a second indoor fan 37 in the same manner as the first indoor unit 30 .
  • An expansion valve 38 is provided.
  • the second indoor expansion valve 38 is preferably an electric expansion valve whose opening degree can be adjusted.
  • the second indoor unit 35 includes a second indoor unit controller 39 and a second indoor liquid side heat exchanger temperature controller 39 electrically connected to the second indoor unit controller 39 .
  • a sensor 75, a second room air temperature sensor 76, and a second room gas side heat exchanger temperature sensor 77 are provided.
  • Cooling operation mode In the air conditioner 1k, in the cooling operation mode, the compressor 21 controls the capacity of the operating frequency so that, for example, the evaporation temperature of the refrigerant in the refrigerant circuit 10 reaches the target evaporation temperature. be done.
  • the target evaporation temperature is preferably determined according to the indoor unit 30, 35 with the largest difference between the set temperature and the indoor temperature (the indoor unit with the largest load).
  • the gas refrigerant discharged from the compressor 21 is condensed in the outdoor heat exchanger 23 after passing through the four-way switching valve 22 .
  • the refrigerant that has flowed through the outdoor heat exchanger 23 is cooled in the internal heat exchanger 51, passes through the outdoor expansion valve 24 controlled to a fully open state, and flows through the liquid side stop valve 29, the liquid side stop valve 29, and the liquid side refrigerant communication It flows into the first indoor unit 30 and the second indoor unit 35 through the pipe 6 .
  • the refrigerant that has flowed into the first indoor unit 31 is decompressed to the low pressure of the refrigeration cycle at the first indoor expansion valve 33 . Also, the refrigerant that has flowed into the second indoor unit 35 is decompressed to the low pressure of the refrigeration cycle at the second indoor expansion valve 38 .
  • the first indoor expansion valve 33 sets a predetermined condition such that, for example, the degree of superheat of the refrigerant flowing on the gas side of the first indoor heat exchanger 31 or the degree of superheat of the refrigerant sucked by the compressor 21 reaches a target value.
  • the valve opening is controlled so as to satisfy
  • the second indoor expansion valve 38 is also set at a predetermined value such that the degree of superheat of the refrigerant flowing on the gas side of the second indoor heat exchanger 36 or the degree of superheat of the refrigerant sucked by the compressor 21 becomes a target value.
  • the valve opening degree is controlled so as to satisfy the conditions.
  • the refrigerant decompressed in the first indoor expansion valve 33 evaporates in the first indoor heat exchanger 31, and the refrigerant decompressed in the second indoor expansion valve 38 evaporates in the second indoor heat exchanger 36 and joins. After that, it flows through the gas-side refrigerant communication pipe 5, passes through the gas-side closing valve 28 and the four-way switching valve 22, is heated in the internal heat exchanger 51, and is sucked into the compressor 21 again.
  • the compressor 21 for example, adjusts the operating frequency so that the condensing temperature of the refrigerant in the refrigerant circuit 10 reaches the target condensing temperature.
  • the target condensing temperature is preferably determined according to the indoor unit 30, 35 having the largest difference between the set temperature and the indoor temperature (the indoor unit having the largest load).
  • the gas refrigerant discharged from the compressor 21 flows through the four-way switching valve 22 and the gas-side refrigerant communication pipe 5, and then flows into the first indoor unit 30 and the second indoor unit 35, respectively.
  • the refrigerant that has flowed into the first indoor unit 30 is condensed in the first indoor heat exchanger 31
  • the refrigerant that has flowed into the second indoor unit 35 is condensed in the second indoor heat exchanger 36 .
  • the refrigerant flowing out from the liquid side end of the first indoor heat exchanger 31 is decompressed in the first indoor expansion valve 33 to the intermediate pressure of the refrigeration cycle.
  • the refrigerant flowing out from the liquid side end of the second indoor heat exchanger 36 is also decompressed by the second indoor expansion valve 38 to the intermediate pressure of the refrigeration cycle.
  • the degree of opening of the first indoor expansion valve 33 is controlled so as to satisfy a predetermined condition, for example, the degree of supercooling of the refrigerant flowing through the liquid-side outlet of the first indoor heat exchanger 31 becomes a target value. be done.
  • the opening degree of the valve is satisfied so as to satisfy a predetermined condition such that the degree of subcooling of the refrigerant flowing through the liquid side outlet of the second indoor heat exchanger 36 reaches a target value. is controlled.
  • the refrigerant that has passed through the first indoor expansion valve 33 and the refrigerant that has passed through the second indoor expansion valve 38 join and flow into the outdoor unit 20 through the liquid-side refrigerant communication pipe 6 .
  • the refrigerant that has flowed into the outdoor unit 20 passes through the liquid side stop valve 29 and is decompressed to the low pressure of the refrigeration cycle at the outdoor expansion valve 24 .
  • the degree of opening of the outdoor expansion valve 24 is controlled so as to satisfy a predetermined condition, for example, the degree of superheat of the refrigerant sucked by the compressor 21 reaches a target value.
  • the method of controlling the degree of valve opening of the outdoor expansion valve 24 is not particularly limited.
  • the degree of superheat of the refrigerant discharged from may be controlled so as to satisfy a predetermined condition.
  • the refrigerant decompressed by the outdoor expansion valve 24 evaporates in the outdoor heat exchanger 23, passes through the four-way switching valve 22, is heated in the internal heat exchanger 51, and is sucked into the compressor 21 again.
  • the degree of subcooling is controlled for the first indoor expansion valve 33 and the second indoor expansion valve 38, so that the first indoor heat exchanger 31 and the second indoor heat exchanger It is possible to make it easier to fully demonstrate the ability of 36.
  • the air conditioner 1k is provided with the internal heat exchanger 51, the refrigerant sucked into the compressor 21 is heated, and liquid compression in the compressor 21 is suppressed. It is possible to control the degree of superheat of the refrigerant flowing through the outlets of the first indoor heat exchanger 31 and the second indoor heat exchanger 36 functioning as evaporators so as to have a small value. Similarly, in the heating operation, it is possible to control the degree of superheat of the refrigerant flowing through the outlet of the outdoor heat exchanger 23, which functions as an evaporator of the refrigerant, to a small value.
  • FIG. 3A is a schematic configuration diagram of a refrigerant circuit
  • FIG. 3A is a schematic configuration diagram of a refrigerant circuit
  • FIG. 3A is a schematic configuration diagram of a refrigerant circuit
  • FIG. 3A is a schematic configuration diagram of a refrigerant circuit
  • FIG. 3A is a schematic configuration diagram of a refrigerant circuit
  • FIG. 1 is a schematic configuration diagram of a refrigerant circuit
  • FIG. 1 is a schematic configuration diagram of a refrigerant circuit
  • the air conditioner 1 is a device that conditions the air in the target space by performing a vapor compression refrigeration cycle.
  • the air conditioner 1 mainly includes an outdoor unit 20, a first indoor unit 30, a second indoor unit 35, and a liquid It has a side refrigerant communication pipe 6 and a gas side refrigerant communication pipe 5 , a remote controller (not shown) as an input device and an output device, and a controller 7 for controlling the operation of the air conditioner 1 .
  • the air conditioner 1 performs a refrigeration cycle in which the refrigerant enclosed in the refrigerant circuit 10 is compressed, cooled or condensed, decompressed, heated or evaporated, and then compressed again.
  • the refrigerant circuit 10 is filled with refrigerant for performing a vapor compression refrigeration cycle.
  • the refrigerant is any of the refrigerants described in (1), and any one of the refrigerants X, Y, and A to E described above can be used.
  • the refrigerant circuit 10 is filled with refrigerating machine oil together with the mixed refrigerant.
  • Outdoor unit 20 The outdoor unit 20 is connected to the indoor unit 30 via the liquid-side refrigerant communication pipe 6 and the gas-side refrigerant communication pipe 5, and constitutes a part of the refrigerant circuit 10.
  • the outdoor unit 20 mainly includes a compressor 21, a four-way switching valve 22, an outdoor heat exchanger 23, a supercooling heat exchanger 47, an intake injection pipe 40, a supercooling expansion valve 48, and an outdoor expansion valve. 24 , an outdoor fan 25 , a low pressure receiver 41 , a liquid side shutoff valve 29 and a gas side shutoff valve 28 .
  • the compressor 21 is a device that compresses the low-pressure refrigerant in the refrigeration cycle to high pressure.
  • a closed-type compressor is used in which a displacement type compression element (not shown) such as a rotary type or a scroll type is rotationally driven by a compressor motor.
  • the compressor motor is for varying the capacity, and the inverter can control the operating frequency.
  • the compressor 21 is provided with an attached accumulator (not shown) on the suction side (the inner volume of the attached accumulator is smaller than the refrigerant container such as the low pressure receiver, the intermediate pressure receiver, and the high pressure receiver, and is preferably is less than half).
  • the four-way switching valve 22 connects the discharge side of the compressor 21 and the outdoor heat exchanger 23 and connects the suction side of the compressor 21 and the gas side shutoff valve 28 for cooling operation. and a heating operation connection state in which the suction side of the compressor 21 and the outdoor heat exchanger 23 are connected while the discharge side of the compressor 21 and the gas side shutoff valve 28 are connected.
  • the outdoor heat exchanger 23 is a heat exchanger that functions as a high-pressure refrigerant condenser in the refrigeration cycle during cooling operation, and functions as a low-pressure refrigerant evaporator in the refrigeration cycle during heating operation.
  • the outdoor expansion valve 24 is provided between the liquid side outlet of the outdoor heat exchanger 23 and the liquid side closing valve 29 in the refrigerant circuit 10 .
  • the outdoor expansion valve 24 is an electric expansion valve whose opening degree can be adjusted.
  • the suction injection pipe 40 branches from a branch portion between the outdoor expansion valve 24 and the liquid side shutoff valve 29 in the main circuit of the refrigerant circuit 10, and is connected to one of the connection ports of the four-way switching valve 22 to the low pressure receiver. It is provided so as to merge with the confluence point up to 41 .
  • a supercooling expansion valve 48 is provided in the suction injection pipe 40 .
  • the supercooling expansion valve 48 is an electric expansion valve whose opening degree can be adjusted.
  • the supercooling heat exchanger 47 contains the refrigerant flowing through the portion between the outdoor expansion valve 24 and the liquid-side shutoff valve 29 in the refrigerant circuit 10 and the refrigerant flowing through the confluence side of the supercooling expansion valve 48 in the suction injection pipe 40. is a heat exchanger that allows heat to be exchanged between In the present embodiment, the supercooling heat exchanger 47 is a portion between the outdoor expansion valve 24 and the liquid side shutoff valve 29, and is provided closer to the liquid side shutoff valve 29 than the branch portion of the suction injection pipe 40. ing.
  • the outdoor fan 25 draws outdoor air into the outdoor unit 20, exchanges heat with the refrigerant in the outdoor heat exchanger 23, and then generates an air flow for discharging to the outside.
  • the outdoor fan 25 is rotationally driven by an outdoor fan motor.
  • the low-pressure receiver 41 is provided between the suction side of the compressor 21 and one of the connection ports of the four-way switching valve 22, and is a refrigerant container capable of storing excess refrigerant in the refrigerant circuit 10 as liquid refrigerant. be. Further, the compressor 21 is provided with an attached accumulator (not shown), and the low-pressure receiver 41 is connected downstream of the attached accumulator.
  • the liquid-side shut-off valve 29 is a manual valve that is arranged at the connection portion of the outdoor unit 20 with the liquid-side refrigerant communication pipe 6 .
  • the gas-side shut-off valve 28 is a manual valve arranged at the connecting portion between the outdoor unit 20 and the gas-side refrigerant communication pipe 5 .
  • the outdoor unit 20 has an outdoor unit control section 27 that controls the operation of each section that configures the outdoor unit 20 .
  • the outdoor unit control section 27 has a microcomputer including a CPU, memory, and the like.
  • the outdoor unit control section 27 is connected to the indoor unit control section 34 of each indoor unit 30 via a communication line, and transmits and receives control signals and the like.
  • the outdoor unit 20 is provided with a discharge pressure sensor 61, a discharge temperature sensor 62, a suction pressure sensor 63, a suction temperature sensor 64, an outdoor heat exchanger temperature sensor 65, an outside air temperature sensor 66, a supercooling temperature sensor 67, and the like.
  • Each of these sensors is electrically connected to the outdoor unit control section 27 and transmits detection signals to the outdoor unit control section 27 .
  • the discharge pressure sensor 61 detects the pressure of refrigerant flowing through a discharge pipe that connects the discharge side of the compressor 21 and one of the connection ports of the four-way switching valve 22 .
  • a discharge temperature sensor 62 detects the temperature of the refrigerant flowing through the discharge pipe.
  • the suction pressure sensor 63 detects the pressure of refrigerant flowing through a suction pipe connecting the suction side of the compressor 21 and the low pressure receiver 41 .
  • the intake temperature sensor 64 detects the temperature of refrigerant flowing through the intake pipe.
  • the outdoor heat exchanger temperature sensor 65 detects the temperature of the refrigerant flowing through the outlet on the liquid side of the outdoor heat exchanger 23 opposite to the side to which the four-way switching valve 22 is connected.
  • the outdoor air temperature sensor 66 detects the outdoor air temperature before passing through the outdoor heat exchanger 23 .
  • the subcooling temperature sensor 67 detects the temperature of refrigerant flowing between the subcooling heat exchanger 47 and the second outdoor expansion valve 45 in the main circuit of the refrigerant circuit 10 .
  • First indoor unit 30 and second indoor unit 35 Both the first indoor unit 30 and the second indoor unit 35 are installed on an indoor wall surface, ceiling, or the like, which is the same or different target space.
  • the first indoor unit 30 and the second indoor unit 35 are connected to the outdoor unit 20 via the liquid-side refrigerant communication pipe 6 and the gas-side refrigerant communication pipe 5, and constitute a part of the refrigerant circuit 10.
  • the first indoor unit 30 has a first indoor heat exchanger 31 , a first indoor expansion valve 33 and a first indoor fan 32 .
  • the liquid side of the first indoor heat exchanger 31 is connected to the liquid side refrigerant communication pipe 6, and the gas side end is connected to the gas side refrigerant communication pipe 5.
  • the first indoor heat exchanger 31 is a heat exchanger that functions as a low-pressure refrigerant evaporator in the refrigeration cycle during cooling operation, and functions as a high-pressure refrigerant condenser in the refrigeration cycle during heating operation.
  • the first indoor expansion valve 33 is an electric expansion valve provided in the refrigerant pipe on the liquid refrigerant side of the first indoor heat exchanger 31 and capable of adjusting the degree of opening of the valve.
  • the first indoor unit 30 has a first indoor unit control section 34 that controls the operation of each section that constitutes the first indoor unit 30 .
  • the first indoor unit control section 34 has a microcomputer including a CPU, memory, and the like.
  • the first indoor unit control section 34 is connected to the second indoor unit control section 39 and the outdoor unit control section 27 via communication lines, and transmits and receives control signals and the like.
  • the first indoor unit 30 is provided with a first indoor liquid side heat exchanger temperature sensor 71, a first indoor air temperature sensor 72, a first indoor gas side heat exchanger temperature sensor 73, and the like. Each of these sensors is electrically connected to the first indoor unit controller 34 and transmits detection signals to the first indoor unit controller 34 .
  • the first indoor liquid-side heat exchanger temperature sensor 71 detects the temperature of the refrigerant flowing through the liquid refrigerant-side outlet of the first indoor heat exchanger 31 .
  • the first indoor air temperature sensor 72 detects the indoor air temperature before passing through the first indoor heat exchanger 31 .
  • the first indoor gas side heat exchanger temperature sensor 73 detects the temperature of the refrigerant flowing through the gas refrigerant side outlet of the first indoor heat exchanger 31 .
  • the second indoor unit 35 has a second indoor heat exchanger 36 , a second indoor expansion valve 38 and a second indoor fan 37 .
  • the second indoor heat exchanger 36 has a liquid side connected to the liquid side refrigerant communication pipe 6 and a gas side end connected to the gas side refrigerant communication pipe 5 .
  • the second indoor heat exchanger 36 is a heat exchanger that functions as a low-pressure refrigerant evaporator in the refrigeration cycle during cooling operation, and functions as a high-pressure refrigerant condenser in the refrigeration cycle during heating operation.
  • the second indoor expansion valve 38 is an electric expansion valve provided in the refrigerant pipe on the liquid refrigerant side of the second indoor heat exchanger 36 and capable of adjusting the degree of valve opening.
  • the second indoor fan 37 draws indoor air into the second indoor unit 35, exchanges heat with the refrigerant in the second indoor heat exchanger 36, and then generates an air flow for discharging to the outside.
  • the second indoor fan 37 is rotationally driven by an indoor fan motor.
  • the second indoor unit 35 has a second indoor unit control section 39 that controls the operation of each section that constitutes the second indoor unit 35 .
  • the second indoor unit control section 39 has a microcomputer including a CPU, memory, and the like. It is connected to the second indoor unit control section 39, the first indoor unit control section 34 and the outdoor unit control section 27 via communication lines, and transmits and receives control signals and the like.
  • the second indoor unit 35 is provided with a second indoor liquid side heat exchanger temperature sensor 75, a second indoor air temperature sensor 76, a second indoor gas side heat exchanger temperature sensor 77, and the like. Each of these sensors is electrically connected to the second indoor unit control section 39 and transmits detection signals to the second indoor unit control section 39 .
  • the second indoor liquid side heat exchanger temperature sensor 75 detects the temperature of the refrigerant flowing through the outlet of the second indoor heat exchanger 36 on the liquid refrigerant side.
  • the second indoor air temperature sensor 76 detects the indoor air temperature before passing through the second indoor heat exchanger 36 .
  • the second indoor gas side heat exchanger temperature sensor 77 detects the temperature of the refrigerant flowing through the outlet of the second indoor heat exchanger 36 on the gas refrigerant side.
  • Controller 7 Details of Controller 7 In the air conditioner 1, the outdoor unit control section 27, the first indoor unit control section 34, and the second indoor unit control section 39 are connected via communication lines. , a controller 7 for controlling the operation of the air conditioner 1 .
  • the controller 7 mainly has a CPU (Central Processing Unit) and memories such as ROM and RAM. Various processes and controls by the controller 7 are realized by integrally functioning each part included in the outdoor unit control section 27 and/or the first indoor unit control section 34 and/or the second indoor unit control section 39. ing.
  • CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • Various processes and controls by the controller 7 are realized by integrally functioning each part included in the outdoor unit control section 27 and/or the first indoor unit control section 34 and/or the second indoor unit control section 39. ing.
  • a cooling operation mode and a heating operation mode are provided as operation modes.
  • the controller 7 determines whether it is the cooling operation mode or the heating operation mode based on the instruction received from the remote control or the like, and executes it.
  • the compressor 21 operates at an operating frequency such that, for example, the evaporation temperature of the refrigerant in the refrigerant circuit 10 reaches the target evaporation temperature. Capacity controlled.
  • the target evaporation temperature is preferably determined according to the indoor unit 30, 35 with the largest difference between the set temperature and the indoor temperature (the indoor unit with the largest load).
  • the gas refrigerant discharged from the compressor 21 is condensed in the outdoor heat exchanger 23 via the four-way switching valve 22 .
  • the refrigerant that has flowed through the outdoor heat exchanger 23 passes through the outdoor expansion valve 24 .
  • the outdoor expansion valve 24 is controlled to be fully open.
  • the refrigerant branched to the suction injection pipe 40 is decompressed in the subcooling expansion valve 48 .
  • heat is exchanged between the refrigerant flowing from the outdoor expansion valve 24 toward the liquid-side closing valve 29 side and the refrigerant flowing through the suction injection pipe 40 decompressed by the supercooling expansion valve 48 .
  • the refrigerant flowing through the suction injection pipe 40 merges at a junction between one of the connection ports of the four-way switching valve 22 and the low-pressure receiver 41.
  • the degree of opening of the supercooling expansion valve 48 is controlled so as to satisfy a predetermined condition, such as the degree of supercooling of the refrigerant after passing through the supercooling heat exchanger 47 in the refrigerant circuit 10 becomes a predetermined target value. be done.
  • the refrigerant flowing from the outdoor expansion valve 24 toward the liquid-side shut-off valve 29 side finishes heat exchange in the subcooling heat exchanger 47 and then flows through the liquid-side shut-off valve 29 through the liquid-side refrigerant communication pipe 6. , to the first indoor unit 30 and the second indoor unit 35 .
  • the first indoor expansion valve 33 is set so as to satisfy a predetermined condition, for example, the degree of superheat of the refrigerant flowing through the gas-side outlet of the first indoor heat exchanger 31 becomes a target value. , the valve opening is controlled. Also, in the second indoor expansion valve 38 of the second indoor unit 35, similarly to the first indoor expansion valve 33, for example, the degree of superheat of the refrigerant flowing through the gas side outlet of the second indoor heat exchanger 36 becomes the target value.
  • the compressor 21 for example, adjusts the operating frequency so that the condensing temperature of the refrigerant in the refrigerant circuit 10 reaches the target condensing temperature.
  • the target condensing temperature is preferably determined according to the indoor unit 30, 35 having the largest difference between the set temperature and the indoor temperature (the indoor unit having the largest load).
  • the refrigerant that has passed through the liquid-side shutoff valve 29 of the outdoor unit 20 flows through the supercooling heat exchanger 47 and is decompressed in the outdoor expansion valve 24 .
  • the degree of opening of the outdoor expansion valve 24 is controlled so as to satisfy a predetermined condition, for example, the degree of superheat of the refrigerant flowing on the suction side of the compressor 21 becomes a target value.
  • the method of controlling the degree of valve opening of the outdoor expansion valve 24 is not particularly limited.
  • the degree of superheat of the refrigerant discharged from may be controlled so as to satisfy a predetermined condition.
  • the supercooling expansion valve 48 provided in the suction injection pipe 40 is controlled to be fully closed. is not performed.
  • the refrigerant decompressed by the outdoor expansion valve 24 evaporates in the outdoor heat exchanger 23, passes through the four-way switching valve 22 and the low-pressure receiver 41, and is sucked into the compressor 21 again.
  • liquid refrigerant that has not completely evaporated in the outdoor heat exchanger 23 is stored as a surplus refrigerant.
  • the suction injection pipe 40 allows the temperature of the refrigerant sucked into the compressor 21 to be lowered, so it is possible to improve the operating efficiency of the refrigeration cycle.
  • an air conditioner for example, as shown in FIG. It may be the device 1a.
  • the economizer injection pipe 40a is a pipe that branches from a portion of the main circuit of the refrigerant circuit 10 between the outdoor expansion valve 24 and the liquid side shutoff valve 29 and extends to the intermediate pressure region of the compressor 21a.
  • An economizer expansion valve 48a capable of controlling the degree of valve opening is provided in the middle of the economizer injection pipe 40a.
  • the economizer heat exchanger 47a is a refrigerant branched from the main circuit of the refrigerant circuit 10 and flowing through the economizer injection pipe 40a. It is a heat exchanger that exchanges heat with the refrigerant flowing between the valve 24 and the liquid side shutoff valve 29 .
  • the compressor 21a is not particularly limited, for example, a scroll compressor as shown in FIG. 3D can be used.
  • the compressor 21 a includes a casing 80 , a scroll compression mechanism 81 including a fixed scroll 82 , a drive motor 91 , a crankshaft 94 and a lower bearing 98 .
  • the casing 80 has a substantially cylindrical member 80a that is open at the top and bottom, and an upper lid 80b and a lower lid 80c provided at the upper and lower ends of the cylindrical member 80a, respectively.
  • the cylindrical member 80a, the upper lid 80b and the lower lid 80c are fixed by welding so as to maintain airtightness.
  • Casing 80 accommodates components of compressor 21 a including scroll compression mechanism 81 , drive motor 91 , crankshaft 94 , and lower bearing 98 .
  • An oil reservoir space So is formed in the lower portion of the casing 80 .
  • Refrigerant oil O for lubricating the scroll compression mechanism 81 and the like is stored in the oil reservoir space So.
  • a suction pipe 19 for sucking the low-pressure gas refrigerant in the refrigerating cycle of the refrigerant circuit 10 and supplying the gas refrigerant to the scroll compression mechanism 81 is provided through the upper lid 80b.
  • a lower end of the intake pipe 19 is connected to a fixed scroll 82 of a scroll compression mechanism 81 .
  • the intake pipe 19 communicates with a compression chamber Sc of a scroll compression mechanism 81, which will be described later.
  • a discharge pipe 18 through which the refrigerant discharged to the outside of the casing 80 passes is provided at an intermediate portion of the cylindrical member 80a of the casing 80. As shown in FIG.
  • the discharge pipe 18 is arranged such that the end of the discharge pipe 18 inside the casing 80 protrudes into the high-pressure space Sh formed below the housing 88 of the scroll compression mechanism 81 .
  • the high-pressure refrigerant in the refrigeration cycle after being compressed by the scroll compression mechanism 81 flows through the discharge pipe 18 .
  • An injection connection port is provided on the side surface of the upper lid 80b of the casing 80, and the economizer injection pipe 40a is connected to the injection connection port.
  • the fixed scroll 82 has a flat fixed side end plate 82a, a spiral fixed side wrap 82b protruding from the front surface of the fixed side end plate 82a, and an outer edge portion 82c surrounding the fixed side wrap 82b.
  • a non-circular discharge port 82d that communicates with the compression chamber Sc of the scroll compression mechanism 81 is formed in the central portion of the fixed side end plate 82a so as to pass through the fixed side end plate 82a in the thickness direction.
  • the refrigerant compressed in the compression chamber Sc is discharged from the discharge port 82d, passes through a refrigerant passage (not shown) formed in the fixed scroll 82 and the housing 88, and flows into the high pressure space Sh.
  • a supply passage 82e is formed in the fixed-side end plate 82a, which opens on the side surface of the fixed-side end plate 82a and communicates with the compression chamber Sc. Through this supply passage 82e, the intermediate-pressure refrigerant that has flowed through the economizer injection pipe 40a is supplied to the compression chamber Sc.
  • the supply passage 82e has a horizontal passage portion 82f that extends horizontally from the side opening of the fixed-side end plate 82a toward the center of the fixed-side end plate 82a.
  • the movable scroll 84 includes a flat plate-shaped movable side plate 84a, a spiral movable side wrap 84b projecting from the front surface of the movable side end plate 84a, and a cylindrical boss portion projecting from the rear surface of the movable side end plate 84a. 84c.
  • the fixed side wrap 82b of the fixed scroll 82 and the movable side wrap 84b of the orbiting scroll 84 are combined in such a manner that the lower surface of the fixed side end plate 82a faces the upper surface of the movable side end plate 84a.
  • a compression chamber Sc is formed between the adjacent fixed side wrap 82b and movable side wrap 84b.
  • the boss portion 84c is a cylindrical portion whose upper end is closed.
  • the movable scroll 84 and the crankshaft 94 are connected by inserting an eccentric portion 95 of the crankshaft 94, which will be described later, into the hollow portion of the boss portion 84c.
  • the boss portion 84 c is arranged in an eccentric space 89 formed between the movable scroll 84 and the housing 88 .
  • the eccentric space 89 communicates with the high-pressure space Sh through an oil supply path 97 of the crankshaft 94 (to be described later) and the like, and high pressure acts on the eccentric space 89 .
  • This pressure pushes the lower surface of the movable end plate 84 a in the eccentric space 89 upward toward the fixed scroll 82 .
  • This force brings the movable scroll 84 into close contact with the fixed scroll 82 .
  • the movable scroll 84 is supported by the housing 88 via an Oldham ring arranged in the "Oldham ring space Sr".
  • the Oldham ring is a member that prevents the movable scroll 84 from rotating and makes it revolve.
  • the housing 88 is press-fitted into the cylindrical member 80a and fixed to the cylindrical member 80a along the entire circumferential direction on its outer peripheral surface.
  • the housing 88 and the fixed scroll 82 are fixed by bolts (not shown) or the like so that the upper end surface of the housing 88 is in close contact with the lower surface of the outer edge portion 82c of the fixed scroll 82 .
  • the housing 88 is formed with a recess 88a recessed in the center of the upper surface and a bearing 88b located below the recess 88a.
  • the concave portion 88a surrounds the side surface of the eccentric portion space 89 in which the boss portion 84c of the movable scroll 84 is arranged.
  • a bearing 90 that supports a main shaft 96 of a crankshaft 94 is arranged in the bearing portion 88b.
  • the bearing 90 rotatably supports a main shaft 96 inserted into the bearing 90 .
  • the housing 88 also defines an Oldham ring space Sr in which the Oldham ring is arranged.
  • the drive motor 91 has an annular stator 92 fixed to the inner wall surface of the cylindrical member 80a, and a rotor 93 rotatably accommodated inside the stator 92 with a small gap (air gap passage).
  • the rotor 93 is connected to the movable scroll 84 via a crankshaft 94 arranged to extend vertically along the axis of the cylindrical member 80a. Rotation of the rotor 93 causes the movable scroll 84 to revolve with respect to the fixed scroll 82 .
  • the crankshaft 94 transmits the driving force of the drive motor 91 to the movable scroll 84 .
  • the crankshaft 94 is arranged to extend vertically along the axis of the cylindrical member 80 a and connects the rotor 93 of the drive motor 91 and the movable scroll 84 of the scroll compression mechanism 81 .
  • the crankshaft 94 has a main shaft 96 whose center axis coincides with the axis of the cylindrical member 80a, and an eccentric portion 95 that is eccentric with respect to the axis of the cylindrical member 80a.
  • the eccentric portion 95 is inserted into the boss portion 84c of the movable scroll 84 as described above.
  • the main shaft 96 is rotatably supported by the bearing 90 of the bearing portion 88b of the housing 88 and a lower bearing 98 which will be described later.
  • the main shaft 96 is connected to the rotor 93 of the drive motor 91 between the bearing portion 88b and the lower bearing 98.
  • An oil supply path 97 for supplying refrigerating machine oil O to the scroll compression mechanism 81 and the like is formed inside the crankshaft 94 .
  • the lower end of the main shaft 96 is positioned within an oil pool space So formed in the lower portion of the casing 80, and the refrigerating machine oil O in the oil pool space So is supplied to the scroll compression mechanism 81 and the like through an oil supply path 97.
  • the lower bearing 98 is arranged below the drive motor 91 .
  • a lower bearing 98 is fixed to the cylindrical member 80a.
  • the lower bearing 98 constitutes a bearing on the lower end side of the crankshaft 94 and rotatably supports the main shaft 96 of the crankshaft 94 .
  • the intermediate-pressure refrigerant that has flowed through the economizer injection pipe 40a is supplied to the compression chamber Sc during compression via the horizontal passage portion 82f and the injection port 82g.
  • the compression chamber Sc loses communication with the injection port 82g as the refrigerant compression progresses.
  • the refrigerant in the compression chamber Sc is compressed as the volume of the compression chamber Sc decreases, and finally becomes a high-pressure gas refrigerant.
  • a high-pressure gas refrigerant is discharged from a discharge port 82d located near the center of the stationary end plate 82a. After that, the high pressure gas refrigerant passes through a refrigerant passage (not shown) formed in the fixed scroll 82 and the housing 88 and flows into the high pressure space Sh.
  • the high-pressure gas refrigerant in the refrigeration cycle after being compressed by the scroll compression mechanism 81 which has flowed into the high-pressure space Sh, is discharged from the discharge pipe 18 .
  • the refrigerant flowing through the economizer injection pipe 40a joins the intermediate pressure area of the compressor 21a, so that the temperature of the intermediate pressure refrigerant in the compressor 21a can be lowered. It becomes possible to improve the operating efficiency in the refrigeration cycle.
  • the compressor used in the first embodiment may be a compressor 21b, which is a rotary compressor described in the second embodiment described later.
  • FIG. 3E which is a schematic configuration diagram of a refrigerant circuit
  • FIG. 3F which is a schematic control block configuration diagram
  • an air conditioner as a refrigeration cycle device according to a second embodiment. 1b will be explained.
  • the air conditioner 1b of the second embodiment will be mainly described, focusing on the points that differ from the air conditioner 1 of the first embodiment.
  • any one of the refrigerants described in (1) is used as a refrigerant for performing a vapor compression refrigeration cycle in the refrigerant circuit 10, and the above-described refrigerant X, refrigerant Y, refrigerant A to Either refrigerant E is filled.
  • the refrigerant circuit 10 is filled with refrigerating machine oil together with the refrigerant.
  • the high pressure receiver 42 is provided between the outdoor expansion valve 24 and the liquid side shutoff valve 29 in the main flow path of the refrigerant circuit 10 .
  • both the end of the pipe extending from the outdoor expansion valve 24 side and the end of the pipe extending from the liquid-side shutoff valve 29 are located in the internal space, and are a container capable of storing the refrigerant. is.
  • the intermediate injection pipe 46 is a pipe extending from the gas region in the internal space of the high pressure receiver 42 and connected to the intermediate pressure region of the compressor 21b.
  • the intermediate injection expansion valve 49 is provided in the middle of the intermediate injection pipe 46 and is capable of controlling the opening degree of the valve.
  • the outdoor expansion valve 24 allows the refrigerant passing through the liquid side outlet of the outdoor heat exchanger 23 to pass through.
  • the degree of cooling is controlled so as to satisfy a predetermined condition.
  • the intermediate injection expansion valve 49 is controlled to reduce the refrigerant flowing from the high pressure receiver 42 to the intermediate pressure in the compressor 21b.
  • the compressor 21b is a one-cylinder rotary compressor, as shown in FIG. be.
  • the compressor 21 b has a compression mechanism 130 arranged below a drive mechanism 120 in a casing 111 .
  • the motor 121 is a motor for rotating the crankshaft 122 and mainly has a rotor 123 and a stator 124 .
  • the rotor 123 has the crankshaft 122 inserted into its inner space and rotates together with the crankshaft 122 .
  • the rotor 123 is composed of laminated electromagnetic steel sheets and magnets embedded in the rotor body.
  • the stator 124 is arranged radially outside the rotor 123 with a predetermined space therebetween.
  • the stator 124 is composed of laminated electromagnetic steel sheets and coils wound around the stator body.
  • the motor 121 rotates the rotor 123 together with the crankshaft 122 by electromagnetic force generated in the stator 124 by applying current to the coil.
  • the crankshaft 122 is inserted into the rotor 123 and rotates around the rotation axis. 3H, the crank pin 122a, which is an eccentric portion of the crankshaft 122, is inserted through a roller 180 (described later) of the piston 131 of the compression mechanism 130, and can transmit the torque from the rotor 123. It is fitted to the roller 180 in a good state.
  • the crankshaft 122 rotates in accordance with the rotation of the rotor 123, eccentrically rotates the crankpin 122a, and causes the roller 180 of the piston 131 of the compression mechanism 130 to revolve. That is, the crankshaft 122 has the function of transmitting the driving force of the motor 121 to the compression mechanism 130 .
  • the compression mechanism 130 is housed in the casing 111 on the lower side. Compression mechanism 130 compresses the refrigerant sucked through suction pipe 196 .
  • the compression mechanism 130 is a rotary compression mechanism and mainly consists of a front head 140 , a cylinder 150 , a piston 131 and a rear head 160 .
  • Refrigerant compressed in the compression chamber S1 of the compression mechanism 130 passes through the front head discharge hole 141a formed in the front head 140, passes through the muffler space S2 surrounded by the front head 140 and the muffler 170, and is transferred to the motor 121. It is discharged into the space where the lower end of the discharge pipe 125 is positioned.
  • the cylinder 150 is a metal cast member.
  • the cylinder 150 has a cylindrical center portion 150a, a first extension portion 150b extending from the center portion 150a toward the attached accumulator 195, and a second extension portion 150c extending from the center portion 150a to the side opposite to the first extension portion 150b.
  • a suction hole 151 for sucking low-pressure refrigerant in the refrigeration cycle is formed in the first extension portion 150b.
  • a cylindrical space inside the inner peripheral surface 150a1 of the central portion 150a serves as a cylinder chamber 152 into which the refrigerant sucked from the suction hole 151 flows.
  • the suction hole 151 extends from the cylinder chamber 152 toward the outer peripheral surface of the first extension portion 150b and opens at the outer peripheral surface of the first extension portion 150b.
  • a tip portion of a suction pipe 196 extending from an accumulator 195 is inserted into the suction hole 151 .
  • a piston 131 and the like for compressing the refrigerant that has flowed into the cylinder chamber 152 are accommodated in the cylinder chamber 152 .
  • the cylinder 150 is formed with a blade swinging space 153 in which a bush 135 and a blade 190, which will be described later, are arranged.
  • the blade swinging space 153 is formed across the central portion 150a and the first extension portion 150b, and the blade 190 of the piston 131 is swingably supported by the cylinder 150 via the bushing 135.
  • the blade swinging space 153 is formed so as to extend from the cylinder chamber 152 toward the outer peripheral side in the vicinity of the suction hole 151 in plan view.
  • Front Head The front head 140, as shown in FIG. and a front head boss portion 142 extending upward from the periphery of the central front head opening of the plate portion 141 .
  • the front head boss portion 142 is cylindrical and functions as a bearing for the crankshaft 122 .
  • a front head discharge hole 141a is formed in the front head disc portion 141 at the planar position shown in FIG. 3H. Refrigerant compressed in the compression chamber S1 of which volume changes in the cylinder chamber 152 of the cylinder 150 is intermittently discharged from the front head discharge hole 141a.
  • the front head disc portion 141 is provided with a discharge valve for opening and closing the outlet of the front head discharge hole 141a. This discharge valve opens due to the pressure difference when the pressure in the compression chamber S1 becomes higher than the pressure in the muffler space S2, and discharges the refrigerant from the front head discharge hole 141a into the muffler space S2.
  • the muffler 170 is attached to the top surface of the peripheral portion of the front head disk portion 141 of the front head 140, as shown in FIG. 3G.
  • the muffler 170 forms a muffler space S2 together with the upper surface of the front head disk portion 141 and the outer peripheral surface of the front head boss portion 142 to reduce noise associated with discharging the refrigerant.
  • the muffler space S2 and the compression chamber S1 communicate with each other through the front head discharge hole 141a when the discharge valve is open.
  • the muffler space S2 the housing space for the motor 121, the space above the motor 121 where the discharge pipe 125 is located, and the space below the compression mechanism 130 where the lubricating oil is accumulated are all connected, and the pressure is equal to the high pressure. forming a space.
  • the rear head 160 includes a rear head disk portion 161 that closes the opening at the first end, which is the lower end of the cylinder 150, and a rear head disk portion 161 that is positioned downward from the peripheral edge of the central opening of the rear head disk portion 161. and a rear head boss portion 162 as a bearing extending to the rear head.
  • the front head disc portion 141, the rear head disc portion 161, and the central portion 150a of the cylinder 150 form a cylinder chamber 152, as shown in FIG. 3H.
  • the front head boss portion 142 and the rear head boss portion 162 are cylindrical boss portions that pivotally support the crankshaft 122 .
  • a supply flow path 161 a is formed in the rear head disc portion 161 .
  • the supply channel 161 a is connected to an injection hole (not shown) formed in the casing 111 and connected to the intermediate injection pipe 46 .
  • the supply flow path 161 a extends horizontally from the injection hole of the casing 111 toward the rotation axis CA of the crankshaft 122 , bends upward in the middle, and opens to the upper surface of the rear head disc portion 161 .
  • An outlet opening 161a1 of the supply channel 161a opens at a planar position indicated by a two-dot chain line in FIG. 3H.
  • the outlet opening 161a1 of the supply channel 161a opens into the cylinder chamber 152 inside the inner peripheral surface 150a1 of the central portion 150a of the cylinder 150 .
  • the supply flow path 161a flows intermediate-pressure refrigerant introduced from the outside of the compressor 21b into the compression chamber S1 whose volume changes in the cylinder chamber 152 when the revolution angle of the roller 180 of the piston 131 is within a certain range. play a role. Therefore, when the revolution angle of the roller 180 of the piston 131 is within a predetermined range other than the above-described predetermined range, the lower end surface of the roller 180 is partially blocked.
  • Piston 131 is arranged in the cylinder chamber 152 and attached to the crankpin 122a, which is an eccentric portion of the crankshaft 122. As shown in FIG. Piston 131 is a member in which roller 180 and blade 190 are integrated. The blade 190 of the piston 131 is arranged in the blade swinging space 153 formed in the cylinder 150 and is swingably supported by the cylinder 150 via the bush 135 as described above. Further, the blade 190 is slidable with the bush 135, and during operation, the blade 190 repeats movements of moving away from the crankshaft 122 and approaching the crankshaft 122 while swinging.
  • the roller 180 has a first end portion 181 formed with a first end face 181a which is the roller lower end face, a second end portion 182 formed with a second end face 182a which is the roller upper end face, and the first end faces 182a and 182b. It consists of a portion 181 and a central portion 183 located between the second end portions 182 .
  • the central portion 183 is a cylindrical portion having an inner diameter D2 and an outer diameter D1, as shown in FIG. 3I.
  • the first end portion 181 includes a cylindrical first body portion 181b having an inner diameter D3 and an outer diameter D1, and a first projecting portion 181c projecting inwardly from the first body portion 181b.
  • the outer diameter D1 of the first main body portion 181b is the same size as the outer diameter D1 of the central portion 183 .
  • the inner diameter D3 of the first main body portion 181b is larger than the inner diameter D2 of the central portion 183 .
  • the second end portion 182 is composed of a cylindrical second body portion 182b having an inner diameter D3 and an outer diameter D1, and a second projecting portion 182c projecting inwardly from the second body portion 182b.
  • the outer diameter D1 of the second main body portion 182b is the same size as the outer diameter D1 of the central portion 183, similarly to the outer diameter D1 of the first main body portion 181b.
  • the inner diameter D3 of the second main body portion 182b is the same size as the inner diameter D3 of the first main body portion 181b, and is larger than the inner diameter D2 of the central portion 183.
  • the inner surface 181c1 of the first projecting portion 181c and the inner surface 182c1 of the second projecting portion 182c substantially overlap the inner peripheral surface 183a1 of the central portion 183 when viewed in the rotation axis direction of the crankshaft 122 .
  • the inner surface 181c1 of the first projecting portion 181c and the inner surface 182c1 of the second projecting portion 182c are located slightly outside the inner peripheral surface 183a1 of the central portion 183 in plan view.
  • the inner diameter D3 of the first main body portion 181b and the second main body portion 182b is larger than the inner diameter D2 of the central portion 183.
  • a first stepped surface 183a2 is formed at the height position of the boundary between the end portion 181 and the central portion 183, and a second stepped surface 183a3 is formed at the height position of the boundary between the second end portion 182 and the central portion 183. (see FIG. 3I).
  • An annular first end surface 181 a of the first end portion 181 of the roller 180 is in contact with the upper surface of the rear head disc portion 161 and slides on the upper surface of the rear head disc portion 161 .
  • a first end surface 181a of the roller 180 includes a first wide surface 181a1 having a partially increased radial width.
  • the first projecting portion 181c of the first end portion 181 and a part of the first main body portion 181b of the first end portion 181 located outside thereof form a first wide surface 181a1 (see FIG. 3I). ).
  • An annular second end surface 182a of the second end portion 182 of the roller 180 is in contact with the lower surface of the front head disk portion 141 and slides on the lower surface of the front head disk portion 141.
  • a second end surface 182a of the roller 180 includes a second wide surface 182a1 having a partially increased radial width.
  • the second wide surface 182a1 is located at the same position as the first wide surface 181a1 when viewed in the rotation axis direction of the crankshaft 122 .
  • the second protruding portion 182c of the second end portion 182 and a portion of the second body portion 182b of the second end portion 182 located outside thereof form a second wide surface 182a1.
  • the high-pressure refrigerant pushes open the discharge valve through the front head discharge hole 141a and is discharged into the muffler space S2.
  • the refrigerant introduced into the muffler space S2 is discharged from the muffler discharge hole of the muffler 170 to the space above the muffler space S2.
  • the refrigerant discharged to the outside of the muffler space S2 passes through the space between the rotor 123 and the stator 124 of the motor 121 and cools the motor 121 before being discharged from the discharge pipe 125 .
  • the refrigerant flowing through the intermediate injection pipe 46 joins the intermediate pressure region of the compressor 21b, so that the temperature of the intermediate pressure refrigerant of the compressor 21b can be lowered. , it becomes possible to improve the operating efficiency in the refrigeration cycle.
  • the compressor used in the second embodiment may be the compressor 21a, which is the scroll compressor described in the modified example B of the first embodiment.
  • the air conditioner 1 mainly includes an outdoor unit 20, an indoor unit 30, a liquid-side refrigerant communication pipe 6 and a gas-side refrigerant communication pipe 5 that connect the outdoor unit 20 and the indoor unit 30, and an input device and an output device. It has a remote controller (not shown) and a controller 7 that controls the operation of the air conditioner 1 .
  • the design pressure of the liquid-side refrigerant communication pipe 6 and the gas-side refrigerant communication pipe 5 can be, for example, 4.5 MPa (3/8 inch) or more and 5.0 MPa (4/8 inch) or less.
  • Outdoor unit 20 has a substantially rectangular parallelepiped box-like appearance, and has a structure (a so-called trunk-type structure) in which a fan room and a machine room are formed by dividing the inside by a partition plate or the like.
  • the outdoor unit 20 is connected to the indoor unit 30 via the liquid-side refrigerant communication pipe 6 and the gas-side refrigerant communication pipe 5, and constitutes a part of the refrigerant circuit 10.
  • the outdoor unit 20 mainly includes a compressor 21, a four-way switching valve 22, an outdoor heat exchanger 23, an outdoor expansion valve 24, an outdoor fan 25, a liquid side shutoff valve 29, and a gas side shutoff valve 28. ,have.
  • the design pressure (gauge pressure) of the outdoor unit 20 is 1.5 times the design pressure of the liquid-side refrigerant communication pipe 6 and the gas-side refrigerant communication pipe 5 (withstanding pressure of the liquid-side refrigerant communication pipe 6 and the gas-side refrigerant communication pipe 5). pressure).
  • the design pressure of such an outdoor unit 20 can be, for example, 4.0 MPa or more and 4.5 MPa or less.
  • the four-way switching valve 22 connects the discharge side of the compressor 21 and the outdoor heat exchanger 23 and connects the suction side of the compressor 21 and the gas side shutoff valve 28 for cooling operation. and a heating operation connection state in which the suction side of the compressor 21 and the outdoor heat exchanger 23 are connected while the discharge side of the compressor 21 and the gas side shutoff valve 28 are connected.
  • the outdoor heat exchanger 23 is a heat exchanger that functions as a high-pressure refrigerant condenser in the refrigeration cycle during cooling operation, and functions as a low-pressure refrigerant evaporator in the refrigeration cycle during heating operation.
  • the outdoor heat exchanger 23 has a plurality of heat transfer fins and a plurality of heat transfer tubes fixed through the heat transfer fins.
  • the outdoor fan 25 draws outdoor air into the outdoor unit 20, exchanges heat with the refrigerant in the outdoor heat exchanger 23, and then generates an air flow for discharging to the outside.
  • the outdoor fan 25 is rotationally driven by an outdoor fan motor. In this embodiment, only one outdoor fan 25 is provided.
  • the outdoor unit 20 has an outdoor unit control section 27 that controls the operation of each section that configures the outdoor unit 20 .
  • the outdoor unit control section 27 has a microcomputer including a CPU, memory, and the like.
  • the outdoor unit control section 27 is connected to the indoor unit control section 34 of each indoor unit 30 via a communication line, and transmits and receives control signals and the like.
  • the outdoor unit controller 27 is also electrically connected to various sensors (not shown) and receives signals from the sensors.
  • the upper limit of the refrigerant control pressure is 1.5 times the design pressure of the liquid side refrigerant communication pipe 6 and the gas side refrigerant communication pipe 5. (withstanding pressure of liquid-side refrigerant communication pipe 6 and gas-side refrigerant communication pipe 5).
  • the indoor unit 30 is installed on an indoor wall surface or the like, which is the target space.
  • the indoor unit 30 is connected to the outdoor unit 20 via the liquid-side refrigerant communication pipe 6 and the gas-side refrigerant communication pipe 5, and constitutes part of the refrigerant circuit 10.
  • the design pressure of the indoor unit 30 can be, for example, 4.0 MPa or more and 4.5 MPa or less, like the outdoor unit 20 .
  • the indoor unit 30 has an indoor heat exchanger 31, an indoor fan 32, and the like.
  • the indoor heat exchanger 31 has a liquid side connected to the liquid side refrigerant communication pipe 6 and a gas side end connected to the gas side refrigerant communication pipe 5 .
  • the indoor heat exchanger 31 is a heat exchanger that functions as a low-pressure refrigerant evaporator in the refrigeration cycle during cooling operation, and functions as a high-pressure refrigerant condenser in the refrigeration cycle during heating operation.
  • the indoor heat exchanger 31 has a plurality of heat transfer fins and a plurality of heat transfer tubes fixed through the heat transfer fins.
  • the indoor unit 30 has an indoor unit control section 34 that controls the operation of each section that constitutes the indoor unit 30 .
  • the indoor unit control section 34 has a microcomputer including a CPU, memory, and the like.
  • the indoor unit control section 34 is connected to the outdoor unit control section 27 via a communication line, and transmits and receives control signals and the like.
  • the indoor unit control section 34 is electrically connected to various sensors (not shown) provided in the indoor unit 30, and receives signals from each sensor.
  • Controller 7 Details of Controller 7 In the air conditioner 1, the outdoor unit control section 27 and the indoor unit control section 34 are connected via a communication line, thereby controlling the operation of the air conditioner 1. 7 is configured.
  • the controller 7 mainly has a CPU (Central Processing Unit) and memories such as ROM and RAM. Various processes and controls by the controller 7 are realized by integrally functioning each part included in the outdoor unit control section 27 and/or the indoor unit control section 34 .
  • CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • a cooling operation mode and a heating operation mode are provided as operation modes.
  • the controller 7 determines whether it is the cooling operation mode or the heating operation mode based on the instruction received from the remote control or the like, and executes it.
  • Cooling operation mode In the air conditioner 1, in the cooling operation mode, the connection state of the four-way switching valve 22 is set to connect the discharge side of the compressor 21 and the outdoor heat exchanger 23 while compressing.
  • the suction side of the compressor 21 and the gas side stop valve 28 are connected to the cooling operation connection state, and the refrigerant charged in the refrigerant circuit 10 is mainly supplied to the compressor 21, the outdoor heat exchanger 23, the outdoor expansion valve 24, the indoor The heat exchanger 31 is circulated in order.
  • the refrigerant circuit 10 when the cooling operation mode is started, in the refrigerant circuit 10, the refrigerant is sucked into the compressor 21, compressed, and then discharged.
  • the capacity of the compressor 21 is controlled according to the cooling load required by the indoor unit 30 .
  • Gas refrigerant discharged from the compressor 21 flows into the gas side end of the outdoor heat exchanger 23 through the four-way switching valve 22 .
  • the gas refrigerant that has flowed into the gas side end of the outdoor heat exchanger 23 exchanges heat with the outdoor air supplied by the outdoor fan 25 in the outdoor heat exchanger 23, condenses, becomes liquid refrigerant, and undergoes outdoor heat exchange. It flows out from the liquid side end of the vessel 23 .
  • the refrigerant that has flowed out from the liquid side end of the outdoor heat exchanger 23 is decompressed when passing through the outdoor expansion valve 24 .
  • the outdoor expansion valve 24 is controlled so that the degree of subcooling of the refrigerant passing through the liquid-side outlet of the outdoor heat exchanger 23 satisfies a predetermined condition.
  • the refrigerant decompressed by the outdoor expansion valve 24 flows into the indoor unit 30 through the liquid side closing valve 29 and the liquid side refrigerant communication pipe 6 .
  • the refrigerant that has flowed into the indoor unit 30 flows into the indoor heat exchanger 31, where it exchanges heat with the indoor air supplied by the indoor fan 32, evaporates, and becomes a gas refrigerant to generate indoor heat. It flows out from the gas side end of the exchanger 31 .
  • the gas refrigerant flowing out from the gas side end of the indoor heat exchanger 31 flows into the gas side refrigerant communication pipe 5 .
  • the refrigerant circuit 10 when the heating operation mode is started, in the refrigerant circuit 10, the refrigerant is sucked into the compressor 21, compressed, and then discharged.
  • the capacity of the compressor 21 is controlled according to the heating load required by the indoor unit 30 .
  • at least the driving frequency of the compressor 21 and the air volume of the outdoor fan 25 are adjusted so that the maximum value of the pressure in the refrigerant circuit 10 is lower than 1.5 times the design pressure of the gas-side refrigerant communication pipe 5. one is controlled.
  • the gas refrigerant discharged from the compressor 21 flows into the indoor unit 30 after flowing through the four-way switching valve 22 and the gas-side refrigerant communication pipe 5 .
  • the refrigerant that has flowed through the liquid-side refrigerant communication pipe 6 is decompressed at the liquid-side shutoff valve 29 and the outdoor expansion valve 24 to a low pressure in the refrigeration cycle.
  • the outdoor expansion valve 24 is controlled so that the degree of supercooling of the refrigerant passing through the liquid-side outlet of the indoor heat exchanger 31 satisfies a predetermined condition.
  • the refrigerant decompressed by the outdoor expansion valve 24 flows into the liquid side end of the outdoor heat exchanger 23 .
  • the refrigerant that has flowed in from the liquid side end of the outdoor heat exchanger 23 exchanges heat with the outdoor air supplied by the outdoor fan 25 in the outdoor heat exchanger 23, evaporates, and becomes a gas refrigerant, which is then transferred to the outdoor heat exchanger 23. out of the gas side end of the
  • the refrigerant that has flowed out from the gas side end of the outdoor heat exchanger 23 passes through the four-way switching valve 22 and is sucked into the compressor 21 again.
  • the design pressure of the outdoor unit 20 is lower than 1.5 times the design pressure of the liquid-side refrigerant communication pipe 6 and the gas-side refrigerant communication pipe 5.
  • the outdoor unit control section 27 of the outdoor unit 20 of the air conditioner 1 has an upper limit value of the refrigerant control pressure of 1.5 times the design pressure of the liquid-side refrigerant communication pipe 6 and the gas-side refrigerant communication pipe 5. is set to be low. Therefore, even when the specific refrigerants X, Y, and A to E are used, damage to the liquid-side refrigerant communication pipe 6 and the gas-side refrigerant communication pipe 5 can be suppressed.
  • the design pressure of the outdoor unit 20 is lower than 1.5 times the design pressure of the liquid-side refrigerant communication pipe 6 and the gas-side refrigerant communication pipe 5, and the outdoor unit control section 27 of the outdoor unit 20 , the upper limit of the control pressure of the refrigerant is set to be lower than 1.5 times the design pressure of the liquid-side refrigerant communication pipe 6 and the gas-side refrigerant communication pipe 5, as an example.
  • the upper limit value of the refrigerant control pressure is set to a plurality of values.
  • the outdoor unit has an outdoor unit control section 27 which can be set to be lower than 1.5 times the design pressure of the liquid-side refrigerant communication pipe 6 and the gas-side refrigerant communication pipe 5.
  • the unit 20 can be used in the air conditioner 1 of the above embodiment.
  • FIG. 4C which is a schematic configuration diagram of a refrigerant circuit
  • FIG. 4D which is a schematic control block configuration diagram
  • an outdoor unit 20 as a heat source unit according to a second embodiment will be described.
  • An air conditioner 1a as a refrigeration cycle device equipped with the air conditioner will be described.
  • the refrigerant circuit 10 is filled with any one of the refrigerants X, Y, and A to E described above as a refrigerant for performing a vapor compression refrigeration cycle.
  • the refrigerant circuit 10 is filled with refrigerating machine oil together with the refrigerant.
  • Outdoor unit 20 In the outdoor unit 20 of the air conditioner 1a of the second embodiment, as the outdoor fan 25, a first outdoor fan 25a and a second outdoor fan 25b are provided.
  • the outdoor heat exchanger 23 of the outdoor unit 20 of the air conditioner 1a has a large heat exchange area to accommodate the air flow received from the first outdoor fan 25a and the second outdoor fan 25b.
  • the design pressure (gauge pressure) of the outdoor unit 20 is 1.5 times the design pressure of the liquid-side refrigerant communication pipe 6 and the gas-side refrigerant communication pipe 5 (liquid-side refrigerant communication pressure), as in the first embodiment. pressure resistance of the pipe 6 and the gas-side refrigerant communication pipe 5).
  • the design pressure of such an outdoor unit 20 can be, for example, 4.0 MPa or more and 4.5 MPa or less.
  • a first outdoor An expansion valve 44, an intermediate pressure receiver 41, and a second outdoor expansion valve 45 are provided in sequence.
  • the first outdoor expansion valve 44 and the second outdoor expansion valve 45 can control the valve opening degree.
  • both the end portion of the pipe extending from the first outdoor expansion valve 44 side and the end portion of the pipe extending from the second outdoor expansion valve 45 side are located in the internal space, and store the refrigerant. It is a container that can
  • the internal volume of the intermediate pressure receiver 41 is larger than the internal volume of the attached accumulator attached to the compressor 21, preferably twice or more.
  • the outdoor heat exchanger 23 has, for example, a plurality of heat transfer fins and a plurality of heat transfer tubes fixed through the fins.
  • the outdoor heat exchanger 23 is arranged to have an L shape in plan view.
  • the first outdoor expansion valve 44 is controlled, for example, so that the degree of subcooling of the refrigerant passing through the liquid-side outlet of the outdoor heat exchanger 23 satisfies a predetermined condition.
  • the second outdoor expansion valve 45 is controlled, for example, so that the degree of superheat of the refrigerant sucked by the compressor 21 satisfies a predetermined condition.
  • the second outdoor expansion valve 45 is controlled, for example, so that the degree of subcooling of the refrigerant passing through the liquid-side outlet of the indoor heat exchanger 31 satisfies a predetermined condition.
  • the first outdoor expansion valve 44 is controlled, for example, so that the degree of superheat of the refrigerant sucked by the compressor 21 satisfies a predetermined condition.
  • the driving frequency of the compressor 21 and the outdoor fan 25 are adjusted so that the maximum value of the pressure in the refrigerant circuit 10 is lower than 1.5 times the design pressure of the gas-side refrigerant communication pipe 5. is controlled.
  • the indoor unit 30 of the second embodiment is installed by being suspended in the upper space of the room, which is the target space, installed on the ceiling surface, or installed on the wall surface.
  • the indoor unit 30 is connected to the outdoor unit 20 via the liquid-side refrigerant communication pipe 6 and the gas-side refrigerant communication pipe 5, and constitutes part of the refrigerant circuit 10.
  • the design pressure of the indoor unit 30 can be, for example, 4.0 MPa or more and 4.5 MPa or less, like the outdoor unit 20 .
  • the indoor unit 30 has an indoor heat exchanger 31, an indoor fan 32, and the like.
  • the indoor heat exchanger 31 of the second embodiment has a plurality of heat transfer fins and a plurality of heat transfer tubes fixed through the fins.
  • FIG. 4E which is a schematic configuration diagram of a refrigerant circuit
  • FIG. 4F which is a schematic control block configuration diagram
  • an outdoor unit 20 as a heat source unit according to a third embodiment will be described.
  • An air conditioner 1b as a refrigerating cycle device provided will be described.
  • the air conditioner 1b of the third embodiment will be mainly described, focusing on the points that differ from the air conditioner 1 of the first embodiment.
  • the refrigerant circuit 10 is filled with any one of the refrigerants X, Y, and A to E described above as a refrigerant for performing a vapor compression refrigeration cycle.
  • the refrigerant circuit 10 is filled with refrigerating machine oil together with the refrigerant.
  • the low-pressure receiver 26 is a container that is provided between one connection port of the four-way switching valve 22 and the suction side of the compressor 21 and can store refrigerant.
  • the accumulator is provided separately from the attached accumulator that the compressor 21 has.
  • the internal volume of the low-pressure receiver 26 is larger than the internal volume of the attached accumulator attached to the compressor 21, preferably twice or more.
  • the supercooling heat exchanger 47 is provided between the outdoor expansion valve 24 and the liquid-side closing valve 29 .
  • the supercooling circuit 46 branches off from the main circuit between the outdoor expansion valve 24 and the supercooling heat exchanger 47, and extends from one of the connection ports of the four-way switching valve 22 to the low-pressure receiver 26. It is a circuit that extends to merge.
  • a supercooling expansion valve 48 is provided in the middle of the supercooling circuit 46 to reduce the pressure of the passing refrigerant. The refrigerant flowing through the supercooling circuit 46 and decompressed by the supercooling expansion valve 48 exchanges heat with the refrigerant flowing through the main circuit in the supercooling heat exchanger 47 . As a result, the refrigerant flowing through the main circuit side is further cooled, and the refrigerant flowing through the supercooling circuit 46 evaporates.
  • the outdoor unit control section 27 controls the control pressure (gauge pressure) of the refrigerant so that the upper limit value of the refrigerant control pressure (gauge pressure) It is set to be lower than 1.5 times the design pressure of the refrigerant communication pipe 5 (withstanding pressure of the liquid-side refrigerant communication pipe 6 and the gas-side refrigerant communication pipe 5), and has a plurality of indoor units 30 and 35.
  • the pressure is set lower than the design pressure of the branch pipes 5a, 5b, 6a, 6b, which will be described later.
  • the design pressures of the first liquid-side branch pipe 6a, the second liquid-side branch pipe 6b, the first gas-side branch pipe 5a, and the second gas-side branch pipe 5b can be, for example, 4.5 MPa.
  • the specific structures of the first indoor unit 30 and the second indoor unit 35 of the air conditioner 1b according to the third embodiment are the second indoor expansion valve 33 and the second indoor expansion valve 38 except for the first It has the same configuration as the indoor unit 30 of the embodiment.
  • the controller 7 of the third embodiment is configured by connecting the outdoor unit control section 27, the first indoor unit control section 34, and the second indoor unit control section 39 so as to be able to communicate with each other.
  • the outdoor expansion valve 24 in the cooling operation mode, is controlled so that the degree of supercooling of the refrigerant passing through the liquid-side outlet of the outdoor heat exchanger 23 satisfies a predetermined condition.
  • the supercooling expansion valve 48 is controlled so that the degree of superheat of the refrigerant sucked by the compressor 21 satisfies a predetermined condition.
  • the first indoor expansion valve 33 and the second indoor expansion valve 38 are controlled to be fully open.
  • the supercooling expansion valve 48 is controlled so that the degree of superheat of the refrigerant sucked by the compressor 21 satisfies a predetermined condition.
  • the driving frequency of the compressor 21 and the outdoor fan 25 are adjusted so that the maximum value of the pressure in the refrigerant circuit 10 is lower than 1.5 times the design pressure of the gas-side refrigerant communication pipe 5. is controlled.
  • the driving frequency of the compressor 21 and the air volume of the outdoor fan 25 are adjusted so that the maximum value of the pressure in the refrigerant circuit 10 is lower than the design pressure of the first gas-side branch pipe 5a and the second gas-side branch pipe 5b. At least one of them is preferably controlled.
  • the design pressure of the outdoor unit 20 is lower than 1.5 times the design pressure of the liquid-side refrigerant communication pipe 6 and the gas-side refrigerant communication pipe 5, and the outdoor unit control section 27 of the outdoor unit 20 , the upper limit of the control pressure of the refrigerant is set to be lower than 1.5 times the design pressure of the liquid-side refrigerant communication pipe 6 and the gas-side refrigerant communication pipe 5, as an example.
  • Air conditioners updated from R22 The air conditioners 1, 1a, and 1b in the first to third embodiments and their modifications used R22, and the refrigerant X, refrigerant Y, refrigerant A, refrigerant B, refrigerant C, refrigerant D, or air conditioners 1, 1a, and 1b updated to use refrigerant E may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Lubricants (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

GWPが小さい冷媒を用いて冷凍サイクルを行う冷凍サイクル装置において、圧縮機(21)と凝縮器(23)と減圧部(24)と蒸発器(31)とを有する冷媒回路(10)と、冷媒回路(10)に封入されたGWPが小さい所定の冷媒と、を備える。冷媒は、トランス-1,2-ジフルオロエチレン(HFO-1132(E))、ジフルオロメタン(R32)及び2,3,3,3-テトラフルオロ-1-プロペン(R1234yf)を合計で冷媒全体に対して99.5質量%以上含む組成物であり、所定の3成分組成である。

Description

冷凍サイクル装置
 本開示は、冷凍サイクル装置に関する。
 従来から、1,2-ジフルオロエチレン(HFO-1132)を含む作動媒体が提案されている(特許文献1;国際公開第2012/157765号)。
 (1)第1グループ
 本開示は、HFO-1132(E)を含む新たな冷媒を用いる冷凍サイクル装置を提供することを目的とする。
 第1グループの第1観点に係る冷凍サイクル装置は、冷媒を含む冷媒組成物と、冷凍機油と、を含む冷凍機用作動流体を含む。冷媒は、後述の冷媒Aである。
 第1グループの第2観点に係る冷凍サイクル装置は、第1観点の冷凍サイクル装置であって、冷凍機油の40℃における動粘度が、1mm/s以上750mm/s以下である。
 第1グループの第3観点に係る冷凍サイクル装置は、第1グループの第1観点又は第2観点の冷凍サイクル装置であって、冷凍機油の100℃における動粘度が、1mm/s以上100mm/s以下である。
 第1グループの第4観点に係る冷凍サイクル装置は、第1グループの第1観点から第3観点のいずれかの冷凍サイクル装置であって、冷凍機油の25℃における体積抵抗率が、1.0×1012Ω・cm以上である。
 第1グループの第5観点に係る冷凍サイクル装置は、第1グループの第1観点から第4観点のいずれかの冷凍サイクル装置であって、冷凍機油の酸価が、0.1mgKOH/g以下である。
 第1グループの第6観点に係る冷凍サイクル装置は、第1グループの第1観点から第5観点のいずれかの冷凍サイクル装置であって、冷凍機油の灰分は、100ppm以下である。
 第1グループの第7観点に係る冷凍サイクル装置は、第1グループの第1観点から第6観点のいずれかの冷凍サイクル装置であって、冷凍機油のアニリン点は、-100℃以上0℃以下である。
 第1グループの第8観点に係る冷凍サイクル装置は、第1グループの第1観点から第7観点のいずれかの冷凍サイクル装置であって、冷媒回路を備えている。冷媒回路は、圧縮機と凝縮器と減圧部と蒸発器が冷媒配管で接続されて構成されている。冷媒回路は、内部を冷凍機用作動流体が循環する。
 第1グループの第9観点に係る冷凍サイクル装置は、第1グループの第1観点から第8観点のいずれかの冷凍サイクル装置であって、冷凍機用作動流体中における冷凍機油の配合割合は、5質量%以上60質量%以下である。
 第1グループの第10観点に係る冷凍サイクル装置は、第1グループの第1観点から第9観点のいずれかの冷凍サイクル装置であって、冷凍機油は、酸捕捉剤、極圧剤、酸化防止剤、消泡剤、油性剤、金属不活性化剤、摩耗防止剤および相溶化剤から選ばれる少なくとも1種類の添加剤を含んでいる。添加剤を含む冷凍機油の質量に対する添加剤の割合が5質量%以下である。
 (2)第2グループ
 後述の冷媒Aを用いることができる具体的な冷媒回路については、これまで、なんら検討されていない。
 第2グループの第1観点に係る冷凍サイクル装置は、冷媒回路と冷媒を備えている。冷媒回路は、圧縮機と凝縮器と減圧部と蒸発器とを有している。冷媒は、後述の冷媒Aである。
 この冷凍サイクル装置は、圧縮機と凝縮器と減圧部と蒸発器とを有する冷媒回路において、後述の冷媒Aを用いた冷凍サイクルを行うことができる。
 第2グループの第2観点に係る冷凍サイクル装置は、第2グループの第1観点の冷凍サイクル装置であって、冷媒回路は、低圧レシーバをさらに有している。低圧レシーバは、蒸発器から圧縮機の吸入側に向かう冷媒流路の途中に設けられている。
 この冷凍サイクル装置は、冷媒回路における余剰冷媒を低圧レシーバに溜めながら冷凍サイクルを行うことが可能になる。
 第2グループの第3観点に係る冷凍サイクル装置は、第2グループの第1観点または第2観点の冷凍サイクル装置であって、冷媒回路は、高圧レシーバをさらに有している。高圧レシーバは、凝縮器から蒸発器に向かう冷媒流路の途中に設けられている。
 この冷凍サイクル装置では、冷媒回路における余剰冷媒を高圧レシーバに溜めながら冷凍サイクルを行うことが可能になる。
 第2グループの第4観点に係る冷凍サイクル装置は、第2グループの第1観点から第3観点のいずれかの冷凍サイクル装置であって、冷媒回路は、第1減圧部と第2減圧部と中間圧レシーバとさらに有している。第1減圧部と第2減圧部と中間圧レシーバは、いずれも、凝縮器から蒸発器に向かう冷媒流路の途中に設けられている。中間圧レシーバは、凝縮器から蒸発器に向かう冷媒流路における第1減圧部と第2減圧部との間に設けられている。
 この冷凍サイクル装置では、冷媒回路における余剰冷媒を中間圧レシーバに溜めながら冷凍サイクルを行うことが可能になる。
 第2グループの第5観点に係る冷凍サイクル装置は、第2グループの第1観点から第4観点のいずれかの冷凍サイクル装置であって、制御部をさらに備えている。冷媒回路は、第1減圧部と第2減圧部とをさらに有している。第1減圧部と第2減圧部は、凝縮器から蒸発器に向かう冷媒流路の途中に設けられている。制御部は、第1減圧部を通過する冷媒の減圧程度と第2減圧部を通過する冷媒の減圧程度との両方を調節する。
 この冷凍サイクル装置では、凝縮器から蒸発器に向かう冷媒流路の途中に設けられた第1減圧部と第2減圧部の各減圧程度を制御することにより、凝縮器から蒸発器に向かう冷媒流路の途中における第1減圧部と第2減圧部との間に位置する冷媒の密度を低下させることが可能になる。これにより、冷媒回路に封入された冷媒を、凝縮器および/または蒸発器に多く存在させやすくなり、能力を向上させることが可能になる。
 第2グループの第6観点に係る冷凍サイクル装置は、第2グループの第1観点から第5観点のいずれかの冷凍サイクル装置であって、冷媒回路は、冷媒熱交換部をさらに有している。冷媒熱交換部は、凝縮器から蒸発器に向かう冷媒と、蒸発器から圧縮機に向かう冷媒と、の間で熱交換を行わせる。
 この冷凍サイクル装置では、冷媒熱交換部において、蒸発器から圧縮機に向かう冷媒が凝縮器から蒸発器に向かう冷媒によって加熱される。このため、圧縮機における液圧縮を抑制することが可能になる。
 (3)第3グループ
 後述の冷媒Aを用いる場合において、冷凍サイクルの運転効率を向上させることについては、これまでなんら検討されていない。
 本開示の内容は、上述した点に鑑みたものであり、後述の冷媒Aを用いる場合において、運転効率を向上させることが可能な冷凍サイクル装置を提供することを目的とする。
 第3グループの第1観点に係る冷凍サイクル装置は、圧縮機と、凝縮器と、減圧部と、蒸発器と、インジェクション流路と、を備えている。圧縮機は、吸入流路から低圧の冷媒を吸入し、冷媒の圧縮を行って高圧の冷媒を吐出する。凝縮器は、圧縮機から吐出された高圧の冷媒を凝縮させる。減圧部は、凝縮器を出た高圧冷媒を減圧させる。蒸発器は、減圧部で減圧され冷媒を蒸発させる。インジェクション流路は、中間インジェクション流路と吸入インジェクション流路との少なくともいずれかである。中間インジェクション流路は、凝縮器から蒸発器に向かって流れる冷媒の一部を、圧縮機の中間圧の冷媒に合流させる。吸入インジェクション流路は、凝縮器から蒸発器に向かって流れる冷媒の一部を、圧縮機に吸入される低圧の冷媒に合流させる。冷媒は、後述の冷媒Aである。
 この冷凍サイクル装置では、インジェクション流路を用いることで冷凍サイクルの運転効率を向上させることが可能である。
 第3グループの第2観点に係る冷凍サイクル装置は、第3グループの第1観点の冷凍サイクル装置であって、分岐流路と、開度調整弁と、インジェクション熱交換器と、をさらに備えている。分岐流路は、凝縮器と蒸発器とを結ぶメイン冷媒流路から分岐している。開度調整弁は、分岐流路に設けられている。インジェクション熱交換器は、メイン冷媒流路を流れる冷媒と、分岐流路の開度調整弁の下流を流れる冷媒とを熱交換させる。インジェクション用熱交換器を出て分岐流路を流れる冷媒が、インジェクション流路に流れる。
 この冷凍サイクル装置では、冷凍サイクルの運転効率をより向上させることが可能である。
 第3グループの第3観点に係る冷凍サイクル装置は、第3グループの第1観点または第2観点の冷凍サイクル装置であって、凝縮器と蒸発器とを結ぶメイン冷媒流路に設けられた冷媒貯留タンクをさらに備えている。冷媒貯留タンクの内部に溜まる冷媒のガス成分が、インジェクション流路を流れる。
 この冷凍サイクル装置では、冷媒貯留タンクにおいて余剰冷媒を蓄えさせつつ、冷凍サイクルの効率を向上させることが可能になる。
 第3グループの第4観点に係る冷凍サイクル装置は、第3グループの第1観点から第3観点のいずれかの冷凍サイクル装置であって、圧縮機は、固定スクロールと、旋回スクロールと、を有している。固定スクロールは、鏡板と鏡板から渦巻き状に立ち上がったラップを有している。旋回スクロールは、固定スクロールと噛み合うことで圧縮室を形成する。インジェクション流路を流れる冷媒は、圧縮室に合流する。
 この冷凍サイクル装置では、スクロール圧縮機を用いつつ、冷凍サイクルの運転効率を向上させることが可能になる。
 (4)第4グループ
 後述の冷媒Aを用いる場合において、冷凍サイクル装置やその構成機器としていかなる耐圧強度のものを用いるかは、これまでなんら検討されていない。
 例えば、従来より多用されているR410AやR32等の冷媒が用いられた冷凍サイクル装置について、既設連絡配管を流用しつつ、後述の冷媒Aに更新する場合には、冷凍サイクル装置を構成する機器が既設連絡配管の耐圧圧力を超えるような運転を行ってしまうと、既設連絡配管に損傷が生じるおそれもある。
 本開示の内容は、上述した点に鑑みたものであり、後述の冷媒Aを用いる場合において、連絡配管の損傷を抑制させることが可能な熱源ユニットおよび冷凍サイクル装置を提供することを目的とする。
 第4グループの第1観点に係る熱源ユニットは、圧縮機と熱源側熱交換器を備えている。熱源ユニットは、利用ユニットと連絡配管を介して接続されることで冷凍サイクル装置を構成する。利用ユニット、利用側熱交換器を有する。熱源ユニットでは、冷媒として、後述の冷媒Aが使用されている。熱源ユニットの設計圧力は、連絡配管の設計圧力の1.5倍よりも低い。
 なお、「設計圧力」とは、ゲージ圧力を意味する(以下、同じ)。
 この熱源ユニットは、設計圧力が連絡配管の設計圧力の1.5倍よりも低いことから、連絡配管の耐圧圧力よりも低い状態で運転されるため、連絡配管に接続されて用いられた場合であっても、連絡配管の損傷を抑制させることが可能である。
 第4グループの第2観点に係る冷凍サイクル装置は、利用ユニットと、連絡配管と、第1観点の熱源ユニットと、を備えている。冷凍サイクル装置は、後述の冷媒Aが使用される。熱源ユニットの設計圧力は、冷媒R22または冷媒R407Cが使用されていた際の冷凍サイクル装置での設計圧力と同等である。
 ここでいう「同等」は、冷媒R22または冷媒R407Cが使用されていた際の冷凍サイクル装置での設計圧力に対して±10%の範囲内であることが好ましい。
 この冷凍サイクル装置では、冷媒R22または冷媒R407Cが使用されていた冷凍サイクル装置について、連絡配管を流用しつつ、後述の冷媒Aが使用される冷凍サイクル装置に更新する場合であっても、熱源ユニットの設計圧力として更新前のものと同等または同じものを用いることにより、連絡配管の損傷を抑制させることが可能である。
 第4グループの第3観点に係る冷凍サイクル装置は、第4グループの第2観点の冷凍サイクル装置であって、熱源ユニットの設計圧力は、3.0MPa以上3.7MPa以下である。
 第4グループの第4観点に係る冷凍サイクル装置は、利用ユニットと、連絡配管と、第1観点の熱源ユニットと、を備えている。冷凍サイクル装置は、後述の冷媒Aが使用される。熱源ユニットの設計圧力は、冷媒R410Aまたは冷媒R32が使用されていた際の冷凍サイクル装置での設計圧力と同等である。
 ここでいう「同等」は、冷媒R410Aまたは冷媒R32が使用されていた際の冷凍サイクル装置での設計圧力に対して±10%の範囲内であることが好ましい。
 この冷凍サイクル装置では、冷媒R410Aまたは冷媒R32が使用されていた冷凍サイクル装置について、連絡配管を流用しつつ、後述の冷媒Aが使用される冷凍サイクル装置に更新する場合であっても、熱源ユニットの設計圧力として更新前のものと同等または同じものを用いることにより、連絡配管の損傷を抑制させることが可能である。
 第4グループの第5観点に係る冷凍サイクル装置は、第4グループの第4観点の冷凍サイクル装置であって、熱源ユニットの設計圧力は、4.0MPa以上4.8MPa以下である。
 第4グループの第6観点に係る冷凍サイクル装置は、熱源ユニットと、利用ユニットと、連絡配管と、を備えている。熱源ユニットは、圧縮機および熱源側熱交換器を有している。利用ユニットは、利用側熱交換器を有している。連絡配管は、熱源ユニットと利用ユニットを接続する。冷凍サイクル装置では、後述の冷媒Aが使用される。熱源ユニットの設計圧力は、冷媒R22または冷媒R407Cが使用されていた際の冷凍サイクル装置での設計圧力と同等である。
 ここでいう「同等」は、冷媒R22または冷媒R407Cが使用されていた際の冷凍サイクル装置での設計圧力に対して±10%の範囲内であることが好ましい。
 この冷凍サイクル装置では、冷媒R22または冷媒R407Cが使用されていた冷凍サイクル装置について、連絡配管を流用しつつ、後述の冷媒Aが使用される冷凍サイクル装置に更新する場合であっても、熱源ユニットの設計圧力として更新前のものと同等または同じものを用いることにより、連絡配管の損傷を抑制させることが可能である。
 第4グループの第7観点に係る冷凍サイクル装置は、第4グループの第6観点の冷凍サイクル装置であって、熱源ユニットの設計圧力は、3.0MPa以上3.7MPa以下である。
 第4グループの第8観点に係る冷凍サイクル装置は、熱源ユニットと、利用ユニットと、連絡配管と、を備えている。熱源ユニットとは、圧縮機および熱源側熱交換器を有している。利用ユニットは、利用側熱交換器を有している。連絡配管は、熱源ユニットと利用ユニットを接続する。冷凍サイクル装置では、後述の冷媒Aが使用される。熱源ユニットの設計圧力は、冷媒R410Aまたは冷媒R32が使用されていた際の冷凍サイクル装置での設計圧力と同等である。
 ここでいう「同等」は、冷媒R410Aまたは冷媒R32が使用されていた際の冷凍サイクル装置での設計圧力に対して±10%の範囲内であることが好ましい。
 この冷凍サイクル装置では、冷媒R410Aまたは冷媒R32が使用されていた冷凍サイクル装置について、連絡配管を流用しつつ、後述の冷媒Aが使用される冷凍サイクル装置に更新する場合であっても、熱源ユニットの設計圧力として更新前のものと同等または同じものを用いることにより、連絡配管の損傷を抑制させることが可能である。
 第4グループの第9観点に係る冷凍サイクル装置は、第4グループの第8観点の冷凍サイクル装置であって、熱源ユニットの設計圧力は、4.0MPa以上4.8MPa以下である。
 第4グループの第10観点に係る熱源ユニットは、圧縮機と熱源側熱交換器と制御装置とを備えている。熱源ユニットは、利用ユニットと連絡配管を介して接続されることで冷凍サイクル装置を構成する。利用ユニットは、利用側熱交換器を有する。熱源ユニットでは、冷媒として、後述の冷媒Aが使用される。制御装置は、冷媒の制御圧力の上限値が、連絡配管の設計圧力の1.5倍よりも低く設定または設定可能に構成されている。
 この熱源ユニットは、制御装置による冷媒の制御圧力の上限値が、連絡配管の設計圧力の1.5倍よりも低くなるように、設定または設定可能に構成されている。このため、連絡配管に接続されて用いられた場合であっても、連絡配管の耐圧圧力よりも低い状態での運転制御が確保されるため、連絡配管の損傷を抑制させることが可能である。
 第4グループの第11観点に係る冷凍サイクル装置は、利用ユニットと、連絡配管と、第4グループの第10観点の熱源ユニットと、を備えている。冷凍サイクル装置では、後述の冷媒Aが使用される。制御装置は、冷媒の制御圧力の上限値が、冷媒R22または冷媒R407Cが使用されていた際の冷凍サイクル装置での制御圧力の上限値と同等に設定または設定可能に構成されている。
 ここでいう「同等」は、冷媒R22または冷媒R407Cが使用されていた際の冷凍サイクル装置での制御圧力の上限値に対して±10%の範囲内であることが好ましい。
 この冷凍サイクル装置では、冷媒R22または冷媒R407Cが使用されていた冷凍サイクル装置について、連絡配管を流用しつつ、後述の冷媒Aが使用される冷凍サイクル装置に更新する場合であっても、熱源ユニットの制御装置による冷媒の制御圧力の上限値が、冷媒R22または冷媒R407Cが使用されていた際の冷凍サイクル装置の熱源ユニットの制御圧力の上限値と同等または同じになるように、設定または設定可能に構成されているため、連絡配管の損傷を抑制させることが可能である。
 第4グループの第12観点に係る冷凍サイクル装置は、第4グループの第11観点の冷凍サイクル装置であって、制御圧力の上限値は、3.0MPa以上3.7MPa以下に設定されている。
 第4グループの第13観点に係る冷凍サイクル装置は、利用ユニットと、連絡配管と、第10観点の熱源ユニットと、を備えている。冷凍サイクル装置では、後述の冷媒Aが使用される。制御装置は、冷媒の制御圧力の上限値が、冷媒R410Aまたは冷媒R32が使用されていた際の冷凍サイクル装置での制御圧力の上限値と同等に設定または設定可能に構成されている。
 ここでいう「同等」は、冷媒R410Aまたは冷媒R32が使用されていた際の冷凍サイクル装置での制御圧力の上限値に対して±10%の範囲内であることが好ましい。
 この冷凍サイクル装置では、冷媒R410Aまたは冷媒R32が使用されていた冷凍サイクル装置について、連絡配管を流用しつつ、後述の冷媒Aが使用される冷凍サイクル装置に更新する場合であっても、熱源ユニットの制御装置による冷媒の制御圧力の上限値が、冷媒R410Aまたは冷媒R32が使用されていた際の冷凍サイクル装置の熱源ユニットの制御圧力の上限値と同等または同じになるように、設定または設定可能に構成されているため、連絡配管の損傷を抑制させることが可能である。
 第4グループの第14観点に係る冷凍サイクル装置は、第4グループの第13観点の冷凍サイクル装置であって、制御圧力の上限値は、4.0MPa以上4.8MPa以下に設定されている。
 第4グループの第15観点に係る冷凍サイクル装置は、熱源ユニットと、利用ユニットと、連絡配管と、制御装置と、を備えている。熱源ユニットは、圧縮機および熱源側熱交換器を有している。利用ユニットは、利用側熱交換器を有している。連絡配管は、熱源ユニットと利用ユニットを接続する。冷凍サイクル装置では、後述の冷媒Aが使用される。制御装置は、冷媒の制御圧力の上限値が、冷媒R22または冷媒R407Cが使用されていた際の冷凍サイクル装置での制御圧力の上限値と同等に設定または設定可能に構成されている。
 ここでいう「同等」は、冷媒R22または冷媒R407Cが使用されていた際の冷凍サイクル装置での制御圧力の上限値に対して±10%の範囲内であることが好ましい。
 この冷凍サイクル装置では、冷媒R22または冷媒R407Cが使用されていた冷凍サイクル装置について、連絡配管を流用しつつ、後述の冷媒Aが使用される冷凍サイクル装置に更新する場合であっても、熱源ユニットの制御装置による冷媒の制御圧力の上限値が、冷媒R22または冷媒R407Cが使用されていた際の冷凍サイクル装置の熱源ユニットの制御圧力の上限値と同等または同じになるように、設定または設定可能に構成されているため、連絡配管の損傷を抑制させることが可能である。
 第4グループの第16観点に係る冷凍サイクル装置は、第4グループの第15観点の冷凍サイクル装置であって、制御圧力の上限値は、3.0MPa以上3.7MPa以下に設定されている。
 第4グループの第17観点に係る冷凍サイクル装置は、熱源ユニットと、利用ユニットと、連絡配管と、制御装置と、を備えている。熱源ユニットは、圧縮機および熱源側熱交換器を有している。利用ユニットは、利用側熱交換器を有している。連絡配管は、熱源ユニットと利用ユニットを接続する。冷凍サイクル装置は、後述の冷媒Aが使用される。制御装置は、冷媒の制御圧力の上限値が、冷媒R410Aまたは冷媒R32が使用されていた際の冷凍サイクル装置での制御圧力の上限値と同等に設定または設定可能に構成されている。
 ここでいう「同等」は、冷媒R410Aまたは冷媒R32が使用されていた際の冷凍サイクル装置での制御圧力の上限値に対して±10%の範囲内であることが好ましい。
 この冷凍サイクル装置では、冷媒R410Aまたは冷媒R32が使用されていた冷凍サイクル装置について、連絡配管を流用しつつ、後述の冷媒Aが使用される冷凍サイクル装置に更新する場合であっても、熱源ユニットの制御装置による冷媒の制御圧力の上限値が、冷媒R410Aまたは冷媒R32が使用されていた際の冷凍サイクル装置の熱源ユニットの制御圧力の上限値と同等または同じになるように、設定または設定可能に構成されているため、連絡配管の損傷を抑制させることが可能である。
 第4グループの第18観点に係る冷凍サイクル装置は、第4グループの第17観点の冷凍サイクル装置であって、制御圧力の上限値は、4.0MPa以上4.8MPa以下に設定されている。
 (5)第5グループ
 地球温暖化防止を考えた場合の指数として、LCCP(Life Cycle Climate Performance:製品寿命気候負荷)という指数がある。このLCCPは、地球温暖化防止を考えた場合の指数であり、TEWI(Total Equivalent Warning Impact:総等価温暖化影響)に、使用温室効果ガス製造時のエネルギ消費(間接影響)と外気への漏洩(直接影響)を追加した数値であって、単位はkg-CO2である。すなわち、TEWIは、所要の数式によりそれぞれ算出される直接影響と間接影響とを加算して得られる。このLCCPは下記の関係式により算出される。
  LCCP=GWPRM×W+GWP×W×(1-R)+N×Q×A
 ここで、GWPRM:冷媒製造に関わる温暖化効果、W:冷媒充填量、R:機器廃棄時の冷媒回収量、N:機器使用期間(年)、Q:CO2排出原単位、A:年間消費電力量である。
 冷凍サイクル装置のLCCPは、冷媒回路における充填量が少な過ぎると、冷媒不足に起因するサイクル効率の悪化によりLCCPが大きくなり、さらに、冷媒回路における充填量が多過ぎるとGWPの影響が高くなり、LCCPが大きくなる。また、従来多用されているR32よりもGWPの低い冷媒は、熱搬送能力が低い傾向にあり、サイクル効率が悪化することによりLCCPが大きくなる傾向にある。
 本開示の内容は、上述した点に鑑みたものであり、冷媒Aを用いて熱サイクルを行う場合において、LCCPを低く抑えることが可能な冷凍サイクル装置および冷凍サイクル装置における冷媒封入量の決定方法を提供することを目的とする。
 第5グループの第1観点に係る冷凍サイクル装置は、熱源ユニットと、利用ユニットと、冷媒配管と、を備えている。熱源ユニットは、圧縮機および熱源側熱交換器を有している。利用ユニットは、利用側熱交換器を有している。冷媒配管は、熱源ユニットと利用ユニットとを接続する。圧縮機と熱源側熱交換器と利用側熱交換器が接続されて構成される冷媒回路には、後述の冷媒Aが封入されている。冷媒回路における冷媒の封入量は、冷凍サイクル装置の冷凍能力1kW当り160g以上560g以下の条件を満たしている。
 なお、冷凍サイクル装置の冷凍能力とは、定格冷凍能力を意味する。
 この冷凍サイクル装置は、冷媒回路において、後述の冷媒Aが、冷凍能力1kW当り160g以上560g以下封中されているため、LCCPを低く抑えることが可能となっている。
 なお、上記熱源側熱交換器の内容積(内部に充填可能な流体の体積)としては、冷媒回路において冷媒容器(低圧レシーバや高圧レシーバ等であり、圧縮機に付属のアキュムレータを除く)が設けられていないものについては、0.4L以上2.5L以下であることが好ましく、冷媒回路において冷媒容器が設けられているものについては、1.4L以上5.0L未満であることが好ましい。
 また、ファンが1つだけ設けられている熱源ユニットが有する熱源側熱交換器の内容積(内部に充填可能な流体の体積)としては、設置状態における側面に熱源側熱交換器を通過した空気を吹き出すための吹出口が形成されている筐体を熱源ユニットが有している場合(熱源ユニットがトランク型等の場合)については、0.4L以上3.5L未満であることが好ましく、ファンが2つ設けられている熱源ユニットが有する熱源側熱交換器の内容積(内部に充填可能な流体の体積)としては、設置状態における側面に熱源側熱交換器を通過した空気を吹き出すための吹出口が形成されている筐体を熱源ユニットが有している場合(熱源ユニットがトランク型等の場合)については、3.5L以上5.0L未満であることが好ましい。
 第5グループの第2観点に係る冷凍サイクル装置は、熱源ユニットと、第1利用ユニットと、第2利用ユニットと、冷媒配管と、を備えている。熱源ユニットは、圧縮機および熱源側熱交換器を有している。第1利用ユニットは、第1利用側熱交換器を有している。第2利用ユニットは、第2利用側熱交換器を有している。冷媒配管は、熱源ユニットと第1利用ユニットと第2利用ユニットとを接続している。圧縮機および熱源側熱交換器に第1利用側熱交換器と第2利用側熱交換器とが並列に接続されて構成される冷媒回路には、後述の冷媒Aが封入されている。冷媒回路における冷媒の冷凍能力1kW当りの封入量は、190g以上1660g以下の条件を満たしている。
 この冷凍サイクル装置は、互いに並列に接続された利用側熱交換器を複数有する冷媒回路において、後述の冷媒Aが、冷凍能力1kW当り190g以上1660g以下封中されているため、LCCPを低く抑えることが可能となっている。
 なお、上記熱源側熱交換器の内容積(内部に充填可能な流体の体積)としては、第1利用ユニットが第1利用側熱交換器の液側において膨張弁を有しておらず、第2利用ユニットも第2利用側熱交換器の液側において膨張弁を有していないものについては、1.4L以上5.0L未満であることが好ましく、第1利用ユニットが第1利用側熱交換器の液側において膨張弁を有し、第2利用ユニットも第2利用側熱交換器の液側において膨張弁を有しているものについては、5.0L以上38L以下であることが好ましい。
 また、ファンが1つだけ設けられている熱源ユニットが有する熱源側熱交換器の内容積(内部に充填可能な流体の体積)としては、設置状態における側面に熱源側熱交換器を通過した空気を吹き出すための吹出口が形成されている筐体を熱源ユニットが有している場合(熱源ユニットがトランク型等の場合)については、0.4L以上3.5L未満であることが好ましく、ファンが2つ設けられている熱源ユニットが有する熱源側熱交換器の内容積(内部に充填可能な流体の体積)としては、設置状態における側面に熱源側熱交換器を通過した空気を吹き出すための吹出口が形成されている筐体を熱源ユニットが有している場合(熱源ユニットがトランク型等の場合)については、3.5L以上7.0L以下であることが好ましく、熱源側熱交換器を通過した空気が上方に向けて吹き出す熱源ユニットが有する熱源側熱交換器の内容積(内部に充填可能な流体の体積)としては、5.5L以上38L以下であることが好ましい。
 (6)第6グループ
 従来のR410AやR32が用いられている冷凍サイクル装置としては、熱源側熱交換器を有する熱源ユニットと利用側熱交換器を有する利用ユニットを接続する液側冷媒連絡配管やガス側冷媒連絡配管の管外径が具体的に検討され、提案されている。
 ところが、後述の冷媒Aを用いた冷凍サイクル装置については、液側冷媒連絡配管やガス側冷媒連絡配管の管外径は、なんら検討されておらず、提案もなされていない。
 本開示の内容は、上述した点に鑑みたものであり、後述の冷媒Aを用いる場合において、能力の低下を小さく抑えることが可能な冷凍サイクル装置を提供することを目的とする。
 第6グループの第1観点に係る冷凍サイクル装置は、圧縮機、熱源側熱交換器、減圧部、液側冷媒連絡配管、利用側熱交換器、ガス側冷媒連絡配管が接続された冷媒回路を有する。冷凍サイクル装置は、後述の冷媒Aが使用されている。液側冷媒連絡配管の管外径と、ガス側冷媒連絡配管の管外径は、D/8インチ(ここで、「D-1/8インチ」は冷媒R32が使用される場合の冷媒連絡配管の管外径である)であり、且つ、液側冷媒連絡配管では、前記Dの範囲は「2≦D≦4」であり、ガス側冷媒連絡配管では、前記Dの範囲は「3≦D≦8」である。
 なお、減圧部は、特に限定されず、膨張弁であってもよいし、キャピラリーチューブであってもよい。なお、液側冷媒連絡配管では、Dの範囲は「2≦D≦3」であり、ガス側冷媒連絡配管では、Dの範囲は「4≦D≦7」であることがより好ましい。
 なお、第6グループの第1観点に係る冷凍サイクル装置は、本開示の冷媒と冷媒R32との物性の違いを踏まえて、以下の冷凍サイクル装置としてもよい。
 第6グループの第1観点に係る冷凍サイクル装置において、冷凍サイクル装置の定格冷凍能力が6.3kW以上10.0kW以下であり、且つ、液側冷媒連絡配管の管外径はD/8インチ(ここで、「D-1/8インチ」は冷媒R32が使用される場合の液側冷媒連絡配管の管外径である)であり、且つ、液側冷媒連絡配管はDが3であってもよい。
 第6グループの第1観点に係る冷凍サイクル装置において、冷凍サイクル装置の定格冷凍能力が4.0kW以下であり、且つ、ガス側冷媒連絡配管の管外径はD/8インチ(ここで、「D-1/8インチ」は冷媒R32が使用される場合のガス側冷媒連絡配管の管外径である)であり、且つ、ガス側冷媒連絡配管はDが4であってもよい。
 第6グループの第1観点に係る冷凍サイクル装置において、冷凍サイクル装置の定格冷凍能力が6.3kW以上10.0kW以下であり、且つ、ガス側冷媒連絡配管の管外径はD/8インチ(ここで、「D-1/8インチ」は冷媒R32が使用される場合のガス側冷媒連絡配管の管外径である)であり、且つ、ガス側冷媒連絡配管はDが5であってもよい。
 第6グループの第1観点に係る冷凍サイクル装置において、冷凍サイクル装置の定格冷凍能力が15.0kW以上19.0kW以下であり、且つ、ガス側冷媒連絡配管の管外径はD/8インチ(ここで、「D-1/8インチ」は冷媒R32が使用される場合のガス側冷媒連絡配管の管外径である)であり、且つ、ガス側冷媒連絡配管はDが6であってもよい。
 第6グループの第1観点に係る冷凍サイクル装置において、冷凍サイクル装置の定格冷凍能力が25.0kW以上であり、且つ、ガス側冷媒連絡配管の管外径はD/8インチ(ここで、「D-1/8インチ」は冷媒R32が使用される場合のガス側冷媒連絡配管の管外径である)であり、且つ、ガス側冷媒連絡配管はDが7であってもよい。
 第6グループの第2観点に係る冷凍サイクル装置は、第6グループの第1観点の冷凍サイクル装置であって、冷凍サイクル装置の定格冷凍能力が5.6kWより大きく11.2kW未満であり、且つ、液側冷媒連絡配管はDが3(即ち配管径が3/8インチ)である。なお、冷凍サイクル装置の定格冷凍能力が6.3kW以上10.0kW以下であり、且つ、液側冷媒連絡配管はDが3(即ち配管径が3/8インチ)であることが好ましい。
 第6グループの第3観点に係る冷凍サイクル装置は、第6グループの第1観点の冷凍サイクル装置であって、冷凍サイクル装置の定格冷凍能力が22.4kWより大きく且つガス側冷媒連絡配管はDが7(即ち配管径が7/8インチ)であるか、冷凍サイクル装置の定格冷凍能力が14.0kWより大きく22.4kW未満であり且つガス側冷媒連絡配管はDが6(即ち配管径が6/8インチ)であるか、冷凍サイクル装置の定格冷凍能力が5.6kWより大きく11.2kW未満であり且つガス側冷媒連絡配管はDが5(即ち配管径が5/8インチ)であるか、冷凍サイクル装置の定格冷凍能力が4.5kW未満であり且つガス側冷媒連絡配管はDが4(即ち配管径が1/2インチ)であるか、のいずれかである。なお、冷凍サイクル装置の定格冷凍能力が25.0kW以上であり、且つ、ガス側冷媒連絡配管はDが7(即ち配管径が7/8インチ)であるか、冷凍サイクル装置の定格冷凍能力が15.0kW以上19.0kW未満であり、且つ、ガス側冷媒連絡配管はDが6(即ち配管径が6/8インチ)であるか、冷凍サイクル装置の定格冷凍能力が6.3kW以上10.0kW未満であり、且つ、ガス側冷媒連絡配管はDが5(即ち配管径が5/8インチ)であるか、冷凍サイクル装置の定格冷凍能力が4.0kW未満であり、且つ、ガス側冷媒連絡配管はDが4(即ち配管径が1/2インチ)であるか、のいずれかであることが好ましい。
 第6グループの第4観点に係る冷凍サイクル装置は、圧縮機、熱源側熱交換器、減圧部、液側冷媒連絡配管、利用側熱交換器、ガス側冷媒連絡配管が接続された冷媒回路を有している。サイクル装置は、後述の冷媒Aが使用されている。液側冷媒連絡配管の管外径と、ガス側冷媒連絡配管の管外径は、D/8インチであり、且つ、液側冷媒連絡配管では、Dの範囲は「2≦D≦4」であり、ガス側冷媒連絡配管では、Dの範囲は「3≦D≦8」である。液側冷媒連絡配管の管外径は、冷媒R410Aが使用される場合の液側冷媒連絡配管の管外径と同じであり、ガス側冷媒連絡配管の管外径は、冷媒R410Aが使用される場合のガス側冷媒連絡配管の管外径と同じである。
 なお、減圧部は、特に限定されず、膨張弁であってもよいし、キャピラリーチューブであってもよい。なお、液側冷媒連絡配管では、Dの範囲は「2≦D≦3」であり、ガス側冷媒連絡配管では、Dの範囲は「4≦D≦7」であることがより好ましい。
 第6グループの第5観点に係る冷凍サイクル装置は、第6グループの第4観点の冷凍サイクル装置であって、液側冷媒連絡配管では、Dが2(即ち配管径が1/4インチ)である。
 第6グループの第6観点に係る冷凍サイクル装置は、第6グループの第4観点の冷凍サイクル装置であって、冷凍サイクル装置の定格冷凍能力が6.3kW以上であり、且つ、液側冷媒連絡配管はDが3(即ち配管径が3/8インチ)であるか、または、冷凍サイクル装置の定格冷凍能力が6.3kW未満であり、且つ、液側冷媒連絡配管はDが2(即ち配管径が1/4インチ)である。
 第6グループの第7観点に係る冷凍サイクル装置は、第6グループの第4観点の冷凍サイクル装置であって、冷凍サイクル装置の定格冷凍能力が6.0kW以上であり、且つ、ガス側冷媒連絡配管はDが4(即ち配管径が1/2インチ)であるか、または、冷凍サイクル装置の定格冷凍能力が6.0kW未満であり、且つ、ガス側冷媒連絡配管はDが3(即ち配管径が3/8インチ)である。
 第6グループの第8観点に係る冷凍サイクル装置は、第6グループの第4観点の冷凍サイクル装置であって、冷凍サイクル装置の定格冷凍能力が25.0kW以上であり、且つ、ガス側冷媒連絡配管はDが7(即ち配管径が7/8インチ)であるか、冷凍サイクル装置の定格冷凍能力が15.0kW以上25.0kW未満であり、且つ、ガス側冷媒連絡配管はDが6(即ち配管径が6/8インチ)であるか、冷凍サイクル装置の定格冷凍能力が6.3kW以上15.0kW未満であり、且つ、ガス側冷媒連絡配管はDが5(即ち配管径が5/8インチ)であるか、冷凍サイクル装置の定格冷凍能力が6.3kW未満であり、且つ、ガス側冷媒連絡配管はDが4(即ち配管径が1/2インチ)であるか、のいずれかである。
 第6グループの第9観点に係る冷凍サイクル装置は、圧縮機、熱源側熱交換器、減圧部、液側冷媒連絡配管、利用側熱交換器、ガス側冷媒連絡配管が接続された冷媒回路を有している。冷凍サイクル装置は、後述の冷媒Aが使用されている。液側冷媒連絡配管の管外径と、ガス側冷媒連絡配管の管外径は、D/8インチであり、且つ、液側冷媒連絡配管では、Dの範囲は「2≦D≦4」であり、ガス側冷媒連絡配管では、Dの範囲は「3≦D≦8」である。
 なお、減圧部は、特に限定されず、膨張弁であってもよいし、キャピラリーチューブであってもよい。なお、液側冷媒連絡配管では、Dの範囲は「2≦D≦3」であり、ガス側冷媒連絡配管では、Dの範囲は「4≦D≦7」であることがより好ましい。
 第6グループの第10観点に係る冷凍サイクル装置は、第6グループの第9観点の冷凍サイクル装置であって、液側冷媒連絡配管では、Dが2(即ち配管径が1/4インチ)である。
 第6グループの第11観点に係る冷凍サイクル装置は、第6グループの第9観点の冷凍サイクル装置であって、冷凍サイクル装置の定格冷凍能力が7.5kW以上であり、且つ、液側冷媒連絡配管はDが2.5(即ち配管径が5/16インチ)であるか、冷凍サイクル装置の定格冷凍能力が2.6kW以上7.5kW未満であり、且つ、液側冷媒連絡配管はDが2(即ち配管径が1/4インチ)であるか、冷凍サイクル装置の定格冷凍能力が2.6kW未満であり、且つ、液側冷媒連絡配管はDが1.5(即ち配管径が3/16インチ)であるか、のいずれかである。
 第6グループの第12観点に係る冷凍サイクル装置は、第6グループの第9観点の冷凍サイクル装置であって、冷凍サイクル装置の定格冷凍能力が6.3kW以上であり、且つ、液側冷媒連絡配管はDが3(即ち配管径が3/8インチ)であるか、または、冷凍サイクル装置の定格冷凍能力が6.3kW未満であり、且つ、液側冷媒連絡配管はDが2(即ち配管径が1/4インチ)である。
 第6グループの第13観点に係る冷凍サイクル装置は、第6グループの第9観点の冷凍サイクル装置であって、冷凍サイクル装置の定格冷凍能力が12.5kW以上であり、且つ、液側冷媒連絡配管はDが3(即ち配管径が3/8インチ)であるか、冷凍サイクル装置の定格冷凍能力が6.3kW以上12.5kW未満であり、且つ、液側冷媒連絡配管はDが2.5(即ち配管径が5/16インチ)であるか、冷凍サイクル装置の定格冷凍能力が6.3kW未満であり、且つ、液側冷媒連絡配管はDが2(即ち配管径が1/4インチ)であるか、のいずれかである。
 第6グループの第14観点に係る冷凍サイクル装置は、第6グループの第9観点の冷凍サイクル装置であって、冷凍サイクル装置の定格冷凍能力が6.0kW以上であり、且つ、ガス側冷媒連絡配管はDが4(即ち配管径が1/2インチ)であるか、または、冷凍サイクル装置の定格冷凍能力が6.0kW未満であり、且つ、ガス側冷媒連絡配管はDが3(即ち配管径が3/8インチ)である。
 第6グループの第15観点に係る冷凍サイクル装置は、第6グループの第9観点の冷凍サイクル装置であって、冷凍サイクル装置の定格冷凍能力が6.0kW以上であり、且つ、ガス側冷媒連絡配管はDが4(即ち配管径が1/2インチ)であるか、冷凍サイクル装置の定格冷凍能力が3.2kW以上6.0kW未満であり、且つ、ガス側冷媒連絡配管はDが3(即ち配管径が3/8インチ)であるか、冷凍サイクル装置の定格冷凍能力が3.2kW未満であり、且つ、ガス側冷媒連絡配管はDが2.5(即ち配管径が5/16インチ)であるか、のいずれかである。
 第6グループの第16観点に係る冷凍サイクル装置は、第6グループの第9観点の冷凍サイクル装置であって、冷凍サイクル装置の定格冷凍能力が25.0kW以上であり、且つ、ガス側冷媒連絡配管はDが7(即ち配管径が7/8インチ)であるか、冷凍サイクル装置の定格冷凍能力が15.0kW以上25.0kW未満であり、且つ、ガス側冷媒連絡配管はDが6(即ち配管径が6/8インチ)であるか、冷凍サイクル装置の定格冷凍能力が6.3kW以上15.0kW未満であり、且つ、ガス側冷媒連絡配管はDが5(即ち配管径が5/8インチ)であるか、冷凍サイクル装置の定格冷凍能力が6.3kW未満であり、且つ、ガス側冷媒連絡配管はDが4(即ち配管径が1/2インチ)であるか、のいずれかである。
 (7)第7グループ
 国際公開第2015/141678号においては、R410Aに代替可能な低GWP混合冷媒が種々提案されている。
 また、冷媒としてR32を用いた冷凍サイクル装置としては、例えば、特開2002-54888号公報に記載のように、冷媒としてR32を用いた場合においてエネルギー効率を高めるため、熱交換器が有する伝熱管の配管径を7mm以上10mm以下とすることが提案されている。
 ところが、GWPが十分に小さい冷媒として、後述の冷媒Aを用いる場合において、圧力損失を低減させつつ、保有される冷媒量を少なく抑えることが可能な熱交換器の伝熱管の配管径については、これまでなんら検討されていない。
 本開示の内容は、上述した点に鑑みたものであり、後述の冷媒Aを用いる場合において、圧力損失を低減させつつ、保有される冷媒量を少なく抑えることが可能な冷凍サイクル装置を提供することを目的とする。
 第7グループの第1観点に係る冷凍サイクル装置は、冷媒回路と、冷媒と、を備えている。冷媒回路は、圧縮機と熱源側熱交換器と減圧部と利用側熱交換器とを有している。冷媒は、冷媒回路に封入されており、後述の冷媒Aである。熱源側熱交換器は、配管径が6.35mm以上10.0mm未満である伝熱管を有している。
 なお、減圧部は、特に限定されず、膨張弁であってもよいし、キャピラリーチューブであってもよい。
 この冷凍サイクル装置は、圧力損失を低減させつつ、保有される冷媒量を少なく抑えることが可能である。
 第7グループの第2観点に係る冷凍サイクル装置は、第7グループの第1観点の冷凍サイクル装置であって、熱源側熱交換器は、配管径が6.35mmと7.0mmと8.0mmと9.5mmのいずれかである伝熱管を有している。
 第7グループの第3観点に係る冷凍サイクル装置は、第7グループの第1観点または第2観点の冷凍サイクル装置であって、熱源側熱交換器は、配管径が7.0mm以上である伝熱管を有している。
 第7グループの第4観点に係る冷凍サイクル装置は、冷媒回路と、冷媒と、を備えている。冷媒回路は、圧縮機と熱源側熱交換器と減圧部と利用側熱交換器とを有している。冷媒は、冷媒回路に封入されており、後述の冷媒Aである。利用側熱交換器は、配管径が4.0mm以上10.0mm未満である伝熱管を有している。
 この冷凍サイクル装置は、圧力損失を低減させつつ、保有される冷媒量を少なく抑えることが可能である。
 第7グループの第5観点に係る冷凍サイクル装置は、第7グループの第4観点の冷凍サイクル装置であって、利用側熱交換器は、配管径が8.0mm以下である伝熱管を有している。
 第7グループの第6観点に係る冷凍サイクル装置は、第7グループの第4観点または第5観点の冷凍サイクル装置であって、利用側熱交換器は、配管径が4.0mmと5.0mmと6.35mmと7.0mmと8.0mmのいずれかである伝熱管を有している。
 (8)第8グループ
 近年、環境保護の観点から、空調機に使用される冷媒として、地球温暖化係数(GWP)の低い冷媒(以後、低GWP冷媒とよぶ)が検討されている。低GWP冷媒としては、後述の冷媒Aが有力である。
 しかしながら、上記冷媒を使用した空調機の高効率化という側面から考察した先行技術が少ない。例えば、空調機に、上記冷媒を適用しようとした場合に、如何にして高効率化を達成するか、が課題として存在する。
 第8グループの第1観点に係る空調機は、後述の冷媒Aを圧縮する圧縮機と、電力変換装置とを備えている。電力変換装置は、圧縮機を駆動するモータと、交流電源とモータとの間に接続され、スイッチング素子を有し、モータの出力が目標値になるようにスイッチング素子を制御する。
 後述の冷媒Aを用いた空調機において、空調負荷に応じて圧縮機のモータ回転数を変更することができるので、高い通年エネルギー消費効率[Annual Performance Factor (APF)]を実現することができる。
 第8グループの第2観点に係る空調機は、第8グループの第1観点の空調機であって、電力変換装置が、整流回路と、コンデンサとを含んでいる。整流回路は、交流電源の交流電圧を整流する。コンデンサは、整流回路の出力側に並列に接続され、電力変換装置のスイッチングによって生じる電圧変動を平滑する。
 この空調機では、整流回路の出力側に電解コンデンサを要しないので、回路の大型化、高コスト化が抑制される。
 第8グループの第3観点に係る空調機は、第8グループの第1観点又は第2観点の空調機であって、交流電源が単相電源である。
 第8グループの第4観点に係る空調機は、第8グループの第1観点又は第2観点の空調機であって、交流電源が三相電源である。
 第8グループの第5観点に係る空調機は、第8グループの第1観点の空調機であって、電力変換装置が、コンバータとインバータとを含むインダイレクトマトリックスコンバータである。コンバータは、交流電源の交流電圧を直流電圧に変換する。インバータは、直流電圧を交流電圧に変換してモータに供給する。
 この空調機は、高効率な上に、整流回路の出力側に電解コンデンサを要しないので回路の大型化、高コスト化が抑制される。
 第8グループの第6観点に係る空調機は、第8グループの第1観点の空調機であって、電力変換装置が、交流電源の交流電圧を所定周波数の交流電圧に直接変換してモータに供給する、マトリックスコンバータである。
 この空調機は、高効率な上に、整流回路の出力側に電解コンデンサを要しないので回路の大型化、高コスト化が抑制される。
 第8グループの第7観点に係る空調機は、第8グループの第1観点の空調機であって、圧縮機が、スクロール圧縮機、ロータリー圧縮機、ターボ圧縮機、およびスクリュー圧縮機のいずれかである。
 第8グループの第8観点に係る空調機は、第8グループの第1観点から第7観点のいずれかの空調機であって、モータが、永久磁石を含む回転子を有する永久磁石同期モータである。
 (9)第9グループ
 近年、環境保護の観点から、空調機に使用される冷媒として、地球温暖化係数(GWP)の低い冷媒(以後、低GWP冷媒とよぶ)が検討されている。低GWP冷媒としては、後述の冷媒Aが有力である。
 しかしながら、上記冷媒を使用した空調機の高効率化という側面から考察した先行技術が少ない。例えば、空調機に、上記冷媒を適用しようとした場合に、如何にして高効率化を達成するか、が課題として存在する。
 第9グループの第1観点に係る空調機は、後述の冷媒Aを圧縮する圧縮機と、圧縮機を駆動するモータと、交流電源からモータへと周波数変換をさせずに電力を供給させる接続部とを備えている。
 後述の冷媒Aを使用した空調機において、交流電源とモータとの間に電力変換装置を介在させずに圧縮機を駆動することができるので、比較的安価な構成で、環境保護に配慮した空調機を提供することができる。
 第9グループの第2観点に係る空調機は、第9グループの第1観点の空調機であって、接続部が、モータの少なくとも2つの端子間に交流電源の交流電圧を直接印加する。
 第9グループの第3観点に係る空調機は、第9グループの第1観点又は第2観点の空調機であって、交流電源が単相電源である。
 第9グループの第4観点に係る空調機は、第9グループの第1観点から第3観点のいずれかの空調機であって、モータの一端子に起動回路が直列に接続されている。
 第9グループの第5観点に係る空調機は、第9グループの第4観点の空調機であって、起動回路が、正特性サーミスタと運転コンデンサとを並列に接続した回路である。
 後述の第1観点~第42観点のいずれかの冷媒を使用した空調機において、圧縮機の起動後、正特性サーミスタは自己発熱して抵抗値が増大し、実質的に運転コンデンサによる運転回路へ切り替わるので、圧縮機は適時に定格トルクを出力し得る状態になる。
 第9グループの第6観点に係る空調機は、第9グループの第1観点又は第2観点の空調機であって、交流電源が三相電源である。
 この空調機では、起動回路を要しないので、比較的安価である。
 第9グループの第7観点の空調機は、第9グループの第1観点から第6観点のいずれかの空調機であって、モータが誘導モータである。
 この空調機では、モータが比較的低コストで高出力が可能であるので、空調機の高効率化が可能である。
 (10)第10グループ
 従来から、ボイラーや電気ヒータによって温水を生成する温水製造装置が普及している。また、熱源としてヒートポンプユニットを採用する温水製造装置も存在している。
 ヒートポンプユニットを採用する従来の温水製造装置は、ヒートポンプユニットにおいて冷媒として二酸化炭素を用いることが多い。しかし、従来の温水製造装置よりも効率良く温水を製造したいという要望がある。
 第10グループの第1観点に係る温水製造装置は、冷媒として、後述の冷媒Aを用いる。この温水製造装置は、圧縮機と、熱源側の第1熱交換器と、膨張機構と、利用側の第2熱交換器とを備える。第2熱交換器は、その内部を流れる混合冷媒と、第1の水との間で熱交換をさせて、第1の水を加熱する。
 この温水製造装置では、従来よく使われている二酸化炭素ではなく、冷媒として、上記の混合冷媒を用いている。これにより、効率の良い温水の製造が可能になる。
 第10グループの第2観点に係る温水製造装置は、第10グループの第1観点の温水製造装置であって、タンクと、循環流路とをさらに備える。循環流路は、タンクと第2熱交換器との間で、第1の水を循環させる。
 第10グループの第3観点に係る温水製造装置は、第10グループの第1観点の温水製造装置であって、第1循環流路と、第2循環流路と、第3熱交換器と、タンクと、をさらに備える。第1循環流路は、第2熱交換器によって加熱された第1の水を、循環させる。第2循環流路は、第1循環流路とは別の循環流路である。第3熱交換器は、第1循環流路を流れる第1の水と、第2循環流路を流れる第2の水との間で熱交換をさせて、第2循環流路を流れる第2の水を加熱する。タンクは、第3熱交換器によって加熱された第2の水を貯める。
 第10グループの第4観点に係る温水製造装置は、第10グループの第1観点の温水製造装置であって、第1循環流路と、タンクと、をさらに備える。第1循環流路は、第2熱交換器によって加熱された第1の水を循環させる。第1循環流路の一部は、タンクの中に配置されており、第1循環流路を流れる第1の水と、タンクの中の第2の水との間で熱交換をさせることによって、タンクの中の第2の水を加熱する。
 第10グループの第5観点に係る温水製造装置は、第10グループの第1観点の温水製造装置であって、タンクと、第1循環流路と、第3熱交換器と、第2循環流路と、第3流路と、をさらに備える。第1循環流路は、第2熱交換器とタンクとの間で、第1の水を循環させる。第2循環流路は、第3熱交換器とタンクとの間で、第1の水を循環させる。第3流路は、第1循環流路および第2循環流路とは別の流路である。第3熱交換器は、タンクから流れてくる第1の水と第3流路を流れる第3の水との間で熱交換をさせることによって、第3流路を流れる第3の水を加熱する。
 第10グループの第6観点に係る温水製造装置は、第10グループの第1観点の温水製造装置であって、タンクと、第1循環流路と、第2流路と、をさらに備える。第1循環流路は、タンクと第2熱交換器との間で、第1の水を循環させる。第2流路は、第1循環流路とは別の流路である。第2流路の一部は、タンクの中に配置され、タンクの中の第1の水と、第2流路を流れる第2の水との間で熱交換をさせることによって、第2流路を流れる第2の水を加熱する。
 第10グループの第7観点に係る温水製造装置は、第10グループの第1観点の温水製造装置であって、第1の水を貯めるタンクと、第2の水が流れる流路と、をさらに備える。流路の一部は、タンクの中に配置される。第2熱交換器は、タンクの中において、タンクに貯められている第1の水を加熱する。タンクに貯められている第1の水は、流路を流れる第2の水を加熱する。
 第10グループの第8観点に係る温水製造装置は、第10グループの第1観点の温水製造装置であって、タンクと、給水源からタンクへと第1の水を流す流路と、をさらに備える。第2熱交換器は、流路を流れる第1の水を加熱する。
 第10グループの第9観点に係る温水製造装置は、第10グループの第1観点から第8観点のいずれかの温水製造装置であって、利用側の第4熱交換器と、第4循環流路と、をさらに備える。第4熱交換器は、第2熱交換器とは別の熱交換器である。第4循環流路には、冷房または暖房用の第4の水が流れる。第4熱交換器は、その内部を流れる混合冷媒と、第4循環流路を流れる第4の水との間で熱交換をさせることによって、第4の水を冷却または加熱する。
 (11)第11グループ
 従来から、例えば、特開平11-256358号公報に記載されているように、熱交換器を備える冷凍サイクル装置がある。この冷凍サイクル装置の熱交換器のように、伝熱管に銅パイプが用いられているものがある。 しかし、伝熱管に銅パイプが用いられている熱交換器は、高価である。
 このように、熱交換器を備える冷凍サイクル装置には、材料費を削減するという課題がある。
 第11グループの第1観点に係る冷凍サイクル装置は、後述の冷媒Aと、冷媒を蒸発させる蒸発器と、冷媒を凝縮させる凝縮器と、を備え、蒸発器と凝縮器のうちの少なくとも一方が、アルミニウム製またはアルミニウム合金製の複数のフィン及び、アルミニウム製またはアルミニウム合金製の複数の伝熱管を有し、伝熱管の内部を流れる冷媒とフィンに沿って流れる流体に熱交換させる熱交換器であり、冷媒が、蒸発器と凝縮器とを循環して冷凍サイクルを繰り返すように構成されている。
 この冷凍サイクル装置では、アルミニウム製またはアルミニウム合金製の複数のフィン及び、アルミニウム製またはアルミニウム合金製の複数の伝熱管を有していることから、例えば伝熱管に銅パイプを使う場合に比べて、熱交換器の材料費を削減することができる。
 第11グループの第2観点に係る冷凍サイクル装置は、第11グループの第1観点の冷凍サイクル装置であって、複数のフィンの各々が、複数の穴を有し、複数の伝熱管が、複数のフィンの複数の穴を貫通し、複数の伝熱管の外周が、複数の穴の内周に密着している。
 第11グループの第3観点に係る冷凍サイクル装置は、第11グループの第1観点の冷凍サイクル装置であって、複数の伝熱管が、複数の扁平管であり、互いに隣り合う扁平管の平面部が、互いに向かい合うように配置されている。
 第11グループの第4観点に係る冷凍サイクル装置は、第11グループの第3観点の冷凍サイクル装置であって、複数のフィンの各々が、波形に折り曲げられて互いに隣り合う扁平管の平面部の間に配置され、平面部に熱を伝えられるように接続されている。
 第11グループの第5観点に係る冷凍サイクル装置は、第11グループの第3観点の冷凍サイクル装置であって、複数のフィンの各々が、複数の切り欠きを有し、複数の扁平管が、複数のフィンの複数の切り欠きに差し込まれて複数のフィンに熱を伝えらるように接続されている。
 (12)第12グループ
 従来から、1台で室内の複数の部屋の空気を調整する空気調和装置として、マルチ型の空気調和装置が知られている。
 マルチ型の空気調和装置は、異なる部屋に配置されている第1室内機と第2室内機とを備えている。このような空気調和装置では、第1室内機と第2室内機に冷媒を循環させるため、空気調和装置に充填される冷媒量が多くなる。
 室内の複数の部屋の空気を調整する空気調和装置には、空気調和装置に充填される冷媒量を削減するという課題がある。
 第12グループの第1観点に係る空気調和装置は、圧縮機と、第1空気を熱交換する利用側熱交換器と、第2空気を熱交換する熱源側熱交換器と、後述の冷媒Aを含み、前記圧縮機と前記利用側熱交換器と前記熱源側熱交換器とを循環して冷凍サイクルを繰り返す冷媒と、前記第1空気を室内の複数の部屋に供給する第1ダクトと、前記第1ダクトに接続され且つ前記利用側熱交換器を収納している利用側空間を有し、前記利用側熱交換器で前記冷媒と熱交換された後の前記第1空気を前記第1ダクトに送出するように構成されているケーシングと、を備える。
 この空気調和装置では、複数の室内機を複数の部屋に配置する空気調和装置に比べて室内側熱交換器が少なくなるので、空気調和装置に充填される冷媒量を削減することができる。
 第12グループの第2観点に係る空気調和装置は、第12グループの第1観点の空気調和装置であって、前記第1空気を前記室内から取り入れる第2ダクトと、前記ケーシングを有し、前記ケーシングを前記第2ダクトに接続し、前記室内から取り入れた前記第1空気を前記利用側熱交換器に導くように構成されている利用側ユニットと、前記熱源側熱交換器を収納し、前記利用側ユニットとは別体の熱源側ユニットとを備える、ものである。
 この空気調和装置では、利用側ユニットと熱源側ユニットが別体であることから、空気調和装置の設置が容易になる。
 第12グループの第3観点に係る空気調和装置は、第12グループの第1観点の空気調和装置であって、前記第1空気を室外から取り入れる第3ダクトと、前記ケーシングを有し、前記ケーシングを前記第3ダクトに接続し、前記室外から取り入れた前記第1空気を前記利用側熱交換器に導くように構成されている利用側ユニットと、前記熱源側熱交換器を収納し、前記利用側ユニットとは別体の熱源側ユニットとを備える、ものである。
 この空気調和装置では、利用側ユニットと熱源側ユニットが別体であることから、空気調和装置の設置が容易になる。
 第12グループの第4観点に係る空気調和装置は、第12グループの第1観点の空気調和装置であって、ケーシングに接続され、前記室内から取り入れた前記第1空気を前記利用側空間に供給する第2ダクトを備え、前記ケーシングが、室外から取り入れた前記第2空気が通過する熱源側空間と前記利用側空間と仕切って前記熱源側空間と前記利用側空間の空気の流通を遮断する仕切板を有し、前記熱源側熱交換器が、前記熱源側空間に配置されている、ものである。
 この空気調和装置では、1つのケーシングの中に利用側熱交換器と熱源側熱交換器が同じケーシングの中に仕切板で仕切られた利用側空間と熱源側空間に収納されていることから、限られたスペースを使って空気調和装置を設置し易くなる。
 (13)第13グループ
 低地球温暖化係数の冷媒を用いて高効率な運転を実現する冷媒回路の構成については、これまで十分に提案されていない。
 第13グループの第1観点に係る冷凍サイクル装置は、圧縮機と、熱源側熱交換器と、膨張機構と、利用側熱交換器と、を含む冷媒回路を備える。冷媒回路には、後述の冷媒Aが封入される。少なくとも所定の運転時に、熱源側熱交換器及び利用側熱交換器の少なくとも一方における、冷媒の流れと冷媒と熱交換する熱媒体の流れとが対向流である。
 第13グループの第1観点の冷凍サイクル装置では、低地球温暖化係数の後述の冷媒Aを用いて、熱交換器を有効に利用した高効率な運転が実現される。
 第13グループの第2観点に係る冷凍サイクル装置は、第13グループの第1観点の冷凍サイクル装置であって、熱源側熱交換器を蒸発器として用いる冷凍サイクル装置の運転時に、熱源側熱交換器における、冷媒の流れと、冷媒と熱交換する熱媒体の流れとが対向流である。
 第13グループの第3観点に係る冷凍サイクル装置は、第13グループの第1観点又は第2観点の冷凍サイクル装置であって、熱源側熱交換器を凝縮器として用いる冷凍サイクル装置の運転時に、熱源側熱交換器における、冷媒の流れと、冷媒と熱交換する熱媒体の流れとが対向流である。
 ここでは、温度グライドの影響で凝縮器の出口側で冷媒と熱媒体との温度差が取りにくくなる冷媒が用いられる場合であっても、凝縮器の入口から出口まで温度差が比較的確保されやすく、高効率な冷凍サイクル装置の運転を実現できる。
 第13グループの第4観点に係る冷凍サイクル装置は、第13グループの第1観点から第3観点のいずれかの冷凍サイクル装置であって、利用側熱交換器を蒸発器として用いる冷凍サイクル装置の運転時に、利用側熱交換器における、冷媒の流れと、冷媒と熱交換する熱媒体の流れとが対向流である。
 第13グループの第5観点に係る冷凍サイクル装置は、第13グループの第1観点から第4観点のいずれかの冷凍サイクル装置であって、利用側熱交換器を凝縮器として用いる冷凍サイクル装置の運転時に、利用側熱交換器における、冷媒の流れと、冷媒と熱交換する熱媒体の流れとが対向流である。
 第13グループの第6観点に係る冷凍サイクル装置は、第13グループの第1観点から第5観点のいずれかの冷凍サイクル装置であって、熱媒体は空気である。
 第13グループの第7観点に係る冷凍サイクル装置は、第13グループの第1観点から第5観点のいずれかの冷凍サイクル装置であって、熱媒体は液体である。
 (14)第14グループ
 従来の冷凍装置として、例えば、高温側(一次側)の冷凍サイクルと低温側(二次側)の冷凍サイクルとを備えた装置が存在する。例えば、高温側の冷凍サイクルの冷媒としてHFC冷媒(R410A、R32など)、HFO冷媒などを使用し、低温側の冷凍サイクルの冷媒として二酸化炭素冷媒を使用する二元冷凍装置が存在する。 二元冷凍装置などの2つのサイクルを組み合わせた冷凍装置において、さらなる効率のよい運転が求められている。
 第14グループの第1観点に係る冷凍装置は、第1サイクルと、第2サイクルとを備える。第1サイクルは、第1圧縮機、第1放熱器、第1膨張機構および第1吸熱器が接続されている。第1サイクルでは、第1冷媒が循環する。第2サイクルは、第2放熱器および第2吸熱器が接続されている。第2サイクルでは、第2冷媒が循環する。第1吸熱器と第2放熱器とは、熱交換器である。この熱交換器は、第1吸熱器を流れる第1冷媒と、第2放熱器を流れる第2冷媒との間で、熱交換をさせる。第1冷媒および第2冷媒の少なくとも一方は、後述の冷媒Aである。
 ここでは、後述の冷媒Aを採用することによって、熱交換器における熱交換の効率を向上させることが可能になる。
 第14グループの第2観点に係る冷凍装置は、第1サイクルと、第2サイクルとを備える。第1サイクルは、第1圧縮機、第1放熱器、第1膨張機構および第1吸熱器が接続されている。第1サイクルでは、第1冷媒が循環する。第2サイクルは、第2放熱器および第2吸熱器が接続されている。第2サイクルでは、第2冷媒が循環する。第1放熱器と第2吸熱器とは、熱交換器である。この熱交換器は、第1放熱器を流れる第1冷媒と、第2吸熱器を流れる第2冷媒との間で、熱交換をさせる。第1冷媒および第2冷媒の少なくとも一方は、後述の冷媒Aである。
 ここでは、後述の冷媒Aを採用することによって、熱交換器における熱交換の効率を向上させることが可能になる。
 第14グループの第3観点に係る冷凍装置は、第14グループの第1観点に係る冷凍装置であって、第2サイクルは、さらに第2圧縮機および第2膨張機構が接続されたサイクルである。第1サイクルの第1放熱器を流れる第1冷媒は、外気に対して熱を放出する。第1冷媒は、後述の冷媒Aである。第2冷媒は、二酸化炭素である。
 第14グループの第4観点に係る冷凍装置は、第14グループの第1観点に係る冷凍装置であって、第2サイクルは、さらに第2圧縮機および第2膨張機構が接続されたサイクルである。第1サイクルの第1放熱器を流れる第1冷媒は、外気に対して熱を放出する。第1冷媒は、後述の冷媒Aである。第2冷媒は、後述の冷媒Aである。
 第14グループの第5観点に係る冷凍装置は、第14グループの第1観点に係る冷凍装置であって、第2サイクルは、さらに第2圧縮機および第2膨張機構が接続されたサイクルである。第1サイクルの第1放熱器を流れる第1冷媒は、外気に対して熱を放出する。第1冷媒は、R32である。第2冷媒は、後述の冷媒Aである。
 第14グループの第6観点に係る冷凍装置は、第14グループの第1観点に係る冷凍装置であって、第1サイクルの第1放熱器を流れる第1冷媒は、外気に対して熱を放出する。第1冷媒は、後述の冷媒Aである。第2冷媒は、液媒体である。
 第14グループの第7観点に係る冷凍装置は、第14グループの第2観点に係る冷凍装置であって、第2サイクルは、さらに第2圧縮機および第2膨張機構が接続されたサイクルである。第1サイクルの第1吸熱器を流れる第1冷媒は、外気から熱を奪う。第1冷媒は、後述の冷媒Aである。第2冷媒は、後述の冷媒Aよりも所定温度における飽和圧力が低い冷媒である。
 (15)上記の各グループにおける冷媒の詳細
 上記の第1~第14グループそれぞれで、冷媒として、冷媒Aを採用する。
 冷媒Aは、トランス-1,2-ジフルオロエチレン(HFO-1132(E))、ジフルオロメタン(R32)及び2,3,3,3-テトラフルオロ-1-プロペン(R1234yf)を合計で冷媒全体に対して99.5質量%以上含む組成物であって、
HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
  点U(32.8, 23.4, 43.8)、
  点S(32.8, 19.1, 48.1)及び
  点T(26.6, 23.3, 50.1)
の3点をそれぞれ結ぶ直線US、ST及びTUで囲まれる図形の範囲内又は前記直線US、ST及びTU上にある。
 冷媒Aは、さらに:
アセチレン、HFO-1132a、HFO-1141、HFO-1123、HFC-143a、HFC-134a、Z-HFO-1132、HFO-1243zf、HFC-245cb、HCFC-1122、HCFC-124、CFC-1113、HFC-152a、HFC-161及び3,3,3-トリフルオロプロピンからなる群より選択される少なくとも一種の追加的な冷媒
を含んでいてもよい。
 冷媒Aは、R32及び/又はR410Aの代替冷媒として用いることができる。
 (16)上記の冷媒を用いる各グループの技術の特徴
 冷媒Aを用いる第1グループの技術によれば、冷凍サイクル装置内の潤滑性を良好にすることが可能である。
 冷媒Aを用いる第2グループの技術によれば、冷凍サイクルを行うことが可能である。
 冷媒Aを用いる第3グループの技術によれば、冷凍サイクルの運転効率を向上させることが可能になる。
 冷媒Aを用いる第4グループの技術によれば、連絡配管の損傷を抑制させることが可能である。
 冷媒Aを用いる第5グループの技術によれば、冷凍サイクルを行うことが可能である。
 冷媒Aを用いる第6グループの技術によれば、能力の低下を小さく抑えることが可能である。
 冷媒Aを用いる第7グループの技術によれば、エネルギー効率を良好にすることが可能である。
 冷媒Aを用いる第8グループの技術によれば、空調負荷に応じて、当該冷媒を圧縮する圧縮機のモータ回転数を変更することができるので、高い通年エネルギー消費効率[Annual Performance Factor (APF)]を実現することができる。
 冷媒Aを用いる第9グループの技術によれば、環境保護に配慮した空調機を提供することができる。
 冷媒Aを用いる第10グループの技術によれば、効率的に温水を製造することが可能である。
 冷媒Aを用いる第11グループの技術によれば、熱交換器の材料費を削減することが可能である。
 冷媒Aを用いる第12グループの技術によれば、空気調和装置に充填される冷媒量を削減することが可能になる。
 冷媒Aを用いる第13グループの技術によれば、高効率な運転を実現することが可能である。
 冷媒Aを用いる第14グループの技術によれば、熱交換の効率を向上させることが可能である。
燃焼性試験に用いた装置の模式図である。 本開示の組成物の組成を示す三角図である。 本開示の組成物の組成を示す三角図である。 第2グループの技術の第1実施形態に係る冷媒回路の概略構成図である。 第2グループの技術の第1実施形態に係る冷凍サイクル装置の概略制御ブロック構成図である。 第2グループの技術の第2実施形態に係る冷媒回路の概略構成図である。 第2グループの技術の第2実施形態に係る冷凍サイクル装置の概略制御ブロック構成図である。 第2グループの技術の第3実施形態に係る冷媒回路の概略構成図である。 第2グループの技術の第3実施形態に係る冷凍サイクル装置の概略制御ブロック構成図である。 第2グループの技術の第4実施形態に係る冷媒回路の概略構成図である。 第2グループの技術の第4実施形態に係る冷凍サイクル装置の概略制御ブロック構成図である。 第2グループの技術の第5実施形態に係る冷媒回路の概略構成図である。 第2グループの技術の第5実施形態に係る冷凍サイクル装置の概略制御ブロック構成図である。 第2グループの技術の第6実施形態に係る冷媒回路の概略構成図である。 第2グループの技術の第6実施形態に係る冷凍サイクル装置の概略制御ブロック構成図である。 第2グループの技術の第7実施形態に係る冷媒回路の概略構成図である。 第2グループの技術の第7実施形態に係る冷凍サイクル装置の概略制御ブロック構成図である。 第2グループの技術の第8実施形態に係る冷媒回路の概略構成図である。 第2グループの技術の第8実施形態に係る冷凍サイクル装置の概略制御ブロック構成図である。 第2グループの技術の第9実施形態に係る冷媒回路の概略構成図である。 第2グループの技術の第9実施形態に係る冷凍サイクル装置の概略制御ブロック構成図である。 第2グループの技術の第10実施形態に係る冷媒回路の概略構成図である。 第2グループの技術の第10実施形態に係る冷凍サイクル装置の概略制御ブロック構成図である。 第2グループの技術の第11実施形態に係る冷媒回路の概略構成図である。 第2グループの技術の第11実施形態に係る冷凍サイクル装置の概略制御ブロック構成図である。 第2グループの技術の第12実施形態に係る冷媒回路の概略構成図である。 第2グループの技術の第12実施形態に係る冷凍サイクル装置の概略制御ブロック構成図である。 第3グループの技術の第1実施形態に係る冷媒回路の概略構成図である。 第3グループの技術の第1実施形態に係る冷凍サイクル装置の概略制御ブロック構成図である。 第3グループの技術の第1実施形態の変形例Bに係る冷媒回路の概略構成図である。 第3グループの技術の第1実施形態の変形例Bに係る圧縮機の概略構成を示す側面視断面図である。 第3グループの技術の第2実施形態に係る冷媒回路の概略構成図である。 第3グループの技術の第2実施形態に係る冷凍サイクル装置の概略制御ブロック構成図である。 第3グループの技術の第2実施形態に係る圧縮機の概略構成を示す側面視断面図である。 第3グループの技術の第2実施形態に係る圧縮機のシリンダ室周辺を示す平面視断面図である。 第3グループの技術の第2実施形態に係る圧縮機のピストンの平面視断面図である。 第4グループの技術の第1実施形態に係る冷媒回路の概略構成図である。 第4グループの技術の第1実施形態に係る冷凍サイクル装置の概略制御ブロック構成図である。 第4グループの技術の第2実施形態に係る冷媒回路の概略構成図である。 第4グループの技術の第2実施形態に係る冷凍サイクル装置の概略制御ブロック構成図である。 第4グループの技術の第3実施形態に係る冷媒回路の概略構成図である。 第4グループの技術の第3実施形態に係る冷凍サイクル装置の概略制御ブロック構成図である。 第5グループの技術の第1実施形態に係る冷媒回路の概略構成図である。 第5グループの技術の第1実施形態に係る冷凍サイクル装置の概略制御ブロック構成図である。 第5グループの技術の第2実施形態に係る冷媒回路の概略構成図である。 第5グループの技術の第2実施形態に係る冷凍サイクル装置の概略制御ブロック構成図である。 第5グループの技術の第3実施形態に係る冷媒回路の概略構成図である。 第5グループの技術の第3実施形態に係る冷凍サイクル装置の概略制御ブロック構成図である。 第6グループの技術の第1実施形態に係る冷媒回路の概略構成図である。 第6グループの技術の第1実施形態に係る冷凍サイクル装置の概略制御ブロック構成図である。 第6グループの技術の第1実施形態に係る空気調和装置において冷媒R410A、R32、冷媒Xを用いた場合の管外径毎の液側冷媒連絡配管の暖房運転時の圧力損失のグラフを示す。 第6グループの技術の第1実施形態に係る空気調和装置において冷媒R410A、R32、冷媒Xを用いた場合の管外径毎のガス側冷媒連絡配管の冷房運転時の圧力損失のグラフを示す。 第6グループの技術の第2実施形態に係る冷媒回路の概略構成図である。 第6グループの技術の第2実施形態に係る冷凍サイクル装置の概略制御ブロック構成図である。 第6グループの技術の第2実施形態に係る空気調和装置において冷媒R410A、R32、冷媒Xを用いた場合の管外径毎の液側冷媒連絡配管の暖房運転時の圧力損失のグラフを示す。 第6グループの技術の第2実施形態に係る空気調和装置において冷媒R410A、R32、冷媒Xを用いた場合の管外径毎のガス側冷媒連絡配管の冷房運転時の圧力損失のグラフを示す。 第6グループの技術の第3実施形態に係る冷媒回路の概略構成図である。 第6グループの技術の第3実施形態に係る冷凍サイクル装置の概略制御ブロック構成図である。 第6グループの技術の第3実施形態に係る空気調和装置において冷媒R410A、R32、冷媒Xを用いた場合の管外径毎の液側冷媒連絡配管の暖房運転時の圧力損失のグラフを示す。 第6グループの技術の第3実施形態に係る空気調和装置において冷媒R410A、R32、冷媒Xを用いた場合の管外径毎のガス側冷媒連絡配管の冷房運転時の圧力損失のグラフを示す。 第7グループの技術の第1実施形態に係る冷媒回路の概略構成図である。 第7グループの技術の第1実施形態に係る冷凍サイクル装置の概略制御ブロック構成図である。 第7グループの技術の第1実施形態に係る室外ユニットの概略外観斜視図である。 第7グループの技術の第1実施形態に係る室外ユニットの内部の概略構造を示す斜視図である。 第7グループの技術の第1実施形態に係る室内ユニットの概略外観正面図である。 第7グループの技術の第1実施形態に係る室内ユニットの内部の概略構造を示す側面視断面図である。 第7グループの技術の第2実施形態に係る冷媒回路の概略構成図である。 第7グループの技術の第2実施形態に係る冷凍サイクル装置の概略制御ブロック構成図である。 第7グループの技術の第2実施形態に係る室外ユニットの概略外観斜視図である。 第7グループの技術の第2実施形態に係る室外ユニットの内部の概略構造を示す斜視図である。 第7グループの技術の第2実施形態に係る室内ユニットの概略外観斜視図である。 第7グループの技術の第2実施形態に係る室内ユニットの内部の概略構造を示す側面視断面図である。 第7グループの技術の第3実施形態に係る冷媒回路の概略構成図である。 第7グループの技術の第3実施形態に係る冷凍サイクル装置の概略制御ブロック構成図である。 第7グループの技術の第3実施形態に係る室外ユニットの概略外観斜視図である。 第7グループの技術の第3実施形態に係る室外ユニットの内部の概略構造を示す分解斜視図である。 第8グループの技術の第1実施形態に係る空調機の構成図である。 第8グループの技術の第1実施形態に搭載される電力変換装置の回路ブロック図である。 第8グループの技術の第1実施形態の変形例における電力変換装置の回路ブロック図である。 第8グループの技術の第2実施形態に係る空調機に搭載される電力変換装置の回路ブロック図である。 第8グループの技術の第2実施形態の変形例における電力変換装置の回路ブロック図である。 第8グループの技術の第3実施形態に係る空調機に搭載される電力変換装置の回路ブロック図である。 第8グループの技術の双方向スイッチを概念的に示す回路図である。 第8グループの技術のマトリックスコンバータの電流方向の一例を示した回路図である。 第8グループの技術のマトリックスコンバータの別の電流方向の一例を示した回路図である。 第8グループの技術の第3実施形態の変形例における電力変換装置の回路ブロック図である。 第8グループの技術のクランプ回路の回路図である。 第9グループの技術の一実施形態に係る空調機の構成図である。 第9グループの技術の圧縮機のモータの運転回路図である。 第9グループの技術の変形例に係る空調機における圧縮機のモータの運転回路図である。 第10グループの技術の第1実施形態に係る温水製造装置としての給湯システムの外観図である。 第10グループの技術の第1実施形態の給湯システムの水回路、冷媒回路図である。 第10グループの技術の第1実施形態の給湯システムの制御ブロック図である。 第10グループの技術の第1実施形態の第1の変形例の給湯システムの水回路、冷媒回路図である。 第10グループの技術の第1実施形態の第2の変形例の給湯システムの水回路、冷媒回路図である。 第10グループの技術の第2実施形態に係る温水製造装置としての温水循環暖房システムの構成の一部を示す図である。 第10グループの技術の第2実施形態の温水循環暖房システムの構成の一部を示す図である。 第10グループの技術の第2実施形態の温水循環暖房システムの構成の一部を示す図である。 第10グループの技術の第2実施形態の温水循環暖房システムの制御ブロック図である。 第10グループの技術の第2実施形態の第1の変形例の温水循環暖房システムの構成の一部を示す図である。 第10グループの技術の第2実施形態の第2の変形例の温水循環暖房システムの構成の一部を示す図である。 第10グループの技術の第3実施形態に係る温水製造装置としての給湯システムの概略構成図である。 第10グループの技術の第3実施形態の給湯システムの熱源ユニットの概略構成図である。 第10グループの技術の第3実施形態の給湯システムの制御ブロック図である。 第11グループの技術の第1実施形態の冷凍装置の概略構成図である。 第11グループの技術の第1実施形態の室外熱交換器又は室内熱交換器の正面図である。 第11グループの技術の第1実施形態の熱交換器の扁平チューブの断面図である。 第11グループの技術の第2実施形態に係る室外熱交換器の概略斜視図である。 第11グループの技術の室外熱交換器の熱交管部を鉛直方向に切断したときの部分拡大図である。 第11グループの技術の第3実施形態に係る内面溝付管の構成を示す管軸方向の断面図である。 図11Fに示された内面溝付管のI-I線断面図である。 図11Gに示された内面溝付管の一部を拡大して示す部分拡大図である。 第11グループの技術のプレートフィンの構成を示す平面図である。 第12グループの技術の第1実施形態に係る空気調和装置の配置を示す模式図である。 第12グループの技術の空気調和装置の概略構成図である。 第12グループの技術の第1実施形態に係る空調システムにおけるコントローラ及びサーモスタットの電気的接続状態を示すブロック図である。 第12グループの技術の第2実施形態に係る空気調和機の建物への設置状態を示す斜視図である。 第12グループの技術の空気調和機の外観を示す斜視図である。 第12グループの技術の空気調和機の外観を示す斜視図である。 第12グループの技術の空気調和機の内部構成を説明するための斜視図である。 第12グループの技術の空気調和機の内部構成を説明するための斜視図である。 第12グループの技術の空気調和機の内部構成を説明するための斜視図である。 第12グループの技術の空気調和機のダクトを説明するための斜視図である。 第12グループの技術の第2実施形態に係る空気調和機の冷媒回路を説明するための図である。 第12グループの技術の第2実施形態に係る空気調和機の制御系統を説明するためのブロック図である。 第12グループの技術の利用側熱交換器の左側部の周辺を拡大した部分拡大斜視図である。 第12グループの技術の第1開口及び第2開口と各部材との位置関係を説明するための模式図である。 第12グループの技術の第3実施形態に係る空気調和装置の構成を示す模式図である。 第13グループの技術の実施形態に係る対向流型の熱交換器の一例を示す概略図である。 第13グループの技術の実施形態に係る対向流型の熱交換器の他の例を示す概略図であり、(a)は平面図、(b)は斜視図である。 第13グループの技術の第1実施形態に係る冷凍サイクル装置における冷媒回路の構成の一態様を示す概略構成図である。 図13Cの冷媒回路の変形例を示す概略構成図である。 図13Dの冷媒回路の変形例を示す概略構成図である。 図13Dの冷媒回路の変形例を示す概略構成図である。 第13グループの技術の第2実施形態に係る冷凍サイクル装置の一例としての空気調和装置の冷媒回路の構成を示す概略構成図である。 図13Gの空気調和装置の概略制御ブロック構成図である。 第13グループの技術の第3実施形態に係る冷凍サイクル装置の一例としての空気調和装置の冷媒回路の構成を示す概略構成図である。 図13Iの空気調和装置の概略制御ブロック構成図である。 第14グループの技術の第1実施形態に係る冷凍装置である熱負荷処理システムの概略構成図である。 第14グループの技術の第1実施形態の熱負荷処理システムの設置態様を示した模式図である。 第14グループの技術の第1実施形態の熱負荷処理システムの制御ブロック図である。 第14グループの技術の第2実施形態に係る冷凍装置である二元冷凍装置の冷媒回路図である。 第14グループの技術の第2実施形態に係る冷凍装置である空調給湯システムの回路構成図である。
 (0)冷媒
 以下の(1)~(14)に記載する第1~第14グループの各技術において用いられる冷媒について、最初に説明を行う。
 HFO-1132(E)は不飽和結合を有するため化学的に不安定であり不均化のリスクがある可能性がある。本発明者らは、上記の課題を解決すべく、鋭意研究を行った結果、HFO-1132(E)、R32及びR1234yfを特定の混合割合で含む混合冷媒においては、混合冷媒の圧力が3.0MPaのときに、HFO-1132(E)の不均化が抑制されることを見出した。
 また、別の態様において、本開示において、新たなHFO-1132(E)を含む新たな冷媒が見いだされた。
 本開示は、かかる知見に基づきさらに研究を重ねた結果完成されたものである。本開示は、以下の実施形態を含む。
 <用語の定義>
 本明細書において用語「冷媒」には、ISO817(国際標準化機構)で定められた、冷媒の種類を表すRで始まる冷媒番号(ASHRAE番号)が付された化合物が少なくとも含まれ、さらに冷媒番号が未だ付されていないとしても、それらと同等の冷媒としての特性を有するものが含まれる。冷媒は、化合物の構造の面で、「フルオロカーボン系化合物」と「非フルオロカーボン系化合物」とに大別される。「フルオロカーボン系化合物」には、クロロフルオロカーボン(CFC)、ハイドロクロロフルオロカーボン(HCFC)及びハイドロフルオロカーボン(HFC)が含まれる。
 本明細書において、用語「冷媒を含む組成物」には、(1)冷媒そのもの(冷媒の混合物を含む)と、(2)その他の成分をさらに含み、少なくとも冷凍機油と混合することにより冷凍機用作動流体を得るために用いることのできる組成物と、(3)冷凍機油を含有する冷凍機用作動流体とが少なくとも含まれる。本明細書においては、これら三態様のうち、(2)の組成物のことを、冷媒そのもの(冷媒の混合物を含む)と区別して「冷媒組成物」と表記する。また、(3)の冷凍機用作動流体のことを「冷媒組成物」と区別して「冷凍機油含有作動流体」と表記する。
 本明細書において、用語「代替」は、第一の冷媒を第二の冷媒で「代替」するという文脈で用いられる場合、第一の類型として、第一の冷媒を使用して運転するために設計された機器において、必要に応じてわずかな部品(冷凍機油、ガスケット、パッキン、膨張弁、ドライヤその他の部品のうち少なくとも一種)の変更及び機器調整のみを経るだけで、第二の冷媒を使用して、最適条件下で運転することができることを意味する。すなわち、この類型は、同一の機器を、冷媒を「代替」して運転することを指す。この類型の「代替」の態様としては、第二の冷媒への置き換えの際に必要とされる変更乃至調整の度合いが小さい順に、「ドロップイン(drop in)代替」、「ニアリー・ドロップイン(nealy drop in)代替」及び「レトロフィット(retrofit)」があり得る。
 第二の類型として、第二の冷媒を用いて運転するために設計された機器を、第一の冷媒の既存用途と同一の用途のために、第二の冷媒を搭載して用いることも、用語「代替」に含まれる。この類型は、同一の用途を、冷媒を「代替」して提供することを指す。
 本明細書において用語「冷凍機(refrigerator)」とは、物あるいは空間の熱を奪い去ることにより、周囲の外気よりも低い温度にし、かつこの低温を維持する装置全般のことをいう。言い換えれば、冷凍機は温度の低い方から高い方へ熱を移動させるために、外部からエネルギーを得て仕事を行いエネルギー変換する変換装置のことをいう。
 本明細書において冷媒について「RCLがx%以上」というときは、かかる冷媒についての、米国ANSI/ASHRAE34-2013規格に従い算出される冷媒濃度限界(Refrigerant Concentration Limit; RCL)がx%以上であることを意味する。RCLとは、安全係数を考慮した空気中における濃度限界であり、人間が存在する密閉空間において、急性毒性、窒息及び可燃性の危険度を低減することを目的とした指標である。RCLは上記規格に従って決定される。具体的には、上記規格7.1.1、7.1.2及び7.1.3に従いそれぞれ算出される、急性毒性曝露限界(Acute-Toxicity Exposure Limit; ATEL)、酸欠濃度限界(Oxygen Deprivation Limit; ODL)及び可燃濃度限界(Flammable Concentration Limit; FCL)のうち、最も低い濃度がRCLとなる。
 本明細書において、圧力は特に断りのない限り絶対圧を指す。
 本明細書において冷媒が「WCF微燃」であるとは、米国ANSI/ASHRAE34-2013規格に従い最も燃えやすい組成(Worst case of formulation for flammability; WCF)が、燃焼速度が10cm/s以下であることを意味する。
 また、本明細書において冷媒がASHRAE微燃(WCF&WCFF微燃)であるとは、WCFの燃焼速度が10cm/s以下で、かつ、WCFを用いてANSI/ASHRAE34-2013に基づいた貯蔵、輸送、使用時の漏洩試験を行うことで特定される最も燃えやすい分画組成(Worst case of fractionation for flammability; WCFF)が、燃焼速度が10cm/s以下であり、米国ANSI/ASHRAE34-2013規格の燃焼性区分が「2Lクラス」と判断されることを意味する。
 1.冷媒
 1.1 冷媒成分
 本開示の冷媒は、HFO-1132(E)、R32及びR1234yfを含む混合冷媒である。
 本開示の冷媒は、以下の要件を満たすことにより、冷媒濃度限界(RCL)が50g/m3以上となり、対R32冷凍能力比が76%以上となり、かつGWPが160以下となる。
 HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
  点U(32.8, 23.4, 43.8)、
  点S(32.8, 19.1, 48.1)及び
  点T(26.6, 23.3, 50.1)
の3点をそれぞれ結ぶ直線US、ST及びTUで囲まれる図形の範囲内又は前記直線US、ST及びTU上にある。
 本開示の冷媒は、以下の要件を満たすことにより、不均化対策が不要となり、対R32冷凍能力比が76%以上となり、かつGWPが160以下となる。
 HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
  点W(30.0, 23.4, 46.6)、
  点S’(30.0, 20.9, 49.1)及び
  点T(26.6, 23.3, 50.1)
の3点をそれぞれ結ぶ直線WS’、S’T及びTWで囲まれる図形の範囲内又は前記直線WS’、S’T及びTW上にある。
 本開示の冷媒は、以下の要件を満たすことにより、RCLが50g/m3以上となり、凝縮グライドが4.2K以下となり、かつGWPが160以下となる。
 HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
  点U(32.8, 23.4, 43.8)、
  点S(32.8, 19.1, 48.1)及び
  点Z(27.7, 23.4, 48.9)
の3点をそれぞれ結ぶ直線US、SZ及びZUで囲まれる図形の範囲内又は前記直線US、SZ及びZU上にある。
 本開示の冷媒は、以下の要件を満たすことにより、不均化対策が不要となり、凝縮グライドが4.2K以下となり、かつGWPが160以下となる。
 HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
  点W(30.0, 23.4, 46.6)、
  点Z’(30.0, 21.5, 48.5)及び
  点Z(27.7, 23.4, 48.9)
の3点をそれぞれ結ぶ直線WZ’、Z’Z及びZWで囲まれる図形の範囲内又は前記直線WZ’、Z’Z及びZW上にある。
 本開示の冷媒は、以下の要件を満たすことにより、RCLが50g/m3以上となり、凝縮グライドが4.2K以下となり、かつGWPが150以下となる。
 HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
  点X(32.8, 21.9, 45.3)、
  点S(32.8, 19.1, 48.1)及び
  点Y(29.5, 21.9, 48.6)
の3点をそれぞれ結ぶ直線XS、SY及びYXで囲まれる図形の範囲内又は前記直線XS、SY及びYX上にある。
 本開示の冷媒は、以下の要件を満たすことにより、不均化対策が不要となり、RCLが50g/m3以上となり、凝縮グライドが4.2K以下となり、かつGWPが150以下となる。
 HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
  点Y’(30.0, 21.9, 48.1)、
  点Z’(30.0,21.5,48.5)及び
  点Y(29.5, 21.9, 48.6)
の3点をそれぞれ結ぶ直線Y’Z’、Z’Y及びYY’で囲まれる図形の範囲内又は前記直線Y’Z’、Z’Y及びYY’上にある。
 本開示の冷媒は、HFO-1132(E)を、冷媒全体に対して、54質量%以下含むことが好ましく、44質量%以下含むことがより好ましく、32.8質量%以下含むことがさらに好ましく、30質量%以下含むことが不均化対策も不要となりもっとも好ましい。
 本開示の冷媒は、HFO-1132(E)を、冷媒全体に対して、5質量%以上含むことが好ましく、7.5質量%以上含むことがより好ましく、10質量%以上含むことがさらに好ましく、12質量%以上含むことがもっとも好ましい。
 本開示の冷媒は、上記の特性や効果を損なわない範囲内で、HFO-1132(E)、R32及びR1234yfに加えて、さらに他の追加的な冷媒を含有していてもよい。この点で、本開示の冷媒が、HFO-1132(E)、R32及びR1234yfの合計を、冷媒全体に対して99.5質量%以上含むことが好ましく、99.75質量%以上含むことがより好ましく、99.9質量%以上含むことがさらに好ましく、99.99質量%以上含むことがさらにより好ましく、99.999質量%以上含むことが最も好ましい。本開示の冷媒は、HFO-1132(E)、R32及びR1234yfのみから実質的になるものであってもよく、HFO-1132(E)、R32及びR1234yfのみからなるものであってもよい。本開示の冷媒は、HFO-1132(E)、R32及びR1234yfのみから実質的になるものである場合HFO-1132(E)、R32及びR1234yfに加えて、これらの製造過程で不可避的に混入する不純物を含んでいてもよい。
 追加的な冷媒としては、特に限定されず、幅広く選択できる。混合冷媒は、追加的な冷媒として、一種を単独で含んでいてもよいし、二種以上を含んでいてもよい。追加的な冷媒としては、アセチレン、HFO-1132a、HFO-1141、HFO-1123、HFC-143a、HFC-134a、Z-HFO-1132、HFO-1243zf、HFC-245cb、HCFC-1122、HCFC-124、CFC-1113、HFC-152a、HFC-161及び3,3,3-トリフルオロプロピン等が挙げられる。追加的な冷媒の合計量は、冷媒全体に対して、0.5質量%以下であることが好ましく、0.25質量%以下であることがより好ましく、0.1質量%以下であることがさらに好ましく、0.01質量%以下であることが最も好ましい。
 1.2 用途
 本開示の冷媒は、冷凍機における作動流体として好ましく使用することができる。
 本開示の組成物は、R32及び/又はR410Aの代替冷媒としての使用に適している。
 2. 冷媒組成物
 本開示の冷媒組成物は、本開示の冷媒を少なくとも含み、本開示の冷媒と同じ用途のために使用することができる。また、本開示の冷媒組成物は、さらに少なくとも冷凍機油と混合することにより冷凍機用作動流体を得るために用いることができる。
 本開示の冷媒組成物は、本開示の冷媒に加え、さらに少なくとも一種のその他の成分を含有する。本開示の冷媒組成物は、必要に応じて、以下のその他の成分のうち少なくとも一種を含有していてもよい。上述の通り、本開示の冷媒組成物を、冷凍機における作動流体として使用するに際しては、通常、少なくとも冷凍機油と混合して用いられる。したがって、本開示の冷媒組成物は、好ましくは冷凍機油を実質的に含まない。具体的には、本開示の冷媒組成物は、冷媒組成物全体に対する冷凍機油の含有量が好ましくは1質量%以下であり、より好ましくは0.1質量%以下である。
 2.1 
 本開示の冷媒組成物は微量の水を含んでもよい。冷媒組成物における含水割合は、冷媒全体に対して、0.1質量%以下とすることが好ましい。冷媒組成物が微量の水分を含むことにより、冷媒中に含まれ得る不飽和のフルオロカーボン系化合物の分子内二重結合が安定化され、また、不飽和のフルオロカーボン系化合物の酸化も起こりにくくなるため、冷媒組成物の安定性が向上する。
 2.2 トレーサー
 トレーサーは、本開示の冷媒組成物が希釈、汚染、その他何らかの変更があった場合、その変更を追跡できるように検出可能な濃度で本開示の冷媒組成物に添加される。
 本開示の冷媒組成物は、トレーサーとして、一種を単独で含有してもよいし、二種以上を含有してもよい。
 トレーサーとしては、特に限定されず、一般に用いられるトレーサーの中から適宜選択することができる。
 トレーサーとしては、例えば、ハイドロフルオロカーボン、ハイドロクロロフルオロカーボン、クロロフルオロカーボン、ハイドロクロロカーボン、フルオロカーボン、重水素化炭化水素、重水素化ハイドロフルオロカーボン、パーフルオロカーボン、フルオロエーテル、臭素化化合物、ヨウ素化化合物、アルコール、アルデヒド、ケトン、亜酸化窒素(N2O)等が挙げられる。トレーサーとしては、ハイドロフルオロカーボン、ハイドロクロロフルオロカーボン、クロロフルオロカーボン、ハイドロクロロカーボン、フルオロカーボン及びフルオロエーテルが特に好ましい。
 トレーサーとしては、以下の化合物が好ましい。
FC-14(テトラフルオロメタン、CF4
HCC-40(クロロメタン、CH3Cl)
HFC-23(トリフルオロメタン、CHF3
HFC-41(フルオロメタン、CH3Cl)
HFC-125(ペンタフルオロエタン、CF3CHF2
HFC-134a(1,1,1,2-テトラフルオロエタン、CF3CH2F)
HFC-134(1,1,2,2-テトラフルオロエタン、CHF2CHF2
HFC-143a(1,1,1-トリフルオロエタン、CF3CH3
HFC-143(1,1,2-トリフルオロエタン、CHF2CH2F)
HFC-152a(1,1-ジフルオロエタン、CHF2CH3
HFC-152(1,2-ジフルオロエタン、CH2FCH2F)
HFC-161(フルオロエタン、CH3CH2F)
HFC-245fa(1,1,1,3,3-ペンタフルオロプロパン、CF3CH2CHF2)HFC-236fa(1,1,1,3,3,3-ヘキサフルオロプロパン、CF3CH2CF3)HFC-236ea(1,1,1,2,3,3-ヘキサフルオロプロパン、CF3CHFCHF2)HFC-227ea(1,1,1,2,3,3,3-ヘプタフルオロプロパン、CF3CHFCF3)HCFC-22(クロロジフルオロメタン、CHClF2
HCFC-31(クロロフルオロメタン、CH2ClF)
CFC-1113(クロロトリフルオロエチレン、CF2=CClF)
HFE-125(トリフルオロメチル-ジフルオロメチルエーテル、CF3OCHF2)HFE-134a(トリフルオロメチル-フルオロメチルエーテル、CF3OCH2F)HFE-143a(トリフルオロメチル-メチルエーテル、CF3OCH3
HFE-227ea(トリフルオロメチル-テトラフルオロエチルエーテル、CF3OCHFCF3)HFE-236fa(トリフルオロメチル-トリフルオロエチルエーテル、CF3OCH2CF3
 本開示の冷媒組成物は、トレーサーを合計で、冷媒組成物全体に対して、約10重量百万分率(ppm)以上含んでいてもよく、約1000ppm以下含んでいてもよい。本開示の冷媒組成物は、トレーサーを合計で、冷媒組成物全体に対して、好ましくは約30ppm以上含み、より好ましくは約50ppm以上含む。本開示の冷媒組成物は、トレーサーを合計で、冷媒組成物全体に対して、好ましくは約500ppm以下含み、、より好ましくは約300ppm以下含む。
 2.3 紫外線蛍光染料
 本開示の冷媒組成物は、紫外線蛍光染料として、一種を単独で含有してもよいし、二種以上を含有してもよい。
 紫外線蛍光染料としては、特に限定されず、一般に用いられる紫外線蛍光染料の中から適宜選択することができる。
 紫外線蛍光染料としては、例えば、ナフタルイミド、クマリン、アントラセン、フェナントレン、キサンテン、チオキサンテン、ナフトキサンテン及びフルオレセイン、並びにこれらの誘導体が挙げられる。紫外線蛍光染料としては、ナフタルイミド及びクマリンのいずれか又は両方が特に好ましい。
 2.4 安定剤
 本開示の冷媒組成物は、安定剤として、一種を単独で含有してもよいし、二種以上を含有してもよい。
 安定剤としては、特に限定されず、一般に用いられる安定剤の中から適宜選択することができる。
 安定剤としては、例えば、ニトロ化合物、エーテル類及びアミン類等が挙げられる。
 ニトロ化合物としては、例えば、ニトロメタン及びニトロエタン等の脂肪族ニトロ化合物、並びにニトロベンゼン及びニトロスチレン等の芳香族ニトロ化合物等が挙げられる。
 エーテル類としては、例えば、1,4-ジオキサン等が挙げられる。
 アミン類としては、例えば、2,2,3,3,3-ペンタフルオロプロピルアミン、ジフェニルアミン等が挙げられる。
 その他にも、ブチルヒドロキシキシレン、ベンゾトリアゾール等が挙げられる。
 安定剤の含有割合は、特に限定されず、冷媒全体に対して、通常、0.01質量%以上とすることが好ましく、0.05質量%以上とすることがより好ましい。安定剤の含有割合は、冷媒全体に対して、通常、5質量%以下とすることが好ましく、2質量%以下とすることがより好ましい。
 2.5 重合禁止剤
 本開示の冷媒組成物は、重合禁止剤として、一種を単独で含有してもよいし、二種以上を含有してもよい。
 重合禁止剤としては、特に限定されず、一般に用いられる重合禁止剤の中から適宜選択することができる。
 重合禁止剤としては、例えば、4-メトキシ-1-ナフトール、ヒドロキノン、ヒドロキノンメチルエーテル、ジメチル-t-ブチルフェノール、2,6-ジ-tert-ブチル-p-クレゾール、ベンゾトリアゾール等が挙げられる。
 重合禁止剤の含有割合は、特に限定されず、冷媒全体に対して、通常、0.01質量%以上とすることが好ましく、0.05質量%以上とすることがより好ましい、重合禁止剤の含有割合は、冷媒全体に対して、通常、5質量%以下とすることが好ましく、質量%以下とすることがより好ましい。
 3. 冷凍機油含有作動流体
 本開示の冷凍機油含有作動流体は、本開示の冷媒又は冷媒組成物と、冷凍機油とを少なくとも含み、冷凍機における作動流体として用いられる。具体的には、本開示の冷凍機油含有作動流体は、冷凍機の圧縮機において使用される冷凍機油と、冷媒又は冷媒組成物とが互いに混じり合うことにより得られる。冷凍機油含有作動流体には冷凍機油は一般に10質量%以上含まれ、かつ50質量%以下含まれる。
 3.1 冷凍機油
 本開示の組成物は、冷凍機油として、一種を単独で含有してもよいし、二種以上を含有してもよい。
 冷凍機油としては、特に限定されず、一般に用いられる冷凍機油の中から適宜選択することができる。その際には、必要に応じて、前記混合物との相溶性(miscibility)及び前記混合物の安定性等を向上する作用等の点でより優れている冷凍機油を適宜選択することができる。
 冷凍機油の基油としては、例えば、ポリアルキレングリコール(PAG)、ポリオールエステル(POE)及びポリビニルエーテル(PVE)からなる群より選択される少なくとも一種が好ましい。
 冷凍機油は、基油に加えて、さらに添加剤を含んでいてもよい。添加剤は、酸化防止剤、極圧剤、酸捕捉剤、酸素捕捉剤、銅不活性化剤、防錆剤、油性剤及び消泡剤からなる群より選択される少なくとも一種であってもよい。
 冷凍機油として、40℃における動粘度が5cSt以上であるものが、潤滑の点で好ましい。冷凍機油として、40℃における動粘度が400 cSt以下であるものが、潤滑の点で好ましい。
 本開示の冷凍機油含有作動流体は、必要に応じて、さらに少なくとも一種の添加剤を含んでもよい。添加剤としては例えば以下の相溶化剤等が挙げられる。
 3.2 相溶化剤
 本開示の冷凍機油含有作動流体は、相溶化剤として、一種を単独で含有してもよいし、二種以上を含有してもよい。
 相溶化剤としては、特に限定されず、一般に用いられる相溶化剤の中から適宜選択することができる。
 相溶化剤としては、例えば、ポリオキシアルキレングリコールエーテル、アミド、ニトリル、ケトン、クロロカーボン、エステル、ラクトン、アリールエーテル、フルオロエーテルおよび1,1,1-トリフルオロアルカン等が挙げられる。相溶化剤としては、ポリオキシアルキレングリコールエーテルが特に好ましい。
 4.冷凍機の運転方法
 本開示の冷凍機の運転方法は、本開示の冷媒を用いて冷凍機を運転する方法である。
 具体的には、本開示の冷凍機の運転方法は、本開示の冷媒を冷凍機において循環させる工程を含む。
 5.不均化反応の抑制方法
 本開示の不均化反応の抑制方法は、本開示の冷媒を用いて冷凍サイクルを運転する工程を含む、HFO-1132(E)の不均化反応の抑制方法である。
 本開示の不均化反応の抑制方法においては、特に、冷媒の圧力が3.0MPaのときに、HFO-1132(E)の不均化反応が起こらないという効果が得られる。
 本開示の不均化反応の抑制方法により、特に不均化反応の抑制手段を設けていない冷凍機においても冷凍サイクルを運転することが可能となる。
 6.不均化反応の抑制のための使用
 本開示の使用は、R32及び/又はR1234yfの、HFO-1132(E)の不均化反応を抑制するための使用であって、前記不均化反応の抑制は、HFO-1132(E)、R32及びR1234yfを、本開示の冷媒の混合比率となるように混合することにより行われる。
 本開示の不均化反応の抑制のための使用においては、特に、冷媒の圧力が3.0MPaのときに、HFO-1132(E)の不均化反応が起こらないという効果が得られる。
 以上、実施形態を説明したが、特許請求の範囲の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
 以下に、実施例を挙げてさらに詳細に説明する。ただし、本開示は、これらの実施例に限定されるものではない。
 HFO-1132(E)、R32及びR1234yfを、これらの総和を基準として、表1~3にそれぞれ示した質量%で混合した混合冷媒を調製した。
 これらの各混合冷媒について、次の試験方法及び試験条件において、不均化反応の有無を調べた。結果を表1に示す。
 試験方法
 試験容器に、試験する冷媒組成物を移充填し、150℃まで加熱した後、容器内のPt線に電圧を印可して溶断させることで、冷媒組成物に30Jのエネルギーを与えた。不均化反応の有無は装置内の急激な圧力上昇及び温度上昇によって判定した。
 試験条件
 試験容器:38cc SUS製容器
 試験温度:150℃
 圧力:3.0MPa(絶対圧力)
 判定基準
 「不爆」:Pt線溶断後の温度又は圧力が2倍未満であり、急激な不均化反応が起こっていない。
 「爆発」:Pt線溶断後の温度又は圧力が2倍以上に達し、急激な不均化反応が起こった。
Figure JPOXMLDOC01-appb-T000001
 また、これらの各混合冷媒について、R410A、またはR32を基準とするCOP比及び冷凍能力比をそれぞれ求めた。R410A、R32及びHFO-1132(E)、R1234yf、及びR32との混合物を含有する組成物のサイクル性能は、National Institute of Science and Technology(NIST) Reference Fluid Thermodynamic and Transport Properties Database(Refprop 9.0)を使い、下記条件で混合冷媒の冷凍サイクル理論計算を実施することにより求めた。
 なお、HFO-1132(E)の物性データについては実測値により求めた。
  蒸発温度:5℃
  凝縮温度:45℃
  過熱度:5K
  過冷却度;5K
  圧縮機効率:70%
 これらの値を、各混合冷媒についてのGWPと合わせて表2から表8に示す。
Figure JPOXMLDOC01-appb-T000002

Figure JPOXMLDOC01-appb-T000003

Figure JPOXMLDOC01-appb-T000004

Figure JPOXMLDOC01-appb-T000005

Figure JPOXMLDOC01-appb-T000006

Figure JPOXMLDOC01-appb-T000007

Figure JPOXMLDOC01-appb-T000008
 また、燃焼速度試験は図1Aに示す装置を用いて、以下の通り行った。まず、使用した混合冷媒は99.5%またはそれ以上の純度とし、真空ゲージ上に空気の痕跡が見られなくなるまで凍結、ポンピング及び解凍のサイクルを繰り返すことにより脱気した。燃焼速度は、閉鎖法により測定した。初期温度は周囲温度とした。点火は、試料セルの中心で電極間に電気的スパークを生じさせることにより行った。放電の持続時間は1.0~9.9msとし、点火エネルギーは典型的には約0.1~1.0Jであった。火炎の伝搬状態はシュリーレン法により視覚化した。光を通す2つのアクリル窓を備えた円筒形容器(内径:155mm、長さ:198mm)を試料セルとして用い、光源としてはキセノンランプを用いた。炎のシュリーレン画像を高速デジタルビデオカメラで600fpsのフレーミング速度で記録し、PCに保存した。
 燃焼速度(Su(cm/s))は、単位面積の火炎面が単位時間に消費する未燃ガスの体積で表され、以下の式より算出される。
 Su=Sb*ρu/ρb
  Sb;火炎伝搬速度(cm/s)
  ρu;断熱火炎温度(未燃)
  ρb;断熱火炎温度(既燃)
 ここで、
Sbはシュリーレンビデオ画像から求め、ρuは測定温度、ρbは燃焼ガスの燃焼熱及び定圧比熱から算出した。結果を表9に示す。
Figure JPOXMLDOC01-appb-T000009
 3点を結ぶ近似曲線は、以下の表に示す通り最小二乗法に基づき求めた。
Figure JPOXMLDOC01-appb-T000010
   
 これらの結果より、本開示の冷媒は、以下の要件を満たすことにより、冷媒濃度限界(RCL)が50g/m3以上となり、対R32冷凍能力比が76%以上となり、かつGWPが160以下となることが判る。
 HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
  点U(32.8, 23.4, 43.8)、
  点S(32.8, 19.1, 48.1)及び
  点T(26.6, 23.3, 50.1)
の3点をそれぞれ結ぶ直線US、ST及びTUで囲まれる図形の範囲内又は前記直線US、ST及びTU上にある。
 これらの結果より、本開示の冷媒は、以下の要件を満たすことにより、不均化対策が不要となり、対R32冷凍能力比が76%以上となり、かつGWPが160以下となることが判る。
 HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
  点W(30.0, 23.4, 46.6)、
  点S’(30.0, 20.9, 49.1)及び
  点T(26.6, 23.3, 50.1)
の3点をそれぞれ結ぶ直線WS’、S’T及びTWで囲まれる図形の範囲内又は前記直線WS’、S’T及びTW上にある。
 これらの結果より、本開示の冷媒は、以下の要件を満たすことにより、RCLが50g/m3以上となり、凝縮グライドが4.2K以下となり、かつGWPが160以下となることが判る。
 HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
  点U(32.8, 23.4, 43.8)、
  点S(32.8, 19.1, 48.1)及び
  点Z(27.7, 23.4, 48.9)
の3点をそれぞれ結ぶ直線US、SZ及びZUで囲まれる図形の範囲内又は前記直線US、SZ及びZU上にある。
 これらの結果より、本開示の冷媒は、以下の要件を満たすことにより、不均化対策が不要となり、凝縮グライドが4.2K以下となり、かつGWPが160以下となることが判る。
 HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
  点W(30.0, 23.4, 46.6)、
  点Z’(30.0, 21.5, 48.5)及び
  点Z(27.7, 23.4, 48.9)
の3点をそれぞれ結ぶ直線WZ’、Z’Z及びZWで囲まれる図形の範囲内又は前記直線WZ’、Z’Z及びZW上にある。
 これらの結果より、本開示の冷媒は、以下の要件を満たすことにより、RCLが50g/m3以上となり、凝縮グライドが4.2K以下となり、かつGWPが150以下となることが判る。
 HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
  点X(32.8, 21.9, 45.3)、
  点S(32.8, 19.1, 48.1)及び
  点Y(29.5, 21.9, 48.6)
の3点をそれぞれ結ぶ直線XS、SY及びYXで囲まれる図形の範囲内又は前記直線XS、SY及びYX上にある。
 これらの結果より、本開示の冷媒は、以下の要件を満たすことにより、不均化対策が不要となり、RCLが50g/m3以上となり、凝縮グライドが4.2K以下となり、かつGWPが150以下となることが判る。
 HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
  点Y’(30.0, 21.9, 48.1)、
  点Z’(30.0,21.5,48.5)及び
  点Y(29.5, 21.9, 48.6)
の3点をそれぞれ結ぶ直線Y’Z’、Z’Y及びYY’で囲まれる図形の範囲内又は前記直線Y’Z’、Z’Y及びYY’上にある。
 (1)冷凍機油
 第1グループの技術としての冷凍機油は、冷媒組成物と共存させて冷凍サイクルを行わせることで、冷凍サイクル装置内の潤滑性を高めることが可能であり、効率的なサイクル性能を発揮させることも可能となる。
 冷凍機油として、例えば、含酸素系合成油(エステル系冷凍機油、エーテル系冷凍機油等)、炭化水素系冷凍機油等が挙げられる。なかでも、冷媒または冷媒組成物との相溶性の観点から、エステル系冷凍機油、エーテル系冷凍機油が好ましい。冷凍機油としては、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 冷凍機油は、潤滑性や圧縮機の密閉性の低下を抑制させること、低温条件下で冷媒に対して相溶性が十分に確保されること、圧縮機の潤滑不良を抑制させること、蒸発器における熱交換効率を良好にすること、の少なくともいずれかの観点から、40℃における動粘度が1mm/s以上750mm/s以下であることが好ましく、1mm/s以上400mm/s以下であることがより好ましい。なお、冷凍機油の100℃における動粘度としては、例えば、1mm/s以上100mm/s以下であってよく、1mm/s以上50mm/s以下であることがより好ましい。
 冷凍機油は、アニリン点が、-100℃以上0℃以下であることが好ましい。ここで、「アニリン点」は、例えば、炭化水素系溶剤等の溶解性を示す数値であり、試料(ここでは冷凍機油)を等容積のアニリンと混合して冷やしたときに、互いに溶解し合えなくなって濁りがみえ始めたときの温度を表すものである(JIS K 2256で規定)。なお、これらの値は、冷媒が溶解しない状態の冷凍機油自体の値である。このようなアニリン点の冷凍機油を用いることで、例えば、樹脂製機能部品を構成する各軸受および電動機の絶縁材料が冷凍機油と接する位置で用いられている場合においても、これらの樹脂製機能部品に対する冷凍機油の適合性を向上させることができる。具体的には、アニリン点が低すぎると、冷凍機油が軸受や絶縁材料に浸透し易くなり、軸受等が膨潤し易くなる。一方、アニリン点が高すぎると、冷凍機油が軸受や絶縁材料に浸透し難くなり、軸受等が収縮し易くなる。そこで、アニリン点が上述した所定の範囲(-100℃以上0℃以下)である冷凍機油を用いることで、軸受や絶縁材料の膨潤/収縮変形を防止することができる。ここで、各軸受が膨潤変形してしまうと、摺動部での隙間(ギャップ)を所望とする長さに維持することができない。その結果、摺動抵抗の増大を招く虞がある。各軸受が収縮変形してしまうと、軸受の硬度が高くなり圧縮機の振動によって軸受が破損する虞がある。つまり、各軸受が収縮変形すると、摺動部の剛性の低下を招く虞がある。また、電動機の絶縁材料(絶縁被服材料や絶縁フィルム等)が膨潤変形してしまうと、その絶縁材料の絶縁性が低下してしまう。絶縁材料が収縮変形してしまうと、上述した軸受の場合と同様に絶縁材料が破損する虞があり、この場合もまた絶縁性が低下してしまう。これに対して、上記のようにアニリン点が所定の範囲内である冷凍機油を用いることで、軸受や絶縁材料の膨潤/収縮変形を抑制できるため、このような不具合を回避することができる。
 冷凍機油は、冷媒組成物と混合して冷凍機用作動流体として使用される。冷凍機用作動流体全量に対する冷凍機油の配合割合は、5質量%以上60質量%以下であることが好ましく、10質量%以上50質量%以下であることがより好ましい。
 (1-1)含酸素系合成油
 含酸素系合成油であるエステル系冷凍機油やエーテル系冷凍機油は、主として、炭素原子と酸素原子を有して構成されている。エステル系冷凍機油やエーテル系冷凍機油においては、この炭素原子と酸素原子の比率(炭素/酸素モル比)が小さすぎると吸湿性が高くなり、当該比率が大きすぎると冷媒との相溶性が低下してしまうことから、当該比率はモル比で2以上7.5以下であることが好ましい。
 (1-1-1)エステル系冷凍機油
 エステル系冷凍機油としては、化学的安定性の観点から、二塩基酸と1価アルコールとの二塩基酸エステル油、ポリオールと脂肪酸とのポリオールエステル油、またはポリオールと多価塩基酸と1価アルコール(又は脂肪酸)とのコンプレックスエステル油、ポリオール炭酸エステル油等が基油成分として挙げられる。
 (二塩基酸エステル油)
 二塩基酸エステル油としては、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、フタル酸、イソフタル酸、テレフタル酸等の二塩基酸、特に、炭素数5~10の二塩基酸(グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸等)と、直鎖または分枝アルキル基を有する炭素数1~15の一価アルコール(メタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、ノナノール、デカノール、ウンデカノール、ドデカノール、トリデカノール、テトラデカノール、ペンタデカノール等)とのエステルが好ましい。この二塩基酸エステル油としては、具体的には、グルタル酸ジトリデシル、アジピン酸ジ(2-エチルヘキシル)、アジピン酸ジイソデシル、アジピン酸ジトリデシル、セバシン酸ジ(3-エチルヘキシル)等が挙げられる。
 (ポリオールエステル油)
 ポリオールエステル油とは、多価アルコールと脂肪酸(カルボン酸)とから合成されるエステルであり、炭素/酸素モル比が2以上7.5以下、好ましくは3.2以上5.8以下のものである。
 ポリオールエステル油を構成する多価アルコールとしては、ジオール(エチレングリコール、1,3-プロパンジオール、プロピレングリコール、1,4-ブタンジオール、1,2-ブタンジオール、2-メチル-1,3-プロパンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、2-エチル-2-メチル-1,3-プロパンジオール、1,7-ヘプタンジオール、2-メチル-2-プロピル-1,3-プロパンジオール、2,2-ジエチル-1,3-プロパンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,11-ウンデカンジオール、1,12-ドデカンジオール等)、水酸基を3~20個有するポリオール(トリメチロールエタン、トリメチロールプロパン、トリメチロールブタン、ジ-(トリメチロールプロパン)、トリ-(トリメチロールプロパン)、ペンタエリスリトール、ジ-(ペンタエリスリトール)、トリ-(ペンタエリスリトール)、グリセリン、ポリグリセリン(グリセリンの2~3量体)、1,3,5-ペンタントリオール、ソルビトール、ソルビタン、ソルビトールグリセリン縮合物、アドニトール、アラビトール、キシリトール、マンニトールなどの多価アルコール、キシロース、アラビノース、リボース、ラムノース、グルコース、フルクトース、ガラクトース、マンノース、ソルボース、セロビオース、マルトース、イソマルトース、トレハロース、シュクロース、ラフィノース、ゲンチアノース、メレンジトースなどの糖類、ならびにこれらの部分エーテル化物等)が挙げられ、エステルを構成する多価アルコールとしては、上記の1種でもよく、2種以上が含まれていてもよい。
 ポリオールエステルを構成する脂肪酸としては、特に炭素数は制限されないが、通常炭素数1~24のものが用いられる。直鎖の脂肪酸、分岐を有する脂肪酸が好ましい。直鎖の脂肪酸としては、酢酸、プロピオン酸、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ウンデカン酸、ドデカン酸、トリデカン酸、テトラデカン酸、ペンタデカン酸、ヘキサデカン酸、ヘプタデカン酸、オクタデカン酸、ノナデカン酸、エイコサン酸、オレイン酸、リノール酸、リノレン酸等が挙げられ、カルボキシル基に結合する炭化水素基は、全て飽和炭化水素であってもよく、不飽和炭化水素を有していてもよい。さらに、分岐を有する脂肪酸としては、2-メチルプロパン酸、2-メチルブタン酸、3-メチルブタン酸、2,2-ジメチルプロパン酸、2-メチルペンタン酸、3-メチルペンタン酸、4-メチルペンタン酸、2,2-ジメチルブタン酸、2,3-ジメチルブタン酸、3,3-ジメチルブタン酸、2-メチルヘキサン酸、3-メチルヘキサン酸、4-メチルヘキサン酸、5-メチルヘキサン酸、2,2-ジメチルペンタン酸、2,3-ジメチルペンタン酸、2,4-ジメチルペンタン酸、3,3-ジメチルペンタン酸、3,4-ジメチルペンタン酸、4,4-ジメチルペンタン酸、2-エチルペンタン酸、3-エチルペンタン酸、2,2,3-トリメチルブタン酸、2,3,3-トリメチルブタン酸、2-エチル-2-メチルブタン酸、2-エチル-3-メチルブタン酸、2-メチルヘプタン酸、3-メチルヘプタン酸、4-メチルヘプタン酸、5-メチルヘプタン酸、6-メチルヘプタン酸、2-エチルヘキサン酸、3-エチルヘキサン酸、4-エチルヘキサン酸、2,2-ジメチルヘキサン酸、2,3-ジメチルヘキサン酸、2,4-ジメチルヘキサン酸、2,5-ジメチルヘキサン酸、3,3-ジメチルヘキサン酸、3,4-ジメチルヘキサン酸、3,5-ジメチルヘキサン酸、4,4-ジメチルヘキサン酸、4,5-ジメチルヘキサン酸、5,5-ジメチルヘキサン酸、2-プロピルペンタン酸、2-メチルオクタン酸、3-メチルオクタン酸、4-メチルオクタン酸、5-メチルオクタン酸、6-メチルオクタン酸、7-メチルオクタン酸、2,2-ジメチルヘプタン酸、2,3-ジメチルヘプタン酸、2,4-ジメチルヘプタン酸、2,5-ジメチルヘプタン酸、2,6-ジメチルヘプタン酸、3,3-ジメチルヘプタン酸、3,4-ジメチルヘプタン酸、3,5-ジメチルヘプタン酸、3,6-ジメチルヘプタン酸、4,4-ジメチルヘプタン酸、4,5-ジメチルヘプタン酸、4,6-ジメチルヘプタン酸、5,5-ジメチルヘプタン酸、5,6-ジメチルヘプタン酸、6,6-ジメチルヘプタン酸、2-メチル-2-エチルヘキサン酸、2-メチル-3-エチルヘキサン酸、2-メチル-4-エチルヘキサン酸、3-メチル-2-エチルヘキサン酸、3-メチル-3-エチルヘキサン酸、3-メチル-4-エチルヘキサン酸、4-メチル-2-エチルヘキサン酸、4-メチル-3-エチルヘキサン酸、4-メチル-4-エチルヘキサン酸、5-メチル-2-エチルヘキサン酸、5-メチル-3-エチルヘキサン酸、5-メチル-4-エチルヘキサン酸、2-エチルヘプタン酸、3-メチルオクタン酸、3,5,5-トリメチルヘキサン酸、2-エチル-2,3,3-トリメチル酪酸、2,2,4,4-テトラメチルペンタン酸、2,2,3,3-テトラメチルペンタン酸、2,2,3,4-テトラメチルペンタン酸、2,2-ジイソプロピルプロパン酸などが挙げられる。脂肪酸は、これらの中から選ばれる1種または2種以上の脂肪酸とのエステルであってもよい。
 エステルを構成する多価アルコールは1種類でもよく、2種以上の混合物でもよい。また、エステルを構成する脂肪酸は、単一成分でもよく、2種以上の脂肪酸とのエステルでもよい。脂肪酸は、各々1種類でもよく、2種類以上の混合物でもよい。また、ポリオールエステル油は、遊離の水酸基を有していてもよい。
 具体的なポリオールエステル油としては、ネオペンチルグリコール、トリメチロールエタン、トリメチロールプロパン、トリメチロールブタン、ジ-(トリメチロールプロパン)、トリ-(トリメチロールプロパン)、ペンタエリスリトール、ジ-(ペンタエリスリトール)、トリ-(ペンタエリスリトール)などのヒンダードアルコールのエステルがより好ましく、ネオペンチルグリコール、トリメチロールエタン、トリメチロールプロパン、トリメチロールブタンおよびペンタエリスリトール、ジ-(ペンタエリスリトール)のエステルがさらにより好ましく、ネオペンチルグリコール、トリメチロールプロパン、ペンタエリスリトール、ジ-(ペンタエリスリトール)等と炭素数2~20の脂肪酸とのエステルが好ましい。
 このような多価アルコール脂肪酸エステルを構成する脂肪酸において、脂肪酸は直鎖アルキル基をもつ脂肪酸のみでもよいし、分岐構造をもつ脂肪酸から選ばれてもよい。また、直鎖と分岐脂肪酸の混合エステルでもよい。さらに、エステルを構成する脂肪酸は、上記脂肪酸から選ばれる2種類以上が用いられていてもよい。
 具体的な例として、直鎖と分岐脂肪酸の混合エステルの場合には、直鎖を有する炭素数4~6の脂肪酸と分岐を有する炭素数7~9の脂肪酸のモル比は、15:85~90:10であり、好ましくは15:85~85:15であり、より好ましくは20:80~80:20であり、さらに好ましくは25:75~75:25であり、最も好ましくは30:70~70:30である。また、多価アルコール脂肪酸エステルを構成する脂肪酸の全量に占める直鎖を有する炭素数4~6の脂肪酸および分岐を有する炭素数7~9の脂肪酸の合計の割合は20モル%以上であることが好ましい。脂肪酸組成に関しては、冷媒との十分な相溶性、および冷凍機油として必要な粘度とを両立させるものであることが好ましい。なお、ここでいう脂肪酸の割合とは、冷凍機油に含まれる多価アルコール脂肪酸エステルを構成する脂肪酸全量を基準とした値である。
 なかでも、このような冷凍機油としては、脂肪酸における炭素数4~6の脂肪酸と炭素数7~9の分岐脂肪酸のモル比が15:85~90:10であり、炭素数4~6の脂肪酸は2-メチルプロパン酸を含有し、上記エステルを構成する脂肪酸の全量に占める炭素数4~6の脂肪酸および炭素数7~9の分岐脂肪酸の合計の割合が20モル%以上であるエステル(以下、「多価アルコール脂肪酸エステル(A)」という。)を含有したものが好ましい。
 多価アルコール脂肪酸エステル(A)には、多価アルコールの全ての水酸基がエステル化された完全エステル、多価アルコールの水酸基の一部がエステル化せずに残っている部分エステル、ならびに完全エステルと部分エステルとの混合物が包含されるが、多価アルコール脂肪酸エステル(A)の水酸基価は、好ましくは10mgKOH/g以下、さらには5mgKOH/g以下、最も好ましくは3mgKOH/g以下である。
 多価アルコール脂肪酸エステル(A)を構成する脂肪酸において、炭素数4~6の脂肪酸と分岐を有する炭素数7~9の脂肪酸のモル比は、15:85~90:10であり、好ましくは15:85~85:15であり、より好ましくは20:80~80:20であり、さらに好ましくは25:75~75:25であり、最も好ましくは30:70~70:30である。また、多価アルコール脂肪酸エステル(A)を構成する脂肪酸の全量に占める炭素数4~6の脂肪酸および分岐を有する炭素数7~9の脂肪酸の合計の割合は20モル%以上である。脂肪酸組成に関する上記の条件を満たさない場合には、冷媒組成物にジフルオロメタンが含まれている場合において、当該ジフルオロメタンとの十分な相溶性、および冷凍機油として必要な粘度とが高水準で両立されにくくなる。なお、脂肪酸の割合とは、冷凍機油に含有される多価アルコール脂肪酸エステルを構成する脂肪酸全量を基準とした値である。
 上記炭素数4~6の脂肪酸としては、具体的には例えば、ブタン酸、2-メチルプロパン酸、ペンタン酸、2-メチルブタン酸、3-メチルブタン酸、2,2-ジメチルプロパン酸、2-メチルペンタン酸、3-メチルペンタン酸、4-メチルペンタン酸、2,2-ジメチルブタン酸、2,3-ジメチルブタン酸、3,3-ジメチルブタン酸、ヘキサン酸などが挙げられる。これらの中でも、2-メチルプロパン酸のように、アルキル骨格に分岐を有するものが好ましい。
 上記分岐を有する炭素数7~9の脂肪酸としては、具体的には例えば、2-メチルヘキサン酸、3-メチルヘキサン酸、4-メチルヘキサン酸、5-メチルヘキサン酸、2,2-ジメチルペンタン酸、2,3-ジメチルペンタン酸、2,4-ジメチルペンタン酸、3,3-ジメチルペンタン酸、3,4-ジメチルペンタン酸、4,4-ジメチルペンタン酸、2-エチルペンタン酸、3-エチルペンタン酸、1,1,2-トリメチルブタン酸、1,2,2-トリメチルブタン酸、1-エチル-1メチルブタン酸、1-エチル-2-メチルブタン酸、オクタン酸、2-エチルヘキサン酸、3-エチルヘキサン酸、3,5-ジメチルヘキサン酸、2,4-ジメチルヘキサン酸、3,4-ジメチルヘキサン酸、4,5-ジメチルヘキサン酸、2,2-ジメチルヘキサン酸、2-メチルヘプタン酸、3-メチルヘプタン酸、4-メチルヘプタン酸、5-メチルヘプタン酸、6-メチルヘプタン酸、2-プロピルペンタン酸、ノナン酸、2,2-ジメチルヘプタン酸、2-メチルオクタン酸、2-エチルヘプタン酸、3-メチルオクタン酸、3,5,5-トリメチルヘキサン酸、2-エチル-2,3,3-トリメチル酪酸、2,2,4,4-テトラメチルペンタン酸、2,2,3,3-テトラメチルペンタン酸、2,2,3,4-テトラメチルペンタン酸、2,2-ジイソプロピルプロパン酸などが挙げられる。
 多価アルコール脂肪酸エステル(A)は、炭素数4~6の脂肪酸と分岐を有する炭素数7~9の脂肪酸のモル比が15:85~90:10であり、かつ、炭素数4~6の脂肪酸が2-メチルプロパン酸を含有する限りにおいて、炭素数4~6の脂肪酸および分岐を有する炭素数7~9の脂肪酸以外の脂肪酸を構成酸成分として含有してもよい。
 上記炭素数4~6の脂肪酸および分岐を有する炭素数7~9の脂肪酸以外の脂肪酸としては、具体的には、酢酸、プロピオン酸等の炭素数2~3の脂肪酸;ヘプタン酸、オクタン酸、ノナン酸等の炭素数7~9の直鎖脂肪酸;デカン酸、ウンデカン酸、ドデカン酸、トリデカン酸、テトラデカン酸、ペンタデカン酸、ヘキサデカン酸、ヘプタデカン酸、オクタデカン酸、ノナデカン酸、エイコサン酸、オレイン酸等の炭素数10~20の脂肪酸等が挙げられる。
 上記炭素数4~6の脂肪酸および分岐を有する炭素数7~9の脂肪酸と、これらの脂肪酸以外の脂肪酸とを組み合わせて用いる場合、多価アルコール脂肪酸エステル(A)を構成する脂肪酸の全量に占める炭素数4~6の脂肪酸および炭素数7~9の分岐脂肪酸の合計の割合が20モル%以上とすることが好ましく、25モル%以上であることがより好ましく、30モル%以上であることがさらにより好ましい。この割合が20モル%以上であることにより、冷媒組成物においてジフルオロメタンが含まれている場合における当該ジフルオロメタンとの相溶性が十分となる。
 多価アルコール脂肪酸エステル(A)の中でも、酸構成成分が2-メチルプロパン酸と3,5,5-トリメチルヘキサン酸のみからなるものが、必要粘度の確保と、冷媒組成物においてジフルオロメタンが含まれている場合における当該ジフルオロメタンとの相溶性との両立の面で特に好ましい。
 上記多価アルコール脂肪酸エステルは、分子構造の異なるエステルの2種以上の混合物であってもよく、かかる場合には個々の分子が必ずしも上記の条件を満たしている必要はなく、冷凍機油中に含まれるペンタエリスリトール脂肪酸エステルを構成する脂肪酸全体として上記条件を満たしていればよい。
 上記した通り、多価アルコール脂肪酸エステル(A)は、エステルを構成する酸成分として炭素数4~6の脂肪酸及び分岐を有する炭素数7~9の脂肪酸を必須とし、必要に応じてその他の脂肪酸を構成成分として含むものである。すなわち、多価アルコール脂肪酸エステル(A)は、2種のみの脂肪酸を酸構成成分としているものであっても、3種以上の構造の異なる脂肪酸を酸構成成分としているものであってもよいが、当該多価アルコール脂肪酸エステルは、酸構成成分として、カルボニル炭素と隣接する炭素原子(α位炭素原子)が四級炭素でない脂肪酸のみを含有することが好ましい。多価アルコール脂肪酸エステルを構成する脂肪酸中に、α位炭素原子が四級炭素である脂肪酸が含まれる場合には、冷媒組成物にジフルオロメタンを含んでいる場合における当該ジフルオロメタン存在下での潤滑性が不十分となる傾向にある。
 また、本実施形態にかかるポリオールエステルを構成する多価アルコールとしては、水酸基を2~6個有する多価アルコールが好ましく用いられる。
 2価アルコール(ジオール)としては、具体的には例えば、エチレングリコール、1,3-プロパンジオール、プロピレングリコール、1,4-ブタンジオール、1,2-ブタンジオール、2-メチル-1,3-プロパンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、2-エチル-2-メチル-1,3-プロパンジオール、1,7-ヘプタンジオール、2-メチル-2-プロピル-1,3-プロパンジオール、2,2-ジエチル-1,3-プロパンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,11-ウンデカンジオール、1,12-ドデカンジオールなどが挙げられる。また、3価以上のアルコールとしては、具体的には例えば、トリメチロールエタン、トリメチロールプロパン、トリメチロールブタン、ジ-(トリメチロールプロパン)、トリ-(トリメチロールプロパン)、ペンタエリスリトール、ジ-(ペンタエリスリトール)、トリ-(ペンタエリスリトール)、グリセリン、ポリグリセリン(グリセリンの2~3量体)、1,3,5-ペンタントリオール、ソルビトール、ソルビタン、ソルビトールグリセリン縮合物、アドニトール、アラビトール、キシリトール、マンニトールなどの多価アルコール、キシロース、アラビノース、リボース、ラムノース、グルコース、フルクトース、ガラクトース、マンノース、ソルボース、セロビオースなどの糖類、ならびにこれらの部分エーテル化物などが挙げられる。これらの中でも、より加水分解安定性に優れることから、ネオペンチルグリコール、トリメチロールエタン、トリメチロールプロパン、トリメチロールブタン、ジ-(トリメチロールプロパン)、トリ-(トリメチロールプロパン)、ペンタエリスリトール、ジ-(ペンタエリスリトール)、トリ-(ペンタエリスリトール)などのヒンダードアルコールのエステルがより好ましく、ネオペンチルグリコール、トリメチロールエタン、トリメチロールプロパン、トリメチロールブタンおよびペンタエリスリトール、ジ-(ペンタエリスリトール)のエステルがさらにより好ましく、ネオペンチルグリコール、トリメチロールプロパン、ペンタエリスリトール、ジ-(ペンタエリスリトール)がさらに好ましく、冷媒との相溶性および加水分解安定性に特に優れることから、ペンタエリスリトール、ジ-(ペンタエリスリトール)またはペンタエリスリトールとジ-(ペンタエリスリトール)との混合エステルが最も好ましい。
 上記多価アルコール脂肪酸エステル(A)を構成する酸構成成分の好ましい例としては、以下のものを挙げることができる。
(i)ブタン酸、2-メチルプロパン酸、ペンタン酸、2-メチルブタン酸、3-メチルブタン酸、2,2-ジメチルプロパン酸、2-メチルペンタン酸、3-メチルペンタン酸、4-メチルペンタン酸、2,2-ジメチルブタン酸、2,3-ジメチルブタン酸、3,3-ジメチルブタン酸およびヘキサン酸から選ばれる1~13種と、2-メチルヘキサン酸、3-メチルヘキサン酸、4-メチルヘキサン酸、5-メチルヘキサン酸、2,2-ジメチルペンタン酸、2,3-ジメチルペンタン酸、2,4-ジメチルペンタン酸、3,3-ジメチルペンタン酸、3,4-ジメチルペンタン酸、4,4-ジメチルペンタン酸、2-エチルペンタン酸、3-エチルペンタン酸および2-エチル-3-メチルブタン酸から選ばれる1~13種との組合せ;
(ii)ブタン酸、2-メチルプロパン酸、ペンタン酸、2-メチルブタン酸、3-メチルブタン酸、2,2-ジメチルプロパン酸、2-メチルペンタン酸、3-メチルペンタン酸、4-メチルペンタン酸、2,2-ジメチルブタン酸、2,3-ジメチルブタン酸、3,3-ジメチルブタン酸およびヘキサン酸から選ばれる1~13種と、2-メチルヘプタン酸、3-メチルヘプタン酸、4-メチルヘプタン酸、5-メチルヘプタン酸、6-メチルヘプタン酸、2,2-ジメチルヘキサン酸、3,3-ジメチルヘキサン酸、4,4-ジメチルヘキサン酸、5,5-ジメチルヘキサン酸、2,3-ジメチルヘキサン酸、2,4-ジメチルヘキサン酸、2,5-ジメチルヘキサン酸、3,4-ジメチルヘキサン酸、3,5-ジメチルヘキサン酸、4,5-ジメチルヘキサン酸、2,2,3-トリメチルペンタン酸、2,3,3-トリメチルペンタン酸、2,4,4-トリメチルペンタン酸、3,4,4-トリメチルペンタン酸、2-エチルヘキサン酸、3-エチルヘキサン酸、2-プロピルペンタン酸、2-メチル-2-エチルペンタン酸、2-メチル-3-エチルペンタン酸および3-メチル-3-エチルペンタン酸から選ばれる1~25種との組合せ;
(iii)ブタン酸、2-メチルプロパン酸、ペンタン酸、2-メチルブタン酸、3-メチルブタン酸、2,2-ジメチルプロパン酸、2-メチルペンタン酸、3-メチルペンタン酸、4-メチルペンタン酸、2,2-ジメチルブタン酸、2,3-ジメチルブタン酸、3,3-ジメチルブタン酸およびヘキサン酸から選ばれる1~13種と、2-メチルオクタン酸、3-メチルオクタン酸、4-メチルオクタン酸、5-メチルオクタン酸、6-メチルオクタン酸、7-メチルオクタン酸、8-メチルオクタン酸、2,2-ジメチルヘプタン酸、3,3-ジメチルヘプタン酸、4,4-ジメチルヘプタン酸、5,5-ジメチルヘプタン酸、6,6-ジメチルヘプタン酸、2,3-ジメチルヘプタン酸、2,4-ジメチルヘプタン酸、2,5-ジメチルヘプタン酸、2,6-ジメチルヘプタン酸、3,4-ジメチルヘプタン酸、3,5-ジメチルヘプタン酸、3,6-ジメチルヘプタン酸、4,5-ジメチルヘプタン酸、4,6-ジメチルヘプタン酸、2-エチルヘプタン酸、3-エチルヘプタン酸、4-エチルヘプタン酸、5-エチルヘプタン酸、2-プロピルヘキサン酸、3-プロピルヘキサン酸、2-ブチルペンタン酸、2,2,3-トリメチルヘキサン酸、2,2,3-トリメチルヘキサン酸、2,2,4-トリメチルヘキサン酸、2,2,5-トリメチルヘキサン酸、2,3,4-トリメチルヘキサン酸、2,3,5-トリメチルヘキサン酸、3,3,4-トリメチルヘキサン酸、3,3,5-トリメチルヘキサン酸、3,5,5-トリメチルヘキサン酸、4,4,5-トリメチルヘキサン酸、4,5,5-トリメチルヘキサン酸、2,2,3,3-テトラメチルペンタン酸、2,2,3,4-テトラメチルペンタン酸、2,2,4,4-テトラメチルペンタン酸、2,3,4,4-テトラメチルペンタン酸、3,3,4,4-テトラメチルペンタン酸、2,2-ジエチルペンタン酸、2,3-ジエチルペンタン酸、3,3-ジエチルペンタン酸、2-エチル-2,3,3-トリメチル酪酸、3-エチル-2,2,3-トリメチル酪酸および2,2-ジイソプロピルプロピオン酸から選ばれる1~50種との組合せ。
 上記多価アルコール脂肪酸エステルを構成する酸構成成分のさらに好ましい例としては、以下のものを挙げることができる。
(i)2-メチルプロパン酸と、2-メチルヘキサン酸、3-メチルヘキサン酸、4-メチルヘキサン酸、5-メチルヘキサン酸、2,2-ジメチルペンタン酸、2,3-ジメチルペンタン酸、2,4-ジメチルペンタン酸、3,3-ジメチルペンタン酸、3,4-ジメチルペンタン酸、4,4-ジメチルペンタン酸、2-エチルペンタン酸、3-エチルペンタン酸および2-エチル-3-メチルブタン酸から選ばれる1~13種との組合せ;
(ii)2-メチルプロパン酸と、2-メチルヘプタン酸、3-メチルヘプタン酸、4-メチルヘプタン酸、5-メチルヘプタン酸、6-メチルヘプタン酸、2,2-ジメチルヘキサン酸、3,3-ジメチルヘキサン酸、4,4-ジメチルヘキサン酸、5,5-ジメチルヘキサン酸、2,3-ジメチルヘキサン酸、2,4-ジメチルヘキサン酸、2,5-ジメチルヘキサン酸、3,4-ジメチルヘキサン酸、3,5-ジメチルヘキサン酸、4,5-ジメチルヘキサン酸、2,2,3-トリメチルペンタン酸、2,3,3-トリメチルペンタン酸、2,4,4-トリメチルペンタン酸、3,4,4-トリメチルペンタン酸、2-エチルヘキサン酸、3-エチルヘキサン酸、2-プロピルペンタン酸、2-メチル-2-エチルペンタン酸、2-メチル-3-エチルペンタン酸および3-メチル-3-エチルペンタン酸から選ばれる1~25種との組合せ;
(iii)2-メチルプロパン酸と、2-メチルオクタン酸、3-メチルオクタン酸、4-メチルオクタン酸、5-メチルオクタン酸、6-メチルオクタン酸、7-メチルオクタン酸、8-メチルオクタン酸、2,2-ジメチルヘプタン酸、3,3-ジメチルヘプタン酸、4,4-ジメチルヘプタン酸、5,5-ジメチルヘプタン酸、6,6-ジメチルヘプタン酸、2,3-ジメチルヘプタン酸、2,4-ジメチルヘプタン酸、2,5-ジメチルヘプタン酸、2,6-ジメチルヘプタン酸、3,4-ジメチルヘプタン酸、3,5-ジメチルヘプタン酸、3,6-ジメチルヘプタン酸、4,5-ジメチルヘプタン酸、4,6-ジメチルヘプタン酸、2-エチルヘプタン酸、3-エチルヘプタン酸、4-エチルヘプタン酸、5-エチルヘプタン酸、2-プロピルヘキサン酸、3-プロピルヘキサン酸、2-ブチルペンタン酸、2,2,3-トリメチルヘキサン酸、2,2,3-トリメチルヘキサン酸、2,2,4-トリメチルヘキサン酸、2,2,5-トリメチルヘキサン酸、2,3,4-トリメチルヘキサン酸、2,3,5-トリメチルヘキサン酸、3,3,4-トリメチルヘキサン酸、3,3,5-トリメチルヘキサン酸、3,5,5-トリメチルヘキサン酸、4,4,5-トリメチルヘキサン酸、4,5,5-トリメチルヘキサン酸、2,2,3,3-テトラメチルペンタン酸、2,2,3,4-テトラメチルペンタン酸、2,2,4,4-テトラメチルペンタン酸、2,3,4,4-テトラメチルペンタン酸、3,3,4,4-テトラメチルペンタン酸、2,2-ジエチルペンタン酸、2,3-ジエチルペンタン酸、3,3-ジエチルペンタン酸、2-エチル-2,3,3-トリメチル酪酸、3-エチル-2,2,3-トリメチル酪酸および2,2-ジイソプロピルプロピオン酸から選ばれる1~50種との組合せ。
 上記多価アルコール脂肪酸エステル(A)の含有量は、冷凍機油全量基準で50質量%以上であり、好ましくは60質量%以上、より好ましくは70質量%以上、さらに好ましくは75質量%以上である。本実施形態に係る冷凍機油は、後述するように多価アルコール脂肪酸エステル(A)以外の潤滑油基油や添加剤を含有してもよいが、多価アルコール脂肪酸エステル(A)が50質量%未満であると、必要粘度と相溶性とを高水準で両立することができなくなる。
 本実施形態に係る冷凍機油において、多価アルコール脂肪酸エステル(A)は主として基油として用いられる。本実施形態に係る冷凍機油の基油としては、多価アルコール脂肪酸エステル(A)のみを単独で(すなわち多価アルコール脂肪酸エステル(A)の含有量が100質量%)用いてもよいが、これに加えて、その優れた性能を損なわない程度に、多価アルコール脂肪酸エステル(A)以外の基油をさらに含有してもよい。多価アルコール脂肪酸エステル(A)以外の基油としては、鉱油、オレフィン重合体、アルキルジフェニルアルカン、アルキルナフタレン、アルキルベンゼン等の炭化水素系油;多価アルコール脂肪酸エステル(A)以外のポリオールエステル、コンプレックスエステル、脂環式ジカルボン酸エステル等のエステル、ポリグリコール、ポリビニルエーテル、ケトン、ポリフェニルエーテル、シリコーン、ポリシロキサン、パーフルオロエーテル等の酸素を含有する合成油(以下、場合により「他の含酸素合成油」という)などが挙げられる。
 酸素を含有する合成油としては、上記の中でも、多価アルコール脂肪酸エステル(A)以外のエステル、ポリグリコール、ポリビニルエーテルが好ましく、特に好ましいのは、多価アルコール脂肪酸エステル(A)以外のポリオールエステルである。多価アルコール脂肪酸エステル(A)以外のポリオールエステルとしては、ネオペンチルグリコール、トリメチロールエタン、トリメチロールプロパン、トリメチロールブタン、ペンタエリスリトール、ジペンタエリスリトール等の多価アルコールと脂肪酸とのエステルが挙げられ、特に好ましいものは、ネオペンチルグリコールと脂肪酸とのエステル、ペンタエリスリトールと脂肪酸とのエステル及びジペンタエリスリトールと脂肪酸とのエステルである。
 ネオペンチルグリコールエステルとしては、ネオペンチルグリコールと炭素数5~9の脂肪酸とのエステルであることが好ましい。このようなネオペンチルグリコールエステルとしては、具体的には例えば、ネオペンチルグリコールジ3,5,5-トリメチルヘキサノエート、ネオペンチルグリコールジ2-エチルヘキサノエート、ネオペンチルグリコールジ2-メチルヘキサノエート、ネオペンチルグリコールジ2-エチルペンタノエート、ネオペンチルグリコールと2-メチルヘキサン酸・2-エチルペンタン酸のエステル、ネオペンチルグリコールと3-メチルヘキサン酸・5-メチルヘキサン酸のエステル、ネオペンチルグリコールと2-メチルヘキサン酸・2-エチルヘキサン酸のエステル、ネオペンチルグリコールと3,5-ジメチルヘキサン酸・4,5-ジメチルヘキサン酸・3,4-ジメチルヘキサン酸のエステル、ネオペンチルグリコールジペンタノエート、ネオペンチルグリコールジ2-エチルブタノエート、ネオペンチルグリコールジ2-メチルペンタノエート、ネオペンチルグリコールジ2-メチルブタノエート、ネオペンチルグリコールジ3-メチルブタノエート等が挙げられる。
 ペンタエリスリトールエステルとしては、ペンタエリスリトールと炭素数5~9の脂肪酸とのエステルが好ましい。このようなペンタエリスリトールエステルとしては、具体的には、ペンタエリスリトールと、ペンタン酸、2-メチルブタン酸、3-メチルブタン酸、ヘキサン酸、2-メチルペンタン酸、2-エチルブタン酸、2-エチルペンタン酸、2-メチルヘキサン酸、3,5,5-トリメチルヘキサン酸および2-エチルヘキサン酸から選ばれる1種以上の脂肪酸とのエステルが挙げられる。
 ジペンタエリスリトールエステルとしては、ジペンタエリスリトールと炭素数5~9の脂肪酸のエステルが好ましい。このようなジペンタエリスリトールエステルとしては、具体的には、ジペンタエリスリトールと、ペンタン酸、2-メチルブタン酸、3-メチルブタン酸、ヘキサン酸、2-メチルペンタン酸、2-エチルブタン酸、2-エチルペンタン酸、2-メチルヘキサン酸、3,5,5-トリメチルヘキサン酸および2-エチルヘキサン酸から選ばれる1種以上の脂肪酸とのエステルが挙げられる。
 本実施形態に係る冷凍機油が多価アルコール脂肪酸エステル(A)以外の含酸素合成油を含有する場合、多価アルコール脂肪酸エステル(A)以外の含酸素合成油の含有量は、本実施形態に係る冷凍機油の優れた潤滑性と相溶性とを損なわない限りにおいて特に制限はないが、多価アルコール脂肪酸エステル(A)以外のポリオールエステルを配合する場合、冷凍機油全量基準で、50質量%未満であることが好ましく、45質量%以下であることがより好ましく、40質量%以下であることがさらに好ましく、35質量%以下であることがさらにより好ましく、30質量%以下であることが一層好ましく、25質量%以下であることが最も好ましく;ポリオールエステル以外の含酸素合成油を配合する場合、冷凍機油全量基準で50質量%未満であることが好ましく、40質量%以下であることがより好ましく、30質量%以下であることがさらに好ましい。ペンタエリスリトール脂肪酸エステル以外のポリオールエステルや他の含酸素合成油の配合量が多すぎると、上記効果が十分には得られない。
 なお、多価アルコール脂肪酸エステル(A)以外のポリオールエステルは、多価アルコールの水酸基の一部がエステル化されずに水酸基のまま残っている部分エステルであっても良く、全ての水酸基がエステル化された完全エステルであっても良く、また部分エステルと完全エステルの混合物であっても良いが、水酸基価が、10mgKOH/g以下であることが好ましく、5mgKOH/g以下であることがより好ましく、3mgKOH/g以下であることが最も好ましい。
 本実施形態に係る冷凍機および冷凍機用作動流体が多価アルコール脂肪酸エステル(A)以外のポリオールエステルを含有する場合、該ポリオールエステルとして、単一の構造のポリオールエステルの1種からなるものを含有してもよく、また、構造の異なる2種以上のポリオールエステルの混合物を含有してもよい。
 また、多価アルコール脂肪酸エステル(A)以外のポリオールエステルは、1種の脂肪酸と1種の多価アルコールとのエステル、2種以上の脂肪酸と1種の多価アルコールとのエステル、1種の脂肪酸と2種以上の多価アルコールとのエステル、2種以上の脂肪酸と2種以上の多価アルコールとのエステルのいずれであってもよい。
 本実施形態に係る冷凍機油は、多価アルコール脂肪酸エステル(A)のみからなるものであってもよく、また、多価アルコール脂肪酸エステル(A)とその他の基油とからなるものであってもよいが、後述する各種添加剤をさらに含有してもよい。また、本実施形態に係る冷凍機用作動流体においても、各種添加剤をさらに含有してもよい。なお、以下の説明において、添加剤の含有量については、冷凍機油全量を基準として示すが、冷凍機用作動流体におけるこれらの成分の含有量は、冷凍機油全量を基準とした場合に後述する好ましい範囲内となるように選定することが望ましい。
 本実施形態に係る冷凍機油および冷凍機用作動流体の耐摩耗性、耐荷重性をさらに改良するために、リン酸エステル、酸性リン酸エステル、チオリン酸エステル、酸性リン酸エステルのアミン塩、塩素化リン酸エステルおよび亜リン酸エステルからなる群より選ばれる少なくとも1種のリン化合物を配合することができる。これらのリン化合物は、リン酸または亜リン酸とアルカノール、ポリエーテル型アルコールとのエステルあるいはその誘導体である。
 具体的には例えば、リン酸エステルとしては、トリブチルホスフェート、トリペンチルホスフェート、トリヘキシルホスフェート、トリヘプチルホスフェート、トリオクチルホスフェート、トリノニルホスフェート、トリデシルホスフェート、トリウンデシルホスフェート、トリドデシルホスフェート、トリトリデシルホスフェート、トリテトラデシルホスフェート、トリペンタデシルホスフェート、トリヘキサデシルホスフェート、トリヘプタデシルホスフェート、トリオクタデシルホスフェート、トリオレイルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルジフェニルホスフェート、キシレニルジフェニルホスフェートなどが挙げられる。
 酸性リン酸エステルとしては、モノブチルアシッドホスフェート、モノペンチルアシッドホスフェート、モノヘキシルアシッドホスフェート、モノヘプチルアシッドホスフェート、モノオクチルアシッドホスフェート、モノノニルアシッドホスフェート、モノデシルアシッドホスフェート、モノウンデシルアシッドホスフェート、モノドデシルアシッドホスフェート、モノトリデシルアシッドホスフェート、モノテトラデシルアシッドホスフェート、モノペンタデシルアシッドホスフェート、モノヘキサデシルアシッドホスフェート、モノヘプタデシルアシッドホスフェート、モノオクタデシルアシッドホスフェート、モノオレイルアシッドホスフェート、ジブチルアシッドホスフェート、ジペンチルアシッドホスフェート、ジヘキシルアシッドホスフェート、ジヘプチルアシッドホスフェート、ジオクチルアシッドホスフェート、ジノニルアシッドホスフェート、ジデシルアシッドホスフェート、ジウンデシルアシッドホスフェート、ジドデシルアシッドホスフェート、ジトリデシルアシッドホスフェート、ジテトラデシルアシッドホスフェート、ジペンタデシルアシッドホスフェート、ジヘキサデシルアシッドホスフェート、ジヘプタデシルアシッドホスフェート、ジオクタデシルアシッドホスフェート、ジオレイルアシッドホスフェートなどが挙げられる。
 チオリン酸エステルとしては、トリブチルホスフォロチオネート、トリペンチルホスフォロチオネート、トリヘキシルホスフォロチオネート、トリヘプチルホスフォロチオネート、トリオクチルホスフォロチオネート、トリノニルホスフォロチオネート、トリデシルホスフォロチオネート、トリウンデシルホスフォロチオネート、トリドデシルホスフォロチオネート、トリトリデシルホスフォロチオネート、トリテトラデシルホスフォロチオネート、トリペンタデシルホスフォロチオネート、トリヘキサデシルホスフォロチオネート、トリヘプタデシルホスフォロチオネート、トリオクタデシルホスフォロチオネート、トリオレイルホスフォロチオネート、トリフェニルホスフォロチオネート、トリクレジルホスフォロチオネート、トリキシレニルホスフォロチオネート、クレジルジフェニルホスフォロチオネート、キシレニルジフェニルホスフォロチオネートなどが挙げられる。
 酸性リン酸エステルのアミン塩としては、酸性リン酸エステルと、炭素数1~24、好ましくは5~18の1~3級の直鎖または分岐アルキル基のアミンとのアミン塩が挙げられる。
 酸性リン酸エステルのアミン塩を構成するアミンとしては、直鎖または分岐のメチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ペンチルアミン、ヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ウンデシルアミン、ドデシルアミン、トリデシルアミン、テトラデシルアミン、ペンタデシルアミン、ヘキサデシルアミン、ヘプタデシルアミン、オクタデシルアミン、オレイルアミン、テトラコシルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、ジペンチルアミン、ジヘキシルアミン、ジヘプチルアミン、ジオクチルアミン、ジノニルアミン、ジデシルアミン、ジウンデシルアミン、ジドデシルアミン、ジトリデシルアミン、ジテトラデシルアミン、ジペンタデシルアミン、ジヘキサデシルアミン、ジヘプタデシルアミン、ジオクタデシルアミン、ジオレイルアミン、ジテトラコシルアミン、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリペンチルアミン、トリヘキシルアミン、トリヘプチルアミン、トリオクチルアミン、トリノニルアミン、トリデシルアミン、トリウンデシルアミン、トリドデシルアミン、トリトリデシルアミン、トリテトラデシルアミン、トリペンタデシルアミン、トリヘキサデシルアミン、トリヘプタデシルアミン、トリオクタデシルアミン、トリオレイルアミン、トリテトラコシルアミンなどのアミンとの塩が挙げられる。アミンは単独の化合物であっても、2種以上の化合物の混合物であっても良い。
 塩素化リン酸エステルとしては、トリス・ジクロロプロピルホスフェート、トリス・クロロエチルホスフェート、トリス・クロロフェニルホスフェート、ポリオキシアルキレン・ビス[ジ(クロロアルキル)]ホスフェートなどが挙げられる。亜リン酸エステルとしては、ジブチルホスファイト、ジペンチルホスファイト、ジヘキシルホスファイト、ジヘプチルホスファイト、ジオクチルホスファイト、ジノニルホスファイト、ジデシルホスファイト、ジウンデシルホスファイト、ジドデシルホスファイト、ジオレイルホスファイト、ジフェニルホスファイト、ジクレジルホスファイト、トリブチルホスファイト、トリペンチルホスファイト、トリヘキシルホスファイト、トリヘプチルホスファイト、トリオクチルホスファイト、トリノニルホスファイト、トリデシルホスファイト、トリウンデシルホスファイト、トリドデシルホスファイト、トリオレイルホスファイト、トリフェニルホスファイト、トリクレジルホスファイトなどが挙げられる。また、これらの混合物も使用できる。
 本実施形態に係る冷凍機油および冷凍機用作動流体が上記リン化合物を含有する場合、リン化合物の含有量は特に制限されないが、冷凍機油全量基準(基油と全配合添加剤の合計量基準)で、0.01~5.0質量%であることが好ましく、0.02~3.0質量%であることがより好ましい。なお、上記リン化合物は1種を単独で用いてもよく、2種以上を併用してもよい。
 また、本実施形態に係る冷凍機油および冷凍機用作動流体は、その熱・化学的安定性をさらに改良するために、テルペン化合物を添加することができる。本開示でいう「テルペン化合物」とは、イソプレンの重合した化合物およびこれらの誘導体を意味し、イソプレンの2~8量体が好ましく用いられる。テルペン化合物としては、具体的には、ゲラニオール、ネロール、リナロール、シトラール(ゲラニアールを含む)、シトロネロール、メントール、リモネン、テルピネロール、カルボン、ヨノン、ツヨン、樟脳(カンファー)、ボルネオールなどのモノテルペン、ファルネセン、ファルネソール、ネロリドール、幼若ホルモン、フムレン、カリオフイレン、エレメン、カジノール、カジネン、ツチンなどのセスキテルペン、ゲラニルゲラニオール、フィトール、アビエチン酸、ピマラジェン、ダフネトキシン、タキソール、ピマール酸などのジテルペン、ゲラニルファルネセンなどのセスタテルペン、スクアレン、リモニン、カメリアゲニン、ホパン、ラノステロールなどのトリテルペン、カロテノイドなどのテトラテルペンなどが挙げられる。
 これらのテルペン化合物の中でも、モノテルペン、セスキテルペン、ジテルペンが好ましく、セスキテルペンがより好ましく、αファルネセン(3,7,11-トリメチルドデカ-1,3,6,10-テトラエン)および/またはβファルネセン(7,11-ジメチル-3-メチリデンドデカ-1,6,10-トリエン)が特に好ましい。本開示において、テルペン化合物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 本実施形態に係る冷凍機油におけるテルペン化合物の含有量は特に制限されないが、冷凍機油全量基準で、好ましくは0.001~10質量%、より好ましくは0.01~5質量%、さらに好ましくは0.05~3質量%である。テルペン化合物の含有量が0.001質量%未満であると熱・化学的安定性の向上効果が不十分となる傾向にあり、また、10質量%を超えると潤滑性が不十分となる傾向にある。また、本実施形態に係る冷凍機用作動流体におけるテルペン化合物の含有量については、冷凍機油全量を基準とした場合に上記の好ましい範囲内となるように選定することが望ましい。
 また、本実施形態に係る冷凍機油および冷凍機用作動流体は、その熱・化学的安定性をさらに改良するために、フェニルグリシジルエーテル型エポキシ化合物、アルキルグリシジルエーテル型エポキシ化合物、グリシジルエステル型エポキシ化合物、アリルオキシラン化合物、アルキルオキシラン化合物、脂環式エポキシ化合物、エポキシ化脂肪酸モノエステルおよびエポキシ化植物油から選ばれる少なくとも1種のエポキシ化合物を含有することができる。
 フェニルグリシジルエーテル型エポキシ化合物としては、具体的には、フェニルグリシジルエーテルまたはアルキルフェニルグリシジルエーテルが例示できる。ここでいうアルキルフェニルグリシジルエーテルとは、炭素数1~13のアルキル基を1~3個有するものが挙げられ、中でも炭素数4~10のアルキル基を1個有するもの、例えばn-ブチルフェニルグリシジルエーテル、i-ブチルフェニルグリシジルエーテル、sec-ブチルフェニルグリシジルエーテル、tert-ブチルフェニルグリシジルエーテル、ペンチルフェニルグリシジルエーテル、ヘキシルフェニルグリシジルエーテル、ヘプチルフェニルグリシジルエーテル、オクチルフェニルグリシジルエーテル、ノニルフェニルグリシジルエーテル、デシルフェニルグリシジルエーテルなどが好ましいものとして例示できる。
 アルキルグリシジルエーテル型エポキシ化合物としては、具体的には、デシルグリシジルエーテル、ウンデシルグリシジルエーテル、ドデシルグリシジルエーテル、トリデシルグリシジルエーテル、テトラデシルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ペンタエリスリトールテトラグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、ソルビトールポリグリシジルエーテル、ポリアルキレングリコールモノグリシジルエーテル、ポリアルキレングリコールジグリシジルエーテルなどが例示できる。
 グリシジルエステル型エポキシ化合物としては、具体的には、フェニルグリシジルエステル、アルキルグリシジルエステル、アルケニルグリシジルエステルなどが挙げられ、好ましいものとしては、グリシジル-2,2-ジメチルオクタノエート、グリシジルベンゾエート、グリシジルアクリレート、グリシジルメタクリレートなどが例示できる。
 アリルオキシラン化合物としては、具体的には、1,2-エポキシスチレン、アルキル-1,2-エポキシスチレンなどが例示できる。
 アルキルオキシラン化合物としては、具体的には、1,2-エポキシブタン、1,2-エポキシペンタン、1,2-エポキシヘキサン、1,2-エポキシヘプタン、1,2-エポキシオクタン、1,2-エポキシノナン、1,2-エポキシデカン、1,2-エポキシウンデカン、1,2-エポキシドデカン、1,2-エポキシトリデカン、1,2-エポキシテトラデカン、1,2-エポキシペンタデカン、1,2-エポキシヘキサデカン、1,2-エポキシヘプタデカン、1,1,2-エポキシオクタデカン、2-エポキシノナデカン、1,2-エポキシイコサンなどが例示できる。
 脂環式エポキシ化合物としては、具体的には、1,2-エポキシシクロヘキサン、1,2-エポキシシクロペンタン、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、ビス(3,4-エポキシシクロヘキシルメチル)アジペート、エキソ-2,3-エポキシノルボルナン、ビス(3,4-エポキシ-6-メチルシクロヘキシルメチル)アジペート、2-(7-オキサビシクロ[4.1.0]ヘプト-3-イル)-スピロ(1,3-ジオキサン-5,3’-[7]オキサビシクロ[4.1.0]ヘプタン、4-(1’-メチルエポキシエチル)-1,2-エポキシ-2-メチルシクロヘキサン、4-エポキシエチル-1,2-エポキシシクロヘキサンなどが例示できる。
 エポキシ化脂肪酸モノエステルとしては、具体的には、エポキシ化された炭素数12~20の脂肪酸と炭素数1~8のアルコールまたはフェノール、アルキルフェノールとのエステルなどが例示できる。特にエポキシステアリン酸のブチル、ヘキシル、ベンジル、シクロヘキシル、メトキシエチル、オクチル、フェニルおよびブチルフェニルエステルが好ましく用いられる。
 エポキシ化植物油としては、具体的には、大豆油、アマニ油、綿実油等の植物油のエポキシ化合物などが例示できる。
 これらのエポキシ化合物の中でも好ましいものは、フェニルグリシジルエーテル型エポキシ化合物、アルキルグリシジルエーテル型エポキシ化合物、グリシジルエステル型エポキシ化合物、および脂環式エポキシ化合物である。
 本実施形態に係る冷凍機油および冷凍機用作動流体が上記エポキシ化合物を含有する場合、エポキシ化合物の含有量は特に制限されないが、冷凍機油全量基準で、0.01~5.0質量%であることが好ましく、0.1~3.0質量%であることがより好ましい。なお、上記エポキシ化合物は、1種を単独で用いてもよく、2種以上を併用してもよい。
 なお、多価アルコール脂肪酸エステル(A)を含む冷凍機油の40℃における動粘度は、好ましくは20~80mm/s、より好ましくは25~75mm/s、最も好ましくは30~70mm/sとすることができる。また、100℃における動粘度は好ましくは2~20mm/s、より好ましくは3~10mm/sとすることができる。動粘度が前記下限値以上の場合には冷凍機油として必要な粘度を確保しやすく、他方、前記上限値以下の場合には冷媒組成物としてジフルオロメタンが含まれている場合の当該ジフルオロメタンとの相溶性を十分にすることができる。
 また、多価アルコール脂肪酸エステル(A)を含む冷凍機油の体積抵抗率は特に限定されないが、好ましくは1.0×1012Ω・cm以上、より好ましくは1.0×1013Ω・cm以上、最も好ましくは1.0×1014Ω・cm以上とすることができる。特に、密閉型の冷凍機用に用いる場合には高い電気絶縁性が必要となる傾向にある。なお、体積抵抗率とは、JIS C 2101「電気絶縁油試験方法」に準拠して測定した25℃での値を意味する。
 また、多価アルコール脂肪酸エステル(A)を含む冷凍機油の水分含有量は特に限定されないが、冷凍機油全量基準で好ましくは200ppm以下、より好ましくは100ppm以下、最も好ましくは50ppm以下とすることができる。特に密閉型の冷凍機用に用いる場合には、冷凍機油の熱・化学的安定性や電気絶縁性への影響の観点から、水分含有量が少ないことが求められる。
 また、多価アルコール脂肪酸エステル(A)を含む冷凍機油の酸価は特に限定されないが、冷凍機または配管に用いられている金属への腐食を防止するため、好ましくは0.1mgKOH/g以下、より好ましくは0.05mgKOH/g以下とすることができる。なお、本開示において、酸価とは、JIS K 2501「石油製品および潤滑油一中和価試験方法」に準拠して測定した酸価を意味する。
 また、多価アルコール脂肪酸エステル(A)を含む冷凍機油の灰分は特に限定されないが、冷凍機油の熱・化学的安定性を高めスラッジ等の発生を抑制するため、好ましくは100ppm以下、より好ましくは50ppm以下とすることができる。なお、灰分とは、JIS K 2272「原油および石油製品の灰分並びに硫酸灰分試験方法」に準拠して測定した灰分の値を意味する。
 (コンプレックスエステル油)
 コンプレックスエステル油とは、脂肪酸および二塩基酸と、一価アルコールおよびポリオールとのエステルである。脂肪酸、二塩基酸、一価アルコール、ポリオールとしては、上述と同様のものを用いることができる。
 脂肪酸としては、上記ポリオールエステルの脂肪酸で示したものが挙げられる。
 二塩基酸としては、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、フタル酸、イソフタル酸、テレフタル酸等が挙げられる。
 ポリオールとしては、上記ポリオールエステルの多価アルコールとして示したものが挙げられる。コンプレックスエステルは、これらの脂肪酸、二塩基酸、ポリオールのエステルであり、各々単一成分でもよいし、複数成分からなるエステルでもよい。
 (ポリオール炭酸エステル油)
 ポリオール炭酸エステル油とは、炭酸とポリオールとのエステルである。
 ポリオールとしては、上述と同様のジオールやポリオールが挙げられる。
 また、ポリオール炭酸エステル油としては、環状アルキレンカーボネートの開環重合体であってもよい。
 (1-1-2)エーテル系冷凍機油
 エーテル系冷凍機油としては、ポリビニルエーテル油、ポリオキシアルキレン油等が挙げられる。
 (ポリビニルエーテル油)
 ポリビニルエーテル油としては、ビニルエーテルモノマーの重合体、ビニルエーテルモノマーとオレフィン性二重結合を有する炭化水素モノマーとの共重合体、オレフィン性二重結合とポリオキシアルキレン鎖を有するモノマーとビニルエーテルモノマーとの共重合体等が挙げられる。
 ポリビニルエーテル油の炭素/酸素モル比は、2以上7.5以下であることが好ましく、2.5以上5.8以下であることがより好ましい。炭素/酸素モル比が当該範囲より低いと吸湿性が高くなり、当該範囲より高いと相溶性が低下する。また、ポリビニルエーテルの重量平均分子量は、好ましくは200以上3000以下、より好ましくは500以上1500以下である。
 ポリビニルエーテル油は、流動点が-30℃以下であることが好ましい。ポリビニルエーテル油は、20℃における表面張力が0.02N/m以上0.04N/m以下であることが好ましい。ポリビニルエーテル油は、15℃における密度が0.8g/cm以上1.8g/cm以下であることが好ましい。ポリビニルエーテル油は、温度30℃、相対湿度90%における飽和水分量が2000ppm以上であることが好ましい。
 冷凍機油においては、ポリビニルエーテルが主成分として含まれていてもよい。冷媒にHFO-1234yfが含まれている場合には、冷凍機油の主成分であるポリビニルエーテルが、当該HFO-1234yfに対して相溶性を有しており、冷凍機油の40℃における動粘度が400mm/s以下であると、HFO-1234yfが、冷凍機油にある程度溶解する。また、冷凍機油の流動点が-30℃以下である場合には、冷媒回路において冷媒組成物や冷凍機油が低温となる部位においても冷凍機油の流動性を確保しやすい。また、冷凍機油の20℃における表面張力が0.04N/m以下である場合には、圧縮機から吐出された冷凍機油が冷媒組成物によって押し流されにくくなるような大きな油滴になりにくい。このため、圧縮機から吐出された冷凍機油は、HFO-1234yfに溶解してHFO-1234yfと共に圧縮機に戻されやすい。
 また、冷凍機油の40℃における動粘度が30mm/s以上である場合には、動粘度が低すぎて油膜強度が不十分になることが抑制され、潤滑性能を確保しやすい。また、冷凍機油の20℃における表面張力が0.02N/m以上である場合には、圧縮機内のガス冷媒中で小さな油滴になりにくく、圧縮機から多量に冷凍機油が吐出されることを抑制できる。このため、圧縮機における冷凍機油の貯留量を充分に確保しやすい。
 また、冷凍機油の飽和水分量が、温度30℃/相対湿度90%において2000ppm以上である場合には、冷凍機油の吸湿性を比較的高いものとすることができる。これにより、冷媒にHFO-1234yfが含まれている場合には、HFO-1234yf中の水分を冷凍機油によって有る程度捕捉することが可能となる。HFO-1234yfは、含有される水分の影響により、変質/劣化し易い分子構造を有する。よって、冷凍機油による吸湿効果により、このような劣化を抑制することができる。
 さらに、冷媒回路を流れる冷媒と接触可能となるシール部や摺動部に所定の樹脂製機能部品が配置されている場合であって、当該樹脂製機能部品が、ポリテトラフルオロエチレン、ポリフェニレンサルファイド、フェノール樹脂、ポリアミド樹脂、クロロブレンゴム、シリコンゴム、水素化ニトリルゴム、フッ素ゴム、ヒドリンゴムのいずれかで構成されている場合には、冷凍機油のアニリン点は、当該樹脂製機能部品との適合性を考慮して、その数値範囲を設定することが好ましい。このようにアニリン点を設定することで、例えば樹脂製機能部品を構成する軸受と冷凍機油との適合性が向上する。具体的に、アニリン点が小さ過ぎると、冷凍機油が軸受等に浸透し易くなり、軸受等が膨潤し易くなる。一方、アニリン点が大き過ぎると、冷凍機油が軸受等と浸透し難くなり、軸受等が収縮し易くなる。そこで、冷凍機油のアニリン点を所定の数値範囲とすることで、軸受等の膨潤/収縮変形を防止できる。ここで、例えば各軸受等が膨潤/縮小変形してしまうと、摺動部での隙間(ギャップ)を所望とする長さに維持することができない。その結果、摺動抵抗の増大や摺動部の剛性の低下を招くおそれがある。しかしながら、上記のように冷凍機油のアニリン点を所定の数値範囲とすることで、軸受等の膨潤/縮小変形が抑制されるので、このような不具合を回避できる。
 ビニルエーテルモノマーは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。オレフィン性二重結合を有する炭化水素モノマーとしては、エチレン、プロピレン、各種ブテン、各種ペンテン、各種ヘキセン、各種ヘプテン、各種オクテン、ジイソブチレン、トリイソブチレン、スチレン、α-メチルスチレン、各種アルキル置換スチレン等が挙げられる。オレフィン性二重結合を有する炭化水素モノマーは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 ポリビニルエーテル共重合体は、ブロックまたはランダム共重合体のいずれであってもよい。ポリビニルエーテル油は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 好ましく用いられるポリビニルエーテル油は、下記一般式(1)で表される構造単位を有する。
Figure JPOXMLDOC01-appb-C000011

(式中、R、RおよびRは同一でも異なっていてもよく、それぞれ水素原子または炭素数1~8の炭化水素基を示し、Rは炭素数1~10の2価の炭化水素基または炭素数2~20の2価のエーテル結合酸素含有炭化水素基を示し、Rは炭素数1~20の炭化水素基を示し、mは上記ポリビニルエーテルについてのmの平均値が0~10となるような数を示し、R~Rは構造単位ごとに同一であっても異なっていてもよく、一の構造単位においてmが2以上である場合には、複数のROは同一でも異なっていてもよい。)
 上記一般式(1)におけるR、RおよびRは、少なくとも1つが水素原子、特には全てが水素原子であることが好ましい。一般式(1)におけるmは0以上10以下、特には0以上5以下が、さらには0であることが好ましい。一般式(1)におけるRは炭素数1~20の炭化水素基を示すが、この炭化水素基としては、具体的にはメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、各種ペンチル基、各種ヘキシル基、各種ヘプチル基、各種オクチル基のアルキル基、シクロペンチル基、シクロヘキシル基、各種メチルシクロヘキシル基、各種エチルシクロヘキシル基、各種ジメチルシクロヘキシル基などのシクロアルキル基、フェニル基、各種メチルフェニル基、各種エチルフェニル基、各種ジメチルフェニル基のアリール基、ベンジル基、各種フェニルエチル基、各種メチルベンジル基のアリールアルキル基を示す。なお、アルキル基、シクロアルキル基、フェニル基、アリール基、アリールアルキル基の中でも、アルキル基、特には炭素数1以上5以下のアルキル基が好ましい。なお、上記ポリビニルエーテル油としては、Rの炭素数が1又は2のアルキル基であるポリビニルエーテル油:Rの炭素数が3又は4のアルキル基であるポリビニルエーテル油の比率が、40%:60%~100%:0%で含まれていることが好ましい。
 本実施形態におけるポリビニルエーテル油は、一般式(1)で表される構造単位が同一である単独重合体であっても、2種以上の構造単位で構成される共重合体であってもよい。共重合体はブロック共重合体またはランダム共重合体のいずれであってもよい。
 本実施形態に係るポリビニルエーテル油は、上記一般式(1)で表される構造単位のみで構成されるものであってもよいが、下記一般式(2)で表される構造単位をさらに含む共重合体であってもよい。この場合、共重合体はブロック共重合体またはランダム共重合体のいずれであってもよい。
Figure JPOXMLDOC01-appb-C000012

(式中、R~Rは互いに同一でも異なっていてもよく、それぞれ水素原子または炭素数1~20の炭化水素基を示す。)
 ビニルエーテル系モノマーとしては、下記一般式(3)の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000013

(式中、R、R、R、R、Rおよびmは、それぞれ一般式(1)中のR、R、R、R、Rおよびmと同一の定義内容を示す。)
 上記ポリビニルエーテル系化合物に対応する各種のものがあるが、例えば、ビニルメチルエーテル;ビニルエチルエーテル;ビニル-n-プロピルエーテル;ビニル-イソプロピルエーテル;ビニル-n-ブチルエーテル;ビニル-イソブチルエーテル;ビニル-sec-ブチルエーテル;ビニル-tert-ブチルエーテル;ビニル-n-ペンチルエーテル;ビニル-n-ヘキシルエーテル;ビニル-2-メトキシエチルエーテル;ビニル-2-エトキシエチルエーテル;ビニル-2-メトキシ-1-メチルエチルエーテル;ビニル-2-メトキシ-プロピルエーテル;ビニル-3,6-ジオキサヘプチルエーテル;ビニル-3,6,9-トリオキサデシルエーテル;ビニル-1,4-ジメチル-3,6-ジオキサヘプチルエーテル;ビニル-1,4,7-トリメチル-3,6,9-トリオキサデシルエーテル;ビニル-2,6-ジオキサ-4-ヘプチルエーテル;ビニル-2,6,9-トリオキサ-4-デシルエーテル;1-メトキシプロペン;1-エトキシプロペン;1-n-プロポキシプロペン;1-イソプロポキシプロペン;1-n-ブトキシプロペン;1-イソブトキシプロペン;1-sec-ブトキシプロペン;1-tert-ブトキシプロペン;2-メトキシプロペン;2-エトキシプロペン;2-n-プロポキシプロペン;2-イソプロポキシプロペン;2-n-ブトキシプロペン;2-イソブトキシプロペン;2-sec-ブトキシプロペン;2-tert-ブトキシプロペン;1-メトキシ-1-ブテン;1-エトキシ-1-ブテン;1-n-プロポキシ-1-ブテン;1-イソプロポキシ-1-ブテン;1-n-ブトキシ-1-ブテン;1-イソブトキシ-1-ブテン;1-sec-ブトキシ-1-ブテン;1-tert-ブトキシ-1-ブテン;2-メトキシ-1-ブテン;2-エトキシ-1-ブテン;2-n-プロポキシ-1-ブテン;2-イソプロポキシ-1-ブテン;2-n-ブトキシ-1-ブテン;2-イソブトキシ-1-ブテン;2-sec-ブトキシ-1-ブテン;2-tert-ブトキシ-1-ブテン;2-メトキシ-2-ブテン;2-エトキシ-2-ブテン;2-n-プロポキシ-2-ブテン;2-イソプロポキシ-2-ブテン;2-n-ブトキシ-2-ブテン;2-イソブトキシ-2-ブテン;2-sec-ブトキシ-2-ブテン;2-tert-ブトキシ-2-ブテン等が挙げられる。これらのビニルエーテル系モノマーは公知の方法により製造することができる。
 上記一般式(1)で表される構成単位を有するポリビニルエーテル系化合物は、その末端を本開示例に示す方法及び公知の方法により、所望の構造に変換することができる。変換する基としては、飽和の炭化水素,エーテル、アルコール、ケトン、アミド、ニトリルなどを挙げることができる。
 ポリビニルエーテル系化合物としては、次の末端構造を有するものが好ましい。
Figure JPOXMLDOC01-appb-C000014

(式中、R11、R21およびR31は互いに同一でも異なっていてもよく、それぞれ水素原子または炭素数1~8の炭化水素基を示し、R41は炭素数1~10の二価の炭化水素基または炭素数2~20の二価のエーテル結合酸素含有炭化水素基を示し、R51は炭素数1~20の炭化水素基を示し、mはポリビニルエーテルについてのmの平均値が0~10となるような数を示し、mが2以上の場合には、複数のR41Oは同一でも異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000015

(式中、R61、R71、R81およびR91は互いに同一でも異なっていてもよく、それぞれ水素原子または炭素数1~20の炭化水素基を示す。)
Figure JPOXMLDOC01-appb-C000016

(式中、R12、R22およびR32は互いに同一でも異なっていてもよく、それぞれ水素原子または炭素数1~8の炭化水素基を示し、R42は炭素数1~10の二価の炭化水素基または炭素数2~20の二価のエーテル結合酸素含有炭化水素基を示し、R52は炭素数1~20の炭化水素基を示し、mはポリビニルエーテルについてのmの平均値が0~10となるような数を示し、mが2以上の場合には、複数のR42Oは同一でも異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000017

(式中、R62、R72、R82およびR92は互いに同一でも異なっていてもよく、それぞれ水素原子または炭素数1~20の炭化水素基を示す。)
Figure JPOXMLDOC01-appb-C000018

(式中、R13、R23およびR33は互いに同一でも異なっていてもよく、それぞれ水素原子または炭素数1~8の炭化水素基を示す。)
 本実施形態におけるポリビニルエーテル油は、上記したモノマーをラジカル重合、カチオン重合、放射線重合などによって製造することができる。重合反応終了後、必要に応じて通常の分離・精製方法を施すことにより、目的とする一般式(1)で表される構造単位を有するポリビニルエーテル系化合物が得られる。
 (ポリオキシアルキレン油)
 ポリオキシアルキレン油としては、炭素数2~4のアルキレンオキシド(エチレンオキシド、プロピレンオキシド等)を、水や水酸基含有化合物を開始剤として重合させる方法等により得られたポリオキシアルキレン化合物が挙げられる。また、ポリオキシアルキレン化合物の水酸基をエーテル化またはエステル化したものであってもよい。ポリオキシアルキレン油中のオキシアルキレン単位は、1分子中において同一であってもよく、2種以上のオキシアルキレン単位が含まれていてもよい。1分子中に少なくともオキシプロピレン単位が含まれることが好ましい。
 具体的なポリオキシアルキレン油としては、例えば次の一般式(9)
 R101-[(OR102-OR103   …(9)
(式中、R101は水素原子、炭素数1~10のアルキル基、炭素数2~10のアシル基又は結合部2~6個を有する炭素数1~10の脂肪族炭化水素基、R102は炭素数2~4のアルキレン基、R103は水素原子、炭素数1~10のアルキル基又は炭素数2~10のアシル基、lは1~6の整数、kはk×lの平均値が6~80となる数を示す。)で表される化合物が挙げられる。
 上記一般式(9)において、R101、R103におけるアルキル基は直鎖状、分岐鎖状、環状のいずれであってもよい。該アルキル基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、各種ブチル基、各種ペンチル基、各種ヘキシル基、各種ヘプチル基、各種オクチル基、各種ノニル基、各種デシル基、シクロペンチル基、シクロヘキシル基などを挙げることができる。このアルキル基の炭素数が10を超えると冷媒との相溶性が低下し、相分離を生じる場合がある。好ましいアルキル基の炭素数は1~6である。
 また、R101、R103における該アシル基のアルキル基部分は直鎖状、分岐鎖状、環状のいずれであってもよい。該アシル基のアルキル基部分の具体例としては、上記アルキル基の具体例として挙げた炭素数1~9の種々の基を同様に挙げることができる。該アシル基の炭素数が10を超えると冷媒との相溶性が低下し、相分離を生じる場合がある。好ましいアシル基の炭素数は2~6である。
 R101及びR103が、いずれもアルキル基又はアシル基である場合には、R101とR103は同一であってもよいし、互いに異なっていてもよい。
 さらにlが2以上の場合には、1分子中の複数のR103は同一であってもよいし、異なっていてもよい。
 R101が結合部位2~6個を有する炭素数1~10の脂肪族炭化水素基である場合、この脂肪族炭化水素基は鎖状のものであってもよいし、環状のものであってもよい。結合部位2個を有する脂肪族炭化水素基としては、例えば、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ヘプチレン基、オクチレン基、ノニレン基、デシレン基、シクロペンチレン基、シクロヘキシレン基などが挙げられる。また、結合部位3~6個を有する脂肪族炭化水素基としては、例えば、トリメチロールプロパン、グリセリン、ペンタエリスリトール、ソルビトール;1,2,3-トリヒドロキシシクロヘキサン;1,3,5-トリヒドロキシシクロヘキサンなどの多価アルコールから水酸基を除いた残基を挙げることができる。
 この脂肪族炭化水素基の炭素数が10を超えると冷媒との相溶性が低下し、相分離が生じる場合がある。好ましい炭素数は2~6である。
 上記一般式(9)中のR102は炭素数2~4のアルキレン基であり、繰り返し単位のオキシアルキレン基としては、オキシエチレン基、オキシプロピレン基、オキシブチレン基が挙げられる。1分子中のオキシアルキレン基は同一であってもよいし、2種以上のオキシアルキレン基が含まれていてもよいが、1分子中に少なくともオキシプロピレン単位を含むものが好ましく、特にオキシアルキレン単位中に50モル%以上のオキシプロピレン単位を含むものが好適である。
 上記一般式(9)中のlは1~6の整数で、R101の結合部位の数に応じて定めることができる。例えばR101がアルキル基やアシル基の場合、lは1であり、R101が結合部位2,3,4,5及び6個を有する脂肪族炭化水素基である場合、lはそれぞれ2,3,4,5及び6となる。lは1または2であることが好ましい。また、kはk×lの平均値が6~80となる数であることが好ましい。
 ポリオキシアルキレン油の構造は、下記一般式(10)で表されるポリオキシプロピレンジオールジメチルエーテル、並びに下記一般式(11)で表されるポリ(オキシエチレン/オキシプロピレン)ジオールジメチルエーテルが経済性および前述の効果の点で好適であり、また、下記一般式(12)で表されるポリオキシプロピレンジオールモノブチルエーテル、さらには下記一般式(13)で表されるポリオキシプロピレンジオールモノメチルエーテル、下記一般式(14)で表されるポリ(オキシエチレン/オキシプロピレン)ジオールモノメチルエーテル、下記一般式(15)で表されるポリ(オキシエチレン/オキシプロピレン)ジオールモノブチルエーテル、下記一般式(16)で表されるポリオキシプロピレンジオールジアセテートが、経済性等の点で好適である。
 CHO-(CO)-CH   …(10)
(式中、hは6~80の数を表す。)
 CHO-(CO)-(CO)-CH   …(11)
(式中、iおよびjはそれぞれ1以上であり且つiとjとの合計が6~80となる数を表す。)
 CO-(CO)-H   …(12)
(式中、hは6~80の数を示す。)
 CHO-(CO)-H   …(13)
 (式中、hは6~80の数を表す。)
  CHO-(CO)-(CO)-H   …(14)
(式中、iおよびjはそれぞれ1以上であり且つiとjとの合計が6~80となる数を表す。)
  CO-(CO)-(CO)-H   …(15)
(式中、iおよびjはそれぞれ1以上であり且つiとjとの合計が6~80となる数を表す。)
  CHCOO-(CO)-COCH   …(16)
 (式中、hは6~80の数を表す。)
 このポリオキシアルキレン油は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 (1-2)炭化水素系冷凍機油
 炭化水素系冷凍機油としては、例えば、アルキルベンゼンを用いることができる。
 アルキルベンゼンとしては、フッ化水素などの触媒を用いてプロピレンの重合物とベンゼンを原料として合成される分岐アルキルベンゼン、また同触媒を用いてノルマルパラフィンとベンゼンを原料として合成される直鎖アルキルベンゼンが使用できる。アルキル基の炭素数は、潤滑油基油として好適な粘度とする観点から、好ましくは1~30、より好ましくは4~20である。また、アルキルベンゼン1分子が有するアルキル基の数は、アルキル基の炭素数によるが粘度を設定範囲内とするために、好ましくは1~4、より好ましくは1~3である。
 なお、炭化水素系冷凍機油は、冷凍サイクル系内を、冷媒と共に循環することが好ましい。冷凍機油は冷媒と溶解することが最も好ましい形態だが、冷凍サイクル系内を冷媒と共に循環できる冷凍機油であれば、例えば、溶解性が低い冷凍機油(例えば、特許第2803451号公報に記載されている冷凍機油)であっても用いることができる。冷凍機油が冷凍サイクル系内を循環するためには、冷凍機油の動粘度が小さいことが求められる。炭化水素系冷凍機油の動粘度としては、40℃において1mm/s以上50mm/s以下であることが好ましく、1mm/s以上25mm/s以下であることがより好ましい。
 これらの冷凍機油は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 冷凍機用作動流体における、炭化水素系冷凍機油の含有量は、例えば、冷媒組成物100質量部に対して、10質量部以上100質量部以下であってよく、20質量部以上50質量部以下であることがより好ましい。
 (1-3)添加剤
 冷凍機油には、1種または2種以上の添加剤が含まれていてもよい。
 添加剤としては、酸捕捉剤、極圧剤、酸化防止剤、消泡剤、油性剤、銅不活性化剤等の金属不活化剤、、摩耗防止剤、および、相溶化剤等が挙げられる。
 酸捕捉剤には、フェニルグリシジルエーテル、アルキルグリシジルエーテル、アルキレングリコールグリシジルエーテル、シクロヘキセンオキシド、α-オレフィンオキシド、エポキシ化大豆油などのエポキシ化合物、カルボジイミド等を用いることができる。なお、これらのうち、相溶性の観点から、フェニルグリシジルエーテル、アルキルグリシジルエーテル、アルキレングリコールグリシジルエーテル、シクロヘキセンオキシド、α-オレフィンオキシドが好ましい。アルキルグリシジルエーテルのアルキル基、及びアルキレングリコールグリシジルエーテルのアルキレン基は、分岐を有していてもよい。これらの炭素数は、3以上30以下であればよく、4以上24以下であればより好ましく、6以上16以下であればさらに好ましい。また、α-オレフィンオキシドは、全炭素数が4以上50以下であればよく、4以上24以下であればより好ましく、6以上16以下であればさらに好ましい。酸捕捉剤は、1種だけを用いてもよく、複数種類を併用することも可能である。
 極圧剤には、例えば、リン酸エステル類を含むものを用いることができる。
リン酸エステル類としては、リン酸エステル、亜リン酸エステル、酸性リン酸エステル、及び酸性亜リン酸エステル等を用いることができ、リン酸エステル、亜リン酸エステル、酸性リン酸エステル、及び酸性亜リン酸エステルのアミン塩を含むものを用いることもできる。
 リン酸エステルには、トリアリールホスフェート、トリアルキルホスフェート、トリアルキルアリールホスフェート、トリアリールアルキルホスフェート、トリアルケニルホスフェート等がある。さらに、リン酸エステルを具体的に列挙すると、トリフェニルホスフェート、トリクレジルホスフェート、ベンジルジフェニルホスフェート、エチルジフェニルホスフェート、トリブチルホスフェート、エチルジブチルホスフェート、クレジルジフェニルホスフェート、ジクレジルフェニルホスフェート、エチルフェニルジフェニルホスフェート、ジエチルフェニルフェニルホスフェート、プロピルフェニルジフェニルホスフェート、ジプロピルフェニルフェニルホスフェート、トリエチルフェニルホスフェート、トリプロピルフェニルホスフェート、ブチルフェニルジフェニルホスフェート、ジブチルフェニルフェニルホスフェート、トリブチルフェニルホスフェート、トリヘキシルホスフェート、トリ(2-エチルヘキシル)ホスフェート、トリデシルホスフェート、トリラウリルホスフェート、トリミリスチルホスフェート、トリパルミチルホスフェート、トリステアリルホスフェート、トリオレイルホスフェート等がある。
 また、亜リン酸エステルの具体的としては、トリエチルホスファイト、トリブチルホスファイト、トリフェニルホスファイト、トリクレジルホスファイト、トリ(ノニルフェニル)ホスファイト、トリ(2-エチルヘキシル)ホスファイト、トリデシルホスファイト、トリラウリルホスファイト、トリイソオクチルホスファイト、ジフェニルイソデシルホスファイト、トリステアリルホスファイト、トリオレイルホスファイト等がある。
 また、酸性リン酸エステルの具体的としては、2-エチルヘキシルアシッドホスフェート、エチルアシッドホスフェート、ブチルアシッドホスフェート、オレイルアシッドホスフェート、テトラコシルアシッドホスフェート、イソデシルアシッドホスフェート、ラウリルアシッドホスフェート、トリデシルアシッドホスフェート、ステアリルアシッドホスフェート、イソステアリルアシッドホスフェート等がある。
 また、酸性亜リン酸エステルの具体的としては、ジブチルハイドロゲンホスファイト、ジラウリルハイドロゲンホスファイト、ジオレイルハイドゲンホスファイト、ジステアリルハイドロゲンホスファイト、ジフェニルハイドロゲンホスファイト等がある。以上のリン酸エステル類の中で、オレイルアシッドホスフェート、ステアリルアシッドホスフェートが好適である。
 また、リン酸エステル、亜リン酸エステル、酸性リン酸エステル又は酸性亜リン酸エステルのアミン塩に用いられるアミンのうちモノ置換アミンの具体例としては、ブチルアミン、ペンチルアミン、ヘキシルアミン、シクロヘキシルアミン、オクチルアミン、ラウリルアミン、ステアリルアミン、オレイルアミン、ベンジルアミン等がある。また、ジ置換アミンの具体例としては、ジブチルアミン、ジペンチルアミン、ジヘキシルアミン、ジシクロヘキシルアミン、ジオクチルアミン、ジラウリルアミン、ジステアリルアミン、ジオレイルアミン、ジベンジルアミン、ステアリル・モノエタノールアミン、デシル・モノエタノールアミン、ヘキシル・モノプロパノールアミン、ベンジル・モノエタノールアミン、フェニル・モノエタノールアミン、トリル・モノプロパノール等がある。また、トリ置換アミンの具体例としては、トリブチルアミン、トリペンチルアミン、トリヘキシルアミン、トリシクロヘキシルアミン、トリオクチルアミン、トリラウリルアミン、トリステアリルアミン、トリオレイルアミン、トリベンジルアミン、ジオレイル・モノエタノールアミン、ジラウリル・モノプロパノールアミン、ジオクチル・モノエタノールアミン、ジヘキシル・モノプロパノールアミン、ジブチル・モノプロパノールアミン、オレイル・ジエタノールアミン、ステアリル・ジプロパノールアミン、ラウリル・ジエタノールアミン、オクチル・ジプロパノールアミン、ブチル・ジエタノールアミン、ベンジル・ジエタノールアミン、フェニル・ジエタノールアミン、トリル・ジプロパノールアミン、キシリル・ジエタノールアミン、トリエタノールアミン、トリプロパノールアミン等がある。
 また、上記以外の極圧剤としては、例えば、モノスルフィド類、ポリスルフィド類、スルホキシド類、スルホン類、チオスルフィネート類、硫化油脂、チオカーボネート類、チオフェン類、チアゾール類、メタンスルホン酸エステル類等の有機硫黄化合物系の極圧剤、チオリン酸トリエステル類等のチオリン酸エステル系の極圧剤、高級脂肪酸、ヒドロキシアリール脂肪酸類、多価アルコールエステル類、アクリル酸エステル類等のエステル系の極圧剤、塩素化パラフィン等の塩素化炭化水素類、塩素化カルボン酸誘導体等の有機塩素系の極圧剤、フッ素化脂肪族カルボン酸類、フッ素化エチレン樹脂、フッ素化アルキルポリシロキサン類、フッ素化黒鉛等の有機フッ素化系の極圧剤、高級アルコール等のアルコール系の極圧剤、ナフテン酸塩類(ナフテン酸鉛等)、脂肪酸塩類(脂肪酸鉛等)、チオリン酸塩類(ジアルキルジチオリン酸亜鉛等)、チオカルバミン酸塩類、有機モリブデン化合物、有機スズ化合物、有機ゲルマニウム化合物、ホウ酸エステル等の金属化合物系の極圧剤が挙げられる。
 酸化防止剤には、例えば、フェノール系の酸化防止剤やアミン系の酸化防止剤を用いることができる。フェノール系の酸化防止剤には、2,6-ジ-tert-ブチル-4-メチルフェノール(DBPC)、2,6-ジ-tert-ブチル-4-エチルフェノール、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)、2,4-ジメチル-6-tert-ブチルフェノール、2,6-ジ-tert-ブチルフェノール、ジ-tert-ブチル-p-クレゾール、ビスフェノールA等がある。また、アミン系の酸化防止剤には、N,N’-ジイソプロピル-p-フェニレンジアミン、N,N’-ジ-sec-ブチル-p-フェニレンジアミン、フェニル-α-ナフチルアミン、N.N’-ジ-フェニル-p-フェニレンジアミン、N,N-ジ(2-ナフチル)-p-フェニレンジアミン等がある。なお、酸化防止剤には、酸素を捕捉する酸素捕捉剤も用いることができる。
 消泡剤としては、例えば、ケイ素化合物を用いることができる。
 油性剤としては、例えば、高級アルコール類、脂肪酸等を用いることができる。
 銅不活性化剤等の金属不活化剤としては、ベンゾトリアゾールやその誘導体等を用いることができる。
 摩耗防止剤としては、ジチオリン酸亜鉛等を用いることができる。
 相溶化剤としては、特に限定されず、一般に用いられる相溶化剤の中から適宜選択することができ、一種を単独で用いてもよいし、二種以上を用いてもよい。相溶化剤としては、例えば、ポリオキシアルキレングリコールエーテル、アミド、ニトリル、ケトン、クロロカーボン、エステル、ラクトン、アリールエーテル、フルオロエーテルおよび1,1,1-トリフルオロアルカン等が挙げられる。相溶化剤としては、ポリオキシアルキレングリコールエーテルが特に好ましい。
 なお、冷凍機油には、必要に応じて、耐荷重添加剤、塩素捕捉剤、清浄分散剤、粘度指数向上剤、耐熱性向上剤、安定剤、腐食防止剤、耐熱性向上剤、流動点降下剤、および、防錆剤等を添加することも可能である。
 上記各添加剤の配合量は、冷凍機油に含まれる割合が0.01質量%以上5質量%以下であってよく、0.05質量%以上3質量%以下であることが好ましい。なお、冷媒組成物と冷凍機油とを合わせた冷凍機用作動流体中の添加剤の配合割合が、5質量%以下であることが好ましく、3質量%以下であることがより好ましい。
 なお、冷凍機油は、塩素濃度が50ppm以下となっていることが好ましく、硫黄濃度が50ppm以下となっていることが好ましい。
 (2)第2グループの技術の実施形態
 第1グループの技術および第2グループの技術としての冷凍サイクル装置は、空気調和装置である。
 (2-1)第1実施形態
 以下、冷媒回路の概略構成図である図2A、概略制御ブロック構成図である図2Bを参照しつつ、第1実施形態に係る冷凍サイクル装置としての空気調和装置1について説明する。
 空気調和装置1は、蒸気圧縮式の冷凍サイクルを行うことで、対象空間の空気を調和させる装置である。
 空気調和装置1は、主として、室外ユニット20と、室内ユニット30と、室外ユニット20と室内ユニット30を接続する液側冷媒連絡配管6およびガス側冷媒連絡配管5と、入力装置および出力装置としての図示しないリモコンと、空気調和装置1の動作を制御するコントローラ7と、を有している。
 空気調和装置1では、冷媒回路10内に封入された冷媒が、圧縮され、冷却又は凝縮され、減圧され、加熱又は蒸発された後に、再び圧縮される、という冷凍サイクルが行われる。本実施形態では、冷媒回路10には、蒸気圧縮式の冷凍サイクルを行うための冷媒が充填されている。当該冷媒は、(1)で説明したいずれかの冷媒であり、上述した冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかを用いることができる。また、冷媒回路10には、当該混合冷媒と共に、冷凍機油が充填されている。
 (2-1-1)室外ユニット20
 室外ユニット20は、液側冷媒連絡配管6およびガス側冷媒連絡配管5を介して室内ユニット30と接続されており、冷媒回路10の一部を構成している。室外ユニット20は、主として、圧縮機21と、四路切換弁22と、室外熱交換器23と、室外膨張弁24と、室外ファン25と、液側閉鎖弁29と、ガス側閉鎖弁28と、を有している。
 圧縮機21は、冷凍サイクルにおける低圧の冷媒を高圧になるまで圧縮する機器である。ここでは、圧縮機21として、ロータリ式やスクロール式等の容積式の圧縮要素(図示省略)が圧縮機モータによって回転駆動される密閉式構造の圧縮機が使用されている。圧縮機モータは、容量を変化させるためのものであり、インバータにより運転周波数の制御が可能である。なお、圧縮機21には、吸入側において、図示しない付属アキュムレータが設けられている(なお、当該付属アキュムレータの内容積は、後述する低圧レシーバ、中間圧レシーバ、高圧レシーバのそれぞれより小さく、好ましくは半分以下である)。
 四路切換弁22は、接続状態を切り換えることで、圧縮機21の吐出側と室外熱交換器23とを接続しつつ圧縮機21の吸入側とガス側閉鎖弁28とを接続する冷房運転接続状態と、圧縮機21の吐出側とガス側閉鎖弁28とを接続しつつ圧縮機21の吸入側と室外熱交換器23とを接続する暖房運転接続状態と、を切り換えることができる。
 室外熱交換器23は、冷房運転時には冷凍サイクルにおける高圧の冷媒の凝縮器として機能し、暖房運転時には冷凍サイクルにおける低圧の冷媒の蒸発器として機能する熱交換器である。
 室外ファン25は、室外ユニット20内に室外の空気を吸入して、室外熱交換器23において冷媒と熱交換させた後に、外部に排出するための空気流れを生じさせる。室外ファン25は、室外ファンモータによって回転駆動される。
 室外膨張弁24は、室外熱交換器23の液側端部と液側閉鎖弁29との間に設けられている。室外膨張弁24は、キャピラリーチューブ又は感温筒と共に用いられる機械式膨張弁であってもよいが、制御により弁開度を調節可能な電動膨張弁であることが好ましい。
 液側閉鎖弁29は、室外ユニット20における液側冷媒連絡配管6との接続部分に配置された手動弁である。
 ガス側閉鎖弁28は、室外ユニット20におけるとガス側冷媒連絡配管5との接続部分に配置された手動弁である。
 室外ユニット20は、室外ユニット20を構成する各部の動作を制御する室外ユニット制御部27を有している。室外ユニット制御部27は、CPUやメモリ等を含むマイクロコンピュータを有している。室外ユニット制御部27は、各室内ユニット30の室内ユニット制御部34と通信線を介して接続されており、制御信号等の送受信を行う。
 室外ユニット20には、吐出圧力センサ61、吐出温度センサ62、吸入圧力センサ63、吸入温度センサ64、室外熱交温度センサ65、外気温度センサ66等が設けられている。これらの各センサは、室外ユニット制御部27と電気的に接続されており、室外ユニット制御部27に対して検出信号を送信する。吐出圧力センサ61は、圧縮機21の吐出側と四路切換弁22の接続ポートの1つとを接続する吐出配管を流れる冷媒の圧力を検出する。吐出温度センサ62は、吐出配管を流れる冷媒の温度を検出する。吸入圧力センサ63は、圧縮機21の吸入側と四路切換弁22の接続ポートの1つとを接続する吸入配管を流れる冷媒の圧力を検出する。吸入温度センサ64は、吸入配管を流れる冷媒の温度を検出する。室外熱交温度センサ65は、室外熱交換器23のうち四路切換弁22が接続されている側とは反対側である液側の出口を流れる冷媒の温度を検出する。外気温度センサ66は、室外熱交換器23を通過する前の屋外の空気温度を検出する。
 (2-1-2)室内ユニット30
 室内ユニット30は、対象空間である室内の壁面や天井等に設置されている。室内ユニット30は、液側冷媒連絡配管6およびガス側冷媒連絡配管5を介して室外ユニット20と接続されており、冷媒回路10の一部を構成している。
 室内ユニット30は、室内熱交換器31と、室内ファン32と、を有している。
 室内熱交換器31は、液側が、液側冷媒連絡配管6と接続され、ガス側端が、ガス側冷媒連絡配管5とを接続されている。室内熱交換器31は、冷房運転時には冷凍サイクルにおける低圧の冷媒の蒸発器として機能し、暖房運転時には冷凍サイクルにおける高圧の冷媒の凝縮器として機能する熱交換器である。
 室内ファン32は、室内ユニット30内に室内の空気を吸入して、室内熱交換器31において冷媒と熱交換させた後に、外部に排出するための空気流れを生じさせる。室内ファン32は、室内ファンモータによって回転駆動される。
 また、室内ユニット30は、室内ユニット30を構成する各部の動作を制御する室内ユニット制御部34を有している。室内ユニット制御部34は、CPUやメモリ等を含むマイクロコンピュータを有している。室内ユニット制御部34は、室外ユニット制御部27と通信線を介して接続されており、制御信号等の送受信を行う。
 室内ユニット30には、室内液側熱交温度センサ71、室内空気温度センサ72等が設けられている。これらの各センサは、室内ユニット制御部34と電気的に接続されており、室内ユニット制御部34に対して検出信号を送信する。室内液側熱交温度センサ71は、室内熱交換器31のうち四路切換弁22が接続されている側とは反対側である液側の出口を流れる冷媒の温度を検出する。室内空気温度センサ72は、室内熱交換器31を通過する前の室内の空気温度を検出する。
 (2-1-3)コントローラ7の詳細
 空気調和装置1では、室外ユニット制御部27と室内ユニット制御部34が通信線を介して接続されることで、空気調和装置1の動作を制御するコントローラ7が構成されている。
 コントローラ7は、主として、CPU(中央演算処理装置)と、ROMやRAM等のメモリを有している。なお、コントローラ7による各種処理や制御は、室外ユニット制御部27および/又は室内ユニット制御部34に含まれる各部が一体的に機能することによって実現されている。
 (2-1-4)運転モード
 以下、運転モードについて説明する。
 運転モードとしては、冷房運転モードと暖房運転モードとが設けられている。
 コントローラ7は、リモコン等から受け付けた指示に基づいて、冷房運転モードか暖房運転モードかを判断し、実行する。
 (2-1-4-1)冷房運転モード
 空気調和装置1では、冷房運転モードでは、四路切換弁22の接続状態を圧縮機21の吐出側と室外熱交換器23とを接続しつつ圧縮機21の吸入側とガス側閉鎖弁28とを接続する冷房運転接続状態とし、冷媒回路10に充填されている冷媒を、主として、圧縮機21、室外熱交換器23、室外膨張弁24、室内熱交換器31の順に循環させる。
 より具体的には、冷房運転モードが開始されると、冷媒回路10内において、冷媒が圧縮機21に吸入されて圧縮された後に吐出される。
 圧縮機21では、室内ユニット30で要求される冷却負荷に応じた容量制御が行われる。当該容量制御は、特に限定されず、例えば、空気調和装置1が室内の空気温度が設定温度を満たすように制御される場合には、吐出温度(吐出温度センサ62の検出温度)が、設定温度と室内温度(室内空気温度センサ72の検出温度)との差分に応じた値となるように、圧縮機21の運転周波数を制御する。
 圧縮機21から吐出されたガス冷媒は、四路切換弁22を経て、室外熱交換器23のガス側端に流入する。
 室外熱交換器23のガス側端に流入したガス冷媒は、室外熱交換器23において、室外ファン25によって供給される室外側空気と熱交換を行って凝縮し、液冷媒となって室外熱交換器23の液側端から流出する。
 室外熱交換器23の液側端から流出した冷媒は、室外膨張弁24を通過する際に減圧される。なお、室外膨張弁24は、例えば、圧縮機21に吸入される冷媒の過熱度が所定の過熱度目標値となるように制御される。ここで、圧縮機21の吸入冷媒の過熱度は、例えば、吸入圧力(吸入圧力センサ63の検出圧力)に相当する飽和温度を、吸入温度(吸入温度センサ62の検出温度)から差し引くことにより求めることができる。なお、室外膨張弁24の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
 室外膨張弁24で減圧された冷媒は、液側閉鎖弁29および液側冷媒連絡配管6を経て、室内ユニット30に流入する。
 室内ユニット30に流入した冷媒は、室内熱交換器31に流入し、室内熱交換器31において、室内ファン32によって供給される室内空気と熱交換を行って蒸発し、ガス冷媒となって室内熱交換器31のガス側端から流出する。室内熱交換器31のガス側端から流出したガス冷媒は、ガス側冷媒連絡配管5に流れていく。
 ガス側冷媒連絡配管5を流れた冷媒は、ガス側閉鎖弁28、四路切換弁22を経て、再び、圧縮機21に吸入される。
 (2-1-4-2)暖房運転モード
 空気調和装置1では、暖房運転モードでは、四路切換弁22の接続状態を圧縮機21の吐出側とガス側閉鎖弁28とを接続しつつ圧縮機21の吸入側と室外熱交換器23とを接続する暖房運転接続状態とし、冷媒回路10に充填されている冷媒を、主として、圧縮機21、室内熱交換器31、室外膨張弁24、室外熱交換器23の順に循環させる。
 より具体的には、暖房運転モードが開始されると、冷媒回路10内において、冷媒が圧縮機21に吸入されて圧縮された後に吐出される。
 圧縮機21では、室内ユニット30で要求される暖房負荷に応じた容量制御が行われる。当該容量制御は、特に限定されず、例えば、空気調和装置1が室内の空気温度が設定温度を満たすように制御される場合には、吐出温度(吐出温度センサ62の検出温度)が、設定温度と室内温度(室内空気温度センサ72の検出温度)との差分に応じた値となるように、圧縮機21の運転周波数を制御する。
 圧縮機21から吐出されたガス冷媒は、四路切換弁22およびガス側冷媒連絡配管5を流れた後、室内ユニット30に流入する。
 室内ユニット30に流入した冷媒は、室内熱交換器31のガス側端に流入し、室内熱交換器31において、室内ファン32によって供給される室内空気と熱交換を行って凝縮し、気液二相状態の冷媒または液冷媒となって室内熱交換器31の液側端から流出する。室内熱交換器31の液側端から流出した冷媒は、液側冷媒連絡配管6に流れていく。
 液側冷媒連絡配管6を流れた冷媒は、室外ユニット20に流入し、液側閉鎖弁29を通過し、室外膨張弁24において冷凍サイクルにおける低圧になるまで減圧される。なお、室外膨張弁24は、例えば、圧縮機21に吸入される冷媒の過熱度が所定の過熱度目標値となるように制御される。なお、室外膨張弁24の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
 室外膨張弁24で減圧された冷媒は、室外熱交換器23の液側端に流入する。
 室外熱交換器23の液側端から流入した冷媒は、室外熱交換器23において、室外ファン25によって供給される室外空気と熱交換を行って蒸発し、ガス冷媒となって室外熱交換器23のガス側端から流出する。
 室外熱交換器23のガス側端から流出した冷媒は、四路切換弁22を経て、再び、圧縮機21に吸入される。
 (2-1-5)第1実施形態の特徴
 空気調和装置1では、冷媒X、冷媒Y、冷媒A、冷媒B、冷媒C、冷媒D、あるいは、冷媒Eを用いた冷凍サイクルを行うことができるため、GWPの小さい冷媒を用いて冷凍サイクルを行うことが可能になっている。
 (2-2)第2実施形態
 以下、冷媒回路の概略構成図である図2C、概略制御ブロック構成図である図2Dを参照しつつ、第2実施形態に係る冷凍サイクル装置としての空気調和装置1aについて説明する。なお、以下では、第1実施形態の空気調和装置1との違いを主に説明する。
 (2-2-1)空気調和装置1aの概略構成
 空気調和装置1aは、上記第1実施形態の空気調和装置1とは、室外ユニット20が低圧レシーバ41を備えている点で異なっている。
 低圧レシーバ41は、圧縮機21の吸入側と四路切換弁22の接続ポートの1つとの間に設けられており、冷媒回路10における余剰冷媒を液冷媒として貯留することが可能な冷媒容器である。なお、本実施形態では、吸入圧力センサ63及び吸入温度センサ64は、低圧レシーバ41と圧縮機21の吸入側との間を流れる冷媒を対象として検出するように設けられている。また、圧縮機21には、図示しない付属のアキュムレータが設けられており、低圧レシーバ41は、当該付属のアキュムレータの下流側に接続されている。
 (2-2-2)冷房運転モード
 空気調和装置1aでは、冷房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の蒸発温度が、設定温度と室内温度(室内空気温度センサ72の検出温度)との差分に応じて定まる目標蒸発温度になるように、運転周波数が容量制御される。なお、蒸発温度は、特に限定されないが、例えば、吸入圧力センサ63の検出圧力に相当する冷媒の飽和温度として把握してもよい。
 圧縮機21から吐出されたガス冷媒は、四路切換弁22、室外熱交換器23、室外膨張弁24の順に流れる。
 ここで、室外膨張弁24は、例えば、室外熱交換器23の液側出口を流れる冷媒の過冷却度が目標値になる等の所定条件を満たすように、弁開度が制御される。なお、室外熱交換器23の液側出口を流れる冷媒の過冷却度は、特に限定されないが、例えば、室外熱交温度センサ65の検出温度から、冷媒回路10の高圧(吐出圧力センサ61の検出圧力)に相当する冷媒の飽和温度を差し引くことにより求めることができる。なお、室外膨張弁24の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
 室外膨張弁24で減圧された冷媒は、液側閉鎖弁29、液側冷媒連絡配管6を介して室内ユニット30に流入し、室内熱交換器31において蒸発し、ガス側冷媒連絡配管5に流れていく。ガス側冷媒連絡配管5を流れた冷媒は、ガス側閉鎖弁28、四路切換弁22、低圧レシーバ41を経て、再び、圧縮機21に吸入される。なお、低圧レシーバ41では、室内熱交換器31において蒸発しきれなかった液冷媒が余剰冷媒として貯留される。
 (2-2-3)暖房運転モード
 空気調和装置1aでは、暖房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の凝縮温度が、設定温度と室内温度(室内空気温度センサ72の検出温度)との差分に応じて定まる目標凝縮温度になるように、運転周波数が容量制御される。なお、凝縮温度は、特に限定されないが、例えば、吐出圧力センサ61の検出圧力に相当する冷媒の飽和温度として把握してもよい。
 圧縮機21から吐出されたガス冷媒は、四路切換弁22、ガス側冷媒連絡配管5を流れた後、室内ユニット30の室内熱交換器31のガス側端に流入し、室内熱交換器31において凝縮する。室内熱交換器31の液側端から流出した冷媒は、液側冷媒連絡配管6を経て、室外ユニット20に流入し、液側閉鎖弁29を通過して、室外膨張弁24において冷凍サイクルにおける低圧になるまで減圧される。なお、室外膨張弁24は、例えば、室内熱交換器31の液側出口を流れる冷媒の過冷却度が目標値になる等の所定条件を満たすように、弁開度が制御される。なお、室内熱交換器31の液側出口を流れる冷媒の過冷却度は、特に限定されないが、例えば、室内液側熱交温度センサ71の検出温度から、冷媒回路10の高圧(吐出圧力センサ61の検出圧力)に相当する冷媒の飽和温度を差し引くことにより求めることができる。なお、室外膨張弁24の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
 室外膨張弁24で減圧された冷媒は、室外熱交換器23において蒸発し、四路切換弁22、低圧レシーバ41を経て、再び、圧縮機21に吸入される。なお、低圧レシーバ41では、室外熱交換器23において蒸発しきれなかった液冷媒が余剰冷媒として貯留される。
 (2-2-4)第2実施形態の特徴
 空気調和装置1aでは、冷媒X、冷媒Y、冷媒A、冷媒B、冷媒C、冷媒D、あるいは、冷媒Eを用いた冷凍サイクルを行うことができるため、GWPの小さい冷媒を用いて冷凍サイクルを行うことが可能になっている。
 また、空気調和装置1aでは、低圧レシーバ41を設けることにより、圧縮機21に吸入される冷媒の過熱度が所定値以上となることが確保される制御(室外膨張弁24の制御)を行わなくても、液圧縮が生じることを抑制させることが可能になっている。このため、室外膨張弁24の制御としては、凝縮器として機能させる場合の室外熱交換器23(凝縮器として機能させる場合の室内熱交換器31も同様)について、出口を流れる冷媒の過冷却度を十分に確保するように制御させることが可能になっている。
 (2-3)第3実施形態
 以下、冷媒回路の概略構成図である図2E、概略制御ブロック構成図である図2Fを参照しつつ、第3実施形態に係る冷凍サイクル装置としての空気調和装置1bについて説明する。なお、以下では、第2実施形態の空気調和装置1aとの違いを主に説明する。
 (2-3-1)空気調和装置1bの概略構成
 空気調和装置1bは、上記第2実施形態の空気調和装置1aとは、複数の室内ユニットが並列に設けられている点、および、各室内ユニットにおいて室内熱交換器の液冷媒側に室内膨張弁が設けられている点で異なっている。
 空気調和装置1bは、互いに並列に接続された第1室内ユニット30と第2室内ユニット35とを有している。第1室内ユニット30は、上記実施形態と同様に、第1室内熱交換器31、第1室内ファン32を有しており、第1室内熱交換器31の液冷媒側において第1室内膨張弁33が設けられている。第1室内膨張弁33は、弁開度を調節可能な電動膨張弁であることが好ましい。第1室内ユニット30には、上記実施形態と同様に、第1室内ユニット制御部34と、第1室内ユニット制御部34に対して電気的に接続された第1室内液側熱交温度センサ71、第1室内空気温度センサ72が設けられており、さらに、第1室内ガス側熱交温度センサ73等が設けられている。第1室内液側熱交温度センサ71は、第1室内熱交換器31の液冷媒側の出口を流れる冷媒の温度を検出する。第1室内ガス側熱交温度センサ73は、第1室内熱交換器31のガス冷媒側の出口を流れる冷媒の温度を検出する。第2室内ユニット35は、第1室内ユニット30と同様に、第2室内熱交換器36、第2室内ファン37を有しており、第2室内熱交換器36の液冷媒側において第2室内膨張弁38が設けられている。第2室内膨張弁38は、弁開度を調節可能な電動膨張弁であることが好ましい。第2室内ユニット35には、第1室内ユニット30と同様に、第2室内ユニット制御部39と、第2室内ユニット制御部39に対して電気的に接続された第2室内液側熱交温度センサ75、第2室内空気温度センサ76、および、第2室内ガス側熱交温度センサ77が設けられている。
 また、空気調和装置1bは、上記第2実施形態の空気調和装置1aとは、室外ユニットにおいて、室外膨張弁24が設けられていない点、および、バイパス膨張弁49を有するバイパス配管40が設けられている点で異なっている。
 バイパス配管40は、室外熱交換器23の液冷媒側の出口から液側閉鎖弁29まで延びる冷媒配管と、四路切換弁22の接続ポートの1つから低圧レシーバ41まで延びる冷媒配管と、を接続する冷媒配管である。バイパス膨張弁49は、弁開度を調節可能な電動膨張弁であることが好ましい。なお、バイパス配管40には、開度調節可能な電動膨張弁が設けられたものに限られず、例えば、キャピラリーチューブと開閉可能な電磁弁を有したものであってもよい。
 (2-3-2)冷房運転モード
 空気調和装置1bでは、冷房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の蒸発温度が目標蒸発温度になるように、運転周波数が容量制御される。ここで、目標蒸発温度は、各室内ユニット30、35において設定温度と室内温度との差分が最も大きいもの(負荷が最も大きな室内ユニット)に応じて定めることが好ましい。なお、蒸発温度は、特に限定されないが、例えば、吸入圧力センサ63の検出圧力に相当する冷媒の飽和温度として把握することができる。
 圧縮機21から吐出されたガス冷媒は、四路切換弁22を介して、室外熱交換器23において凝縮する。室外熱交換器23を流れた冷媒は、液側閉鎖弁29、液側冷媒連絡配管6を介して、第1室内ユニット30および第2室内ユニット35に送られる。
 ここで、第1室内ユニット30では、第1室内膨張弁33は、例えば、第1室内熱交換器31のガス側出口を流れる冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。なお、第1室内熱交換器31のガス側出口を流れる冷媒の過熱度は、特に限定されないが、例えば、第1室内ガス側熱交温度センサ73の検出温度から、冷媒回路10の低圧(吸入圧力センサ63の検出圧力)に相当する冷媒の飽和温度を差し引くことにより求めることができる。また、第2室内ユニット35の第2室内膨張弁38も、第1室内膨張弁33と同様に、例えば、第2室内熱交換器36のガス側出口を流れる冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。なお、第2室内熱交換器36のガス側出口を流れる冷媒の過熱度についても、特に限定されないが、例えば、第2室内ガス側熱交温度センサ77の検出温度から、冷媒回路10の低圧(吸入圧力センサ63の検出圧力)に相当する冷媒の飽和温度を差し引くことにより求めることができる。また、第1室内膨張弁33と第2室内膨張弁38は、いずれも、吸入温度センサ64の検出温度から吸入圧力センサ63の検出圧力に相当する冷媒の飽和温度を差し引くことで得られる冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御されてもよい。さらに、第1室内膨張弁33および第2室内膨張弁38の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
 第1室内膨張弁33で減圧された冷媒は第1室内熱交換器31において蒸発し、第2室内膨張弁38で減圧された冷媒は第2室内熱交換器36において蒸発し、合流した後、ガス側冷媒連絡配管5に流れていく。ガス側冷媒連絡配管5を流れた冷媒は、ガス側閉鎖弁28、四路切換弁22、低圧レシーバ41を経て、再び、圧縮機21に吸入される。なお、低圧レシーバ41では、第1室内熱交換器31および第2室内熱交換器において蒸発しきれなかった液冷媒が余剰冷媒として貯留される。なお、バイパス配管40のバイパス膨張弁49は、凝縮器として機能する室外熱交換器23の内部の冷媒量が過剰であることに関する所定条件を満たした場合に開けられるまたは弁開度が上げられる制御が行われる。バイパス膨張弁49の開度制御としては、特に限定されないが、例えば、凝縮圧力(例えば、吐出圧力センサ61の検出圧力)が所定値以上である場合に、開けるまたは開度が上げられる制御であってもよいし、通過流量を増大させるように所定の時間間隔で開状態と閉状態とを切り換える制御であってもよい。
 (2-3-3)暖房運転モード
 空気調和装置1bでは、暖房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の凝縮温度が、目標凝縮温度になるように、運転周波数が容量制御される。ここで、目標凝縮温度は、各室内ユニット30、35において設定温度と室内温度との差分が最も大きいもの(負荷が最も大きな室内ユニット)に応じて定めることが好ましい。なお、凝縮温度は、特に限定されないが、例えば、吐出圧力センサ61の検出圧力に相当する冷媒の飽和温度として把握してもよい。
 圧縮機21から吐出されたガス冷媒は、四路切換弁22、ガス側冷媒連絡配管5を流れた後、一部の冷媒が、第1室内ユニット30の第1室内熱交換器31のガス側端に流入し、第1室内熱交換器31において凝縮し、他の一部の冷媒が、第2室内ユニット35の第2室内熱交換器36のガス側端に流入し、第2室内熱交換器36において凝縮する。
 なお、第1室内ユニット30の第1室内膨張弁33は、第1室内熱交換器31の液側を流れる冷媒の過冷却度が所定の目標値になる等の所定条件を満たすように、弁開度が制御される。第2室内ユニット35の第2室内膨張弁38についても同様に、第2室内熱交換器36の液側を流れる冷媒の過冷却度が所定の目標値になる等の所定条件を満たすように、弁開度が制御される。なお、第1室内熱交換器31の液側を流れる冷媒の過冷却度は、第1室内液側熱交温度センサ71の検出温度から、冷媒回路10における高圧(吐出圧力センサ61の検出圧力)に相当する冷媒の飽和温度を差し引くことで求めることができる。また、第2室内熱交換器36の液側を流れる冷媒の過冷却度についても同様に、第2室内液側熱交温度センサ75の検出温度から、冷媒回路10における高圧(吐出圧力センサ61の検出圧力)に相当する冷媒の飽和温度を差し引くことで求めることができる。
 第1室内膨張弁33で減圧された冷媒および第2室内膨張弁38で減圧された冷媒は、合流し、液側冷媒連絡配管6、液側閉鎖弁29を通過した後、室外熱交換器23において蒸発し、四路切換弁22、低圧レシーバ41を経て、再び、圧縮機21に吸入される。なお、低圧レシーバ41では、室外熱交換器23において蒸発しきれなかった液冷媒が余剰冷媒として貯留される。なお、暖房運転時には、特に限定されないが、バイパス配管40のバイパス膨張弁49は、例えば、全閉状態に維持されていてもよい。
 (2-3-4)第3実施形態の特徴
 空気調和装置1bでは、冷媒X、冷媒Y、冷媒A、冷媒B、冷媒C、冷媒D、あるいは、冷媒Eを用いた冷凍サイクルを行うことができるため、GWPの小さい冷媒を用いて冷凍サイクルを行うことが可能になっている。
 また、空気調和装置1bでは、低圧レシーバ41を設けることにより、圧縮機21における液圧縮を抑制することができている。また、冷房運転時には、第1室内膨張弁33、第2室内膨張弁38を過熱度制御することで、暖房運転時には、第1室内膨張弁33、第2室内膨張弁38を過冷却度制御することで、第1室内熱交換器31、第2室内熱交換器36における能力を十分に発揮させやすい。
 (2-4)第4実施形態
 以下、冷媒回路の概略構成図である図2G、概略制御ブロック構成図である図2Hを参照しつつ、第4実施形態に係る冷凍サイクル装置としての空気調和装置1cについて説明する。なお、以下では、第2実施形態の空気調和装置1aとの違いを主に説明する。
 (2-4-1)空気調和装置1cの概略構成
 空気調和装置1cは、上記第2実施形態の空気調和装置1aとは、室外ユニット20が低圧レシーバ41を備えていない点、高圧レシーバ42を備えている点、室外ブリッジ回路26を備えている点で異なっている。
 また、室内ユニット30は、室内熱交換器31の液側を流れる冷媒温度を検出する室内液側熱交温度センサ71と、室内の空気温度を検出する室内空気温度センサ72と、室内熱交換器31のガス側を流れる冷媒温度を検出する室内ガス側熱交温度センサ73と、を有している。
 室外ブリッジ回路26は、室外熱交換器23の液側と液側閉鎖弁29との間に設けられており、4つの接続箇所および各接続箇所の間に設けられた逆止弁を有している。室外ブリッジ回路26が有する4つの接続箇所のうち、室外熱交換器23の液側に接続される箇所と液側閉鎖弁29に接続される箇所以外の2箇所からは、それぞれ高圧レシーバ42まで延びた冷媒配管が接続されている。また、これらの冷媒配管のうち、高圧レシーバ42の内部空間のうちのガス領域から延びだしている冷媒配管には、途中に室外膨張弁24が設けられている。
 (2-4-2)冷房運転モード
 空気調和装置1cでは、冷房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の蒸発温度が、設定温度と室内温度(室内空気温度センサ72の検出温度)との差分に応じて定まる目標蒸発温度になるように、運転周波数が容量制御される。なお、蒸発温度は、特に限定されないが、例えば、室内液側熱交温度センサ71の検出温度として把握してもよいし、吸入圧力センサ63の検出圧力に相当する冷媒の飽和温度として把握してもよい。
 圧縮機21から吐出されたガス冷媒は、四路切換弁22を介して、室外熱交換器23において凝縮する。室外熱交換器23を流れた冷媒は、室外ブリッジ回路26の一部を介して、高圧レシーバ42に流入する。なお、高圧レシーバ42では、冷媒回路10における余剰冷媒が液冷媒として貯留される。高圧レシーバ42のガス領域から流出したガス冷媒は、室外膨張弁24において減圧される。
 ここで、室外膨張弁24は、例えば、室内熱交換器31のガス側出口を流れる冷媒の過熱度または圧縮機21の吸入側を流れる冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。なお、室内熱交換器31のガス側出口を流れる冷媒の過熱度は、特に限定されないが、例えば、室内ガス側熱交温度センサ73の検出温度から、冷媒回路10の低圧(吸入圧力センサ63の検出圧力)に相当する冷媒の飽和温度を差し引くことにより求めてもよい。また、圧縮機21の吸入側を流れる冷媒の過熱度は、吸入温度センサ64の検出温度から、吸入圧力センサ63の検出圧力に相当する冷媒の飽和温度を差し引くことにより求めてもよい。なお、室外膨張弁24の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
 室外膨張弁24で減圧された冷媒は、室外ブリッジ回路26の他の一部を流れ、液側閉鎖弁29、液側冷媒連絡配管6を介して室内ユニット30に流入し、室内熱交換器31において蒸発する。室内熱交換器31を流れた冷媒は、ガス側冷媒連絡配管5、ガス側閉鎖弁28、四路切換弁22を経て、再び、圧縮機21に吸入される。
 (2-4-3)暖房運転モード
 空気調和装置1cでは、暖房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の凝縮温度が、設定温度と室内温度(室内空気温度センサ72の検出温度)との差分に応じて定まる目標凝縮温度になるように、運転周波数が容量制御される。なお、凝縮温度は、特に限定されないが、例えば、吐出圧力センサ61の検出圧力に相当する冷媒の飽和温度として把握してもよい。
 圧縮機21から吐出されたガス冷媒は、四路切換弁22、ガス側冷媒連絡配管5を流れた後、室内ユニット30の室内熱交換器31のガス側端に流入し、室内熱交換器31において凝縮する。室内熱交換器31の液側端から流出した冷媒は、液側冷媒連絡配管6を経て、室外ユニット20に流入し、液側閉鎖弁29を通過して、室外ブリッジ回路26の一部を流れ、高圧レシーバ42に流入する。なお、高圧レシーバ42では、冷媒回路10における余剰冷媒が液冷媒として貯留される。高圧レシーバ42のガス領域から流出したガス冷媒は、室外膨張弁24において冷凍サイクルにおける低圧になるまで減圧される。
 なお、室外膨張弁24は、例えば、圧縮機21が吸入する冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。なお、圧縮機21の吸入側を流れる冷媒の過熱度は、特に限定されないが、例えば、吸入温度センサ64の検出温度から、吸入圧力センサ63の検出圧力に相当する冷媒の飽和温度を差し引いて求めることができる。なお、室外膨張弁24の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
 室外膨張弁24で減圧された冷媒は、室外ブリッジ回路26の他の一部を流れ、室外熱交換器23において蒸発し、四路切換弁22を経て、再び、圧縮機21に吸入される。
 (2-4-4)第4実施形態の特徴
 空気調和装置1cでは、冷媒X、冷媒Y、冷媒A、冷媒B、冷媒C、冷媒D、あるいは、冷媒Eを用いた冷凍サイクルを行うことができるため、GWPの小さい冷媒を用いて冷凍サイクルを行うことが可能になっている。
 また、空気調和装置1cでは、高圧レシーバ42を設けることにより、冷媒回路10における余剰冷媒を貯留することが可能になる。
 (2-5)第5実施形態
 以下、冷媒回路の概略構成図である図2I、概略制御ブロック構成図である図2Jを参照しつつ、第5実施形態に係る冷凍サイクル装置としての空気調和装置1dについて説明する。なお、以下では、第4実施形態の空気調和装置1cとの違いを主に説明する。
 (2-5-1)空気調和装置1dの概略構成
 空気調和装置1dは、上記第4実施形態の空気調和装置1cとは、複数の室内ユニットが並列に設けられている点、および、各室内ユニットにおいて室内熱交換器の液冷媒側に室内膨張弁が設けられている点で異なっている。
 空気調和装置1dは、互いに並列に接続された第1室内ユニット30と第2室内ユニット35とを有している。第1室内ユニット30は、上記実施形態と同様に、第1室内熱交換器31、第1室内ファン32を有しており、第1室内熱交換器31の液冷媒側において第1室内膨張弁33が設けられている。第1室内膨張弁33は、弁開度を調節可能な電動膨張弁であることが好ましい。第1室内ユニット30には、上記実施形態と同様に、第1室内ユニット制御部34と、第1室内ユニット制御部34に対して電気的に接続された第1室内液側熱交温度センサ71、第1室内空気温度センサ72、第1室内ガス側熱交温度センサ73等が設けられている。第1室内液側熱交温度センサ71は、第1室内熱交換器31の液冷媒側の出口を流れる冷媒の温度を検出する。第1室内ガス側熱交温度センサ73は、第1室内熱交換器31のガス冷媒側の出口を流れる冷媒の温度を検出する。第2室内ユニット35は、第1室内ユニット30と同様に、第2室内熱交換器36、第2室内ファン37を有しており、第2室内熱交換器36の液冷媒側において第2室内膨張弁38が設けられている。第2室内膨張弁38は、弁開度を調節可能な電動膨張弁であることが好ましい。第2室内ユニット35には、第1室内ユニット30と同様に、第2室内ユニット制御部39と、第2室内ユニット制御部39に対して電気的に接続された第2室内液側熱交温度センサ75、第2室内空気温度センサ76、第2室内ガス側熱交温度センサ77が設けられている。
 (2-5-2)冷房運転モード
 空気調和装置1cでは、冷房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の蒸発温度が目標蒸発温度になるように、運転周波数が容量制御される。ここで、目標蒸発温度は、各室内ユニット30、35において設定温度と室内温度との差分が最も大きいもの(負荷が最も大きな室内ユニット)に応じて定めることが好ましい。
 圧縮機21から吐出されたガス冷媒は、四路切換弁22を介して、室外熱交換器23において凝縮する。室外熱交換器23を流れた冷媒は、室外ブリッジ回路26の一部を介して、高圧レシーバ42に流入する。なお、高圧レシーバ42では、冷媒回路10における余剰冷媒が液冷媒として貯留される。高圧レシーバ42のガス領域から流出したガス冷媒は、室外膨張弁24において減圧される。ここで、冷房運転時は、室外膨張弁24は、例えば、弁開度が全開状態となるように制御される。
 室外膨張弁24を通過した冷媒は、室外ブリッジ回路26の他の一部を流れ、液側閉鎖弁29、液側冷媒連絡配管6を介して第1室内ユニット30および第2室内ユニット35に流入する。
 第1室内ユニット30に流入した冷媒は、第1室内膨張弁33において減圧される。第1室内膨張弁33は、第1室内熱交換器31のガス側出口を流れる冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。なお、第1室内熱交換器31のガス側出口を流れる冷媒の過熱度は、特に限定されないが、例えば、第1室内ガス側熱交温度センサ73の検出温度から、冷媒回路10の低圧(吸入圧力センサ63の検出圧力)に相当する冷媒の飽和温度を差し引くことにより求めてもよい。同様に、第2室内ユニット35に流入した冷媒は、第2室内膨張弁38において減圧される。第2室内膨張弁38は、第2室内熱交換器36のガス側出口を流れる冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。なお、第2室内熱交換器36のガス側出口を流れる冷媒の過熱度は、特に限定されないが、例えば、第2室内ガス側熱交温度センサ77の検出温度から、冷媒回路10の低圧(吸入圧力センサ63の検出圧力)に相当する冷媒の飽和温度を差し引くことにより求めてもよい。また、第1室内膨張弁33と第2室内膨張弁38は、いずれも、吸入温度センサ64の検出温度から吸入圧力センサ63の検出圧力に相当する冷媒の飽和温度を差し引くことで得られる冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御されてもよい。さらに、第1室内膨張弁33および第2室内膨張弁38の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
 第1室内熱交換器31において蒸発した冷媒と、第2室内熱交換器36において蒸発した冷媒とは、合流した後、ガス側冷媒連絡配管5、ガス側閉鎖弁28、四路切換弁22を経て、再び、圧縮機21に吸入される。
 (2-5-3)暖房運転モード
 空気調和装置1cでは、暖房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の凝縮温度が、目標凝縮温度になるように、運転周波数が容量制御される。ここで、目標凝縮温度は、各室内ユニット30、35において設定温度と室内温度との差分が最も大きいもの(負荷が最も大きな室内ユニット)に応じて定めることが好ましい。なお、凝縮温度は、特に限定されないが、例えば、吐出圧力センサ61の検出圧力に相当する冷媒の飽和温度として把握してもよい。
 圧縮機21から吐出されたガス冷媒は、四路切換弁22、ガス側冷媒連絡配管5を流れた後、第1室内ユニット30および第2室内ユニット35にそれぞれ流入する。
 第1室内ユニット30の第1室内熱交換器31に流入したガス冷媒は、第1室内熱交換器31において凝縮する。第1室内熱交換器31を流れた冷媒は、第1室内膨張弁33において減圧される。第1室内膨張弁33は、第1室内熱交換器31の液側出口を流れる冷媒の過冷却度が目標値になる等の所定条件を満たすように、弁開度が制御される。第1室内熱交換器31の液側出口を流れる冷媒の過冷却度は、例えば、第1室内液側熱交温度センサ71の検出温度から、吐出圧力センサ61の検出圧力に相当する冷媒の飽和温度を差し引くことで求めることができる。
 第2室内ユニット35の第2室内熱交換器36に流入したガス冷媒は、同様に、第2室内熱交換器36において凝縮する。第2室内熱交換器36を流れた冷媒は、第2室内膨張弁38において減圧される。第2室内膨張弁38は、第2室内熱交換器36の液側出口を流れる冷媒の過冷却度が目標値になる等の所定条件を満たすように、弁開度が制御される。第2室内熱交換器36の液側出口を流れる冷媒の過冷却度は、例えば、第2室内液側熱交温度センサ75の検出温度から、吐出圧力センサ61の検出圧力に相当する冷媒の飽和温度を差し引くことで求めることができる。
 第1室内熱交換器31の液側端から流出した冷媒および第2室内熱交換器36の液側端から流出した冷媒は、合流した後、液側冷媒連絡配管6を経て、室外ユニット20に流入する。
 室外ユニット20に流入した冷媒は、液側閉鎖弁29を通過して、室外ブリッジ回路26の一部を流れ、高圧レシーバ42に流入する。なお、高圧レシーバ42では、冷媒回路10における余剰冷媒が液冷媒として貯留される。高圧レシーバ42のガス領域から流出したガス冷媒は、室外膨張弁24において冷凍サイクルにおける低圧になるまで減圧される。すなわち、暖房運転時は、高圧レシーバ42は、擬似的な中間圧冷媒が貯留されることとなる。
 なお、室外膨張弁24は、例えば、圧縮機21が吸入する冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。なお、圧縮機21が吸入する冷媒の過熱度は、特に限定されないが、例えば、吸入温度センサ64の検出温度から、吸入圧力センサ63の検出圧力に相当する冷媒の飽和温度を差し引いて求めることができる。なお、室外膨張弁24の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
 室外膨張弁24で減圧された冷媒は、室外ブリッジ回路26の他の一部を流れ、室外熱交換器23において蒸発し、四路切換弁22を経て、再び、圧縮機21に吸入される。
 (2-5-4)第5実施形態の特徴
 空気調和装置1dでは、冷媒X、冷媒Y、冷媒A、冷媒B、冷媒C、冷媒D、あるいは、冷媒Eを用いた冷凍サイクルを行うことができるため、GWPの小さい冷媒を用いて冷凍サイクルを行うことが可能になっている。
 また、空気調和装置1dでは、高圧レシーバ42を設けることにより、冷媒回路10における余剰冷媒を貯留することが可能になる。
 なお、暖房運転時において、室外膨張弁24の弁開度が過熱度制御されることにより圧縮機21の信頼性が確保されるため、第1室内膨張弁33および第2室内膨張弁38については、第1室内熱交換器31および第2室内熱交換器36における能力を十分に発揮させるように、過冷却度制御を行うことが可能となっている。
 (2-6)第6実施形態
 以下、冷媒回路の概略構成図である図2K、概略制御ブロック構成図である図2Lを参照しつつ、第6実施形態に係る冷凍サイクル装置としての空気調和装置1eについて説明する。なお、以下では、第2実施形態の空気調和装置1aとの違いを主に説明する。
 (2-6-1)空気調和装置1eの概略構成
 空気調和装置1eは、上記第2実施形態の空気調和装置1aとは、室外ユニット20が低圧レシーバ41を有していない点、中間圧レシーバ43を有している点、室外膨張弁24を有していない点、第1室外膨張弁44および第2室外膨張弁45を有している点で異なっている。
 中間圧レシーバ43は、冷媒回路10における室外熱交換器23の液側から液側閉鎖弁29までの間に設けられており、冷媒回路10における余剰冷媒を液冷媒として貯留することが可能な冷媒容器である。
 第1室外膨張弁44は、室外熱交換器23の液側から中間圧レシーバ43まで延びる冷媒配管の途中に設けられている。第2室外膨張弁45は、中間圧レシーバ43から液側閉鎖弁29まで延びる冷媒配管の途中に設けられている。第1室外膨張弁44および第2室外膨張弁45は、いずれも、弁開度を調節可能な電動膨張弁であることが好ましい。
 (2-6-2)冷房運転モード
 空気調和装置1eでは、冷房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の蒸発温度が、設定温度と室内温度(室内空気温度センサ72の検出温度)との差分に応じて定まる目標蒸発温度になるように、運転周波数が容量制御される。
 圧縮機21から吐出されたガス冷媒は、四路切換弁22を通過した後、室外熱交換器23において凝縮する。室外熱交換器23を流れた冷媒は、第1室外膨張弁44において、冷凍サイクルにおける中間圧力まで減圧される。
 ここで、第1室外膨張弁44は、例えば、室外熱交換器23の液側出口を流れる冷媒の過冷却度が目標値になる等の所定条件を満たすように、弁開度が制御される。
 第1室外膨張弁44において減圧された冷媒は、中間圧レシーバ43に流入する。中間圧レシーバ43では、冷媒回路10における余剰冷媒が液冷媒として貯留される。中間圧レシーバ43を通過した冷媒は、第2室外膨張弁45において、冷凍サイクルの低圧まで減圧される。
 ここで、第2室外膨張弁45は、例えば、室内熱交換器31のガス側を流れる冷媒の過熱度または圧縮機21が吸入する冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。なお、第2室外膨張弁45の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
 第2室外膨張弁45において冷凍サイクルの低圧まで減圧された冷媒は、液側閉鎖弁29、液側冷媒連絡配管6を介して室内ユニット30に流入し、室内熱交換器31において蒸発する。室内熱交換器31を流れた冷媒は、ガス側冷媒連絡配管5を流れた後、ガス側閉鎖弁28、四路切換弁22を経て、再び、圧縮機21に吸入される。
 (2-6-3)暖房運転モード
 空気調和装置1eでは、暖房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の凝縮温度が、設定温度と室内温度(室内空気温度センサ72の検出温度)との差分に応じて定まる目標凝縮温度になるように、運転周波数が容量制御される。
 圧縮機21から吐出されたガス冷媒は、四路切換弁22、ガス側冷媒連絡配管5を流れた後、室内ユニット30の室内熱交換器31のガス側端に流入し、室内熱交換器31において凝縮する。室内熱交換器31の液側端から流出した冷媒は、液側冷媒連絡配管6を経て、室外ユニット20に流入し、液側閉鎖弁29を通過して、第2室外膨張弁45において冷凍サイクルにおける中間圧になるまで減圧される。
 ここで、第2室外膨張弁45は、例えば、室内熱交換器31の液側出口を流れる冷媒の過冷却度が目標値になる等の所定条件を満たすように、弁開度が制御される。
 第2室外膨張弁45において減圧された冷媒は、中間圧レシーバ43に流入する。中間圧レシーバ43では、冷媒回路10における余剰冷媒が液冷媒として貯留される。中間圧レシーバ43を通過した冷媒は、第1室外膨張弁44において、冷凍サイクルの低圧まで減圧される。
 ここで、第1室外膨張弁44は、例えば、圧縮機21が吸入する冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。なお、第1室外膨張弁44の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
 第1室外膨張弁44で減圧された冷媒は、室外熱交換器23において蒸発し、四路切換弁22を経て、再び、圧縮機21に吸入される。
 (2-6-4)第6実施形態の特徴
 空気調和装置1eでは、冷媒X、冷媒Y、冷媒A、冷媒B、冷媒C、冷媒D、あるいは、冷媒Eを用いた冷凍サイクルを行うことができるため、GWPの小さい冷媒を用いて冷凍サイクルを行うことが可能になっている。
 また、空気調和装置1eでは、中間圧レシーバ43を設けることにより、冷媒回路10における余剰冷媒を貯留させることが可能になっている。また、冷房運転時においては、第1室外膨張弁44を過冷却度制御させることにより、室外熱交換器23の能力を十分に発揮させやすく、暖房運転時においては、第2室外膨張弁45を過冷却度制御させることにより、室内熱交換器31の能力を十分に発揮させやすくすることが可能になっている。
 (2-7)第7実施形態
 以下、冷媒回路の概略構成図である図2M、概略制御ブロック構成図である図2Nを参照しつつ、第7実施形態に係る冷凍サイクル装置としての空気調和装置1fについて説明する。なお、以下では、第6実施形態の空気調和装置1eとの違いを主に説明する。
 (2-7-1)空気調和装置1fの概略構成
 空気調和装置1fは、上記第6実施形態の空気調和装置1eとは、室外ユニット20が互いに並列に配置された第1室外熱交換器23aおよび第2室外熱交換器23bを有している点、第1室外熱交換器23aの液冷媒側に第1分岐室外膨張弁24aを有し、第2室外熱交換器23bの液冷媒側に第2分岐室外膨張弁24bを有している点で異なっている。なお、第1分岐室外膨張弁24aおよび第2分岐室外膨張弁24bは、弁開度を調節可能な電動膨張弁であることが好ましい。
 また、空気調和装置1fは、上記第6実施形態の空気調和装置1eとは、複数の室内ユニットが並列に設けられている点、および、各室内ユニットにおいて室内熱交換器の液冷媒側に室内膨張弁が設けられている点で異なっている。
 空気調和装置1fは、互いに並列に接続された第1室内ユニット30と第2室内ユニット35とを有している。第1室内ユニット30は、上記実施形態と同様に、第1室内熱交換器31、第1室内ファン32を有しており、第1室内熱交換器31の液冷媒側において第1室内膨張弁33が設けられている。第1室内膨張弁33は、弁開度を調節可能な電動膨張弁であることが好ましい。第1室内ユニット30には、上記実施形態と同様に、第1室内ユニット制御部34と、第1室内ユニット制御部34に対して電気的に接続された第1室内液側熱交温度センサ71、第1室内空気温度センサ72、第1室内ガス側熱交温度センサ73等が設けられている。第1室内液側熱交温度センサ71は、第1室内熱交換器31の液冷媒側の出口を流れる冷媒の温度を検出する。第1室内ガス側熱交温度センサ73は、第1室内熱交換器31のガス冷媒側の出口を流れる冷媒の温度を検出する。第2室内ユニット35は、第1室内ユニット30と同様に、第2室内熱交換器36、第2室内ファン37を有しており、第2室内熱交換器36の液冷媒側において第2室内膨張弁38が設けられている。第2室内膨張弁38は、弁開度を調節可能な電動膨張弁であることが好ましい。第2室内ユニット35には、第1室内ユニット30と同様に、第2室内ユニット制御部39と、第2室内ユニット制御部39に対して電気的に接続された第2室内液側熱交温度センサ75、第2室内空気温度センサ76、第2室内ガス側熱交温度センサ77が設けられている。
 (2-7-2)冷房運転モード
 空気調和装置1fでは、冷房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の蒸発温度が目標蒸発温度になるように、運転周波数が容量制御される。ここで、目標蒸発温度は、各室内ユニット30、35において設定温度と室内温度との差分が最も大きいもの(負荷が最も大きな室内ユニット)に応じて定めることが好ましい。
 圧縮機21から吐出されたガス冷媒は、四路切換弁22を通過した後、第1室外熱交換器23aと第2室外熱交換器23bとに分岐して流れ、第1室外熱交換器23aと第2室外熱交換器23bのそれぞれにおいて凝縮する。第1室外熱交換器23aを流れた冷媒は、第1分岐室外膨張弁24aにおいて、冷凍サイクルにおける中間圧力まで減圧される。また、第2室外熱交換器23bを流れた冷媒は、第2分岐室外膨張弁24bにおいて、冷凍サイクルにおける中間圧力まで減圧される。
 ここで、第1分岐室外膨張弁24aおよび第2分岐室外膨張弁24bは、例えば、いずれも全開状態となるように制御してもよい。
 また、第1室外熱交換器23aと第2室外熱交換器23bとにおいて、構造上または冷媒配管の接続上、冷媒の流れやすさにおいて違いが生じている場合には、第1室外熱交換器23aの液側出口を流れる冷媒の過冷却度が共通目標値になる等の所定条件を満たすように第1分岐室外膨張弁24aの弁開度を制御し、第2室外熱交換器23bの液側出口を流れる冷媒の過冷却度が同じ共通目標値になる等の所定条件を満たすように第2分岐室外膨張弁24bの弁開度を制御してもよい。この制御により、第1室外熱交換器23aと第2室外熱交換器23bとの間の冷媒の偏流を小さく抑えることが可能になる。
 第1分岐室外膨張弁24aを通過した冷媒および第2分岐室外膨張弁24bを通過した冷媒は、合流した後に、中間圧レシーバ43に流入する。中間圧レシーバ43では、冷媒回路10における余剰冷媒が液冷媒として貯留される。中間圧レシーバ43を通過した冷媒は、液側閉鎖弁29、液側冷媒連絡配管6を流れて、第1室内ユニット31および第2室内ユニット35にそれぞれ流入する。
 第1室内ユニット31に流入した冷媒は、第1室内膨張弁33において、冷凍サイクルの低圧まで減圧される。また、第2室内ユニット35に流入した冷媒は、第2室内膨張弁38において、冷凍サイクルの低圧まで減圧される。
 ここで、第1室内膨張弁33は、例えば、第1室内熱交換器31のガス側を流れる冷媒の過熱度または圧縮機21が吸入する冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。また、第2室内膨張弁38も、同様に、例えば、第2室内熱交換器36のガス側を流れる冷媒の過熱度または圧縮機21が吸入する冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。なお、第1室内膨張弁33および第2室内膨張弁38の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
 第1室内膨張弁33において減圧された冷媒は、第1室内熱交換器31において蒸発し、第2室内膨張弁38において減圧された冷媒は、第2室内熱交換器36において蒸発し、合流した後、ガス側冷媒連絡配管5、ガス側閉鎖弁28、四路切換弁22を経て、再び、圧縮機21に吸入される。
 (2-7-3)暖房運転モード
 空気調和装置1fでは、暖房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の凝縮温度が、目標凝縮温度になるように、運転周波数が容量制御される。ここで、目標凝縮温度は、各室内ユニット30、35において設定温度と室内温度との差分が最も大きいもの(負荷が最も大きな室内ユニット)に応じて定めることが好ましい。
 圧縮機21から吐出されたガス冷媒は、四路切換弁22、ガス側冷媒連絡配管5を流れた後、第1室内ユニット30と第2室内ユニット35にそれぞれ流入する。
 第1室内ユニット30に流入した冷媒は、第1室内熱交換器31において凝縮し、第2室内ユニット35に流入した冷媒は、第2室内熱交換器36において凝縮する。
 第1室内熱交換器31の液側端から流出した冷媒は、第1室内膨張弁33において、冷凍サイクルの中間圧となるまで減圧される。第2室内熱交換器36の液側端から流出した冷媒も、同様に、第2室内膨張弁38において、冷凍サイクルの中間圧となるまで減圧される。
 ここで、第1室内膨張弁33は、例えば、第1室内熱交換器31の液側出口を流れる冷媒の過冷却度が目標値になる等の所定条件を満たすように、弁開度が制御される。また、第2室内膨張弁38についても同様に、例えば、第2室内熱交換器36の液側出口を流れる冷媒の過冷却度が目標値になる等の所定条件を満たすように、弁開度が制御される。
 第1室内膨張弁33を通過した冷媒と第2室内膨張弁38を通過した冷媒は、合流した後、液側冷媒連絡配管6を経て、室外ユニット20に流入する。
 室外ユニット20に流入した冷媒は、液側閉鎖弁29を通過して、中間圧レシーバ43に送られる。中間圧レシーバ43では、冷媒回路10における余剰冷媒が液冷媒として貯留される。中間圧レシーバ43を通過した冷媒は、第1分岐室外膨張弁24aと第2分岐室外膨張弁24bとに分離して流れる。
 第1分岐室外膨張弁24aは、通過する冷媒を、冷凍サイクルの低圧となるまで減圧する。第2分岐室外膨張弁24bも同様に、通過する冷媒を、冷凍サイクルの低圧となるまで減圧する。
 ここで、第1分岐室外膨張弁24aおよび第2分岐室外膨張弁24bは、例えば、圧縮機21が吸入する冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。なお、第1分岐室外膨張弁24aおよび第2分岐室外膨張弁24bの弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
 第1分岐室外膨張弁24aで減圧された冷媒は、第1室外熱交換器23aにおいて蒸発し、第2分岐室外膨張弁24bで減圧された冷媒は、第2室外熱交換器23bにおいて蒸発し、合流した後、四路切換弁22を経て、再び、圧縮機21に吸入される。
 (2-7-4)第7実施形態の特徴
 空気調和装置1fでは、冷媒X、冷媒Y、冷媒A、冷媒B、冷媒C、冷媒D、あるいは、冷媒Eを用いた冷凍サイクルを行うことができるため、GWPの小さい冷媒を用いて冷凍サイクルを行うことが可能になっている。
 また、空気調和装置1fでは、中間圧レシーバ43を設けることにより、冷媒回路10における余剰冷媒を貯留させることが可能になっている。また、暖房運転時においては、第1室内膨張弁33と第2室内膨張弁38を過冷却度制御させることにより、室内熱交換器31の能力を十分に発揮させやすくすることが可能になっている。
 (2-8)第8実施形態
 以下、冷媒回路の概略構成図である図2O、概略制御ブロック構成図である図2Pを参照しつつ、第8実施形態に係る冷凍サイクル装置としての空気調和装置1gについて説明する。なお、以下では、第3実施形態の空気調和装置1bとの違いを主に説明する。
 (2-8-1)空気調和装置1gの概略構成
 空気調和装置1gは、上記第3実施形態の空気調和装置1bとは、バイパス膨張弁49を有するバイパス配管40が設けられていない点、過冷却熱交換器47が設けられている点、過冷却配管46が設けられている点、第1室外膨張弁44および第2室外膨張弁45が設けられている点、過冷却温度センサ67が設けられている点において異なっている。
 第1室外膨張弁44は、冷媒回路10における室外熱交換器23の液側出口から液側閉鎖弁29までの間に設けられている。第2室外膨張弁45は、冷媒回路10における第1室外膨張弁44から液側閉鎖弁29までの間に設けられている。第1室外膨張弁44と第2室外膨張弁45とは、いずれも、弁開度を調節可能な電動膨張弁であることが好ましい。
 過冷却配管46は、冷媒回路10において、第1室外膨張弁44から第2室外膨張弁45までの間の分岐部分から分岐しており、四路切換弁22の接続ポートの1つから低圧レシーバ41に至るまでの間の合流箇所に合流するように設けられている。過冷却配管46には、過冷却膨張弁48が設けられている。過冷却膨張弁48は、弁開度を調節可能な電動膨張弁であることが好ましい。
 過冷却熱交換器47は、冷媒回路10において第1室外膨張弁44から第2室外膨張弁45までの間の部分を流れる冷媒と、過冷却配管46において過冷却膨張弁48の合流箇所側を流れる冷媒と、の間で熱交換を行わせる熱交換器である。本実施形態では、過冷却熱交換器47は、第1室外膨張弁44から第2室外膨張弁45までの間の部分であって、過冷却配管46の分岐部分よりも第2室外膨張弁45側に設けられている。
 過冷却温度センサ67は、冷媒回路10において第1室外膨張弁44から第2室外膨張弁45までの間の部分のうち、過冷却熱交換器47よりも第2室外膨張弁45側を流れる冷媒の温度を検出する温度センサである。
 (2-8-2)冷房運転モード
 空気調和装置1gでは、冷房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の蒸発温度が目標蒸発温度になるように、運転周波数が容量制御される。ここで、目標蒸発温度は、各室内ユニット30、35において設定温度と室内温度との差分が最も大きいもの(負荷が最も大きな室内ユニット)に応じて定めることが好ましい。
 圧縮機21から吐出されたガス冷媒は、四路切換弁22を介して、室外熱交換器23において凝縮する。室外熱交換器23を流れた冷媒は、第1室外膨張弁44を通過する。なお、この場合には、第1室外膨張弁44は、全開状態となるように制御されている。
 第1室外膨張弁44を通過した冷媒は、一部が第2室外膨張弁45側に向けて流れ、他の一部が、過冷却配管46に分岐して流れる。過冷却配管46に分岐して流れた冷媒は、過冷却膨張弁48において減圧される。過冷却熱交換器47では、第1室外膨張弁44から第2室外膨張弁45側に向けて流れる冷媒と、過冷却膨張弁48において減圧された過冷却配管46を流れる冷媒と、が熱交換される。過冷却配管46を流れる冷媒は、過冷却熱交換器47での熱交換を終えた後、四路切換弁22の接続ポートの1つから低圧レシーバ41に至るまでの間の合流箇所に合流するように流れる。第1室外膨張弁44から第2室外膨張弁45側に向けて流れる冷媒は、過冷却熱交換器47での熱交換を終えた後、第2室外膨張弁45において減圧される。
 以上において、第2室外膨張弁45は、室外熱交換器23の液側出口を流れる冷媒の過冷却度が目標値になる等の所定条件を満たすように制御される。
 また、過冷却膨張弁48の弁開度は、冷媒回路10のうち、第2室外膨張弁45から液側冷媒連絡配管6を介して第1室内膨張弁33および第2室内膨張弁38に至るまでの部分の全てが液状態の冷媒で満たされることがないように、少なくとも第1室内膨張弁33および第2室内膨張弁38に到達する冷媒が気液二相状態となるように制御される。例えば、過冷却膨張弁48の弁開度は、第1室外膨張弁44から第2室外膨張弁45側に向けて流れる冷媒であって過冷却熱交換器47を通過した冷媒の比エンタルピーが、モリエル線図において冷凍サイクルの低圧と飽和液腺とが交わる箇所の比エンタルピーよりも大きくなるように制御されることが好ましい。ここで、コントローラ7は、冷媒に対応するモリエル線図のデータを予め保持しておき、上記過冷却熱交換器47を通過した冷媒の比エンタルピーを、吐出圧力センサ61の検出圧力、過冷却温度センサ67の検出温度と、当該冷媒に対応するモリエル線図のデータと、を用いて過冷却膨張弁48の弁開度を制御してもよい。なお、過冷却膨張弁48の弁開度は、第1室外膨張弁44から第2室外膨張弁45側に向けて流れる冷媒であって過冷却熱交換器47を通過した冷媒の温度(過冷却温度センサ67の検出温度)が、目標値になる等の所定条件を満たすように制御されることがより好ましい。
 第2室外膨張弁45において減圧された冷媒は、液側閉鎖弁29、液側冷媒連絡配管6を介して、第1室内ユニット30および第2室内ユニット35に送られる。
 ここで、第1室内ユニット30では、第1室内膨張弁33は、例えば、第1室内熱交換器31のガス側出口を流れる冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。また、第2室内ユニット35の第2室内膨張弁38も、第1室内膨張弁33と同様に、例えば、第2室内熱交換器36のガス側出口を流れる冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。また、第1室内膨張弁33と第2室内膨張弁38は、いずれも、吸入温度センサ64の検出温度から吸入圧力センサ63の検出圧力に相当する冷媒の飽和温度を差し引くことで得られる冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御されてもよい。さらに、第1室内膨張弁33および第2室内膨張弁38の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
 第1室内膨張弁33で減圧された冷媒は第1室内熱交換器31において蒸発し、第2室内膨張弁38で減圧された冷媒は第2室内熱交換器36において蒸発し、合流した後、ガス側冷媒連絡配管5に流れていく。ガス側冷媒連絡配管5を流れた冷媒は、ガス側閉鎖弁28、四路切換弁22を経て、過冷却配管46を流れた冷媒と合流する。合流した冷媒は、低圧レシーバ41を経て、再び、圧縮機21に吸入される。なお、低圧レシーバ41では、第1室内熱交換器31、第2室内熱交換器、過冷却熱交換器47において蒸発しきれなかった液冷媒が余剰冷媒として貯留される。
 (2-8-3)暖房運転モード
 空気調和装置1gでは、暖房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の凝縮温度が、目標凝縮温度になるように、運転周波数が容量制御される。ここで、目標凝縮温度は、各室内ユニット30、35において設定温度と室内温度との差分が最も大きいもの(負荷が最も大きな室内ユニット)に応じて定めることが好ましい。
 圧縮機21から吐出されたガス冷媒は、四路切換弁22、ガス側冷媒連絡配管5を流れた後、一部の冷媒が、第1室内ユニット30の第1室内熱交換器31のガス側端に流入し、第1室内熱交換器31において凝縮し、他の一部の冷媒が、第2室内ユニット35の第2室内熱交換器36のガス側端に流入し、第2室内熱交換器36において凝縮する。
 なお、第1室内ユニット30の第1室内膨張弁33は、第1室内熱交換器31の液側を流れる冷媒の過冷却度が所定の目標値になる等の所定条件を満たすように、弁開度が制御される。第2室内ユニット35の第2室内膨張弁38についても同様に、第2室内熱交換器36の液側を流れる冷媒の過冷却度が所定の目標値になる等の所定条件を満たすように、弁開度が制御される。
 第1室内膨張弁33で減圧された冷媒および第2室内膨張弁38で減圧された冷媒は、合流し、液側冷媒連絡配管6を流れて、室外ユニット20に流入する。
 室外ユニット20の液側閉鎖弁29を通過した冷媒は、全開状態に制御された第2室外膨張弁45を通過し、過冷却熱交換器47において、過冷却配管46を流れる冷媒と熱交換する。第2室外膨張弁45を通過して過冷却熱交換器47を通過した冷媒は、一部が過冷却配管46に分岐され、他の一部が第1室外膨張弁44に送られる。過冷却配管46に分岐して流れた冷媒は、過冷却膨張弁48において減圧された後、四路切換弁22の接続ポートの1つと低圧レシーバ41との間の合流箇所において、各室内ユニット30、35から流れてきた冷媒と合流する。また、過冷却熱交換器47から第1室外膨張弁44に向けて流れてきた冷媒は、第1室外膨張弁44において減圧され、室外熱交換器23に流入する。
 ここで、第1室外膨張弁44は、例えば、圧縮機21の吸入側を流れる冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。なお、第1室外膨張弁44の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
 また、過冷却膨張弁48は、圧縮機21の吸入側を流れる冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。なお、過冷却膨張弁48の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。また、暖房運転時においては、過冷却配管46に冷媒が流れないように、過冷却膨張弁48を全閉状態に制御してもよい。
 第1室外膨張弁44で減圧された冷媒は、室外熱交換器23において蒸発し、四路切換弁22を経て、過冷却配管46を流れた冷媒と合流する。合流した冷媒は、低圧レシーバ41を経て、再び、圧縮機21に吸入される。なお、低圧レシーバ41では、室外熱交換器23、過冷却熱交換器47において蒸発しきれなかった液冷媒が余剰冷媒として貯留される。
 (2-8-4)第8実施形態の特徴
 空気調和装置1gでは、冷媒X、冷媒Y、冷媒A、冷媒B、冷媒C、冷媒D、あるいは、冷媒Eを用いた冷凍サイクルを行うことができるため、GWPの小さい冷媒を用いて冷凍サイクルを行うことが可能になっている。
 また、空気調和装置1gでは、低圧レシーバ41を設けることにより、圧縮機21における液圧縮を抑制することができている。また、冷房運転時には、第1室内膨張弁33、第2室内膨張弁38を過熱度制御することで、暖房運転時には、第1室内膨張弁33、第2室内膨張弁38を過冷却度制御することで、第1室内熱交換器31、第2室内熱交換器36における能力を十分に発揮させやすい。
 さらに、空気調和装置1gでは、冷房運転時において、第2室外膨張弁45を通過して、液側冷媒連絡配管6を経て、第1室内膨張弁33、第2室内膨張弁38に至るまでの配管内部の空間を、液状態で満たすのではなく、少なくとも一部において気液二相状態の冷媒が存在するように制御されている。このため、第2室外膨張弁45から第1室内膨張弁33および第2室内膨張弁38に至るまでの配管内部の空間が全て液冷媒で満たされている場合と比べて、当該箇所の冷媒密度を低下させることができる。このため、冷媒回路10に封入されている冷媒の量を少なく抑えて、冷凍サイクルを行うことが可能になっている。したがって、仮に、冷媒回路10から冷媒が漏洩することがあったとしても、漏洩冷媒量を少なく抑えることが可能になっている。
 (2-9)第9実施形態
 以下、冷媒回路の概略構成図である図2Q、概略制御ブロック構成図である図2Rを参照しつつ、第9実施形態に係る冷凍サイクル装置としての空気調和装置1hについて説明する。なお、以下では、第6実施形態の空気調和装置1eとの違いを主に説明する。
 (2-9-1)空気調和装置1hの概略構成
 空気調和装置1hは、上記第6実施形態の空気調和装置1eとは、吸入冷媒加熱部50を有している点で異なっている。
 吸入冷媒加熱部50は、四路切換弁22の接続ポートの1つから圧縮機21の吸入側に向けて延びる冷媒配管の一部が中間圧レシーバ43内に位置する部分により構成されている。この吸入冷媒加熱部50では、四路切換弁22の接続ポートの1つから圧縮機21の吸入側に向けて延びる冷媒配管を流れる冷媒と、中間圧レシーバ43内に存在している冷媒とは、冷媒同士は混ざり合うことなく、互いに熱交換を行う。
 (2-9-2)冷房運転モード
 空気調和装置1hでは、冷房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の蒸発温度が、設定温度と室内温度(室内空気温度センサ72の検出温度)との差分に応じて定まる目標蒸発温度になるように、運転周波数が容量制御される。
 圧縮機21から吐出されたガス冷媒は、四路切換弁22を通過した後、室外熱交換器23において凝縮する。室外熱交換器23を流れた冷媒は、第1室外膨張弁44において、冷凍サイクルにおける中間圧力まで減圧される。
 ここで、第1室外膨張弁44は、例えば、室外熱交換器23の液側出口を流れる冷媒の過冷却度が目標値になる等の所定条件を満たすように、弁開度が制御される。
 第1室外膨張弁44において減圧された冷媒は、中間圧レシーバ43に流入する。中間圧レシーバ43では、冷媒回路10における余剰冷媒が液冷媒として貯留される。ここで、中間圧レシーバ43に流入した冷媒は、吸入冷媒加熱部50における圧縮機21の吸入側を流れる冷媒との熱交換により、冷却される。中間圧レシーバ43内の吸入冷媒加熱部50において冷却された冷媒は、第2室外膨張弁45において、冷凍サイクルの低圧まで減圧される。
 ここで、第2室外膨張弁45は、例えば、室内熱交換器31のガス側を流れる冷媒の過熱度または圧縮機21が吸入する冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。なお、第2室外膨張弁45の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
 第2室外膨張弁45において冷凍サイクルの低圧まで減圧された冷媒は、液側閉鎖弁29、液側冷媒連絡配管6を介して室内ユニット30に流入し、室内熱交換器31において蒸発する。室内熱交換器31を流れた冷媒は、ガス側冷媒連絡配管5を流れた後、ガス側閉鎖弁28、四路切換弁22を経て、中間圧レシーバ43の内部を通過する冷媒配管内を流れる。中間圧レシーバ43の内部を通過する冷媒配管内を流れる冷媒は、中間圧レシーバ43内の吸入冷媒加熱部50において中間圧レシーバ43に貯留されている冷媒と熱交換を行うことで加熱され、再び、圧縮機21に吸入される。
 (2-9-3)暖房運転モード
 空気調和装置1hでは、暖房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の凝縮温度が、設定温度と室内温度(室内空気温度センサ72の検出温度)との差分に応じて定まる目標凝縮温度になるように、運転周波数が容量制御される。
 圧縮機21から吐出されたガス冷媒は、四路切換弁22、ガス側冷媒連絡配管5を流れた後、室内ユニット30の室内熱交換器31のガス側端に流入し、室内熱交換器31において凝縮する。室内熱交換器31の液側端から流出した冷媒は、液側冷媒連絡配管6を経て、室外ユニット20に流入し、液側閉鎖弁29を通過して、第2室外膨張弁45において冷凍サイクルにおける中間圧になるまで減圧される。
 ここで、第2室外膨張弁45は、例えば、室内熱交換器31の液側出口を流れる冷媒の過冷却度が目標値になる等の所定条件を満たすように、弁開度が制御される。
 第2室外膨張弁45において減圧された冷媒は、中間圧レシーバ43に流入する。中間圧レシーバ43では、冷媒回路10における余剰冷媒が液冷媒として貯留される。ここで、中間圧レシーバ43に流入した冷媒は、吸入冷媒加熱部50における圧縮機21の吸入側を流れる冷媒との熱交換により、冷却される。中間圧レシーバ43内の吸入冷媒加熱部50において冷却された冷媒は、第1室外膨張弁44において、冷凍サイクルの低圧まで減圧される。
 ここで、第1室外膨張弁44は、例えば、圧縮機21が吸入する冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。なお、第1室外膨張弁44の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
 第1室外膨張弁44で減圧された冷媒は、室外熱交換器23において蒸発し、四路切換弁22を経て、中間圧レシーバ43の内部を通過する冷媒配管内を流れる。中間圧レシーバ43の内部を通過する冷媒配管内を流れる冷媒は、中間圧レシーバ43内の吸入冷媒加熱部50において中間圧レシーバ43に貯留されている冷媒と熱交換を行うことで加熱され、再び、圧縮機21に吸入される。
 (2-9-4)第9実施形態の特徴
 空気調和装置1hでは、冷媒X、冷媒Y、冷媒A、冷媒B、冷媒C、冷媒D、あるいは、冷媒Eを用いた冷凍サイクルを行うことができるため、GWPの小さい冷媒を用いて冷凍サイクルを行うことが可能になっている。
 また、空気調和装置1hでは、中間圧レシーバ43を設けることにより、冷媒回路10における余剰冷媒を貯留させることが可能になっている。また、冷房運転時においては、第1室外膨張弁44を過冷却度制御させることにより、室外熱交換器23の能力を十分に発揮させやすく、暖房運転時においては、第2室外膨張弁45を過冷却度制御させることにより、室内熱交換器31の能力を十分に発揮させやすくすることが可能になっている。
 さらに、吸入冷媒加熱部50が設けられていることで、圧縮機21に吸入される冷媒が加熱され、圧縮機21における液圧縮が抑制されるため、冷房運転において冷媒の蒸発器として機能する室内熱交換器31の出口を流れる冷媒の過熱度が小さい値となるように制御させることが可能になる。また、暖房運転においても同様に、冷媒の蒸発器として機能する室外熱交換器23の出口を流れる冷媒の過熱度が小さい値となるように制御させることが可能になる。これにより、冷房運転と暖房運転のいずれにおいても、冷媒として非共沸混合冷媒が用いられることで蒸発器内において温度グライドが生じる場合であっても、蒸発器として機能させる熱交換器において十分に能力を発揮させることができる。
 (2-10)第10実施形態
 以下、冷媒回路の概略構成図である図2S、概略制御ブロック構成図である図2Tを参照しつつ、第10実施形態に係る冷凍サイクル装置としての空気調和装置1iについて説明する。なお、以下では、第9実施形態の空気調和装置1hとの違いを主に説明する。
 (2-10-1)空気調和装置1iの概略構成
 空気調和装置1iは、上記第9実施形態の空気調和装置1hとは、第1室外膨張弁44と第2室外膨張弁45が設けられておらず、室外膨張弁24が設けられている点、複数の室内ユニット(第1室内ユニット30と第2室内ユニット35)が並列に設けられている点、および、各室内ユニットにおいて室内熱交換器の液冷媒側に室内膨張弁が設けられている点で異なっている。
 室外膨張弁24は、室外熱交換器23の液側の出口から中間圧レシーバ43に至るまで延びている冷媒配管の途中に設けられている。室外膨張弁24は、弁開度を調節可能な電動膨張弁であることが好ましい。
 第1室内ユニット30は、上記実施形態と同様に、第1室内熱交換器31、第1室内ファン32を有しており、第1室内熱交換器31の液冷媒側において第1室内膨張弁33が設けられている。第1室内膨張弁33は、弁開度を調節可能な電動膨張弁であることが好ましい。第1室内ユニット30には、上記実施形態と同様に、第1室内ユニット制御部34と、第1室内ユニット制御部34に対して電気的に接続された第1室内液側熱交温度センサ71、第1室内空気温度センサ72、第1室内ガス側熱交温度センサ73等が設けられている。第2室内ユニット35は、第1室内ユニット30と同様に、第2室内熱交換器36、第2室内ファン37を有しており、第2室内熱交換器36の液冷媒側において第2室内膨張弁38が設けられている。第2室内膨張弁38は、弁開度を調節可能な電動膨張弁であることが好ましい。第2室内ユニット35には、第1室内ユニット30と同様に、第2室内ユニット制御部39と、第2室内ユニット制御部39に対して電気的に接続された第2室内液側熱交温度センサ75、第2室内空気温度センサ76、第2室内ガス側熱交温度センサ77が設けられている。
 (2-10-2)冷房運転モード
 空気調和装置1iでは、冷房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の蒸発温度が目標蒸発温度になるように、運転周波数が容量制御される。ここで、目標蒸発温度は、各室内ユニット30、35において設定温度と室内温度との差分が最も大きいもの(負荷が最も大きな室内ユニット)に応じて定めることが好ましい。
 圧縮機21から吐出されたガス冷媒は、四路切換弁22を通過した後、室外熱交換器23において凝縮する。室外熱交換器23を流れた冷媒は、全開状態に制御された室外膨張弁24を通過する。
 室外膨張弁24を通過した冷媒は、中間圧レシーバ43に流入する。中間圧レシーバ43では、冷媒回路10における余剰冷媒が液冷媒として貯留される。ここで、中間圧レシーバ43に流入した冷媒は、吸入冷媒加熱部50における圧縮機21の吸入側を流れる冷媒との熱交換により、冷却される。中間圧レシーバ43内の吸入冷媒加熱部50において冷却された冷媒は、液側閉鎖弁29、液側冷媒連絡配管6を介して、第1室内ユニット30および第2室内ユニット35にそれぞれ流入する。
 第1室内ユニット31に流入した冷媒は、第1室内膨張弁33において、冷凍サイクルの低圧まで減圧される。また、第2室内ユニット35に流入した冷媒は、第2室内膨張弁38において、冷凍サイクルの低圧まで減圧される。
 ここで、第1室内膨張弁33は、例えば、第1室内熱交換器31のガス側を流れる冷媒の過熱度または圧縮機21が吸入する冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。また、第2室内膨張弁38も、同様に、例えば、第2室内熱交換器36のガス側を流れる冷媒の過熱度または圧縮機21が吸入する冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。
 第1室内膨張弁33において減圧された冷媒は、第1室内熱交換器31において蒸発し、第2室内膨張弁38において減圧された冷媒は、第2室内熱交換器36において蒸発し、合流した後、ガス側冷媒連絡配管5を流れ、ガス側閉鎖弁28、四路切換弁22を経て、中間圧レシーバ43の内部を通過する冷媒配管内を流れる。中間圧レシーバ43の内部を通過する冷媒配管内を流れる冷媒は、中間圧レシーバ43内の吸入冷媒加熱部50において中間圧レシーバ43に貯留されている冷媒と熱交換を行うことで加熱され、再び、圧縮機21に吸入される。
 (2-10-3)暖房運転モード
 空気調和装置1iでは、暖房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の凝縮温度が、目標凝縮温度になるように、運転周波数が容量制御される。ここで、目標凝縮温度は、各室内ユニット30、35において設定温度と室内温度との差分が最も大きいもの(負荷が最も大きな室内ユニット)に応じて定めることが好ましい。
 圧縮機21から吐出されたガス冷媒は、四路切換弁22、ガス側冷媒連絡配管5を流れた後、第1室内ユニット30と第2室内ユニット35にそれぞれ流入する。
 第1室内ユニット30に流入した冷媒は、第1室内熱交換器31において凝縮し、第2室内ユニット35に流入した冷媒は、第2室内熱交換器36において凝縮する。
 第1室内熱交換器31の液側端から流出した冷媒は、第1室内膨張弁33において、冷凍サイクルの中間圧となるまで減圧される。第2室内熱交換器36の液側端から流出した冷媒も、同様に、第2室内膨張弁38において、冷凍サイクルの中間圧となるまで減圧される。
 ここで、第1室内膨張弁33は、例えば、第1室内熱交換器31の液側出口を流れる冷媒の過冷却度が目標値になる等の所定条件を満たすように、弁開度が制御される。また、第2室内膨張弁38についても同様に、例えば、第2室内熱交換器36の液側出口を流れる冷媒の過冷却度が目標値になる等の所定条件を満たすように、弁開度が制御される。
 第1室内膨張弁33を通過した冷媒と第2室内膨張弁38を通過した冷媒は、合流した後、液側冷媒連絡配管6を経て、室外ユニット20に流入する。
 室外ユニット20に流入した冷媒は、液側閉鎖弁29を通過して、中間圧レシーバ43に流入する。中間圧レシーバ43では、冷媒回路10における余剰冷媒が液冷媒として貯留される。ここで、中間圧レシーバ43に流入した冷媒は、吸入冷媒加熱部50における圧縮機21の吸入側を流れる冷媒との熱交換により、冷却される。中間圧レシーバ43内の吸入冷媒加熱部50において冷却された冷媒は、室外膨張弁24において、冷凍サイクルの低圧まで減圧される。
 ここで、室外膨張弁24は、例えば、圧縮機21が吸入する冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。なお、室外膨張弁24の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
 室外膨張弁24で減圧された冷媒は、室外熱交換器23において蒸発し、四路切換弁22を経て、中間圧レシーバ43の内部を通過する冷媒配管内を流れる。中間圧レシーバ43の内部を通過する冷媒配管内を流れる冷媒は、中間圧レシーバ43内の吸入冷媒加熱部50において中間圧レシーバ43に貯留されている冷媒と熱交換を行うことで加熱され、再び、圧縮機21に吸入される。
 (2-10-4)第10実施形態の特徴
 空気調和装置1iでは、冷媒X、冷媒Y、冷媒A、冷媒B、冷媒C、冷媒D、あるいは、冷媒Eを用いた冷凍サイクルを行うことができるため、GWPの小さい冷媒を用いて冷凍サイクルを行うことが可能になっている。
 また、空気調和装置1iでは、中間圧レシーバ43を設けることにより、冷媒回路10における余剰冷媒を貯留させることが可能になっている。また、暖房運転時においては、第2室外膨張弁45を過冷却度制御させることにより、室内熱交換器31の能力を十分に発揮させやすくすることが可能になっている。
 さらに、吸入冷媒加熱部50が設けられていることで、圧縮機21に吸入される冷媒が加熱され、圧縮機21における液圧縮が抑制されるため、冷房運転において冷媒の蒸発器として機能する室内熱交換器31の出口を流れる冷媒の過熱度が小さい値となるように制御させることが可能になる。また、暖房運転においても同様に、冷媒の蒸発器として機能する室外熱交換器23の出口を流れる冷媒の過熱度が小さい値となるように制御させることが可能になる。これにより、冷房運転と暖房運転のいずれにおいても、冷媒として非共沸混合冷媒が用いられることで蒸発器内において温度グライドが生じる場合であっても、蒸発器として機能させる熱交換器において十分に能力を発揮させることができる。
 (2-11)第11実施形態
 以下、冷媒回路の概略構成図である図2U、概略制御ブロック構成図である図2Vを参照しつつ、第11実施形態に係る冷凍サイクル装置としての空気調和装置1jについて説明する。なお、以下では、第9実施形態の空気調和装置1hとの違いを主に説明する。
 (2-11-1)空気調和装置1jの概略構成
 空気調和装置1jは、上記第9実施形態の空気調和装置1hとは、吸入冷媒加熱部50が設けられておらず、内部熱交換器51が設けられている点で異なっている。
 内部熱交換器51は、第1室外膨張弁44と第2室外膨張弁45との間を流れる冷媒と、四路切換弁22の接続ポートの1つから圧縮機21の吸入側に向けて延びる冷媒配管を流れる冷媒と、の間で熱交換を行わせる熱交換器である。
 (2-11-2)冷房運転モード
 空気調和装置1jでは、冷房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の蒸発温度が、設定温度と室内温度(室内空気温度センサ72の検出温度)との差分に応じて定まる目標蒸発温度になるように、運転周波数が容量制御される。
 圧縮機21から吐出されたガス冷媒は、四路切換弁22を通過した後、室外熱交換器23において凝縮する。室外熱交換器23を流れた冷媒は、全開状態に制御された第1室外膨張弁44を通過する。第1室外膨張弁44を通過した冷媒は、内部熱交換器51において冷却され、第2室外膨張弁45において冷凍サイクルの低圧まで減圧される。
 ここで、第2室外膨張弁45は、例えば、室内熱交換器31のガス側を流れる冷媒の過熱度または圧縮機21が吸入する冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。なお、第2室外膨張弁45の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
 第2室外膨張弁45において冷凍サイクルの低圧まで減圧された冷媒は、液側閉鎖弁29、液側冷媒連絡配管6を介して室内ユニット30に流入し、室内熱交換器31において蒸発する。室内熱交換器31を流れた冷媒は、ガス側冷媒連絡配管5を流れた後、ガス側閉鎖弁28、四路切換弁22を経て、内部熱交換器51において加熱され、再び、圧縮機21に吸入される。
 (2-11-3)暖房運転モード
 空気調和装置1jでは、暖房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の凝縮温度が、設定温度と室内温度(室内空気温度センサ72の検出温度)との差分に応じて定まる目標凝縮温度になるように、運転周波数が容量制御される。
 圧縮機21から吐出されたガス冷媒は、四路切換弁22、ガス側冷媒連絡配管5を流れた後、室内ユニット30の室内熱交換器31のガス側端に流入し、室内熱交換器31において凝縮する。室内熱交換器31の液側端から流出した冷媒は、液側冷媒連絡配管6を経て、室外ユニット20に流入し、液側閉鎖弁29を通過して、全開状態に制御された第2室外膨張弁45を通過する。第2室外膨張弁45を通過した冷媒は、内部熱交換器51において冷却され、第1室外膨張弁44において冷凍サイクルにおける中間圧になるまで減圧される。
 ここで、第1室外膨張弁44は、例えば、圧縮機21が吸入する冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。なお、第1室外膨張弁44の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
 第1室外膨張弁44で減圧された冷媒は、室外熱交換器23において蒸発し、四路切換弁22を経て、内部熱交換器51において加熱され、再び、圧縮機21に吸入される。
 (2-11-4)第11実施形態の特徴
 空気調和装置1jでは、冷媒X、冷媒Y、冷媒A、冷媒B、冷媒C、冷媒D、あるいは、冷媒Eを用いた冷凍サイクルを行うことができるため、GWPの小さい冷媒を用いて冷凍サイクルを行うことが可能になっている。
 また、空気調和装置1jでは、内部熱交換器51が設けられていることで、圧縮機21に吸入される冷媒が加熱され、圧縮機21における液圧縮が抑制されるため、冷房運転において冷媒の蒸発器として機能する室内熱交換器31の出口を流れる冷媒の過熱度が小さい値となるように制御させることが可能になる。また、暖房運転においても同様に、冷媒の蒸発器として機能する室外熱交換器23の出口を流れる冷媒の過熱度が小さい値となるように制御させることが可能になる。これにより、冷房運転と暖房運転のいずれにおいても、冷媒として非共沸混合冷媒が用いられることで蒸発器内において温度グライドが生じる場合であっても、蒸発器として機能させる熱交換器において十分に能力を発揮させることができる。
 (2-12)第12実施形態
 以下、冷媒回路の概略構成図である図2W、概略制御ブロック構成図である図2Xを参照しつつ、第12実施形態に係る冷凍サイクル装置としての空気調和装置1kについて説明する。なお、以下では、第10実施形態の空気調和装置1jとの違いを主に説明する。
 (2-12-1)空気調和装置1kの概略構成
 空気調和装置1kは、上記第10実施形態の空気調和装置1jとは、第1室外膨張弁44と第2室外膨張弁45が設けられておらず、室外膨張弁24が設けられている点、複数の室内ユニット(第1室内ユニット30と第2室内ユニット35)が並列に設けられている点、および、各室内ユニットにおいて室内熱交換器の液冷媒側に室内膨張弁が設けられている点で異なっている。
 室外膨張弁24は、内部熱交換器51から液側閉鎖弁29まで延びる冷媒配管の途中に設けられている。室外膨張弁24は、弁開度を調節可能な電動膨張弁であることが好ましい。
 第1室内ユニット30は、上記実施形態と同様に、第1室内熱交換器31、第1室内ファン32を有しており、第1室内熱交換器31の液冷媒側において第1室内膨張弁33が設けられている。第1室内膨張弁33は、弁開度を調節可能な電動膨張弁であることが好ましい。第1室内ユニット30には、上記実施形態と同様に、第1室内ユニット制御部34と、第1室内ユニット制御部34に対して電気的に接続された第1室内液側熱交温度センサ71、第1室内空気温度センサ72、第1室内ガス側熱交温度センサ73等が設けられている。第2室内ユニット35は、第1室内ユニット30と同様に、第2室内熱交換器36、第2室内ファン37を有しており、第2室内熱交換器36の液冷媒側において第2室内膨張弁38が設けられている。第2室内膨張弁38は、弁開度を調節可能な電動膨張弁であることが好ましい。第2室内ユニット35には、第1室内ユニット30と同様に、第2室内ユニット制御部39と、第2室内ユニット制御部39に対して電気的に接続された第2室内液側熱交温度センサ75、第2室内空気温度センサ76、第2室内ガス側熱交温度センサ77が設けられている。
 (2-12-2)冷房運転モード
 空気調和装置1kでは、冷房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の蒸発温度が目標蒸発温度になるように、運転周波数が容量制御される。ここで、目標蒸発温度は、各室内ユニット30、35において設定温度と室内温度との差分が最も大きいもの(負荷が最も大きな室内ユニット)に応じて定めることが好ましい。
 圧縮機21から吐出されたガス冷媒は、四路切換弁22を通過した後、室外熱交換器23において凝縮する。室外熱交換器23を流れた冷媒は、内部熱交換器51において冷却され、全開状態に制御された室外膨張弁24を通過し、液側閉鎖弁29、液側閉鎖弁29、液側冷媒連絡配管6を介して第1室内ユニット30および第2室内ユニット35にそれぞれ流入する。
 第1室内ユニット31に流入した冷媒は、第1室内膨張弁33において、冷凍サイクルの低圧まで減圧される。また、第2室内ユニット35に流入した冷媒は、第2室内膨張弁38において、冷凍サイクルの低圧まで減圧される。
 ここで、第1室内膨張弁33は、例えば、第1室内熱交換器31のガス側を流れる冷媒の過熱度または圧縮機21が吸入する冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。また、第2室内膨張弁38も、同様に、例えば、第2室内熱交換器36のガス側を流れる冷媒の過熱度または圧縮機21が吸入する冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。
 第1室内膨張弁33において減圧された冷媒は、第1室内熱交換器31において蒸発し、第2室内膨張弁38において減圧された冷媒は、第2室内熱交換器36において蒸発し、合流した後、ガス側冷媒連絡配管5を流れ、ガス側閉鎖弁28、四路切換弁22を経て、内部熱交換器51において加熱され、再び、圧縮機21に吸入される。
 (2-12-3)暖房運転モード
 空気調和装置1kでは、暖房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の凝縮温度が、目標凝縮温度になるように、運転周波数が容量制御される。ここで、目標凝縮温度は、各室内ユニット30、35において設定温度と室内温度との差分が最も大きいもの(負荷が最も大きな室内ユニット)に応じて定めることが好ましい。
 圧縮機21から吐出されたガス冷媒は、四路切換弁22、ガス側冷媒連絡配管5を流れた後、第1室内ユニット30と第2室内ユニット35にそれぞれ流入する。
 第1室内ユニット30に流入した冷媒は、第1室内熱交換器31において凝縮し、第2室内ユニット35に流入した冷媒は、第2室内熱交換器36において凝縮する。
 第1室内熱交換器31の液側端から流出した冷媒は、第1室内膨張弁33において、冷凍サイクルの中間圧となるまで減圧される。第2室内熱交換器36の液側端から流出した冷媒も、同様に、第2室内膨張弁38において、冷凍サイクルの中間圧となるまで減圧される。
 ここで、第1室内膨張弁33は、例えば、第1室内熱交換器31の液側出口を流れる冷媒の過冷却度が目標値になる等の所定条件を満たすように、弁開度が制御される。また、第2室内膨張弁38についても同様に、例えば、第2室内熱交換器36の液側出口を流れる冷媒の過冷却度が目標値になる等の所定条件を満たすように、弁開度が制御される。
 第1室内膨張弁33を通過した冷媒と第2室内膨張弁38を通過した冷媒は、合流した後、液側冷媒連絡配管6を経て、室外ユニット20に流入する。
 室外ユニット20に流入した冷媒は、液側閉鎖弁29を通過して、室外膨張弁24において、冷凍サイクルの低圧まで減圧される。
 ここで、室外膨張弁24は、例えば、圧縮機21が吸入する冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。なお、室外膨張弁24の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
 室外膨張弁24で減圧された冷媒は、室外熱交換器23において蒸発し、四路切換弁22を経て、内部熱交換器51において加熱され、再び、圧縮機21に吸入される。
 (2-12-4)第12実施形態の特徴
 空気調和装置1kでは、冷媒X、冷媒Y、冷媒A、冷媒B、冷媒C、冷媒D、あるいは、冷媒Eを用いた冷凍サイクルを行うことができるため、GWPの小さい冷媒を用いて冷凍サイクルを行うことが可能になっている。
 また、空気調和装置1kでは、暖房運転時においては、第1室内膨張弁33、第2室内膨張弁38を過冷却度制御させることにより、第1室内熱交換器31および第2室内熱交換器36の能力を十分に発揮させやすくすることが可能になっている。
 さらに、空気調和装置1kには、内部熱交換器51が設けられていることで、圧縮機21に吸入される冷媒が加熱され、圧縮機21における液圧縮が抑制されるため、冷房運転において冷媒の蒸発器として機能する第1室内熱交換器31や第2室内熱交換器36の出口を流れる冷媒の過熱度が小さい値となるように制御させることが可能になる。また、暖房運転においても同様に、冷媒の蒸発器として機能する室外熱交換器23の出口を流れる冷媒の過熱度が小さい値となるように制御させることが可能になる。これにより、冷房運転と暖房運転のいずれにおいても、冷媒として非共沸混合冷媒が用いられることで蒸発器内において温度グライドが生じる場合であっても、蒸発器として機能させる熱交換器において十分に能力を発揮させることができる。
 (3)第3グループの技術の実施形態
 (3-1)第1実施形態
 以下、冷媒回路の概略構成図である図3A、概略制御ブロック構成図である図3Bを参照しつつ、第1実施形態に係る冷凍サイクル装置としての空気調和装置1について説明する。
 空気調和装置1は、蒸気圧縮式の冷凍サイクルを行うことで、対象空間の空気を調和させる装置である。
 空気調和装置1は、主として、室外ユニット20と、第1室内ユニット30と、第2室内ユニット35と、室外ユニット20に対して第1室内ユニット30および第2室内ユニット35を並列に接続する液側冷媒連絡配管6およびガス側冷媒連絡配管5と、入力装置および出力装置としての図示しないリモコンと、空気調和装置1の動作を制御するコントローラ7と、を有している。
 空気調和装置1では、冷媒回路10内に封入された冷媒が、圧縮され、冷却又は凝縮され、減圧され、加熱又は蒸発された後に、再び圧縮される、という冷凍サイクルが行われる。本実施形態では、冷媒回路10には、蒸気圧縮式の冷凍サイクルを行うための冷媒が充填されている。当該冷媒は、(1)で説明したいずれかの冷媒であり、上述した冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかを用いることができる。また、冷媒回路10には、当該混合冷媒と共に、冷凍機油が充填されている。
 (3-1-1)室外ユニット20
 室外ユニット20は、液側冷媒連絡配管6およびガス側冷媒連絡配管5を介して室内ユニット30と接続されており、冷媒回路10の一部を構成している。室外ユニット20は、主として、圧縮機21と、四路切換弁22と、室外熱交換器23と、過冷却熱交換器47と、吸入インジェクション配管40と、過冷却膨張弁48と、室外膨張弁24と、室外ファン25と、低圧レシーバ41と、液側閉鎖弁29と、ガス側閉鎖弁28と、を有している。
 圧縮機21は、冷凍サイクルにおける低圧の冷媒を高圧になるまで圧縮する機器である。ここでは、圧縮機21として、ロータリ式やスクロール式等の容積式の圧縮要素(図示省略)が圧縮機モータによって回転駆動される密閉式構造の圧縮機が使用されている。圧縮機モータは、容量を変化させるためのものであり、インバータにより運転周波数の制御が可能である。なお、圧縮機21には、吸入側において、図示しない付属アキュムレータが設けられている(なお、当該付属アキュムレータの内容積は、低圧レシーバ、中間圧レシーバ、高圧レシーバのような冷媒容器より小さく、好ましくは半分以下である)。
 四路切換弁22は、接続状態を切り換えることで、圧縮機21の吐出側と室外熱交換器23とを接続しつつ圧縮機21の吸入側とガス側閉鎖弁28とを接続する冷房運転接続状態と、圧縮機21の吐出側とガス側閉鎖弁28とを接続しつつ圧縮機21の吸入側と室外熱交換器23とを接続する暖房運転接続状態と、を切り換えることができる。
 室外熱交換器23は、冷房運転時には冷凍サイクルにおける高圧の冷媒の凝縮器として機能し、暖房運転時には冷凍サイクルにおける低圧の冷媒の蒸発器として機能する熱交換器である。
 室外膨張弁24は、冷媒回路10における室外熱交換器23の液側出口から液側閉鎖弁29までの間に設けられている。室外膨張弁24は、弁開度を調節可能な電動膨張弁である。
 吸入インジェクション配管40は、冷媒回路10の主回路のうち室外膨張弁24から液側閉鎖弁29までの間の分岐部分から分岐しており、四路切換弁22の接続ポートの1つから低圧レシーバ41に至るまでの間の合流箇所に合流するように設けられている。吸入インジェクション配管40には、過冷却膨張弁48が設けられている。過冷却膨張弁48は、弁開度を調節可能な電動膨張弁である。
 過冷却熱交換器47は、冷媒回路10において室外膨張弁24から液側閉鎖弁29までの間の部分を流れる冷媒と、吸入インジェクション配管40において過冷却膨張弁48の合流箇所側を流れる冷媒と、の間で熱交換を行わせる熱交換器である。本実施形態では、過冷却熱交換器47は、室外膨張弁24から液側閉鎖弁29までの間の部分であって、吸入インジェクション配管40の分岐部分よりも液側閉鎖弁29側に設けられている。
 室外ファン25は、室外ユニット20内に室外の空気を吸入して、室外熱交換器23において冷媒と熱交換させた後に、外部に排出するための空気流れを生じさせる。室外ファン25は、室外ファンモータによって回転駆動される。
 低圧レシーバ41は、圧縮機21の吸入側と四路切換弁22の接続ポートの1つとの間に設けられており、冷媒回路10における余剰冷媒を液冷媒として貯留することが可能な冷媒容器である。また、圧縮機21には、図示しない付属のアキュムレータが設けられており、低圧レシーバ41は、当該付属のアキュムレータの下流側に接続されている。
 液側閉鎖弁29は、室外ユニット20における液側冷媒連絡配管6との接続部分に配置された手動弁である。
 ガス側閉鎖弁28は、室外ユニット20におけるとガス側冷媒連絡配管5との接続部分に配置された手動弁である。
 室外ユニット20は、室外ユニット20を構成する各部の動作を制御する室外ユニット制御部27を有している。室外ユニット制御部27は、CPUやメモリ等を含むマイクロコンピュータを有している。室外ユニット制御部27は、各室内ユニット30の室内ユニット制御部34と通信線を介して接続されており、制御信号等の送受信を行う。
 室外ユニット20には、吐出圧力センサ61、吐出温度センサ62、吸入圧力センサ63、吸入温度センサ64、室外熱交温度センサ65、外気温度センサ66、過冷却温度センサ67等が設けられている。これらの各センサは、室外ユニット制御部27と電気的に接続されており、室外ユニット制御部27に対して検出信号を送信する。吐出圧力センサ61は、圧縮機21の吐出側と四路切換弁22の接続ポートの1つとを接続する吐出配管を流れる冷媒の圧力を検出する。吐出温度センサ62は、吐出配管を流れる冷媒の温度を検出する。吸入圧力センサ63は、圧縮機21の吸入側と低圧レシーバ41とを接続する吸入配管を流れる冷媒の圧力を検出する。吸入温度センサ64は、吸入配管を流れる冷媒の温度を検出する。室外熱交温度センサ65は、室外熱交換器23のうち四路切換弁22が接続されている側とは反対側である液側の出口を流れる冷媒の温度を検出する。外気温度センサ66は、室外熱交換器23を通過する前の屋外の空気温度を検出する。過冷却温度センサ67は、冷媒回路10の主回路において過冷却熱交換器47と第2室外膨張弁45との間を流れる冷媒の温度を検出する。
 (3-1-2)第1室内ユニット30および第2室内ユニット35
 第1室内ユニット30および第2室内ユニット35は、いずれも、同一または異なる対象空間である室内の壁面や天井等に設置されている。第1室内ユニット30および第2室内ユニット35は、液側冷媒連絡配管6およびガス側冷媒連絡配管5を介して室外ユニット20と接続されており、冷媒回路10の一部を構成している。
 第1室内ユニット30は、第1室内熱交換器31と、第1室内膨張弁33と、第1室内ファン32と、を有している。
 第1室内熱交換器31は、液側が、液側冷媒連絡配管6と接続され、ガス側端が、ガス側冷媒連絡配管5とを接続されている。第1室内熱交換器31は、冷房運転時には冷凍サイクルにおける低圧の冷媒の蒸発器として機能し、暖房運転時には冷凍サイクルにおける高圧の冷媒の凝縮器として機能する熱交換器である。
 第1室内膨張弁33は、第1室内熱交換器31の液冷媒側の冷媒配管に設けられた弁開度を調節可能な電動膨張弁である。
 第1室内ファン32は、第1室内ユニット30内に室内の空気を吸入して、第1室内熱交換器31において冷媒と熱交換させた後に、外部に排出するための空気流れを生じさせる。第1室内ファン32は、室内ファンモータによって回転駆動される。
 また、第1室内ユニット30は、第1室内ユニット30を構成する各部の動作を制御する第1室内ユニット制御部34を有している。第1室内ユニット制御部34は、CPUやメモリ等を含むマイクロコンピュータを有している。第1室内ユニット制御部34は、第2室内ユニット制御部39および室外ユニット制御部27と通信線を介して接続されており、制御信号等の送受信を行う。
 第1室内ユニット30には、第1室内液側熱交温度センサ71、第1室内空気温度センサ72、第1室内ガス側熱交温度センサ73等が設けられている。これらの各センサは、第1室内ユニット制御部34と電気的に接続されており、第1室内ユニット制御部34に対して検出信号を送信する。第1室内液側熱交温度センサ71は、第1室内熱交換器31の液冷媒側の出口を流れる冷媒の温度を検出する。第1室内空気温度センサ72は、第1室内熱交換器31を通過する前の室内の空気温度を検出する。第1室内ガス側熱交温度センサ73は、第1室内熱交換器31のガス冷媒側の出口を流れる冷媒の温度を検出する。
 第2室内ユニット35は、第2室内熱交換器36と、第2室内膨張弁38と、第2室内ファン37と、を有している。
 第2室内熱交換器36は、液側が、液側冷媒連絡配管6と接続され、ガス側端が、ガス側冷媒連絡配管5とを接続されている。第2室内熱交換器36は、冷房運転時には冷凍サイクルにおける低圧の冷媒の蒸発器として機能し、暖房運転時には冷凍サイクルにおける高圧の冷媒の凝縮器として機能する熱交換器である。
 第2室内膨張弁38は、第2室内熱交換器36の液冷媒側の冷媒配管に設けられた弁開度を調節可能な電動膨張弁である。
 第2室内ファン37は、第2室内ユニット35内に室内の空気を吸入して、第2室内熱交換器36において冷媒と熱交換させた後に、外部に排出するための空気流れを生じさせる。第2室内ファン37は、室内ファンモータによって回転駆動される。
 また、第2室内ユニット35は、第2室内ユニット35を構成する各部の動作を制御する第2室内ユニット制御部39を有している。第2室内ユニット制御部39は、CPUやメモリ等を含むマイクロコンピュータを有している。第2室内ユニット制御部39、第1室内ユニット制御部34および室外ユニット制御部27と通信線を介して接続されており、制御信号等の送受信を行う。
 第2室内ユニット35には、第2室内液側熱交温度センサ75、第2室内空気温度センサ76、第2室内ガス側熱交温度センサ77等が設けられている。これらの各センサは、第2室内ユニット制御部39と電気的に接続されており、第2室内ユニット制御部39に対して検出信号を送信する。第2室内液側熱交温度センサ75は、第2室内熱交換器36の液冷媒側の出口を流れる冷媒の温度を検出する。第2室内空気温度センサ76は、第2室内熱交換器36を通過する前の室内の空気温度を検出する。第2室内ガス側熱交温度センサ77は、第2室内熱交換器36のガス冷媒側の出口を流れる冷媒の温度を検出する。
 (3-1-3)コントローラ7の詳細
 空気調和装置1では、室外ユニット制御部27と第1室内ユニット制御部34と第2室内ユニット制御部39とが通信線を介して接続されることで、空気調和装置1の動作を制御するコントローラ7が構成されている。
 コントローラ7は、主として、CPU(中央演算処理装置)と、ROMやRAM等のメモリを有している。なお、コントローラ7による各種処理や制御は、室外ユニット制御部27および/又は第1室内ユニット制御部34および/又は第2室内ユニット制御部39に含まれる各部が一体的に機能することによって実現されている。
 (3-1-4)運転モード
 以下、運転モードについて説明する。
 運転モードとしては、冷房運転モードと暖房運転モードとが設けられている。
 コントローラ7は、リモコン等から受け付けた指示に基づいて、冷房運転モードか暖房運転モードかを判断し、実行する。
 (3-1-4-1)冷房運転モード
 空気調和装置1では、冷房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の蒸発温度が目標蒸発温度になるように、運転周波数が容量制御される。ここで、目標蒸発温度は、各室内ユニット30、35において設定温度と室内温度との差分が最も大きいもの(負荷が最も大きな室内ユニット)に応じて定めることが好ましい。
 圧縮機21から吐出されたガス冷媒は、四路切換弁22を介して、室外熱交換器23において凝縮する。室外熱交換器23を流れた冷媒は、室外膨張弁24を通過する。なお、この場合には、室外膨張弁24は、全開状態となるように制御されている。
 室外膨張弁24を通過した冷媒は、一部が液側閉鎖弁29側に向けて流れ、他の一部が、吸入インジェクション配管40に分岐して流れる。吸入インジェクション配管40に分岐して流れた冷媒は、過冷却膨張弁48において減圧される。過冷却熱交換器47では、室外膨張弁24から液側閉鎖弁29側に向けて流れる冷媒と、過冷却膨張弁48において減圧された吸入インジェクション配管40を流れる冷媒と、が熱交換される。吸入インジェクション配管40を流れる冷媒は、過冷却熱交換器47での熱交換を終えた後、四路切換弁22の接続ポートの1つから低圧レシーバ41に至るまでの間の合流箇所に合流するように流れる。また、過冷却膨張弁48の弁開度は、冷媒回路10のうち過冷却熱交換器47を通過した後の冷媒の過冷却度が所定の目標値になる等の所定条件を満たすように制御される。
 室外膨張弁24から液側閉鎖弁29側に向けて流れる冷媒は、過冷却熱交換器47での熱交換を終えた後、液側閉鎖弁29を介して、液側冷媒連絡配管6を流れ、第1室内ユニット30および第2室内ユニット35に送られる。
 ここで、第1室内ユニット30では、第1室内膨張弁33は、例えば、第1室内熱交換器31のガス側出口を流れる冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。また、第2室内ユニット35の第2室内膨張弁38も、第1室内膨張弁33と同様に、例えば、第2室内熱交換器36のガス側出口を流れる冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。また、第1室内膨張弁33と第2室内膨張弁38は、いずれも、吸入温度センサ64の検出温度から吸入圧力センサ63の検出圧力に相当する冷媒の飽和温度を差し引くことで得られる冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御されてもよい。さらに、第1室内膨張弁33および第2室内膨張弁38の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
 第1室内膨張弁33で減圧された冷媒は第1室内熱交換器31において蒸発し、第2室内膨張弁38で減圧された冷媒は第2室内熱交換器36において蒸発し、合流した後、ガス側冷媒連絡配管5に流れていく。ガス側冷媒連絡配管5を流れた冷媒は、ガス側閉鎖弁28、四路切換弁22を経て、吸入インジェクション配管40を流れた冷媒と合流する。合流した冷媒は、低圧レシーバ41を経て、再び、圧縮機21に吸入される。なお、低圧レシーバ41では、第1室内熱交換器31、第2室内熱交換器36、過冷却熱交換器47において蒸発しきれなかった液冷媒が余剰冷媒として貯留される。
 (3-1-4-2)暖房運転モード
 空気調和装置1では、暖房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の凝縮温度が、目標凝縮温度になるように、運転周波数が容量制御される。ここで、目標凝縮温度は、各室内ユニット30、35において設定温度と室内温度との差分が最も大きいもの(負荷が最も大きな室内ユニット)に応じて定めることが好ましい。
 圧縮機21から吐出されたガス冷媒は、四路切換弁22、ガス側冷媒連絡配管5を流れた後、一部の冷媒が、第1室内ユニット30の第1室内熱交換器31のガス側端に流入し、第1室内熱交換器31において凝縮し、他の一部の冷媒が、第2室内ユニット35の第2室内熱交換器36のガス側端に流入し、第2室内熱交換器36において凝縮する。
 なお、第1室内ユニット30の第1室内膨張弁33は、第1室内熱交換器31の液側を流れる冷媒の過冷却度が所定の目標値になる等の所定条件を満たすように、弁開度が制御される。第2室内ユニット35の第2室内膨張弁38についても同様に、第2室内熱交換器36の液側を流れる冷媒の過冷却度が所定の目標値になる等の所定条件を満たすように、弁開度が制御される。
 第1室内膨張弁33で減圧された冷媒および第2室内膨張弁38で減圧された冷媒は、合流し、液側冷媒連絡配管6を流れて、室外ユニット20に流入する。
 室外ユニット20の液側閉鎖弁29を通過した冷媒は、過冷却熱交換器47を流れた後、室外膨張弁24において減圧される。ここで、室外膨張弁24は、例えば、圧縮機21の吸入側を流れる冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。なお、室外膨張弁24の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
 なお、暖房運転モードでは、吸入インジェクション配管40に設けられた過冷却膨張弁48は全閉状態に制御されるため、吸入インジェクション配管40には冷媒は流れず、過冷却熱交換器47における熱交換も行われない。
 室外膨張弁24で減圧された冷媒は、室外熱交換器23において蒸発し、四路切換弁22および低圧レシーバ41を経て、再び、圧縮機21に吸入される。なお、低圧レシーバ41では、室外熱交換器23において蒸発しきれなかった液冷媒が余剰冷媒として貯留される。
 (3-1-5)第1実施形態の特徴
 上述の空気調和装置1では、冷媒X、冷媒Y、冷媒A、冷媒B、冷媒C、冷媒D、あるいは、冷媒Eが用いられているため、GWPを十分に小さく抑えることが可能になっている。
 また、空気調和装置1では、吸入インジェクション配管40によって、圧縮機21に吸入される冷媒の温度を低下させることが可能となるため、冷凍サイクルにおける運転効率を向上させることが可能になる。
 (3-1-6)第1実施形態の変形例A
 上記第1実施形態では、複数の室内ユニットが並列に接続された空気調和装置を例に挙げて説明したが、空気調和装置としては、1つの室内ユニットが直列に接続されたものであってもよい。
 (3-1-7)第1実施形態の変形例B
 上記第1実施形態では、冷媒を過冷却熱交換器47に流した後に圧縮機21の吸入側に送る吸入インジェクション配管40を備えた空気調和装置1を例に挙げて説明した。
 これに対して、空気調和装置としては、例えば、図3Cに示すように、冷媒をエコノマイザ熱交換器47aに流した後に圧縮機21aの中間圧の領域に送るエコノマイザインジェクション配管40aを備えた空気調和装置1aであってもよい。
 エコノマイザインジェクション配管40aは、冷媒回路10の主回路のうち室外膨張弁24から液側閉鎖弁29との間の部分から分岐し、圧縮機21aの中間圧の領域にまで延びた配管である。エコノマイザインジェクション配管40aの途中には、弁開度を制御可能なエコノマイザ膨張弁48aが設けられている。
 エコノマイザ熱交換器47aは、冷媒回路10の主回路から分岐してエコノマイザインジェクション配管40aを流れる冷媒であって、エコノマイザ膨張弁48aにおいて減圧された後の冷媒と、冷媒回路10の主回路において室外膨張弁24から液側閉鎖弁29までの間を流れる冷媒との間で熱交換を行わせる熱交換器である。
 圧縮機21aは、特に限定されないが、例えば、図3Dに示すような、スクロール圧縮機を用いることができる。
 この圧縮機21aは、ケーシング80と、固定スクロール82を含むスクロール圧縮機構81と、駆動モータ91と、クランクシャフト94と、下部軸受98と、を備えている。
 ケーシング80は、上下が開口した略円筒状の円筒部材80aと、円筒部材80aの上端および下端にそれぞれ設けられた上蓋80bおよび下蓋80cとを有する。円筒部材80aと、上蓋80bおよび下蓋80cとは、気密を保つように溶接により固定される。ケーシング80には、スクロール圧縮機構81、駆動モータ91、クランクシャフト94、および下部軸受98を含む圧縮機21aの構成機器が収容される。また、ケーシング80の下部には油溜まり空間Soが形成される。油溜まり空間Soには、スクロール圧縮機構81等を潤滑するための冷凍機油Oが溜められる。ケーシング80の上部には、冷媒回路10の冷凍サイクルにおける低圧ガス冷媒を吸入し、スクロール圧縮機構81にガス冷媒を供給する吸入管19が、上蓋80bを貫通して設けられる。吸入管19の下端は、スクロール圧縮機構81の固定スクロール82に接続される。吸入管19は、後述するスクロール圧縮機構81の圧縮室Scと連通する。ケーシング80の円筒部材80aの中間部には、ケーシング80外に吐出される冷媒が通過する吐出管18が設けられる。吐出管18は、ケーシング80の内部の吐出管18の端部が、スクロール圧縮機構81のハウジング88の下方に形成された高圧空間Shに突き出すように配置される。吐出管18には、スクロール圧縮機構81による圧縮後の、冷凍サイクルにおける高圧冷媒が流れる。ケーシング80の上蓋80bの側面には、インジェクション接続口が設けられており、このインジェクション接続口において、エコノマイザインジェクション配管40aが接続される。
 スクロール圧縮機構81は、主に、ハウジング88と、ハウジング88の上方に配置される固定スクロール82と、固定スクロール82と組み合わされて圧縮室Scを形成する可動スクロール84と、を有する。
 固定スクロール82は、平板状の固定側鏡板82aと、固定側鏡板82aの前面から突出する渦巻状の固定側ラップ82bと、固定側ラップ82bを囲む外縁部82cとを有する。固定側鏡板82aの中央部には、スクロール圧縮機構81の圧縮室Scに連通する非円形形状の吐出口82dが、固定側鏡板82aを厚さ方向に貫通して形成される。圧縮室Scで圧縮された冷媒は、吐出口82dから吐出され、固定スクロール82およびハウジング88に形成された図示しない冷媒通路を通過して、高圧空間Shへ流入する。また、固定側鏡板82aには、固定側鏡板82aの側面において開口し、圧縮室Scに連通する供給通路82eが形成される。この供給通路82eにより、エコノマイザインジェクション配管40aを流れた中間圧冷媒が圧縮室Scに供給される。供給通路82eは、固定側鏡板82aの側面の開口から固定側鏡板82aの中央側に向けて水平方向に延びる水平通路部82fを有する。また、供給通路82eは、水平通路部82fの、固定側鏡板82aの中央側の部分(水平通路部82fの、固定側鏡板82aの中央側の端部近傍)から圧縮室Scに向かって延び、圧縮室Scと直接連通するインジェクションポート82gを有する。インジェクションポート82gは、円形の孔である。
 可動スクロール84は、平板状の可動側鏡板84aと、可動側鏡板84aの前面から突出する渦巻状の可動側ラップ84bと、可動側鏡板84aの背面から突出する、円筒状に形成されたボス部84cとを有する。固定スクロール82の固定側ラップ82bと、可動スクロール84の可動側ラップ84bとは、固定側鏡板82aの下面と可動側鏡板84aの上面とが対向する状態で組み合わされる。隣接する固定側ラップ82bと可動側ラップ84bとの間には、圧縮室Scが形成される。可動スクロール84が後述するように固定スクロール82に対して公転することで、圧縮室Scの体積が周期的に変化し、スクロール圧縮機構81において、冷媒の吸入、圧縮、吐出が行われる。ボス部84cは、上端の塞がれた円筒状部分である。ボス部84cの中空部に、後述するクランクシャフト94の偏心部95が挿入されることで、可動スクロール84とクランクシャフト94とが連結される。ボス部84cは、可動スクロール84とハウジング88との間に形成される偏心部空間89に配置される。偏心部空間89は、後述するクランクシャフト94の給油経路97等を介して高圧空間Shと連通しており、偏心部空間89には高い圧力が作用する。この圧力により、偏心部空間89内の可動側鏡板84aの下面は、固定スクロール82に向かって上方に押される。この力により、可動スクロール84は、固定スクロール82に密着する。可動スクロール84は、「オルダムリング空間Sr」に配置されたオルダムリングを介してハウジング88に支持される。オルダムリングは、可動スクロール84の自転を防止し、公転させる部材である。オルダムリングを用いることで、クランクシャフト94が回転すると、ボス部84cにおいてクランクシャフト94と連結された可動スクロール84が、固定スクロール82に対して自転することなく公転し、圧縮室Sc内の冷媒が圧縮される。
 ハウジング88は、円筒部材80aに圧入され、その外周面において周方向の全体に亘って円筒部材80aに固定されている。また、ハウジング88と固定スクロール82とは、ハウジング88の上端面が、固定スクロール82の外縁部82cの下面と密着するように、図示しないボルト等により固定されている。ハウジング88には、上面中央部に凹むように配置される凹部88aと、凹部88aの下方に配置される軸受部88bとが形成される。凹部88aは、可動スクロール84のボス部84cが配置される偏心部空間89の側面を囲む。軸受部88bには、クランクシャフト94の主軸96を軸支する軸受90が配置される。軸受90は、軸受90に挿入された主軸96を回転自在に支持する。また、ハウジング88には、オルダムリングが配置されるオルダムリング空間Srが形成される。
 駆動モータ91は、円筒部材80aの内壁面に固定された環状のステータ92と、ステータ92の内側に、僅かな隙間(エアギャップ通路)を空けて回転自在に収容されたロータ93とを有する。ロータ93は、円筒部材80aの軸心に沿って上下方向に延びるように配置されたクランクシャフト94を介して可動スクロール84と連結される。ロータ93が回転することで、可動スクロール84は、固定スクロール82に対して公転する。
 クランクシャフト94は、駆動モータ91の駆動力を可動スクロール84に伝達する。クランクシャフト94は、円筒部材80aの軸心に沿って上下方向に延びるように配置され、駆動モータ91のロータ93と、スクロール圧縮機構81の可動スクロール84とを連結する。クランクシャフト94は、円筒部材80aの軸心と中心軸が一致する主軸96と、円筒部材80aの軸心に対して偏心した偏心部95とを有する。偏心部95は、前述のように可動スクロール84のボス部84cに挿入される。主軸96は、ハウジング88の軸受部88bの軸受90、および、後述する下部軸受98により、回転自在に支持される。主軸96は、軸受部88bと下部軸受98との間で、駆動モータ91のロータ93に連結される。クランクシャフト94の内部には、スクロール圧縮機構81等に冷凍機油Oを供給するための給油経路97が形成される。主軸96の下端は、ケーシング80の下部に形成された油溜まり空間So内に位置し、油溜まり空間Soの冷凍機油Oは、給油経路97を通じてスクロール圧縮機構81等に供給される。
 下部軸受98は、駆動モータ91の下方に配置される。下部軸受98は、円筒部材80aに固定される。下部軸受98は、クランクシャフト94の下端側の軸受を構成し、クランクシャフト94の主軸96を回転自在に支持する。
 次に、圧縮機21aの動作について説明する。
 駆動モータ91が起動すると、ロータ93がステータ92に対して回転し、ロータ93と固定されたクランクシャフト94が回転する。クランクシャフト94が回転すると、クランクシャフト94に連結された可動スクロール84が固定スクロール82に対して公転する。そして、冷凍サイクルにおける低圧のガス冷媒が、吸入管19を通って、圧縮室Scの周縁側から、圧縮室Scに吸引される。可動スクロール84が公転するのに従い、吸入管19と圧縮室Scとは連通しなくなる。そして、圧縮室Scの容積が減少するのに伴って、圧縮室Scの圧力が上昇し始める。
 圧縮途中の圧縮室Scには、エコノマイザインジェクション配管40aを流れた中間圧冷媒が、水平通路部82fおよびインジェクションポート82gを介して、圧縮室Scに供給される。
 圧縮室Scは、冷媒の圧縮が進むにつれ、インジェクションポート82gと連通しなくなる。圧縮室Sc内の冷媒は、圧縮室Scの容積が減少するのに伴って圧縮され、最終的に高圧のガス冷媒となる。高圧のガス冷媒は、固定側鏡板82aの中心付近に位置する吐出口82dから吐出される。その後、高圧のガス冷媒は、固定スクロール82およびハウジング88に形成された図示しない冷媒通路を通過して、高圧空間Shへ流入する。高圧空間Shに流入した、スクロール圧縮機構81による圧縮後の、冷凍サイクルにおける高圧のガス冷媒は、吐出管18から吐出される。
 この空気調和装置1aでは、エコノマイザインジェクション配管40aを流れた冷媒が圧縮機21aの中間圧の領域に合流することで、圧縮機21aの中間圧の冷媒の温度を低下させることが可能となるため、冷凍サイクルにおける運転効率を向上させることが可能になる。
 (3-1-8)第1実施形態の変形例C
 上記第1実施形態の変形例Bでは、圧縮機としてスクロール圧縮機を例に挙げて説明した。
 これに対して、第1実施形態において用いられる圧縮機としては、後述の第2実施形態において記載のロータリー圧縮機である圧縮機21bであってもよい。
 (3-2)第2実施形態
 以下、冷媒回路の概略構成図である図3E、概略制御ブロック構成図である図3Fを参照しつつ、第2実施形態に係る冷凍サイクル装置としての空気調和装置1bについて説明する。
 以下、主として、第2実施形態の空気調和装置1bについて、第1実施形態の空気調和装置1と異なる箇所を中心に説明する。
 空気調和装置1bにおいても、冷媒回路10には、蒸気圧縮式の冷凍サイクルを行うための冷媒として、(1)で説明したいずれかの冷媒であり、上述した冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかが充填されている。また、冷媒回路10には、当該冷媒と共に、冷凍機油が充填されている。
 (3-2-1)室外ユニット20
 第2実施形態の空気調和装置1bの室外ユニット20では、上記第1実施形態における室外ユニット20の圧縮機21、低圧レシーバ41、吸入インジェクション配管40、過冷却膨張弁48、過冷却熱交換器47、過冷却温度センサ67は設けられておらず、代わりに、圧縮機21b、高圧レシーバ42、中間インジェクション配管46、中間インジェクション膨張弁49が設けられている。
 高圧レシーバ42は、冷媒回路10の主流路において室外膨張弁24と液側閉鎖弁29との間に設けられている。高圧レシーバ42は、室外膨張弁24側から延びる配管の端部と、液側閉鎖弁29側から延びる配管の端部と、の両方が内部空間に位置しており、冷媒を溜めることができる容器である。
 中間インジェクション配管46は、高圧レシーバ42の内部空間のうちガス領域から延びだしており、圧縮機21bの中間圧の領域に接続されている配管である。中間インジェクション膨張弁49は、中間インジェクション配管46の途中に設けられており、弁開度を制御可能である。
 (3-2-2)室内ユニット30
 第2実施形態の第1室内ユニット30および第2室内ユニット35は、第1実施形態のものと同様であるため、説明を省略する。
 (3-2-3)冷房運転モードおよび暖房運転モード
 以上の空気調和装置1bでは、冷房運転モードでは、室外膨張弁24は、例えば、室外熱交換器23の液側出口を通過する冷媒の過冷却度が所定条件を満たすように制御される。また、中間インジェクション膨張弁49は、高圧レシーバ42から流れてきた冷媒を、圧縮機21bにおける中間圧力まで減じるように制御される。
 また、暖房運転モードでは、室外膨張弁24は、例えば、圧縮機21bが吸入する冷媒の過熱度が所定の条件を満たすように制御される。また、中間インジェクション膨張弁49は、高圧レシーバ42から流れてきた冷媒を、圧縮機21bにおける中間圧力まで減じるように制御される。
 (3-2-4)圧縮機21b
 圧縮機21bは、図3Gに示すように、1シリンダ型のロータリー圧縮機であって、ケーシング111と、ケーシング111内に配置される駆動機構120および圧縮機構130とを備えた、ロータリー圧縮機である。この圧縮機21bは、ケーシング111内において、圧縮機構130が、駆動機構120の下側に配置される。
 (3-2-4-1)駆動機構
 駆動機構120は、ケーシング111の内部空間の上部に収容されており、圧縮機構130を駆動する。駆動機構120は、駆動源となるモータ121と、モータ121に取り付けられる駆動軸であるクランクシャフト122とを有する。
 モータ121は、クランクシャフト122を回転駆動させるためのモータであり、主として、ロータ123と、ステータ124とを有している。ロータ123は、その内部空間にクランクシャフト122が挿嵌されており、クランクシャフト122と共に回転する。ロータ123は、積層された電磁鋼板と、ロータ本体に埋設された磁石とから成る。ステータ124は、ロータ123の径方向外側に所定の空間を介して配置される。ステータ124は、積層された電磁鋼板と、ステータ本体に巻かれたコイルとから成る。モータ121は、コイルに電流を流すことによってステータ124に発生する電磁力により、ロータ123をクランクシャフト122と共に回転させる。
 クランクシャフト122は、ロータ123に挿嵌され、回転軸を中心に回転する。また、クランクシャフト122の偏芯部であるクランクピン122aは、図3Hに示すように、圧縮機構130のピストン131のローラ180(後述)に挿通しており、ロータ123からの回転力を伝達可能な状態でローラ180に嵌っている。クランクシャフト122は、ロータ123の回転に従って回転し、クランクピン122aを偏芯回転させ、圧縮機構130のピストン131のローラ180を公転させる。すなわち、クランクシャフト122は、モータ121の駆動力を圧縮機構130に伝達する機能を有している。
 (3-2-4-2)圧縮機構
 圧縮機構130は、ケーシング111内の下部側に収容されている。圧縮機構130は、吸入管196を介して吸入した冷媒を圧縮する。圧縮機構130は、ロータリー型の圧縮機構であり、主として、フロントヘッド140と、シリンダ150と、ピストン131と、リアヘッド160とから成る。また、圧縮機構130の圧縮室S1で圧縮された冷媒は、フロントヘッド140に形成されているフロントヘッド吐出孔141aから、フロントヘッド140およびマフラー170に囲われたマフラー空間S2を経て、モータ121が配置され吐出管125の下端が位置する空間へ吐出される。
 (3-2-4-2-1)シリンダ
 シリンダ150は、金属製の鋳造部材である。シリンダ150は、円筒状の中央部150aと、中央部150aから付属のアキュムレータ195側に延びる第1外延部150bと、中央部150aから第1外延部150bとは反対側に延びる第2外延部150cとを有している。第1外延部150bには、冷凍サイクルにおける低圧の冷媒を吸入する吸入孔151が形成されている。中央部150aの内周面150a1の内側の円柱状空間は、吸入孔151から吸入される冷媒が流入するシリンダ室152となる。吸入孔151は、シリンダ室152から第1外延部150bの外周面に向かって延び、第1外延部150bの外周面において開口している。この吸入孔151には、アキュムレータ195から延びる吸入管196の先端部が挿入される。また、シリンダ室152内には、シリンダ室152内に流入した冷媒を圧縮するためのピストン131等が収容される。
 シリンダ150の円筒状の中央部150aにより形成されるシリンダ室152は、その下端である第1端が開口しており、また、その上端である第2端も開口している。中央部150aの下端である第1端は、後述するリアヘッド160により塞がれる。また、中央部150aの上端である第2端は、後述するフロントヘッド140により塞がれる。
 また、シリンダ150には、後述するブッシュ135およびブレード190が配置されるブレード揺動空間153が形成されている。ブレード揺動空間153は、中央部150aと第1外延部150bとにまたがって形成されており、ブッシュ135を介してピストン131のブレード190がシリンダ150に揺動可能に支持される。ブレード揺動空間153は、平面的には、吸入孔151の近傍を、シリンダ室152から外周側に向かって延びるように形成されている。
 (3-2-4-2-2)フロントヘッド
 フロントヘッド140は、図3Gに示すように、シリンダ150の上端である第2端の開口を閉塞するフロントヘッド円板部141と、フロントヘッド円板部141の中央のフロントヘッド開口の周縁から上方向に延びるフロントヘッドボス部142とを有する。フロントヘッドボス部142は、円筒状であり、クランクシャフト122の軸受として機能する。
 フロントヘッド円板部141には、図3Hに示す平面位置に、フロントヘッド吐出孔141aが形成されている。フロントヘッド吐出孔141aからは、シリンダ150のシリンダ室152において容積が変化する圧縮室S1で圧縮された冷媒が、断続的に吐出される。フロントヘッド円板部141には、フロントヘッド吐出孔141aの出口を開閉する吐出弁が設けられている。この吐出弁は、圧縮室S1の圧力がマフラー空間S2の圧力よりも高くなったときに圧力差によって開き、フロントヘッド吐出孔141aからマフラー空間S2へと冷媒を吐出させる。
 (3-2-4-2-3)マフラー
 マフラー170は、図3Gに示すように、フロントヘッド140のフロントヘッド円板部141の周縁部の上面に取り付けられている。マフラー170は、フロントヘッド円板部141の上面およびフロントヘッドボス部142の外周面と共にマフラー空間S2を形成して、冷媒の吐出に伴う騒音の低減を図っている。マフラー空間S2と圧縮室S1とは、上述のように、吐出弁が開いているときにはフロントヘッド吐出孔141aを介して連通する。
 また、マフラー170には、フロントヘッドボス部142を貫通させる中央マフラー開口と、マフラー空間S2から上方のモータ121の収容空間へと冷媒を流すマフラー吐出孔とが形成されている。
 なお、マフラー空間S2、モータ121の収容空間、吐出管125が位置するモータ121の上方の空間、圧縮機構130の下方に潤滑油が溜まっている空間などは、全てつながっており、圧力が等しい高圧空間を形成している。
 (3-2-4-2-4)リアヘッド
 リアヘッド160は、シリンダ150の下端である第1端の開口を閉塞するリアヘッド円板部161と、リアヘッド円板部161の中央開口の周縁部から下方に延びる軸受としてのリアヘッドボス部162とを有する。フロントヘッド円板部141、リアヘッド円板部161、およびシリンダ150の中央部150aは、図3Hに示すように、シリンダ室152を形成する。フロントヘッドボス部142およびリアヘッドボス部162は、円筒形状のボス部であり、クランクシャフト122を軸支する。
 リアヘッド円板部161には、供給流路161aが形成されている。供給流路161aは、ケーシング111に開けられたインジェクション用の穴(図示せず)とつながっており、中間インジェクション配管46と結ばれる。供給流路161aは、ケーシング111のインジェクション用の穴からクランクシャフト122の回転軸CAに向かって水平に延び、途中で上に向いて折れ曲がり、リアヘッド円板部161の上面に開口している。この供給流路161aの出口開口161a1は、図3Hにおいて二点鎖線で示す平面位置に開口している。すなわち、供給流路161aの出口開口161a1は、シリンダ150の中央部150aの内周面150a1の内側のシリンダ室152に開口している。この供給流路161aは、圧縮機21bの外部から導入される中間圧の冷媒を、ピストン131のローラ180の公転角度が一定範囲にあるときに、シリンダ室152において容積変化する圧縮室S1に流す役割を果たす。したがって、ピストン131のローラ180の公転角度が上述の一定範囲以外の所定範囲にあるときには、ローラ180の下端面の一部によって塞がれる。
 (3-2-4-2-5)ピストン
 ピストン131は、シリンダ室152に配置され、クランクシャフト122の偏芯部であるクランクピン122aに装着されている。ピストン131は、ローラ180とブレード190とが一体化された部材である。ピストン131のブレード190は、シリンダ150に形成されているブレード揺動空間153に配置され、上述のように、ブッシュ135を介してシリンダ150に揺動可能に支持される。また、ブレード190は、ブッシュ135と摺動可能になっており、運転中には、揺動するとともに、クランクシャフト122から離れたりクランクシャフト122に近づいたりする動きを繰り返す。
 ローラ180は、ローラ下端面である第1端面181aが形成されている第1端部181と、ローラ上端面である第2端面182aが形成されている第2端部182と、それら第1端部181と第2端部182との間に位置する中央部183とから構成されている。中央部183は、図3Iに示すように、内径D2、外径D1である円筒形状の部分である。第1端部181は、内径D3、外径D1である円筒形状の第1本体部181bと、その第1本体部181bから内側に突出する第1突出部181cとから構成される。第1本体部181bの外径D1は、中央部183の外径D1と同じ寸法である。また、第1本体部181bの内径D3は、中央部183の内径D2よりも大きい。第2端部182は、内径D3、外径D1である円筒形状の第2本体部182bと、その第2本体部182bから内側に突出する第2突出部182cとから構成される。第2本体部182bの外径D1は、第1本体部181bの外径D1と同様に、中央部183の外径D1と同じ寸法である。また、第2本体部182bの内径D3は、第1本体部181bの内径D3と同じ寸法であり、中央部183の内径D2よりも大きい。第1突出部181cの内面181c1および第2突出部182cの内面182c1は、クランクシャフト122の回転軸方向視において、中央部183の内周面183a1とほぼ重なる。詳細には、第1突出部181cの内面181c1および第2突出部182cの内面182c1は、平面視において、中央部183の内周面183a1よりも少しだけ外側に位置している。このように、第1突出部181cおよび第2突出部182cを除くと、第1本体部181bおよび第2本体部182bの内径D3が中央部183の内径D2よりも大きくなっているため、第1端部181と中央部183との境界の高さ位置には第1段差面183a2が形成され、第2端部182と中央部183との境界の高さ位置には第2段差面183a3が形成される(図3I参照)。
 ローラ180の第1端部181の環状の第1端面181aは、リアヘッド円板部161の上面と接しており、リアヘッド円板部161の上面と摺動する。ローラ180の第1端面181aは、径方向の幅が部分的に大きくなっている第1幅広面181a1を含んでいる。第1端部181の第1突出部181c、および、その外方に位置する第1端部181の第1本体部181bの一部が、第1幅広面181a1を形成している(図3I参照)。
 ローラ180の第2端部182の環状の第2端面182aは、フロントヘッド円板部141の下面と接しており、フロントヘッド円板部141の下面と摺動する。ローラ180の第2端面182aは、径方向の幅が部分的に大きくなっている第2幅広面182a1を含んでいる。第2幅広面182a1は、クランクシャフト122の回転軸方向視において、第1幅広面181a1と同じ位置にある。第2端部182の第2突出部182c、および、その外方に位置する第2端部182の第2本体部182bの一部が、第2幅広面182a1を形成している。
 ピストン131のローラ180およびブレード190は、図3Hに示すように、シリンダ室152を仕切る形で、ピストン131の公転によって容積が変化する圧縮室S1を形成している。圧縮室S1は、シリンダ150の中央部150aの内周面150a1、リアヘッド円板部161の上面、フロントヘッド円板部141の下面およびピストン131によって囲まれる空間である。ピストン131の公転にしたがって圧縮室S1の容積が変化し、吸入孔151から吸い込まれた低圧の冷媒が圧縮され高圧の冷媒となり、フロントヘッド吐出孔141aからマフラー空間S2へと吐出される。
 (3-2-4-3)動作
 以上の圧縮機121bでは、クランクピン122aの偏芯回転によって公転する圧縮機構130のピストン131の動きによって、圧縮室S1の容積が変化する。具体的には、まず、ピストン131が公転していく間に、吸入孔151から低圧の冷媒が圧縮室S1に吸入される。吸入孔151に面した圧縮室S1は、冷媒を吸入しているときには、その容積が段々と大きくなる。さらにピストン131が公転すると、圧縮室S1と吸入孔151との連通状態が解消され、圧縮室S1での冷媒圧縮が始まる。その後、供給流路161aの出口開口161a1から圧縮室S1に中間圧の冷媒がインジェクションされた後、フロントヘッド吐出孔141aと連通状態となる圧縮室S1は、その容積がかなり小さくなり、冷媒の圧力も高くなってくる。その際には、ピストン131のローラ180の第1端面181aの第1幅広面181a1が、リアヘッド円板部161の供給流路161aの出口開口161a1を塞いでおり、中間圧の冷媒の圧縮室S1へのインジェクションは為されない状態となる。その後、ピストン131がさらに公転することで、高圧となった冷媒が、フロントヘッド吐出孔141aから吐出弁を押し開いて、マフラー空間S2へと吐出される。マフラー空間S2に導入された冷媒は、マフラー170のマフラー吐出孔からマフラー空間S2の上方の空間へ排出される。マフラー空間S2の外部へ排出された冷媒は、モータ121のロータ123とステータ124との間の空間を通過して、モータ121を冷却した後に、吐出管125から吐出される。
 (3-2-5)第2実施形態の特徴
 以上の第2実施形態に係る空気調和装置1bにおいても、第1実施形態に係る空気調和装置1と同様に、冷媒X、冷媒Y、冷媒A、冷媒B、冷媒C、冷媒D、あるいは、冷媒Eが用いられているため、GWPを十分に小さく抑えることが可能になっている。
 また、空気調和装置1bでは、中間インジェクション配管46を流れた冷媒が圧縮機21bの中間圧の領域に合流することで、圧縮機21bの中間圧の冷媒の温度を低下させることが可能となるため、冷凍サイクルにおける運転効率を向上させることが可能になる。
 (3-2-6)第2実施形態の変形例A
 上記第2実施形態では、複数の室内ユニットが並列に接続された空気調和装置を例に挙げて説明したが、空気調和装置としては、1つの室内ユニットが直列に接続されたものであってもよい。
 (3-2-7)第2実施形態の変形例B
 上記第2実施形態では、圧縮機21bとしてロータリ圧縮機を例に挙げて説明した。
 これに対して、第2実施形態において用いられる圧縮機としては、上記の第1実施形態の変形例Bにおいて記載のスクロール圧縮機である圧縮機21aであってもよい。
 (3-2-8)第2実施形態の変形例C
 上記第2実施形態では、高圧レシーバ42内のガス冷媒を中間インジェクション配管46によって、圧縮機21bの中間圧の領域に合流させる場合を例に挙げて説明した。
 これに対して、第2実施形態における高圧レシーバ42内のガス冷媒は、圧縮機の中間圧の領域ではなく、吸入側に合流させるようにしてもよい。この場合には、圧縮機に吸入される冷媒の温度を低下させることで、冷凍サイクルにおける運転効率を向上させることが可能になる。
 (4)第4グループの技術の実施形態
 (4-1)第1実施形態
 以下、冷媒回路の概略構成図である図4A、概略制御ブロック構成図である図4Bを参照しつつ、第1実施形態に係る熱源ユニットとしての室外ユニット20を備えた冷凍サイクル装置としての空気調和装置1について説明する。
 空気調和装置1は、蒸気圧縮式の冷凍サイクルを行うことで、対象空間の空気を調和させる装置である。
 空気調和装置1は、主として、室外ユニット20と、室内ユニット30と、室外ユニット20と室内ユニット30を接続する液側冷媒連絡配管6およびガス側冷媒連絡配管5と、入力装置および出力装置としての図示しないリモコンと、空気調和装置1の動作を制御するコントローラ7と、を有している。液側冷媒連絡配管6およびガス側冷媒連絡配管5の設計圧力は、例えば、4.5MPa(3/8インチのもの)以上5.0MPa(4/8インチのもの)以下とすることができる。
 空気調和装置1では、冷媒回路10内に封入された冷媒が、圧縮され、冷却又は凝縮され、減圧され、加熱又は蒸発された後に、再び圧縮される、という冷凍サイクルが行われる。本実施形態では、冷媒回路10には、蒸気圧縮式の冷凍サイクルを行うための冷媒が充填されている。当該冷媒は、上述した冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかを用いることができる。また、冷媒回路10には、当該冷媒と共に、冷凍機油が充填されている。
 (4-1-1)室外ユニット20
 室外ユニット20は、外観が略直方体箱状であり、内部が仕切板等によって分割されることで、送風機室および機械室が形成された構造(いわゆる、トランク型構造)を有している。
 この室外ユニット20は、液側冷媒連絡配管6およびガス側冷媒連絡配管5を介して室内ユニット30と接続されており、冷媒回路10の一部を構成している。室外ユニット20は、主として、圧縮機21と、四路切換弁22と、室外熱交換器23と、室外膨張弁24と、室外ファン25と、液側閉鎖弁29と、ガス側閉鎖弁28と、を有している。
 室外ユニット20は、設計圧力(ゲージ圧力)が、液側冷媒連絡配管6とガス側冷媒連絡配管5の設計圧力の1.5倍(液側冷媒連絡配管6とガス側冷媒連絡配管5の耐圧圧力)よりも低いものである。このような室外ユニット20の設計圧力は、例えば、4.0MPa以上4.5MPa以下とすることができる。
 圧縮機21は、冷凍サイクルにおける低圧の冷媒を高圧になるまで圧縮する機器である。ここでは、圧縮機21として、ロータリ式やスクロール式等の容積式の圧縮要素(図示省略)が圧縮機モータによって回転駆動される密閉式構造の圧縮機が使用されている。圧縮機モータは、容量を変化させるためのものであり、インバータにより運転周波数の制御が可能である。なお、圧縮機21には、吸入側において、図示しない付属アキュムレータが設けられている。なお、本実施形態の室外ユニット20は、当該付属アキュムレータより大きな冷媒容器(圧縮機21の吸入側に配置される低圧レシーバや室外熱交換器23の液側に配置される高圧レシーバ等)を有していない。
 四路切換弁22は、接続状態を切り換えることで、圧縮機21の吐出側と室外熱交換器23とを接続しつつ圧縮機21の吸入側とガス側閉鎖弁28とを接続する冷房運転接続状態と、圧縮機21の吐出側とガス側閉鎖弁28とを接続しつつ圧縮機21の吸入側と室外熱交換器23とを接続する暖房運転接続状態と、を切り換えることができる。
 室外熱交換器23は、冷房運転時には冷凍サイクルにおける高圧の冷媒の凝縮器として機能し、暖房運転時には冷凍サイクルにおける低圧の冷媒の蒸発器として機能する熱交換器である。室外熱交換器23は、複数の伝熱フィンと、これに貫通固定された複数の伝熱管とを有している。
 室外ファン25は、室外ユニット20内に室外の空気を吸入して、室外熱交換器23において冷媒と熱交換させた後に、外部に排出するための空気流れを生じさせる。室外ファン25は、室外ファンモータによって回転駆動される。なお、本実施形態において、室外ファン25は、1つだけ設けられている。
 室外膨張弁24は、弁開度を制御可能であり、室外熱交換器23の液側端部と液側閉鎖弁29との間に設けられている。
 液側閉鎖弁29は、室外ユニット20における液側冷媒連絡配管6との接続部分に配置された手動弁である。
 ガス側閉鎖弁28は、室外ユニット20におけるとガス側冷媒連絡配管5との接続部分に配置された手動弁である。
 室外ユニット20は、室外ユニット20を構成する各部の動作を制御する室外ユニット制御部27を有している。室外ユニット制御部27は、CPUやメモリ等を含むマイクロコンピュータを有している。室外ユニット制御部27は、各室内ユニット30の室内ユニット制御部34と通信線を介して接続されており、制御信号等の送受信を行う。また、室外ユニット制御部27は、図示しない各種センサと電気的に接続されており、各センサからの信号を受信する。
 この室外ユニット制御部27(およびこれを含むコントローラ7)は、冷媒の制御圧力(ゲージ圧力)の上限値が、液側冷媒連絡配管6とガス側冷媒連絡配管5の設計圧力の1.5倍(液側冷媒連絡配管6とガス側冷媒連絡配管5の耐圧圧力)よりも低くなるように設定されている。
 (4-1-2)室内ユニット30
 室内ユニット30は、対象空間である室内の壁面等に設置されている。室内ユニット30は、液側冷媒連絡配管6およびガス側冷媒連絡配管5を介して室外ユニット20と接続されており、冷媒回路10の一部を構成している。なお、室内ユニット30の設計圧力は、室外ユニット20と同様に、例えば、4.0MPa以上4.5MPa以下とすることができる。
 室内ユニット30は、室内熱交換器31と、室内ファン32等を有している。
 室内熱交換器31は、液側が、液側冷媒連絡配管6と接続され、ガス側端が、ガス側冷媒連絡配管5とを接続されている。室内熱交換器31は、冷房運転時には冷凍サイクルにおける低圧の冷媒の蒸発器として機能し、暖房運転時には冷凍サイクルにおける高圧の冷媒の凝縮器として機能する熱交換器である。室内熱交換器31は、複数の伝熱フィンと、これに貫通固定された複数の伝熱管と、を有している。
 室内ファン32は、室内ユニット30内に室内の空気を吸入して、室内熱交換器31において冷媒と熱交換させた後に、外部に排出するための空気流れを生じさせる。室内ファン32は、図示しない室内ファンモータによって回転駆動される。
 また、室内ユニット30は、室内ユニット30を構成する各部の動作を制御する室内ユニット制御部34を有している。室内ユニット制御部34は、CPUやメモリ等を含むマイクロコンピュータを有している。室内ユニット制御部34は、室外ユニット制御部27と通信線を介して接続されており、制御信号等の送受信を行う。
 室内ユニット制御部34は、室内ユニット30内に設けられている図示しない各種センサと電気的に接続されており、各センサからの信号を受信する。
 (4-1-3)コントローラ7の詳細
 空気調和装置1では、室外ユニット制御部27と室内ユニット制御部34が通信線を介して接続されることで、空気調和装置1の動作を制御するコントローラ7が構成されている。
 コントローラ7は、主として、CPU(中央演算処理装置)と、ROMやRAM等のメモリを有している。なお、コントローラ7による各種処理や制御は、室外ユニット制御部27および/又は室内ユニット制御部34に含まれる各部が一体的に機能することによって実現されている。
 (4-1-4)運転モード
 以下、運転モードについて説明する。
 運転モードとしては、冷房運転モードと暖房運転モードとが設けられている。
 コントローラ7は、リモコン等から受け付けた指示に基づいて、冷房運転モードか暖房運転モードかを判断し、実行する。
 (4-1-4-1)冷房運転モード
 空気調和装置1では、冷房運転モードでは、四路切換弁22の接続状態を圧縮機21の吐出側と室外熱交換器23とを接続しつつ圧縮機21の吸入側とガス側閉鎖弁28とを接続する冷房運転接続状態とし、冷媒回路10に充填されている冷媒を、主として、圧縮機21、室外熱交換器23、室外膨張弁24、室内熱交換器31の順に循環させる。
 より具体的には、冷房運転モードが開始されると、冷媒回路10内において、冷媒が圧縮機21に吸入されて圧縮された後に吐出される。
 圧縮機21では、室内ユニット30で要求される冷却負荷に応じた容量制御が行われる。圧縮機21から吐出されたガス冷媒は、四路切換弁22を経て、室外熱交換器23のガス側端に流入する。
 室外熱交換器23のガス側端に流入したガス冷媒は、室外熱交換器23において、室外ファン25によって供給される室外側空気と熱交換を行って凝縮し、液冷媒となって室外熱交換器23の液側端から流出する。
 室外熱交換器23の液側端から流出した冷媒は、室外膨張弁24を通過する際に減圧される。なお、室外膨張弁24は、室外熱交換器23の液側出口を通過する冷媒の過冷却度が所定条件を満たすように制御される。
 室外膨張弁24で減圧された冷媒は、液側閉鎖弁29および液側冷媒連絡配管6を経て、室内ユニット30に流入する。
 室内ユニット30に流入した冷媒は、室内熱交換器31に流入し、室内熱交換器31において、室内ファン32によって供給される室内空気と熱交換を行って蒸発し、ガス冷媒となって室内熱交換器31のガス側端から流出する。室内熱交換器31のガス側端から流出したガス冷媒は、ガス側冷媒連絡配管5に流れていく。
 ガス側冷媒連絡配管5を流れた冷媒は、ガス側閉鎖弁28、四路切換弁22を経て、再び、圧縮機21に吸入される。
 (4-1-4-2)暖房運転モード
 空気調和装置1では、暖房運転モードでは、四路切換弁22の接続状態を圧縮機21の吐出側とガス側閉鎖弁28とを接続しつつ圧縮機21の吸入側と室外熱交換器23とを接続する暖房運転接続状態とし、冷媒回路10に充填されている冷媒を、主として、圧縮機21、室内熱交換器31、室外膨張弁24、室外熱交換器23の順に循環させる。
 より具体的には、暖房運転モードが開始されると、冷媒回路10内において、冷媒が圧縮機21に吸入されて圧縮された後に吐出される。
 圧縮機21では、室内ユニット30で要求される暖房負荷に応じた容量制御が行われる。ここで、例えば、冷媒回路10における圧力の最大値が、ガス側冷媒連絡配管5の設計圧力の1.5倍よりも低くなるように、圧縮機21の駆動周波数と室外ファン25の風量の少なくともいずれかが制御される。
 圧縮機21から吐出されたガス冷媒は、四路切換弁22およびガス側冷媒連絡配管5を流れた後、室内ユニット30に流入する。
 室内ユニット30に流入した冷媒は、室内熱交換器31のガス側端に流入し、室内熱交換器31において、室内ファン32によって供給される室内空気と熱交換を行って凝縮し、気液二相状態の冷媒または液冷媒となって室内熱交換器31の液側端から流出する。室内熱交換器31の液側端から流出した冷媒は、液側冷媒連絡配管6に流れていく。
 液側冷媒連絡配管6を流れた冷媒は、液側閉鎖弁29、室外膨張弁24において冷凍サイクルにおける低圧になるまで減圧される。なお、室外膨張弁24は、室内熱交換器31の液側出口を通過する冷媒の過冷却度が所定条件を満たすように制御される。室外膨張弁24で減圧された冷媒は、室外熱交換器23の液側端に流入する。
 室外熱交換器23の液側端から流入した冷媒は、室外熱交換器23において、室外ファン25によって供給される室外空気と熱交換を行って蒸発し、ガス冷媒となって室外熱交換器23のガス側端から流出する。
 室外熱交換器23のガス側端から流出した冷媒は、四路切換弁22を経て、再び、圧縮機21に吸入される。
 (4-1-5)第1実施形態の特徴
 上述の空気調和装置1では、冷媒X、冷媒Y、冷媒A、冷媒B、冷媒C、冷媒D、あるいは、冷媒Eが用いられているため、GWPを十分に小さく抑えることが可能になっている。
 また、空気調和装置1では、室外ユニット20の設計圧力が液側冷媒連絡配管6とガス側冷媒連絡配管5の設計圧力の1.5倍よりも低いものが用いられている。また、空気調和装置1の室外ユニット20が有する室外ユニット制御部27は、冷媒の制御圧力の上限値が、液側冷媒連絡配管6とガス側冷媒連絡配管5の設計圧力の1.5倍よりも低くなるように、設定されている。このため、上記特定の冷媒X,冷媒Y,冷媒A~冷媒Eを用いた場合であっても、液側冷媒連絡配管6とガス側冷媒連絡配管5の損傷を抑制させることが可能になっている。
 (4-1-6)第1実施形態の変形例A
 上記第1実施形態では、室内ユニットが1つだけ設けられている空気調和装置を例に挙げて説明したが、空気調和装置としては、互いに並列に接続された複数の室内ユニット(室内膨張弁を有さないもの)が設けられていてもよい。
 (4-1-7)第1実施形態の変形例B
 上記第1実施形態では、室外ユニット20の設計圧力が液側冷媒連絡配管6とガス側冷媒連絡配管5の設計圧力の1.5倍よりも低く、且つ、室外ユニット20の室外ユニット制御部27について冷媒の制御圧力の上限値が液側冷媒連絡配管6とガス側冷媒連絡配管5の設計圧力の1.5倍よりも低くなるように設定されている場合を例に挙げて説明した。
 これに対して、例えば、設計圧力が液側冷媒連絡配管6とガス側冷媒連絡配管5の設計圧力の1.5倍以上の室外ユニット20であっても、冷媒の制御圧力の上限値として複数種類の中から選択可能に構成されており、液側冷媒連絡配管6とガス側冷媒連絡配管5の設計圧力の1.5倍よりも低くなるように設定可能な室外ユニット制御部27を有する室外ユニット20であれば、上記実施形態の空気調和装置1において用いることができる。
 (4-2)第2実施形態
 以下、冷媒回路の概略構成図である図4C、概略制御ブロック構成図である図4Dを参照しつつ、第2実施形態に係る熱源ユニットとしての室外ユニット20を備えた冷凍サイクル装置としての空気調和装置1aについて説明する。
 以下、主として、第2実施形態の空気調和装置1aについて、第1実施形態の空気調和装置1と異なる箇所を中心に説明する。
 空気調和装置1aにおいても、冷媒回路10には、蒸気圧縮式の冷凍サイクルを行うための冷媒として、上述した冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかが充填されている。また、冷媒回路10には、当該冷媒と共に、冷凍機油が充填されている。
 (4-2-1)室外ユニット20
 第2実施形態の空気調和装置1aの室外ユニット20では、室外ファン25として、第1室外ファン25aと第2室外ファン25bとが設けられている。空気調和装置1aの室外ユニット20の室外熱交換器23は、第1室外ファン25aおよび第2室外ファン25bから受ける空気流れに対応するように、広い熱交換面積が確保されている。なお、室外ユニット20は、上記第1実施形態と同様に、設計圧力(ゲージ圧力)が、液側冷媒連絡配管6とガス側冷媒連絡配管5の設計圧力の1.5倍(液側冷媒連絡配管6とガス側冷媒連絡配管5の耐圧圧力)よりも低い。このような室外ユニット20の設計圧力は、例えば、4.0MPa以上4.5MPa以下とすることができる。
 空気調和装置1aの室外ユニット20では、上記第1実施形態における室外ユニット20の室外膨張弁24の代わりに、室外熱交換器23の液側から液側閉鎖弁29までの間において、第1室外膨張弁44、中間圧レシーバ41、第2室外膨張弁45が順次設けられている。第1室外膨張弁44および第2室外膨張弁45は、弁開度を制御可能である。中間圧レシーバ41は、第1室外膨張弁44側から延びる配管の端部と、第2室外膨張弁45側から延びる配管の端部と、の両方が内部空間に位置しており、冷媒を溜めることができる容器である。なお、中間圧レシーバ41の内容積は、圧縮機21に付属した付属アキュムレータの内容積より大きく、2倍以上であることが好ましい。
 第2実施形態の室外ユニット20は、略直方体箱状であり、鉛直に延びる仕切板等によって分割されることで送風機室および機械室が形成された構造(いわゆる、トランク型構造)を有している。
 室外熱交換器23は、例えば、複数の伝熱フィンと、これに貫通固定された複数の伝熱管とを有している。この室外熱交換器23は、平面視L字形状となるように配置されている。
 なお、第2実施形態の室外ユニット20についても、室外ユニット制御部27(およびこれを含むコントローラ7)は、冷媒の制御圧力(ゲージ圧力)の上限値が、液側冷媒連絡配管6とガス側冷媒連絡配管5の設計圧力の1.5倍(液側冷媒連絡配管6とガス側冷媒連絡配管5の耐圧圧力)よりも低くなるように設定されている。
 以上の空気調和装置1aでは、冷房運転モードでは、第1室外膨張弁44は、例えば、室外熱交換器23の液側出口を通過する冷媒の過冷却度が所定条件を満たすように制御される。また、冷房運転モードでは、第2室外膨張弁45は、例えば、圧縮機21が吸入する冷媒の過熱度が所定の条件を満たすように制御される。
 また、暖房運転モードでは、第2室外膨張弁45は、例えば、室内熱交換器31の液側出口を通過する冷媒の過冷却度が所定条件を満たすように制御される。また、暖房運転モードでは、第1室外膨張弁44は、例えば、圧縮機21が吸入する冷媒の過熱度が所定の条件を満たすように制御される。なお、暖房運転モードでは、例えば、冷媒回路10における圧力の最大値が、ガス側冷媒連絡配管5の設計圧力の1.5倍よりも低くなるように、圧縮機21の駆動周波数と室外ファン25の風量の少なくともいずれかが制御される。
 (4-2-2)室内ユニット30
 第2実施形態の室内ユニット30は、対象空間である室内の上方空間に吊り下げられることで設置されるか、天井面に対して設置されるか、壁面に対して設置されて用いられる。室内ユニット30は、液側冷媒連絡配管6およびガス側冷媒連絡配管5を介して室外ユニット20と接続されており、冷媒回路10の一部を構成している。なお、室内ユニット30の設計圧力は、室外ユニット20と同様に、例えば、4.0MPa以上4.5MPa以下とすることができる。
 室内ユニット30は、室内熱交換器31と、室内ファン32等を有している。
 第2実施形態の室内熱交換器31は、複数の伝熱フィンと、これに貫通固定された複数の伝熱管と、を有している。
 (4-2-3)第2実施形態の特徴
 以上の第2実施形態に係る空気調和装置1aにおいても、第1実施形態に係る空気調和装置1と同様に、冷媒X、冷媒Y、冷媒A、冷媒B、冷媒C、冷媒D、あるいは、冷媒Eが用いられているため、GWPを十分に小さく抑えることが可能になっている。
 また、空気調和装置1aでは、室外ユニット20の設計圧力が液側冷媒連絡配管6とガス側冷媒連絡配管5の設計圧力の1.5倍よりも低いものが用いられている。また、空気調和装置1aの室外ユニット20が有する室外ユニット制御部27は、冷媒の制御圧力の上限値が、液側冷媒連絡配管6とガス側冷媒連絡配管5の設計圧力の1.5倍よりも低くなるように、設定されている。このため、上記特定の冷媒X,冷媒Y,冷媒A~冷媒Eを用いた場合であっても、液側冷媒連絡配管6とガス側冷媒連絡配管5の損傷を抑制させることが可能になっている。
 (4-2-4)第2実施形態の変形例A
 上記第2実施形態では、室内ユニットが1つだけ設けられている空気調和装置を例に挙げて説明したが、空気調和装置としては、互いに並列に接続された複数の室内ユニット(室内膨張弁を有さないもの)が設けられていてもよい。
 (4-2-5)第2実施形態の変形例B
 上記第2実施形態では、室外ユニット20の設計圧力が液側冷媒連絡配管6とガス側冷媒連絡配管5の設計圧力の1.5倍よりも低く、且つ、室外ユニット20の室外ユニット制御部27について冷媒の制御圧力の上限値が液側冷媒連絡配管6とガス側冷媒連絡配管5の設計圧力の1.5倍よりも低くなるように設定されている場合を例に挙げて説明した。
 これに対して、例えば、設計圧力が液側冷媒連絡配管6とガス側冷媒連絡配管5の設計圧力の1.5倍以上の室外ユニット20であっても、冷媒の制御圧力の上限値として複数種類の中から選択可能に構成されており、液側冷媒連絡配管6とガス側冷媒連絡配管5の設計圧力の1.5倍よりも低くなるように設定可能な室外ユニット制御部27を有する室外ユニット20であれば、上記実施形態の空気調和装置1aにおいて用いることができる。
 (4-3)第3実施形態
 以下、冷媒回路の概略構成図である図4E、概略制御ブロック構成図である図4Fを参照しつつ、第3実施形態に係る熱源ユニットとしての室外ユニット20を備えた冷凍サイクル装置としての空気調和装置1bについて説明する。
 以下、主として、第3実施形態の空気調和装置1bについて、第1実施形態の空気調和装置1と異なる箇所を中心に説明する。
 空気調和装置1bにおいても、冷媒回路10には、蒸気圧縮式の冷凍サイクルを行うための冷媒として、上述した冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかが充填されている。また、冷媒回路10には、当該冷媒と共に、冷凍機油が充填されている。
 (4-3-1)室外ユニット20
 第3実施形態に係る空気調和装置1bの室外ユニット20では、上記第1実施形態における室外ユニット20において、低圧レシーバ26、過冷却熱交換器47および過冷却回路46が設けられている。なお、室外ユニット20は、上記第1実施形態と同様に、設計圧力(ゲージ圧力)が、液側冷媒連絡配管6とガス側冷媒連絡配管5の設計圧力の1.5倍(液側冷媒連絡配管6とガス側冷媒連絡配管5の耐圧圧力)よりも低く、複数の室内ユニット30、35を有する本実施形態の空気調和装置1bにおいては後述する分岐管5a、5b、6a、6bの設計圧力よりも低いことが好ましい。このような室外ユニット20の設計圧力は、例えば、4.0MPa以上4.5MPa以下とすることができる。
 低圧レシーバ26は、四路切換弁22の接続ポートの1つから圧縮機21の吸入側に至るまでの間に設けられ、冷媒を溜めることができる容器である。なお、本実施形態においては、圧縮機21が有する付属のアキュムレータとは別に設けられている。なお、低圧レシーバ26の内容積は、圧縮機21に付属した付属アキュムレータの内容積より大きく、2倍以上であることが好ましい。
 過冷却熱交換器47は、室外膨張弁24と液側閉鎖弁29との間に設けられている。
 過冷却回路46は、室外膨張弁24と過冷却熱交換器47との間の主回路から分岐し、四路切換弁22の接続ポートの1つから低圧レシーバ26に至るまでの途中の部分に合流するように延びた回路である。過冷却回路46の途中には、通過する冷媒を減圧させる過冷却膨張弁48が設けられている。過冷却回路46を流れる冷媒であって、過冷却膨張弁48で減圧された冷媒は、過冷却熱交換器47において、主回路側を流れる冷媒との間で熱交換を行う。これにより、主回路側を流れる冷媒はさらに冷却され、過冷却回路46を流れる冷媒は蒸発する。
 第3実施形態に係る空気調和装置1bの室外ユニット20は、例えば、下方から内部に空気を取り込んで上方から外部に空気を吹き出す上吹き型構造と呼ばれるものであってよい。
 なお、第3実施形態の室外ユニット20についても、室外ユニット制御部27(およびこれを含むコントローラ7)は、冷媒の制御圧力(ゲージ圧力)の上限値が、液側冷媒連絡配管6とガス側冷媒連絡配管5の設計圧力の1.5倍(液側冷媒連絡配管6とガス側冷媒連絡配管5の耐圧圧力)よりも低くなるように設定されており、複数の室内ユニット30、35を有する本実施形態の空気調和装置1bにおいては後述する分岐管5a、5b、6a、6bの設計圧力よりも低くなるように設定されていることが好ましい。
 (4-3-2)第1室内ユニット30および第2室内ユニット35
 また、第3実施形態に係る空気調和装置1bでは、上記第1実施形態における室内ユニット30の代わりに、互いに並列に設けられた第1室内ユニット30および第2室内ユニット35を有している。なお、第1室内ユニット30および第2室内ユニット35の各設計圧力は、室外ユニット20と同様に、例えば、4.0MPa以上4.5MPa以下とすることができる。
 第1室内ユニット30は、上記第1実施形態における室内ユニット30と同様に第1室内熱交換器31と第1室内ファン32と第1室内ユニット制御部34が設けられており、さらに、第1室内熱交換器31の液側において第1室内膨張弁33が設けられている。第1室内膨張弁33は、弁開度が制御可能である。第1室内ユニット30は、液側が、液側冷媒連絡配管6の室内ユニット側端部から分岐して延びた第1液側分岐管6aと接続され、ガス側が、ガス側冷媒連絡配管5の室内ユニット側端部から分岐して延びた第1ガス側分岐管5aと接続されている。
 第2室内ユニット35は、第1室内ユニット30と同様であり、第2室内熱交換器36と第2室内ファン37と、第2室内ユニット制御部39と、第2室内熱交換器36の液側に設けられた第2室内膨張弁38と、を有している。第2室内膨張弁38は、弁開度が制御可能である。第2室内ユニット35は、液側が、液側冷媒連絡配管6の室内ユニット側端部から分岐して延びた第2液側分岐管6bと接続され、ガス側が、ガス側冷媒連絡配管5の室内ユニット側端部から分岐して延びた第2ガス側分岐管5bと接続されている。
 上記第1液側分岐管6aと第2液側分岐管6bと第1ガス側分岐管5aと第2ガス側分岐管5bの各設計圧力は、例えば、4.5MPaとすることができる。
 なお、第3実施形態に係る空気調和装置1bの第1室内ユニット30および第2室内ユニット35の具体的な構造は、上記第1室内膨張弁33や第2室内膨張弁38を除き、第2実施形態の室内ユニット30と同様の構成である。
 なお、第3実施形態のコントローラ7は、室外ユニット制御部27と、第1室内ユニット制御部34と、第2室内ユニット制御部39と、が互いに通信可能に接続されて構成されている。
 以上の空気調和装置1bでは、冷房運転モードでは、室外膨張弁24は、室外熱交換器23の液側出口を通過する冷媒の過冷却度が所定条件を満たすように制御される。また、冷房運転モードでは、過冷却膨張弁48は、圧縮機21が吸入する冷媒の過熱度が所定の条件を満たすように制御される。なお、冷房運転モードでは、第1室内膨張弁33および第2室内膨張弁38は、全開状態に制御される。
 また、暖房運転モードでは、第1室内膨張弁33は、第1室内熱交換器31の液側出口を通過する冷媒の過冷却度が所定条件を満たすように制御される。第2室内膨張弁38も同様に、第2室内熱交換器36の液側出口を通過する冷媒の過冷却度が所定条件を満たすように制御される。また、暖房運転モードでは、室外膨張弁45は、圧縮機21が吸入する冷媒の過熱度が所定の条件を満たすように制御される。なお、暖房運転モードでは、過冷却膨張弁48は、圧縮機21が吸入する冷媒の過熱度が所定の条件を満たすように制御される。なお、暖房運転モードでは、例えば、冷媒回路10における圧力の最大値が、ガス側冷媒連絡配管5の設計圧力の1.5倍よりも低くなるように、圧縮機21の駆動周波数と室外ファン25の風量の少なくともいずれかが制御される。なお、冷媒回路10における圧力の最大値が、第1ガス側分岐管5aと第2ガス側分岐管5bの設計圧力よりも低くなるように、圧縮機21の駆動周波数と室外ファン25の風量の少なくともいずれかが制御されることが好ましい。
 (4-3-3)第3実施形態の特徴
 以上の第3実施形態に係る空気調和装置1bにおいても、第1実施形態に係る空気調和装置1と同様に、冷媒X、冷媒Y、冷媒A、冷媒B、冷媒C、冷媒D、あるいは、冷媒Eが用いられているため、GWPを十分に小さく抑えることが可能になっている。
 また、空気調和装置1bでは、室外ユニット20の設計圧力が液側冷媒連絡配管6とガス側冷媒連絡配管5の設計圧力の1.5倍よりも低いものが用いられている。また、空気調和装置1bの室外ユニット20が有する室外ユニット制御部27は、冷媒の制御圧力の上限値が、液側冷媒連絡配管6とガス側冷媒連絡配管5の設計圧力の1.5倍よりも低くなるように、設定されている。このため、上記特定の冷媒X,冷媒Y,冷媒A~冷媒Eを用いた場合であっても、液側冷媒連絡配管6とガス側冷媒連絡配管5の損傷を抑制させることが可能になっている。
 (4-3-4)第3実施形態の変形例A
 上記第3実施形態では、室外ユニット20の設計圧力が液側冷媒連絡配管6とガス側冷媒連絡配管5の設計圧力の1.5倍よりも低く、且つ、室外ユニット20の室外ユニット制御部27について冷媒の制御圧力の上限値が液側冷媒連絡配管6とガス側冷媒連絡配管5の設計圧力の1.5倍よりも低くなるように設定されている場合を例に挙げて説明した。
 これに対して、例えば、設計圧力が液側冷媒連絡配管6とガス側冷媒連絡配管5の設計圧力の1.5倍以上の室外ユニット20であっても、冷媒の制御圧力の上限値として複数種類の中から選択可能に構成されており、液側冷媒連絡配管6とガス側冷媒連絡配管5の設計圧力の1.5倍よりも低くなるように設定可能な室外ユニット制御部27を有する室外ユニット20であれば、上記実施形態の空気調和装置1bにおいて用いることができる。
 (4-4)第4実施形態
 上記第1~第3実施形態およびその各変形例においては、上記冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかが用いられている新設された室外ユニット20や空気調和装置1、1a、1bを例に挙げて説明した。
 これに対して、第4実施形態に係る空気調和装置は、以下に述べるように、別冷媒が用いられていた空気調和装置について、液側冷媒連絡配管6およびガス側冷媒連絡配管5を再利用しつつ、用いる冷媒を上記冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかに変えることで更新された空気調和装置である。
 (4-4-1)R22から更新された空気調和装置
 上記第1~第3実施形態およびその各変形例における空気調和装置1、1a、1bは、R22が用いられていたものであり、冷媒X、冷媒Y、冷媒A、冷媒B、冷媒C、冷媒D、あるいは、冷媒Eが用いられるように更新された空気調和装置1、1a、1bであってもよい。
 ここで、冷媒R22(上述の冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかの冷媒よりも設計圧力の低い冷媒である)が用いられていた空気調和装置での液側冷媒連絡配管6およびガス側冷媒連絡配管5の設計圧力は、配管の外径と肉厚、さらに配管の材料である銅管の材質により決められている。このような液側冷媒連絡配管6やガス側冷媒連絡配管5に一般的に使用される銅管のうち、設計圧力が最も低い配管の外径、肉厚、材質の組み合わせは、一般冷媒配管用銅管(JIS B 8607)から、φ19.05、肉厚1.0mm、O材の場合であり、設計圧力は3.72MPa(ゲージ圧力)である。
 このため、上述の冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかの冷媒を使用するように更新された空気調和装置1、1a、1bの室外ユニット20では、冷媒の制御圧力の上限値が3.7MPa(ゲージ圧力)以下になるように、室外熱交換器23の伝熱面積や室外熱交換器23における風量(室外ファン25により送風される空気量)を設定する。または、上述の冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかの冷媒を使用するように更新された空気調和装置1、1a、1bの室外ユニット20が有する室外ユニット制御部27において、冷媒の制御圧力の上限値が3.7MPa(ゲージ圧力)以下になるように設定する。これにより、室外ユニット制御部27では、圧縮機21の運転周波数を制御することによる冷媒循環量の調整、および、室外熱交換器23における室外ファン25の風量の調整を行うことになる。
 以上により、冷媒R22を使用していた空気調和装置(旧機)で使用されていた液側冷媒連絡配管6やガス側冷媒連絡配管5を、上述の冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかの冷媒を使用して更新された空気調和装置(新機)1、1a、1bの導入時に再利用することが可能となり、その場合における液側冷媒連絡配管6やガス側冷媒連絡配管5の損傷を抑制することが可能になる。
 この場合、冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかに更新された空気調和装置1、1a、1bの室外ユニット20の設計圧力は、R22が使用されていた際の空気調和装置における室外ユニットの設計圧力と同等であり、具体的には、3.0MPa以上3.7MPa以下であることが好ましい。また、R22が用いられていた際の空気調和装置が有する室外ユニットおよび室内ユニットについては、再利用してもよいし、新たなものを用いてもよい。
 室外ユニット20について新たなものを用いる場合には、その設計圧力または冷媒の制御圧力の上限値が、R22が用いられていた際の空気調和装置が有していた室外ユニットの設計圧力または冷媒の制御圧力の上限値と同等のものを用いる。例えば、R22が用いられていた際の空気調和装置が有していた室外ユニットの設計圧力や冷媒の制御圧力の上限値が3.0MPaである場合には、新たな室外ユニット20としては、設計圧力が3.0MPaと同等のものであるか、または、設計圧力がより大きなもの(設計圧力が4.0MPa以上4.5MPa以下のものであって、冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかについて用いられる液側冷媒連絡配管6およびガス側冷媒連絡配管5に接続して用いることができるもの)であっても冷媒の制御圧力の上限値については3.0MPaと同等に設定されたものであることが好ましい。
 なお、第3実施形態等に示すように複数の室内ユニット30、35が、第1液側分岐管6a、第2液側分岐管6b、第1ガス側分岐管5a、第2ガス側分岐管5b等の分岐管を介して接続されている空気調和装置については、冷媒としてR22を用いた場合のこれらの分岐管の設計圧力は3.4MPaとされており、上記3.7MPaよりもさらに低いものが用いられている。このため、複数の室内ユニット30、35を有しており、用いられる冷媒がR22から上記冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかの冷媒に更新された空気調和装置1、1a、1bについては、上記各分岐管を流れる冷媒の圧力が3.4MPaを超えることが無いように、室外ユニット20の設計圧力が3.4MPa以下のものを用いるか、または、室外ユニット20が有する室外ユニット制御部27による冷媒の制御圧力の上限値が3.4MPa以下となるように設定することが好ましい。
 (4-4-2)R407Cから更新された空気調和装置
 上記第1~第3実施形態およびその各変形例における空気調和装置1、1a、1bは、冷媒R407Cが用いられていたものであり、冷媒X、冷媒Y、冷媒A、冷媒B、冷媒C、冷媒D、あるいは、冷媒Eのいずれかが用いられるように更新された空気調和装置1、1a、1bであってもよい。
 ここで、冷媒R407C(上述の冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかの冷媒よりも設計圧力の低い冷媒である)が用いられていた空気調和装置での液側冷媒連絡配管6およびガス側冷媒連絡配管5の設計圧力は、上記R22が用いられていた場合と同様に、液側冷媒連絡配管6やガス側冷媒連絡配管5について設計圧力が最も低い配管の設計圧力は3.72MPa(ゲージ圧力)である。
 このため、上述の冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかの冷媒を使用するように更新された空気調和装置1、1a、1bの室外ユニット20では、上記R22からの更新の場合と同様に、冷媒の制御圧力の上限値が3.7MPa(ゲージ圧力)以下になるように、室外熱交換器23の伝熱面積や室外熱交換器23における風量(室外ファン25により送風される空気量)を設定する。または、上述の冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかの冷媒を使用するように更新された空気調和装置1、1a、1bの室外ユニット20が有する室外ユニット制御部27において、冷媒の制御圧力の上限値が3.7MPa(ゲージ圧力)以下になるように設定する。これにより、室外ユニット制御部27では、圧縮機21の運転周波数を制御することによる冷媒循環量の調整、および、室外熱交換器23における室外ファン25の風量の調整を行うことになる。
 以上により、冷媒R407Cを使用していた空気調和装置(旧機)で使用されていた液側冷媒連絡配管6やガス側冷媒連絡配管5を、上述の冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかの冷媒を使用して更新された空気調和装置(新機)1、1a、1bの導入時に再利用することが可能となり、その場合における液側冷媒連絡配管6やガス側冷媒連絡配管5の損傷を抑制することが可能になる。
 この場合、冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかに更新された空気調和装置1、1a、1bの室外ユニット20の設計圧力は、R407Cが使用されていた際の空気調和装置における室外ユニットの設計圧力と同等であり、具体的には、3.0MPa以上3.7MPa以下であることが好ましい。また、R407Cが用いられていた際の空気調和装置が有する室外ユニットおよび室内ユニットについては、再利用してもよいし、新たなものを用いてもよい。
 室外ユニット20について新たなものを用いる場合には、その設計圧力または冷媒の制御圧力の上限値が、R407Cが用いられていた際の空気調和装置が有していた室外ユニットの設計圧力または冷媒の制御圧力の上限値と同等のものを用いる。例えば、R407Cが用いられていた際の空気調和装置が有していた室外ユニットの設計圧力や冷媒の制御圧力の上限値が3.0MPaである場合には、新たな室外ユニット20としては、設計圧力が3.0MPaと同等のものであるか、または、設計圧力がより大きなもの(設計圧力が4.0MPa以上4.5MPa以下のものであって、冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかについて用いられる液側冷媒連絡配管6およびガス側冷媒連絡配管5に接続して用いることができるもの)であっても冷媒の制御圧力の上限値については3.0MPaと同等に設定されたものであることが好ましい。
 なお、第3実施形態等に示すように複数の室内ユニット30、35が、第1液側分岐管6a、第2液側分岐管6b、第1ガス側分岐管5a、第2ガス側分岐管5b等の分岐管を介して接続されている空気調和装置については、冷媒としてR407Cを用いた場合のこれらの分岐管の設計圧力はR22と同様に3.4MPaとされており、上記3.7MPaよりもさらに低いものが用いられている。このため、複数の室内ユニット30、35を有しており、用いられる冷媒がR407Cから上記冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかの冷媒に更新された空気調和装置1、1a、1bについては、上記各分岐管を流れる冷媒の圧力が3.4MPaを超えることが無いように、室外ユニット20の設計圧力が3.4MPa以下のものを用いるか、または、室外ユニット20が有する室外ユニット制御部27による冷媒の制御圧力の上限値が3.4MPa以下となるように設定することが好ましい。
 (4-4-3)R410Aから更新された空気調和装置
 上記第1~第3実施形態およびその各変形例における空気調和装置1、1a、1bは、冷媒R410Aが用いられていたものであり、冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかが用いられるように更新された空気調和装置1、1a、1bであってもよい。
 ここで、冷媒R410A(上述の冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかの冷媒と概ね同等の設計圧力の冷媒である)が用いられていた空気調和装置での液側冷媒連絡配管6およびガス側冷媒連絡配管5の設計圧力は、外径が3/8インチの配管については4.3MPa(ゲージ圧力)、外径が1/2インチの配管については4.8MPa(ゲージ圧力)とされている。
 このため、上述の冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかの冷媒を使用するように更新された空気調和装置1、1a、1bの室外ユニット20では、冷媒の制御圧力の上限値が、外径が3/8インチの連絡配管が用いられている場合については4.3MPa以下となるように、また、外径が1/2インチの連絡配管が用いられている場合については4.8MPa以下となるように、室外熱交換器23の伝熱面積や室外熱交換器23における風量(室外ファン25により送風される空気量)を設定する。または、上述の冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかの冷媒を使用するように更新された空気調和装置1、1a、1bの室外ユニット20が有する室外ユニット制御部27において、冷媒の制御圧力の上限値が、外径が3/8インチの連絡配管が用いられている場合については4.3MPa以下となるように、また、外径が1/2インチの連絡配管が用いられている場合については4.8MPa以下となるように設定する。これにより、室外ユニット制御部27では、圧縮機21の運転周波数を制御することによる冷媒循環量の調整、および、室外熱交換器23における室外ファン25の風量の調整を行うことになる。
 以上により、冷媒R410Aを使用していた空気調和装置(旧機)で使用されていた液側冷媒連絡配管6やガス側冷媒連絡配管5を、上述の冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかの冷媒を使用して更新された空気調和装置(新機)1、1a、1bの導入時に再利用することが可能となり、その場合における液側冷媒連絡配管6やガス側冷媒連絡配管5の損傷を抑制することが可能になる。
 この場合、冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかに更新された空気調和装置1、1a、1bの室外ユニット20の設計圧力は、R410Aが使用されていた際の空気調和装置における室外ユニットの設計圧力と同等であり、具体的には、4.0MPa以上4.8MPa以下であることが好ましい。また、R410Aが用いられていた際の空気調和装置が有する室外ユニットおよび室内ユニットについては、再利用してもよいし、新たなものを用いてもよい。
 室外ユニット20について新たなものを用いる場合には、その設計圧力または冷媒の制御圧力の上限値が、R410Aが用いられていた際の空気調和装置が有していた室外ユニットの設計圧力または冷媒の制御圧力の上限値と同等のものを用いる。例えば、R410Aが用いられていた際の空気調和装置が有していた室外ユニットの設計圧力や冷媒の制御圧力の上限値が4.2MPaである場合には、新たな室外ユニット20としては、設計圧力が4.2MPaと同等のものであるか、または、設計圧力がより大きなもの(設計圧力が4.2MPaより大きく4.5MPa以下のものであって、冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかについて用いられる液側冷媒連絡配管6およびガス側冷媒連絡配管5に接続して用いることができるもの)であっても冷媒の制御圧力の上限値については4.2MPaと同等に設定されたものであることが好ましい。
 なお、第3実施形態等に示すように複数の室内ユニット30、35が、第1液側分岐管6a、第2液側分岐管6b、第1ガス側分岐管5a、第2ガス側分岐管5b等の分岐管を介して接続されている空気調和装置については、冷媒としてR410Aを用いた場合のこれらの分岐管の設計圧力は4.2MPaとされており、上記4.8MPaよりもさらに低いものが用いられている。このため、複数の室内ユニット30、35を有しており、用いられる冷媒がR410Aから上記冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかの冷媒に更新された空気調和装置1、1a、1bについては、上記各分岐管を流れる冷媒の圧力が4.2MPaを超えることが無いように、室外ユニット20の設計圧力が4.2MPa以下のものを用いるか、または、室外ユニット20が有する室外ユニット制御部27による冷媒の制御圧力の上限値が4.2MPa以下となるように設定することが好ましい。
 (4-4-4)R32から更新された空気調和装置
 上記第1~第3実施形態およびその各変形例における空気調和装置1、1a、1bは、冷媒R32が用いられていたものであり、冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかが用いられるように更新された空気調和装置1、1a、1bであってもよい。
 ここで、冷媒R32(上述の冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかの冷媒と概ね同等の設計圧力の冷媒である)が用いられていた空気調和装置での液側冷媒連絡配管6およびガス側冷媒連絡配管5の設計圧力は、外径が3/8インチの配管については4.3MPa(ゲージ圧力)、外径が1/2インチの配管については4.8MPa(ゲージ圧力)とされている。
 このため、上述の冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかの冷媒を使用するように更新された空気調和装置1、1a、1bの室外ユニット20では、冷媒の制御圧力の上限値が、外径が3/8インチの連絡配管が用いられている場合については4.3MPa以下となるように、また、外径が1/2インチの連絡配管が用いられている場合については4.8MPa以下となるように、室外熱交換器23の伝熱面積や室外熱交換器23における風量(室外ファン25により送風される空気量)を設定する。または、上述の冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかの冷媒を使用するように更新された空気調和装置1、1a、1bの室外ユニット20が有する室外ユニット制御部27において、冷媒の制御圧力の上限値が、外径が3/8インチの連絡配管が用いられている場合については4.3MPa以下となるように、また、外径が1/2インチの連絡配管が用いられている場合については4.8MPa以下となるように設定する。これにより、室外ユニット制御部27では、圧縮機21の運転周波数を制御することによる冷媒循環量の調整、および、室外熱交換器23における室外ファン25の風量の調整を行うことになる。
 以上により、冷媒R32を使用していた空気調和装置(旧機)で使用されていた液側冷媒連絡配管6やガス側冷媒連絡配管5を、上述の冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかの冷媒を使用して更新された空気調和装置(新機)1、1a、1bの導入時に再利用することが可能となり、その場合における液側冷媒連絡配管6やガス側冷媒連絡配管5の損傷を抑制することが可能になる。
 この場合、冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかに更新された空気調和装置1、1a、1bの室外ユニット20の設計圧力は、R32が使用されていた際の空気調和装置における室外ユニットの設計圧力と同等であり、具体的には、4.0MPa以上4.8MPa以下であることが好ましい。また、R32が用いられていた際の空気調和装置が有する室外ユニットおよび室内ユニットについては、再利用してもよいし、新たなものを用いてもよい。
 室外ユニット20について新たなものを用いる場合には、その設計圧力または冷媒の制御圧力の上限値が、R32が用いられていた際の空気調和装置が有していた室外ユニットの設計圧力または冷媒の制御圧力の上限値と同等のものを用いる。例えば、R32が用いられていた際の空気調和装置が有していた室外ユニットの設計圧力や冷媒の制御圧力の上限値が4.2MPaである場合には、新たな室外ユニット20としては、設計圧力が4.2MPaと同等のものであるか、または、設計圧力がより大きなもの(設計圧力が4.2MPaより大きく4.5MPa以下のものであって、冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかについて用いられる液側冷媒連絡配管6およびガス側冷媒連絡配管5に接続して用いることができるもの)であっても冷媒の制御圧力の上限値については4.2MPaと同等に設定されたものであることが好ましい。
 なお、第3実施形態等に示すように複数の室内ユニット30、35が、第1液側分岐管6a、第2液側分岐管6b、第1ガス側分岐管5a、第2ガス側分岐管5b等の分岐管を介して接続されている空気調和装置については、冷媒としてR32を用いた場合のこれらの分岐管の設計圧力は4.2MPaとされており、上記4.8MPaよりもさらに低いものが用いられている。このため、複数の室内ユニット30、35を有しており、用いられる冷媒がR32から上記冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかの冷媒に更新された空気調和装置1、1a、1bについては、上記各分岐管を流れる冷媒の圧力が4.2MPaを超えることが無いように、室外ユニット20の設計圧力が4.2MPa以下のものを用いるか、または、室外ユニット20が有する室外ユニット制御部27による冷媒の制御圧力の上限値が4.2MPa以下となるように設定することが好ましい。
 (5)第5グループの技術の実施形態
 (5-1)第1実施形態
 以下、冷媒回路の概略構成図である図5A、概略制御ブロック構成図である図5Bを参照しつつ、第1実施形態に係る冷凍サイクル装置としての空気調和装置1について説明する。
 空気調和装置1は、蒸気圧縮式の冷凍サイクルを行うことで、対象空間の空気を調和させる装置である。
 空気調和装置1は、主として、室外ユニット20と、室内ユニット30と、室外ユニット20と室内ユニット30を接続する液側冷媒連絡配管6およびガス側冷媒連絡配管5と、入力装置および出力装置としての図示しないリモコンと、空気調和装置1の動作を制御するコントローラ7と、を有している。
 空気調和装置1では、冷媒回路10内に封入された冷媒が、圧縮され、冷却又は凝縮され、減圧され、加熱又は蒸発された後に、再び圧縮される、という冷凍サイクルが行われる。本実施形態では、冷媒回路10には、蒸気圧縮式の冷凍サイクルを行うための冷媒が充填されている。当該冷媒は、冷媒X、冷媒Y、冷媒A、冷媒B、冷媒C、冷媒D、あるいは、冷媒Eである。なお、室内ユニット30が1台だけ設けられている空気調和装置1の定格冷房能力としては、例えば、2.0kW以上17.0kW以下とすることができ、なかでも、冷媒容器である低圧レシーバ26が設けられた本実施形態では、4.0kW以上17.0kW以下とすることが好ましい。
 (5-1-1)室外ユニット20
 室外ユニット20は、液側冷媒連絡配管6およびガス側冷媒連絡配管5を介して室内ユニット30と接続されており、冷媒回路10の一部を構成している。室外ユニット20は、主として、圧縮機21と、四路切換弁22と、室外熱交換器23と、室外膨張弁24と、室外ファン25と、低圧レシーバ26と、液側閉鎖弁29と、ガス側閉鎖弁28と、を有している。
 圧縮機21は、冷凍サイクルにおける低圧の冷媒を高圧になるまで圧縮する機器である。ここでは、圧縮機21として、ロータリ式やスクロール式等の容積式の圧縮要素(図示省略)が圧縮機モータによって回転駆動される密閉式構造の圧縮機が使用されている。圧縮機モータは、容量を変化させるためのものであり、インバータにより運転周波数の制御が可能である。なお、圧縮機21には、吸入側において、図示しない付属アキュムレータが設けられている。
 四路切換弁22は、接続状態を切り換えることで、圧縮機21の吐出側と室外熱交換器23とを接続しつつ圧縮機21の吸入側とガス側閉鎖弁28とを接続する冷房運転接続状態と、圧縮機21の吐出側とガス側閉鎖弁28とを接続しつつ圧縮機21の吸入側と室外熱交換器23とを接続する暖房運転接続状態と、を切り換えることができる。
 室外熱交換器23は、冷房運転時には冷凍サイクルにおける高圧の冷媒の凝縮器として機能し、暖房運転時には冷凍サイクルにおける低圧の冷媒の蒸発器として機能する熱交換器である。なお、室外熱交換器23の内容積(内部に充填可能な流体の体積)としては、本実施形態のように、冷媒回路10において冷媒容器(低圧レシーバや高圧レシーバ等であり、圧縮機に付属のアキュムレータを除く)が設けられているものについては、1.4L以上5.0L未満であることが好ましい。また、本実施形態のように、室外ファン25が1つだけ設けられているトランク型の室外ユニット20が有する室外熱交換器23の内容積(内部に充填可能な流体の体積)としては、0.4L以上3.5L未満であることが好ましい。
 室外ファン25は、室外ユニット20内に室外の空気を吸入して、室外熱交換器23において冷媒と熱交換させた後に、外部に排出するための空気流れを生じさせる。室外ファン25は、室外ファンモータによって回転駆動される。
 室外膨張弁24は、弁開度を制御可能であり、室外熱交換器23の液側端部と液側閉鎖弁29との間に設けられている。
 低圧レシーバ26は、四路切換弁22の接続ポートの1つから圧縮機21の吸入側に至るまでの間に設けられ、冷媒を溜めることができる容器である。
 液側閉鎖弁29は、室外ユニット20における液側冷媒連絡配管6との接続部分に配置された手動弁である。
 ガス側閉鎖弁28は、室外ユニット20におけるとガス側冷媒連絡配管5との接続部分に配置された手動弁である。
 室外ユニット20は、室外ユニット20を構成する各部の動作を制御する室外ユニット制御部27を有している。室外ユニット制御部27は、CPUやメモリ等を含むマイクロコンピュータを有している。室外ユニット制御部27は、各室内ユニット30の室内ユニット制御部34と通信線を介して接続されており、制御信号等の送受信を行う。また、室外ユニット制御部27は、図示しない各種センサと電気的に接続されており、各センサからの信号を受信する。
 (5-1-2)室内ユニット30
 室内ユニット30は、対象空間である室内の壁面や天井等に設置されている。室内ユニット30は、液側冷媒連絡配管6およびガス側冷媒連絡配管5を介して室外ユニット20と接続されており、冷媒回路10の一部を構成している。
 室内ユニット30は、室内熱交換器31と、室内ファン32と、を有している。
 室内熱交換器31は、液側が、液側冷媒連絡配管6と接続され、ガス側端が、ガス側冷媒連絡配管5とを接続されている。室内熱交換器31は、冷房運転時には冷凍サイクルにおける低圧の冷媒の蒸発器として機能し、暖房運転時には冷凍サイクルにおける高圧の冷媒の凝縮器として機能する熱交換器である。
 室内ファン32は、室内ユニット30内に室内の空気を吸入して、室内熱交換器31において冷媒と熱交換させた後に、外部に排出するための空気流れを生じさせる。室内ファン32は、室内ファンモータによって回転駆動される。
 また、室内ユニット30は、室内ユニット30を構成する各部の動作を制御する室内ユニット制御部34を有している。室内ユニット制御部34は、CPUやメモリ等を含むマイクロコンピュータを有している。室内ユニット制御部34は、室外ユニット制御部27と通信線を介して接続されており、制御信号等の送受信を行う。
 室内ユニット制御部34は、室内ユニット30内に設けられている図示しない各種センサと電気的に接続されており、各センサからの信号を受信する。
 (5-1-3)コントローラ7の詳細
 空気調和装置1では、室外ユニット制御部27と室内ユニット制御部34が通信線を介して接続されることで、空気調和装置1の動作を制御するコントローラ7が構成されている。
 コントローラ7は、主として、CPU(中央演算処理装置)と、ROMやRAM等のメモリを有している。なお、コントローラ7による各種処理や制御は、室外ユニット制御部27および/又は室内ユニット制御部34に含まれる各部が一体的に機能することによって実現されている。
 (5-1-4)運転モード
 以下、運転モードについて説明する。
 運転モードとしては、冷房運転モードと暖房運転モードとが設けられている。
 コントローラ7は、リモコン等から受け付けた指示に基づいて、冷房運転モードか暖房運転モードかを判断し、実行する。
 (5-1-4-1)冷房運転モード
 空気調和装置1では、冷房運転モードでは、四路切換弁22の接続状態を圧縮機21の吐出側と室外熱交換器23とを接続しつつ圧縮機21の吸入側とガス側閉鎖弁28とを接続する冷房運転接続状態とし、冷媒回路10に充填されている冷媒を、主として、圧縮機21、室外熱交換器23、室外膨張弁24、室内熱交換器31の順に循環させる。
 より具体的には、冷房運転モードが開始されると、冷媒回路10内において、冷媒が圧縮機21に吸入されて圧縮された後に吐出される。
 圧縮機21では、室内ユニット30で要求される冷却負荷に応じた容量制御が行われる。当該容量制御としては、特に限定されず、例えば、吸入圧力の目標値が室内ユニット30で要求される冷却負荷に応じて設定され、吸入圧力が目標値になるように圧縮機21の運転周波数が制御されるものであってもよい。
 圧縮機21から吐出されたガス冷媒は、四路切換弁22を経て、室外熱交換器23のガス側端に流入する。
 室外熱交換器23のガス側端に流入したガス冷媒は、室外熱交換器23において、室外ファン25によって供給される室外側空気と熱交換を行って凝縮し、液冷媒となって室外熱交換器23の液側端から流出する。
 室外熱交換器23の液側端から流出した冷媒は、室外膨張弁24を通過する際に減圧される。なお、室外膨張弁24は、室外熱交換器23の液側出口を通過する冷媒の過冷却度が所定条件を満たすように制御される。なお、室外膨張弁24の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
 室外膨張弁24で減圧された冷媒は、液側閉鎖弁29および液側冷媒連絡配管6を経て、室内ユニット30に流入する。
 室内ユニット30に流入した冷媒は、室内熱交換器31に流入し、室内熱交換器31において、室内ファン32によって供給される室内空気と熱交換を行って蒸発し、ガス冷媒となって室内熱交換器31のガス側端から流出する。室内熱交換器31のガス側端から流出したガス冷媒は、ガス側冷媒連絡配管5に流れていく。
 ガス側冷媒連絡配管5を流れた冷媒は、ガス側閉鎖弁28、四路切換弁22を経て、再び、圧縮機21に吸入される。
 (5-1-4-2)暖房運転モード
 空気調和装置1では、暖房運転モードでは、四路切換弁22の接続状態を圧縮機21の吐出側とガス側閉鎖弁28とを接続しつつ圧縮機21の吸入側と室外熱交換器23とを接続する暖房運転接続状態とし、冷媒回路10に充填されている冷媒を、主として、圧縮機21、室内熱交換器31、室外膨張弁24、室外熱交換器23の順に循環させる。
 より具体的には、暖房運転モードが開始されると、冷媒回路10内において、冷媒が圧縮機21に吸入されて圧縮された後に吐出される。
 圧縮機21では、室内ユニット30で要求される暖房負荷に応じた容量制御が行われる。当該容量制御としては、特に限定されず、例えば、吐出圧力の目標値が室内ユニット30で要求される暖房負荷に応じて設定され、吐出圧力が目標値になるように圧縮機21の運転周波数が制御される。
 圧縮機21から吐出されたガス冷媒は、四路切換弁22およびガス側冷媒連絡配管5を流れた後、室内ユニット30に流入する。
 室内ユニット30に流入した冷媒は、室内熱交換器31のガス側端に流入し、室内熱交換器31において、室内ファン32によって供給される室内空気と熱交換を行って凝縮し、気液二相状態の冷媒または液冷媒となって室内熱交換器31の液側端から流出する。室内熱交換器31の液側端から流出した冷媒は、液側冷媒連絡配管6に流れていく。
 液側冷媒連絡配管6を流れた冷媒は、液側閉鎖弁29、室外膨張弁24において冷凍サイクルにおける低圧になるまで減圧される。なお、室外膨張弁24は、室内熱交換器31の液側出口を通過する冷媒の過冷却度が所定条件を満たすように制御される。なお、室外膨張弁24の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
 室外膨張弁24で減圧された冷媒は、室外熱交換器23の液側端に流入する。
 室外熱交換器23の液側端から流入した冷媒は、室外熱交換器23において、室外ファン25によって供給される室外空気と熱交換を行って蒸発し、ガス冷媒となって室外熱交換器23のガス側端から流出する。
 室外熱交換器23のガス側端から流出した冷媒は、四路切換弁22を経て、再び、圧縮機21に吸入される。
 (5-1-5)冷媒封入量
 以上の室内ユニット30が1台だけ設けられている空気調和装置1では、冷凍能力1kW当りの封入量が160g以上560g以下となるように、冷媒が冷媒回路10に充填されており、なかでも、冷媒容器としての低圧レシーバ26が設けられている空気調和装置1では、冷凍能力1kW当りの封入量が260g以上560g以下となるように、冷媒が冷媒回路10に充填されている。
 (5-1-6)第1実施形態の特徴
 例えば、従来多用されているR32冷媒を用いた冷凍サイクル装置では、R32の充填量が少な過ぎると、冷媒不足に起因するサイクル効率の悪化によりLCCPが大きくなり、R32の充填量が多過ぎるとGWPの影響が高くなり、LCCPが大きくなる傾向にある。
 これに対して、本実施形態の室内ユニット30が1台だけ設けられている空気調和装置1では、冷媒として上記冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかの冷媒が用いられており、しかもその冷媒封入量を、冷凍能力1kW当りの封入量が160g以上560g以下(特に、低圧レシーバ26が設けられていることから260g以上560g以下)となるようにしている。
 これにより、R32よりもGWPが十分に小さい冷媒を用いつつ、冷凍能力1kW当りの封入量を560gまでに抑えることで、LCCPを低く抑えることが可能になっている。また、R32よりも熱搬送能力が低い冷媒であっても冷凍能力1kW当りの封入量を160g以上(特に、低圧レシーバ26が設けられていることから260g以上)とすることで冷媒不足によるサイクル効率の低下を抑制してLCCPの上昇を抑えることが可能になっている。以上より、GWPが十分に小さい冷媒を用いて熱サイクルを行う場合において、LCCPを低く抑えることが可能になっている。
 (5-1-7)第1実施形態の変形例A
 上記第1実施形態では、圧縮機21の吸入側に低圧レシーバが設けられている空気調和装置を例に挙げて説明したが、空気調和装置としては、冷媒回路において冷媒容器(低圧レシーバや高圧レシーバ等であり、圧縮機に付属のアキュムレータを除く)が設けられていないものであってもよい。
 この場合には、冷凍能力1kW当りの冷媒封入量が160g以上400g以下となるように、冷媒が冷媒回路10に充填される。そして、この場合には、室外熱交換器23の内容積(内部に充填可能な流体の体積)としては、0.4L以上2.5L以下であることが好ましい。
 (5-1-8)第1実施形態の変形例B
 上記第1実施形態では、室内ユニットが1つだけ設けられている空気調和装置を例に挙げて説明したが、空気調和装置としては、互いに並列に接続された複数の室内ユニット(室内膨張弁を有さないもの)が設けられていてもよい。
 この場合には、冷凍能力1kW当りの冷媒封入量が260g以上560g以下となるように、冷媒が冷媒回路10に充填される。そして、この場合には、室外熱交換器23の内容積(内部に充填可能な流体の体積)としては、1.4L以上5.0L未満であることが好ましい。
 (5-1-9)第1実施形態の変形例C
 上記第1実施形態では、室外ファン25が1つだけ設けられているトランク型の室外ユニット20を有する空気調和装置を例に挙げて説明したが、空気調和装置としては、室外ファン25が2つ設けられているトランク型の室外ユニット20を有するものであってもよい。
 この場合には、冷凍能力1kW当りの冷媒封入量が350g以上540g以下となるように、冷媒が冷媒回路10に充填される。そして、この場合には、室外熱交換器23の内容積(内部に充填可能な流体の体積)としては、3.5L以上7.0L以下であることが好ましい。
 (5-2)第2実施形態
 以下、冷媒回路の概略構成図である図5C、概略制御ブロック構成図である図5Dを参照しつつ、第2実施形態に係る冷凍サイクル装置としての空気調和装置1aについて説明する。
 以下、主として、第2実施形態の空気調和装置1aについて、第1実施形態の空気調和装置1と異なる箇所を中心に説明する。
 空気調和装置1aにおいても、冷媒回路10には、蒸気圧縮式の冷凍サイクルを行うための冷媒として、上述した冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかが充填されている。
 空気調和装置1aの室外ユニット20では、上記第1実施形態における室外ユニット20の室外膨張弁24の代わりに、室外熱交換器23の液側から液側閉鎖弁29までの間において、第1室外膨張弁44、中間圧レシーバ41、第2室外膨張弁45が順次設けられている。また、上記第1実施形態における室外ユニット20の低圧レシーバ26は、第2実施形態の室外ユニット20には設けられていない。
 第1室外膨張弁44および第2室外膨張弁45は、弁開度を制御可能である。
 中間圧レシーバ41は、第1室外膨張弁44側から延びる配管の端部と、第2室外膨張弁45側から延びる配管の端部と、の両方が内部空間に位置しており、冷媒を溜めることができる容器である。
 なお、第2実施形態に係る空気調和装置1aでは、冷媒回路10において冷媒容器である中間圧レシーバ41が設けられていることから、室外ユニット20が有する室外熱交換器23の内容積(内部に充填可能な流体の体積)が、1.4L以上5.0L未満であることが好ましい。また、本実施形態のように、室外ファン25が1つだけ設けられているトランク型の室外ユニット20が有する室外熱交換器23の内容積(内部に充填可能な流体の体積)としては、0.4L以上3.5L未満であることが好ましい。
 以上の空気調和装置1aでは、冷房運転モードでは、第1室外膨張弁44は、室外熱交換器23の液側出口を通過する冷媒の過冷却度が所定条件を満たすように制御される。また、冷房運転モードでは、第2室外膨張弁45は、圧縮機21が吸入する冷媒の過熱度が所定の条件を満たすように制御される。なお、冷房運転モードでは、第2室外膨張弁45は、圧縮機21が吐出する冷媒の温度が所定温度となるように制御されてもよいし、圧縮機21が吐出する冷媒の過熱度が所定条件を満たすように制御されてもよい。
 また、暖房運転モードでは、第2室外膨張弁45は、室内熱交換器31の液側出口を通過する冷媒の過冷却度が所定条件を満たすように制御される。また、暖房運転モードでは、第1室外膨張弁44は、圧縮機21が吸入する冷媒の過熱度が所定の条件を満たすように制御される。なお、暖房運転モードでは、第1室外膨張弁44は、圧縮機21が吐出する冷媒の温度が所定温度となるように制御されてもよいし、圧縮機21が吐出する冷媒の過熱度が所定条件を満たすように制御されてもよい。
 以上の室内ユニット30が1台だけ設けられている空気調和装置1aでは、冷凍能力1kW当りの封入量が160g以上560g以下となるように、冷媒が冷媒回路10に充填されており、なかでも、冷媒容器としての中間圧レシーバ41が設けられている空気調和装置1では、冷凍能力1kW当りの封入量が260g以上560g以下となるように、冷媒が冷媒回路10に充填されている。
 なお、室内ユニット30が1台だけ設けられている空気調和装置1の定格冷房能力としては、例えば、2.2kW以上16.0kW以下とすることができ、4.0kW以上16.0kW以下とすることが好ましい。
 以上の第2実施形態に係る空気調和装置1aにおいても、第1実施形態に係る空気調和装置1と同様に、GWPが十分に小さい冷媒を用いて熱サイクルを行う場合において、LCCPを低く抑えることが可能になっている。
 (5-2-1)第2実施形態の変形例A
 上記第2実施形態では、室内ユニットが1つだけ設けられている空気調和装置を例に挙げて説明したが、空気調和装置としては、互いに並列に接続された複数の室内ユニット(室内膨張弁を有さないもの)が設けられていてもよい。
 この場合には、冷凍能力1kW当りの冷媒封入量が260g以上560g以下となるように、冷媒が冷媒回路10に充填される。そして、この場合には、室外熱交換器23の内容積(内部に充填可能な流体の体積)としては、1.4L以上5.0L未満であることが好ましい。
 (5-2-2)第2実施形態の変形例B
 上記第2実施形態では、室外ファン25が1つだけ設けられているトランク型の室外ユニット20を有する空気調和装置を例に挙げて説明したが、空気調和装置としては、室外ファン25が2つ設けられたトランク型の室外ユニット20を有するものであってもよい。
 この場合には、冷凍能力1kW当りの冷媒封入量が350g以上540g以下となるように、冷媒が冷媒回路10に充填される。そして、この場合には、室外熱交換器23の内容積(内部に充填可能な流体の体積)としては、3.5L以上7.0L以下であることが好ましい。
 (5-3)第3実施形態
 以下、冷媒回路の概略構成図である図5E、概略制御ブロック構成図である図5Fを参照しつつ、第3実施形態に係る冷凍サイクル装置としての空気調和装置1bについて説明する。
 以下、主として、第3実施形態の空気調和装置1bについて、第1実施形態の空気調和装置1と異なる箇所を中心に説明する。
 空気調和装置1bにおいても、冷媒回路10には、蒸気圧縮式の冷凍サイクルを行うための冷媒として、上述した冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかが充填されている。
 第3実施形態に係る空気調和装置1bの室外ユニット20では、上記第1実施形態における室外ユニット20において、過冷却熱交換器47および過冷却回路46が設けられている。
 過冷却熱交換器47は、室外膨張弁24と液側閉鎖弁29との間に設けられている。
 過冷却回路46は、室外膨張弁24と過冷却熱交換器47との間の主回路から分岐し、四路切換弁22の接続ポートの1つから低圧レシーバ26に至るまでの途中の部分に合流するように延びた回路である。過冷却回路46の途中には、通過する冷媒を減圧させる過冷却膨張弁48が設けられている。過冷却回路46を流れる冷媒であって、過冷却膨張弁48で減圧された冷媒は、過冷却熱交換器47において、主回路側を流れる冷媒との間で熱交換を行う。これにより、主回路側を流れる冷媒はさらに冷却され、過冷却回路46を流れる冷媒は蒸発する。
 なお、室内膨張弁が設けられた室内ユニットを複数有している第3実施形態に係る空気調和装置1bでは、室外ユニット20が有する室外熱交換器23の内容積(内部に充填可能な流体の体積)が、5.0L以上38L以下であることが好ましい。なかでも、室外熱交換器23を通過した空気の吹出口が側方を向いている室外ユニット20において、室外ファン25が2つ設けられているものである場合には、室外熱交換器23の内容積(内部に充填可能な流体の体積)は、7.0L以下であることが好ましく、室外熱交換器23を通過した空気が上方に向けて吹き出す室外ユニット20である場合には、室外熱交換器23の内容積は、5.5L以上であることが好ましい。
 また、第3実施形態に係る空気調和装置1bでは、上記第1実施形態における室内ユニット30の代わりに、互いに並列に設けられた第1室内ユニット30および第2室内ユニット35を有している。
 第1室内ユニット30は、上記第1実施形態における室内ユニット30と同様に第1室内熱交換器31と第1室内ファン32と第1室内ユニット制御部34が設けられており、さらに、第1室内熱交換器31の液側において第1室内膨張弁33が設けられている。第1室内膨張弁33は、弁開度が制御可能である。
 第2室内ユニット35は、第1室内ユニット30と同様であり、第2室内熱交換器36と第2室内ファン37と、第2室内ユニット制御部39と、第2室内熱交換器36の液側に設けられた第2室内膨張弁38と、を有している。第2室内膨張弁38は、弁開度が制御可能である。
 なお、第3実施形態のコントローラ7は、室外ユニット制御部27と、第1室内ユニット制御部34と、第2室内ユニット制御部39と、が互いに通信可能に接続されて構成されている。
 冷房運転モードでは、室外膨張弁24は、室外熱交換器23の液側出口を通過する冷媒の過冷却度が所定条件を満たすように制御される。また、冷房運転モードでは、過冷却膨張弁48は、圧縮機21が吸入する冷媒の過熱度が所定の条件を満たすように制御される。なお、冷房運転モードでは、第1室内膨張弁33および第2室内膨張弁38は、全開状態に制御される。
 暖房運転モードでは、第1室内膨張弁33は、第1室内熱交換器31の液側出口を通過する冷媒の過冷却度が所定条件を満たすように制御される。第2室内膨張弁38も同様に、第2室内熱交換器36の液側出口を通過する冷媒の過冷却度が所定条件を満たすように制御される。また、暖房運転モードでは、室外膨張弁45は、圧縮機21が吸入する冷媒の過熱度が所定の条件を満たすように制御される。なお、暖房運転モードでは、過冷却膨張弁48は、圧縮機21が吸入する冷媒の過熱度が所定の条件を満たすように制御される。
 以上の室内ユニット30、35が複数台設けられている空気調和装置1bでは、冷凍能力1kW当りの封入量が190g以上1660g以下となるように、冷媒が冷媒回路10に充填されている。
 なお、室内ユニット30が複数台設けられている空気調和装置1bの定格冷房能力としては、例えば、4.0kW以上150.0kW以下とすることができ、14.0kW以上150.0kW以下とすることが好ましく、なかでも、室外ユニット20が上吹き型のものである場合には22.4kW以上150.0kW以下とすることが好ましい。
 以上の第3実施形態の室内ユニットが複数台設けられている空気調和装置1bでは、冷媒として、上記冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかが用いられており、しかもその冷媒封入量を、冷凍能力1kW当りの封入量が190g以上1660g以下となるようにしている。
 これにより、室内ユニットが複数台設けられている空気調和装置1bにおいても、R32よりもGWPが十分に小さい冷媒を用いつつ、冷凍能力1kW当りの封入量を1660gまでに抑えることで、LCCPを低く抑えることが可能になっている。また、室内ユニットが複数台設けられている空気調和装置1bにおいても、R32よりも熱搬送能力が低い冷媒であっても冷凍能力1kW当りの封入量を190g以上とすることで冷媒不足によるサイクル効率の低下を抑制してLCCPの上昇を抑えることが可能になっている。以上より、室内ユニットが複数台設けられている空気調和装置1bにおいても、GWPが十分に小さい冷媒を用いて熱サイクルを行う場合において、LCCPを低く抑えることが可能になっている。
 (5-4)第4実施形態
 冷凍サイクル装置の冷媒回路に上記冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかを封入する場合の封入冷媒量について、第1実施形態の空気調和装置1や第2実施形態の空気調和装置1aのように室内ユニット30が1台だけ設けられている冷凍サイクル装置については、冷凍能力1kW当りの封入量が160g以上560g以下となるようにしつつ、第3実施形態の空気調和装置1bのように室内ユニット30が複数台設けられている冷凍サイクル装置については、冷凍能力1kW当りの封入量が190g以上1660g以下となるようにする。
 これにより、冷凍サイクル装置の種類に応じて、GWPとLCCPを低く抑えることが可能になる。
 (6)第6グループの技術の実施形態
 (6-1)第1実施形態
 以下、冷媒回路の概略構成図である図6A、概略制御ブロック構成図である図6Bを参照しつつ、第1実施形態に係る冷凍サイクル装置としての空気調和装置1について説明する。
 空気調和装置1は、蒸気圧縮式の冷凍サイクルを行うことで、対象空間の空気を調和させる装置である。
 空気調和装置1は、主として、室外ユニット20と、室内ユニット30と、室外ユニット20と室内ユニット30を接続する液側冷媒連絡配管6およびガス側冷媒連絡配管5と、入力装置および出力装置としての図示しないリモコンと、空気調和装置1の動作を制御するコントローラ7と、を有している。
 空気調和装置1では、冷媒回路10内に封入された冷媒が、圧縮され、冷却又は凝縮され、減圧され、加熱又は蒸発された後に、再び圧縮される、という冷凍サイクルが行われる。本実施形態では、冷媒回路10には、蒸気圧縮式の冷凍サイクルを行うための冷媒が充填されている。当該冷媒は、上述した冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかを用いることができる。また、冷媒回路10には、当該冷媒と共に、冷凍機油が充填されている。
 (6-1-1)室外ユニット20
 室外ユニット20は、外観が略直方体箱状であり、内部が仕切板等によって分割されることで、送風機室および機械室が形成された構造(いわゆる、トランク型構造)を有している。
 この室外ユニット20は、液側冷媒連絡配管6およびガス側冷媒連絡配管5を介して室内ユニット30と接続されており、冷媒回路10の一部を構成している。室外ユニット20は、主として、圧縮機21と、四路切換弁22と、室外熱交換器23と、室外膨張弁24と、室外ファン25と、液側閉鎖弁29と、ガス側閉鎖弁28と、を有している。
 圧縮機21は、冷凍サイクルにおける低圧の冷媒を高圧になるまで圧縮する機器である。ここでは、圧縮機21として、ロータリ式やスクロール式等の容積式の圧縮要素(図示省略)が圧縮機モータによって回転駆動される密閉式構造の圧縮機が使用されている。圧縮機モータは、容量を変化させるためのものであり、インバータにより運転周波数の制御が可能である。なお、圧縮機21には、吸入側において、図示しない付属アキュムレータが設けられている。なお、本実施形態の室外ユニット20は、当該付属アキュムレータより大きな冷媒容器(圧縮機21の吸入側に配置される低圧レシーバや室外熱交換器23の液側に配置される高圧レシーバ等)を有していない。
 四路切換弁22は、接続状態を切り換えることで、圧縮機21の吐出側と室外熱交換器23とを接続しつつ圧縮機21の吸入側とガス側閉鎖弁28とを接続する冷房運転接続状態と、圧縮機21の吐出側とガス側閉鎖弁28とを接続しつつ圧縮機21の吸入側と室外熱交換器23とを接続する暖房運転接続状態と、を切り換えることができる。
 室外熱交換器23は、冷房運転時には冷凍サイクルにおける高圧の冷媒の凝縮器として機能し、暖房運転時には冷凍サイクルにおける低圧の冷媒の蒸発器として機能する熱交換器である。室外熱交換器23は、複数の伝熱フィンと、これに貫通固定された複数の伝熱管とを有している。
 室外ファン25は、室外ユニット20内に室外の空気を吸入して、室外熱交換器23において冷媒と熱交換させた後に、外部に排出するための空気流れを生じさせる。室外ファン25は、室外ファンモータによって回転駆動される。なお、本実施形態において、室外ファン25は、1つだけ設けられている。
 室外膨張弁24は、弁開度を制御可能であり、室外熱交換器23の液側端部と液側閉鎖弁29との間に設けられている。
 液側閉鎖弁29は、室外ユニット20における液側冷媒連絡配管6との接続部分に配置された手動弁である。
 ガス側閉鎖弁28は、室外ユニット20におけるとガス側冷媒連絡配管5との接続部分に配置された手動弁である。
 室外ユニット20は、室外ユニット20を構成する各部の動作を制御する室外ユニット制御部27を有している。室外ユニット制御部27は、CPUやメモリ等を含むマイクロコンピュータを有している。室外ユニット制御部27は、各室内ユニット30の室内ユニット制御部34と通信線を介して接続されており、制御信号等の送受信を行う。また、室外ユニット制御部27は、図示しない各種センサと電気的に接続されており、各センサからの信号を受信する。
 (6-1-2)室内ユニット30
 室内ユニット30は、対象空間である室内の壁面等に設置されている。室内ユニット30は、液側冷媒連絡配管6およびガス側冷媒連絡配管5を介して室外ユニット20と接続されており、冷媒回路10の一部を構成している。
 室内ユニット30は、室内熱交換器31と、室内ファン32等を有している。
 室内熱交換器31は、液側が、液側冷媒連絡配管6と接続され、ガス側端が、ガス側冷媒連絡配管5とを接続されている。室内熱交換器31は、冷房運転時には冷凍サイクルにおける低圧の冷媒の蒸発器として機能し、暖房運転時には冷凍サイクルにおける高圧の冷媒の凝縮器として機能する熱交換器である。室内熱交換器31は、複数の伝熱フィンと、これに貫通固定された複数の伝熱管と、を有している。
 室内ファン32は、室内ユニット30内に室内の空気を吸入して、室内熱交換器31において冷媒と熱交換させた後に、外部に排出するための空気流れを生じさせる。室内ファン32は、図示しない室内ファンモータによって回転駆動される。
 また、室内ユニット30は、室内ユニット30を構成する各部の動作を制御する室内ユニット制御部34を有している。室内ユニット制御部34は、CPUやメモリ等を含むマイクロコンピュータを有している。室内ユニット制御部34は、室外ユニット制御部27と通信線を介して接続されており、制御信号等の送受信を行う。
 室内ユニット制御部34は、室内ユニット30内に設けられている図示しない各種センサと電気的に接続されており、各センサからの信号を受信する。
 (6-1-3)コントローラ7の詳細
 空気調和装置1では、室外ユニット制御部27と室内ユニット制御部34が通信線を介して接続されることで、空気調和装置1の動作を制御するコントローラ7が構成されている。
 コントローラ7は、主として、CPU(中央演算処理装置)と、ROMやRAM等のメモリを有している。なお、コントローラ7による各種処理や制御は、室外ユニット制御部27および/又は室内ユニット制御部34に含まれる各部が一体的に機能することによって実現されている。
 (6-1-4)運転モード
 以下、運転モードについて説明する。
 運転モードとしては、冷房運転モードと暖房運転モードとが設けられている。
 コントローラ7は、リモコン等から受け付けた指示に基づいて、冷房運転モードか暖房運転モードかを判断し、実行する。
 (6-1-4-1)冷房運転モード
 空気調和装置1では、冷房運転モードでは、四路切換弁22の接続状態を圧縮機21の吐出側と室外熱交換器23とを接続しつつ圧縮機21の吸入側とガス側閉鎖弁28とを接続する冷房運転接続状態とし、冷媒回路10に充填されている冷媒を、主として、圧縮機21、室外熱交換器23、室外膨張弁24、室内熱交換器31の順に循環させる。
 より具体的には、冷房運転モードが開始されると、冷媒回路10内において、冷媒が圧縮機21に吸入されて圧縮された後に吐出される。
 圧縮機21では、室内ユニット30で要求される冷却負荷に応じた容量制御が行われる。圧縮機21から吐出されたガス冷媒は、四路切換弁22を経て、室外熱交換器23のガス側端に流入する。
 室外熱交換器23のガス側端に流入したガス冷媒は、室外熱交換器23において、室外ファン25によって供給される室外側空気と熱交換を行って凝縮し、液冷媒となって室外熱交換器23の液側端から流出する。
 室外熱交換器23の液側端から流出した冷媒は、室外膨張弁24を通過する際に減圧される。なお、室外膨張弁24は、室外熱交換器23の液側出口を通過する冷媒の過冷却度が所定条件を満たすように制御される。
 室外膨張弁24で減圧された冷媒は、液側閉鎖弁29および液側冷媒連絡配管6を経て、室内ユニット30に流入する。
 室内ユニット30に流入した冷媒は、室内熱交換器31に流入し、室内熱交換器31において、室内ファン32によって供給される室内空気と熱交換を行って蒸発し、ガス冷媒となって室内熱交換器31のガス側端から流出する。室内熱交換器31のガス側端から流出したガス冷媒は、ガス側冷媒連絡配管5に流れていく。
 ガス側冷媒連絡配管5を流れた冷媒は、ガス側閉鎖弁28、四路切換弁22を経て、再び、圧縮機21に吸入される。
 (6-1-4-2)暖房運転モード
 空気調和装置1では、暖房運転モードでは、四路切換弁22の接続状態を圧縮機21の吐出側とガス側閉鎖弁28とを接続しつつ圧縮機21の吸入側と室外熱交換器23とを接続する暖房運転接続状態とし、冷媒回路10に充填されている冷媒を、主として、圧縮機21、室内熱交換器31、室外膨張弁24、室外熱交換器23の順に循環させる。
 より具体的には、暖房運転モードが開始されると、冷媒回路10内において、冷媒が圧縮機21に吸入されて圧縮された後に吐出される。
 圧縮機21では、室内ユニット30で要求される暖房負荷に応じた容量制御が行われる。圧縮機21から吐出されたガス冷媒は、四路切換弁22およびガス側冷媒連絡配管5を流れた後、室内ユニット30に流入する。
 室内ユニット30に流入した冷媒は、室内熱交換器31のガス側端に流入し、室内熱交換器31において、室内ファン32によって供給される室内空気と熱交換を行って凝縮し、気液二相状態の冷媒または液冷媒となって室内熱交換器31の液側端から流出する。室内熱交換器31の液側端から流出した冷媒は、液側冷媒連絡配管6に流れていく。
 液側冷媒連絡配管6を流れた冷媒は、液側閉鎖弁29、室外膨張弁24において冷凍サイクルにおける低圧になるまで減圧される。なお、室外膨張弁24は、室内熱交換器31の液側出口を通過する冷媒の過冷却度が所定条件を満たすように制御される。室外膨張弁24で減圧された冷媒は、室外熱交換器23の液側端に流入する。
 室外熱交換器23の液側端から流入した冷媒は、室外熱交換器23において、室外ファン25によって供給される室外空気と熱交換を行って蒸発し、ガス冷媒となって室外熱交換器23のガス側端から流出する。
 室外熱交換器23のガス側端から流出した冷媒は、四路切換弁22を経て、再び、圧縮機21に吸入される。
 (6-1-5)液側冷媒連絡配管6
 第1実施形態の上記冷媒X,冷媒Y,冷媒A~冷媒Eが用いられる空気調和装置1の液側冷媒連絡配管6は、管外径をD/8インチとして表した場合に、Dの範囲は「2≦D≦4」であり、冷媒R410Aが使用される場合の液側冷媒連絡配管の管外径と同じである。上記冷媒X,冷媒Y,冷媒A~冷媒Eの圧力損失等の物性は冷媒R410Aと近似していることから、この液側冷媒連絡配管6の管外径は、冷媒R410Aが使用される場合の液側冷媒連絡配管の管外径と同じ管外径とすることで、能力の低下を抑制することができる。
 なかでも、第1実施形態の液側冷媒連絡配管6は、Dが2(即ち配管径が1/4インチ)であることが好ましい。
 特に、本実施形態の液側冷媒連絡配管6は、空気調和装置1の定格冷凍能力が7.5kW以上である場合にはDが2.5(即ち配管径が5/16インチ)であることがより好ましく、空気調和装置1の定格冷凍能力が2.6kW以上7.5kW未満である場合にはDが2(即ち配管径が1/4インチ)であることがより好ましく、空気調和装置1の定格冷凍能力が2.6kW未満である場合にはDが1.5(即ち配管径が3/16インチ)であるかことがより好ましい。
 (6-1-6)ガス側冷媒連絡配管5
 第1実施形態の上記冷媒X,冷媒Y,冷媒A~冷媒Eが用いられる空気調和装置1のガス側冷媒連絡配管5は、管外径をD/8インチとして表した場合に、Dの範囲は「3≦D≦8」であり、冷媒R410Aが使用される場合のガス側冷媒連絡配管の管外径と同じである。上記冷媒X,冷媒Y,冷媒A~冷媒Eの圧力損失等の物性は冷媒R410Aと近似していることから、このガス側冷媒連絡配管5の管外径は、冷媒R410Aが使用される場合のガス側冷媒連絡配管の管外径と同じ管外径とすることで、能力の低下を抑制することができる。
 なかでも、第1実施形態のガス側冷媒連絡配管5は、空気調和装置1の定格冷凍能力が6.0kW以上である場合にはDが4(即ち配管径が1/2インチ)であることが好ましく、空気調和装置1の定格冷凍能力が6.0kW未満である場合にはDが3(即ち配管径が3/8インチ)であることが好ましい。
 特に、第1実施形態のガス側冷媒連絡配管5は、空気調和装置1の定格冷凍能力が6.0kW以上である場合にはDが4(即ち配管径が1/2インチ)であることがより好ましく、空気調和装置1の定格冷凍能力が3.2kW以上6.0kW未満である場合にはDが3(即ち配管径が3/8インチ)であることがより好ましく、空気調和装置1の定格冷凍能力が3.2kW未満である場合にはDが2.5(即ち配管径が5/16インチ)であることがより好ましい。
 (6-1-7)第1実施形態の特徴
 上述の空気調和装置1では、冷媒X、冷媒Y、冷媒A、冷媒B、冷媒C、冷媒D、あるいは、冷媒Eが用いられているため、GWPを十分に小さく抑えることが可能になっている。
 また、空気調和装置1では、液側冷媒連絡配管6の管外径とガス側冷媒連絡配管5の管外径を所定の範囲とすることにより、上記特定の冷媒X,冷媒Y,冷媒A~冷媒Eを用いた場合であっても、能力の低下を小さく抑えることが可能になっている。
 (6-1-8)冷媒と冷媒連絡配管の管外径の関係
 第1実施形態の空気調和装置1において、冷媒X,冷媒Y,冷媒A~冷媒Eではなく、冷媒R410AとR32が用いられるとした場合には、一般的に、定格冷房能力の範囲に応じて、以下の表327、表328に示すような管外径(インチ)の液側冷媒連絡配管6およびガス側冷媒連絡配管5が用いられている。
 これに対して、第1実施形態の空気調和装置1においては、本開示の冷媒X(冷媒Y,A~Eについても同様)を用いた場合については、定格冷房能力の範囲に応じて、以下の表327または表328に示すような管外径(インチ)の液側冷媒連絡配管6およびガス側冷媒連絡配管5を用いることにより、本開示の冷媒X(冷媒Y,A~Eについても同様)を用いた場合の能力の低下を小さく抑えることが可能となる。
Figure JPOXMLDOC01-appb-T000019

Figure JPOXMLDOC01-appb-T000020
 ここで、第1実施形態の空気調和装置1において、冷媒R410A、R32、本開示の冷媒Xをそれぞれ用い、表328に記載の管外径を有する液側冷媒連絡配管6およびガス側冷媒連絡配管5を用いた場合について、図6Cに液側冷媒連絡配管6の暖房運転時の圧力損失を示し、図6Dにガス側冷媒連絡配管5の冷房運転時の圧力損失を示す。なお、圧力損失の算出は、凝縮温度と蒸発温度と凝縮器出口の冷媒の過冷却度と蒸発器出口の冷媒の過熱度との各制御目標値を共通化させて、馬力に応じた定格能力で運転させた場合に必要となる冷媒循環量に基づいて、冷媒連絡配管において生じる冷媒の圧力損失として算出した。また、馬力の単位はHPである。
 この図6C、図6Dから分かるように、本開示の冷媒X(冷媒Y,A~Eについても同様)は、冷媒R410Aと圧力損失の挙動を近似させることができており、空気調和装置1において冷媒Aを用いた場合の能力の低下を小さく抑えることができていることが分かる。
 (6-1-9)第1実施形態の変形例A
 上記第1実施形態では、室内ユニットが1つだけ設けられている空気調和装置を例に挙げて説明したが、空気調和装置としては、互いに並列に接続された複数の室内ユニット(室内膨張弁を有さないもの)が設けられていてもよい。
 (6-2)第2実施形態
 以下、冷媒回路の概略構成図である図6E、概略制御ブロック構成図である図6Fを参照しつつ、第2実施形態に係る冷凍サイクル装置としての空気調和装置1aについて説明する。
 以下、主として、第2実施形態の空気調和装置1aについて、第1実施形態の空気調和装置1と異なる箇所を中心に説明する。
 空気調和装置1aにおいても、冷媒回路10には、蒸気圧縮式の冷凍サイクルを行うための冷媒として、(1)で説明したいずれかの冷媒であり、上述した冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかが充填されている。また、冷媒回路10には、当該冷媒と共に、冷凍機油が充填されている。
 (6-2-1)室外ユニット20
 第2実施形態の空気調和装置1aの室外ユニット20では、室外ファン25として、第1室外ファン25aと第2室外ファン25bとが設けられている。空気調和装置1aの室外ユニット20の室外熱交換器23は、第1室外ファン25aおよび第2室外ファン25bから受ける空気流れに対応するように、広い熱交換面積が確保されている。
 空気調和装置1aの室外ユニット20では、上記第1実施形態における室外ユニット20の室外膨張弁24の代わりに、室外熱交換器23の液側から液側閉鎖弁29までの間において、第1室外膨張弁44、中間圧レシーバ41、第2室外膨張弁45が順次設けられている。第1室外膨張弁44および第2室外膨張弁45は、弁開度を制御可能である。中間圧レシーバ41は、第1室外膨張弁44側から延びる配管の端部と、第2室外膨張弁45側から延びる配管の端部と、の両方が内部空間に位置しており、冷媒を溜めることができる容器である。なお、中間圧レシーバ41の内容積は、圧縮機21に付属した付属アキュムレータの内容積より大きく、2倍以上であることが好ましい。
 第2実施形態の室外ユニット20は、略直方体箱状であり、鉛直に延びる仕切板等によって分割されることで送風機室および機械室が形成された構造(いわゆる、トランク型構造)を有している。
 室外熱交換器23は、例えば、複数の伝熱フィンと、これに貫通固定された複数の伝熱管とを有している。この室外熱交換器23は、平面視L字形状となるように配置されている。
 以上の空気調和装置1aでは、冷房運転モードでは、第1室外膨張弁44は、例えば、室外熱交換器23の液側出口を通過する冷媒の過冷却度が所定条件を満たすように制御される。また、冷房運転モードでは、第2室外膨張弁45は、例えば、圧縮機21が吸入する冷媒の過熱度が所定の条件を満たすように制御される。
 また、暖房運転モードでは、第2室外膨張弁45は、例えば、室内熱交換器31の液側出口を通過する冷媒の過冷却度が所定条件を満たすように制御される。また、暖房運転モードでは、第1室外膨張弁44は、例えば、圧縮機21が吸入する冷媒の過熱度が所定の条件を満たすように制御される。
 (6-2-2)室内ユニット30
 第2実施形態の室内ユニット30は、対象空間である室内の上方空間に吊り下げられることで設置されるか、天井面に対して設置されるか、壁面に対して設置されて用いられる。室内ユニット30は、液側冷媒連絡配管6およびガス側冷媒連絡配管5を介して室外ユニット20と接続されており、冷媒回路10の一部を構成している。
 室内ユニット30は、室内熱交換器31と、室内ファン32等を有している。
 第2実施形態の室内熱交換器31は、複数の伝熱フィンと、これに貫通固定された複数の伝熱管と、を有している。
 (6-2-3)液側冷媒連絡配管6
 第2実施形態の上記冷媒X,冷媒Y,冷媒A~冷媒Eが用いられる空気調和装置1aの液側冷媒連絡配管6は、管外径をD/8インチとして表した場合に、R410AやR32を用いた場合の管外径との関係とは無関係に、Dの範囲を「2≦D≦4」とすることができる。
 また、第2実施形態の上記冷媒X,冷媒Y,冷媒A~冷媒Eが用いられる空気調和装置1aの液側冷媒連絡配管6は、管外径をD/8インチ(ここで、「D-1/8インチ」は冷媒R32が使用される場合の液側冷媒連絡配管の管外径である)として表した場合に、Dの範囲は「2≦D≦4」である。上記冷媒X,冷媒Y,冷媒A~冷媒Eは冷媒R32よりも圧力損失が生じやすいものの、第2実施形態の空気調和装置1aの液側冷媒連絡配管6の管外径は、冷媒R32が使用される場合の管外径以上の大きさであるため、能力の低下を抑制することができる。なかでも、空気調和装置1aの液側冷媒連絡配管6は、管外径をD/8インチ(ここで、「D-1/8インチ」は冷媒R32が使用される場合の液側冷媒連絡配管の管外径である)として表した場合に、空気調和装置1aの定格冷凍能力が5.6kWより大きく11.2kW未満である場合にDが3(即ち配管径が3/8インチ)であることが好ましく、空気調和装置1aの定格冷凍能力が6.3kW以上10.0kW以下である場合にDが3(即ち配管径が3/8インチ)であることがより好ましい。
 また、第2実施形態の上記冷媒X,冷媒Y,冷媒A~冷媒Eが用いられる空気調和装置1aの液側冷媒連絡配管6は、管外径をD/8インチとして表した場合に、Dの範囲は「2≦D≦4」であり、冷媒R410Aが使用される場合の液側冷媒連絡配管の管外径と同じである。上記冷媒X,冷媒Y,冷媒A~冷媒Eの圧力損失等の物性は冷媒R410Aと近似していることから、この液側冷媒連絡配管6の管外径は、冷媒R410Aが使用される場合の液側冷媒連絡配管の管外径と同じ管外径とすることで、能力の低下を抑制することができる。
 なかでも、第2実施形態の上記冷媒X,冷媒Y,冷媒A~冷媒Eが用いられる空気調和装置1aの液側冷媒連絡配管6は、管外径をD/8インチとして表した場合において、空気調和装置1aの定格冷凍能力が6.3kW以上である場合にDが3(即ち配管径が3/8インチ)であることが好ましく、空気調和装置1aの定格冷凍能力が6.3kW未満である場合にDが2(即ち配管径が1/4インチ)であることが好ましく、いずれも冷媒R410Aが使用される場合の液側冷媒連絡配管の管外径と同じであることがより好ましい。
 特に、第2実施形態の上記冷媒X,冷媒Y,冷媒A~冷媒Eが用いられる空気調和装置1aの液側冷媒連絡配管6は、管外径をD/8インチとして表した場合において、空気調和装置1aの定格冷凍能力が12.5kW以上である場合にDが3(即ち配管径が3/8インチ)であることが好ましく、空気調和装置1aの定格冷凍能力が6.3kW以上12.5kW未満である場合にDが2.5(即ち配管径が5/16インチ)であることが好ましく、空気調和装置1aの定格冷凍能力が6.3kW未満である場合にDが2(即ち配管径が1/4インチ)であることが好ましい。
 (6-2-4)ガス側冷媒連絡配管5
 第2実施形態の上記冷媒X,冷媒Y,冷媒A~冷媒Eが用いられる空気調和装置1aのガス側冷媒連絡配管5は、管外径をD/8インチとして表した場合に、R410AやR32を用いた場合の管外径との関係とは無関係に、Dの範囲を「3≦D≦8」とすることができる。
 また、第2実施形態の上記冷媒X,冷媒Y,冷媒A~冷媒Eが用いられる空気調和装置1aのガス側冷媒連絡配管5は、管外径をD/8インチ(ここで、「D-1/8インチ」は冷媒R32が使用される場合のガス側冷媒連絡配管の管外径である)として表した場合に、Dの範囲は「3≦D≦8」である。上記冷媒X,冷媒Y,冷媒A~冷媒Eは冷媒R32よりも圧力損失が生じやすいものの、第2実施形態の空気調和装置1aのガス側冷媒連絡配管5の管外径は、冷媒R32が使用される場合の管外径以上の大きさであるため、能力の低下を抑制することができる。なかでも、空気調和装置1aのガス側冷媒連絡配管5は、管外径をD/8インチ(ここで、「D-1/8インチ」は冷媒R32が使用される場合のガス側冷媒連絡配管の管外径である)として表した場合に、空気調和装置1aの定格冷凍能力が22.4kWより大きい場合にDが7(即ち配管径が7/8インチ)であることが好ましく、空気調和装置1aの定格冷凍能力が14.0kWより大きく22.4kW未満である場合にDが6(即ち配管径が6/8インチ)であることが好ましく、空気調和装置1aの定格冷凍能力が5.6kWより大きく11.2kW未満である場合にDが5(即ち配管径が5/8インチ)であることが好ましく、空気調和装置1aの定格冷凍能力が4.5kW未満である場合にDが4(即ち配管径が1/2インチ)であることが好ましい。この場合において、空気調和装置1aの定格冷凍能力が25.0kW以上である場合にDが7(即ち配管径が7/8インチ)であることがより好ましく、空気調和装置1aの定格冷凍能力が15.0kW以上19.0kW未満である場合にDが6(即ち配管径が6/8インチ)であることがより好ましく、空気調和装置1aの定格冷凍能力が6.3kW以上10.0kW未満である場合にDが5(即ち配管径が5/8インチ)であることがより好ましく、空気調和装置1aの定格冷凍能力が4.0kW未満である場合にDが4(即ち配管径が1/2インチ)であることがより好ましい。
 また、第2実施形態の上記冷媒X,冷媒Y,冷媒A~冷媒Eが用いられる空気調和装置1aのガス側冷媒連絡配管5は、管外径をD/8インチとして表した場合に、Dの範囲は「3≦D≦8」であり、冷媒R410Aが使用される場合のガス側冷媒連絡配管の管外径と同じである。上記冷媒X,冷媒Y,冷媒A~冷媒Eの圧力損失等の物性は冷媒R410Aと近似していることから、このガス側冷媒連絡配管5の管外径は、冷媒R410Aが使用される場合のガス側冷媒連絡配管の管外径と同じ管外径とすることで、能力の低下を抑制することができる。
 なかでも、第2実施形態の上記冷媒X,冷媒Y,冷媒A~冷媒Eが用いられる空気調和装置1aのガス側冷媒連絡配管5は、管外径をD/8インチとして表した場合において、空気調和装置1aの定格冷凍能力が25.0kW以上である場合にDが7(即ち配管径が7/8インチ)であることが好ましく、空気調和装置1aの定格冷凍能力が15.0kW以上25.0kW未満である場合にDが6(即ち配管径が6/8インチ)であることが好ましく、空気調和装置1aの定格冷凍能力が6.3kW以上15.0kW未満である場合にDが5(即ち配管径が5/8インチ)であることが好ましく、空気調和装置1aの定格冷凍能力が6.3kW未満である場合にDが4(即ち配管径が1/2インチ)であることが好ましく、いずれも冷媒R410Aが使用される場合のガス側冷媒連絡配管の管外径と同じであることがより好ましい。
 (6-2-5)第2実施形態の特徴
 以上の第2実施形態に係る空気調和装置1aにおいても、第1実施形態に係る空気調和装置1と同様に、冷媒X、冷媒Y、冷媒A、冷媒B、冷媒C、冷媒D、あるいは、冷媒Eが用いられているため、GWPを十分に小さく抑えることが可能になっている。
 また、空気調和装置1aでは、液側冷媒連絡配管6の管外径とガス側冷媒連絡配管5の管外径を所定の範囲とすることにより、上記特定の冷媒X,冷媒Y,冷媒A~冷媒Eを用いた場合であっても、能力の低下を小さく抑えることが可能になっている。
 (6-2-6)冷媒と冷媒連絡配管の管外径の関係
 第2実施形態の空気調和装置1aにおいて、冷媒X,冷媒Y,冷媒A~冷媒Eではなく、冷媒R410AとR32が用いられるとした場合には、一般的に、定格冷房能力の範囲に応じて、以下の表329、表330に示すような管外径(インチ)の液側冷媒連絡配管6およびガス側冷媒連絡配管5が用いられている。
 これに対して、第2実施形態の空気調和装置1aにおいては、本開示の冷媒X(冷媒Y,A~Eについても同様)を用いた場合については、定格冷房能力の範囲に応じて、以下の表329または表330に示すような管外径(インチ)の液側冷媒連絡配管6およびガス側冷媒連絡配管5を用いることにより、本開示の冷媒X(冷媒Y,A~Eについても同様)を用いた場合の能力の低下を小さく抑えることが可能となる。
Figure JPOXMLDOC01-appb-T000021

Figure JPOXMLDOC01-appb-T000022
 ここで、第2実施形態の空気調和装置1aにおいて、冷媒R410A、R32、本開示の冷媒Xをそれぞれ用い、表330に記載の管外径を有する液側冷媒連絡配管6およびガス側冷媒連絡配管5を用いた場合について、図6Gに液側冷媒連絡配管6の暖房運転時の圧力損失を示し、図6Hにガス側冷媒連絡配管5の冷房運転時の圧力損失を示す。なお、圧力損失の算出は、凝縮温度と蒸発温度と凝縮器出口の冷媒の過冷却度と蒸発器出口の冷媒の過熱度との各制御目標値を共通化させて、馬力に応じた定格能力で運転させた場合に必要となる冷媒循環量に基づいて、冷媒連絡配管において生じる冷媒の圧力損失として算出した。また、馬力の単位はHPである。
 この図6G、図6Hから分かるように、本開示の冷媒X(冷媒Y,A~Eについても同様)は、冷媒R410Aと圧力損失の挙動を近似させることができており、空気調和装置1aにおいて冷媒Xを用いた場合の能力の低下を小さく抑えることができていることが分かる。
 (6-2-7)第2実施形態の変形例A
 上記第2実施形態では、室内ユニットが1つだけ設けられている空気調和装置を例に挙げて説明したが、空気調和装置としては、互いに並列に接続された複数の室内ユニット(室内膨張弁を有さないもの)が設けられていてもよい。
 (6-3)第3実施形態
 以下、冷媒回路の概略構成図である図6I、概略制御ブロック構成図である図6Jを参照しつつ、第3実施形態に係る冷凍サイクル装置としての空気調和装置1bについて説明する。
 以下、主として、第3実施形態の空気調和装置1bについて、第1実施形態の空気調和装置1と異なる箇所を中心に説明する。
 空気調和装置1bにおいても、冷媒回路10には、蒸気圧縮式の冷凍サイクルを行うための冷媒として、(1)で説明したいずれかの冷媒であり、上述した冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかが充填されている。また、冷媒回路10には、当該冷媒と共に、冷凍機油が充填されている。
 (6-3-1)室外ユニット20
 第3実施形態に係る空気調和装置1bの室外ユニット20では、上記第1実施形態における室外ユニット20において、低圧レシーバ26、過冷却熱交換器47および過冷却回路46が設けられている。
 低圧レシーバ26は、四路切換弁22の接続ポートの1つから圧縮機21の吸入側に至るまでの間に設けられ、冷媒を溜めることができる容器である。なお、本実施形態においては、圧縮機21が有する付属のアキュムレータとは別に設けられている。なお、低圧レシーバ26の内容積は、圧縮機21に付属した付属アキュムレータの内容積より大きく、2倍以上であることが好ましい。
 過冷却熱交換器47は、室外膨張弁24と液側閉鎖弁29との間に設けられている。
 過冷却回路46は、室外膨張弁24と過冷却熱交換器47との間の主回路から分岐し、四路切換弁22の接続ポートの1つから低圧レシーバ26に至るまでの途中の部分に合流するように延びた回路である。過冷却回路46の途中には、通過する冷媒を減圧させる過冷却膨張弁48が設けられている。過冷却回路46を流れる冷媒であって、過冷却膨張弁48で減圧された冷媒は、過冷却熱交換器47において、主回路側を流れる冷媒との間で熱交換を行う。これにより、主回路側を流れる冷媒はさらに冷却され、過冷却回路46を流れる冷媒は蒸発する。
 第3実施形態に係る空気調和装置1bの室外ユニット20は、例えば、下方から内部に空気を取り込んで上方から外部に空気を吹き出す上吹き型構造と呼ばれるものであってよい。
 (6-3-2)第1室内ユニット30および第2室内ユニット35
 また、第3実施形態に係る空気調和装置1bでは、上記第1実施形態における室内ユニット30の代わりに、互いに並列に設けられた第1室内ユニット30および第2室内ユニット35を有している。
 第1室内ユニット30は、上記第1実施形態における室内ユニット30と同様に第1室内熱交換器31と第1室内ファン32と第1室内ユニット制御部34が設けられており、さらに、第1室内熱交換器31の液側において第1室内膨張弁33が設けられている。第1室内膨張弁33は、弁開度が制御可能である。
 第2室内ユニット35は、第1室内ユニット30と同様であり、第2室内熱交換器36と第2室内ファン37と、第2室内ユニット制御部39と、第2室内熱交換器36の液側に設けられた第2室内膨張弁38と、を有している。第2室内膨張弁38は、弁開度が制御可能である。
 なお、第3実施形態に係る空気調和装置1bの第1室内ユニット30および第2室内ユニット35の具体的な構造は、上記第1室内膨張弁33や第2室内膨張弁38を除き、第2実施形態の室内ユニット30と同様の構成である。
 なお、第3実施形態のコントローラ7は、室外ユニット制御部27と、第1室内ユニット制御部34と、第2室内ユニット制御部39と、が互いに通信可能に接続されて構成されている。
 以上の空気調和装置1bでは、冷房運転モードでは、室外膨張弁24は、室外熱交換器23の液側出口を通過する冷媒の過冷却度が所定条件を満たすように制御される。また、冷房運転モードでは、過冷却膨張弁48は、圧縮機21が吸入する冷媒の過熱度が所定の条件を満たすように制御される。なお、冷房運転モードでは、第1室内膨張弁33および第2室内膨張弁38は、全開状態に制御される。
 また、暖房運転モードでは、第1室内膨張弁33は、第1室内熱交換器31の液側出口を通過する冷媒の過冷却度が所定条件を満たすように制御される。第2室内膨張弁38も同様に、第2室内熱交換器36の液側出口を通過する冷媒の過冷却度が所定条件を満たすように制御される。また、暖房運転モードでは、室外膨張弁45は、圧縮機21が吸入する冷媒の過熱度が所定の条件を満たすように制御される。なお、暖房運転モードでは、過冷却膨張弁48は、圧縮機21が吸入する冷媒の過熱度が所定の条件を満たすように制御される。
 (6-3-3)液側冷媒連絡配管6
 第3実施形態の上記冷媒X,冷媒Y,冷媒A~冷媒Eが用いられる空気調和装置1bの液側冷媒連絡配管6は、管外径をD/8インチとして表した場合に、R410AやR32を用いた場合の管外径との関係とは無関係に、Dの範囲を「2≦D≦4」とすることができる。
 また、第3実施形態の上記冷媒X,冷媒Y,冷媒A~冷媒Eが用いられる空気調和装置1bの液側冷媒連絡配管6は、管外径をD/8インチ(ここで、「D-1/8インチ」は冷媒R32が使用される場合の液側冷媒連絡配管の管外径である)として表した場合に、Dの範囲は「2≦D≦4」である。上記冷媒X,冷媒Y,冷媒A~冷媒Eは冷媒R32よりも圧力損失が生じやすいものの、第3実施形態の空気調和装置1bの液側冷媒連絡配管6の管外径は、冷媒R32が使用される場合の管外径以上の大きさであるため、能力の低下を抑制することができる。なかでも、空気調和装置1bの液側冷媒連絡配管6は、管外径をD/8インチ(ここで、「D-1/8インチ」は冷媒R32が使用される場合の液側冷媒連絡配管の管外径である)として表した場合に、空気調和装置1bの定格冷凍能力が5.6kWより大きく11.2kW未満である場合にDが3(即ち配管径が3/8インチ)であることが好ましく、空気調和装置1bの定格冷凍能力が6.3kW以上10.0kW以下である場合にDが3(即ち配管径が3/8インチ)であることがより好ましい。
 また、第3実施形態の上記冷媒X,冷媒Y,冷媒A~冷媒Eが用いられる空気調和装置1bの液側冷媒連絡配管6は、管外径をD/8インチとして表した場合に、Dの範囲は「2≦D≦4」であり、冷媒R410Aが使用される場合の液側冷媒連絡配管の管外径と同じである。上記冷媒X,冷媒Y,冷媒A~冷媒Eの圧力損失等の物性は冷媒R410Aと近似していることから、この液側冷媒連絡配管6の管外径は、冷媒R410Aが使用される場合の液側冷媒連絡配管の管外径と同じ管外径とすることで、能力の低下を抑制することができる。
 なかでも、第3実施形態の上記冷媒X,冷媒Y,冷媒A~冷媒Eが用いられる空気調和装置1bの液側冷媒連絡配管6は、管外径をD/8インチとして表した場合において、空気調和装置1bの定格冷凍能力が6.3kW以上である場合にDが3(即ち配管径が3/8インチ)であることが好ましく、空気調和装置1bの定格冷凍能力が6.3kW未満である場合にDが2(即ち配管径が1/4インチ)であることが好ましく、いずれも冷媒R410Aが使用される場合の液側冷媒連絡配管の管外径と同じであることがより好ましい。
 特に、第3実施形態の上記冷媒X,冷媒Y,冷媒A~冷媒Eが用いられる空気調和装置1bの液側冷媒連絡配管6は、管外径をD/8インチとして表した場合において、空気調和装置1bの定格冷凍能力が12.5kW以上である場合にDが3(即ち配管径が3/8インチ)であることが好ましく、空気調和装置1bの定格冷凍能力が6.3kW以上12.5kW未満である場合にDが2.5(即ち配管径が5/16インチ)であることが好ましく、空気調和装置1bの定格冷凍能力が6.3kW未満である場合にDが2(即ち配管径が1/4インチ)であることが好ましい。
 (6-3-4)ガス側冷媒連絡配管5
 第3実施形態の上記冷媒X,冷媒Y,冷媒A~冷媒Eが用いられる空気調和装置1bのガス側冷媒連絡配管5は、管外径をD/8インチとして表した場合に、R410AやR32を用いた場合の管外径との関係とは無関係に、Dの範囲を「3≦D≦8」とすることができる。
 また、第3実施形態の上記冷媒X,冷媒Y,冷媒A~冷媒Eが用いられる空気調和装置1bのガス側冷媒連絡配管5は、管外径をD/8インチ(ここで、「D-1/8インチ」は冷媒R32が使用される場合のガス側冷媒連絡配管の管外径である)として表した場合に、Dの範囲は「3≦D≦8」である。上記冷媒X,冷媒Y,冷媒A~冷媒Eは冷媒R32よりも圧力損失が生じやすいものの、第3実施形態の空気調和装置1bのガス側冷媒連絡配管5の管外径は、冷媒R32が使用される場合の管外径以上の大きさであるため、能力の低下を抑制することができる。なかでも、空気調和装置1aのガス側冷媒連絡配管5は、管外径をD/8インチ(ここで、「D-1/8インチ」は冷媒R32が使用される場合のガス側冷媒連絡配管の管外径である)として表した場合に、空気調和装置1aの定格冷凍能力が22.4kWより大きい場合にDが7(即ち配管径が7/8インチ)であることが好ましく、空気調和装置1aの定格冷凍能力が14.0kWより大きく22.4kW未満である場合にDが6(即ち配管径が6/8インチ)であることが好ましく、空気調和装置1aの定格冷凍能力が5.6kWより大きく11.2kW未満である場合にDが5(即ち配管径が5/8インチ)であることが好ましく、空気調和装置1aの定格冷凍能力が4.5kW未満である場合にDが4(即ち配管径が1/2インチ)であることが好ましい。この場合において、空気調和装置1aの定格冷凍能力が25.0kW以上である場合にDが7(即ち配管径が7/8インチ)であることがより好ましく、空気調和装置1aの定格冷凍能力が15.0kW以上19.0kW未満である場合にDが6(即ち配管径が6/8インチ)であることがより好ましく、空気調和装置1aの定格冷凍能力が6.3kW以上10.0kW未満である場合にDが5(即ち配管径が5/8インチ)であることがより好ましく、空気調和装置1aの定格冷凍能力が4.0kW未満である場合にDが4(即ち配管径が1/2インチ)であることがより好ましい。
 また、第3実施形態の上記冷媒X,冷媒Y,冷媒A~冷媒Eが用いられる空気調和装置1bのガス側冷媒連絡配管5は、管外径をD/8インチとして表した場合に、Dの範囲は「3≦D≦8」であり、冷媒R410Aが使用される場合のガス側冷媒連絡配管の管外径と同じである。上記冷媒X,冷媒Y,冷媒A~冷媒Eの圧力損失等の物性は冷媒R410Aと近似していることから、このガス側冷媒連絡配管5の管外径は、冷媒R410Aが使用される場合のガス側冷媒連絡配管の管外径と同じ管外径とすることで、能力の低下を抑制することができる。
 なかでも、第3実施形態の上記冷媒X,冷媒Y,冷媒A~冷媒Eが用いられる空気調和装置1bのガス側冷媒連絡配管5は、管外径をD/8インチとして表した場合において、空気調和装置1bの定格冷凍能力が25.0kW以上である場合にDが7(即ち配管径が7/8インチ)であることが好ましく、空気調和装置1bの定格冷凍能力が15.0kW以上25.0kW未満である場合にDが6(即ち配管径が6/8インチ)であることが好ましく、空気調和装置1bの定格冷凍能力が6.3kW以上15.0kW未満である場合にDが5(即ち配管径が5/8インチ)であることが好ましく、空気調和装置1bの定格冷凍能力が6.3kW未満である場合にDが4(即ち配管径が1/2インチ)であることが好ましく、いずれも冷媒R410Aが使用される場合のガス側冷媒連絡配管の管外径と同じであることがより好ましい。
 (6-3-5)第3実施形態の特徴
 以上の第3実施形態に係る空気調和装置1bにおいても、第1実施形態に係る空気調和装置1と同様に、冷媒X、冷媒Y、冷媒A、冷媒B、冷媒C、冷媒D、あるいは、冷媒Eが用いられているため、GWPを十分に小さく抑えることが可能になっている。
 また、空気調和装置1bでは、液側冷媒連絡配管6の管外径とガス側冷媒連絡配管5の管外径を所定の範囲とすることにより、上記特定の冷媒X,冷媒Y,冷媒A~冷媒Eを用いた場合であっても、能力の低下を小さく抑えることが可能になっている。
 (6-3-6)冷媒と冷媒連絡配管の管外径の関係
 第3実施形態の空気調和装置1bにおいて、冷媒X,冷媒Y,冷媒A~冷媒Eではなく、冷媒R410AとR32が用いられるとした場合には、一般的に、定格冷房能力の範囲に応じて、以下の表331、表332に示すような管外径(インチ)の液側冷媒連絡配管6およびガス側冷媒連絡配管5が用いられている。
 これに対して、第3実施形態の空気調和装置1bにおいては、本開示の冷媒X(冷媒Y,A~Eについても同様)を用いた場合については、定格冷房能力の範囲に応じて、以下の表331または表332に示すような管外径(インチ)の液側冷媒連絡配管6およびガス側冷媒連絡配管5を用いることにより、本開示の冷媒X(冷媒Y,A~Eについても同様)を用いた場合の能力の低下を小さく抑えることが可能となる。
Figure JPOXMLDOC01-appb-T000023

Figure JPOXMLDOC01-appb-T000024
 ここで、第3実施形態の空気調和装置1bにおいて、冷媒R410A、R32、本開示の冷媒Xをそれぞれ用い、表332に記載の管外径を有する液側冷媒連絡配管6およびガス側冷媒連絡配管5を用いた場合について、図6Kに液側冷媒連絡配管6の暖房運転時の圧力損失を示し、図6Lにガス側冷媒連絡配管5の冷房運転時の圧力損失を示す。なお、圧力損失の算出は、凝縮温度と蒸発温度と凝縮器出口の冷媒の過冷却度と蒸発器出口の冷媒の過熱度との各制御目標値を共通化させて、馬力に応じた定格能力で運転させた場合に必要となる冷媒循環量に基づいて、冷媒連絡配管において生じる冷媒の圧力損失として算出した。また、馬力の単位はHPである。
 この図6K、図6Lから分かるように、本開示の冷媒X(冷媒Y,A~Eについても同様)は、冷媒R410Aと圧力損失の挙動を近似させることができており、空気調和装置1bにおいて冷媒Xを用いた場合の能力の低下を小さく抑えることができていることが分かる。
 (6-4)その他
 上記第1実施形態から第3実施形態および各変形例を適宜組み合わせて空気調和装置や室外ユニットを構成してもよい。
 (7)第7グループの技術の実施形態
 (7-1)第1実施形態
 以下、冷媒回路の概略構成図である図7A、概略制御ブロック構成図である図7Bを参照しつつ、第1実施形態に係る冷凍サイクル装置としての空気調和装置1について説明する。
 空気調和装置1は、蒸気圧縮式の冷凍サイクルを行うことで、対象空間の空気を調和させる装置である。
 空気調和装置1は、主として、室外ユニット20と、室内ユニット30と、室外ユニット20と室内ユニット30を接続する液側冷媒連絡配管6およびガス側冷媒連絡配管5と、入力装置および出力装置としての図示しないリモコンと、空気調和装置1の動作を制御するコントローラ7と、を有している。
 空気調和装置1では、冷媒回路10内に封入された冷媒が、圧縮され、冷却又は凝縮され、減圧され、加熱又は蒸発された後に、再び圧縮される、という冷凍サイクルが行われる。本実施形態では、冷媒回路10には、蒸気圧縮式の冷凍サイクルを行うための冷媒が充填されている。当該冷媒は、上述した冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかを用いることができる。また、冷媒回路10には、当該冷媒と共に、冷凍機油が充填されている。
 (7-1-1)室外ユニット20
 室外ユニット20は、図7Cに示すように、外観が略直方体箱状の室外筐体50により構成されている。この室外ユニット20は、図7Dに示すように、仕切板50aによって内部空間が左右に分割されることで、送風機室および機械室が形成されている。
 この室外ユニット20は、液側冷媒連絡配管6およびガス側冷媒連絡配管5を介して室内ユニット30と接続されており、冷媒回路10の一部を構成している。室外ユニット20は、主として、圧縮機21と、四路切換弁22と、室外熱交換器23と、室外膨張弁24と、室外ファン25と、液側閉鎖弁29と、ガス側閉鎖弁28と、を有している。
 圧縮機21は、冷凍サイクルにおける低圧の冷媒を高圧になるまで圧縮する機器である。ここでは、圧縮機21として、ロータリ式やスクロール式等の容積式の圧縮要素(図示省略)が圧縮機モータによって回転駆動される密閉式構造の圧縮機が使用されている。圧縮機モータは、容量を変化させるためのものであり、インバータにより運転周波数の制御が可能である。なお、圧縮機21には、吸入側において、図示しない付属アキュムレータが設けられている。
 四路切換弁22は、接続状態を切り換えることで、圧縮機21の吐出側と室外熱交換器23とを接続しつつ圧縮機21の吸入側とガス側閉鎖弁28とを接続する冷房運転接続状態と、圧縮機21の吐出側とガス側閉鎖弁28とを接続しつつ圧縮機21の吸入側と室外熱交換器23とを接続する暖房運転接続状態と、を切り換えることができる。
 室外熱交換器23は、冷房運転時には冷凍サイクルにおける高圧の冷媒の凝縮器として機能し、暖房運転時には冷凍サイクルにおける低圧の冷媒の蒸発器として機能する熱交換器である。室外熱交換器23は、板厚方向に重ねて配置された複数の伝熱フィン23aと、複数の伝熱フィン23aに貫通固定された複数の伝熱管23bと、を有するクロスフィン式のフィン・アンド・チューブ型熱交換器である。本実施形態の室外熱交換器23では、特に限定されないが、冷媒が2以上10以下に分岐して流れるように複数の冷媒流路を有していてもよい。本実施形態の室外熱交換器23の複数の伝熱管23bは、湾曲された部分以外は円筒形状の配管であり、外径が6.35mm、7.0mm、8.0mm、および、9.5mmからなる群より選択される1種類で構成されている。なお、外径が6.35mmの伝熱管23bは、肉厚が0.25mm以上0.28mm以下であり、0.266mmであることが好ましい。外径が7.0mmの伝熱管23bは、肉厚が0.26mm以上0.29mm以下であり、0.273mmであることが好ましい。外径が8.0mmの伝熱管23bは、肉厚が0.28mm以上0.31mm以下であり、0.295mmであることが好ましい。外径が9.5mmの伝熱管23bは、肉厚が0.32mm以上0.36mm以下であり、0.340mmであることが好ましい。
 室外ファン25は、室外ユニット20内に室外の空気を吸入して、室外熱交換器23において冷媒と熱交換させた後に、外部に排出するための空気流れを生じさせる。室外ファン25は、室外ファンモータによって回転駆動される。なお、本実施形態において、室外ファン25は、1つだけ設けられている。
 室外膨張弁24は、弁開度を制御可能であり、室外熱交換器23の液側端部と液側閉鎖弁29との間に設けられている。
 液側閉鎖弁29は、室外ユニット20における液側冷媒連絡配管6との接続部分に配置された手動弁である。
 ガス側閉鎖弁28は、室外ユニット20におけるとガス側冷媒連絡配管5との接続部分に配置された手動弁である。
 室外ユニット20は、室外ユニット20を構成する各部の動作を制御する室外ユニット制御部27を有している。室外ユニット制御部27は、CPUやメモリ等を含むマイクロコンピュータを有している。室外ユニット制御部27は、各室内ユニット30の室内ユニット制御部34と通信線を介して接続されており、制御信号等の送受信を行う。また、室外ユニット制御部27は、図示しない各種センサと電気的に接続されており、各センサからの信号を受信する。
 室外ユニット20は、図7Cに示すように、吹出口52が設けられた室外筐体50を有している。室外筐体50は、略直方体形状であり、背面側および一側面側(図7C中の左側)から屋外の空気を取り込むことが可能であり、室外熱交換器23を通過した空気を前面51に形成された吹出口52を介して前側に吹き出すことが可能である。室外筐体50の下端部分は底板53によって覆われている。底板53の上には、図7Dに示すように、背面側および一側面側に沿うように室外熱交換器23が立設されている。この底板53の上面は、ドレンパンとして機能することができる。
 (7-1-2)室内ユニット30
 室内ユニット30は、対象空間である室内の壁面等に設置されている。室内ユニット30は、液側冷媒連絡配管6およびガス側冷媒連絡配管5を介して室外ユニット20と接続されており、冷媒回路10の一部を構成している。
 室内ユニット30は、室内熱交換器31と、室内ファン32と、室内筐体54等を有している。
 室内熱交換器31は、液側が、液側冷媒連絡配管6と接続され、ガス側端が、ガス側冷媒連絡配管5とを接続されている。室内熱交換器31は、冷房運転時には冷凍サイクルにおける低圧の冷媒の蒸発器として機能し、暖房運転時には冷凍サイクルにおける高圧の冷媒の凝縮器として機能する熱交換器である。室内熱交換器31は、板厚方向に重ねて配置された複数の伝熱フィン31aと、複数の伝熱フィン31aに貫通固定された複数の伝熱管31bと、を有している。本実施形態の室内熱交換器31の複数の伝熱管31bは、円筒形状であり、外径が4.0mm、5.0mm、6.35mm、7.0mm、および、8.0mmからなる群より選択される1種類で構成されている。なお、外径が4.0mmの伝熱管31bは、肉厚が0.24mm以上0.26mm以下であり、0.251mmであることが好ましい。外径が5.0mmの伝熱管31bは、肉厚が0.22mm以上0.25mm以下であり、0.239mmであることが好ましい。外径が6.35mmの伝熱管31bは、肉厚が0.25mm以上0.28mm以下であり、0.266mmであることが好ましい。外径が7.0mmの伝熱管31bは、肉厚が0.26mm以上0.29mm以下であり、0.273mmであることが好ましい。外径が8.0mmの伝熱管31bは、肉厚が0.28mm以上0.31mm以下であり、0.295mmであることが好ましい。
 室内ファン32は、室内ユニット30の室内筐体54内に室内の空気を吸入して、室内熱交換器31において冷媒と熱交換させた後に、外部に排出するための空気流れを生じさせる。室内ファン32は、図示しない室内ファンモータによって回転駆動される。
 室内筐体54は、図7E、図7Fに示すように、室内熱交換器31、室内ファン32、室内ユニット制御部34を内部に収容する略直方体形状の筐体である。室内筐体54は、室内筐体54の上端部を構成する天面55、室内筐体54の前部を構成する前面パネル56、室内筐体54の底部を構成する底面57、吹出口58a、ルーバ58、室内の壁面と対向する背面59、図示しない左右の側面等を有している。天面55には、上下方向に開口した複数の天面吸込口55aが設けられている。前面パネル56は、天面55の前側端部近傍から下方に広がるパネルである。前面パネル56は、上方部分において左右に細長い開口からなる前面吸込口56aが設けられている。室内の空気は、これらの天面吸込口55aおよび前面吸込口56aを介して室内筐体54内の室内熱交換器31および室内ファン32が収納されている空間からなる通風路に取り込まれる。底面57は、室内熱交換器31や室内ファン32の下方において略水平に広がっている。吹出口58aは、前面パネル56の下方であって底面57の前側である、室内筐体54の前側下方において、前側下方に向けて開口している。
 また、室内ユニット30は、室内ユニット30を構成する各部の動作を制御する室内ユニット制御部34を有している。室内ユニット制御部34は、CPUやメモリ等を含むマイクロコンピュータを有している。室内ユニット制御部34は、室外ユニット制御部27と通信線を介して接続されており、制御信号等の送受信を行う。
 室内ユニット制御部34は、室内ユニット30内に設けられている図示しない各種センサと電気的に接続されており、各センサからの信号を受信する。
 (7-1-3)コントローラ7の詳細
 空気調和装置1では、室外ユニット制御部27と室内ユニット制御部34が通信線を介して接続されることで、空気調和装置1の動作を制御するコントローラ7が構成されている。
 コントローラ7は、主として、CPU(中央演算処理装置)と、ROMやRAM等のメモリを有している。なお、コントローラ7による各種処理や制御は、室外ユニット制御部27および/又は室内ユニット制御部34に含まれる各部が一体的に機能することによって実現されている。
 (7-1-4)運転モード
 以下、運転モードについて説明する。
 運転モードとしては、冷房運転モードと暖房運転モードとが設けられている。
 コントローラ7は、リモコン等から受け付けた指示に基づいて、冷房運転モードか暖房運転モードかを判断し、実行する。
 (7-1-4-1)冷房運転モード
 空気調和装置1では、冷房運転モードでは、四路切換弁22の接続状態を圧縮機21の吐出側と室外熱交換器23とを接続しつつ圧縮機21の吸入側とガス側閉鎖弁28とを接続する冷房運転接続状態とし、冷媒回路10に充填されている冷媒を、主として、圧縮機21、室外熱交換器23、室外膨張弁24、室内熱交換器31の順に循環させる。
 より具体的には、冷房運転モードが開始されると、冷媒回路10内において、冷媒が圧縮機21に吸入されて圧縮された後に吐出される。
 圧縮機21では、室内ユニット30で要求される冷却負荷に応じた容量制御が行われる。圧縮機21から吐出されたガス冷媒は、四路切換弁22を経て、室外熱交換器23のガス側端に流入する。
 室外熱交換器23のガス側端に流入したガス冷媒は、室外熱交換器23において、室外ファン25によって供給される室外側空気と熱交換を行って凝縮し、液冷媒となって室外熱交換器23の液側端から流出する。
 室外熱交換器23の液側端から流出した冷媒は、室外膨張弁24を通過する際に減圧される。なお、室外膨張弁24は、室外熱交換器23の液側出口を通過する冷媒の過冷却度が所定条件を満たすように制御される。
 室外膨張弁24で減圧された冷媒は、液側閉鎖弁29および液側冷媒連絡配管6を経て、室内ユニット30に流入する。
 室内ユニット30に流入した冷媒は、室内熱交換器31に流入し、室内熱交換器31において、室内ファン32によって供給される室内空気と熱交換を行って蒸発し、ガス冷媒となって室内熱交換器31のガス側端から流出する。室内熱交換器31のガス側端から流出したガス冷媒は、ガス側冷媒連絡配管5に流れていく。
 ガス側冷媒連絡配管5を流れた冷媒は、ガス側閉鎖弁28、四路切換弁22を経て、再び、圧縮機21に吸入される。
 (7-1-4-2)暖房運転モード
 空気調和装置1では、暖房運転モードでは、四路切換弁22の接続状態を圧縮機21の吐出側とガス側閉鎖弁28とを接続しつつ圧縮機21の吸入側と室外熱交換器23とを接続する暖房運転接続状態とし、冷媒回路10に充填されている冷媒を、主として、圧縮機21、室内熱交換器31、室外膨張弁24、室外熱交換器23の順に循環させる。
 より具体的には、暖房運転モードが開始されると、冷媒回路10内において、冷媒が圧縮機21に吸入されて圧縮された後に吐出される。
 圧縮機21では、室内ユニット30で要求される暖房負荷に応じた容量制御が行われる。圧縮機21から吐出されたガス冷媒は、四路切換弁22およびガス側冷媒連絡配管5を流れた後、室内ユニット30に流入する。
 室内ユニット30に流入した冷媒は、室内熱交換器31のガス側端に流入し、室内熱交換器31において、室内ファン32によって供給される室内空気と熱交換を行って凝縮し、気液二相状態の冷媒または液冷媒となって室内熱交換器31の液側端から流出する。室内熱交換器31の液側端から流出した冷媒は、液側冷媒連絡配管6に流れていく。
 液側冷媒連絡配管6を流れた冷媒は、液側閉鎖弁29、室外膨張弁24において冷凍サイクルにおける低圧になるまで減圧される。なお、室外膨張弁24は、室内熱交換器31の液側出口を通過する冷媒の過冷却度が所定条件を満たすように制御される。室外膨張弁24で減圧された冷媒は、室外熱交換器23の液側端に流入する。
 室外熱交換器23の液側端から流入した冷媒は、室外熱交換器23において、室外ファン25によって供給される室外空気と熱交換を行って蒸発し、ガス冷媒となって室外熱交換器23のガス側端から流出する。
 室外熱交換器23のガス側端から流出した冷媒は、四路切換弁22を経て、再び、圧縮機21に吸入される。
 (7-1-5)第1実施形態の特徴
 上述の空気調和装置1では、冷媒X、冷媒Y、冷媒A、冷媒B、冷媒C、冷媒D、あるいは、冷媒Eが用いられているため、GWPを十分に小さく抑えることが可能になっている。
 また、空気調和装置1が有する室外ユニット20の室外熱交換器23では、配管径が6.35mm以上の伝熱管23bが用いられている。このため、R32よりも圧力損失が生じやすい上記冷媒を用いた場合であっても、伝熱管23bを通過する際の圧力損失を低減させることができる。そして、室外熱交換器23を流れる冷媒の温度の変化(温度グライド)が生じる場合であっても、その程度を小さく抑えることが可能になる。さらに、室外熱交換器23では、配管径が10.0mm未満の伝熱管23bが用いられている。このため、室外熱交換器23において保持される冷媒量を少なく抑えることが可能になっている。
 また、空気調和装置1が有する室内ユニット30の室内熱交換器31では、配管径が4.0mm以上の伝熱管31bが用いられている。このため、R32よりも圧力損失が生じやすい上記冷媒を用いた場合であっても、伝熱管31bを通過する際の圧力損失を低減させることができる。このため、R32よりも圧力損失が生じやすい上記冷媒を用いた場合であっても、伝熱管31bを通過する際の圧力損失を低減させることができる。そして、室内熱交換器31を流れる冷媒の温度の変化(温度グライド)が生じる場合であっても、その程度を小さく抑えることが可能になる。さらに、室内熱交換器31においても、配管径が10.0mm未満の伝熱管31bが用いられている。このため、室内熱交換器31において保持される冷媒量を少なく抑えることが可能になっている。
 (7-1-6)第1実施形態の変形例A
 上記第1実施形態では、室内ユニットが1つだけ設けられている空気調和装置を例に挙げて説明したが、空気調和装置としては、互いに並列に接続された複数の室内ユニット(室内膨張弁を有さないもの)が設けられていてもよい。
 (7-2)第2実施形態
 以下、冷媒回路の概略構成図である図7G、概略制御ブロック構成図である図7Hを参照しつつ、第2実施形態に係る冷凍サイクル装置としての空気調和装置1aについて説明する。
 以下、主として、第2実施形態の空気調和装置1aについて、第1実施形態の空気調和装置1と異なる箇所を中心に説明する。
 空気調和装置1aにおいても、冷媒回路10には、蒸気圧縮式の冷凍サイクルを行うための冷媒として、(1)で説明したいずれかの冷媒であり、上述した冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかが充填されている。また、冷媒回路10には、当該冷媒と共に、冷凍機油が充填されている。
 (7-2-1)室外ユニット20
 第2実施形態の空気調和装置1aの室外ユニット20では、室外ファン25として、第1室外ファン25aと第2室外ファン25bとが設けられている。空気調和装置1aの室外ユニット20の室外熱交換器23は、第1室外ファン25aおよび第2室外ファン25bから受ける空気流れに対応するように、広い熱交換面積が確保されている。
 空気調和装置1aの室外ユニット20では、上記第1実施形態における室外ユニット20の室外膨張弁24の代わりに、室外熱交換器23の液側から液側閉鎖弁29までの間において、第1室外膨張弁44、中間圧レシーバ41、第2室外膨張弁45が順次設けられている。第1室外膨張弁44および第2室外膨張弁45は、弁開度を制御可能である。中間圧レシーバ41は、第1室外膨張弁44側から延びる配管の端部と、第2室外膨張弁45側から延びる配管の端部と、の両方が内部空間に位置しており、冷媒を溜めることができる容器である。
 第2実施形態の室外ユニット20は、図7Iに示すように、略直方体箱状の筐体60の内部空間が鉛直に延びる仕切板66によって左右に分割されることで送風機室および機械室が形成された構造(いわゆる、トランク型構造)を有している。
 筐体60内の送風機室には、室外熱交換器23、室外ファン25(第1室外ファン25aと第2室外ファン25b)等が配置され、筐体60内の機械室には、圧縮機21、四路切換弁22、第1室外膨張弁44、第2室外膨張弁45、中間圧レシーバ41、ガス側閉鎖弁28、液側閉鎖弁29、室外ユニット制御部27を構成する電装品ユニット27a等が配置されている。
 筐体60は、主として、底板63、天板64、左前板61、左側板(図示せず)、右前板(図示せず)、右側板65、仕切板66等を有している。底板63は、筐体60の底面部分を構成している。天板64は、室外ユニット20の天面部分を構成している。左前板61は、主に、筐体60の左前面部分を構成しており、前後方向に開口しており上下に並んでいる第1吹出口62aおよび第2吹出口62bが形成されている。第1吹出口62aには、主として、第1室外ファン25aによって筐体60の背面側および左側面側から内部に吸い込まれた空気であって、室外熱交換器23の上方部分を通過した空気が通過する。第2吹出口62bには、主として、第2室外ファン25bによって筐体60の背面側および左側面側から内部に吸い込まれた空気であって、室外熱交換器23の下方部分を通過した空気が通過する。第1吹出口62aおよび第2吹出口62bには、それぞれ、ファングリルが設けられている。左側板は、主に、筐体60の左側面部分を構成しており、筐体60内に吸入される空気の吸入口としても機能できるようになっている。右前板は、主に、筐体60の右前面部分及び右側面の前側部分を構成している。右側板65は、主に、筐体60の右側面の後側部分および背面の右側部分を構成している。仕切板66は、底板63上に配置される鉛直に延びる板状部材であり、筐体60の内部空間を送風機室と機械室とに分割している。
 室外熱交換器23は、例えば、図7Jに示すように、板厚方向に重ねて配置された複数の伝熱フィン23aと、複数の伝熱フィン23aに貫通固定された複数の伝熱管23bと、を有するクロスフィン式のフィン・アンド・チューブ型熱交換器である。この室外熱交換器23は、送風機室内において、筐体60の左側面及び背面に沿うようにして、平面視L字形状となるように配置されている。本実施形態の室外熱交換器23では、特に限定されないが、冷媒が10以上20以下に分岐して流れるように複数の冷媒流路を有していてもよい。本実施形態の室外熱交換器23の複数の伝熱管23bは、湾曲された部分以外は円筒形状の配管であり、外径が6.35mm、7.0mm、8.0mm、および、9.5mmからなる群より選択される1種類で構成されている。なお、伝熱管23bの外径と肉厚との関係は、上記第1実施形態と同様である。
 圧縮機21は、筐体60の機械室内において、底板63上に載置され、ボルトで固定されている。
 ガス側閉鎖弁28および液側閉鎖弁29は、筐体60の機械室内において、圧縮機21の上端近傍の高さ位置であって、右前方の角部近傍に配置されている。
 電装品ユニット27aは、筐体60の機械室内において、ガス側閉鎖弁28および液側閉鎖弁29のいずれよりも上方の空間に配置されている。
 以上の空気調和装置1aでは、冷房運転モードでは、第1室外膨張弁44は、例えば、室外熱交換器23の液側出口を通過する冷媒の過冷却度が所定条件を満たすように制御される。また、冷房運転モードでは、第2室外膨張弁45は、例えば、圧縮機21が吸入する冷媒の過熱度が所定の条件を満たすように制御される。
 また、暖房運転モードでは、第2室外膨張弁45は、例えば、室内熱交換器31の液側出口を通過する冷媒の過冷却度が所定条件を満たすように制御される。また、暖房運転モードでは、第1室外膨張弁44は、例えば、圧縮機21が吸入する冷媒の過熱度が所定の条件を満たすように制御される。
 (7-2-2)室内ユニット30
 第2実施形態の室内ユニット30は、対象空間である室内の上方空間に吊り下げられることで設置されるか、天井面に対して設置される。室内ユニット30は、液側冷媒連絡配管6およびガス側冷媒連絡配管5を介して室外ユニット20と接続されており、冷媒回路10の一部を構成している。
 室内ユニット30は、室内熱交換器31と、室内ファン32と、室内筐体70等を有している。
 室内筐体70は、図7K、図7Lに示すように、筐体本体71と、化粧パネル72と、を有している。筐体本体71は、下方が開口しており、内部に室内熱交換器31、室内ファン32等を収容する。化粧パネル72は、筐体本体71の下面を覆っており、吸込口72a、複数のフラップ72b、複数の吹出口72c等を有している。吸込口72aから吸い込まれた室内空気は、フィルタ73を通過した後、ベルマウス74によって室内ファン32の吸い込み側に案内される。室内ファン32から送り出された空気は、ドレンパン75の上に配置された室内熱交換器31を通過して、ドレンパン75の周囲に設けられた流路を通過した後、吹出口72cから室内に吹き出される。
 第2実施形態の室内熱交換器31は、平面視において、室内ファン32を周囲から囲んだ略四角形状となるように設けられている。この室内熱交換器31は、板厚方向に重ねて配置された複数の伝熱フィン31aと、複数の伝熱フィン31aに貫通固定された複数の伝熱管31bと、を有している。なお、第2実施形態の室内熱交換器31の複数の伝熱管31bは、円筒形状であり、外径が4.0mm、5.0mm、6.35mm、7.0mm、8.0mm、および、9.5mmからなる群より選択される1種類で構成されている。なお、外径が9.5mmの伝熱管31bは、肉厚が0.32mm以上0.36mm以下であり、0.340mmであることが好ましい。なお、他の伝熱管31bについての外径と肉厚との関係は、上記第1実施形態と同様である。
 (7-2-3)第2実施形態の特徴
 以上の第2実施形態に係る空気調和装置1aにおいても、第1実施形態に係る空気調和装置1と同様に、冷媒X、冷媒Y、冷媒A、冷媒B、冷媒C、冷媒D、あるいは、冷媒Eが用いられているため、GWPを十分に小さく抑えることが可能になっている。
 また、空気調和装置1aが有する室外ユニット20の室外熱交換器23においても、R32よりも圧力損失が生じやすい上記冷媒について伝熱管23bを通過する際の圧力損失を低減させることができ、室外熱交換器23を流れる冷媒の温度の変化(温度グライド)が生じる場合であっても、その程度を小さく抑えることが可能になっている。さらに、室外熱交換器23において保持される冷媒量を少なく抑えることが可能になっている。
 また、空気調和装置1aが有する室内ユニット30の室内熱交換器31においても、R32よりも圧力損失が生じやすい上記冷媒を用いた場合であっても、R32よりも圧力損失が生じやすい上記冷媒について伝熱管31bを通過する際の圧力損失を低減させることができ、室内熱交換器31を流れる冷媒の温度の変化(温度グライド)が生じる場合であっても、その程度を小さく抑えることが可能になっている。さらに、室内熱交換器31において保持される冷媒量を少なく抑えることが可能になっている。
 (7-2-4)第2実施形態の変形例A
 上記第2実施形態では、室内ユニットが1つだけ設けられている空気調和装置を例に挙げて説明したが、空気調和装置としては、互いに並列に接続された複数の室内ユニット(室内膨張弁を有さないもの)が設けられていてもよい。
 (7-3)第3実施形態
 以下、冷媒回路の概略構成図である図7M、概略制御ブロック構成図である図7Nを参照しつつ、第3実施形態に係る冷凍サイクル装置としての空気調和装置1bについて説明する。
 以下、主として、第3実施形態の空気調和装置1bについて、第1実施形態の空気調和装置1と異なる箇所を中心に説明する。
 空気調和装置1bにおいても、冷媒回路10には、蒸気圧縮式の冷凍サイクルを行うための冷媒として、(1)で説明したいずれかの冷媒であり、上述した冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかが充填されている。また、冷媒回路10には、当該冷媒と共に、冷凍機油が充填されている。
 (7-3-1)室外ユニット20
 第3実施形態に係る空気調和装置1bの室外ユニット20では、上記第1実施形態における室外ユニット20において、低圧レシーバ26、過冷却熱交換器47および過冷却回路46が設けられている。
 低圧レシーバ26は、四路切換弁22の接続ポートの1つから圧縮機21の吸入側に至るまでの間に設けられ、冷媒を溜めることができる容器である。なお、本実施形態においては、圧縮機21が有する付属のアキュムレータとは別に設けられている。
 過冷却熱交換器47は、室外膨張弁24と液側閉鎖弁29との間に設けられている。
 過冷却回路46は、室外膨張弁24と過冷却熱交換器47との間の主回路から分岐し、四路切換弁22の接続ポートの1つから低圧レシーバ26に至るまでの途中の部分に合流するように延びた回路である。過冷却回路46の途中には、通過する冷媒を減圧させる過冷却膨張弁48が設けられている。過冷却回路46を流れる冷媒であって、過冷却膨張弁48で減圧された冷媒は、過冷却熱交換器47において、主回路側を流れる冷媒との間で熱交換を行う。これにより、主回路側を流れる冷媒はさらに冷却され、過冷却回路46を流れる冷媒は蒸発する。
 第3実施形態に係る空気調和装置1bの室外ユニット20の詳細構造について、図7Oの外観斜視図、図7Pの分解斜視図を参照しつつ、以下に説明する。
 空気調和装置1bの室外ユニット20は、下方から室外筐体80内に空気を取り込んで上方から室外筐体80外に空気を吹き出す上吹き型構造と呼ばれるものである。
 室外筐体80は、主として、左右方向に延びる一対の据付脚82上に架け渡される底板83と、底板83の角部から鉛直方向に延びる支柱84と、前面パネル81と、ファンモジュール85と、を有している。底板83は、室外筐体80の底面を形成しており、左側の第1底板83aと右側の第2底板83bとに分かれている。前面パネル81は、ファンモジュール85の下方において、前面側の支柱84間に架け渡されており、室外筐体80の前面を構成している。室外筐体80内のうち、ファンモジュール85の下方であって底板83上方の空間には、圧縮機21、室外熱交換器23、低圧レシーバ26、四路切換弁22、室外膨張弁24、過冷却熱交換器47、過冷却膨張弁48、過冷却回路46、ガス側閉鎖弁28、液側閉鎖弁29、室外ユニット制御部27等が配置されている。室外熱交換器23は、室外筐体80のファンモジュール85の下方の部分のうち、背面および左右両側面に面する平面視略U字形状であり、室外筐体80の背面および左右両側面を実質的に形成している。この室外熱交換器23は、底板83の左側縁部、後側縁部、右側縁部の上に沿うように配置されている。第3実施形態の室外熱交換器23は、板厚方向に重ねて配置された複数の伝熱フィン23aと、複数の伝熱フィン23aに貫通固定された複数の伝熱管23bと、を有するクロスフィン式のフィン・アンド・チューブ型熱交換器である。本実施形態の室外熱交換器23では、特に限定されないが、冷媒が20以上40以下に分岐して流れるように複数の冷媒流路を有していてもよい。第3実施形態の室外熱交換器23の複数の伝熱管23bは、湾曲された部分以外は円筒形状の配管であり、外径が7.0mm、8.0mm、および、9.5mmからなる群より選択される1種類で構成されている。なお、伝熱管23bの外径と肉厚との関係は、上記第1実施形態と同様である。
 ファンモジュール85は、室外熱交換器23の上側に設けられており、室外ファン25と、図示しないベルマウス等を有している。室外ファン25は、回転軸が鉛直方向になる姿勢で配置されている。
 以上の構造により、室外ファン25が形成させる空気流れは、室外熱交換器23の周囲から室外熱交換器23を通過して室外筐体80内部に流入し、室外筐体80の上端面において上下方向に貫通するように設けられた吹出口86を介して、上方に吹き出される。
 (7-3-2)第1室内ユニット30および第2室内ユニット35
 また、第3実施形態に係る空気調和装置1bでは、上記第1実施形態における室内ユニット30の代わりに、互いに並列に設けられた第1室内ユニット30および第2室内ユニット35を有している。
 第1室内ユニット30は、上記第1実施形態における室内ユニット30と同様に第1室内熱交換器31と第1室内ファン32と第1室内ユニット制御部34が設けられており、さらに、第1室内熱交換器31の液側において第1室内膨張弁33が設けられている。第1室内膨張弁33は、弁開度が制御可能である。
 第2室内ユニット35は、第1室内ユニット30と同様であり、第2室内熱交換器36と第2室内ファン37と、第2室内ユニット制御部39と、第2室内熱交換器36の液側に設けられた第2室内膨張弁38と、を有している。第2室内膨張弁38は、弁開度が制御可能である。
 なお、第3実施形態に係る空気調和装置1bの第1室内ユニット30および第2室内ユニット35の具体的な構造は、上記第1室内膨張弁33や第2室内膨張弁38を除き、第2実施形態の室内ユニット30と同様の構成である。なお、第1室内熱交換器31および第2室内熱交換器36は、いずれも、円筒形状である複数の伝熱管を有しており、伝熱管の外径が4.0mm、5.0mm、6.35mm、7.0mm、8.0mm、および、9.5mmからなる群より選択される1種類で構成されている。なお、伝熱管23bの外径と肉厚との関係は、上記第2実施形態と同様である。
 なお、第3実施形態のコントローラ7は、室外ユニット制御部27と、第1室内ユニット制御部34と、第2室内ユニット制御部39と、が互いに通信可能に接続されて構成されている。
 以上の空気調和装置1bでは、冷房運転モードでは、室外膨張弁24は、室外熱交換器23の液側出口を通過する冷媒の過冷却度が所定条件を満たすように制御される。また、冷房運転モードでは、過冷却膨張弁48は、圧縮機21が吸入する冷媒の過熱度が所定の条件を満たすように制御される。なお、冷房運転モードでは、第1室内膨張弁33および第2室内膨張弁38は、全開状態に制御される。
 また、暖房運転モードでは、第1室内膨張弁33は、第1室内熱交換器31の液側出口を通過する冷媒の過冷却度が所定条件を満たすように制御される。第2室内膨張弁38も同様に、第2室内熱交換器36の液側出口を通過する冷媒の過冷却度が所定条件を満たすように制御される。また、暖房運転モードでは、室外膨張弁45は、圧縮機21が吸入する冷媒の過熱度が所定の条件を満たすように制御される。なお、暖房運転モードでは、過冷却膨張弁48は、圧縮機21が吸入する冷媒の過熱度が所定の条件を満たすように制御される。
 (7-3-3)第3実施形態の特徴
 以上の第3実施形態に係る空気調和装置1bにおいても、第1実施形態に係る空気調和装置1と同様に、冷媒X、冷媒Y、冷媒A、冷媒B、冷媒C、冷媒D、あるいは、冷媒Eが用いられているため、GWPを十分に小さく抑えることが可能になっている。
 また、空気調和装置1bが有する室外ユニット20の室外熱交換器23においても、R32よりも圧力損失が生じやすい上記冷媒について伝熱管23bを通過する際の圧力損失を低減させることができ、室外熱交換器23を流れる冷媒の温度の変化(温度グライド)が生じる場合であっても、その程度を小さく抑えることが可能になっている。さらに、室外熱交換器23において保持される冷媒量を少なく抑えることが可能になっている。
 また、空気調和装置1bが有する室内ユニット30の室内熱交換器31においても、R32よりも圧力損失が生じやすい上記冷媒を用いた場合であっても、R32よりも圧力損失が生じやすい上記冷媒について伝熱管31bを通過する際の圧力損失を低減させることができ、室内熱交換器31を流れる冷媒の温度の変化(温度グライド)が生じる場合であっても、その程度を小さく抑えることが可能になっている。さらに、室内熱交換器31において保持される冷媒量を少なく抑えることが可能になっている。
 (7-4)その他
 上記第1実施形態から第3実施形態および各変形例を適宜組み合わせて空気調和装置や室外ユニットを構成してもよい。
 (8)第8グループの技術の実施形態
 (8-1)第1実施形態
 図8Aは、本開示の第1実施形態に係る空調機1の構成図である。図8Aにおいて、空調機1は、利用ユニット2と熱源ユニット3とによって構成されている。
 (8-1-1)空調機1の構成
 空調機1は、圧縮機100、四路切換弁16,熱源側熱交換器17、減圧機構としての膨張弁18、及び利用側熱交換器13が、冷媒配管によって環状に接続された冷媒回路11を有している。
 本実施形態では、冷媒回路11には、蒸気圧縮式の冷凍サイクルを行うための冷媒が充填されている。当該冷媒は、(1)で説明したいずれかの冷媒であり、上述した冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかを用いることができる。また、冷媒回路11には、当該混合冷媒と共に、冷凍機油が充填されている。
 (8-1-1-1)利用ユニット2
 冷媒回路11のうち、利用側熱交換器13は利用ユニット2に属している。また、利用ユニット2には、利用側ファン14が搭載されている。利用側ファン14は、利用側熱交換器13への空気の流れを生成する。
 利用ユニット2側には、利用側通信器35、及び利用側マイクロコンピュータ41が搭載されている。利用側通信器35は利用側マイクロコンピュータ41に接続されている。
 利用側通信器35は、利用ユニット2が熱源ユニット3と通信を行う際に使用される。利用側マイクロコンピュータ41は、空調機1が運転していない待機中も、制御用電圧の供給を受けているので、利用側マイクロコンピュータ41は常に起動している。
 (8-1-1-2)熱源ユニット3
 冷媒回路11のうちの圧縮機100、四路切換弁16,熱源側熱交換器17、及び膨張弁18は熱源ユニット3に属している。また、熱源ユニット3には、熱源側ファン19が搭載されている。熱源側ファン19は、熱源側熱交換器17への空気の流れを生成する。
 また、熱源ユニット3側には、電力変換装置30、熱源側通信器36、及び熱源側マイクロコンピュータ42が搭載されている。電力変換装置30、および熱源側通信器36はともに熱源側マイクロコンピュータ42に接続されている。
 電力変換装置30は、圧縮機100のモータ70を駆動するための回路である。熱源側通信器36は、熱源ユニット3が利用ユニット2と通信を行う際に使用される。熱源側マイクロコンピュータ42は電力変換装置30を介して圧縮機100のモータ70を制御し、さらに熱源ユニット3の他の機器(例えば、熱源側ファン19)の制御も行う。
 図8Bは、電力変換装置30の回路ブロック図である。図8Bにおいて、圧縮機100のモータ70は、3相のブラシレスDCモータであって、固定子72と、回転子71とを備えている。固定子72は、スター結線されたU相、V相及びW相の各相巻線Lu,Lv,Lwを含む。各相巻線Lu,Lv,Lwの一方端は、それぞれインバータ25から延びるU相、V相及びW相の各配線の各相巻線端子TU,TV,TWに接続されている。各相巻線Lu,Lv,Lwの他方端は、互いに端子TNとして接続されている。これら各相巻線Lu,Lv,Lwは、回転子71が回転することによりその回転速度と回転子71の位置に応じた誘起電圧を発生させる。
 回転子71は、N極及びS極からなる複数極の永久磁石を含み、固定子72に対し回転軸を中心として回転する。
 (8-1-2)電力変換装置30の構成
 電力変換装置30は、図8Aに示すように、熱源ユニット3側に搭載されている。電力変換装置30は、図8Bに示すように、電源回路20、インバータ25と、ゲート駆動回路26と、熱源側マイクロコンピュータ42とで構成されている。電源回路20は、整流回路21と、コンデンサ22とで構成されている。
 (8-1-2-1)整流回路21
 整流回路21は、4つのダイオードD1a,D1b,D2a,D2bによってブリッジ状に構成されている。具体的には、ダイオードD1aとD1b、D2aとD2bは、それぞれ互いに直列に接続されている。ダイオードD1a,D2aの各カソード端子は、共にコンデンサ22のプラス側端子に接続されており、整流回路21の正側出力端子として機能する。ダイオードD1b,D2bの各アノード端子は、共にコンデンサ22のマイナス側端子に接続されており、整流回路21の負側出力端子として機能する。
 ダイオードD1a及びダイオードD1bの接続点は、交流電源90の一方の極に接続されている。ダイオードD2a及びダイオードD2bの接続点は、交流電源90の他方の極に接続されている。整流回路21は、交流電源90から出力される交流電圧を整流して直流電圧を生成し、これをコンデンサ22へ供給する。
 (8-1-2-2)コンデンサ22
 コンデンサ22は、一端が整流回路21の正側出力端子に接続され、他端が整流回路21の負側出力端子に接続されている。コンデンサ22は、整流回路21によって整流された電圧を平滑する程の大きな静電容量を有しない、小容量のコンデンサである。以下、説明の便宜上、コンデンサ22の端子間電圧をDCバス電圧Vdcという。
 DCバス電圧Vdcは、コンデンサ22の出力側に接続されるインバータ25へ印加される。言い換えると、整流回路21及びコンデンサ22は、インバータ25に対する電源回路20を構成している。
 そして、コンデンサ22は、インバータ25のスイッチングによって生じる電圧変動を平滑する。なお、本実施形態においては、コンデンサ22としてフィルムコンデンサが採用される。
 (8-1-2-3)電圧検出器23
 電圧検出器23は、コンデンサ22の出力側に接続されており、コンデンサ22の両端電圧、即ちDCバス電圧Vdcの値を検出するためのものである。電圧検出器23は、例えば、互いに直列に接続された2つの抵抗がコンデンサ22に並列接続され、DCバス電圧Vdcが分圧されるように構成される。それら2つの抵抗同士の接続点の電圧値は、熱源側マイクロコンピュータ42に入力される。
 (8-1-2-4)電流検出器24
 電流検出器24は、コンデンサ22及びインバータ25の間であって、かつコンデンサ22の負側出力端子側に接続されている。電流検出器24は、モータ70の起動後、モータ70に流れるモータ電流を三相分の電流の合計値として検出する。
 電流検出器24は、例えば、シャント抵抗及び該抵抗の両端の電圧を増幅させるオペアンプを用いた増幅回路で構成されてもよい。電流検出器24によって検出されたモータ電流は、熱源側マイクロコンピュータ42に入力される。
 (8-1-2-5)インバータ25
 インバータ25は、モータ70のU相、V相及びW相の各相巻線Lu,Lv,Lwそれぞれに対応する3つの上下アームが互いに並列に、且つコンデンサ22の出力側に接続されている。
 図8Bにおいて、インバータ25は、複数のIGBT(絶縁ゲート型バイポーラトランジスタ、以下、単にトランジスタという)Q3a,Q3b,Q4a,Q4b,Q5a,Q5b及び複数の還流用のダイオードD3a,D3b,D4a,D4b,D5a,D5bを含む。
 トランジスタQ3aとQ3b、Q4aとQ4b、Q5aとQ5bは、それぞれ互いに直列に接続されることによって各上下アームを構成しており、それによって形成された接続点NU,NV,NWそれぞれから対応する相の各相巻線Lu,Lv,Lwに向かって出力線が延びている。
 各ダイオードD3a~D5bは、各トランジスタQ3a~Q5bに、トランジスタのコレクタ端子とダイオードのカソード端子が、また、トランジスタのエミッタ端子とダイオードのアノード端子が接続されるよう、並列接続されている。このそれぞれ並列接続されたトランジスタとダイオードにより、スイッチング素子が構成される。
 インバータ25は、コンデンサ22からのDCバス電圧Vdcが印加され、かつゲート駆動回路26により指示されたタイミングで各トランジスタQ3a~Q5bがオン及びオフを行うことによって、モータ70を駆動する駆動電圧SU,SV,SWを生成する。この駆動電圧SU,SV,SWは、各トランジスタQ3aとQ3b、Q4aとQ4b、Q5aとQ5bの各接続点NU,NV,NWからモータ70の各相巻線Lu,Lv,Lwに出力される。
 (8-1-2-6)ゲート駆動回路26
 ゲート駆動回路26は、熱源側マイクロコンピュータ42からの指令電圧に基づき、インバータ25の各トランジスタQ3a~Q5bのオン及びオフの状態を変化させる。具体的には、ゲート駆動回路26は、熱源側マイクロコンピュータ42によって決定されたデューティを有するパルス状の駆動電圧SU,SV,SWがインバータ25からモータ70に出力されるように、各トランジスタQ3a~Q5bのゲートに印加するゲート制御電圧Gu,Gx,Gv,Gy,Gw,Gzを生成する。生成されたゲート制御電圧Gu,Gx,Gv,Gy,Gw,Gzは、それぞれのトランジスタQ3a~Q5bのゲート端子に印加される。
 (8-1-2-7)熱源側マイクロコンピュータ42
 熱源側マイクロコンピュータ42は、電圧検出器23、電流検出器24、及びゲート駆動回路26と接続されている。本実施形態では、熱源側マイクロコンピュータ42は、モータ70をロータ位置センサレス方式にて駆動させている。なお、ロータ位置センサレス方式に限定されるものではないので、センサ方式で行なってもよい。
 ロータ位置センサレス方式とは、モータ70の特性を示す各種パラメータ、モータ70起動後の電圧検出器23の検出結果、電流検出器24の検出結果、及びモータ70の制御に関する所定の数式モデル等を用いて、ロータ位置及び回転数の推定、回転数に対するPI制御、モータ電流に対するPI制御等を行い駆動する方式である。モータ70の特性を示す各種パラメータとしては、使用されるモータ70の巻線抵抗、インダクタンス成分、誘起電圧、極数などが挙げられる。なお、ロータ位置センサレス制御については多くの特許文献が存在するので、詳細はそれらを参照されたい(例えば、特開2013-17289号公報)。
 (8-1-3)第1実施形態の特徴
 (8-1-3-1)
 (1)で説明したいずれかの冷媒を用いた空調機1において、必要に応じ、電力変換装置30を介してモータ70の回転数を変更することができる。言い換えると、空調負荷に応じて圧縮機100のモータ回転数を変更することができるので、高い通年エネルギー消費効率[Annual Performance Factor (APF)]を実現することができる。
 (8-1-3-2)
 また、整流回路21の出力側に電解コンデンサを要しないので、回路の大型化、高コスト化が抑制される。
 (8-1-4)第1実施形態の変形例
 図8Cは、第1実施形態の変形例における電力変換装置130の回路ブロック図である。図8Cにおいて、本変形例と上記第1実施形態との相違点は、単相交流電源90に替えて三相交流電源190に対応することができるように、単相用の整流回路21に替えて三相用の整流回路121を採用している点である。
 整流回路121は、6つのダイオードD0a,D0b,D1a,D1b,D2a,D2bによってブリッジ状に構成されている。具体的には、ダイオードD0aとD0b、ダイオードD1aとD1b、D2aとD2bは、それぞれ互いに直列に接続されている。
 ダイオードD0a,D1a,D2aの各カソード端子は、共にコンデンサ22のプラス側端子に接続されており、整流回路121の正側出力端子として機能する。ダイオードD0b,D1b,D2bの各アノード端子は、共にコンデンサ22のマイナス側端子に接続されており、整流回路121の負側出力端子として機能する。
 ダイオードD0a及びダイオードD0bの接続点は、交流電源190のR相の出力側に接続されている。ダイオードD1a及びダイオードD1bの接続点は、交流電源190のS相の出力側に接続されている。ダイオードD2a及びダイオードD2bの接続点は、交流電源190のT相の出力側に接続されている。整流回路121は、交流電源190から出力される交流電圧を整流して直流電圧を生成し、これをコンデンサ22へ供給する。
 なお、他の構成については、上記実施形態と同様であるので説明を省略する。
 (8-1-5)第1実施形態の変形例の特徴
 (8-1-5-1)
 (1)で説明したいずれかの冷媒を用いた空調機1において、必要に応じ、電力変換装置130を介してモータ70の回転数を変更することができる。言い換えると、空調負荷に応じて圧縮機100のモータ回転数を変更することができるので、高い通年エネルギー消費効率[Annual Performance Factor (APF)]を実現することができる。
 (8-1-5-2)
 また、整流回路121の出力側に電解コンデンサを要しないので、回路の大型化、高コスト化が抑制される。
 (8-2)第2実施形態
 図8Dは、本開示の第2実施形態に係る空調機に搭載される電力変換装置30Bの回路ブロック図である。
 (8-2-1)電力変換装置30Bの構成
 図8Dにおいて、電力変換装置30Bは、インダイレクトマトリックスコンバータである。図8Bの第1実施形態の電力変換装置30との相違点は、整流回路21に替えてコンバータ27を採用し、ゲート駆動回路28と、リアクタ33を新たに追加している点であり、これら以外は、第1実施形態と同様である。
 ここでは、コンバータ27、ゲート駆動回路28と、リアクタ33について説明し、他の構成については記載を省略する。
 (8-2-1-1)コンバータ27
 図8Dにおいて、コンバータ27は、複数のIGBT(絶縁ゲート型バイポーラトランジスタ、以下、単にトランジスタという)Q1a,Q1b,Q2a,Q2b及び複数のダイオードD1a,D1b,D2a,D2bを含んでいる。
 トランジスタQ1aとQ1bは互いに直列に接続されることによって上下アームを構成しており、それによって形成された接続点は交流電源90の一方の極に接続されている。トランジスタQ2aとQ2bは互いに直列に接続されることによって上下アームを構成しており、それによって形成された接続点は交流電源90の他方の極に接続されている。
 各ダイオードD1a~D2bは、各トランジスタQ1a~Q2bに、トランジスタのコレクタ端子とダイオードのカソード端子が、また、トランジスタのエミッタ端子とダイオードのアノード端子が接続されるよう、並列接続されている。このそれぞれ並列接続されたトランジスタとダイオードにより、スイッチング素子が構成される。
 コンバータ27は、ゲート駆動回路28により指示されたタイミングで各トランジスタQ1a~Q2bがオン及びオフを行う。
 (8-2-1-2)ゲート駆動回路28
 ゲート駆動回路28は、熱源側マイクロコンピュータ42からの指令電圧に基づき、コンバータ27の各トランジスタQ1a~Q2bのオン及びオフの状態を変化させる。具体的には、ゲート駆動回路28は、交流電源90から熱源側に流れる電流を所定の値に制御するよう熱源側マイクロコンピュータ42によって決定されたデューティを有するパルス状のゲート制御電圧Pq,Pr,Ps,Ptを生成する。生成されたゲート制御電圧Pq,Pr,Ps,Ptは、それぞれのトランジスタQ1a~Q2bのゲート端子に印加される。
 (8-2-1-3)リアクタ33
 リアクタ33は、交流電源90とコンバータ27との間に交流電源90と直列に接続されている。具体的には、その一端が交流電源90の1つの極に接続され、他端がコンバータ27の1つの入力端に接続されている。
 (8-2-2)動作
 熱源側マイクロコンピュータ42は、コンバータ27の上下アームのトランジスタQ1a,Q1bまたはトランジスタQ2a,Q2bをオン・オフすることで、所定時間だけ短絡・開放させ、例えば電流を略正弦波状に制御することによって、電源入力力率の改善や高調波成分の抑制を行う。
 また、熱源側マイクロコンピュータ42は、インバータ25を制御するゲート制御電圧のデューティ比に基づいて短絡期間を制御するような、コンバータとインバータの協調制御を行う。
 (8-2-3)第2実施形態の特徴
 空調機1は、高効率な上に、コンバータ27の出力側に電解コンデンサを要しないので回路の大型化、高コスト化が抑制される。
 (8-2-4)第2実施形態の変形例における電力変換装置130Bの構成
 図8Eは、第2実施形態の変形例における電力変換装置130Bの回路ブロック図である。図8Eにおいて、本変形例と上記第2実施形態との相違点は、単相交流電源90に替えて三相交流電源190に対応することができるように、単相用のコンバータ27に替えて三相用のコンバータ127を採用している点である。また、単相用のコンバータ27から三相用のコンバータ127への変更に伴い、ゲート駆動回路28に替えてゲート駆動回路128を採用している点である。さらに、各相の出力側とコンバータ127との間にリアクタ33が接続されている。なお、リアクタ33の入力側端子間にコンデンサを接続しているが、外すことも可能である。
 (8-2-4-1)コンバータ127
 コンバータ127は、複数のIGBT(絶縁ゲート型バイポーラトランジスタ、以下、単にトランジスタという)Q0a,Q0b,Q1a,Q1b,Q2a,Q2b及び複数のダイオードD0a,D0b,D1a,D1b,D2a,D2bを含んでいる。
 トランジスタQ0aとQ0bは互いに直列に接続されることによって上下アームを構成しており、それによって形成された接続点は交流電源190のR相の出力側に接続されている。トランジスタQ1aとQ1bは互いに直列に接続されることによって上下アームを構成しており、それによって形成された接続点は交流電源190のS相の出力側に接続されている。トランジスタQ2aとQ2bは互いに直列に接続されることによって上下アームを構成しており、それによって形成された接続点は交流電源190のT相の出力側に接続されている。
 各ダイオードD0a~D2bは、各トランジスタQ0a~Q2bに、トランジスタのコレクタ端子とダイオードのカソード端子が、また、トランジスタのエミッタ端子とダイオードのアノード端子が接続されるよう、並列接続されている。このそれぞれ並列接続されたトランジスタとダイオードにより、スイッチング素子が構成される。
 コンバータ127は、ゲート駆動回路128により指示されたタイミングで各トランジスタQ1a~Q2bがオン及びオフを行う。
 (8-2-4-2)ゲート駆動回路128
 ゲート駆動回路128は、熱源側マイクロコンピュータ42からの指令電圧に基づき、コンバータ127の各トランジスタQ0a~Q2bのオン及びオフの状態を変化させる。具体的には、ゲート駆動回路128は、交流電源190から熱源側に流れる電流を所定の値に制御するよう熱源側マイクロコンピュータ42によって決定されたデューティを有するパルス状のゲート制御電圧Po,Pp,Pq,Pr,Ps,Ptを生成する。生成されたゲート制御電圧Po,Pp,Pq,Pr,Ps,Ptは、それぞれのトランジスタQ0a~Q2bのゲート端子に印加される。
 (8-2-5)第2実施形態の変形例の特徴
 空調機1は、高効率な上に、コンバータ127の出力側に電解コンデンサを要しないので回路の大型化、高コスト化が抑制される。
 (8-3)第3実施形態
 図8Fは、本開示の第3実施形態に係る空調機に搭載される電力変換装置30Cの回路ブロック図である。
 (8-3-1)第3実施形態における電力変換装置30Cの構成
 図8Fにおいて、電力変換装置30Cは、マトリックスコンバータ29である。
 (8-3-1-1)マトリックスコンバータ29の構成
 マトリックスコンバータ29は、交流電源90からの入力の一端には双方向スイッチS1a,S2a,S3aを接続し、他方の一端には双方向スイッチS1b,S2b,S3bを接続することによって構成されている。
 直列に接続された双方向スイッチS1aと双方向スイッチS1bの中間端には、モータ70の3相巻線のうちのU相巻線Luの一端が接続されている。また、直列に接続された双方向スイッチS2aと双方向スイッチS2bの中間端には、モータ70の3相巻線のうちのV相巻線Lvの一端が接続されている。また、直列に接続された双方向スイッチS3aと双方向スイッチS3bの中間端には、モータ70の3相巻線のうちのW相巻線Lwの一端が接続されている。
 交流電源90から入力された交流電力は、双方向スイッチS1a~S3bでスイッチングされることにより、所定の周波数の交流に変換され、モータ70を駆動することができる。
 (8-3-1-2)双方向スイッチの構成
 図8Gは、双方向スイッチを概念的に示す回路図である。図8Gにおいて、トランジスタQ61,Q62と、ダイオードD61,D62と、端子Ta,Tbを有している。トランジスタQ61,Q62は、絶縁ゲート型バイポーラトランジスタ(IGBT:Insulated Gate Bipolar Transistor)である。
 トランジスタQ61は、エミッタEが端子Taに接続され、コレクタCがダイオードD61を介して端子Tbに接続されている。このコレクタCには、ダイオードD61のカソードが接続される。
 トランジスタQ62は、エミッタEが端子Tbに接続され、コレクタCがダイオードD62を介して端子Taに接続されている。このコレクタCには、ダイオードD62のカソードが接続される。端子Taは入力側に接続され、端子Tbは出力側に接続される。
 トランジスタQ61をオンに、トランジスタQ62をオフにすることによって、端子Tbから端子TaへとダイオードD61およびトランジスタQ61をこの順に介して電流を流すことができる。このとき、端子Taから端子Tbへの電流の流れ(逆流)は、ダイオードD61によって阻止される。
 他方、トランジスタQ61をオフに、トランジスタQ62をオンにすることで、端子Taから端子TbへとダイオードD62およびトランジスタQ62をこの順に介して電流を流すことができる。このとき、端子Tbから端子Taへの電流の流れ(逆流)は、ダイオードD62によって阻止される。
 (8-3-2)動作
 図8Hは、マトリックスコンバータ29の電流方向の一例を示した回路図である。交流電源90からマトリックスコンバータ29を通じ、モータ70へと流れる電流の経路の一例を示している。交流電源90の一つの極から双方向スイッチS1aを通して、モータ70の3相巻線の一つであるU相巻線LuからW相巻線Lwを経て、双方向スイッチS3bを通り、交流電源90の他の極へと電流は流れる。これによって、モータ70へ電力が供給されモータ70が駆動される。
 図8Iは、マトリックスコンバータ29の別の電流方向の一例を示した回路図である。図8Iにおいて、交流電源90の一つの極から双方向スイッチS3aを通して、モータ70の3相巻線の一つであるW相巻線LwからU相巻線Luを経て、双方向スイッチS1bを通り、交流電源90の他の極へと電流は流れる。これによって、モータ70へ電力が供給されモータ70が駆動される。
 (8-3-3)第3実施形態の特徴
 空調機1は、高効率な上に、マトリックスコンバータ29の出力側に電解コンデンサを要しないので回路の大型化、高コスト化が抑制される。
 (8-3-4)第3実施形態の変形例における電力変換装置130Cの構成
 図8Jは、第3実施形態の変形例における電力変換装置130Cの回路ブロック図である。図8Jにおいて、本変形例と上記第3実施形態との相違点は、単相交流電源90に替えて三相交流電源190に対応することができるように、単相用のマトリックスコンバータ29に替えて三相用のマトリックスコンバータ129を採用している点である。
 (8-3-4-1)マトリックスコンバータ129の構成
 また、単相用のマトリックスコンバータ29から三相用のマトリックスコンバータ129への変更に伴い、ゲート駆動回路31に替えてゲート駆動回路131を採用している点も相違点である。さらに、各相の出力側とマトリックスコンバータ129との間にリアクタL1,L2,L3が接続されている。
 双方向スイッチS1a~S3cで変換して得られた所定の3相交流電圧は、各相巻線端子TU,TV,TWを介して、モータ70に供給される。各リアクタL1,L2,L3は、各入力端子に接続されている。各コンデンサC1,C2,C3は、それぞれの一端が互いに接続され、それぞれの他端が出力端子に接続されている。
 電力変換装置130Cでは、リアクタL1,L2,L3を、マトリックスコンバータ129を介して短絡させることによって、3相交流電源190から供給されるエネルギーをリアクタL1,L2,L3に蓄積することができ、コンデンサC1,C2,C3の両端電圧を昇圧することができる。よって、電圧利用率を1以上にすることができる。
 このとき、マトリックスコンバータ129の入力端子には電圧型の3相交流電圧Vr,Vs,Vtが入力され、出力端子からは電流型の3相交流電圧Vu,Vv,Vwが出力される。
 また、コンデンサC1,C2,C3それぞれが、リアクタL1,L2,L3とでLCフィルタを構成するので、出力端子に出力される電圧に含まれる高周波成分を低減することができ、モータ70に生じるトルクの脈動成分や、騒音を低減することができる。
 さらに、整流回路とインバータとを用いたAC-AC変換回路に比べ、スイッチング素子数は少なくて良く、電力変換装置130Cで生じる損失が低減できる。
 (8-3-4-2)クランプ回路133の構成
 また、電力変換装置30では、入力端子と出力端子との間にクランプ回路133が接続されているので、双方向スイッチS1a~S3bのスイッチングによってマトリックスコンバータ129の入力端子と出力端子との間に生じるサージ電圧を、クランプ回路133内のコンデンサ(図8I参照)で吸収することができる。
 図8Kは、クランプ回路133の回路図である。図8Iにおいて、クランプ回路133は、ダイオードD31a~D36bと、コンデンサC21と、端子135~140とを有する。
 端子135には、ダイオードD31aのアノードと、ダイオードD31bのカソードが接続されている。端子136には、ダイオードD32aのアノードと、ダイオードD32bのカソードが接続されている。端子137には、ダイオードD33aのアノードと、ダイオードD33bのカソードが接続されている。
 各ダイオードD31a,D32a,D33aのカソードは、コンデンサC37の一端に接続され、各ダイオードD31b,D32b,D33bのアノードは、コンデンサC37の他端に接続されている。
 端子138には、ダイオードD34aのアノードと、ダイオードD34bのカソードが接続されている。端子139には、ダイオードD35aのアノードと、ダイオードD35bのカソードが接続されている。端子140には、ダイオードD36aのアノードと、ダイオードD36bのカソードが接続されている。
 各ダイオードD34a,D35a,D36aのカソードは、コンデンサC37の一端に接続され、各ダイオードD34b,D35b,D36bのアノードは、コンデンサC37の他端に接続されている。
 各端子135,136,137はマトリックスコンバータ129の入力側に接続され、端子138,139,140はマトリックスコンバータ129の出力側に接続される。クランプ回路133によって、入力端子と出力端子との間にクランプ回路133が接続されているので、双方向スイッチS1a~S3bのスイッチングによってマトリックスコンバータ129の入力端子と出力端子との間に生じるサージ電圧をクランプ回路133内のコンデンサC37で吸収することができる。
 上記の通り、電力変換装置130Cは電源電圧よりも大きい電圧をモータ70に供給することができるので、電力変換装置130Cおよびモータ70に流れる電流が小さくても、所定のモータ出力を得ることができ、換言すれば、電流が小さくて良いので、電力変換装置130Cおよびモータ70で生じる損失を低減できる。
 (8-3-5)第3実施形態の変形例の特徴
 空調機1は、高効率な上に、マトリックスコンバータ129の出力側に電解コンデンサを要しないので回路の大型化、高コスト化が抑制される。
 (8-4)その他
 (8-4-1)
 空調機1の圧縮機100は、スクロール圧縮機、ロータリー圧縮機、ターボ圧縮機、およびスクリュー圧縮機のいずれかが採用される。
 (8-4-2)
 圧縮機100のモータ70は、永久磁石を含む回転子71を有する永久磁石同期モータである。
 (9)第9グループの技術の実施形態
 (9-1)
 図9Aは、本開示の一実施形態に係る空調機1の構成図である。図9Aにおいて、空調機1は、利用ユニット2と熱源ユニット3とによって構成されている。
 (9-1-1)空調機1の構成
 空調機1は、圧縮機100、四路切換弁16,熱源側熱交換器17、減圧機構としての膨張弁18、及び利用側熱交換器13が、冷媒配管によって環状に接続された冷媒回路11を有している。
 本実施形態では、冷媒回路11には、蒸気圧縮式の冷凍サイクルを行うための冷媒が充填されている。当該冷媒は、(1)で説明したいずれかの冷媒であり、上述した冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかを用いることができる。また、冷媒回路11には、当該混合冷媒と共に、冷凍機油が充填されている。
 (9-1-1-1)利用ユニット2
 冷媒回路11のうち、利用側熱交換器13は利用ユニット2に属している。また、利用ユニット2には、利用側ファン14が搭載されている。利用側ファン14は、利用側熱交換器13への空気の流れを生成する。
 利用ユニット2側には、利用側通信器35、及び利用側マイクロコンピュータ41が搭載されている。利用側通信器35は利用側マイクロコンピュータ41に接続されている。
 利用側通信器35は、利用ユニット2が熱源ユニット3と通信を行う際に使用される。利用側マイクロコンピュータ41は、空調機1が運転していない待機中も、制御用電圧の供給を受けているので、利用側マイクロコンピュータ41は常に起動している。
 (9-1-1-2)熱源ユニット3
 冷媒回路11のうちの圧縮機100、四路切換弁16,熱源側熱交換器17、及び膨張弁18は熱源ユニット3に属している。また、熱源ユニット3には、熱源側ファン19が搭載されている。熱源側ファン19は、熱源側熱交換器17への空気の流れを生成する。
 また、熱源ユニット3側には、接続部30、熱源側通信器36、及び熱源側マイクロコンピュータ42が搭載されている。接続部30および熱源側通信器36はともに熱源側マイクロコンピュータ42に接続されている。
 (9-1-2)接続部30の構成
 図9Bは、圧縮機100のモータ70の運転回路図である。図9Bにおいて、接続部30は、交流電源90から圧縮機100のモータ70へと周波数変換をさせずに電力を供給させる回路である。
 モータ70は、誘導モータであって、かご型の回転子71と、主巻線727および補助巻線728を有する固定子72とを含んでいる。かご型の回転子71は、固定子72で発生する回転磁界に追従して回転する。
 圧縮機100は、M端子、S端子およびC端子を有している。M端子とC端子との間は、主巻線727によって繋がっている。S端子とM端子との間は、補助巻線728とによって繋がっている。
 交流電源90と圧縮機100とは、圧縮機100に交流電圧を供給する電源ライン901,902とによって繋がっている。電源ライン901は、サーモスタット26を介してC端子に接続されている。
 サーモスタット26は、空調機1が据え付けられている室内の温度を検出し、室温が設定温度範囲内のときは接点を開放し、室温が設定温度範囲外のときに接点を閉じる。
 電源ライン902は、途中、第1分岐ライン902Aと第2分岐ライン902Bとに分かれており、第1分岐ライン902AはM端子に接続され、第2分岐ライン902Bは起動回路20を介してS端子に接続されている。
 起動回路20は、正特性サーミスタ21と、運転コンデンサ22とを並列に接続した回路である。
 本実施形態では、電源ライン901に接続されているサーモスタット26、および電源ライン902に接続されている起動回路20を接続部30とよぶ。
 (9-1-3)動作
 上記のように構成された圧縮機100の運転回路において、交流電源90が投入されると、補助巻線728に正特性サーミスタ21を通じて電流が流れ、モータ70が起動する。
 モータ70の起動後、正特性サーミスタ21は自身を流れる電流によって自己発熱し、抵抗値が増大する。その結果、正特性サーミスタ21に替わって運転コンデンサ22と補助巻線728とが接続された状態となり、安定動作に移行する。
 (9-1-4)特徴
 (9-1-4-1)
 (1)で説明したいずれかの冷媒を使用した空調機1において、交流電源90とモータ70との間に電力変換装置を介在させずに圧縮機100を駆動することができるので、比較的安価な構成で、環境保護に配慮した空調機1を提供することができる。
 (9-1-4-2)
 (1)で説明したいずれかの冷媒を使用した空調機1において、正特性サーミスタ21と運転コンデンサ22との並列回路である起動回路20を補助巻線728に接続したことによって、圧縮機100のモータ70の起動トルクを大きくとることができる。
 圧縮機100の起動後は、正特性サーミスタ21は自己発熱して抵抗値が増大し、実質的に運転コンデンサ22と補助巻線728とが接続された状態へ切り替わり、一定の回転数(電源周波数)で運転されるので、圧縮機100は定格トルクを出力し得る状態となる。上記の通り、空調機1では、運転コンデンサ22への接続切替が適時に実施されるので、圧縮機100の高効率化が可能となる。
 (9-1-4-3)
 モータ70が誘導モータであり、比較的低コストで高出力が可能であるので、空調機1の高効率化が可能である。
 (9-1-5)変形例
 図9Cは、変形例に係る空調機1における圧縮機200のモータ170の運転回路図である。図9Cにおいて、モータ170は、三相誘導モータであって、接続部130を介して三相交流電源190に接続されている。
 接続部130は、接点130u、130vおよび130wを有するリレーである。接点130uは、三相交流電源190のR端子とモータ170のU相巻線Luとの間の電源ライン903を開閉する。接点130vは、三相交流電源190のS端子とモータ170のV相巻線Lvとの間の電源ライン904を開閉する。接点130wは、三相交流電源190のT端子とモータ170のW相巻線Lwとの間の電源ライン905を開閉する。
 そして、三相交流電源190のR端子、S端子およびT端子から、対応するモータ170のU相巻線Lu、V相巻線LvおよびW相巻線Lwに交流電圧が供給される。モータ170のV相巻線Lvに供給される交流電圧は、U相巻線Luに供給される交流電圧に対して位相が120°ずれている。また、モータ170の、W相巻線Lwに供給される交流電圧は、V相巻線Lvに供給される交流電圧に対して位相が120°ずれている。
 したがって、モータ170に三相交流電源190から交流電圧が供給されるだけで、固定子172に回転磁界が発生し、回転子171がその回転磁界に追従して回転する。その結果、圧縮機200は一定の回転数(電源周波数)で運転される。よって、モータ170の運転回路には、上記実施形態のような起動回路20は必要なく、接続部130のリレー回路だけでよい。
 (9-1-6)変形例の特徴
 (9-1-6-1)
 (1)で説明したいずれかの冷媒を使用した空調機1において、三相交流電源190とモータ170との間に電力変換装置を介在させずに圧縮機200を駆動することができるので、比較的安価な構成で、環境保護に配慮した空調機1を提供することができる。
 (9-1-6-2)
 モータ170が誘導モータであり、比較的低コストで高出力が可能であるので、空調機1の高効率化が可能である。
 (10)第10グループの技術の実施形態
 (10-1)第1実施形態
 第1実施形態に係る温水製造装置である給湯システム1は、図10A~図10Cに示すように、ヒートポンプ2、貯湯ユニット3、これらの管理や制御を行うコントローラ50、ユーザーへの情報表示やユーザーの操作受付を担うリモコン90、などを備えている。
 (10-1-1)ヒートポンプ
 ヒートポンプ2は、水を加熱するための熱源装置として機能するユニットであり、冷媒が循環する冷媒回路20、送風ファン24F、各種センサ、などを備えている。本実施形態では、冷媒回路20には、蒸気圧縮式の冷凍サイクルを行うための冷媒が充填されている。当該冷媒は、(1)で説明したいずれかの冷媒であり、上述した冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかを用いることができる。
 冷媒回路20は、圧縮機21、利用側の水熱交換器22、電動膨張弁23、熱源側の空気熱交換器24、冷媒配管25、などから構成されている。
 圧縮機21は、インバータ式の出力可変の電動圧縮機である。
 水熱交換器22は、冷媒の熱を利用する利用側の熱交換器として機能し、冷媒管22rと、水管32wとを有している。水熱交換器22は、ヒートポンプ2の圧縮機21によって吐出された後に冷媒管22rを流れる高温高圧のガス冷媒と、後述する貯湯ユニット3から流れてきて水管32wを流れる循環水との間で、熱交換を行わせる。この水熱交換器22における熱交換によって、冷媒管22rを通過する冷媒が冷却されると同時に、水管32wを通過する水が加熱され、湯(高温の水=温水)が生成される。
 電動膨張弁23は、圧縮機21を出て、水との熱交換で冷却された低温高圧の冷媒を膨張させる。
 空気熱交換器24は、外気から熱を奪う熱源側の熱交換器として機能し、電動膨張弁23で膨張した低温低圧の二相状態の冷媒と、外気との間で、熱交換を行わせる。外気から吸熱した冷媒は、蒸発して低圧のガス冷媒となって圧縮機21に吸入される。
 冷媒配管25は、圧縮機21の吐出口、水熱交換器22内の冷媒管22r、電動膨張弁23、空気熱交換器24、圧縮機21の吸入口、の順に各機器を接続している。
 各種センサとしては、例えば、冷媒に関する温度や圧力を検知するセンサが設けられる。図10Bには、これらのセンサのうち、熱交換器入口水温センサ31Tと、熱交換器出口水温センサ32Tとを示している。熱交換器入口水温センサ31Tは、水熱交換器22に入る前の水の温度を検出する。すなわち、熱交換器入口水温センサ31Tは、水熱交換器22を通過する前の水の温度を検出する。熱交換器出口水温センサ32Tは、水熱交換器22を通過した後の水の温度を検出する。
 (10-1-2)貯湯ユニット
 貯湯ユニット3は、市水(水道水)などの外部から供給される水を、ヒートポンプ2に送って加熱させ、ヒートポンプ2から戻ってきた水(湯)を蓄えるユニットである。また、貯湯ユニット3は、ユーザーが設定する温度の湯が供給されるように、燃焼加熱装置4や混合弁77によって温度調整された湯を給湯部82に送る機能を持つ。
 貯湯ユニット3は、取水部81、給湯部82、貯湯タンク35、循環水配管30、取水給湯配管70、燃焼加熱装置4、などを備えている。
 (10-1-2-1)取水部および給湯部
 取水部81は、接続口を有し、市水(水道水)の供給管89aが接続される。
 給湯部82は、接続口を有し、設置対象の建物内の蛇口99などから延びる給水・給湯用の建物内配管99aが接続される。
 (10-1-2-2)貯湯タンク
 貯湯タンク35は、ヒートポンプ2によって加熱された水(湯)を、ユーザーが蛇口99を回して利用する前から予め蓄えておくタンクである。貯湯タンク35は、水が常に満たされている。そして、貯湯タンク35には、所定温度以上、ここでは70℃以上の高温の水(以下、高温水という。)の量をコントローラ50に把握させるための、タンク温度分布検知センサが設けられている。タンク温度分布検知センサは、貯湯タンク35の下部から上部に向かって、順に、第1センサT1、第2センサT2、第3センサT3、第4センサT4、第5センサT5、第6センサT6の6つにより構成される。コントローラ50は、これらのタンク温度分布検知センサT1~T6が検知する貯湯タンク35内の各高さ位置での水温およびリモコン90による設定に基づき、ヒートポンプ2を駆動させて沸き上げ運転を行う。沸き上げ運転とは、貯湯タンク35の中の水の温度が目的の温度に到達するまで水の熱量を上げていく運転である。沸き上げ運転における目的の温度、すなわち、貯湯タンク35の中の水の目標貯湯温度は、例えば予め給湯システム1の製造工場において設定されている。本実施形態では、目標貯湯温度は75℃である。
 なお、第6センサT6の温度検出値が70℃を下回っていれば、残湯量は0、第6センサT6の温度検出値が70℃以上であれば、残湯量は1である。さらに、第5センサT5の温度検出値も70℃以上であれば、残湯量は2である。同様に、残湯量は3,4,5,6まで存在し、第1センサT1の温度検出値も70℃以上であれば、残湯量は最大の6である。
 (10-1-2-3)循環水配管
 循環水配管30は、貯湯タンク35の中の水にヒートポンプ2で得られる熱を伝えるための回路であり、往き管31、水熱交換器22内の水管32w、戻り管33、および、循環用ポンプ34を有している。往き管31は、貯湯タンク35の下端近傍と水熱交換器22内の水管32wの上流側端部とを接続している。戻り管33は、水熱交換器22内の水管32wの下流側端部と貯湯タンク35の上端近傍とを接続している。循環用ポンプ34は、往き管31の途中に設けられている。循環用ポンプ34は、出力を調整することができる電動ポンプであり、貯湯タンク35と水熱交換器22との間で水を循環させる役割を果たす。具体的には、循環水配管30では、循環用ポンプ34がコントローラ50からの指令を受けて駆動することにより、貯湯タンク35内の水のうち下部に存在している温度の低い水が、往き管31に流出し、水熱交換器22内の水管32wを通過することで温度上昇し、戻り管33を介して貯湯タンク35の上端近傍に戻ってくる。これにより、貯湯タンク35内の高温水とそれより温度が低い水との境界が上から下に向けて移動していくことになり、貯湯タンク35内の高温水の量が増えていく。
 (10-1-2-4)取水給湯配管および燃焼加熱装置
 取水給湯配管70は、外部の市水等から水の供給を受けつつ、貯湯タンク35に蓄えられている高温水を利用するための回路であって、取水管71、給湯管73、バイパス管74、および、混合弁77を有している。
 取水管71は、外部の市水等から水の供給を受けて、貯湯タンク35の下端近傍に常温の水を供給する。この取水管71には、市水によって供給される水の温度を検知するための取水温度センサ71Tが設けられている。
 給湯管73は、貯湯タンク35に蓄えられている水のうち、上端近傍に存在している温度の高い水を、給湯部82から、ユーザーの利用箇所、例えば建物内の蛇口99から延びる建物内配管99aに導く。
 燃焼加熱装置4は、給湯管73の途中に配備されている。燃焼加熱装置4は、貯湯タンク35と混合弁77との間に配置されており、燃料ガスを燃焼させる燃焼バーナー41を備えている。燃焼バーナー41は、その加熱能力が調整できるガスバーナーであり、コントローラ50の指令に応じて加熱量を調整しながら給湯管73を流れる水を加熱する。
 また、給湯管73の燃焼加熱装置4と混合弁77との間には、通過する水の温度を検知するための混合前湯温センサ4Tが設けられている。
 バイパス管74は、取水管71を流れている常温の水と、給湯管73を流れてくる水(湯)と、を混合させるための配管である。バイパス管74は、取水管71から給湯管73まで延びており、混合弁77によって給湯管73に接続されている。
 混合弁77は、コントローラ50からの指令を受け、給湯管73を流れてくる高い温度の水(湯)と、バイパス管74を流れてくる常温の水との混合比率を調節するための調整弁である。
 (10-1-3)コントローラおよびリモコン
 コントローラ50は、貯湯ユニット3の内部に設置されており、圧縮機21、電動膨張弁23、送風ファン24F、混合弁77、燃焼バーナー41、循環用ポンプ34などのアクチュエータと接続され、これらのアクチュエータに動作指示を送る。また、コントローラ50は、熱交換器入口水温センサ31T、熱交換器出口水温センサ32T、タンク温度分布検知センサT1~T6、取水温度センサ71T、混合前湯温センサ4T、などのセンサ類と接続されており、これらのセンサ類から検知結果を取得する。さらに、コントローラ50には、ユーザーの設定入力を受け付けたりユーザーへの情報提供を行ったりするためのリモコン90が接続されている。
 リモコン90には、図10Cに示すように、必要な湯(水)の温度を設定するための湯温設定部91や、設定湯温や残湯量などを表示する表示部92などが設けられている。
 (10-1-4)給湯システムの特徴
 本実施形態に係る給湯システム1では、上述した冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかを用いて、水熱交換器22によって水を加熱しているため、効率が高い。供給される水が硬水である場合、スケールが生じるというデメリットがあるが、供給される水が軟水である場合には、本実施形態に係る給湯システム1を採用するメリットが特に大きい。
 (10-1-5)第1実施形態の第1の変形例
 第1実施形態の給湯システム1に代えて、図10Dに示す給湯システム1aを採用すれば、スケールの発生のデメリットを抑制することができる。図10Dの給湯システム1aでは、ヒートポンプ2aが、第1実施形態のヒートポンプ2が保有しないサブの循環水配管60を備えている。サブの循環水配管60には、サブの循環用ポンプ64が設けられている。サブの循環水配管60の中の水は、水熱交換器22において冷媒から熱を奪い、サブの水熱交換器62においてメインの循環水配管30を流れる水に放熱する。メインの水熱交換器22は、冷媒と水との間で熱交換をさせる熱交換器であるが、サブの水熱交換器62は、水と水との間で熱交換をさせる熱交換器である。
 図10Dに示す給湯システム1aでは、ヒートポンプ2aの圧縮機21から吐出された高温のガス冷媒によって、サブの環水配管60を流れる水がサブの水熱交換器62において加熱され、その加熱された水によって、メインの循環水配管30を流れる水がサブの水熱交換器62において加熱される。サブの循環水配管60によって構成される水の流路は閉ループであり、ここでは殆どスケールは発生しない。
 (10-1-6)第1実施形態の第2の変形例
 第1実施形態の給湯システム1に代えて、図10Eに示す給湯システム1bを採用すれば、スケールの発生のデメリットを抑制することができる。図10Eの給湯システム1bでは、貯湯ユニット3bが、第1実施形態の貯湯ユニット3が保有しない熱交換部38を備えている。熱交換部38は、循環水配管30bの一部であって、貯湯タンク35の内部に配置される。第1実施形態の給湯システム1では、貯湯タンク35の下部から水を循環水配管30に流出させ、加熱後の水を貯湯タンク35の上端近傍に戻しているが、図10Eに示す給湯システム1bでは、閉ループを構成する循環水配管30bを流れる加熱水によって、貯湯タンク35の中の水の沸き上げが行われる。貯湯タンク35の中の水は、熱交換部38を流れる温水から熱を奪って温度が上がっていく。
 図10Eに示す給湯システム1bでは、循環水配管30bによって構成される水の流路は閉ループであり、ここでは殆どスケールは発生しない。
 また、図10Eに示す給湯システム1bのヒートポンプ2bには、利用側の熱交換器として機能する水熱交換器22に加えて、同じく利用側の水熱交換器22aを備える。水熱交換器22aは、水熱交換器22の冷媒流れの上流側に配置され、水循環流路190を流れる水を加熱する。水循環流路190は、床暖房を行うために床の下に配置された熱交換器192と、ヒートポンプ2bの水熱交換器22aとを結ぶ、閉じたループ流路である。水循環流路190には、ポンプ194が設けられている。水熱交換器22aにおいて圧縮機21から吐出された高温の混合冷媒から熱を奪って加熱された水は、ポンプ194の駆動によって床の下の熱交換器192に送られる。熱交換器192において放熱し、床暖房を行った水は、水循環流路190を通って再び水熱交換器22aに流入する。
 ここでは、ヒートポンプ2bが、貯湯タンク35の中の水を加熱して給湯に役立つとともに、床暖房の熱源としての役割も果たす。
 (10-2)第2実施形態
 (10-2-1)温水循環暖房システムの主要構成
 第2実施形態に係る温水製造装置である温水循環暖房システムの構成を、図10F~図10Hに示す。温水循環暖房システムは、建物において温水を循環させて暖房を行うとともに給湯機能を持つシステムであって、温水を溜めるタンク240と、居室内ラジエータ261a,262aと、トイレ内放熱器269b,269c,269eと、屋内暖房用循環ポンプ251と、温水を加熱するための蒸気圧縮式のヒートポンプ210と、温水加熱用循環ポンプ225と、給湯用熱交換器241aと、加熱水散布装置275と、コントロールユニット220とを備えている。
 居室内ラジエータ261a,262aは、建物の居室261,262に配置され、温水の持つ熱を居室261,262の室内空気に放熱させる。
 トイレ内放熱器269b,269c,269eは、建物のトイレ269に配置され、温水の持つ熱をトイレ269内で放熱させる。
 屋内暖房用循環ポンプ251は、タンク240から居室内ラジエータ261a,262aおよびトイレ内放熱器269b,269c,269eへと温水を流し、居室内ラジエータ261a,262aおよびトイレ内放熱器269b,269c,269eで放熱を行った温水を再びタンク240へと戻す。タンク240を出た温水は、居室内ラジエータ261a,262aを流れた後、トイレ内放熱器269b,269c,269eを流れて、タンク240へと戻る。
 ヒートポンプ210は、圧縮機211、放熱器212、膨張弁213および蒸発器214を有する冷媒回路を備え、蒸発器214により外気から熱を奪い、放熱器212から放出する熱によってタンク240から流れてくる温水を加熱する。本実施形態では、冷媒回路には、蒸気圧縮式の冷凍サイクルを行うための冷媒が充填されている。当該冷媒は、(1)で説明したいずれかの冷媒であり、上述した冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかを用いることができる。
 温水加熱用循環ポンプ225は、タンク240からヒートポンプ210の放熱器212へと温水を流し、ヒートポンプ210の放熱器212から再びタンク240へと温水を戻す。
 給湯用熱交換器241aは、タンク240内に配置され、給水源から取り入れた水とタンク240内の温水との間で熱交換をさせ、水を加熱して建物の給湯配管272に供給する。給湯用熱交換器241aで加熱され給湯配管272に供給される水を、以下、加熱水と称する。なお、給水源から取り入れられ給湯配管272に供給される水と、タンク240内の温水とは、互いに混ざり合うことはない。図10Fの符号241は、給水源から給湯配管272に至る水の流路である。
 加熱水散布装置275は、給湯用熱交換器241aから給湯配管272に供給される加熱水を、ヒートポンプ210の蒸発器214の外表面に散布する装置である。
 なお、タンク240に溜められ、屋内暖房用循環ポンプ251や温水加熱用循環ポンプ225により閉じたループを循環する温水は、ここでは普通の水を用いているが、液体であればよく、必ずしも水(HO)でなくてもよい。屋内暖房用循環ポンプ251や温水加熱用循環ポンプ225の動力を低減でき、循環ルートとなる配管252,231などのサイズを水(HO)よりも小さくすることができる液体があれば、その液体を用いることが望ましい。
 (10-2-2)温水循環暖房システムの概略動作
 温水循環暖房システムでは、温水加熱用循環ポンプ225の作動によりタンク240からヒートポンプ210の放熱器212に流れてくる温水を、ヒートポンプ210の作動により放熱器212から放出される熱を使って加熱する。これにより、ヒートポンプ210からタンク240へは、高温の温水が戻される。一方、タンク240内の温水は、屋内暖房用循環ポンプ251の作動により、居室261,262にある居室内ラジエータ261a,262aやトイレ269にあるトイレ内放熱器269b,269c,269eに送られる。温水の熱は、居室261,262の室内空気やトイレ内放熱器269b,269c,269eの周囲に移動し、居室261,262が暖房され、トイレ269においてもトイレタンク269a内の洗浄水や便座269dなどが暖められる。そして、約10℃~20℃に温度が下がった温水が、再びタンク240に戻されてくる。この温度が下がった温水は、ヒートポンプ210の作動によって再び高温にされる。
 このように、ここでは、配管231で接続されるタンク240とヒートポンプ210とを循環する第1のループと、配管252で接続されるタンク240と居室内ラジエータ261a,262aやトイレ内放熱器269b,269c,269eとを循環する第2のループとが形成されており、それぞれのループを温水が循環する。これにより、ヒートポンプ210の作動によって屋外から集めた熱や圧縮機211の作動により生じた熱が、タンク240に溜められた温水を介して、最終的には居室261,262の室内空気やトイレ269の各部に移動することになる。
 また、タンク240内には給湯用熱交換器241aが配備されており、給水源から取り入れられた水が、給湯用熱交換器241aを通るときにタンク240内の温水から熱を奪って加熱水となり、建物の給湯配管272に流れていく。この給湯配管272に流れた加熱水は、シャワー273や浴槽274などで使用されることになる。さらに、給湯配管272に流れた加熱水の一部は、加熱水散布装置275により、ヒートポンプ210の蒸発器214の外表面に散布される。この散布は、ヒートポンプ210の蒸発器214に霜がつく所定条件のときに、定期的に行われる。
 (10-2-3)コントロールユニット220の詳細構成
 総合コントローラ229は、図10Fおよび図10Iに示すように、ヒートポンプ210に付随する機器およびタンク240に付随する機器を、外部から入力される信号に基づいて制御する。総合コントローラ229は、三方弁221,222や温水加熱用循環ポンプ225とともにケーシングの中に収められ、1つのコントロールユニット220を形成している(図10F参照)。
 三方弁221,222は、タンク240の高さ方向のどの部分から温水を引き出して居室内ラジエータ261a,262aなどへ送り出すかや、トイレ内放熱器269b,269c,269eから戻ってくる低温の温水をタンク240の高さ方向のどの部分へ戻すかを調整するために設けられている。これらの三方弁221,222は、総合コントローラ229からの指示によって作動する。
 総合コントローラ229は、三方弁221,222のほか、ブースターヒータ242、ヒートポンプ制御ユニット219、屋内暖房用循環ポンプ251、温水加熱用循環ポンプ225、温水流量調整弁253~255、デフロスト用バルブ277、などを制御する。また、総合コントローラ229は、暖房温水往き温度センサ252a、暖房温水戻り温度センサ252b、タンク240の温度センサ240a~240e、給水配管温度センサ271a、給湯配管温度センサ272aなどから計測結果の信号を受けるとともに、居室261,262などに配備されたリモコン/サーモスタット291から室内温度や室内設定温度の情報などを受ける。
 (10-2-4)温水循環暖房システムの特徴
 第2実施形態に係る温水循環暖房システムでは、上述した冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかを用いて、ヒートポンプ210の放熱器212によって水を加熱しているため、効率が高い。また、ヒートポンプ210の放熱器212によって加熱される水は、タンク240に溜められ、屋内暖房用循環ポンプ251や温水加熱用循環ポンプ225により閉じたループを循環する。言い換えると、ヒートポンプ210の放熱器212によって加熱される水は、給水源から取り入れられ給湯配管272に供給される水と混ざり合うことはない。このため、ヒートポンプ210の放熱器212による水の加熱によって過度のスケールが発生することがない。
 (10-2-5)第2実施形態の第1の変形例
 第2実施形態の温水循環暖房システムでは、タンク240内に配置された給湯用熱交換器241aによって給水源から取り入れた水を加熱して給湯用の加熱水を作っているが、図10Jに示すように、水熱交換器112によって加熱水を作ってもよい。図10Jに示す温水循環暖房システムでは、第3のループを構成する水循環流路110およびポンプ115を設けて、タンク240の上部から温水を取り出し、水熱交換器112を通した後に、放熱した温水がタンク240の下部に戻るようにしている。水熱交換器112では、タンク240から流れてくる温水の放熱によって、給水源から取り入れた水が加熱され、給湯用の加熱水となって給湯配管272に流れていく。図10Jの符号118は、給水源から給湯配管272に至る水の流路である。
 (10-2-6)第2実施形態の第2の変形例
 第2実施形態の温水循環暖房システムでは、温水加熱用循環ポンプ225によって、タンク240の下部からヒートポンプ210の放熱器212へと温水を流し、ヒートポンプ210の放熱器212から再びタンク240の上部へと温水を戻しているが、図10Kに示すように、放熱器212を無くし、圧縮機211から吐出された高温高圧の混合冷媒をタンク240の中まで導く冷媒循環流路217を設け、タンク240の中に配置した熱交換器216によってタンク240内の水を加熱する構成を採ってもよい。図10Kに示す温水循環暖房システムでは、タンク240内の熱交換器216が、給湯用熱交換器241aの近傍に配置される。冷媒循環流路217を流れてきた高温の混合冷媒は、熱交換器216においてタンク240内の水に放熱し、凝縮して低温高圧の液相の冷媒となり、ヒートポンプ210のユニットへと戻る。ヒートポンプ210のユニットに戻った液冷媒は、膨張弁213で減圧されて蒸発器214に流入し、外気から熱を奪って蒸発する。その後、混合冷媒は、再び圧縮機211において圧縮され、高温高圧となる。熱交換器216によって加熱されたタンク240内の水は、熱交換器216に隣接する給湯用熱交換器241aを流れる水を加熱する。また、熱交換器216から輻射によっても、冷媒の熱が給湯用熱交換器241aへと伝えられる。給水源から取り入れられ給湯用熱交換器241aを流れる水は、タンク240内の水を介して熱交換器216から熱を奪って、また輻射によって熱交換器216から熱を奪って、加熱水となる。
 図10Kに示す温水循環暖房システムでは、タンク240内の水と、給水源から給湯配管272に至る水(流路241を流れる水)とが分けられており、混合冷媒の凝縮器として機能するタンク240内の熱交換器216による水の急激な加熱があったとしても、スケールの発生量が少なくなる。
 (10-3)第3実施形態
 図10Lは、第3実施形態に係る温水製造装置である給湯システム310の概略構成図である。給湯システム310は、ホテル、病院およびスポーツ施設等の大型施設で利用される給湯設備である。図10Lに示されるように、給湯システム310は、主として、受水槽320と、熱源ユニット330と、貯湯タンク340と、湯利用部350と、制御部360と、給水ライン312と、出湯ライン314と、湯循環路316とを備える。給水ライン312は、受水槽320と熱源ユニット330とを接続する管である。出湯ライン314は、熱源ユニット330と貯湯タンク340とを接続する管である。湯循環路316は、貯湯タンク340と湯利用部350とを接続する管である。図10Lにおいて、給水ライン312、出湯ライン314および湯循環路316に沿った矢印は、水または湯の流れる方向を表す。次に、受水槽320、熱源ユニット330、貯湯タンク340、湯利用部350および制御部360について、それぞれ説明する。
 (10-3-1)受水槽
 受水槽320は、給湯システム310によって使用される水を貯留するための槽である。受水槽320は、上水道等に接続される。受水槽320は、給水ライン312を介して、熱源ユニット330に水を供給する。受水槽320の給水圧力は、40kPa~500kPaである。
 (10-3-2)熱源ユニット
 熱源ユニット330は、屋外に設置される。熱源ユニット330は、受水槽320から給水ライン312を介して水の供給を受ける。熱源ユニット330は、給水ライン312から取り入れた水を加熱する。熱源ユニット330は、加熱された水である湯を、出湯ライン314を介して貯湯タンク340に送る。
 図10Mは、熱源ユニット330の概略構成図である。図10Nは、給湯システム310のブロック図である。図10Mおよび図10Nに示されるように、熱源ユニット330は、主として、水流路331と、給水ポンプ332と、第2熱交換器333と、冷媒循環流路334と、圧縮機335と、膨張弁336と、第1熱交換器337と、出湯温度センサ338とを有している。水流路331は、給水ポンプ332および第2熱交換器333に接続されている。冷媒循環流路334は、圧縮機335、膨張弁336および第1熱交換器337に接続されている。図10Mにおいて、水流路331および冷媒循環流路334に沿った矢印は、水または冷媒の流れる方向を表す。次に、熱源ユニット330の各構成要素について説明する。
 (10-3-2-1)水流路
 水流路331は、給水ライン312から取り入れた水が流れる管である。水流路331は、第1水配管331aと、第2水配管331bと、第3水配管331cとから構成される。第1水配管331aは、給水ライン312に接続され、かつ、給水ポンプ332の吸入口に接続される。第2水配管331bは、給水ポンプ332の吐出口に接続され、かつ、第2熱交換器333の水管333aに接続される。第3水配管331cは、第2熱交換器333の水管333aに接続され、かつ、出湯ライン314に接続される。第3水配管331cは、出湯ライン314との接続部の近傍において、第3水配管331cを流れる水の温度を測定するための出湯温度センサ338が取り付けられている。
 (10-3-2-2)給湯ポンプ
 給水ポンプ332は、容量可変のポンプであり、水流路331を流れる水の量を調節することができる。水流路331を流れる水は、給水ライン312から供給され、給水ポンプ332および第2熱交換器333を通過して、出湯ライン314に供給される。
 (10-3-2-3)第2熱交換器
 第2熱交換器333は、水流路331を流れる水が通過する水管333aと、冷媒循環流路334を流れる冷媒が通過する冷媒管333bとを有する。第2熱交換器333は、例えば、水管333aの外周に冷媒管333bが螺旋状に巻きつけられ、かつ、水管333aの内部に溝が形成されている構成を有するトルネード式の熱交換器である。第2熱交換器333では、水管333aを流れる低温の水と、冷媒管333bを流れる高温高圧の冷媒との間で熱交換が行われる。第2熱交換器333の水管333aを流れる低温の水は、第2熱交換器333の冷媒管333bを流れる高温の冷媒と熱交換が行われて加熱される。これにより、給水ライン312から供給された水は、第2熱交換器333で加熱されて、湯として出湯ライン314に供給される。
 (10-3-2-4)冷媒循環流路
 冷媒循環流路334は、第2熱交換器333において水と熱交換される冷媒が循環する管である。本実施形態では、冷媒循環流路334には、蒸気圧縮式の冷凍サイクルを行うための冷媒が充填されている。当該冷媒は、(1)で説明したいずれかの冷媒であり、上述した冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかを用いることができる。
 図10Mに示されるように、冷媒循環流路334は、圧縮機335の吐出口と第2熱交換器333の冷媒管333bとを連結し、第2熱交換器333の冷媒管333bと膨張弁336とを連結し、膨張弁336と第1熱交換器337とを連結し、第1熱交換器337と圧縮機335の吸入口とを連結する。第2熱交換器333は、冷凍サイクルにおける凝縮器としての機能を有する。第1熱交換器337は、冷凍サイクルにおける蒸発器としての機能を有する。
 (10-3-2-5)圧縮機
 圧縮機335は、容量可変のインバータ圧縮機である。圧縮機335は、冷媒循環流路334を流れる低圧のガス冷媒を吸入して圧縮する。圧縮機335において圧縮された高温高圧のガス冷媒は、圧縮機335から吐出されて、第2熱交換器333の冷媒管333bに送られる。第2熱交換器333では、第2熱交換器333の冷媒管333bを流れる高温高圧のガス冷媒は、第2熱交換器333の水管333aを流れる低温の水と熱交換する。これにより、第2熱交換器333において、高温高圧のガス冷媒は、凝縮して高圧の液冷媒となる。
 (10-3-2-6)膨張弁
 膨張弁336は、冷媒循環流路334を流れる冷媒の圧力および流量を調節するための電動弁である。第2熱交換器333の冷媒管333bで熱交換された高圧の液冷媒は、膨張弁336を通過することで減圧され、低圧の気液二相状態の冷媒となる。
 (10-3-2-7)第1熱交換器
 第1熱交換器337は、例えば、プレートフィンコイル熱交換器である。第1熱交換器337の近傍には、ファン337aが設置されている。ファン337aは、第1熱交換器337に対して外気を送風して、第1熱交換器337において冷媒と熱交換された外気を排出する。第1熱交換器337では、膨張弁336で減圧された低圧の気液二相状態の冷媒が、ファン337aによって供給される外気との熱交換により蒸発して、低圧のガス冷媒となる。第1熱交換器337を通過した低圧のガス冷媒は、圧縮機335に送られる。
 (10-3-2-8)出湯温度センサ
 出湯温度センサ338は、水流路331の第3水配管331cと出湯ライン314との接続部の近傍において、第3水配管331cに取り付けられる温度センサである。出湯温度センサ338は、第2熱交換器333において加熱され、第3水配管331cを流れる水の温度を測定する。すなわち、出湯温度センサ338は、熱源ユニット330によって供給される湯の温度を測定する。
 (10-3-3)貯湯タンク
 貯湯タンク340は、熱源ユニット330から出湯ライン314を介して供給される湯を貯めるための開放型の貯湯タンクである。貯湯タンク340は、例えば、ステンレス製のタンク、および、FRP製のタンクである。貯湯タンク340に貯められた湯は、湯循環路316を介して湯利用部350に供給される。湯循環路316は、図10Lに示されるように、第1湯配管316aと、第2湯配管316bとから構成される。貯湯タンク340は、内部に貯められた湯を第1湯配管316aに供給し、第1湯配管316aを介して湯利用部350に湯を送る。湯利用部350で利用されなかった湯は、第2湯配管316bを介して貯湯タンク340に戻される。すなわち、貯湯タンク340に貯められた湯の一部は、第1湯配管316aおよび第2湯配管316bを流れて、貯湯タンク340に再び戻される。
 なお、図10Lに示されるように、第1湯配管316aには、給湯ポンプ351が取り付けられている。給湯ポンプ351は、貯湯タンク340に貯められた湯を湯利用部350に送るための加圧ポンプである。給湯ポンプ351は、容量可変であり、湯利用部350に送られる湯の量を調節することができる。
 図10Nに示されるように、貯湯タンク340は、主として、保温ヒータ341と、水圧センサ342と、フロートスイッチ343と、貯湯温度センサ344とを有している。次に、貯湯タンク340の各構成要素について説明する。
 (10-3-3-1)保温ヒータ
 保温ヒータ341は、貯湯タンク340に貯められている湯の温度を、湯利用部350において湯として利用可能な温度以上に維持するために、貯湯タンク340の内部に取り付けられるヒータである。貯湯タンク340は、保温ヒータ341を用いて、内部に貯められた湯の保温運転を行う。
 (10-3-3-2)水圧センサ
 水圧センサ342は、貯湯タンク340に貯められている湯の残量を測定するためのセンサである。水圧センサ342は、貯湯タンク340内部の下部に取り付けられ、貯湯タンク340内部の湯による水圧を検出することで、貯湯タンク340に貯められている湯の残量および水位を算出する。水圧センサ342は、例えば、貯湯タンク340に貯められている湯の残量が、予め設定されている目標残湯量未満であるか否かを検出することができる。
 (10-3-3-3)フロートスイッチ
 フロートスイッチ343は、貯湯タンク340に貯められている湯の水位に応じて上下するフロートを用いて、貯湯タンク340に貯められている湯の残量を補助的に検出する。
 (10-3-3-4)貯湯温度センサ
 貯湯温度センサ344は、湯循環路316の第1湯配管316aと、貯湯タンク340との接続部の近傍において、貯湯タンク340の内部に設置されている温度センサである。貯湯温度センサ344は、貯湯タンク340に貯められている湯の温度を測定する。
 (10-3-4)湯利用部
 湯利用部350は、台所、シャワーおよびプール等、貯湯タンク340に貯められている湯が利用される場所である。貯湯タンク340に貯められている湯は、給湯ポンプ351によって、湯循環路316の第1湯配管316aを介して、湯利用部350に供給される。湯利用部350では、第1湯配管316aを介して供給された湯の全てが利用されるとは限らない。湯利用部350で利用されなかった湯は、湯循環路316の第2湯配管316bを介して、貯湯タンク340に戻される。
 (10-3-5)制御部
 制御部360は、図10Nに示されるように、給湯システム310の構成要素に接続されている。具体的には、制御部360は、給水ポンプ332、圧縮機335、膨張弁336、ファン337a、出湯温度センサ338、保温ヒータ341、水圧センサ342、フロートスイッチ343、貯湯温度センサ344および給湯ポンプ351に接続されている。制御部360は、例えば、熱源ユニット330内部の電装品ユニット(図示せず)に設置されている。
 制御部360は、給湯システム310の構成要素を制御するためのコンピュータである。例えば、制御部360は、給水ポンプ332の回転数、圧縮機335の運転周波数、膨張弁336の開度、ファン337aの回転数、保温ヒータ341の消費電力および給湯ポンプ351の回転数を制御し、出湯温度センサ338、水圧センサ342、フロートスイッチ343および貯湯温度センサ344の測定値を取得する。
 また、図10Nに示されるように、制御部360は、さらに、リモコン370と接続されている。リモコン370は、給湯システム310を制御するための機器である。
 (10-3-6)給湯システムの特徴
 第3実施形態に係る給湯システムでは、上述した冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかを用いて、熱源ユニット330の第2熱交換器333によって水を加熱しているため、効率が高い。
 (11)第11グループの技術の実施形態
 (11-1)第1実施形態
 第1実施形態では、冷凍サイクル装置の一例である空気調和装置10について説明する。冷凍サイクル装置とは、冷凍サイクルで運転される全ての装置をいい、空気調和機、除湿機、ヒートポンプ式の給湯装置、冷蔵庫、冷凍用の冷凍装置、製造プロセス用冷却装置などを包含する。
 この空気調和装置10は、室外機(図示省略)と室内機(図示省略)とを備えたセパレートタイプの空気調和装置であり、冷房運転と暖房運転を切り換え可能に構成されている。
 この空気調和装置10は、図11Aに示すように、蒸気圧縮式冷凍サイクルを行う冷媒回路20を備えている。冷媒回路20は、室外機に搭載された室外回路20aと、室内機に搭載された室内回路20bとを備えている。室外回路20aには、圧縮機21と室外熱交換器23と室外膨張弁24と四方弁22とブリッジ回路31と気液分離器25とが接続されている。室外熱交換器23は熱源側熱交換器を構成している。一方、室内回路20bには、室内熱交換器27と室内膨張弁26とが接続されている。室内熱交換器27は利用側熱交換器を構成している。圧縮機21の吐出管45は、四方弁22の第1ポートP1に接続されている。圧縮機21の吸入管46は、四方弁22の第2ポートP2に接続されている。
 気液分離器25には、流入管36と流出管37とインジェクション管38とが接続されている。流入管36は、気液分離器25の内部空間の上部に開口している。流出管37は、気液分離器25の内部空間の下部に開口している。インジェクション管38は、気液分離器25の内部空間の上部に開口している。気液分離器25では、流入管36から流入した冷媒が飽和液と飽和ガスとに分離され、飽和液が流出管37から流出し、飽和ガスがインジェクション管38から流出する。流入管36及び流出管37は、ブリッジ回路31にそれぞれ接続されている。インジェクション管38は、圧縮機21の中間接続管47に接続されている。
 一方、インジェクション管38から流出した飽和ガス状態の冷媒は、中間ポートを通じて圧縮機構32の中間圧の圧縮室に注入される。本実施形態では、流入管36と流出管37とインジェクション管38と気液分離器25とが、冷却動作中に室外熱交換器23から流出して冷凍サイクルの中間圧に減圧された冷媒のうち、飽和液状態の冷媒を室内熱交換器27へ供給して、飽和ガス状態の冷媒を圧縮機21へ供給するためのインジェクション回路15を構成する。
 ブリッジ回路31は、第1逆止弁CV1、第2逆止弁CV2、第3逆止弁CV3及び第4逆止弁CV4をブリッジ状に接続した回路である。ブリッジ回路31では、第1逆止弁CV1の流入側及び第2逆止弁CV2の流入側に位置する接続端が、流出管37に接続されている。第2逆止弁CV2の流出側及び第3逆止弁CV3の流入側に位置する接続端が、室内熱交換器27に接続されている。この接続端と室内熱交換器27とを繋ぐ冷媒配管には、開度可変の室内膨張弁26が設けられている。第3逆止弁CV3の流出側及び第4逆止弁CV4の流出側に位置する接続端が、流入管36に接続されている。第1逆止弁CV1の流出側及び第4逆止弁CV4の流入側に位置する接続端が、室外熱交換器23に接続されている。
 冷房運転では、四方弁22が、第1ポートP1と第3ポートP3が互いに連通して第2ポートP2と第4ポートP4が互いに連通する状態(図11Aに実線で示す状態)に設定される。そして、この状態で圧縮機21の運転が行われると、冷媒回路20では室外熱交換器23が凝縮器として動作して室内熱交換器27が蒸発器として動作する冷却動作が行われる。
 暖房運転では、四方弁22が第1ポートP1と第4ポートP4が互いに連通して第2ポートP2と第3ポートP3が互いに連通する状態(図11Aに破線で示す状態)に設定される。そして、この状態で圧縮機21の運転が行われると、冷媒回路20では室外熱交換器23が蒸発器として動作して室内熱交換器27が凝縮器として動作する加熱動作が行われる。
 室外熱交換器23は、冷媒の流路となるマイクロチャネル13が形成されたマイクロチャネル熱交換器(マイクロ熱交換器とも言う。)により構成されている。マイクロチャネル13とは、微細加工技術などを使って加工した微細な流路(流路面積が極めて小さい流路)である。一般に、表面張力の影響が現れる数ミリ径以下の流路のマイクロチャネル13を有する熱交換器が、マイクロチャネル熱交換器と呼ばれる。
 具体的に、室外熱交換器23は、図11Bに示すように、複数の扁平管16と、一対のヘッダ17,18とを備えている。一対のヘッダ17,18は、筒状の密閉容器により構成されている。各扁平管16には、図11Cに示すように、複数のマイクロチャネル13が形成されている。複数のマイクロチャネル13は、扁平管16の幅方向に所定のピッチで形成されている。各扁平管16は、マイクロチャネル13の一端が一方のヘッダ17内に開口し、マイクロチャネル13の他端が他方のヘッダ18内に開口するように、一対のヘッダ17,18に固定されている。また、扁平管16の間には、波状の金属板19が設けられている。
 室外熱交換器23の近傍には、室外ファン28が設けられている。室外熱交換器23では、室外ファン28により供給された室外空気が、扁平管16と金属板19により形成される隙間を流れる。室外空気は、扁平管16の幅方向に流れる。
 室外熱交換器23では、一方のヘッダ17が四方弁22の第3ポートP3に接続され、他方のヘッダ18がブリッジ回路31に接続されている。室外熱交換器23では、一方のヘッダ17,18に流入した冷媒が複数のマイクロチャネル13に分配され、各マイクロチャネル13を通過した冷媒が他方のヘッダ17,18で合流する。各マイクロチャネル13は、冷媒が流れる冷媒流路となる。室外熱交換器23では、各マイクロチャネル13を流れる冷媒が室外空気と熱交換を行う。
 室内熱交換器27は、マイクロチャネル熱交換器により構成されている。室内熱交換器27は室外熱交換器23と同じ構造であるため、室内熱交換器27の構造の説明は省略する。室内熱交換器27の近傍には、室内ファン29が設けられている。室内熱交換器27では、各マイクロチャネル13を流れる冷媒が、室内ファン29により供給された室内空気と熱交換を行う。室内熱交換器27では、一方のヘッダ17が四方弁22の第4ポートP4に接続され、他方のヘッダ18がブリッジ回路31に接続されている。
 本実施形態では、室外熱交換器23及び室内熱交換器27が、マイクロチャネル熱交換器により構成されている。マイクロチャネル熱交換器内の容積は、同等の性能の他の構造型式の熱交換器(例えば、クロスフィン式のフィン・アンド・チューブ型熱交換器)に比べて小さくなる。このため、他の構造型式の熱交換器を使用した冷凍サイクル装置に比べて、冷媒回路20内の総容積を小さくすることが可能である。
 耐圧性、耐腐食性を鑑みて「0.9mm≦扁平管厚み(図11Cに示されている扁平管16の縦高さh16)≦4.0mm」、熱交換能力を鑑みて「8.0mm≦扁平管厚み(図11Cに示されている扁平管16の横幅W16)≦25.0mm」、とすることが好ましい。
 本実施形態では、冷媒回路20には、蒸気圧縮式の冷凍サイクルを行うための冷媒が充填されている。当該冷媒は、(1)で説明したいずれかの冷媒であり、上述した冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかを用いることができる。
 (11-2)第2実施形態
 図11Dに示されているように、 室外熱交換器125は、熱交換部195とヘッダ集合管191,192とを有する。熱交換部195は、複数の扁平多孔管193および複数の差込フィン194を有する。扁平多孔管193は、扁平管の一例である。室外熱交換器125は、冷凍サイクル装置の冷媒回路に含まれる。冷凍サイクル装置の冷媒回路は、圧縮機と、蒸発器と、凝縮器と、膨張弁とを備える。暖房運転では、冷凍サイクル装置の冷媒回路において、室外熱交換器125が蒸発器として機能する。冷房運転では、冷凍サイクル装置の冷媒回路において、室外熱交換器125が凝縮器として機能する。
 図11Eは、扁平多孔管193および差込フィン194を鉛直方向に切断したときの熱交換部195の部分拡大図である。扁平多孔管193は伝熱管として機能し、差込フィン194と室外空気との間で移動する熱を、内部を流れる冷媒に伝達する。
 扁平多孔管193は、伝熱面となる側面部と、冷媒が流れる複数の内部流路193aとを有している。扁平多孔管193は、隣り合う扁平多孔管193と側面部を上下に対向させた状態で、間隔をあけて複数段配列される。差込フィン194は、図11Eに示す形状の複数のフィンであり、扁平多孔管193に接続している。両ヘッダ集合管191,192の間に配列された複数段の扁平多孔管193に対して差込フィン194を差し込めるように、差込フィン194には、水平に細長く延びる複数の切り欠き194aが形成されている。これらの差込フィン194の切り欠き194aの形状は、図11Eに示すように、扁平多孔管193の断面の外形にほぼ一致している。
 ここでは、差込フィン194の連通部分194bが風下に配置される場合について説明した。ここで連通部分194bは、差込フィン194の中で、切り欠き194aがなく、直線的に繋がっている部分である。しかし、室外熱交換器125において、差込フィン194の連通部分194bが風上に配置されてもよい。連通部分194bが風上に配置されている場合には、差込フィン194で先に除湿された後に、扁平多孔管193に風が当たる。
 ここでは、室外熱交換器125に、図11Dに示されている熱交換器を用いる場合について説明したが、図11Dに示されている熱交換器を室内熱交換器に用いてもよい。差込フィンが室内熱交換器に用いられる場合において、差込フィンの連通部分を風下に配置することができる。このように、室内熱交換器において、差込フィンの連通部分が風下に配置されている場合には、水飛びを防止することができる。
 耐圧性、耐腐食性を鑑みて「0.9mm≦扁平管厚み(図11Eに示されている扁平多孔管193の縦高さh193)≦4.0mm」、熱交換能力を鑑みて「8.0mm≦扁平管厚み(図11Eに示されている扁平多孔管193の横幅W193)≦25.0mm」、とすることが好ましい。
 本実施形態では、室外熱交換器125を含む冷媒回路には、蒸気圧縮式の冷凍サイクルを行うための冷媒が充填されている。当該冷媒は、(1)で説明したいずれかの冷媒であり、上述した冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかを用いることができる。
 (11-3)第3実施形態
 図11Iに示されている複数の平行に配置されたプレートフィン211の貫通穴211aに内面溝付管201を挿入する。次に、この拡管用工具(図示せず)を内面溝付管201内に圧入する。これによって、内面溝付管201が拡管して、内面溝付管201とプレートフィン211との間のクリアランスがなくなり、内面溝付管201とプレートフィン211との密着性が高まる。次に、拡管用工具を内面溝付管201から取り出す。これによって、内面溝付管201とプレートフィン211とが隙間なく接合した熱交換器が製造される。
 内面溝付管201は、空気調和機および冷凍空調機器などの冷凍サイクル装置のプレートフィンチューブ型熱交換器に使用される。プレートフィンチューブ型熱交換器は、冷凍サイクル装置の冷媒回路に含まれる。冷凍サイクル装置の冷媒回路は、圧縮機と、蒸発器と、凝縮器と、膨張弁とを備える。暖房運転では、冷凍サイクル装置の冷媒回路において、プレートフィンチューブ型熱交換器が蒸発器として機能する。冷房運転では、冷凍サイクル装置の冷媒回路において、プレートフィンチューブ型熱交換器が凝縮器として機能する。
 内面溝付管201は、管の管外径D201は、4mm以上10mm以下のものが使用される。また、内面溝付管201の素管の材質としては、アルミニウムまたはアルミニウム合金が使用される。なお、内面溝付管201の内面溝形状の形成方法は、転造加工法、圧延法などがあるが、特に限定されるものではない。
 そして、内面溝付管201は、図11F、図11G及び図11Hに示すように、その内面に管軸方向に傾斜する方向に形成された多数の溝202と、この溝202間に形成された管内ひれ203とを有する構成を備え、溝202の溝数は30以上100以下、溝202と管軸とがなす溝リード角θ201は10度以上50度以下、内面溝付管201の管軸直交断面(I-I線で切断)における内面溝付管201の底肉厚T201は0.2mm以上1.0mm以下、前記管内ひれのひれ高さh201は0.1mm以上であって底肉厚T201の1.2倍以下、ひれ山頂角δ201は5度以上45度以下、ひれ根元半径r201はひれ高さh201の20%以上50%以下である。
 次に、内面溝付管201の前記内面溝形状における数値限定について説明する。
 (11-3-1)溝数:30以上100以下
 溝数は、後記する内面溝形状の各諸元と組み合わせて、伝熱性能および単重等を考慮して、適宜決定されるものであるが、30以上100以下が好ましい。溝数が30未満であると溝成形性が悪くなりやすく、また、溝数が100を超えると溝付工具(溝付プラグ)の欠損が生じやすい。いずれも、内面溝付管201の量産性が低下しやすくなる。
 さらに、内面溝付管201を冷凍サイクル装置の冷媒回路に含まれる室外熱交換器及び室内熱交換器に用いる場合、室外熱交換器の内面溝付管201の溝数>室内熱交換器の内面溝付管201の溝数、とすることが好ましい。そうすることで、内面溝付管201の管内圧力損失を低減させかつ伝熱性能を向上させることができる。
 (11-3-2)溝リード角θ201:10度以上50度以下
 溝リード角θ201は、10度以上50度以下が好ましい。溝リード角θ201が10度未満であると、内面溝付管201(熱交換器)の伝熱性能が低下しやすい。また、溝リード角θ201が50度を超えると、内面溝付管201の量産性の確保および拡管による管内ひれ203の変形を抑制しにくくなる。
 さらに、内面溝付管201を冷凍サイクル装置の冷媒回路に含まれる室外熱交換器及び室内熱交換器に用いる場合、室外熱交換器の内面溝付管201の溝リード角<室内熱交換器の内面溝付管201の溝数、とすることが好ましい。そうすることで、内面溝付管201の管内圧力損失を低減させかつ伝熱性能を向上させることができる。
 (11-3-3)底肉厚T201:0.2mm以上1.0mm以下
 底肉厚T201は0.2mm以上1.0mm以下が好ましい。底肉厚T201が前記範囲外であると、内面溝付管201の製造がしにくくなる。また、底肉厚T201が0.2mm未満であると、内面溝付管201の強度が低下しやすく、耐圧力強度の保持が困難になりやすい。
 (11-3-4)ひれ高さh201:0.1mm以上(底肉厚T201×1.2)mm以下
 ひれ高さh201は、0.1mm以上(底肉厚T201×1.2)mm以下が好ましい。ひれ高さh201が0.1mm未満であると、内面溝付管201(熱交換器)の伝熱性能が低下しやすい。また、ひれ高さh201が(底肉厚T201×1.2)mmを超えると、内面溝付管201の量産性の確保および拡管による管内ひれ203の極度の変形を抑制しにくくなる。
 さらに、内面溝付管201を冷凍サイクル装置の冷媒回路に含まれる室外熱交換器及び室内熱交換器に用いる場合、室外熱交換器の内面溝付管201のひれ高さh201>室内熱交換器の内面溝付管201のひれ高さh201、とすることが好ましい。そうすることで、内面溝付管201の管内圧力損失を低減させかつ、室外熱交換器の伝熱性能をより向上させることができる。
 (11-3-5)山頂角δ201:5度以上45度以下
 山頂角δ201は、5度以上45度以下が好ましい。山頂角δ201が5度未満であると、内面溝付管201の量産性の確保および拡管による管内ひれ203の変形を抑制しにくくなる。また、山頂角δ201が45度を超えると、内面溝付管201(熱交換器)の伝熱性能の維持および内面溝付管201の単重が過大となりやすい。
 (11-3-6)ひれ根元半径r201:ひれ高さh201の20%以上50%以下
 ひれ根元半径r201は、ひれ高さh201の20%以上50%以下が好ましい。ひれ根元半径r201がひれ高さh201の20%未満であると、拡管によるひれ傾きが過大となりやすく、かつ、量産性が低下しやすい。また、ひれ根元半径r201がひれ高さh201の50%を超えると、冷媒気液界面の有効伝熱面積が減少しやすく、内面溝付管201(熱交換器)の伝熱性能が低下しやすい。
 本実施形態では、内面溝付管201が使用されるプレートフィンチューブ型熱交換器を含む冷媒回路には、蒸気圧縮式の冷凍サイクルを行うための冷媒が充填されている。当該冷媒は、(1)で説明したいずれかの冷媒であり、上述した冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかを用いることができる。
 (11-4)特徴
 第1実施形態の冷凍サイクル装置である空気調和装置10、第2実施形態の冷凍サイクル装置及び第3実施形態の冷凍サイクル装置は、可燃性の冷媒(冷媒X、冷媒Y、冷媒A、冷媒B、冷媒C、冷媒D、あるいは、冷媒E)と、冷媒を蒸発させる蒸発器と、冷媒を凝縮させる凝縮器とを備えている。これら冷凍サイクル装置では、冷媒が蒸発器と凝縮器とを循環して冷凍サイクルを繰り返すように、これら冷凍サイクル装置は構成されている。
 第1実施形態では、室外熱交換器23が、蒸発器と凝縮器のうちの一方であり、室内熱交換器27が、蒸発器と凝縮器のうちの他方であって、アルミニウム製またはアルミニウム合金製の複数のフィンである金属板19及び、アルミニウム製またはアルミニウム合金製の複数の伝熱管である扁平管16を有している。室外熱交換器23と室内熱交換器27は、扁平管16の内部を流れる冷媒と金属板19に沿って流れる流体である空気に熱交換させる熱交換器である。扁平管16は、図11Cに示されている平面部16aを有している。室外熱交換器23及び室内熱交換器27では、互いに隣り合う扁平管16の平面部16aが、互いに向かい合うように配置されている。複数の金属板19の各々が、波形に折り曲げられて、互いに隣り合う扁平管16の平面部16aの間に配置されている。各金属板19は、平面部16aに熱を伝えられるように、平面部16aに接続されている。
 第2実施形態では、室外熱交換器125が、蒸発器と凝縮器のうちの一方であって、アルミニウム製またはアルミニウム合金製の複数の差込フィン194及び、アルミニウム製またはアルミニウム合金製の複数の伝熱管である扁平多孔管193を有している。室外熱交換器125は、扁平多孔管193の内部を流れる冷媒と差込フィン194に沿って流れる流体である空気に熱交換させる熱交換器である。扁平多孔管193は、図11Eに示されている平面部193bを有している。室外熱交換器125では、互いに隣り合う扁平多孔管193の平面部193bが、互いに向かい合うように配置されている。複数の差込フィン194の各々が、複数の切り欠き194aを有している。複数の扁平多孔管193が、複数の差込フィン194の複数の切り欠き194aに差し込まれて複数の差込フィン194に熱を伝えらるように接続されている。
 第3実施形態では、アルミニウム製またはアルミニウム合金製の複数のプレートフィン211及び、アルミニウム製またはアルミニウム合金製の複数の伝熱管である内面溝付管201を有している熱交換器が、蒸発器と凝縮器のうちの一方になる。この熱交換器は、内面溝付管201の内部を流れる冷媒とプレートフィン211に沿って流れる流体である空気に熱交換させる熱交換器である。複数のプレートフィン211の各々が、複数の貫通穴211aを有している。熱交換器において、複数の内面溝付管201が、複数のプレートフィン211の複数の貫通穴211aを貫通している。これら複数の内面溝付管201の外周が、複数の貫通穴211aの内周に密着している。
 上記の冷凍サイクル装置は、熱交換器に、アルミニウム製またはアルミニウム合金製の複数のフィンである金属板19、差込フィン194またはプレートフィン211、及び、アルミニウム製またはアルミニウム合金製の複数の伝熱管である扁平管16、扁平多孔管193または内面溝付管201を有している。冷凍サイクル装置がこのような構成を有していることから、例えば伝熱管に銅パイプを使う場合に比べて、熱交換器の材料費を削減することができる。
 (12)第12グループの技術の実施形態
 (12-1)第1実施形態
 図12Aは、第1実施形態に係る空気調和装置1の配置を示す模式図である。図12Bは、空気調和装置1の概略構成図である。図12A及び図12Bにおいて、空気調和装置1は、住宅やビルの空調に使用される装置である。
 ここでは、空気調和装置1は、2階建て構造の住宅100に設置されている。住宅100には、1階に部屋101、102が設けられ、2階に部屋103、104が設けられている。また、住宅100には、地下室105が設けられている。
 空気調和装置1は、いわゆるダクト式の空調システムである。空気調和装置1は、利用側ユニットである室内機2と、熱源側ユニットである室外機3と、冷媒連絡管306、307と、室内機2で空調された空気を部屋101~104に送る第1ダクト209とを有している。第1ダクト209は、部屋101~104に分岐されて、各部屋101~104の通風口101a~104aに接続されている。なお、説明の便宜上、室内機2と、室外機3と、冷媒連絡管306、307とを一体として、空調機器80という。利用側ユニットである室内機2と熱源側ユニットである室外機3とは、互いに別体である。
 図12Bにおいて、室内機2、室外機3、及び冷媒連絡管306、307は、蒸気圧縮式の冷凍サイクルによって室内の暖房を行うヒートポンプ部360を構成している。また、室内機2の一部であるガスファーネスユニット205は、ヒートポンプ部360とは別の熱源(ここでは、ガス燃焼による熱)によって室内の暖房を行う別熱源部270を構成している。
 このように、室内機2は、ヒートポンプ部360を構成するもの以外に、別熱源部270を構成するガスファーネスユニット205を有している。また、室内機2は、ケーシング230内に部屋101~104内の空気を取り込んで、ヒートポンプ部360や別熱源部270(ガスファーネスユニット205)で空調された空気を部屋101~104内に供給するための室内ファン240も有している。また、室内機2には、ケーシング230の空気出口231における空気の温度である吹出空気温度Trdを検出する吹出空気温度センサ233と、ケーシング230の空気入口232における空気の温度である室内温度Trを検出する室内温度センサ234とが設けられている。尚、室内温度センサ234は、室内機2ではなく、部屋101~104内に設けられていてもよい。ケーシング230の空気入口232には、第2ダクト210が接続されている。利用側ユニットである室内機2は、ケーシング230及びそれらの中に収納されている機器を有している。室内機2は、室内から取り入れた第1空気である室内空気F1を、利用側熱交換器である室内熱交換器242に導くように構成されている。
 (12-1-1)ヒートポンプ部360
 空調機器80のヒートポンプ部360では、冷媒回路320は、室内機2と、室外機3とが冷媒連絡管306、307を介して接続されることによって構成されている。冷媒連絡管306、307は、空調機器80を設置する際に、現地にて施工される冷媒管である。
 室内機2は、住宅100の地下室105に設置されている。なお、室内機2の設置場所は地下室105に限定されるものではなく、他の屋内に配置されてもよい。室内機2は、冷凍サイクルにおける冷媒の放熱によって空気を加熱する冷媒放熱器としての室内熱交換器242と、室内膨張弁241とを有している。
 室内膨張弁241は、冷房運転時、冷媒回路320を循環する冷媒を減圧して室内熱交換器242に流す。ここで、室内膨張弁241は、室内熱交換器242の液側に接続された電動膨張弁である。
 室内熱交換器242は、ケーシング230に形成された空気入口232から空気出口231までの通風路内の最も風下側に配置されている。
 室外機3は、住宅100の屋外に設置されている。室外機3は、圧縮機321と、室外熱交換器323と、室外膨張弁324と、四方弁328とを有している。圧縮機321は、ケーシング内に図示しない圧縮要素及び圧縮要素を回転駆動する圧縮機モータ322が収容された密閉型圧縮機である。
 圧縮機モータ322は、図示しないインバータ装置を介して電力が供給されるようになっており、インバータ装置の周波数(すなわち、回転数)を変化させることによって、運転容量を可変することが可能になっている。
 室外熱交換器323は、室外空気によって冷凍サイクルにおける冷媒を蒸発させる冷媒蒸発器として機能する熱交換器である。室外熱交換器323の近傍には、室外熱交換器323に室外空気を送るための室外ファン325が設けられている。室外ファン325は、室外ファンモータ326によって回転駆動されるようになっている。
 室外膨張弁324は、暖房運転時、冷媒回路320を循環する冷媒を減圧して室外熱交換器323に流す。ここで、室外膨張弁324は、室外熱交換器323の液側に接続された電動膨張弁である。また、室外機3には、室外機3が配置される住宅100の屋外の室外空気の温度、すなわち、外気温度Taを検出する室外温度センサ327が設けられている。
 本実施形態では、冷媒回路320には、蒸気圧縮式の冷凍サイクルを行うための冷媒が充填されている。当該冷媒は、(1)で説明したいずれかの冷媒であり、上述した冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかを用いることができる。
 四方弁328は、冷媒の流れの方向を切り換える弁である。冷房運転時、四方弁328は圧縮機321の吐出側と室外熱交換器323のガス側とを接続するとともに圧縮機321の吸入側とガス冷媒連絡管307とを接続する(冷房運転状態:図12Bの四方弁328の実線を参照)。その結果、室外熱交換器323は冷媒の凝縮器として、室内熱交換器242は冷媒の蒸発器として機能する。
 暖房運転時、四方弁328は、圧縮機321の吐出側とガス冷媒連絡管307とを接続するとともに圧縮機321の吸入側と室外熱交換器323のガス側とを接続する(暖房運転状態:図12Bの四方弁328の破線を参照)。その結果、室内熱交換器242は冷媒の凝縮器として、室外熱交換器323は冷媒の蒸発器として機能する。
 (12-1-2)空気調和装置1の重要な構成の概要
 ヒートポンプ暖房運転が行われているとき、空気調和装置1では、冷媒(冷媒X、冷媒Y、冷媒A、冷媒B、冷媒C、冷媒D、あるいは、冷媒E)が、圧縮機321と利用側熱交換器である室内熱交換器242と熱源側熱交換器である室外熱交換器323とを循環して冷凍サイクルを繰り返す。室内熱交換器242が、第1空気である室内空気F1と冷媒とに熱交換させる。室内空気F1が、室内ファン240によって室内熱交換器242に供給される。室内熱交換器242において加熱された室内空気F3(第1空気)は、第1ダクト209を通じて室内機2から各部屋101~104に送られて、暖房が行われる。室外熱交換器323が、第2空気である室外空気と冷媒に熱交換させる。ケーシング230は、第1ダクト209に接続され且つ室内熱交換器242を収納している利用側空間SP2を有し、室内熱交換器242で冷媒と熱交換された後の室内空気F3を第1ダクト209に送出するように構成されている。
 別熱源暖房運転が行われているとき、ファーネス熱交換器255に送られた高温の燃焼ガスは、ファーネス熱交換器255において、室内ファン240によって供給される室内空気F1と熱交換を行って冷却され、低温の燃焼ガスとなる。この低温の燃焼ガスは、排気管257を経由してガスファーネスユニット205から排出される。一方、ファーネス熱交換器255において加熱された室内空気F2は、第1ダクト209を通じて室内機2から各部屋101~104に送られて、暖房が行われる。
 (12-1-3)別熱源部270
 別熱源部270は、空調機器80の室内機2の一部であるガスファーネスユニット205によって構成されている。
 ガスファーネスユニット205は、住宅100の地下室105に設置されたケーシング230内に設けられている。ガスファーネスユニット205は、ガス燃焼式暖房装置であり、燃料ガス弁251と、ファーネスファン252と、燃焼部254と、ファーネス熱交換器255と、給気管256と、排気管257とを有している。
 燃料ガス弁251は、開閉制御が可能な電磁弁等からなり、ケーシング230外から燃焼部254まで延びる燃料ガス供給管258に設けられている。燃料ガスとしては、天然ガスや石油ガス等が使用される。
 ファーネスファン252は、給気管256を通じて燃焼部254に空気を取り込んで、その後、ファーネス熱交換器255に空気を送り、排気管257から排出するという空気の流れを生成するファンである。ファーネスファン252は、ファーネスファンモータ253によって回転駆動されるようになっている。
 燃焼部254は、ガスバーナ等(図示せず)によって燃料ガスと空気との混合ガスを燃焼させて高温の燃焼ガスを得る機器である。
 ファーネス熱交換器255は、燃焼部254で得られた燃焼ガスの放熱によって空気を加熱する熱交換器であり、ヒートポンプ部360とは別の熱源(ここでは、ガス燃焼による熱)の放熱によって空気を加熱する別熱源放熱器として機能するものである。
 ファーネス熱交換器255は、ケーシング230に形成された空気入口232から空気出口231までの通風路内において、冷媒放熱器としての室内熱交換器242よりも風上側に配置されている。
 (12-1-4)室内ファン240
 室内ファン240は、ヒートポンプ部360を構成する冷媒放熱器としての室内熱交換器242や別熱源部270を構成する別熱源放熱器としてのファーネス熱交換器255によって加熱される空気を部屋101~104内に供給するための送風機である。
 室内ファン240は、ケーシング230に形成された空気入口232から空気出口231までの通風路内において、室内熱交換器242及びファーネス熱交換器255の両方よりも風上側に配置されている。室内ファン240は、羽根243と、羽根243を回転駆動するファンモータ244とを有している。
 (12-1-5)コントローラ30
 室内機2は、室内機2の各部の動作を制御する室内側制御基板21を搭載している。室外機3は、室外機3の各部の動作を制御する室外側制御基板31を搭載している。そして、室内側制御基板21及び室外側制御基板31はマイコン等を有しており、サーモスタット40との間で制御信号等のやりとりを行う。また、室内側制御基板21と室外側制御基板31との間では制御信号のやりとりは行わない。室内側制御基板21及び室外側制御基板31を含めた制御装置をコントローラ30という。
 (12-1-6)コントローラ30の詳細構造
 図12Cは、第1実施形態に係る空気調和装置1におけるコントローラ30及びサーモスタット40の電気的接続状態を示すブロック図である。サーモスタット40は、室内機2と同じように屋内空間に取り付けられる。なお、サーモスタット40および室内機2それぞれが取り付けられる場所は、屋内空間の異なる場所でもよい。また、サーモスタット40は、室内機2及び室外機3それぞれの制御系と通信線で繋がっている。
 トランス20は、商用電源90の電圧を使用可能な低電圧へ変圧後、電源ライン81,82を介して室内機2、室外機3及びサーモスタット40それぞれに供給する。
 (12-2)第2実施形態
 (12-2-1)全体構成
 第2実施形態に係る空気調和装置701は、図12Dに示されているように、建物800の屋根801の上、すなわち屋上に設置される。空気調和装置701は、建物800の内部である屋内の空気調和を行なう機器である。建物800は、複数の部屋810を有している。建物800の部屋810が、空気調和装置701にとっての空調対象空間になる。図12Dには、空気調和装置701が、1つの第1ダクト721及び1つの第2ダクト722を備えている例が示されている。しかし、空気調和装置701は、これら第1ダクト721及び第2ダクト722を、それぞれ複数備えるように構成することもできる。なお、図12Dに示されている第1ダクト721は、途中で枝分かれしている。第1ダクト721は、サプライエアのために設けられており、第2ダクト722は、リターンエアのために設けられている。第1ダクト721で室内の複数の部屋810に供給されるサプライエアが第1空気である。第2ダクト722で室内から取り入れられるリターンエアも第1空気である。図12Dにおいて、第1ダクト721、第2ダクト722の中の矢印Ar1,Ar2は、第1ダクト721、第2ダクト722の中の空気が流れている方向を示している。空気調和装置701から部屋810には第1ダクト721を通って空気が送られ、空調対象空間の空気である部屋810の屋内空気が第2ダクト722を通って空気調和装置701に送られる。第1ダクト721と部屋810との境界には、複数の吹出口723が設けられている。第1ダクト721で供給されるサプライエアは、吹出口723から部屋810に吹出される。また、第2ダクト722と部屋810の境界には、少なくとも一つの吸込口724が設けられている。吸込口724から吸い込まれた屋内空気は、第2ダクト722によって空気調和装置701に戻されるリターンエアとなる。
 (12-2-2)空気調和装置701の外観
 図12Eには、空気調和装置701を斜め上方から見た空気調和装置701の外観が示され、図12Fには、空気調和装置701を斜め下方から見た空気調和装置701の外観が示されている。以下においては、便宜的に、図に矢印で示されている上下前後左右の方向を用いて説明する。空気調和装置701は、直方体を基礎とする形状を有するケーシング730を備えている。このケーシング730が、上面730a、正面730b、右側面730c、左側面730d、背面730e及び底面730fを覆う金属板を含んでいる。ケーシング730は、上面730aに第3開口733を有している。この第3開口733が熱源側空間SP1(図12G参照)に連通している。第3開口733を通して熱源側空間SP1の空気をケーシング730の外に吹出させる熱源側ファン747が、第3開口733に取り付けられている。熱源側ファン747には、例えばプロペラファンが用いられる。また、ケーシング730が、正面730b、左側面730d及び背面730eにスリット734を有している。これらスリット734も、熱源側空間SP1に連通している。熱源側ファン747によって熱源側空間SP1からケーシング730の外側に向って空気が吹出されると、熱源側空間SP1が大気圧に対して負圧になるので、スリット734を通してケーシング730の外部から熱源側空間SP1に屋外空気が吸い込まれる。なお、第3開口733及びスリット734は、利用側空間SP2(図12G参照)には連通していない。従って、通常の状態では、第1ダクト721、第2ダクト722以外に、利用側空間SP2からケーシング730の外部に連通する箇所はない。
 ケーシング730の底面730fには、第1開口731及び第2開口732を有する底板735が取り付けられている。サプライエアのための第1開口731には、図12Jに示されているように、第1ダクト721が接続されている。また、リターンエアのための第2開口732には、図12Jに示されているように、第2ダクト722が接続されている。空調対象空間である部屋810から第2ダクト722を通ってケーシング730の利用側空間SP2に帰ってきた空気は、利用側空間SP2から第1ダクト721を通って部屋810へ送られる。第1開口731及び第2開口732の周囲には、底板735の強度を補強するために、高さ3cm未満のリブ731a,732aが形成されている(図12H参照)。リブ731a,732aは、第1開口731及び第2開口732を例えばプレス成形によって底板735に形成するときに、底板735の材料である金属板をプレス成形によって立てて底板735と一体に形成される。
 (12-2-3)空気調和装置701の内部構成
 (12-2-3-1)ケーシング730の中の熱源側空間SP1と利用側空間SP2
 図12Gには、ケーシング730の正面730bを覆っていた金属板及び左側面730dを覆っていた金属板が取り外された状態が示されている。図12Hには、ケーシング730の右側面730cを覆っていた金属板及び背面730eを覆っていた一部の金属板が取り外された状態が示されている。図12Hにおいて、背面730eを覆っていた金属板のうちの取り外された金属板は、利用側空間SP2を覆っていた金属板である。従って、図12Hに示されている、背面730eを覆っている金属板は、熱源側空間SP1のみを覆っている。そして、図12Iには、ケーシング730の右側面730cを覆っていた金属板、左側面730dを覆っていた金属板、背面730eを覆っていた金属板及び上面730aの一部を覆っていた金属板が取り外され且つ熱源側熱交換器743及び熱源側ファン747が取り外された状態が示されている。
 熱源側空間SP1と利用側空間SP2が、仕切板739によって仕切られている。熱源側空間SP1に屋外空気が流れ、利用側空間SP2に屋内空気が流れるが、仕切板739は、熱源側空間SP1と利用側空間SP2を仕切ることによって、熱源側空間SP1と利用側空間SP2の間の空気の流通を遮断する。従って、通常の状態では、ケーシング730の中で屋内空気と屋外空気が混ざることはなく、空気調和装置701を介して屋外と屋内が連通されることはない。
 (12-2-3-2)熱源側空間SP1の中の構成
 熱源側空間SP1には、熱源側ファン747以外にも、圧縮機741、四方弁742、熱源側熱交換器743及びアキュムレータ746が収納されている。熱源側熱交換器743は、冷媒が中を流れる複数の伝熱管(図示せず)と、互いの隙間を空気が流れる複数の伝熱フィン(図示せず)とを含んでいる。複数の伝熱管が上下方向(以下、行方向ともいう)に並んでいて、各伝熱管が上下方向と実質的に直交する方向(実質的に水平方向)に延びている。また、複数の伝熱管は、ケーシング730に近い側から順に複数列設けられている。熱源側熱交換器743の端部では、ある列から他の列に及び/またはある行から他の行に冷媒の流れが折り返されるように、例えばU字状に曲げられ或いはU字管で伝熱管同士が接続されている。上下方向に長く延びた複数の伝熱フィンは、互いに所定の間隔を保って、伝熱管の延びる方向に沿って並べられている。各伝熱フィンを複数の伝熱管が貫通するように、複数の伝熱フィンと複数の伝熱管とが組み合わされている。そして、複数の伝熱フィンも複数列に配置されている。
 熱源側熱交換器743が、上面視において、C字型の形状を有しており、ケーシング730の正面730bと左側面730dと背面730eに対向するように配置されている。熱源側熱交換器743が囲っていない部分は、仕切板739に対向する部分である。そして、C字型形状の2つの端にあたる側端部が仕切板739の近傍に配置され、熱源側熱交換器743の2つの側端部と仕切板739の間が、空気の通過を遮る金属板(図示せず)によって塞がれている。また、熱源側熱交換器743は、実質的に、ケーシング730の底面730fから上面730aに達する高さを持つ。このような構成によって、スリット734から入って、熱源側熱交換器743を通過して第3開口733から出る空気の流路が形成される。スリット734を通って熱源側空間SP1に吸い込まれた屋外空気が、熱源側熱交換器743を通過するときに、熱源側熱交換器743の中を流れる冷媒と熱交換する。熱源側熱交換器743で熱交換をした後の空気は、熱源側ファン747によって、第3開口733からケーシング730の外に排気される。
 (12-2-3-3)利用側空間SP2の中の構成
 利用側空間SP2には、膨張弁744、利用側熱交換器745及び利用側ファン748が配置されている。利用側ファン748には、例えば遠心ファンが用いられる。遠心ファンとしては、例えばシロッコファンがある。なお、膨張弁744は、熱源側空間SP1に配置されてもよい。図12Hに示されているように、利用側ファン748は、支持台751によって、第1開口731の上方に配置されている。利用側ファン748の吹出口748bは、図12Nに示されているように、上面視において、第1開口731とは重ならない位置に配置されている。支持台751とケーシング730によって利用側ファン748の吹出口748bと第1開口731以外の部分が囲まれているので、利用側ファン748の吹出口748bから吹出される空気は、実質的に全て第1開口731から第1ダクト721を通して屋内に供給される。
 利用側熱交換器745は、冷媒が中を流れる複数の伝熱管745a(図12M参照)と、互いの隙間を空気が流れる複数の伝熱フィン(図示せず)とを含んでいる。複数の伝熱管745aが上下方向(行方向)に並んでいて、各伝熱管745aが上下方向と実質的に直交する方向(第2実施形態では、左右方向)に延びている。ここでは、冷媒が、複数の伝熱管745aの中を左右方向に流れる。また、複数の伝熱管745aは、前後方向に複数列設けられている。利用側熱交換器745の端部では、ある列から他の列に及び/またはある行から他の行に冷媒の流れが折り返されるように、例えばU字状に曲げられ或いはU字管で伝熱管745a同士が接続されている。上下方向に長く延びた複数の伝熱フィンは、互いに所定の間隔を保って、伝熱管745aの延びる方向に沿って並べられている。そして、各伝熱フィンを複数の伝熱管745aが貫通するように、複数の伝熱フィンと複数の伝熱管745aとが組み合わされている。例えば、利用側熱交換器745を構成する伝熱管745aに銅管を使用し、伝熱フィンに、アルミニウムを使用することができる。
 利用側熱交換器745は、前後に短く、上下左右に長い形状を有する。ドレンパン752は、左右に長く延びる直方体の上面を取り除いたような形状を持っている。ドレンパン752は、上面視において、利用側熱交換器745の前後の長さよりも長い前後方向の寸法を持つ。利用側熱交換器745は、このようなドレンパン752の中に嵌め込まれている。そして、このドレンパン752が、利用側熱交換器745で発生して下方に向って滴り落ちる結露水を受け止める。ドレンパン752は、ケーシング730の右側面730cから仕切板739まで延びている。ドレンパン752の排水口752aがケーシング730の右側面730cを貫通しており、ドレンパン752で受けた結露水は、排水口752aを通ってケーシング730の外に排水される。
 また、利用側熱交換器745は、ケーシング730の右側面730cの近傍から仕切板739の近傍まで延びている。ケーシング730の右側面730cと利用側熱交換器745の右側部745cの間及び、仕切板739と利用側熱交換器745の左側部745dの間が金属板で塞がれている。ドレンパン752は、底板735から上方に離れて底板735を基準に高さh1の位置に支持枠736によって支持されている。利用側熱交換器745の支持は、利用側熱交換器745の上下左右の周囲に合わせた棒状の枠部材を含み、ケーシング730及び仕切板739に直接または間接的に固定されている補助枠753によって補助されている。利用側熱交換器745とケーシング730の上面730aの間は、利用側熱交換器745自身または補助枠753によって塞がれている。また、利用側熱交換器745と底板735との間の開口部は、支持台751とドレンパン752によって塞がれている。
 このように、利用側熱交換器745によって、利用側空間SP2が、利用側熱交換器745よりも上流側の空間と、利用側熱交換器745よりも下流側の空間に分割されている。そして、利用側熱交換器745の上流側から下流側に流れる空気は、全て、利用側熱交換器745を通過する。利用側ファン748は、利用側熱交換器745の下流側の空間に配置されており、利用側熱交換器745を通過する気流を発生させる。既に説明した支持台751は、利用側熱交換器745の下流側の空間をさらに、利用側ファン748の吸入側の空間と吹出側の空間に分けている。
 (12-2-3-4)冷媒回路
 図12Kには、空気調和装置701の中に構成されている冷媒回路711が示されている。冷媒回路711は、利用側熱交換器745と熱源側熱交換器743とを含んでいる。この冷媒回路711において、利用側熱交換器745と熱源側熱交換器743の間を冷媒が循環する。この冷媒回路711では、冷房運転または暖房運転において蒸気圧縮式の冷凍サイクルが実施されているときに、利用側熱交換器745と熱源側熱交換器743で熱交換が行なわれる。図12Kにおいて、矢印Ar3は、利用側熱交換器745の下流側の気流であって利用側ファン748から吹出されるサプライエアを示しており、矢印Ar4は、利用側熱交換器745の上流側の気流であるリターンエアを示している。また、矢印Ar5は、熱源側熱交換器743の下流側の気流であって熱源側ファン747によって第3開口733から吹出される気流を示しており、矢印Ar6は、熱源側熱交換器743の上流側の気流であって熱源側ファン747によってスリット734から吸い込まれる気流を示している。
 冷媒回路711は、圧縮機741と四方弁742と熱源側熱交換器743と膨張弁744と利用側熱交換器745とアキュムレータ746とを含んでいる。四方弁742は、冷房運転時には実線で示された接続状態に切り換わり、暖房運転時には破線で示された接続状態に切り換わる。
 冷房運転時には、圧縮機741で圧縮されたガス冷媒が、四方弁742を通って熱源側熱交換器743に送られる。この冷媒は、熱源側熱交換器743で屋外空気に放熱し、冷媒配管712を通って膨張弁744に送られる。膨張弁744では、冷媒が膨張して減圧され、冷媒配管712を通って利用側熱交換器745に送られる。膨張弁744から送られてきた低温低圧の冷媒は、利用側熱交換器745で熱交換を行って屋内空気から熱を奪う。利用側熱交換器745で熱を奪われて冷えた空気が、第1ダクト721を通って部屋810に供給される。利用側熱交換器745で熱交換を終えたガス冷媒または気液二相の冷媒は、冷媒配管713、四方弁742及びアキュムレータ746を通って圧縮機741に吸入される。
 暖房運転時には、圧縮機741で圧縮されたガス冷媒が、四方弁742、冷媒配管713を通って利用側熱交換器745に送られる。この冷媒は、利用側熱交換器745で屋内空気と熱交換を行って屋内空気に熱を与える。利用側熱交換器745で熱を与えられて暖められた空気が、第1ダクト721を通って部屋810に供給される。利用側熱交換器745で熱交換を行った冷媒は、冷媒配管712を通って膨張弁744に送られる。膨張弁744で膨張して減圧された低温低圧の冷媒は、冷媒配管712を通って熱源側熱交換器743に送られ、熱源側熱交換器743で熱交換を行って屋外空気から熱を得る。熱源側熱交換器743で熱交換を終えたガス冷媒または気液二相の冷媒は、四方弁742及びアキュムレータ746を通って圧縮機741に吸入される。
 (12-2-3-5)制御系統
 図12Lには、空気調和装置701を制御するメインコントローラ760とそのメインコントローラ760によって制御される主な機器などが示されている。メインコントローラ760は、圧縮機741、四方弁742、熱源側ファン747及び利用側ファン748を制御する。メインコントローラ760は、リモートコントローラ762と通信できるように構成されている。ユーザは、部屋810の室内温度の設定値などをリモートコントローラ762からメインコントローラ760に送信することができる。
 空気調和装置701の制御のために、冷媒回路711の各部の冷媒温度を測定するための複数の温度センサ及び/または各部の圧力を測定する圧力センサ並びに各所の空気温度を測定するための温度センサが設けられている。
 メインコントローラ760は、少なくとも、圧縮機741のオン・オフの制御、熱源側ファン747のオン・オフの制御、利用側ファン748のオン・オフの制御を行う。なお、圧縮機741、熱源側ファン747及び利用側ファン748のいずれかまたは全てが回転数を変更できるタイプのモータを有している場合には、圧縮機741、熱源側ファン747及び利用側ファン748のうちの回転数可変のモータの回転数を、メインコントローラ760が制御できるように構成してもよい。その場合、メインコントローラ760は、圧縮機741のモータの回転数の変更することによって、冷媒回路711を流れる冷媒の循環量を変更できる。熱源側ファン747のモータの回転数を変更することにより、メインコントローラ760は、熱源側熱交換器743の伝熱フィン間を流れる屋外空気の流量を変更できる。また、利用側ファン748のモータの回転数を変更することにより、メインコントローラ760は、利用側熱交換器745の伝熱フィン間を流れる屋内空気の流量を変更できる。
 メインコントローラ760には、冷媒漏洩センサ761が接続されている。冷媒漏洩センサ761は、空気中に漏れ出した冷媒ガスが検知下限濃度以上になったときに、冷媒ガスの漏洩の検知を示す信号をメインコントローラ760に送信する。
 メインコントローラ760は、例えばコンピュータにより実現されるものである。メインコントローラ760を構成するコンピュータは、制御演算装置と記憶装置とを備える。制御演算装置には、CPU又はGPUといったプロセッサを使用できる。制御演算装置は、記憶装置に記憶されているプログラムを読み出し、このプログラムに従って所定の画像処理や演算処理を行う。さらに、制御演算装置は、プログラムに従って、演算結果を記憶装置に書き込んだり、記憶装置に記憶されている情報を読み出したりすることができる。しかし、メインコントローラ760は、CPUとメモリを用いて行うのと同様の制御を行うことができる集積回路(IC)を用いて構成されてもよい。ここでいうICには、LSI(large-scale integrated circuit)、ASIC(application-specific integrated circuit)、ゲートアレイ、FPGA(field programmable gate array)等が含まれる。
 本実施形態では、冷媒回路711には、蒸気圧縮式の冷凍サイクルを行うための冷媒が充填されている。当該冷媒は、(1)で説明したいずれかの冷媒であり、上述した冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかを用いることができる。
 (12-3)第3実施形態
 図12Oには、第3実施形態に係る空気調和装置601の構成が示されている。この空気調和装置601は室内の換気と調湿とを行うように構成されたものである。空気調和装置601のケーシング621の中の中央部には、顕熱交換器622が設けられている。顕熱交換器622とは、流通空気間で湿分の交換は行わず、顕熱の熱交換だけを行う機能を有するものである。
 空気調和装置601は、圧縮機633と、熱源側熱交換器である室外熱交換器634と、利用側熱交換器である給気熱交換器625と、供給空気SAを室内の複数の部屋に供給する給気ダクト651と、室内空気RAを室内から取り入れる還気ダクト652と、室外空気OAを室外から取り込む吸込ダクト653と、ケーシング621とを備えている。給気熱交換器625で冷媒と熱交換される前の第1空気が室外空気OAであり、給気熱交換器625で冷媒と熱交換された後の第1空気が供給空気SAである。室外熱交換器634が熱交換する室外空気が第2空気である。第2空気である室外空気と第1空気である室外空気OAは、互いに異なるものである。
 冷媒(冷媒X、冷媒Y、冷媒A、冷媒B、冷媒C、冷媒D、あるいは、冷媒E)は、圧縮機633と給気熱交換器625と室外熱交換器634とを循環して冷凍サイクルを繰り返す。さらに詳細には、冷媒は、圧縮機633で圧縮され、室外熱交換器634で凝縮され、キャピラリチューブ636で減圧され、給気熱交換器625で蒸発される。キャピラリチューブ636に代えて、膨張弁を用いることもできる。
 ケーシング621の中の給気通路641と外気通路643とを含む空間は、給気ダクト651に接続され且つ給気熱交換器625を収納している利用側空間である。ケーシング621は、給気熱交換器625で冷媒と熱交換された後の供給空気SA(第1空気)を給気ダクト651に送出することができるように構成されている。給気ダクト651が第1ダクトであり、吸込ダクト653が第3ダクトである。
 ここで見方を変えると、空気調和装置601が利用側ユニット602と熱源側ユニット603で構成されているとみなすことができる。利用側ユニット602と熱源側ユニット603は、互いに別体のユニットである。利用側ユニット602は、ケーシング621と、顕熱交換器622と、給気熱交換器625と、排気ファン627と、給気ファン628と、加湿器629とを有している。熱源側ユニット603は、圧縮機633と、室外熱交換器634と、キャピラリチューブ636とを備えている。利用側ユニット602は、ケーシング621を第3ダクトである吸込ダクト653に接続し、室外から取り入れた第1空気である室外空気OAを利用側熱交換器である給気熱交換器625に導くように構成されている。
 この顕熱交換器622よりも室内側に給気通路641と吸込通路644とが形成されている。顕熱交換器622よりも室外側に排気通路642と外気通路643とが形成されている。給気通路641に給気ファン628と加湿器629とが設けられている。排気通路642に排気ファン627が設けられている。外気通路643には、給気熱交換器625が設けられている。この給気熱交換器625は、熱源側ユニット603に接続されている。熱源側ユニット603には、上記給気熱交換器625とともに冷媒回路610を構成する圧縮機633、室外熱交換器634及びキャピラリチューブ636が設けられている。圧縮機633、室外熱交換器634及びキャピラリチューブ636が冷媒配管645で接続されている。室外熱交換器634には室外ファン(図示せず)が並設されている。空気調和装置601では、排気ファン627を駆動することにより室内空気RAが吸込通路644に吸い込まれ、給気ファン628を駆動することにより室外空気OAが外気通路643に吸い込まれる。このとき外気通路643に吸い込まれた室外空気OAは蒸発器として機能する上記給気熱交換器625で冷却除湿され、顕熱交換器622に至る。この顕熱交換器622において、吸込通路644に吸い込まれた上記室内空気RAと顕熱の交換を行う。この顕熱交換によって、上記室外空気OAは除湿されたまま温度だけが室内空気RAと略等しくなり、供給空気SAとして室内へ供給される。一方、顕熱交換器622で冷却された室内空気RAは、排気EAとして室外へ排出される。
 第3実施形態の空気調和装置601は、室外空気OAを給気熱交換器625で冷却する。給気熱交換器625で冷却された空気が顕熱交換器622に至る。空気調和装置601は、給気熱交換器625で冷却された空気と室内空気RAに、顕熱交換器622で顕熱交換を行わせる。空気調和装置601は、室内空気RAと顕熱交換を行った空気を、その後、供給空気SAとして室内へ供給する。
 しかし、室外空気を導入する構成は、この構成に限らない。例えば、空気調和装置は、先に、室外空気OAと室内空気RAに、顕熱交換器で顕熱交換を行わせる。その後、空気調和装置は、室内空気RAと顕熱交換を行った空気を、利用側熱交換器で冷却する。空気調和装置は、利用側熱交換器で冷却された空気を、供給空気SAとして室内へ供給する。
 空気調和装置は、室外空気の温度が低い季節に対応できるように、室外空気OAを加熱して室内に供給するように構成されてもよい。このような空気調和装置は、例えば、室外空気OAと室内空気RAに、顕熱交換器で顕熱交換を行わせる。空気調和装置は、その後、室内空気RAと顕熱交換を行った空気を、利用側熱交換器で加熱する。空気調和装置は、利用側熱交換器で加熱した空気を、供給空気SAとして室内へ供給する。
 上述の空気調和装置は、上述のような構成を備えることで、先に顕熱交換器で温度を調節された室外空気OAを、後から利用側熱交換器で冷却あるいは加熱することができるので、冷凍サイクルの効率を上げることができる。
 本実施形態では、冷媒回路610には、蒸気圧縮式の冷凍サイクルを行うための冷媒が充填されている。当該冷媒は、(1)で説明したいずれかの冷媒であり、上述した冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかを用いることができる。
 (12-4)特徴
 上述の第1実施形態、第2実施形態及び第3実施形態の空気調和装置(1,601,701)は、圧縮機(321,633,741)と、室内熱交換器242、給気熱交換器625または利用側熱交換器745と、室外熱交換器323,634または熱源側熱交換器743と、冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかと、第1ダクト209,721または給気ダクト651と、ケーシング230,621,730とを備えている。
 室内熱交換器242、給気熱交換器625または利用側熱交換器745は、第1空気を熱交換する利用側熱交換器である。室外熱交換器323,634または熱源側熱交換器743は、第2空気を熱交換する熱源側熱交換器である。第1ダクト209,721または給気ダクト651は、第1空気を室内の複数の部屋101~104,810に供給する第1ダクトである。冷媒X,冷媒Y,冷媒A~冷媒Eは、圧縮機と利用側熱交換器と熱源側熱交換器とを循環して冷凍サイクルを繰り返す。ケーシング230,621,730は、第1ダクト209,721または給気ダクト651に接続され且つ室内熱交換器242、給気熱交換器625または利用側熱交換器745を収納している利用側空間SP2を有し、室内熱交換器242、給気熱交換器625または利用側熱交換器745で冷媒と熱交換された後の第1空気を第1ダクト209,721または給気ダクト651に送出するように構成されている。
 このように構成された空気調和装置1,601,701は、第1空気を第1ダクト209,721または給気ダクト651で複数の部屋に熱交換後の第1空気を供給することから、冷媒回路320,711,610の構成が簡素化されるので、空気調和装置1,601,701に充填される冷媒量を削減することが可能になる。
 (13)第13グループの技術の実施形態
 (13-1)冷凍サイクル装置
 次に、本開示の実施形態に係る冷凍サイクル装置について、図面を参照しながら説明する。
 本開示の下記実施形態の冷凍サイクル装置は、少なくとも所定の運転時に、熱源側及び利用側の熱交換器の少なくとも一方において、冷媒の流れと、冷媒と熱交換する熱媒体の流れと、が対向流となるという特徴を有する。以下では、説明の簡略化のため、このような特徴を有する冷凍サイクル装置を、対向流型の熱交換器を有する冷凍サイクル装置と呼ぶ場合がある。なお、ここで対向流とは、熱交換器における冷媒の流れ方向が、外部熱媒体(冷媒回路の外部を流れる熱媒体)の流れ方向に対して逆方向であることを意味する。言い換えれば、対向流とは、熱交換器において、冷媒が、外部熱媒体の流れる方向の下流側から上流側へ向けて流れることを意味する。なお、以下の説明では、熱交換器における冷媒の流れ方向が外部熱媒体の流れ方向に対して順方向である場合、言い換えれば熱交換器において冷媒が外部熱媒体の流れる方向の上流側から下流側へ向けて流れる場合には、冷媒の流れは並行流であると呼ぶ。
 対向流型の熱交換器について具体例を挙げて説明する。
 外部熱媒体が液体(例えば水)の場合には、熱交換器を、図13A(a)に示すような二重管式熱交換器とし、例えば、二重管の内管P1内に外部熱媒体を一方側から他方側(図示では上側から下側)に流し、外管P2内に冷媒を他方側から一方側(図示では下側から上側)に流すことで、冷媒の流れと外部熱媒体の流れとを対向流とすることができる。また、熱交換器を、図13A(b)に示すような円筒管P3の外周面に螺旋管P4が巻き付けられた構成の熱交換器とし、円筒管P3内に例えば外部熱媒体を一方側から他方側(図示では上側から下側)に流し、螺旋管P4内に冷媒を他方側から一方側(図示では下側から上側)に流すことで、冷媒の流れと外部熱媒体の流れとを対向流とすることができる。さらに、図示は省略するが、プレート式熱交換器等の他の公知の熱交換器において、冷媒の流れる方向を外部熱媒体の流れる方向に対して逆方向として対向流を実現してもよい。
 外部熱媒体が空気の場合には、熱交換器を、例えば図13Bに示すようなフィンチューブ式熱交換器とすることができる。フィンチューブ式熱交換器は、例えば図13Bのように、所定間隔を置いて並設される複数のフィンFと、平面視で蛇行したU字状の伝熱管P5とを有する。フィンチューブ式熱交換器では、伝熱管P5が有する複数列(図13Bでは2列)の互いに平行な直線部が、複数のフィンFを貫通するようにして設けられる。各伝熱管P5の両端のうち、一方は冷媒の流入口となり、他方は冷媒の流出口となる。冷媒を、図中の矢印Xに示すように、空気の流通方向Yの下流側から上流側に向けて流すことで、熱交換器における冷媒の流れと外部熱媒体の流れとを対向流とすることができる。
 なお、本開示に係る冷凍サイクル装置の冷媒回路に封入される冷媒は、(1)で説明したいずれかの冷媒であり、上述した冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかが用いることができる。上述の冷媒X,冷媒Y,冷媒A~冷媒Eでは、蒸発、凝縮の間に熱媒体の温度が上昇又は下降する。
 このように蒸発、凝縮時に温度変化(温度グライド)を伴う冷凍サイクルをローレンツサイクルという。ローレンツサイクルでは熱交換を行う熱交換器として機能する蒸発器及び凝縮器のそれぞれが対向流型であることで蒸発中と凝縮中の冷媒の温度差が減少するが、冷媒と外部熱媒体との間で有効に熱を伝えるのに十分な大きさの温度差は維持され、効率良く熱交換をすることが可能となる。また、対向流型の熱交換器を有する冷凍サイクル装置の他の利点は圧力差も最小限になるということである。このように対向流型の熱交換器を有する冷凍サイクル装置では、従来システムに比べエネルギー効率や能力の改善をもたらすことができる。
 (13-1-1)第1実施形態
 図13Cは、一実施例に係る冷凍サイクル装置10の概略構成図である。
 なお、ここでは、後述する冷凍サイクル装置10の利用側熱交換器15において、冷媒と外部熱媒体としての空気とが熱交換する場合を例に説明するが、利用側熱交換器15は外部熱媒体としての液体(例えば水)と熱交換するものであってもよい。また、ここでは、後述する冷凍サイクル装置10の熱源側熱交換器13において、冷媒と外部熱媒体としての液体とが熱交換する場合を例に説明するが、利用側熱交換器15は外部熱媒体としての空気と熱交換するものであってもよい。言い換えれば、熱源側熱交換器13及び利用側熱交換器15で冷媒と熱交換する外部熱媒体の組合せは、(液体,空気)、(空気,液体)、(液体,液体)、(空気、空気)のいずれであってもよい。他の実施形態においても同様である。
 ここでは、冷凍サイクル装置10は、空気調和装置である。ただし、冷凍サイクル装置10は、空気調和装置に限定されるものではなく、例えば、冷蔵庫、冷凍庫、冷水機、製氷機、冷蔵ショーケース、冷凍ショーケース、冷凍冷蔵ユニット、冷凍冷蔵倉庫等に用いられる冷凍機、チラー(チリングユニット)、ターボ冷凍機、スクリュー冷凍機等であってもよい。
 また、ここでは、冷凍サイクル装置10において、熱源側熱交換器13が冷媒の凝縮器として用いられ、利用側熱交換器15が冷媒の蒸発器として用いられ、利用側熱交換器15において外部熱媒体(本実施形態では空気)が冷却されるが、これに限定されるものではない。冷凍サイクル装置10において、熱源側熱交換器13が冷媒の蒸発器として用いられ、利用側熱交換器15が冷媒の凝縮器として用いられ、利用側熱交換器15において外部熱媒体(本実施形態では空気)が加熱されてもよい。ただし、この場合、冷媒の流れ方向は図13Cとは逆になる。この場合には、熱交換器13,15を流れる外部熱媒体の方向も図13Cとは逆方向とすることで対向流が実現される。なお、熱源側熱交換器13を冷媒の蒸発器として用い、利用側熱交換器15を冷媒の凝縮器として用いる場合、用途を限定するものではないが、冷凍サイクル装置10は、空気調和装置(暖房装置)の他、給湯装置や床暖房装置等であってもよい。
 冷凍サイクル装置10は、(1)で説明したいずれかの冷媒が封入され、冷媒が循環する冷媒回路11を有する。なお、(1)で説明したいずれかの冷媒には、上述した冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかが用いることができる。
 冷媒回路11は、主として、圧縮機12と、熱源側熱交換器13と、膨張機構14と、利用側熱交換器15とを有しており、これらの機器12~15等が順次接続されることによって構成されている。冷媒回路11では、図13Cの実線の矢印の方向に冷媒が循環する。
 圧縮機12は、低圧のガス冷媒を圧縮して、冷凍サイクルにおける高温高圧のガス冷媒を吐出する機器である。圧縮機12から吐出された高圧のガス冷媒は、熱源側熱交換器13に供給される。
 熱源側熱交換器13は、圧縮機12において圧縮された高温高圧のガス冷媒を凝縮させる凝縮器として機能する。熱源側熱交換器13は、例えば機械室等に配置される。本実施形態では、熱源側熱交換器13には、外部熱媒体として液体(ここでは冷却水)が供給される。熱源側熱交換器13は、限定するものではないが、例えば二重管式熱交換器である。熱源側熱交換器13において、冷媒と外部熱媒体とが熱交換することで、高温高圧のガス冷媒は凝縮して高圧の液冷媒となる。熱源側熱交換器13を通過した高圧の液冷媒は、膨張機構14へと送られる。
 膨張機構14は、熱源側熱交換器13において放熱した高圧の液冷媒を冷凍サイクルにおける低圧になるまで減圧するための機器である。膨張機構14としては、例えば電子膨張弁が用いられる。
 ただし、膨張機構14として、図13Dに示すように、感温式膨張弁が用いられてもよい。膨張機構14として感温式膨張弁を用いる場合、感温式膨張弁は、膨張弁と直結された感温筒によって利用側熱交換器15通過後の冷媒温度を検出し、検出された冷媒温度に基づいて膨張弁の開度を制御する。これにより、例えば利用側ユニット内に利用側熱交換器15、膨張弁、感温筒が設けられた場合に、利用側ユニット内のみで膨張弁の制御が完結する。その結果、熱源側熱交換器13が設けられる熱源側ユニットと利用側ユニットとの間で、膨張弁の制御に関する通信が不要となり、低コスト及び省工事を達成できる。なお、膨張機構14に感温式膨張弁を用いる場合には、膨張機構14の熱源側熱交換器13側に電磁弁17が配置されることが好ましい。
 また、膨張機構14は、キャピラリーチューブであってもよい(図示省略)。
 膨張機構14を通過した低圧の液冷媒又は気液二相冷媒は、利用側熱交換器15に供給される。
 利用側熱交換器15は、低圧の液冷媒を蒸発させる蒸発器として機能する。利用側熱交換器15は、空調対象空間に配置される。本実施形態では、利用側熱交換器15には、ファン16により外部熱媒体としての空気が供給される。利用側熱交換器15は、限定するものではないが、例えばフィンチューブ式熱交換器である。利用側熱交換器15において、冷媒と空気とが熱交換することで、低圧の液冷媒は蒸発して低圧のガス冷媒となり、一方で外部熱媒体しての空気は冷却される。利用側熱交換器13を通過した低圧のガス冷媒は、圧縮機12に供給され、再び冷媒回路11を循環する。
 以上の冷凍サイクル装置10では、運転時に、熱源側熱交換器13及び利用側熱交換器15の両方の熱交換器が対向流型の熱交換器となっている。
 <冷凍サイクル装置の特徴>
 冷凍サイクル装置10は、圧縮機12と、熱源側熱交換器13と、膨張機構14と、利用側熱交換器15と、を含む冷媒回路11を備える。冷媒回路11には、冷媒(冷媒X、冷媒Y、冷媒A、冷媒B、冷媒C、冷媒D、あるいは、冷媒E)が封入される。少なくとも所定の運転時に、熱源側熱交換器13及び利用側熱交換器15の少なくとも一方における、冷媒の流れと冷媒と熱交換する熱媒体の流れとが対向流である。
 本冷凍サイクル装置では、低地球温暖化係数の冷媒を用いて、熱交換器13,15を有効に利用した高効率な運転が実現される。
 なお、熱交換器13,15が冷媒の凝縮器として機能している場合には、通過する冷媒の温度は入口側よりも出口側の方が低くなる傾向にある。しかし、凝縮器として機能する際の熱交換器13,15を対向流型に構成する場合には、熱交換器13,15の冷媒の入口側と出口側のいずれにおいても、空気と冷媒の温度差を十分に確保しやすい。
 また、熱交換器13,15が冷媒の蒸発器として機能している場合には、通過する冷媒の温度は入口側よりも出口側の方が高くなる傾向にある。しかし、蒸発器として機能する際の熱交換器13,15を対向流型に構成する場合には、熱交換器13,15の冷媒の入口側と出口側のいずれにおいても、空気と冷媒の温度差を十分に確保しやすい。
 <変形例>
 冷凍サイクル装置10は、図13Eに示すように、冷媒回路11は、膨張機構14及び利用側熱交換器15を複数(図示例では2つ)並列に有するものであってもよい。また、図示は省略するが、冷媒回路11は、並列に配置された熱源側熱交換器13を複数有してもよいし、圧縮機12を複数有するものであってもよい。
 また、冷凍サイクル装置10では、図13Fに示すように、冷媒回路11が流路切換機構18を更に有していてもよい。流路切換機構18は、圧縮機12から吐出されるガス冷媒が流れる先を、熱源側熱交換器13及び利用側熱交換器15のいずれか一方に切り換える機構である。流路切換機構18は、例えば四路切換弁であるが、これに限定されるものではなく、複数の弁により流路切換機構が実現されてもよい。流路切換機構18を用いることで、熱源側熱交換器13を凝縮器として機能させかつ利用側熱交換器15を蒸発器として機能させる冷房運転と、熱源側熱交換器13を蒸発器として機能させかつ利用側熱交換器15を凝縮器として機能させる暖房運転とを切り換えることができる。
 なお、図13Fに示した例では、冷房運転時に、凝縮器として機能する熱源側熱交換器13及び蒸発器として機能する利用側熱交換器15が、共に対向流型の熱交換器になる(冷媒流れを示す実線矢印参照)。一方で、暖房運転時には、蒸発器として機能する熱源側熱交換器13及び凝縮器として機能する利用側熱交換器15が、共に並行流型(冷媒の流れ方向が外部熱媒体の流れ方向に対して順方向)の熱交換器になる(冷媒流れを示す破線矢印参照)。
 ただし、これに限定されるものではなく、冷房運転時に、凝縮器として機能する熱源側熱交換器13が並行流型の熱交換器になり、暖房運転時に、蒸発器として機能する熱源側熱交換器13が対向流型の熱交換器になるように、熱源側熱交換器13を流れる外部熱媒体の流れ方向が設計されてもよい。また、冷房運転時に、蒸発器として機能する利用側熱交換器15が並行流型の熱交換器になり、暖房運転時に、凝縮器として機能する利用側熱交換器15が対向流型の熱交換器になるように、利用側熱交換器15を流れる外部熱媒体の流れ方向が設計されてもよい。
 なお、好ましくは、熱交換器13,15が凝縮器として機能する際の冷媒の流れ方向が、外部熱媒体の流れ方向に対して逆方向となるように外部熱媒体の流れ方向が設計される。言い換えれば、好ましくは、熱交換器13,15が凝縮器として機能する際には、その熱交換器13,15は対向流型の熱交換器となることが好ましい。
 (13-1-2)第2実施形態
 以下、冷媒回路の概略構成図である図13G、概略制御ブロック構成図である図13Hを参照しつつ、第2実施形態に係る冷凍サイクル装置としての空気調和装置100について説明する。
 空気調和装置100は、蒸気圧縮式の冷凍サイクルを行うことで、対象空間の空気を調和させる装置である。
 空気調和装置100は、主として、熱源側ユニット120と、利用側ユニット130と、熱源側ユニット120と利用側ユニット130を接続する液側冷媒連絡配管106およびガス側冷媒連絡配管105と、入力装置および出力装置としての図示しないリモコンと、空気調和装置100の動作を制御するコントローラ107と、を有している。
 冷媒回路110には、蒸気圧縮式の冷凍サイクルを行うための冷媒が封入されている。空気調和装置100では、冷媒回路110内に封入された冷媒が、圧縮され、冷却又は凝縮され、減圧され、加熱又は蒸発された後に、再び圧縮される、という冷凍サイクルが行われる。当該冷媒は、(1)で説明したいずれかの冷媒であり、上述した冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかを用いることができる。また、冷媒回路110には、当該混合冷媒と共に、冷凍機油が充填されている。
 (13-1-2-1)熱源側ユニット
 熱源側ユニット120は、液側冷媒連絡配管106およびガス側冷媒連絡配管105を介して利用側ユニット130と接続されており、冷媒回路110の一部を構成している。熱源側ユニット120は、主として、圧縮機121と、流路切換機構122と、熱源側熱交換器123と、熱源側膨張機構124と、低圧レシーバ141と、熱源側ファン125と、液側閉鎖弁129と、ガス側閉鎖弁128と、熱源側ブリッジ回路153と、を有している。
 圧縮機121は、冷凍サイクルにおける低圧の冷媒を高圧になるまで圧縮する機器である。ここでは、圧縮機121として、ロータリ式やスクロール式等の容積式の圧縮要素(図示省略)が圧縮機モータによって回転駆動される密閉式構造の圧縮機が使用されている。圧縮機モータは、容量を変化させるためのものであり、インバータにより運転周波数の制御が可能である。なお、圧縮機121には、吸入側において、図示しない付属アキュムレータが設けられている。
 流路切換機構122は、例えば四路切換弁である。流路切換機構122は、接続状態を切り換えることで、圧縮機121の吐出側と熱源側熱交換器123とを接続しつつ圧縮機121の吸入側とガス側閉鎖弁128とを接続する冷房運転接続状態と、圧縮機121の吐出側とガス側閉鎖弁128とを接続しつつ圧縮機121の吸入側と熱源側熱交換器123とを接続する暖房運転接続状態と、を切り換えることができる。
 熱源側熱交換器123は、冷房運転時には冷凍サイクルにおける高圧の冷媒の凝縮器として機能し、暖房運転時には冷凍サイクルにおける低圧の冷媒の蒸発器として機能する熱交換器である。
 熱源側ファン125は、熱源側ユニット120内に熱源となる空気を吸入して、熱源側熱交換器123において冷媒と熱交換させた後に、外部に排出するための空気流れを生じさせる。熱源側ファン125は、室外ファンモータによって回転駆動される。
 熱源側膨張機構124は、熱源側熱交換器123の液側端部と液側閉鎖弁129との間に設けられている。熱源側膨張機構124は、キャピラリーチューブ又は感温筒と共に用いられる機械式膨張弁であってもよいが、制御により弁開度を調節可能な電動膨張弁であることが好ましい。
 低圧レシーバ141は、圧縮機121の吸入側と流路切換機構122の接続ポートの1つとの間に設けられており、冷媒回路110における余剰冷媒を液冷媒として貯留することが可能な冷媒容器である。また、圧縮機121には、図示しない付属のアキュムレータが設けられており、低圧レシーバ141は、当該付属のアキュムレータの上流側に接続されている。
 液側閉鎖弁129は、熱源側ユニット120における液側冷媒連絡配管106との接続部分に配置された手動弁である。
 ガス側閉鎖弁128は、熱源側ユニット120におけるガス側冷媒連絡配管105との接続部分に配置された手動弁である。
 熱源側ブリッジ回路153は、4つの接続箇所および各接続箇所の間に設けられた逆止弁を有している。熱源側ブリッジ回路153の4つの接続箇所には、熱源側熱交換器123の流入側から延びた冷媒配管と、熱源側熱交換器123の流出側から延びた冷媒配管と、液側閉鎖弁129から延びた冷媒配管と、流路切換機構122の接続ポートの1つから延びた冷媒配管と、がそれぞれ接続されている。各逆止弁は、それぞれ、流路切換機構122の接続ポートの1つから熱源側熱交換器123の流出側に向かう冷媒流れを遮断し、液側閉鎖弁129から熱源側熱交換器123の流出側に向かう冷媒流れを遮断し、熱源側熱交換器123の流入側から流路切換機構122の接続ポートの1つに向かう冷媒流れを遮断し、熱源側熱交換器123の流入側から液側閉鎖弁129に向かう冷媒流れを遮断する。なお、液側閉鎖弁129から熱源側ブリッジ回路153の接続箇所の1つまで延びている冷媒配管の途中には、熱源側膨張機構124が設けられている。
 なお、図13Gでは、熱源側ファン125によって形成される空気流れを点線の矢印で示している。ここで、熱源側ブリッジ回路153を有する熱源側ユニット120の熱源側熱交換器123では、冷媒の蒸発器として機能する場合と冷媒の凝縮器として機能する場合とのいずれの場合においても、熱源側熱交換器123において冷媒が流入する箇所(空気流れの下流側)が同じであり、熱源側熱交換器123から冷媒が流出する箇所(空気流れの上流側)が同じであり、熱源側熱交換器123内において冷媒が流れる向きが同じになるように構成されている。これにより、熱源側熱交換器123内を流れる冷媒の流れ方向は、冷媒の蒸発器として機能する場合と冷媒の凝縮器として機能する場合とのいずれの場合においても、熱源側ファン125が形成させる空気流れの方向とは反対方向(常時対向流)となるように構成されている。
 熱源側ユニット120は、熱源側ユニット120を構成する各部の動作を制御する熱源側ユニット制御部127を有している。熱源側ユニット制御部127は、CPUやメモリ等を含むマイクロコンピュータを有している。熱源側ユニット制御部127は、各利用側ユニット130の利用側ユニット制御部134と通信線を介して接続されており、制御信号等の送受信を行う。
 熱源側ユニット120には、吐出圧力センサ161、吐出温度センサ162、吸入圧力センサ163、吸入温度センサ164、熱源側熱交温度センサ165、熱源空気温度センサ166等が設けられている。これらの各センサは、熱源側ユニット制御部127と電気的に接続されており、熱源側ユニット制御部127に対して検出信号を送信する。吐出圧力センサ161は、圧縮機121の吐出側と流路切換機構122の接続ポートの1つとを接続する吐出配管を流れる冷媒の圧力を検出する。吐出温度センサ162は、吐出配管を流れる冷媒の温度を検出する。吸入圧力センサ163は、低圧レシーバ141と圧縮機121の吸入側とを接続する吸入配管を流れる冷媒の圧力を検出する。吸入温度センサ164は、吸入配管を流れる冷媒の温度を検出する。熱源側熱交温度センサ165は、熱源側熱交換器123のうち流路切換機構122が接続されている側とは反対側である液側の出口を流れる冷媒の温度を検出する。熱源空気温度センサ166は、熱源側熱交換器123を通過する前の熱源空気の空気温度を検出する。
 (13-1-2-2)利用側ユニット
 利用側ユニット130は、空調対象空間の壁面や天井等に設置されている。利用側ユニット130は、液側冷媒連絡配管106およびガス側冷媒連絡配管105を介して熱源側ユニット120と接続されており、冷媒回路110の一部を構成している。
 利用側ユニット130は、利用側熱交換器131と、利用側ファン132と、利用側ブリッジ回路154を有している。
 利用側熱交換器131は、液側が、液側冷媒連絡配管106と接続され、ガス側端が、ガス側冷媒連絡配管105と接続されている。利用側熱交換器131は、冷房運転時には冷凍サイクルにおける低圧の冷媒の蒸発器として機能し、暖房運転時には冷凍サイクルにおける高圧の冷媒の凝縮器として機能する熱交換器である。
 利用側ファン132は、利用側ユニット130内に室内の空気を吸入して、利用側熱交換器131において冷媒と熱交換させた後に、外部に排出するための空気流れを生じさせる。利用側ファン132は、室内ファンモータによって回転駆動される。
 利用側ブリッジ回路154は、4つの接続箇所および各接続箇所の間に設けられた逆止弁を有している。利用側ブリッジ回路154の4つの接続箇所には、利用側熱交換器131の流入側から延びた冷媒配管と、利用側熱交換器131の流出側から延びた冷媒配管と、液側冷媒連絡配管106の利用側ユニット130側端部に接続された冷媒配管と、ガス側冷媒連絡配管105の利用側ユニット130側端部に接続された冷媒配管と、がそれぞれ接続されている。各逆止弁は、それぞれ、利用側熱交換器131の流入側から液側冷媒連絡配管106に向かう冷媒流れを遮断し、利用側熱交換器131の流入側からガス側冷媒連絡配管105に向かう冷媒流れを遮断し、液側冷媒連絡配管106から利用側熱交換器131の流出側に向かう冷媒流れを遮断し、ガス側冷媒連絡配管105から利用側熱交換器131の流出側に向かう冷媒流れを遮断する。
 なお、図13Gでは、利用側ファン132によって形成される空気流れを点線の矢印で示している。ここで、利用側ブリッジ回路154を有する利用側ユニット130の利用側熱交換器131では、冷媒の蒸発器として機能する場合と冷媒の凝縮器として機能する場合とのいずれの場合においても、利用側熱交換器131において冷媒が流入する箇所(空気流れの下流側)が同じであり、利用側熱交換器131から冷媒が流出する箇所(空気流れの上流側)が同じであり、利用側熱交換器131内において冷媒が流れる向きが同じになるように構成されている。これにより、利用側熱交換器131内を流れる冷媒の流れ方向は、冷媒の蒸発器として機能する場合と冷媒の凝縮器として機能する場合とのいずれの場合においても、利用側ファン132が形成させる空気流れの方向とは反対方向(常時対向流)となるように構成されている。
 また、利用側ユニット130は、利用側ユニット130を構成する各部の動作を制御する利用側ユニット制御部134を有している。利用側ユニット制御部134は、CPUやメモリ等を含むマイクロコンピュータを有している。利用側ユニット制御部134は、熱源側ユニット制御部127と通信線を介して接続されており、制御信号等の送受信を行う。
 利用側ユニット130には、対象空間空気温度センサ172、流入側熱交温度センサ181、流出側熱交温度センサ183等が設けられている。これらの各センサは、利用側ユニット制御部134と電気的に接続されており、利用側ユニット制御部134に対して検出信号を送信する。対象空間空気温度センサ172は、利用側熱交換器131を通過する前の空調対象空間の空気温度を検出する。流入側熱交温度センサ181は、利用側熱交換器131に流入する前の冷媒の温度を検出する。流出側熱交温度センサ183は、利用側熱交換器131から流出する冷媒の温度を検出する。
 (13-1-2-3)コントローラの詳細
 空気調和装置100では、熱源側ユニット制御部127と利用側ユニット制御部134が通信線を介して接続されることで、空気調和装置100の動作を制御するコントローラ107が構成されている。
 コントローラ107は、主として、CPU(中央演算処理装置)と、ROMやRAM等のメモリを有している。なお、コントローラ107による各種処理や制御は、熱源側ユニット制御部127および/又は利用側ユニット制御部134に含まれる各部が一体的に機能することによって実現されている。
 (13-1-2-4)運転モード
 以下、運転モードについて説明する。
 運転モードとしては、冷房運転モードと暖房運転モードとが設けられている。
 コントローラ107は、リモコン等から受け付けた指示に基づいて、冷房運転モードか暖房運転モードかを判断し、実行する。
 (A)冷房運転モード
 空気調和装置100では、冷房運転モードでは、流路切換機構122の接続状態を圧縮機121の吐出側と熱源側熱交換器123とを接続しつつ圧縮機121の吸入側とガス側閉鎖弁128とを接続する冷房運転接続状態とし、冷媒回路110に充填されている冷媒を、主として、圧縮機121、熱源側熱交換器123、熱源側膨張機構124、利用側熱交換器131の順に循環させる。
 具体的には、圧縮機121は、例えば、冷媒回路110における冷媒の蒸発温度が、設定温度と室内温度(対象空間空気温度センサ172の検出温度)との差分に応じて定まる目標蒸発温度になるように、運転周波数が容量制御される。
 圧縮機121から吐出されたガス冷媒は、流路切換機構122を通過した後、熱源側熱交換器123において凝縮する。なお、熱源側熱交換器123においては、熱源側ファン125によって形成される空気流れ方向とは反対方向に冷媒が流れる。言い換えれば、熱源側熱交換器123を凝縮器として用いる空気調和装置100の運転時に、熱源側熱交換器123における、冷媒の流れと、冷媒と熱交換する熱媒体の流れとは対向流になる。熱源側熱交換器123を流れた冷媒は、熱源側ブリッジ回路153の一部を通過して、熱源側膨張機構124において冷凍サイクルの低圧まで減圧される。
 ここで、熱源側膨張機構124は、例えば、利用側熱交換器131のガス側を流れる冷媒の過熱度または圧縮機121が吸入する冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。ここで、利用側熱交換器131のガス側を流れる冷媒の過熱度は、例えば、流出側熱交温度センサ183の検出温度から、吸入圧力センサ163の検出温度に相当する冷媒の飽和温度を差し引くことにより求めてもよい。なお、熱源側膨張機構124の弁開度制御の手法は、特に限定されず、例えば、圧縮機121から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機121から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
 熱源側膨張機構124において冷凍サイクルの低圧まで減圧された冷媒は、液側閉鎖弁129、液側冷媒連絡配管106を介して利用側ユニット130に流入し、利用側熱交換器131において蒸発する。なお、利用側熱交換器131においては、利用側ファン132によって形成される空気流れ方向とは反対方向に冷媒が流れる。言い換えれば、利用側熱交換器131を蒸発器として用いる空気調和装置100の運転時に、利用側熱交換器131における、冷媒の流れと、冷媒と熱交換する熱媒体の流れとは対向流になる。利用側熱交換器131を流れた冷媒は、ガス側冷媒連絡配管105を流れた後、ガス側閉鎖弁128、流路切換機構122、低圧レシーバ141を経て、再び、圧縮機121に吸入される。なお、低圧レシーバ141では、利用側熱交換器131において蒸発しきれなかった液冷媒が余剰冷媒として貯留される。
 (B)暖房運転モード
 空気調和装置100では、暖房運転モードでは、流路切換機構122の接続状態を圧縮機121の吐出側とガス側閉鎖弁128とを接続しつつ圧縮機121の吸入側と熱源側熱交換器123とを接続する暖房運転接続状態とし、冷媒回路110に充填されている冷媒を、主として、圧縮機121、利用側熱交換器131、熱源側膨張機構124、熱源側熱交換器123の順に循環させる。
 より具体的には、暖房運転モードでは、圧縮機121は、例えば、冷媒回路110における冷媒の凝縮温度が、設定温度と室内温度(対象空間空気温度センサ172の検出温度)との差分に応じて定まる目標凝縮温度になるように、運転周波数が容量制御される。
 圧縮機121から吐出されたガス冷媒は、流路切換機構122、ガス側冷媒連絡配管105を流れた後、利用側ユニット130の利用側熱交換器131のガス側端に流入し、利用側熱交換器131において凝縮する。なお、利用側熱交換器131においては、利用側ファン132によって形成される空気流れ方向とは反対方向に冷媒が流れる。言い換えれば、利用側熱交換器131を凝縮器として用いる空気調和装置100の運転時に、利用側熱交換器131における、冷媒の流れと、冷媒と熱交換する熱媒体の流れとは対向流になる。利用側熱交換器131の液側端から流出した冷媒は、液側冷媒連絡配管106を経て、熱源側ユニット120に流入し、液側閉鎖弁129を通過して、熱源側膨張機構124において、冷凍サイクルの低圧まで減圧される。
 ここで、熱源側膨張機構124は、例えば、圧縮機121が吸入する冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。なお、熱源側膨張機構124の弁開度制御の手法は、特に限定されず、例えば、圧縮機121から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機121から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
 熱源側膨張機構124で減圧された冷媒は、熱源側熱交換器123において蒸発する。なお、熱源側熱交換器123においては、熱源側ファン125によって形成される空気流れ方向とは反対方向に冷媒が流れる。言い換えれば、熱源側熱交換器123を蒸発器として用いる空気調和装置100の運転時に、熱源側熱交換器123における、冷媒の流れと、冷媒と熱交換する熱媒体の流れとは対向流になる。熱源側熱交換器123において蒸発した冷媒は、流路切換機構122、低圧レシーバ141を経て、再び、圧縮機121に吸入される。なお、低圧レシーバ141では、熱源側熱交換器123において蒸発しきれなかった液冷媒が余剰冷媒として貯留される。
 (13-1-2-5)空気調和装置100の特徴
 空気調和装置100では、冷媒X、冷媒Y、冷媒A、冷媒B、冷媒C、冷媒D、あるいは、冷媒Eを用いた冷凍サイクルを行うことができるため、GWPの小さい冷媒を用いて冷凍サイクルを行うことが可能になっている。
 また、空気調和装置100では、低圧レシーバ141を設けることにより、圧縮機121に吸入される冷媒の過熱度が所定値以上となることが確保される制御(熱源側膨張機構124の制御)を行わなくても、液圧縮が生じることを抑制させることが可能になっている。このため、熱源側膨張機構124の制御としては、凝縮器として機能させる場合の熱源側熱交換器123(凝縮器として機能させる場合の利用側熱交換器131も同様)について、出口を流れる冷媒の過冷却度を十分に確保するように制御させることが可能になっている。
 また、熱源側熱交換器123においては、冷房運転時と暖房運転時のいずれにおいても、熱源側ファン125によって形成される空気流れ方向とは反対方向に冷媒が流れている(対向流になっている)。このため、熱源側熱交換器123が冷媒の蒸発器として機能している場合には、通過する冷媒の温度は入口側よりも出口側の方が高くなる傾向にあるが、その場合であっても、熱源側ファン125によって形成される空気流れが反対方向であるため、熱源側熱交換器123の冷媒の入口側と出口側のいずれにおいても、空気と冷媒の温度差を十分に確保しやすい。また、熱源側熱交換器123が冷媒の凝縮器として機能している場合には、通過する冷媒の温度は入口側よりも出口側の方が低くなる傾向にあるが、その場合であっても、熱源側ファン125によって形成される空気流れが反対方向であるため、熱源側熱交換器123の冷媒の入口側と出口側のいずれにおいても、空気と冷媒の温度差を十分に確保しやすい。
 さらに、利用側熱交換器131においては、冷房運転時と暖房運転時のいずれにおいても、利用側ファン132によって形成される空気流れ方向とは反対方向に冷媒が流れている(対向流となっている)。このため、利用側熱交換器131が冷媒の蒸発器として機能している場合には、通過する冷媒の温度は入口側よりも出口側の方が高くなる傾向にあるが、その場合であっても、利用側ファン132によって形成される空気流れが反対方向であるため、利用側熱交換器131の冷媒の入口側と出口側のいずれにおいても、空気と冷媒の温度差を十分に確保しやすい。また、利用側熱交換器131が冷媒の凝縮器として機能している場合には、通過する冷媒の温度は入口側よりも出口側の方が低くなる傾向にあるが、その場合であっても、利用側ファン132によって形成される空気流れが反対方向であるため、利用側熱交換器131の冷媒の入口側と出口側のいずれにおいても、空気と冷媒の温度差を十分に確保しやすい。
 これにより、冷媒として非共沸混合冷媒が用いられることで蒸発器内および凝縮器内において温度グライドが生じる場合であっても、冷房運転と暖房運転のいずれにおいても、蒸発器として機能させる熱交換器および凝縮器として機能させる熱交換器のいずれにおいても十分に能力を発揮させることができる。
 (13-1-3)第3実施形態
 以下、冷媒回路の概略構成図である図13I、概略制御ブロック構成図である図13Jを参照しつつ、第3実施形態に係る冷凍サイクル装置としての空気調和装置100aについて説明する。なお、第2実施形態の空気調和装置100と第3実施形態の空気調和装置100aには共通点も多いので、以下では、第1実施形態の空気調和装置100との違いを主に説明する。
 (13-1-3-1)空気調和装置の構成
 空気調和装置100aは、上記第2実施形態の空気調和装置100とは、熱源側ユニット120においてバイパス膨張弁149を有するバイパス配管140が設けられている点、複数の室内ユニット(第1利用側ユニット130と第2利用側ユニット135)が並列に設けられている点、および、各室内ユニットにおいて室内熱交換器の液冷媒側に室内膨張弁が設けられている点、で主に異なっている。なお、以下の空気調和装置100aの説明において、空気調和装置100と同じ又は同様の構成については、同じ参照符号を付して説明する。
 熱源側ユニット120が有するバイパス配管140は、冷媒回路110のうち熱源側膨張機構124と液側閉鎖弁129の間の部分と、流路切換機構122の接続ポートの1つから低圧レシーバ141まで延びる冷媒配管と、を接続する冷媒配管である。バイパス膨張弁149は、特に限定されないが、弁開度を調節可能な電動膨張弁であることが好ましい。
 第1利用側ユニット130は、上記実施形態と同様に、第1利用側熱交換器131、第1利用側ファン132、及び第1利用側ブリッジ回路154を有する他、第1利用側膨張機構133を有している。第1利用側ブリッジ回路154は、4つの接続箇所および各接続箇所の間に設けられた逆止弁を有している。第1利用側ブリッジ回路154の4つの接続箇所には、第1利用側熱交換器131の液側から延びた冷媒配管と、第1利用側熱交換器131のガス側から延びた冷媒配管と、液側冷媒連絡配管106から第1利用側ユニット130に向けて分岐した冷媒配管と、ガス側冷媒連絡配管105から第1利用側ユニット130に向けて分岐した冷媒配管と、がそれぞれ接続されている。
 なお、図13Iでは、第1利用側ファン132によって形成される空気流れを点線の矢印で示している。ここで、第1利用側ブリッジ回路154を有する第1利用側ユニット130の第1利用側熱交換器131では、冷媒の蒸発器として機能する場合と冷媒の凝縮器として機能する場合とのいずれの場合においても、第1利用側熱交換器131において冷媒が流入する箇所(空気流れの下流側)が同じであり、第1利用側熱交換器131から冷媒が流出する箇所(空気流れの上流側)が同じであり、第1利用側熱交換器131内において冷媒が流れる向きが同じになるように構成されている。これにより、第1利用側熱交換器131内を流れる冷媒の流れ方向は、冷媒の蒸発器として機能する場合と冷媒の凝縮器として機能する場合とのいずれの場合においても、第1利用側ファン132が形成する空気流れの方向とは反対方向(常時対向流)となるように構成されている。また、第1利用側膨張機構133は、液側冷媒連絡配管106から第1利用側ユニット130に向けて分岐した冷媒配管の途中(第1利用側ブリッジ回路154の液冷媒側)に設けられている。第1利用側膨張機構133は、弁開度を調節可能な電動膨張弁であることが好ましい。第1利用側ユニット130には、上記実施形態と同様に、第1利用側ユニット制御部134と、第1利用側ユニット制御部134に対して電気的に接続された第1流入側熱交温度センサ181、第1対象空間空気温度センサ172、第1流出側熱交温度センサ183等が設けられている。
 第2利用側ユニット135は、第1利用側ユニット130と同様に、第2利用側熱交換器136、第2利用側ファン137、第2利用側膨張機構138、及び第2利用側ブリッジ回路155を有している。第2利用側ブリッジ回路155は、4つの接続箇所および各接続箇所の間に設けられた逆止弁を有している。第2利用側ブリッジ回路155の4つの接続箇所には、第2利用側熱交換器136の液側から延びた冷媒配管と、第2利用側熱交換器136のガス側から延びた冷媒配管と、液側冷媒連絡配管106から第2利用側ユニット135に向けて分岐した冷媒配管と、ガス側冷媒連絡配管105から第2利用側ユニット135に向けて分岐した冷媒配管と、がそれぞれ接続されている。なお、図13Iでは、第2利用側ファン137によって形成される空気流れを点線の矢印で示している。ここで、第2利用側ブリッジ回路155を有する第2利用側ユニット135の第2利用側熱交換器136では、冷媒の蒸発器として機能する場合と冷媒の凝縮器として機能する場合とのいずれの場合においても、第2利用側熱交換器136において冷媒が流入する箇所(空気流れの下流側)が同じであり、第2利用側熱交換器136から冷媒が流出する箇所(空気流れの上流側)が同じであり、第2利用側熱交換器136内において冷媒が流れる向きが同じになるように構成されている。これにより、第2利用側熱交換器136内を流れる冷媒の流れ方向は、冷媒の蒸発器として機能する場合と冷媒の凝縮器として機能する場合とのいずれの場合においても、第2利用側ファン137が形成する空気流れの方向とは反対方向(常時対向流)となるように構成されている。また、第2利用側膨張機構138は、液側冷媒連絡配管106から第2利用側ユニット135に向けて分岐した冷媒配管の途中(第2利用側ブリッジ回路155の液冷媒側)に設けられている。第2利用側膨張機構138は、弁開度を調節可能な電動膨張弁であることが好ましい。第2利用側ユニット135には、第1利用側ユニット130と同様に、第2利用側ユニット制御部139と、第2利用側ユニット制御部139に対して電気的に接続された第2流入側熱交温度センサ185、第2対象空間空気温度センサ176、第2流出側熱交温度センサ187が設けられている。
 (13-1-3-2)運転モード
 (A)冷房運転モード
 空気調和装置100aでは、冷房運転モードでは、圧縮機121は、例えば、冷媒回路110における冷媒の蒸発温度が目標蒸発温度になるように、運転周波数が容量制御される。ここで、目標蒸発温度は、各利用側ユニット130、135において設定温度と利用側温度との差分が最も大きいもの(負荷が最も大きな利用側ユニット)に応じて定めることが好ましい。
 圧縮機121から吐出されたガス冷媒は、流路切換機構122を通過した後、熱源側熱交換器123において凝縮する。なお、熱源側熱交換器123においては、熱源側ファン125によって形成される空気流れ方向とは反対方向に冷媒が流れる。言い換えれば、熱源側熱交換器123を凝縮器として用いる空気調和装置100aの運転時に、熱源側熱交換器123における、冷媒の流れと、冷媒と熱交換する熱媒体の流れとは対向流になる。熱源側熱交換器123を流れた冷媒は、熱源側ブリッジ回路153の一部を通過した後、全開状態に制御されている熱源側膨張機構124を通過し、液側閉鎖弁129、液側冷媒連絡配管106を介して第1利用側ユニット130および第2利用側ユニット135にそれぞれ流入する。
 なお、バイパス配管140のバイパス膨張弁149は、余剰冷媒の発生状況に応じて弁開度が制御される。具体的には、バイパス膨張弁149は、例えば、吐出圧力センサ161により検知される高圧圧力および/または熱源側熱交換器123の液側を流れる冷媒の過冷却度に基づいて制御される。これにより、上述の熱源側膨張機構124を通過した冷媒の一部である余剰冷媒は、バイパス配管140を介して低圧レシーバ141に送られる。
 第1利用側ユニット130に流入した冷媒は、第1利用側膨張機構133において、冷凍サイクルの低圧まで減圧される。また、第2利用側ユニット135に流入した冷媒は、第2利用側膨張機構138において、冷凍サイクルの低圧まで減圧される。
 ここで、第1利用側膨張機構133は、例えば、第1利用側熱交換器131のガス側を流れる冷媒の過熱度または圧縮機121が吸入する冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。ここで、第1利用側熱交換器131のガス側を流れる冷媒の過熱度は、例えば、第1流出側熱交温度センサ183の検出温度から、吸入圧力センサ163の検出温度に相当する冷媒の飽和温度を差し引くことにより求めてもよい。また、第2利用側膨張機構138も、同様に、例えば、第2利用側熱交換器136のガス側を流れる冷媒の過熱度または圧縮機121が吸入する冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。ここで、第2利用側熱交換器136のガス側を流れる冷媒の過熱度は、例えば、第2流出側熱交温度センサ187の検出温度から、吸入圧力センサ163の検出温度に相当する冷媒の飽和温度を差し引くことにより求めてもよい。
 第1利用側膨張機構133において減圧された冷媒は、第1利用側ブリッジ回路154の一部を通過して、第1利用側熱交換器131に流入し、第1利用側熱交換器131において蒸発する。なお、第1利用側熱交換器131においては、第1利用側ファン132によって形成される空気流れ方向とは反対方向に冷媒が流れる。言い換えれば、第1利用側熱交換器131を蒸発器として用いる空気調和装置100aの運転時に、第1利用側熱交換器131における、冷媒の流れと、冷媒と熱交換する熱媒体の流れとは対向流になる。第1利用側熱交換器131を通過した冷媒は、第1利用側ブリッジ回路154の一部を通過して、第1利用側ユニット130の外部に流出する。
 同様に、第2利用側膨張機構138において減圧された冷媒は、第2利用側ブリッジ回路155の一部を通過して、第2利用側熱交換器136に流入し、第2利用側熱交換器136において蒸発する。なお、第2利用側熱交換器136においては、第2利用側ファン137によって形成される空気流れ方向とは反対方向に冷媒が流れる。言い換えれば、第2利用側熱交換器136を蒸発器として用いる空気調和装置100aの運転時に、第2利用側熱交換器136における、冷媒の流れと、冷媒と熱交換する熱媒体の流れとは対向流になる。第2利用側熱交換器136を通過した冷媒は、第2利用側ブリッジ回路155の一部を通過して、第2利用側ユニット135の外部に流出する。第1利用側ユニット130および第2利用側ユニット135から流出した冷媒は、合流した後、ガス側冷媒連絡配管105を流れ、ガス側閉鎖弁128、流路切換機構122、低圧レシーバ141を経て、再び、圧縮機121に吸入される。なお、低圧レシーバ141では、第1利用側熱交換器131および第2利用側熱交換器136において蒸発しきれなかった液冷媒が余剰冷媒として貯留される。
 (B)暖房運転モード
 空気調和装置100aでは、暖房運転モードでは、圧縮機121は、例えば、冷媒回路110における冷媒の凝縮温度が、目標凝縮温度になるように、運転周波数が容量制御される。ここで、目標凝縮温度は、各利用側ユニット130、135において設定温度と利用側温度との差分が最も大きいもの(負荷が最も大きな利用側ユニット)に応じて定めることが好ましい。
 圧縮機121から吐出されたガス冷媒は、流路切換機構122、ガス側冷媒連絡配管105を流れた後、第1利用側ユニット130と第2利用側ユニット135にそれぞれ流入する。
 第1利用側ユニット130に流入した冷媒は、第1利用側ブリッジ回路154の一部を通過した後、第1利用側熱交換器131において凝縮する。なお、第1利用側熱交換器131においては、第1利用側ファン132によって形成される空気流れ方向とは反対方向に冷媒が流れる。言い換えれば、第1利用側熱交換器131を凝縮器として用いる空気調和装置100aの運転時に、第1利用側熱交換器131における、冷媒の流れと、冷媒と熱交換する熱媒体の流れとは対向流になる。第2利用側ユニット135に流入した冷媒は、第2利用側ブリッジ回路155の一部を通過した後、第2利用側熱交換器136において凝縮する。なお、第2利用側熱交換器136においては、第2利用側ファン137によって形成される空気流れ方向とは反対方向に冷媒が流れる。言い換えれば、第2利用側熱交換器136を凝縮器として用いる空気調和装置100aの運転時に、第2利用側熱交換器136における、冷媒の流れと、冷媒と熱交換する熱媒体の流れとは対向流になる。
 第1利用側熱交換器131の液側端から流出した冷媒は、第1利用側ブリッジ回路154の一部を通過した後、第1利用側膨張機構133において、冷凍サイクルの中間圧となるまで減圧される。第2利用側熱交換器136の液側端から流出した冷媒も、同様に、第2利用側ブリッジ回路155の一部を通過した後、第2利用側膨張機構138において、冷凍サイクルの中間圧となるまで減圧される。
 ここで、第1利用側膨張機構133は、例えば、第1利用側熱交換器131の液側出口を流れる冷媒の過冷却度が目標値になる等の所定条件を満たすように、弁開度が制御される。ここで、第1利用側熱交換器131の液側出口を流れる冷媒の過冷却度は、例えば、第1流出側熱交温度センサ183の検出温度から、吐出圧力センサ161の検出温度に相当する冷媒の飽和温度を差し引くことにより求めてもよい。また、第2利用側膨張機構138についても同様に、例えば、第2利用側熱交換器136の液側出口を流れる冷媒の過冷却度が目標値になる等の所定条件を満たすように、弁開度が制御される。ここで、第2利用側熱交換器136の液側出口を流れる冷媒の過冷却度は、例えば、第2流出側熱交温度センサ187の検出温度から、吐出圧力センサ161の検出温度に相当する冷媒の飽和温度を差し引くことにより求めてもよい。
 第1利用側膨張機構133を通過した冷媒は、第1利用側ブリッジ回路154の一部を通過して、第1利用側ユニット130の外部に流出する。同様に、第2利用側膨張機構138を通過した冷媒は、第2利用側ブリッジ回路155の一部を通過して、第2利用側ユニット135の外部に流出する。第1利用側ユニット130および第2利用側ユニット135から流出した冷媒は、合流した後、液側冷媒連絡配管106を経て、熱源側ユニット120に流入する。
 熱源側ユニット120に流入した冷媒は、液側閉鎖弁129を通過して、熱源側膨張機構124において、冷凍サイクルの低圧まで減圧される。
 なお、バイパス配管140のバイパス膨張弁149は、冷房運転時と同様に余剰冷媒の発生状況に応じて弁開度を制御してもよいし、全閉状態に制御してもよい。
 ここで、熱源側膨張機構124は、例えば、圧縮機121が吸入する冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。なお、熱源側膨張機構124の弁開度制御の手法は、特に限定されず、例えば、圧縮機121から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機121から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
 熱源側膨張機構124で減圧された冷媒は、熱源側熱交換器123において蒸発する。なお、熱源側熱交換器123においては、熱源側ファン125によって形成される空気流れ方向とは反対方向に冷媒が流れる。言い換えれば、熱源側熱交換器123を蒸発器として用いる空気調和装置100aの運転時に、熱源側熱交換器123における、冷媒の流れと、冷媒と熱交換する熱媒体の流れとは対向流になる。熱源側熱交換器123を通過した冷媒は、流路切換機構122、低圧レシーバ141を経て、再び、圧縮機121に吸入される。なお、低圧レシーバ141では、熱源側熱交換器123において蒸発しきれなかった液冷媒が余剰冷媒として貯留される。
 (13-1-3-3)空気調和装置100aの特徴
 空気調和装置100aでは、冷媒X、冷媒Y、冷媒A、冷媒B、冷媒C、冷媒D、あるいは、冷媒Eを用いた冷凍サイクルを行うことができるため、GWPの小さい冷媒を用いて冷凍サイクルを行うことが可能になっている。
 また、空気調和装置100aでは、低圧レシーバ141を設けることにより、圧縮機121に吸入される冷媒の過熱度が所定値以上となることが確保される制御(熱源側膨張機構124の制御)を行わなくても、液圧縮が生じることを抑制させることが可能になっている。また、暖房運転時においては、第1利用側膨張機構133、第2利用側膨張機構138を過冷却度制御させることにより、第1利用側熱交換器131および第2利用側熱交換器136の能力を十分に発揮させやすくすることが可能になっている。
 また、熱源側熱交換器123においては、冷房運転時と暖房運転時のいずれにおいても、熱源側ファン125によって形成される空気流れ方向とは反対方向に冷媒が流れている(対向流になっている)。さらに、冷房運転時と暖房運転時のいずれにおいても、第1利用側熱交換器131においては、第1利用側ファン132によって形成される空気流れ方向とは反対方向に冷媒が流れている(対向流になっている)。同様に、冷房運転時と暖房運転時のいずれにおいても、第2利用側熱交換器136においては、第2利用側ファン137によって形成される空気流れ方向とは反対方向に冷媒が流れている(対向流になっている)。
 これにより、冷媒として非共沸混合冷媒が用いられることで蒸発器内および凝縮器内において温度グライドが生じる場合であっても、冷房運転と暖房運転のいずれにおいても、蒸発器として機能させる熱交換器および凝縮器として機能させる熱交換器のいずれにおいても十分に能力を発揮させることができる。
 (14)第14グループの技術の実施形態
 (14-1)第1実施形態
 図面を参照しながら、第1実施形態に係る冷凍装置である熱負荷処理システム100について説明する。なお、以下の実施形態は、具体例であって、技術的範囲を限定するものではなく、要旨を逸脱しない範囲で適宜変更が可能である。また、以下の説明では、「上」、「下」、「左」、「右」、「前(正面)」、「後(背面)」等の方向を示す表現を用いる場合がある。特に断りのない場合、これらの方向は、図中に矢印で示した方向を示している。なお、これらの方向に関する表現は、あくまでも実施形態の理解を容易にするために用いるものであり、本開示に係る思想を特に限定するものではない。
 (14-1-1)全体構成
 図14Aは、熱負荷処理システム100の概略構成図である。熱負荷処理システム100は、設置環境において熱負荷を処理するためのシステムである。本実施形態において、熱負荷処理システム100は、対象空間の空気調和を行う空調システムである。
 熱負荷処理システム100は、主として、複数(ここでは4台)の熱源側ユニット10と、熱交換器ユニット30と、複数(ここでは4台)の利用側ユニット60と、複数(ここでは4本)の液側連絡管LPと、複数(ここでは4本)のガス側連絡管GPと、第1熱媒体連絡管H1および第2熱媒体連絡管H2と、冷媒漏洩センサ70と、熱負荷処理システム100の動作を制御するコントローラ80と、を有している。
 熱負荷処理システム100では、熱源側ユニット10および熱交換器ユニット30が液側連絡管LPおよびガス側連絡管GPで接続されることで冷媒が循環する冷媒回路RCが構成されている。熱負荷処理システム100では、複数の熱源側ユニット10が並列に配置されていることに関連して、複数(ここでは4つ)の冷媒回路RCが構成されている。換言すると、熱負荷処理システム100では、複数の熱源側ユニット10および熱交換器ユニット30によって複数の冷媒回路RCが構成されている。熱負荷処理システム100は、各冷媒回路RCにおいて蒸気圧縮式の冷凍サイクルを行う。
 本実施形態では、冷媒回路RCに封入される冷媒は、(1)で説明したいずれかの冷媒であり、上述した冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかを用いることができる。
 熱負荷処理システム100では、熱交換器ユニット30および利用側ユニット60が第1熱媒体連絡管H1および第2熱媒体連絡管H2で接続されることで、熱媒体が循環する熱媒体回路HCが構成されている。換言すると、熱負荷処理システム100では、熱交換器ユニット30および利用側ユニット60によって熱媒体回路HCが構成されている。熱媒体回路HCにおいては、熱交換器ユニット30のポンプ36が駆動することによって熱媒体が循環する。
 本実施形態では、熱媒体回路HCに封入される熱媒体は、例えば、水やブラインなどの液媒体である。ブラインは、例えば、塩化ナトリウム水溶液、塩化カルシウム水溶液、エチレングリコール水溶液や、プロピレングリコール水溶液等を含む。なお、液媒体の種類はここに例示したものに限定されるものではなく、適宜選択されればよい。特に本実施形態では、熱媒体としてブラインが使用されるものとする。
 (14-1-2)詳細構成
 (14-1-2-1)熱源側ユニット
 本実施形態では、熱負荷処理システム100は、4台の熱源側ユニット10を有する(図14A参照)。そして、熱交換器ユニット30は、4台の熱源側ユニット10において冷却/加熱された冷媒で、液媒体を冷却/加熱する。ただし、熱源側ユニット10の台数は例示であって、その台数は4台に限定されるものではない。熱源側ユニット10は、1~3台であってもよいし、5台以上であってもよい。なお、図14Aでは、4台の熱源側ユニット10のうち1台についてのみ内部構成を描画し、他の3台の内部構成の描画は省略している。描画を省略した熱源側ユニット10についても、以下で説明する熱源側ユニット10と同様の構成を有する。
 熱源側ユニット10は、空気を熱源として、冷媒を冷却又は加熱するユニットである。各熱源側ユニット10は、液側連絡管LPおよびガス側連絡管GPを介して熱交換器ユニット30に個別に接続されている。換言すると、各熱源側ユニット10は、熱交換器ユニット30と共に、個別に冷媒回路RCを構成する。すなわち、熱負荷処理システム100では、複数(ここでは4台)の熱源側ユニット10と、熱交換器ユニット30と、が個別に接続されることで、複数(ここでは4つ)の冷媒回路RCが構成されている。なお、各冷媒回路RCは、分離しており連通していない。
 熱源側ユニット10は、設置場所を限定されるものではないが、例えば屋上や建物の周辺のスペース等に設置される。熱源側ユニット10は、液側連絡管LP、ガス側連絡管GPを介して熱交換器ユニット30と接続されており、冷媒回路RCの一部を構成している。
 熱源側ユニット10は、冷媒回路RCを構成する機器として、主として、複数の冷媒配管(第1配管P1-第11配管P11)と、圧縮機11と、アキュームレータ12と、四路切換弁13と、熱源側熱交換器14と、過冷却器15と、熱源側第1制御弁16と、熱源側第2制御弁17と、液側閉鎖弁18と、ガス側閉鎖弁19と、を有している。
 第1配管P1は、ガス側閉鎖弁19と、四路切換弁13の第1ポートと、を接続する。第2配管P2は、アキュームレータ12の入口ポートと、四路切換弁13の第2ポートと、を接続する。第3配管P3は、アキュームレータ12の出口ポートと、圧縮機11の吸入ポートと、を接続する。第4配管P4は、圧縮機11の吐出ポートと、四路切換弁13の第3ポートと、を接続する。第5配管P5は、四路切換弁13の第4ポートと、熱源側熱交換器14のガス側出入口と、を接続する。第6配管P6は、熱源側熱交換器14の液側出入口と、熱源側第1制御弁16の一端と、を接続する。第7配管P7は、熱源側第1制御弁16の他端と、過冷却器15のメイン流路151の一端と、を接続する。第8配管P8は、過冷却器15のメイン流路151の他端と、液側閉鎖弁18の一端と、を接続する。
 第9配管P9は、第6配管P6の両端間の部分と、熱源側第2制御弁17の一端と、を接続する。第10配管P10は、熱源側第2制御弁17の他端と、過冷却器15のサブ流路152の一端と、を接続する。第11配管P11は、過冷却器15のサブ流路152の他端と、圧縮機11のインジェクションポートと、を接続する。
 なお、これらの冷媒配管(P1―P11)は、実際には、単一の配管で構成されてもよいし、継手等を介して複数の配管が接続されることで構成されてもよい。
 圧縮機11は、冷凍サイクルにおける低圧の冷媒を高圧になるまで圧縮する機器である。本実施形態では、圧縮機11は、ロータリ式やスクロール式等の容積式の圧縮要素が圧縮機モータ(図示省略)によって回転駆動される密閉式構造を有している。圧縮機モータは、インバータにより運転周波数の制御が可能である。すなわち、圧縮機11は、容量制御可能に構成されている。但し、圧縮機11は、容量が一定の圧縮機であってもよい。
 アキュームレータ12は、圧縮機11に液冷媒が過度に吸入されることを抑制するための容器である。アキュームレータ12は、冷媒回路RCに充填されている冷媒量に応じて所定の容積を有している。
 四路切換弁13は、冷媒回路RCにおける冷媒の流れを切り換えるための流路切換機構である。四路切換弁13は、正サイクル状態と逆サイクル状態とを切り換えられる。四路切換弁13は、正サイクル状態となると、第1ポート(第1配管P1)と第2ポート(第2配管P2)とを連通させるとともに第3ポート(第4配管P4)と第4ポート(第5配管P5)とを連通させる(図14Aの四路切換弁13の実線を参照)。四路切換弁13は、逆サイクル状態となると、第1ポート(第1配管P1)と第3ポート(第4配管P4)とを連通させるとともに第2ポート(第2配管P2)と第4ポート(第5配管P5)とを連通させる(図14Aの四路切換弁13の破線を参照)。
 熱源側熱交換器14は、冷媒の凝縮器(又は放熱器)又は蒸発器として機能する熱交換器である。熱源側熱交換器14は、正サイクル運転(四路切換弁13が正サイクル状態にある運転)時には、冷媒の凝縮器として機能する。また、熱源側熱交換器14は、逆サイクル運転(四路切換弁13が逆サイクル状態にある運転)時には、冷媒の蒸発器として機能する。熱源側熱交換器14は、複数の伝熱管と、伝熱フィンと、を含む(図示省略)。熱源側熱交換器14は、伝熱管内の冷媒と、伝熱管又は伝熱フィンの周囲を通過する空気(後述の熱源側空気流)と、の間で熱交換が行われるように構成されている。
 過冷却器15は、流入する冷媒を過冷却状態の液冷媒とする熱交換器である。過冷却器15は、例えば二重管熱交換器であり、過冷却器15にはメイン流路151とサブ流路152とが構成されている。過冷却器15は、メイン流路151およびサブ流路152を流れる冷媒が熱交換を行うように構成されている。
 熱源側第1制御弁16は、開度制御が可能な電子膨張弁であり、開度に応じて流入する冷媒を減圧する又は流量調節する。熱源側第1制御弁16は、開状態と閉状態とを切換可能である。熱源側第1制御弁16は、熱源側熱交換器14と過冷却器15(メイン流路151)との間に配置されている。
 熱源側第2制御弁17は、開度制御が可能な電子膨張弁であり、開度に応じて流入する冷媒を減圧する又は流量調節する。熱源側第2制御弁17は、開状態と閉状態とを切換可能である。熱源側第2制御弁17は、熱源側熱交換器14と過冷却器15(サブ流路152)との間に配置されている。
 液側閉鎖弁18は、第8配管P8と液側連絡管LPとの接続部分に配置された手動弁である。液側閉鎖弁18は、一端が第8配管P8に接続され他端が液側連絡管LPに接続されている。
 ガス側閉鎖弁19は、第1配管P1とガス側連絡管GPとの接続部分に配置された手動弁である。ガス側閉鎖弁19は、一端が第1配管P1に接続され他端がガス側連絡管GPに接続されている。
 また、熱源側ユニット10は、熱源側熱交換器14を通過する熱源側空気流を生成する熱源側ファン20を有している。熱源側ファン20は、熱源側熱交換器14を流れる冷媒の冷却源又は加熱源としての熱源側空気流を熱源側熱交換器14に供給する送風機である。熱源側ファン20は、駆動源である熱源側ファンモータ(図示省略)を含み、状況に応じて発停および回転数を適宜制御される。
 また、熱源側ユニット10には、冷媒回路RC内の冷媒の状態(主に圧力又は温度)を検出するための複数の熱源側センサS1(図14C参照)が配置されている。熱源側センサS1は、圧力センサや、サーミスタ又は熱電対等の温度センサである。熱源側センサS1には、例えば、圧縮機11の吸入側(第3配管P3)における冷媒の温度(吸入温度)を検出する第1温度センサ21、又は圧縮機11の吐出側(第4配管P4)における冷媒の温度(吐出温度)を検出する第2温度センサ22が含まれている。また、熱源側センサS1には、例えば、熱源側熱交換器14の液側(第6配管P6)の冷媒の温度を検出する第3温度センサ23、第8配管P8における冷媒の温度を検出する第4温度センサ24、又は第11配管P11における冷媒の温度を検出する第5温度センサ25が含まれている。また、熱源側センサS1には、例えば、圧縮機11の吸入側(第2配管P2)における冷媒の圧力(吸入圧力)を検出する第1圧力センサ27、圧縮機11の吐出側(第4配管P4)における冷媒の圧力(吐出圧力)を検出する第2圧力センサ28が含まれている。
 また、熱源側ユニット10は、熱源側ユニット10に含まれる各機器の動作・状態を制御する熱源側ユニット制御部29を有している。熱源側ユニット制御部29は、その機能を実行するために、各種電気回路や、マイクロプロセッサやマイクロプロセッサが実行するプログラムが記憶されたメモリチップを有するマイクロコンピュータ等を有している。熱源側ユニット制御部29は、熱源側ユニット10に含まれる各機器(11、13、16、17、20等)や熱源側センサS1と電気的に接続されており、互いに信号の入出力を行う。また、熱源側ユニット制御部29は、熱交換器ユニット30の熱交換器ユニット制御部49(後述)等と通信線を介して電気的に接続されており、互いに制御信号の送受信を行う。
 (14-1-2-2)熱交換器ユニット
 熱交換器ユニット30は、熱媒体と冷媒とを熱交換させることで、熱媒体の冷却および加熱の少なくとも一方を行う機器である。本実施形態では、熱交換器ユニット30は、熱媒体と冷媒とを熱交換させることで、熱媒体の冷却および加熱を行う。熱交換器ユニット30で液冷媒により冷却又は加熱された熱媒体は、利用側ユニット60へと送られる。
 熱交換器ユニット30は、利用側ユニット60へと送られる熱媒体と冷媒とを熱交換させることで、熱媒体の冷却又は加熱を行うユニットである。熱交換器ユニット30は、設置場所を限定されるものではないが、例えば設備機器室等の室内に設置される。熱交換器ユニット30は、各冷媒回路RCを構成する機器として、熱源側ユニット10の数(冷媒回路RCの数)と同数(ここでは4つ)の、複数の冷媒配管(冷媒配管Pa、Pb、Pc、Pd)、膨張弁31、および開閉弁32を有している。また、熱交換器ユニット30は、各冷媒回路RCおよび熱媒体回路HCを構成する機器として、熱交換器33を有している。
 冷媒配管Paは、液側連絡管LPと、膨張弁31の一端と、を接続する。冷媒配管Pbは、膨張弁31の他端と、熱交換器33の一の液側冷媒出入口と、を接続する。冷媒配管Pcは、熱交換器33の一のガス側冷媒出入口と、開閉弁32の一端と、を接続する。冷媒配管Pdは、開閉弁32の他端と、ガス側連絡管GPと、を接続する。なお、これらの冷媒配管(Pa―Pd)は、実際には、単一の配管で構成されてもよいし、継手等を介して複数の配管が接続されることで構成されてもよい。
 膨張弁31は、開度制御が可能な電子膨張弁であり、開度に応じて流入する冷媒を減圧する又は流量調節する。膨張弁31は、開状態と閉状態とを切換可能である。膨張弁31は、熱交換器33と液側連絡管LPとの間に配置されている。
 開閉弁32は、開状態と閉状態とを切換可能な制御弁である。開閉弁32は、閉状態時に冷媒を遮断する。開閉弁32は、熱交換器33とガス側連絡管GPとの間に配置されている。
 熱交換器33には、冷媒回路RCを流れる冷媒の流路(冷媒流路RP)が複数形成されている。熱交換器33において、各冷媒流路RPは、他の冷媒流路RPと連通していない。これに関連して、熱交換器33においては、冷媒流路RPの液側出入口およびガス側出入口が、それぞれ冷媒流路RPの数と同数(ここでは4つ)形成されている。また、熱交換器33には、熱媒体回路HCを流れる熱媒体の流路(熱媒体流路HP)が形成されている。
 より具体的に、熱交換器33は、第1熱交換器34および第2熱交換器35を含んでいる。第1熱交換器34および第2熱交換器35は、別体として構成されている。第1熱交換器34および第2熱交換器35においては、分離した2つの冷媒流路RPがそれぞれ形成されている。第1熱交換器34および第2熱交換器35では、各冷媒流路RPの一端が、対応する冷媒回路RCの冷媒配管Pbに接続されており、各冷媒流路RPの他端が対応する冷媒回路RCの冷媒配管Pcに接続されている。第1熱交換器34では、熱媒体流路HPの一端が後述の熱媒体配管Hbに接続されており、熱媒体流路HPの他端が後述の熱媒体配管Hcに接続されている。第2熱交換器35では、熱媒体流路HPの一端が後述のHcに接続されており、熱媒体流路HPの他端が後述の熱媒体配管Hdに接続されている。第1熱交換器34および第2熱交換器35の熱媒体流路HPは、熱媒体回路HCにおいて直列に並んでいる。第1熱交換器34および第2熱交換器35は、各冷媒流路RP(冷媒回路RC)を流れる冷媒と、熱媒体流路HP(熱媒体回路HC)を流れる熱媒体と、で熱交換が行われるように構成されている。
 また、熱交換器ユニット30は、熱媒体回路HCを構成する機器として、複数の熱媒体配管(熱媒体配管Ha、Hb、Hc、Hd)、およびポンプ36をさらに有している。
 熱媒体配管Haは、一端が第1熱媒体連絡管H1に接続され、他端がポンプ36の吸入側ポートに接続されている。熱媒体配管Hbは、一端がポンプ36の吐出側ポートに接続され、他端が第1熱交換器34の熱媒体流路HPの一端に接続されている。熱媒体配管Hcは、一端が第1熱交換器34の熱媒体流路HPの他端に接続され、他端が第2熱交換器35の熱媒体流路HPの一端に接続されている。熱媒体配管Hdは、一端が第2熱交換器35の熱媒体流路HPの他端に接続され、他端が第2熱媒体連絡管H2に接続されている。なお、これらの熱媒体配管(Ha―Hd)は、実際には、単一の配管で構成されてもよいし、継手等を介して複数の配管が接続されることで構成されてもよい。
 ポンプ36は、熱媒体回路HCに配置されている。ポンプ36は、運転中、熱媒体を吸引して吐出する。ポンプ36は、駆動源であるモータを含み、モータをインバータ制御されることで回転数を調整される。すなわち、ポンプ36は、吐出流量可変である。なお、熱交換器ユニット30は、熱媒体回路HCにおいて直列又は並列に接続された複数台のポンプ36を有してもよい。また、ポンプ36は、定量ポンプであってもよい。
 また、熱交換器ユニット30には、冷媒回路RC内の冷媒の状態(主に圧力又は温度)を検出するための複数の熱交換器ユニットセンサS2(図14C参照)が配置されている。熱交換器ユニットセンサS2は、圧力センサや、サーミスタ又は熱電対等の温度センサである。熱交換器ユニットセンサS2には、例えば、熱交換器33(冷媒流路RP)の液側(冷媒配管Pb)における冷媒の温度を検出する第6温度センサ41、および熱交換器33(冷媒流路RP)のガス側(冷媒配管Pc)における冷媒の温度を検出する第7温度センサ42が含まれている。また、熱交換器ユニットセンサS2には、例えば、熱交換器33(冷媒流路RP)の液側(冷媒配管Pb)における冷媒の圧力を検出する第3圧力センサ43、および熱交換器33(冷媒流路RP)のガス側(冷媒配管Pc)における冷媒の圧力を検出する第4圧力センサ44が含まれている。
 また、熱交換器ユニット30には、熱交換器ユニット30(冷媒回路RC)において冷媒漏洩が生じた場合に、漏洩冷媒を熱交換器ユニット30から排出させるための排気ファンユニットを有している。排気ファンユニットは、排気ファン46を含む。排気ファン46は、駆動源(例えばファンモータ等)に連動して駆動する。排気ファン46は、駆動すると、熱交換器ユニット30内から外部へ流出する第1空気流AF1を生成する。排気ファン46の種別は、特に限定されないが、例えばシロッコファンやプロペラファンである。
 また、熱交換器ユニット30には、冷却ファン48を有している。冷却ファン48は、駆動源(例えばファンモータ等)に連動して駆動する。冷却ファン48は、駆動すると、熱交換器ユニット30内に配置される電気部品(発熱部品)を冷却するための第2空気流AF2を生成する。冷却ファン48は、第2空気流AF2が発熱部品の周囲を通過して熱交換を行った後に熱交換器ユニット30内から外部へ流出するように、配置される。冷却ファン48の種別は、特に限定されないが、例えばシロッコファンやプロペラファンである。
 また、熱交換器ユニット30は、熱交換器ユニット30に含まれる各機器の動作・状態を制御する熱交換器ユニット制御部49を有している。熱交換器ユニット制御部49は、その機能を実行するために、マイクロプロセッサおよびマイクロプロセッサが実行するプログラムが記憶されたメモリチップを有するマイクロコンピュータや、各種電気部品等を有している。熱交換器ユニット制御部49は、熱交換器ユニット30に含まれる各機器や熱交換器ユニットセンサS2と電気的に接続されており、互いに信号の入出力を行う。また、熱交換器ユニット制御部49は、熱源側ユニット制御部29、利用側ユニット60内に配置される制御部(図示省略)、又はリモコン(図示省略)等と、通信線を介して電気的に接続されており、互いに制御信号の送受信を行う。熱交換器ユニット制御部49に含まれる電気部品は、冷却ファン48によって生成される第2空気流AF2によって冷却される。
 (14-1-2-3)利用側ユニット
 利用側ユニット60は、熱交換器ユニット30で冷却/加熱された熱媒体を、利用する設備である。各利用側ユニット60は、第1熱媒体連絡管H1や第2熱媒体連絡管H2等を介して、熱交換器ユニット30と接続されている。利用側ユニット60は、熱交換器ユニット30とともに熱媒体回路HCを構成する。
 本実施形態において、利用側ユニット60は、熱交換器ユニット30で冷却/加熱された熱媒体と空気とを熱交換させて空調を行う、エアハンドリングユニットやファンコイルユニットである。
 図14Aでは、利用側ユニット60を1つだけ図示している。ただし、熱負荷処理システム100には複数の利用側ユニットが含まれ、熱交換器ユニット30で冷却/加熱された熱媒体は、分岐して複数の利用側ユニットへと送られてもよい。また、熱負荷処理システム100に複数の利用側ユニットが含まれる場合、複数の利用側ユニットの種類は全て同一であってもよいし、複数の利用側ユニットには複数の種類の設備が含まれてもよい。
 (14-1-2-4)液側連絡管、ガス側連絡管
 各液側連絡管LPおよび各ガス側連絡管GPは、熱交換器ユニット30と、対応する熱源側ユニット10と、を接続して冷媒の流路を構成する。液側連絡管LPおよびガス側連絡管GPは、設置現場において施工される。なお、液側連絡管LP又はガス側連絡管GPは、実際には、単一の配管で構成されてもよいし、継手等を介して複数の配管が接続されることで構成されてもよい。
 (14-1-2-5)第1熱媒体連絡管、第2熱媒体連絡管
 第1熱媒体連絡管H1および第2熱媒体連絡管H2は、熱交換器ユニット30と、対応する利用側ユニット60と、の間を接続して熱媒体の流路を構成する。第1熱媒体連絡管H1および第2熱媒体連絡管H2は、設置現場において施工される。なお、第1熱媒体連絡管H1又は第2熱媒体連絡管H2は、実際には、単一の配管で構成されてもよいし、継手等を介して複数の配管が接続されることで構成されてもよい。
 (14-1-2-6)冷媒漏洩センサ
 冷媒漏洩センサ70は、熱交換器ユニット30が配置される空間(ここでは後述の設備機器室R)における冷媒漏洩を検知するためのセンサである。より具体的には、冷媒漏洩センサ70は、熱交換器ユニット30における漏洩冷媒を検出する。本実施形態では、冷媒漏洩センサ70は、冷媒回路RCに封入されている冷媒の種別に応じて公知の汎用品が用いられている。冷媒漏洩センサ70は、熱交換器ユニット30が配置される空間に配置されている。本実施形態においては、冷媒漏洩センサ70は、熱交換器ユニット30内に配置されている。
 冷媒漏洩センサ70は、継続的又は間欠的にコントローラ80に対して、検出値に応じた電気信号(冷媒漏洩センサ検出信号)を出力している。より詳細には、冷媒漏洩センサ70から出力される冷媒漏洩センサ検出信号は、冷媒漏洩センサ70によって検出される冷媒の濃度に応じて電圧が変化する。換言すると、冷媒漏洩センサ検出信号は、冷媒回路RCにおける冷媒漏洩の有無に加えて、冷媒漏洩センサ70が設置される空間における漏洩冷媒の濃度(より詳細には冷媒漏洩センサ70が検出した冷媒の濃度)を特定可能な態様でコントローラ80へ出力される。
 (14-1-2-7)コントローラ
 図14Cに示すコントローラ80は、各機器の状態を制御することで熱負荷処理システム100の動作を制御するコンピュータである。本実施形態において、コントローラ80は、熱源側ユニット制御部29、熱交換器ユニット制御部49、およびこれらに接続される機器(例えば利用側ユニット内に配置される制御部やリモコン)が通信線を介して接続されることで構成されている。すなわち、本実施形態において、コントローラ80は、熱源側ユニット制御部29、熱交換器ユニット制御部49、およびこれらに接続される機器が協働することで実現される。
 (14-1-3)熱負荷処理システムの設置態様
 図14Bは、熱負荷処理システム100の設置態様を示した模式図である。熱負荷処理システム100は、設置場所を特に限定されるものではないが、例えばビルや、商業施設又は工場等に設置される。本実施形態において、熱負荷処理システム100は、図14Bに示すような態様で建物B1に設置されている。建物B1は、複数のフロアを有する。なお、建物B1の階数や部屋数等は、適宜変更が可能である。
 建物B1には、設備機器室Rが設けられている。設備機器室Rは、配電盤や発電機等の電気設備、又はボイラー等の冷熱機器等が配置される空間である。設備機器室Rは、人が出入りし滞在可能な空間である。例えば、設備機器室Rは、地下室等の人が歩行可能な空間である。本実施形態において、設備機器室Rは、建物B1の最下のフロアに位置している。また、建物B1には、人が活動を行う居住空間SPが設けられている。建物B1には、複数の居住空間SPが設けられている。本実施形態において、居住空間SPは、設備機器室Rが設けられるフロアの上階に位置している。
 図14Bでは、熱源側ユニット10は、建物B1の屋上に設置されている。また、熱交換器ユニット30は、設備機器室Rに設置されている。これに関連して、液側連絡管LPおよびガス側連絡管GPが、屋上と設備機器室Rとの間で鉛直方向に沿って延びている。
 また、図14Bでは、各利用側ユニット60は、対応する居住空間SPにおいて配置されている。これに関連して、第1熱媒体連絡管H1および第2熱媒体連絡管H2が、居住空間SPと設備機器室Rとの間で鉛直方向に沿って延びている。
 建物B1においては、設備機器室Rの換気(強制換気又は自然換気)を行う換気装置200が設けられている。各換気装置200は、設備機器室Rに設置されている。具体的に、設備機器室Rにおいては、換気装置200として換気ファン210が設置されている。換気ファン210は、複数の換気ダクトDに接続されている。換気ファン210は、駆動すると、設備機器室R内の空気(内気RA)を排気EAとして外部空間に排出し、外部空間の空気(外気OA)を給気SAとして設備機器室Rに供給することで、設備機器室Rの換気を行う。すなわち、換気ファン210は、設備機器室Rにおいて換気を行う「換気装置」に相当する。換気ファン210の動作(発停又は回転数等)は、コントローラ80によって制御可能である。換気ファン210の制御については、換気ファン210に間欠運転を行わせる間欠運転モードと、連続運転を行わせる連続運転モードと、が適宜切り換えられる。
 また、設備機器室Rにおいては、換気装置200として開閉機構220が設置されている。開閉機構220は、設備機器室Rと他の空間(例えば外部空間等)とを連通させる開状態と、遮断する閉状態と、を切換可能な機構である。すなわち、開閉機構220は、設備機器室Rと他の空間とを連通する開口を開閉する。開閉機構220は、例えば開閉制御可能なドア、ハッチ、窓又はシャッタ等である。開閉機構220は、アダプタ80b(図14C参照)を介して、コントローラ80に電気的に接続されている。換気ファン210の状態(開状態又は閉状態)は、コントローラ80によって制御される。
 (14-1-4)特徴
 本実施形態に係る熱負荷処理システム100では、第1のサイクルである冷媒回路RCに封入する冷媒として、上述の冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかの混合冷媒を採用しており、熱交換器ユニット30での熱交換の効率を向上させることができている。
 (14-2)第2実施形態
 図14Dに、本実施形態に係る冷凍装置である二元冷凍装置500の冷媒回路図を示す。二元冷凍装置500は、高温側の高元冷凍サイクルである第1サイクル510と、低温側の低元冷凍サイクルである第2サイクル520とを備えている。第1サイクル510と第2サイクル520は、カスケードコンデンサ531により熱的に接続されている。第1サイクル510および第2サイクル520を構成する各要素は、後述する室外ユニット501若しくは冷却ユニット502に収納されている。
 第2サイクル520に封入される冷媒には、冷媒漏れを考慮し、地球温暖化に対する影響が小さい二酸化炭素、すなわちCO2を用いている。第1サイクル510に封入される冷媒は、(1)で説明したいずれかの冷媒であり、上述した冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかを用いることができる。以下、第2サイクル520に封入される低温側の冷媒を第2冷媒といい、第1サイクル510に封入される高温側の冷媒を第1冷媒という。
 第1サイクル510は、第1冷媒が循環する冷凍サイクルである。第1サイクル510において、第1圧縮機511と、第1凝縮器512と、第1膨張弁513と、第1蒸発器514とが順次、冷媒配管で接続され、冷媒回路が構成されている。本明細書では、第1サイクル510の冷媒回路を、第1冷媒回路という。
 第2サイクル520は、第2冷媒が循環する冷凍サイクルである。第2サイクル520において、第2圧縮機521と、第2上流側凝縮器522と、第2下流側凝縮器523と、受液器525と、第2下流側膨張弁526と、第2蒸発器527とが順次、冷媒配管で接続され、冷媒回路が構成されている。また、第2サイクル520は、第2下流側凝縮器523と受液器525との間に設けられた第2上流側膨張弁524を有している。本明細書では、第2サイクル520の冷媒回路を、第2冷媒回路という。
 二元冷凍装置500は、上述のカスケードコンデンサ531を備えている。カスケードコンデンサ531において、第1蒸発器514を通過する冷媒と第2下流側凝縮器523を通過する冷媒との間で熱交換が可能なように、第1蒸発器514と第2下流側凝縮器523とが結合されて構成されている。すなわち、カスケードコンデンサ531は、冷媒間熱交換器である。カスケードコンデンサ531を設けることにより、第2冷媒回路と第1冷媒回路とは多段構成となっている。
 第1圧縮機511は、第1冷媒回路を流れる第1冷媒を吸入し、吸入した第1冷媒を圧縮して高温高圧のガス冷媒にして吐出する。本実施形態において、第1圧縮機511は、インバータ回路により回転数を制御し、冷媒の吐出量を調整できるタイプの圧縮機である。
 第1凝縮器512は、例えば、空気、ブライン等と第1冷媒回路を流れる冷媒との間で熱交換を行い、冷媒を凝縮液化させるものである。本実施形態において、第1凝縮器512は、外気と冷媒との熱交換を行うものである。二元冷凍装置500は、第1凝縮器ファン512aを有している。第1凝縮器ファン512aにより、第1凝縮器512に外気が送風され、第1凝縮器512における熱交換が促される。第1凝縮器ファン512aは風量を調整できる。
 第1膨張弁513は、第1冷媒回路を流れる第1冷媒を減圧して膨張させるものであり、例えば、電子式膨張弁である。
 第1蒸発器514は、熱交換により、第1冷媒回路を流れる冷媒を蒸発させガス化するものである。本実施形態では、第1蒸発器514は、例えば、カスケードコンデンサ531において第1冷媒回路を流れる冷媒が通過する伝熱管等により構成される。そして、カスケードコンデンサ531において、第1蒸発器514を流れる第1冷媒と第2冷媒回路を流れる第2冷媒との間で熱交換が行われる。
 第2圧縮機521は、第2冷媒回路を流れる第2冷媒を吸入し、吸入した第2冷媒を圧縮して高温高圧のガス冷媒にして吐出する。本実施形態において、第2圧縮機521は、例えば、インバータ回路により回転数を制御し、冷媒の吐出量を調整できるタイプの圧縮機である。
 第2上流側凝縮器522は、例えば、空気、ブライン等と第1冷媒回路を流れる冷媒との間で熱交換を行い、冷媒を凝縮液化させるものである。本実施形態において、第2上流側凝縮器522は、外気と冷媒との熱交換を行うものである。二元冷凍装置500は、第2凝縮器ファン522aを有している。第2凝縮器ファン522aにより、第2上流側凝縮器522に外気が送風され、第2上流側凝縮器522における熱交換が促される。第2凝縮器ファン522aは、風量を調整できるタイプのファンである。
 第2下流側凝縮器523は、第2上流側凝縮器522で凝縮され液化された冷媒を、さらに過冷却冷媒にするものである。本実施形態では、第2下流側凝縮器523は、カスケードコンデンサ531において第2冷媒回路を流れる第2冷媒が通過する伝熱管により構成される。そして、カスケードコンデンサ531において、第2下流側凝縮器523を流れる第2冷媒と第1冷媒回路を流れる第1冷媒との間で熱交換が行われる。
 第2上流側膨張弁524は、第2冷媒回路を流れる第2冷媒を減圧して膨張させるものであり、ここでは電子式膨張弁である。
 受液器525は、第2下流側凝縮器523および第2上流側膨張弁524の下流側に設けられている。受液器525は、冷媒を一時的に貯留するものである。
 第2下流側膨張弁526は、第2冷媒回路を流れる第2冷媒を減圧して膨張させるものであり、電子式膨張弁である。
 第2蒸発器527は、熱交換により、第1冷媒回路を流れる第1冷媒を蒸発させガス化するものである。第2蒸発器527における冷媒との熱交換により、冷却対象は、直接又は間接に冷却されることになる。
 上述した二元冷凍装置500の各構成要素は、室外ユニット501又は冷却ユニット502に収納されている。冷却ユニット502は、例えば、冷蔵冷凍ショーケース若しくはユニットクーラーとして使用される。本実施形態において、第1圧縮機511、第1凝縮器512、第1膨張弁513、第1蒸発器514、第2圧縮機521、第2上流側凝縮器522、第2下流側凝縮器523、第2上流側膨張弁524、受液器525、過冷却冷媒配管528、蒸気冷媒配管529、毛細管528a、および逆止弁529aは、室外ユニット501に収納されている。また、第2下流側膨張弁526および第2蒸発器527は、冷却ユニット502に収納されている。そして、室外ユニット501と冷却ユニット502は、2つの配管、すなわち液配管551およびガス配管552で接続されている。
 以上のような構成の二元冷凍装置500において、冷却対象である空気を冷却する通常の冷却運転における各構成機器の動作等を、各冷媒回路を循環する冷媒の流れに基づいて説明する。
 まず、図14Dを参照しながら、第1サイクル510の動作について説明する。第1圧縮機511は、第1冷媒を吸入し、圧縮して高温高圧のガス冷媒の状態にして吐出する。吐出された第1冷媒は、第1凝縮器512へ流入する。第1凝縮器512は、第1凝縮器ファン512aから供給される外気とガス冷媒である第1冷媒との間で熱交換を行い、第1冷媒を凝縮し液化する。凝縮液化された第1冷媒は、第1膨張弁513を通過する。第1膨張弁513は凝縮液化した第1冷媒を減圧する。減圧された第1冷媒は、カスケードコンデンサ531の第1蒸発器514に流入する。第1蒸発器514は、第2下流側凝縮器523を通過する第2冷媒との熱交換により、第1冷媒を蒸発、ガス化する。蒸発、ガス化された第1冷媒は、第1圧縮機511に吸入される。
 次に、図14Dを参照しながら、第2サイクル520の動作について説明する。第2圧縮機521は、第2冷媒を吸入し、圧縮して高温高圧のガス冷媒の状態にして吐出する。吐出された第2冷媒は、第2上流側凝縮器522へ流入する。第2上流側凝縮器522は、第2凝縮器ファン522aから供給される外気と第2冷媒との間で熱交換を行い、第2冷媒を凝縮し、カスケードコンデンサ531の第2下流側凝縮器523に流入する。第2下流側凝縮器523は、第1蒸発器514を通過する第1冷媒との熱交換により、さらに第1冷媒を過冷却液化する。過冷却液化された第2冷媒は、第2上流側膨張弁524を通過する。第2上流側膨張弁524は、過冷却液化された第2冷媒を減圧し、中間圧の冷媒にする。中間圧まで減圧された第2冷媒は、受液器525を通り、第2下流側膨張弁526を通過し、減圧されて低圧の冷媒となる。低圧まで減圧された第2冷媒は、第2蒸発器527に流入する。第2蒸発器527は、第2蒸発器ファン527aを用いて冷凍倉庫の庫内空気と第2冷媒とを熱交換させ、第2冷媒を蒸発ガス化する。蒸発ガス化した第2冷媒は、第2圧縮機521に吸入される。
 本実施形態に係る二元冷凍装置500では、第1サイクル510に封入する第1冷媒として上述の冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかの混合冷媒を採用しており、カスケードコンデンサ531での熱交換の効率を向上させることができている。また、第1冷媒として上述の冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかの混合冷媒を採用することで、R32を使う場合に較べてGWP(地球温暖化係数)を下げることも可能になる。
 (14-2-1)第2実施形態の第1の変形例
 上記の実施形態では、第1サイクル510に封入する第1冷媒として上述の冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかの混合冷媒を採用し、第2サイクル520に封入する第2冷媒として二酸化炭素を採用しているが、第1冷媒も第2冷媒も、共に上述の冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかの混合冷媒を採用してもよい。ここでは、第1サイクル510および第2サイクル520がカスケードコンデンサ531を介して組み合わされ二元冷凍装置500を構成しており、一元の装置に較べて冷却ユニット502側を通るサイクル(第2サイクル520)の冷媒充填量が少なくなる。このため、冷却ユニット502側の冷媒漏洩に備えた安全対策のコストを低減することが可能になる。
 (14-2-2)第2実施形態の第2の変形例
 上記の実施形態では、第1サイクル510に封入する第1冷媒として上述の冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかの混合冷媒を採用し、第2サイクル520に封入する第2冷媒として二酸化炭素を採用しているが、第1冷媒としてR32を採用し、第2冷媒として上述の冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかの混合冷媒を採用してもよい。ここでは、二酸化炭素(CO2)に較べて耐圧の設計値が低い傾向にある混合冷媒を用いることで、第2サイクル520を構成する配管や部品の耐圧レベルを下げることが可能になる。
 (14-3)第3実施形態
 (14-3-1)全体構成
 図14Eに、第3実施形態に係る冷凍装置である空調給湯システム600を示す。図14Eは、空調給湯システム600の回路構成図である。空調給湯システム600は、空調装置610と給湯装置620とを備える。給湯装置620には、給湯用温水回路640が接続されている。
 (14-3-2)詳細構成
 (14-3-2-1)空調装置
 空調装置610は、圧縮機611と室外熱交換器612と膨張弁613と室内熱交換器614とが接続された空調用冷媒回路615を備えている。具体的には、圧縮機611の吐出側に、四路切換弁616の第1ポートP1が接続されている。四路切換弁616の第2ポートP2に、室外熱交換器612のガス側端部が接続されている。室外熱交換器612の液側端部は、膨張弁613を介して、室内熱交換器614の液側端部に接続されている。室内熱交換器614のガス側端部は、四路切換弁616の第3ポートP3に接続されている。そして、四路切換弁616の第4ポートP4が、圧縮機611の吸入側に接続されている。
 四路切換弁616は、第1ポートP1と第2ポートP2が連通し、第3ポートP3と第4ポートP4が連通する第1の連通状態(図の破線の状態)と、第1ポートP1と第3ポートP3が連通し、第2ポートP2と第4ポートP4が連通する第2の連通状態(図の実線の状態)とに切り換わる。四路切換弁616を切り換えることにより、冷媒の循環方向を逆転させることができる。
 第3実施形態では、空調用冷媒回路615には、蒸気圧縮式の冷凍サイクルを行うための冷媒が充填されている。当該冷媒は、(1)で説明したいずれかの冷媒であり、上述した冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかを用いることができる。
 (14-3-2-2)給湯装置
 給湯装置620は、給湯用冷媒回路625を有する。給湯用冷媒回路625では、圧縮機621と、第1熱交換器622と、膨張弁623と、第2熱交換器624とが、順に接続されている。給湯用冷媒回路625には、冷媒として、二酸化炭素冷媒が充填されている。給湯装置620は、給湯用冷媒回路625を構成している各機器を一つのケーシング内に収めたもので、一つの給湯ユニットを構成している。
 第1熱交換器622は、吸熱部622aと放熱部622bとが一体的に構成された水/冷媒熱交換器である。第1熱交換器622は、放熱部622bが給湯用冷媒回路625に接続されるともに、吸熱部622aが、水から温水を生成する給湯用温水回路640に接続されている。第1熱交換器622では、給湯用温水回路640の水と給湯用冷媒回路625の二酸化炭素冷媒とが熱交換を行うことにより、給湯用温水回路640において水から温水が生成される。
 給湯用温水回路640は、循環ポンプ641と、第1熱交換器622の吸熱部622aと、貯湯タンク642と、が接続された回路である。給湯用温水回路640では、第1熱交換器622で二酸化炭素冷媒により加熱された温水が、貯湯タンク642に蓄えられるように、水/温水が循環する。給湯用温水回路640には、貯湯タンク642における給排水を行うため、貯湯タンク642への給水管643と、貯湯タンク642からの出湯管644と、が接続される。
 第2熱交換器624は、吸熱部624aと放熱部624bとが一体的に構成されたカスケード熱交換器であり、吸熱部624aが給湯用冷媒回路625に、放熱部624bが空調用冷媒回路615に接続されている。このように第2熱交換器624をカスケード熱交換器としたことで、空調用冷媒回路615が二元ヒートポンプサイクルの低段(低温)側の動作を行い、給湯用冷媒回路625が高段(高温)側の動作を行う。
 第2熱交換器624は、二元ヒートポンプサイクルの低段側である空調用冷媒回路615の室内熱交換器614に、並列に接続されている。三方切換弁650の切り換えによって、空調用冷媒回路615の冷媒が第2熱交換器624に流れる状態と、冷媒が室内熱交換器614に流れる状態とが切り換わる。言い換えると、二元ヒートポンプサイクルの低段側である空調用冷媒回路615では、室外熱交換器612と室内熱交換器614との間で冷媒が循環する第1動作と、室外熱交換器612と第2熱交換器624との間で冷媒が循環する第2動作とを切り換えることができる。
 (14-3-3)空調給湯システムの運転動作
 次に、空調給湯システム600の運転動作について説明する。
 まず、第1動作である空調運転は、冷房運転と暖房運転とを切り換えて行うことができる。冷房運転時は、四路切換弁616が破線側の第1連通状態にセットされ、三方切換弁650が破線側の第1連通状態にセットされる。この状態において、圧縮機611から吐出された冷媒は、四路切換弁616を通って室外熱交換器612へ流入し、室外熱交換器612で外気に放熱して凝縮する。冷媒は、膨張弁613において膨張した後、室内熱交換器614で室内空気から吸熱して蒸発し、室内空気を冷却する。その後、冷媒は四路切換弁616を通り、圧縮機611に吸入される。冷媒が以上のように循環して圧縮行程、凝縮行程、膨張行程、蒸発行程を繰り返すことにより、室内が冷房される。
 また、暖房運転時は、四路切換弁616が実線側の第2連通状態にセットされ、三方切換弁650が破線側の第1連通状態にセットされる。この状態において、圧縮機611から吐出された冷媒は、四路切換弁616および三方切換弁650を通って室内熱交換器614へ流入し、室内熱交換器614で室内空気に放熱して凝縮し、室内空気を加熱する。この冷媒は、膨張弁613において膨張した後、室外熱交換器612で外気から吸熱して蒸発する。その後、冷媒は、四路切換弁616を通り、圧縮機611に吸入される。冷媒が以上のように循環することにより、室内が暖房される。
 一方、第2動作である貯湯運転は、空調が不要となる深夜の時間帯に行われる。このとき、空調用冷媒回路615において、四路切換弁616は、暖房運転時と同様に実線側の第2連通状態にセットされ、三方切換弁650は、空調運転時とは逆に実線側の第2連通状態にセットされる。また、このときは、給湯用冷媒回路625の圧縮機621と給湯用温水回路640の循環ポンプ641の運転も行われる。
 この状態において、空調用冷媒回路615では、圧縮機611から吐出された冷媒が、四路切換弁616および三方切換弁650を通って第2熱交換器624の放熱部624bへ流入する。放熱部624bでは、空調用冷媒回路615を流れる冷媒が、給湯用冷媒回路625の二酸化炭素冷媒に放熱して凝縮し、二酸化炭素冷媒を加熱する。空調用冷媒回路615の冷媒は、その後、膨張弁613において膨張し、室外熱交換器612で蒸発した後、四路切換弁616を通って圧縮機611に吸入される。空調用冷媒回路615の冷媒は、以上のように循環し、圧縮行程、凝縮行程、膨張行程、蒸発行程を繰り返す。
 給湯用冷媒回路625では、二酸化炭素冷媒が、圧縮機621における圧縮行程、第1熱交換器622の放熱部622bにおける放熱行程、膨張弁623における膨張行程、そして第2熱交換器624の吸熱部624aにおける吸熱行程を順に行う。第2熱交換器624では、二酸化炭素冷媒が空調用冷媒回路615を流れる冷媒から吸熱し、第1熱交換器622においては、二酸化炭素冷媒が温熱を給湯用温水回路640の水に与える作用を行う。
 給湯用温水回路640では、循環ポンプ641により貯湯タンク642の水が第1熱交換器622の吸熱部622aに供給され、加熱される(温水が生成される)。加熱によって生成された温水は、貯湯タンク642に戻り、所定の蓄熱温度になるまで給湯用温水回路640内で温水の循環が継続される。以上の貯湯運転は、上述したように深夜の時間帯に行われる。一方、貯湯タンク642から出湯する給湯運転は、昼間や夜間の時間帯に行われる。給湯運転時、給湯用冷媒回路625は停止しており、空調用冷媒回路615においては室内熱交換器614を用いて冷房運転あるいは暖房運転を行うことができる。
 (14-3-4)空調給湯システムの特徴
 第3実施形態に係る空調給湯システム600では、二酸化炭素を冷媒とする給湯用冷媒回路625における熱源側の第2熱交換器624をカスケード熱交換器にしたユニット型の給湯装置620を用いている。また、第2熱交換器624を低段側冷媒回路である空調用冷媒回路615に接続して、二元のヒートポンプサイクル動作を行う構成にしている。空調用冷媒回路615では、上述した冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかの、(1)で説明したいずれかの冷媒を用いている。このため、第2熱交換器624での熱交換の効率を向上させることができている。
 (14-3-5)第3実施形態の変形例
 上記の実施形態では、第1のサイクルである空調用冷媒回路615に封入する第1冷媒として上述の冷媒X,冷媒Y,冷媒A~冷媒Eのいずれかの混合冷媒を採用し、第2のサイクルである給湯用冷媒回路625に封入する第2冷媒として二酸化炭素を採用しているが、給湯用冷媒回路625に封入する第2冷媒として、第1冷媒よりも所定温度における飽和圧力が低い冷媒を採用することが好ましい。例えば、R134aを給湯用冷媒回路625に封入ことは、好ましい。
 以上、各グループの技術に関する各実施形態を説明したが、請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
(0)図1Aの符号
1:試料セル
2:高速カメラ
3:キセノンランプ
4:コリメートレンズ
5:コリメートレンズ
6:リングフィルター
(1)第1グループおよび第2グループの技術に関する図2A-図2Xの符号
   1、1a~1m  空気調和装置(冷凍サイクル装置)
   7  コントローラ(制御部)
  10  冷媒回路
  20  室外ユニット
  21  圧縮機
  23  室外熱交換器(凝縮器、蒸発器)
  24  室外膨張弁(減圧部)
  25  室外ファン
  26  室内ブリッジ回路
  27  室外ユニット制御部(制御部)
  30  室内ユニット、第1室内ユニット
  31  室内熱交換器、第1室内熱交換器(蒸発器、凝縮器)
  32  室内ファン、第1室内ファン
  33  室内膨張弁、第1室内膨張弁(減圧部)
  34  室内ユニット制御部、第1室内ユニット制御部(制御部)
  35  第2室内ユニット
  36  第2室内熱交換器(蒸発器、凝縮器)
  37  第2室内ファン
  38  第2室内膨張弁(減圧部)
  39  第2室内ユニット制御部(制御部)
  40  バイパス配管
  41  低圧レシーバ
  42  高圧レシーバ
  43  中間圧レシーバ
  44  第1室外膨張弁(減圧部、第1減圧部)
  45  第2室外膨張弁(減圧部、第2減圧部)
  46  過冷却配管
  47  過冷却熱交換器
  48  過冷却膨張弁
  49  バイパス膨張弁
  50  吸入冷媒加熱部(冷媒熱交換部)
  51  内部熱交換器(冷媒熱交換部)
(2)第2グループの技術に関する図3A-図3Iの符号
   1、1a、1b  空気調和装置(冷凍サイクル装置)
  10  冷媒回路
  19  吸入管(吸入流路)
  20  室外ユニット
  21、21a、21b  圧縮機
  23  室外熱交換器(凝縮器、蒸発器)
  24  室外膨張弁(減圧部)
  30  室内ユニット、第1室内ユニット
  31  室内熱交換器、第1室内熱交換器(蒸発器、凝縮器)
  35  第2室内ユニット
  36  第2室内熱交換器(蒸発器、凝縮器)
  40  吸入インジェクション配管(吸入インジェクション流路、分岐流路)
  40a エコノマイザインジェクション配管(中間インジェクション流路、分岐流路)
  42  高圧レシーバ(冷媒貯留タンク)
  46  中間インジェクション配管(中間インジェクション流路)
  47  過冷却熱交換器(インジェクション用熱交換器)
  47a エコノマイザ熱交換器(インジェクション用熱交換器)
  48  過冷却膨張弁(開度調整弁)
  48a エコノマイザ膨張弁(開度調整弁)
  82  固定スクロール
  84  可動スクロール(旋回スクロール)
 196  吸入管(吸入流路)
  Sc  圧縮室
(4)第4グループの技術に関する図4A-図4Fの符号
   1、1a、1b  空気調和装置(冷凍サイクル装置)
   5  ガス側冷媒連絡配管(連絡配管)
   6  液側冷媒連絡配管(連絡配管)
  7 コントローラ(制御装置)
 10 冷媒回路
 20 室外ユニット(熱源ユニット)
 21 圧縮機
 27 室外ユニット制御部(制御装置)
 23 室外熱交換器(熱源側熱交換器)
 30 室内ユニット、第1室内ユニット(利用ユニット)
 31 室内熱交換器、第1室内熱交換器(利用側熱交換器)
 35 第2室内ユニット(利用ユニット)
 36 第2室内熱交換器(利用側熱交換器)
(5)第5グループの技術に関する図5A-図5Fの符号
   1、1a、1b  空気調和装置(冷凍サイクル装置)
   5  ガス側冷媒連絡配管(冷媒配管)
   6  液側冷媒連絡配管(冷媒配管)
  10  冷媒回路
  20  室外ユニット(熱源ユニット)
  21  圧縮機
  23  室外熱交換器(熱源側熱交換器)
  30  室内ユニット、第1室内ユニット(利用ユニット、第1利用ユニット)
  31  室内熱交換器、第1室内熱交換器(第1利用側熱交換器)
  35  第2室内ユニット(第2利用ユニット)
  36  第2室内熱交換器(第2利用側熱交換器)
(6)第6グループの技術に関する図6A-図6Lの符号
   1、1a、1b  空気調和装置(冷凍サイクル装置)
   5  ガス側冷媒連絡配管
   6  液側冷媒連絡配管
  10  冷媒回路
  20  室外ユニット
  21  圧縮機
  23  室外熱交換器(熱源側熱交換器)
  24  室外膨張弁(減圧部)
  30  室内ユニット、第1室内ユニット
  31  室内熱交換器、第1室内熱交換器(利用側熱交換器)
  35  第2室内ユニット
  36  第2室内熱交換器(利用側熱交換器)
  44  第1室外膨張弁(減圧部)
  45  第2室外膨張弁(減圧部)
(7)第7グループの技術に関する図7A-図7Pの符号
  1、1a、1b 空気調和装置(冷凍サイクル装置)
  10 冷媒回路
  20 室外ユニット
  21 圧縮機
  23 室外熱交換器(熱源側熱交換器)
  23a フィン
  23b 伝熱管
  24 室外膨張弁(減圧部)
  30 室内ユニット、第1室内ユニット
  31 室内熱交換器、第1室内熱交換器(利用側熱交換器)
 31a フィン
 31b 伝熱管
  35 第2室内ユニット
  36 第2室内熱交換器(利用側熱交換器)
 36a フィン
 36b 伝熱管
  44 第1室外膨張弁(減圧部)
  45 第2室外膨張弁(減圧部)
(8)第8グループの技術に関する図8A-図8Kの符号
   1  空調機
  21  整流回路
  22  コンデンサ
  25  インバータ
  27  コンバータ
  30  電力変換装置
  30B インダイレクトマトリックスコンバータ(電力変換装置)
  30C マトリックスコンバータ(電力変換装置)
  70  モータ
  71  回転子
 100  圧縮機
 130  電力変換装置
 130B インダイレクトマトリックスコンバータ(電力変換装置)
 130C マトリックスコンバータ(電力変換装置)
(9)第9グループの技術に関する図9A-図9Cの符号
   1  空調機
  20  起動回路
  21  正特性サーミスタ
  22  運転コンデンサ
  30  接続部
  70  モータ
  90  単相交流電源
 100  圧縮機
 130  接続部
 170  モータ
 190  三相交流電源
 200  圧縮機
(10)第10グループの技術に関する図10A-図10Nの符号
   1  給湯システム(温水製造装置)
   1a 給湯システム(温水製造装置)
   1b 給湯システム(温水製造装置)
  21  圧縮機
  22  水熱交換器(第2熱交換器)
  23  膨張弁(膨張機構)
  24  空気熱交換器(第1熱交換器)
  30  循環水配管(循環流路;第2循環流路)
  30b 循環水配管(第1循環流路)
  35  貯湯タンク(タンク)
  38  熱交換部(第1循環流路の一部)
  60  サブの循環水配管(第1循環流路)
  62  サブの水熱交換器(第3熱交換器)
 110  水循環流路(第2循環流路)
 112  水熱交換器(第3熱交換器)
 118  流路(第3流路)
 211  圧縮機
 212  放熱器(第2熱交換器)
 213  膨張弁(膨張機構)
 214  蒸発器(第2熱交換器)
 231  配管(第1循環流路)
 240  タンク
 241  流路(第2流路)
 241a 給湯用熱交換器(第2流路の一部)
 320  受水槽(給水源)
 312  給水ライン(流路)
 314  出湯ライン(流路)
 331  水流路(流路)
 333  第2熱交換器
 335  圧縮機
 336  膨張弁(膨張機構)
 337  第1熱交換器
 340  貯湯タンク(タンク)
(11)第11グループの技術に関する図11A-図11Iの符号
  10  空気調和装置(冷凍サイクル装置の例)
  16  扁平管(伝熱管の例)
  16a,193b  平面部
  19  金属板(フィンの例)
  23,125  室外熱交換器(蒸発器の例、及び、凝縮器の例)
  27  室内熱交換器(蒸発器の例、及び、凝縮器の例)
 193  扁平多孔管(伝熱管、扁平管の例)
 194  差込フィン
 194a 切り欠き
 201  内面溝付管(伝熱管の例)
 211  プレートフィン
 211a 貫通穴
(12)第12グループの技術に関する図12A-図12Oの符号
   1,601,701  空気調和装置
   2  室内機(利用側ユニットの例)
   3  室外機(熱源側ユニットの例)
 209,721  第1ダクト
 210,722  第2ダクト
 230,621,730  ケーシング
 242  室内熱交換器(利用側熱交換器の例)
 321,633,741  圧縮機
 323,634  室外熱交換器(熱源側熱交換器の例)
 602  利用側ユニット
 603  熱源側ユニット
 625  給気熱交換器(利用側熱交換器の例)
 651  給気ダクト(第1ダクトの例)
 653  吸込ダクト(第3ダクトの例)
 739  仕切板
 743  熱源側熱交換器
 745  利用側熱交換器
(13)第13グループの技術に関する図13A-図13Jの符号
  10  冷凍サイクル装置
 11,110  冷媒回路
 12,122  圧縮機
 13,123  熱源側熱交換器
  14  膨張機構
  15  利用側熱交換器
 100,100a    空気調和装置(冷凍サイクル装置)
 124  熱源側膨張機構(膨張機構)
 131  利用側熱交換器、第1利用側熱交換器(利用側熱交換器)
 133  利用側膨張機構、第1利用側膨張機構(膨張機構)
 136  第2利用側熱交換器(利用側熱交換器)
 138  第2利用側膨張機構(膨張機構)
(14)第14グループの技術に関する図14A-図14Eの符号
  11  圧縮機(第1圧縮機)
  14  熱源側熱交換器(第1放熱器)
  31  膨張弁(第1膨張機構)
  33  熱交換器
  60  利用側ユニット(第2吸熱器)
 100  熱負荷処理システム(冷凍装置)
 500  二元冷凍装置(冷凍装置)
 510  第1サイクル
 511  第1圧縮機
 512  第1凝縮器(第1放熱器)
 513  第1膨張弁(第1膨張機構)
 514  第1蒸発器(第1吸熱器)
 520  第2サイクル
 521  第2圧縮機
 523  第2下流側凝縮器(第2放熱器)
 524  第2上流側膨張弁(第2膨張機構)
 526  第2下流側膨張弁(第2膨張機構)
 527  第2蒸発器(第2吸熱器)
 531  カスケードコンデンサ(熱交換器)
  HC  熱媒体回路(第2サイクル)
  HP  熱交換器の熱媒体流路(第2放熱器)
  RC  冷媒回路(第1サイクル)
  RP  熱交換器の冷媒流路(第1吸熱器)
 600  空調給湯システム(冷凍装置)
 611  圧縮機(第1圧縮機)
 612  室外熱交換器(第1吸熱器)
 613  膨張弁(第1膨張機構)
 615  空調用冷媒回路(第1サイクル)
 621  圧縮機(第2圧縮機)
 622b 放熱部(第2放熱器)
 623  膨張弁(第2膨張機構)
 624  第2熱交換器(熱交換器)
 624a 吸熱部(第2吸熱器)
 624b 放熱部(第1放熱器)
 625  給湯用冷媒回路(第2サイクル)
国際公開第2012/157765号

Claims (3)

  1.  圧縮機と凝縮器と減圧部と蒸発器とを有する冷媒回路と、
     前記冷媒回路に封入された冷媒と、
    を備え、
     前記冷媒は、トランス-1,2-ジフルオロエチレン(HFO-1132(E))、ジフルオロメタン(R32)及び2,3,3,3-テトラフルオロ-1-プロペン(R1234yf)を合計で冷媒全体に対して99.5質量%以上含む組成物であって、
     前記冷媒は、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
      点U(32.8, 23.4, 43.8)、
      点S(32.8, 19.1, 48.1)及び
      点T(26.6, 23.3, 50.1)
    の3点をそれぞれ結ぶ直線US、ST及びTUで囲まれる図形の範囲内又は前記直線US、ST及びTU上にある、
    冷凍サイクル装置。
  2.  前記冷媒が、さらに:
    アセチレン、HFO-1132a、HFO-1141、HFO-1123、HFC-143a、HFC-134a、Z-HFO-1132、HFO-1243zf、HFC-245cb、HCFC-1122、HCFC-124、CFC-1113、HFC-152a、HFC-161及び3,3,3-トリフルオロプロピンからなる群より選択される少なくとも一種の追加的な冷媒
    を含む、請求項1に記載の冷凍サイクル装置。
  3.  R32及び/又はR410Aの代替冷媒として前記冷媒が用いられている、
    請求項1又は2に記載の冷凍サイクル装置。
PCT/JP2022/037093 2021-10-04 2022-10-04 冷凍サイクル装置 WO2023058643A1 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2021163683 2021-10-04
JP2021-163683 2021-10-04
PCT/JP2022/003424 WO2022163830A1 (ja) 2021-01-29 2022-01-28 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法
JPPCT/JP2022/003424 2022-01-28
JP2022-081828 2022-05-18
JP2022081828 2022-05-18

Publications (1)

Publication Number Publication Date
WO2023058643A1 true WO2023058643A1 (ja) 2023-04-13

Family

ID=85803401

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/JP2022/036516 WO2023058558A1 (ja) 2021-10-04 2022-09-29 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法
PCT/JP2022/037099 WO2023058646A1 (ja) 2021-10-04 2022-10-04 自動車用冷凍サイクル装置
PCT/JP2022/037093 WO2023058643A1 (ja) 2021-10-04 2022-10-04 冷凍サイクル装置

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/JP2022/036516 WO2023058558A1 (ja) 2021-10-04 2022-09-29 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法
PCT/JP2022/037099 WO2023058646A1 (ja) 2021-10-04 2022-10-04 自動車用冷凍サイクル装置

Country Status (1)

Country Link
WO (3) WO2023058558A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020017520A1 (ja) * 2018-07-17 2020-01-23 ダイキン工業株式会社 自動車用冷凍サイクル装置
JP2020076108A (ja) * 2014-01-31 2020-05-21 Agc株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
JP6777260B1 (ja) * 2019-06-19 2020-10-28 ダイキン工業株式会社 冷媒を含む組成物、その使用、並びにそれを有する冷凍機、その冷凍機の運転方法、及びそれを有する冷凍サイクル装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015186557A1 (ja) * 2014-06-06 2017-04-27 旭硝子株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020076108A (ja) * 2014-01-31 2020-05-21 Agc株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
WO2020017520A1 (ja) * 2018-07-17 2020-01-23 ダイキン工業株式会社 自動車用冷凍サイクル装置
JP6777260B1 (ja) * 2019-06-19 2020-10-28 ダイキン工業株式会社 冷媒を含む組成物、その使用、並びにそれを有する冷凍機、その冷凍機の運転方法、及びそれを有する冷凍サイクル装置

Also Published As

Publication number Publication date
WO2023058558A1 (ja) 2023-04-13
WO2023058646A1 (ja) 2023-04-13

Similar Documents

Publication Publication Date Title
US11535781B2 (en) Refrigeration cycle apparatus
JP7393669B2 (ja) 冷凍サイクル装置
JP2023153839A (ja) 冷凍サイクル装置
US20220106513A1 (en) Refrigerant-containing composition, use of same, refrigerator having same, operation method for said refrigerator, and refrigeration cycle device equipped with same
CN106414682A (zh) 热循环系统用组合物以及热循环系统
US20220177764A1 (en) Refrigerant-containing composition, use thereof, refrigerator having same, operation method for said refrigerator, and refrigeration cycle device equipped with said refrigerator
WO2020255966A1 (ja) 冷凍サイクル装置
WO2023058643A1 (ja) 冷凍サイクル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22878511

Country of ref document: EP

Kind code of ref document: A1