WO2023058624A1 - Dyeing method, evaluation method and sample - Google Patents

Dyeing method, evaluation method and sample Download PDF

Info

Publication number
WO2023058624A1
WO2023058624A1 PCT/JP2022/037046 JP2022037046W WO2023058624A1 WO 2023058624 A1 WO2023058624 A1 WO 2023058624A1 JP 2022037046 W JP2022037046 W JP 2022037046W WO 2023058624 A1 WO2023058624 A1 WO 2023058624A1
Authority
WO
WIPO (PCT)
Prior art keywords
substance
binding
fluorescent nanoparticles
binding substance
target
Prior art date
Application number
PCT/JP2022/037046
Other languages
French (fr)
Japanese (ja)
Inventor
敦郎 巽
恵祐 森近
博之 横田
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2023058624A1 publication Critical patent/WO2023058624A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • C12Q1/28Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase involving peroxidase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals

Definitions

  • the present invention relates to staining methods, evaluation methods and specimens.
  • Immunohistochemistry using antibodies labeled with enzymes or fluorescent dyes is widely used as a staining method for detecting target substances (e.g., specific proteins, drugs, etc.) in tissue specimens.
  • target substances e.g., specific proteins, drugs, etc.
  • an enzyme-labeled antibody the target substance is detected by observing a chromogenic reaction product generated by the action of the enzyme on a chromogenic substrate such as 3,3'-diaminobenzidine (DAB).
  • DAB 3,3'-diaminobenzidine
  • fluorochrome-labeled antibody the target substance is detected by observing the fluorescence emitted from the fluorochrome.
  • all of these conventional detection methods using immunohistochemical staining lack sensitivity and quantification.
  • immunohistochemical staining using fluorescent nanoparticles can detect target substances more sensitively and quantitatively than when using enzymes or fluorescent dyes.
  • the present inventors have found that in immunohistochemical staining using fluorescent nanoparticles, depending on the type of target substance, the fluorescent nanoparticles rarely produce large bright spots. As a result of further studies by the present inventors, this is because some of the plurality of fluorescent nanoparticles bound to the target substance in the tissue specimen were released from the tissue specimen and aggregated with other fluorescent nanoparticles. It was speculated that Aggregation of the fluorescent nanoparticles in this way is not preferable from the viewpoint of quantitative detection of the target substance.
  • an object of the present invention is to provide a staining method using fluorescent nanoparticles, which is capable of suppressing release of the fluorescent nanoparticles.
  • Another object of the present invention is to provide an evaluation method including the staining method, and a specimen prepared by the staining method.
  • a staining method comprises the steps of: immobilizing a first binding substance around a target substance by covalent bonding; binding to immobilize the fluorescent nanoparticles.
  • An evaluation method includes the steps of: immobilizing a first binding substance around a target substance by covalent bonding; binding and immobilizing the fluorescent nanoparticles; obtaining information about the immobilized fluorescent nanoparticles; and evaluating the target substance based on the information about the fluorescent nanoparticles.
  • a specimen according to one embodiment of the present invention is modified with a target substance, a first binding substance covalently immobilized around the target substance, and a second binding substance capable of binding to the first binding substance. and the second binding substance that modifies the fluorescent nanoparticles is bound to the first binding substance.
  • the present invention by retaining the fluorescent nanoparticles with the first binding substance that is covalently immobilized around the target substance, it is possible to suppress the release of the fluorescent nanoparticles from the surroundings of the target substance. Therefore, according to the present invention, aggregation of fluorescent nanoparticles can be prevented, and target substances can be detected more quantitatively.
  • FIG. 1 is a schematic diagram showing the surroundings of a target substance in a specimen stained by a conventional staining method.
  • FIG. 2 is a schematic diagram showing the surroundings of a target substance in a specimen stained by the staining method according to the embodiment.
  • 3A to 3D are schematic diagrams showing an example of the procedure of the staining method according to the embodiment.
  • FIG. 4A is a photograph showing the staining result of a human breast cancer tissue section when the staining method according to the example is used
  • FIG. 4B is the staining result of the human breast cancer tissue section when the staining method according to the comparative example is used. is a photograph showing FIG.
  • FIG. 5A is a photograph showing the staining result of the HT1080 cell line when the staining method according to the example is used
  • FIG. 5B is the photograph showing the staining result of the HT1080 cell line when the staining method according to the comparative example is used.
  • Figure 6 shows the number of bound anti-HER2 antibodies per cell measured using FACS (FACS value) for each cell line, and per cell stained by the staining method of Example or Comparative Example.
  • FIG. 7 is a photograph showing the dyeing results of the dyeing method according to the example and the dyeing method according to the comparative example.
  • FIG. 8 is a graph showing the relationship between the tyramide reaction time and the fluorescence intensity per cell stained by the staining method of Example or Comparative Example for each cell line.
  • the staining method according to the present embodiment comprises (1) a step of immobilizing a first binding substance around a target substance by a covalent bond; and immobilizing the fluorescent nanoparticles by binding to a binding substance.
  • the evaluation method according to the present embodiment includes, in addition to the steps (1) and (2), (3) obtaining information on the immobilized fluorescent nanoparticles; Evaluating the target substance based on particle information.
  • a second binding substance 180 that modifies the is bound.
  • fluorescent nanoparticles 170 are attached to the specimen (eg, tissue section) via strong covalent bonds. Therefore, fluorescent nanoparticles 170 are less likely to be released from the surroundings of target substance 110 .
  • one fluorescent nanoparticle 170 is often bound to the sample at a plurality of locations. Therefore, even if the binding at one site is broken, the fluorescent nanoparticles 170 will not be released from the surroundings of the target substance 110 .
  • the first binding substance is immobilized around the target substance in the sample by covalent bonding.
  • the phrase "surrounding the target substance” includes the target substance itself.
  • the first binding substance may covalently bind to the target substance.
  • specimens include human or non-human animal tissues and cells, and cultured cells.
  • human tumor tissue should be prepared as a specimen.
  • Human or non-human animal tissue can be used in the form of tissue sections such as paraffin sections and frozen sections after being fixed.
  • Human or non-human animal cells can also be used in the form of a smear.
  • Cultured cells can also be used in the form of cultured on glass slides and in the form of sections such as paraffin sections and frozen sections.
  • the type of target substance is not particularly limited and can be appropriately selected according to the purpose.
  • the target substance may be a biological substance such as a protein, a drug, or the like.
  • the method of immobilizing the first binding substance around the target substance by covalent bonding is not particularly limited.
  • (1-1) a step of directly or indirectly binding a capture substance modified with a catalyst to a target substance (see FIGS. 3A and 3B), and (1-2) a substrate modified with the first binding substance is covalently bound around the target substance in the presence of the catalyst bound to the target substance via the capture substance (see FIG. 3C).
  • the catalyst-modified capture substance is directly or indirectly bound to the target substance.
  • the catalyst-modified capture substance may directly or indirectly bind to the target substance.
  • the capture agent is an antibody
  • the catalytically modified capture agent may be a primary antibody that binds to the target agent or a secondary antibody that binds to the primary antibody bound to the target agent.
  • the type of capture substance is not particularly limited as long as it can directly or indirectly and specifically bind to the target substance.
  • Capture substances are, for example, antibodies or fragments thereof, aptamers (DNA aptamers, RNA aptamers), and the like.
  • the capture agent may be an antibody or fragment thereof that specifically binds to the target agent.
  • the capture agent may be a secondary antibody or fragment thereof that specifically binds to the primary antibody specifically bound to the target agent. .
  • the capture substance is modified with a catalyst.
  • a linker such as polyethylene glycol (PEG) may be inserted between the capture substance and the catalyst.
  • PEG polyethylene glycol
  • the catalyst promotes the reaction in which the substrate modified with the first binding substance binds around the target substance in the next step (1-2). Therefore, the type of catalyst can be appropriately selected according to the type of substrate.
  • the substrate is a compound that is radicalized by a peroxidase such as tyramide or styramide
  • the catalyst can be a peroxidase such as horseradish peroxidase (HRP).
  • Tyramides, styramides, and the like are radicalized by peroxidase in the presence of hydrogen peroxide and bind to electron-rich amino acid residues (eg, tyrosine and tryptophan).
  • the catalyst can be alkaline phosphatase (ALP).
  • a quinone methide precursor is converted to a quinone methide by hydrolysis of the phosphate group by alkaline phosphatase, and binds to highly nucleophilic functional groups (eg, amino and thiol groups).
  • step (1-1) as shown in FIG. combine.
  • the sample is washed to remove the primary antibody 120 that has not bound to the target substance 110 .
  • the specimen is provided with a liquid containing a secondary antibody 130 modified with a catalyst (horseradish peroxidase) 140 to allow the primary antibody 120 bound to the target substance 110 to be modified with the catalyst 140.
  • secondary antibody 130 is bound.
  • the specimen is washed to remove the secondary antibody 130 that has not bound to the primary antibody 120 .
  • step (1-2) above the substrate modified with the first binding substance is covalently bound around the target substance.
  • This reaction proceeds in the presence of a catalyst bound to a target substance via a capture substance. Therefore, the substrate binds only around the target substance.
  • the substrate is modified with the first binding substance and has the role of immobilizing the first binding substance around the target substance.
  • a linker such as polyethylene glycol (PEG) may be inserted between the substrate and the first binding substance.
  • PEG polyethylene glycol
  • the type of substrate can be appropriately selected according to the type of catalyst.
  • the catalyst is a peroxidase such as horseradish peroxidase
  • the substrate can be a compound that is radicalized by the peroxidase such as tyramide or styramide.
  • the substrate when the catalyst is alkaline phosphatase, the substrate can be a fluorine atom-containing quinone methide precursor.
  • the first binding substance is a substance that binds to the second binding substance that modifies the surface of the fluorescent nanoparticles. Therefore, the type of the first binding substance can be appropriately selected according to the type of the second binding substance.
  • the first binding substance can be biotin.
  • the first binding substance may be a small molecule (hapten) recognizable by an antibody, such as fluorescein isothiocyanate (FITC), digoxigenin, 2,4-dinitrophenol, and the like.
  • FITC fluorescein isothiocyanate
  • digoxigenin 2,4-dinitrophenol
  • the second binding agent can be an antibody or fragment thereof that specifically binds to this small molecule.
  • the first binding substance can be a HaloTag ligand.
  • the binding between the first binding substance and the second binding substance be strong.
  • the binding between biotin and avidin is non-covalent but as strong as covalent binding.
  • the binding between the HaloTag protein and the HaloTag ligand is a covalent bond. Therefore, when these bonds are used, the liberation of the fluorescent nanoparticles can be sufficiently prevented even with only one bond.
  • the binding between a small molecule (hapten) and an antibody is a non-covalent bond, it is preferable to generate multiple binding sites between the specimen and the fluorescent nanoparticles.
  • step (1-2) the specimen is provided with a liquid containing a substrate (tyramide) 150 modified with a first binding substance (biotin) 160, and the first binding substance 160
  • the substrate 150 modified with is covalently bound only around the target substance 110 .
  • the specimen is washed to remove unbound substrate 150 .
  • the second binding substance that modifies the surface of the fluorescent nanoparticles is bound to the first binding substance to immobilize the fluorescent nanoparticles. This stains the specimen.
  • Fluorescent nanoparticles are nano-sized particles that contain multiple phosphors and are based on particles made of organic or inorganic substances.
  • the type of phosphor is not particularly limited, it is, for example, a fluorescent dye or semiconductor nanoparticles.
  • a plurality of phosphors may be present within the particle or may be present on the surface of the particle.
  • the phosphor-accumulating particles are capable of emitting fluorescence of sufficient intensity to show the target substance as a bright spot one molecule at a time.
  • organic substances used as base materials include thermosetting resins such as melamine resin, urea resin, aniline resin, guanamine resin, phenol resin, xylene resin, and furan resin; styrene resin, acrylic resin, acrylonitrile resin, AS resin ( acrylonitrile-styrene copolymer), thermoplastic resins such as ASA resin (acrylonitrile-styrene-methyl acrylate copolymer); other resins such as polylactic acid; and polysaccharides.
  • examples of inorganic matrix materials include silica and glass. It is preferred that the matrix and the fluorescent substance have substituents or moieties with opposite charges and that electrostatic interaction works.
  • the type of fluorescent dye is not particularly limited.
  • fluorescent dyes include rhodamine-based dye molecules, squarylium-based dye molecules, cyanine-based dye molecules, aromatic ring-based dye molecules, oxazine-based dye molecules, carbopyronine-based dye molecules, and pyromethene-based dye molecules.
  • fluorescent dyes include Alexa Fluor-based dyes (registered trademark, Thermo Fisher Scientific), BODIPY-based dyes (registered trademark, Thermo Fisher Scientific), and Cy-based dyes (registered trademark, Thermo Fisher Scientific).
  • DY dyes (Dyomics), HiLyte dyes (Anaspec), DyLight dyes (registered trademark, Thermo Fisher Scientific), ATTO dyes (registered trademark, ATTO-TEC), and MFP dyes (MoBiTec) ) is included. These dyes are collectively named based on the main structure (skeleton) or trademark in the compound, and a person skilled in the art can appropriately determine the range of fluorescent dyes belonging to each without excessive trial and error. It is comprehensible.
  • the type of semiconductor that constitutes the semiconductor nanoparticle is not particularly limited as long as it can emit fluorescence.
  • Semiconductors constituting semiconductor nanoparticles are, for example, II-VI group compound semiconductors, III-V group compound semiconductors, or IV group semiconductors.
  • Examples of semiconductors that make up the semiconductor nanoparticles include CdSe, CdS, CdTe, ZnSe, ZnS, ZnTe, InP, InN, InAs, InGaP, GaP, GaAs, Si and Ge.
  • Fluorescent nanoparticles can be produced according to known methods. For example, a liquid containing a phosphor (fluorescent dye or semiconductor nanoparticles) and a silica precursor such as tetraethoxysilane is added dropwise to a solution in which ethanol and ammonia are dissolved to hydrolyze the silica precursor. Fluorescent nanoparticles can be made in which the phosphor is present in a matrix made of silica. In addition, by adding a phosphor (fluorescent dye or semiconductor nanoparticles) to a resin solution or a resin dispersion and stirring, fluorescent nanoparticles in which the phosphor is present on or in the resin matrix are produced. be able to.
  • a fluorescent dye for example, when a thermosetting resin such as a melamine resin is used as a base resin, a raw material for the resin (for example, methylolmelamine, which is a condensate of melamine and formaldehyde), a fluorescent dye, and preferably a surfactant and polymerization.
  • a thermosetting resin such as a melamine resin
  • a raw material for the resin for example, methylolmelamine, which is a condensate of melamine and formaldehyde
  • a fluorescent dye for example, methylolmelamine, which is a condensate of melamine and formaldehyde
  • a mixture containing a reaction accelerator such as an acid
  • a polymerization reaction proceeds by an emulsion polymerization method to produce fluorescent nanoparticles in which a fluorescent dye is present on or in a matrix made of a thermosetting resin.
  • a thermoplastic resin such as a styrene copolymer
  • it contains the raw material of the resin, a fluorescent dye, and a polymerization initiator (benzoyl peroxide, azobisisobutyronitrile, etc.).
  • a radical polymerization method or an ionic polymerization method fluorescent nanoparticles in which a fluorescent dye is present on or in a matrix made of a thermoplastic resin can be produced.
  • the average particle diameter of the fluorescent nanoparticles is not particularly limited, but it is usually 10 to 500 nm, preferably 50 to 200 nm, considering the ease of detection as bright spots. Also, the coefficient of variation, which indicates the variation in particle size, is usually 20% or less, preferably 5 to 15%. Fluorescent nanoparticles satisfying such conditions can be produced by adjusting the production conditions. For example, when producing fluorescent nanoparticles by emulsion polymerization, the particle size can be adjusted by the amount of surfactant added. In general, the larger the amount of surfactant relative to the amount of parent material, the smaller the particle size, and the smaller the amount of surfactant relative to the amount of parent material, the larger the particle size. Become.
  • the particle size of the fluorescent nanoparticles can be measured by measuring the projected area of the fluorescent nanoparticles using a scanning electron microscope (SEM) and converting it into an equivalent circle diameter.
  • SEM scanning electron microscope
  • the average particle size and coefficient of variation of a population of a plurality of fluorescent nanoparticles are calculated using the particle size (equivalent circle diameter) calculated for a sufficient number (eg, 1000) of fluorescent nanoparticles.
  • the fluorescent nanoparticles are modified with the second binding substance.
  • a linker such as polyethylene glycol (PEG) may be inserted between the fluorescent nanoparticles and the second binding substance.
  • the second binding substance is a substance that binds to the first binding substance immobilized around the target substance.
  • the type of the second binding substance can be appropriately selected according to the type of the first binding substance.
  • the first binding substance is biotin
  • the second binding substance can be avidin, streptavidin or neutravidin.
  • the first binding substance is a small molecule (hapten) recognizable by an antibody
  • the second binding substance can be an antibody or fragment thereof that specifically binds to this small molecule.
  • step (2) the sample is provided with a liquid containing fluorescent nanoparticles 170 modified with a second binding substance (streptavidin) 180, so that the surfaces of the fluorescent nanoparticles 170 are A second binding substance 180 to be modified is bound to the first binding substance 160 .
  • the fluorescent nanoparticles 170 are immobilized around the target substance 110 .
  • the specimen is then washed to remove unbound fluorescent nanoparticles 170 .
  • the target substance 110, the first binding substance 160 covalently immobilized around the target substance 110, and the second binding substance as shown in FIG. a second binding substance 180 modifying the fluorescent nanoparticles 170 bound to the first binding substance 160 .
  • the sample was modified with catalyst 140 directly or indirectly bound to target substance 110, as shown in FIG. It further has a capture substance 130 .
  • the first binding substance 160 is covalently immobilized around the target substance 110 via the substrate 150 of the catalyst 140 .
  • a plurality of first binding substances 160 immobilized around a target substance 110 by covalent bonding are added to a plurality of fluorescent nanoparticles 170 for modifying the surface of the fluorescent nanoparticles 170. of the second binding substance 180 are bound.
  • fluorescent nanoparticles 170 bind to the specimen via strong covalent bonds. Therefore, fluorescent nanoparticles 170 are less likely to be released from the surroundings of target substance 110 .
  • one fluorescent nanoparticle 170 is often bound to a specimen (eg, tissue section) at multiple locations. Therefore, even if the binding at one site is broken, the fluorescent nanoparticles 170 will not be released from the surroundings of the target substance 110 .
  • the specimen Before and after step (1) or before and after step (2), the specimen may be further stained with another dye or fluorescent dye.
  • the sample may be further stained with Hoechst dye (registered trademark, Thermo Fisher Scientific), DAPI, or the like.
  • the method of obtaining information on immobilized fluorescent nanoparticles is not particularly limited. For example, using a fluorescence microscope, a confocal laser microscope, a whole-slide scanner, etc., the sample is irradiated with excitation light of a wavelength corresponding to the phosphor contained in the fluorescent nanoparticles, and a fluorescence image is obtained from the fluorescence emitted from the fluorescent nanoparticles. should be taken.
  • the target substance is evaluated based on the information of the fluorescent nanoparticles obtained in step (3).
  • the method of evaluating the target substance based on the information of the fluorescent nanoparticles is not particularly limited.
  • the captured fluorescence image is image-processed to specify the position and number of the fluorescent nanoparticles.
  • one bright spot is derived from one fluorescent nanoparticle, and thus the size of the bright spot is usually constant.
  • Software used for image processing is not particularly limited, but ImageJ (open source), for example, can be used. By using such image processing software, it is possible to extract luminescent spots of a predetermined wavelength (color) and calculate the sum of their luminances, or to count the number of luminescent spots with a predetermined luminance or more. can be easily done. Then, for example, the distribution and amount of the target substance can be evaluated from the position and number of the fluorescent nanoparticles.
  • the staining method according to the present invention can stain specimens more clearly than the conventional staining method using fluorescent nanoparticles.
  • a staining method including tyramide signal amplification (TSA) (TSA fluorescence method) is also known as immunohistochemical staining using horseradish peroxidase and a substrate (tyramide) as in the present invention.
  • TSA fluorescence method the signal increases as the tyramide reaction time increases. Therefore, in the TSA fluorescence method, the quantification of the signal is impaired due to fluctuations in the reaction time.
  • the staining method according to the present invention as shown in Examples below, the signal hardly varies even if the reaction time of the substrate modified with the first binding substance varies. Therefore, in the staining method according to the present invention, even if the reaction time fluctuates, the quantification of the signal is less likely to be impaired.
  • the staining method according to the present invention provides a low background even when the amount of the target substance is small.
  • a slide glass on which a paraffin section of human breast cancer tissue was placed was immersed in xylene and ethanol in order to remove paraffin from the section. After washing the section, the section was immersed in the activation solution and heated to activate the antigen.
  • a blocking solution containing bovine serum albumin was applied to the sections to block the tissue surface.
  • a liquid containing anti-HER2 rabbit monoclonal antibody (4B5) (Ventana) was applied to the sections and allowed to stand overnight at 4°C. Sections were then washed.
  • a liquid containing a horseradish peroxidase-modified anti-rabbit IgG polyclonal antibody was applied to the sections and allowed to stand at room temperature for 30 minutes. After washing the sections, a biotin-modified tyramide solution diluted in Tris buffer containing hydrogen peroxide was applied to the sections and allowed to stand at room temperature for 10 minutes. Sections were then washed.
  • the section was provided with a liquid containing biotin-modified anti-rabbit IgG polyclonal antibody, and allowed to stand at room temperature for 30 minutes. Sections were then washed. In a comparative example, no biotin-modified tyramide was applied to the sections.
  • a liquid containing streptavidin-modified fluorescent nanoparticles was applied to the sections and allowed to stand at room temperature.
  • fluorescent nanoparticles fluorescent nanoparticles prepared by the method described in WO2017/109828 were used. After washing, nuclear counterstaining was performed with DAPI and sections were mounted.
  • FIG. 4A is a photograph showing the staining result of the staining method according to the example
  • FIG. 4B is a photograph showing the staining result of the staining method according to the comparative example.
  • the signal due to the fluorescent nanoparticles is red and the signal due to DAPI is blue, but both signals are shown in white (grayscale) in FIGS. 4A and 4B.
  • Example 2 In Experiment 2, four types of cell lines with different HER2 expression levels were subjected to a staining method according to the present invention (see Example, FIG. 2) and a conventional staining method using fluorescent nanoparticles (Comparative Example, FIG. 1). ) were compared.
  • staining targets were HT1080 (human fibrosarcoma cell line, HER2 score 0), MCF7 (human breast cancer cell line, HER2 score 1+), T47D (human breast cancer cell line, HER2 score 1+), ZR-75-1. (human breast cancer cell line, HER2 score 2+) was used.
  • cells were stained in the same manner as in Experiment 1, except that paraffin sections of cultured cells were used instead of paraffin sections of human breast cancer tissue.
  • FIG. 5A is a photograph showing the staining result of the HT1080 cell line when the staining method according to the example is used
  • FIG. 5B is the photograph showing the staining result of the HT1080 cell line when the staining method according to the comparative example is used. It is a photograph. These pictures show only the fluorescence signal from the fluorescent nanoparticles and not the fluorescence signal of the counterstain. A comparison of these photographs shows that the dyeing method according to the present invention (Example) can be dyed more clearly than the conventional dyeing method (Comparative Example).
  • Figure 6 shows the number of bound anti-HER2 antibodies per cell measured using FACS (FACS value) for each cell line, and per cell stained by the staining method of Example or Comparative Example.
  • FACS FACS value
  • Figure 6 is a graph showing the relationship between the fluorescence intensity of .
  • a black circle indicates the result of the dyeing method of the example, and a white circle indicates the result of the dyeing method of the comparative example. From this graph, it can be seen that the dyeing method (Example) according to the present invention can ensure quantitative performance equivalent to or higher than that of the conventional dyeing method (Comparative Example).
  • Experiment 3 In Experiment 3, four types of cell lines with different HER2 expression levels were subjected to a staining method according to the present invention (Example) and a conventional staining method including tyramide signal amplification (TSA) (TSA fluorescence method, Comparative Example). ) were compared.
  • TSA tyramide signal amplification
  • HT1080 human fibrosarcoma cell line, HER2 score 0
  • MCF7 human breast cancer cell line, HER2 score 1+
  • T47D human breast cancer cell line, HER2 score 1+
  • ZR-75-1 human breast cancer cell line, HER2 score 2+
  • Examples include the use of paraffin sections of cultured cells instead of paraffin sections of human breast cancer tissue, and the standing time (tyramide Cells were stained in the same procedure as in Experiment 1, except that the reaction time of the reaction) was 6 to 14 minutes.
  • streptavidin-modified fluorescent dye Alexa Fluor 594
  • streptavidin-modified fluorescent dye Alexa Fluor 594
  • FIG. 7 is a photograph showing the dyeing results of the dyeing method according to the example and the dyeing method according to the comparative example. These pictures show only the fluorescence signal from the fluorescent nanoparticles and not the fluorescence signal of the counterstain.
  • the upper left photograph of FIG. 7 and the photograph of FIG. 5A are both photographs of the HT1080 cell line stained by the staining method according to the present invention, but the gradation (contrast) is different from each other.
  • FIG. 8 is a graph showing the relationship between the tyramide reaction time and the fluorescence intensity per cell stained by the staining method of Example or Comparative Example for each cell line.
  • the staining method (Example) according to the present invention has a low background even if the target substance (HER2) is less than the conventional TSA fluorescence method (Comparative Example), and the expression level of the target substance is low. It can be seen that the staining intensity (fluorescence intensity) changes accordingly. That is, by staining with the staining method according to the present invention, four types of cell lines with different expression levels of target substances can be identified.
  • the signal intensity tends to increase as the reaction time of tyramide increases, whereas in the staining method according to the present invention (example), the same as the TSA fluorescence method It can also be seen that the signal intensity does not depend on the reaction time of tyramide, despite the use of HRP and tyramide in . That is, the staining method according to the present invention has higher stability with respect to reaction time than the TSA fluorescence method.
  • the staining method, evaluation method and specimen according to the present invention are useful, for example, for pathological diagnosis.
  • target substance 20 primary antibody 30 secondary antibody 40 biotin 50 fluorescent nanoparticles 60 streptavidin 110 target substance 120 primary antibody 130 secondary antibody 140 catalyst 150 substrate 160 first binding substance 170 fluorescent nanoparticles 180 second binding substance

Abstract

The present invention relates to a dyeing method that involves the use of fluorescent nanoparticles and makes it possible to suppress the separation of fluorescent nanoparticles. The dyeing method according to the present invention includes a step for immobilizing a first binding substance on the periphery of a sample substance by covalent bonding, and a step for binding a second binding substance that modifies the surfaces of the fluorescent nanoparticles to the first binding substance and immobilizing the fluorescent nanoparticles.

Description

染色方法、評価方法および標本Staining method, evaluation method and specimen
 本発明は、染色方法、評価方法および標本に関する。 The present invention relates to staining methods, evaluation methods and specimens.
 組織標本中における標的物質(例えば特定のタンパク質や薬剤など)を検出するための染色方法として、酵素または蛍光色素で標識された抗体を用いる免疫組織化学染色(Immunohistochemistry;IHC)が広く用いられている。酵素標識抗体を用いる場合、酵素が3,3’-ジアミノベンジジン(DAB)などの発色基質に作用することで生じる発色性の反応産物を観察することで標的物質を検出する。一方、蛍光色素標識抗体を用いる場合、蛍光色素から放出された蛍光を観察することで標的物質を検出する。しかしながら、これらの従来の免疫組織化学染色を用いた検出方法は、いずれも感度および定量性に欠ける。 Immunohistochemistry (IHC) using antibodies labeled with enzymes or fluorescent dyes is widely used as a staining method for detecting target substances (e.g., specific proteins, drugs, etc.) in tissue specimens. . When an enzyme-labeled antibody is used, the target substance is detected by observing a chromogenic reaction product generated by the action of the enzyme on a chromogenic substrate such as 3,3'-diaminobenzidine (DAB). On the other hand, when a fluorochrome-labeled antibody is used, the target substance is detected by observing the fluorescence emitted from the fluorochrome. However, all of these conventional detection methods using immunohistochemical staining lack sensitivity and quantification.
 上記問題を解決すべく、酵素または蛍光色素の代わりに、複数の蛍光色素を含む蛍光ナノ粒子で標識された抗体を用いることが提案されている。たとえば、特許文献1は、所定の長さのスペーサーを介してビオチンが結合されている抗体と、ストレプトアビジンで修飾されている蛍光ナノ粒子とを用いた、免疫組織化学染色を開示している。組織標本中の標的物質に抗体を結合させ、さらに抗体を標識するビオチンに蛍光ナノ粒子を修飾するストレプトアビジンを結合させることで、蛍光ナノ粒子を間接的に標的物質に結合させる。この蛍光ナノ粒子から放出される高強度の蛍光を計測することで、標的物質を高感度かつ定量的に検出することができる。 In order to solve the above problems, it has been proposed to use antibodies labeled with fluorescent nanoparticles containing multiple fluorescent dyes instead of enzymes or fluorescent dyes. For example, US Pat. No. 6,200,000 discloses immunohistochemical staining using antibodies conjugated with biotin via a spacer of predetermined length and fluorescent nanoparticles modified with streptavidin. The fluorescent nanoparticles are indirectly bound to the target substance by binding the antibody to the target substance in the tissue sample and further binding the biotin that labels the antibody to streptavidin that modifies the fluorescent nanoparticles. By measuring the high-intensity fluorescence emitted from the fluorescent nanoparticles, the target substance can be detected with high sensitivity and quantitatively.
国際公開第2015/133523号WO2015/133523
 上記のとおり、蛍光ナノ粒子を用いる免疫組織化学染色では、酵素または蛍光色素を用いた場合と比較して高感度かつ定量的に標的物質を検出することが可能である。しかしながら、本発明者は、蛍光ナノ粒子を用いた免疫組織化学染色において、標的物質の種類によっては、稀に蛍光ナノ粒子による輝点が大きくなることを見出した。本発明者による更なる検討の結果、これは、組織標本中の標的物質に結合した複数の蛍光ナノ粒子のうちの一部が組織標本から遊離し、他の蛍光ナノ粒子との間で凝集したためであると推察された。このように蛍光ナノ粒子が凝集してしまうことは、標的物質を定量的に検出する観点からは好ましくない。 As described above, immunohistochemical staining using fluorescent nanoparticles can detect target substances more sensitively and quantitatively than when using enzymes or fluorescent dyes. However, the present inventors have found that in immunohistochemical staining using fluorescent nanoparticles, depending on the type of target substance, the fluorescent nanoparticles rarely produce large bright spots. As a result of further studies by the present inventors, this is because some of the plurality of fluorescent nanoparticles bound to the target substance in the tissue specimen were released from the tissue specimen and aggregated with other fluorescent nanoparticles. It was speculated that Aggregation of the fluorescent nanoparticles in this way is not preferable from the viewpoint of quantitative detection of the target substance.
 そこで、本発明の目的は、蛍光ナノ粒子を用いた染色方法であって、蛍光ナノ粒子の遊離を抑制できる染色方法を提供することである。また、本発明の別の目的は、前記染色方法を含む評価方法、および前記染色方法により作製された標本を提供することも目的とする。 Therefore, an object of the present invention is to provide a staining method using fluorescent nanoparticles, which is capable of suppressing release of the fluorescent nanoparticles. Another object of the present invention is to provide an evaluation method including the staining method, and a specimen prepared by the staining method.
 本発明の一実施形態に係る染色方法は、標的物質の周囲に第1結合物質を共有結合により固定化する工程と、蛍光ナノ粒子の表面を修飾する第2結合物質を前記第1結合物質に結合させて、前記蛍光ナノ粒子を固定化する工程と、を含む。 A staining method according to one embodiment of the present invention comprises the steps of: immobilizing a first binding substance around a target substance by covalent bonding; binding to immobilize the fluorescent nanoparticles.
 本発明の一実施形態に係る評価方法は、標的物質の周囲に第1結合物質を共有結合により固定化する工程と、蛍光ナノ粒子の表面を修飾する第2結合物質を前記第1結合物質に結合させて、前記蛍光ナノ粒子を固定化する工程と、固定化された前記蛍光ナノ粒子の情報を得る工程と、前記蛍光ナノ粒子の情報に基づいて前記標的物質を評価する工程と、を含む。 An evaluation method according to one embodiment of the present invention includes the steps of: immobilizing a first binding substance around a target substance by covalent bonding; binding and immobilizing the fluorescent nanoparticles; obtaining information about the immobilized fluorescent nanoparticles; and evaluating the target substance based on the information about the fluorescent nanoparticles. .
 本発明の一実施形態に係る標本は、標的物質と、前記標的物質の周囲に共有結合により固定化されている第1結合物質と、前記第1結合物質と結合可能な第2結合物質で修飾されている蛍光ナノ粒子と、を有し、前記蛍光ナノ粒子を修飾する前記第2結合物質は、前記第1結合物質と結合している。 A specimen according to one embodiment of the present invention is modified with a target substance, a first binding substance covalently immobilized around the target substance, and a second binding substance capable of binding to the first binding substance. and the second binding substance that modifies the fluorescent nanoparticles is bound to the first binding substance.
 本発明によれば、標的物質の周囲に共有結合により固定化された第1結合物質により蛍光ナノ粒子を保持することで、標的物質の周囲から蛍光ナノ粒子が遊離することを抑制できる。したがって、本発明によれば、蛍光ナノ粒子の凝集を防ぐことができ、より定量的に標的物質を検出することができる。 According to the present invention, by retaining the fluorescent nanoparticles with the first binding substance that is covalently immobilized around the target substance, it is possible to suppress the release of the fluorescent nanoparticles from the surroundings of the target substance. Therefore, according to the present invention, aggregation of fluorescent nanoparticles can be prevented, and target substances can be detected more quantitatively.
図1は、従来の染色方法で染色した標本における標的物質の周囲の様子を示す模式図である。FIG. 1 is a schematic diagram showing the surroundings of a target substance in a specimen stained by a conventional staining method. 図2は、実施の形態に係る染色方法で染色した標本における標的物質の周囲の様子を示す模式図である。FIG. 2 is a schematic diagram showing the surroundings of a target substance in a specimen stained by the staining method according to the embodiment. 図3A~Dは、実施の形態に係る染色方法の手順の一例を示す模式図である。3A to 3D are schematic diagrams showing an example of the procedure of the staining method according to the embodiment. 図4Aは、実施例に係る染色方法を用いた場合のヒト乳がん組織切片の染色結果を示す写真であり、図4Bは、比較例に係る染色方法を用いた場合のヒト乳がん組織切片の染色結果を示す写真である。FIG. 4A is a photograph showing the staining result of a human breast cancer tissue section when the staining method according to the example is used, and FIG. 4B is the staining result of the human breast cancer tissue section when the staining method according to the comparative example is used. is a photograph showing 図5Aは、実施例に係る染色方法を用いた場合のHT1080細胞株の染色結果を示す写真であり、図5Bは、比較例に係る染色方法を用いた場合のHT1080細胞株の染色結果を示す写真である。FIG. 5A is a photograph showing the staining result of the HT1080 cell line when the staining method according to the example is used, and FIG. 5B is the photograph showing the staining result of the HT1080 cell line when the staining method according to the comparative example is used. It is a photograph. 図6は、各細胞株についての、FACSを用いて測定された1細胞あたりの抗HER2抗体の結合数(FACS値)と、実施例または比較例の染色方法で染色された細胞の1細胞あたりの蛍光強度との関係を示すグラフである。Figure 6 shows the number of bound anti-HER2 antibodies per cell measured using FACS (FACS value) for each cell line, and per cell stained by the staining method of Example or Comparative Example. is a graph showing the relationship between the fluorescence intensity of . 図7は、実施例に係る染色方法および比較例に係る染色方法の染色結果を示す写真である。FIG. 7 is a photograph showing the dyeing results of the dyeing method according to the example and the dyeing method according to the comparative example. 図8は、各細胞株についての、チラミドの反応時間と、実施例または比較例の染色方法で染色された細胞の1細胞あたりの蛍光強度との関係を示すグラフである。FIG. 8 is a graph showing the relationship between the tyramide reaction time and the fluorescence intensity per cell stained by the staining method of Example or Comparative Example for each cell line.
 以下、本発明の一実施の形態について、図面を参照して詳細に説明する。 Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.
 本実施の形態に係る染色方法は、(1)標的物質の周囲に第1結合物質を共有結合により固定化する工程と、(2)蛍光ナノ粒子の表面を修飾する第2結合物質を前記第1結合物質に結合させて、前記蛍光ナノ粒子を固定化する工程と、を含む。 The staining method according to the present embodiment comprises (1) a step of immobilizing a first binding substance around a target substance by a covalent bond; and immobilizing the fluorescent nanoparticles by binding to a binding substance.
 また、本実施の形態に係る評価方法は、上記(1)、(2)の工程に加えて、(3)固定化された前記蛍光ナノ粒子の情報を得る工程と、(4)前記蛍光ナノ粒子の情報に基づいて前記標的物質を評価する工程と、を含む。 Further, the evaluation method according to the present embodiment includes, in addition to the steps (1) and (2), (3) obtaining information on the immobilized fluorescent nanoparticles; Evaluating the target substance based on particle information.
 特許文献1に記載されているような従来の蛍光ナノ粒子を用いる染色方法では、例えば、図1に示されるように、標的物質10に1次抗体20を結合させ、1次抗体20にビオチン40で修飾された2次抗体30を結合させ、ビオチン40に蛍光ナノ粒子50を修飾するストレプトアビジン60を結合させる。この場合、1個の蛍光ナノ粒子50は、一箇所のみで標本(例えば組織切片)に結合されることが多い。また、1次抗体20および2次抗体30は、結合対象に非共有結合により結合する。したがって、例えば標的物質10と1次抗体20との間の非共有結合または1次抗体20と2次抗体30との間の結合が切れてしまった場合、蛍光ナノ粒子50が標本から遊離してしまうこととなる。遊離した蛍光ナノ粒子50は、2次抗体30に結合している他のビオチン40などを介して他の蛍光ナノ粒子50と結合し、凝集してしまうおそれがある。 In the conventional staining method using fluorescent nanoparticles as described in Patent Document 1, for example, as shown in FIG. , and biotin 40 is conjugated with streptavidin 60 , which modifies fluorescent nanoparticles 50 . In this case, one fluorescent nanoparticle 50 is often bound to the specimen (eg, tissue section) at only one point. Also, the primary antibody 20 and the secondary antibody 30 are non-covalently bound to the binding target. Therefore, for example, when the non-covalent bond between the target substance 10 and the primary antibody 20 or the bond between the primary antibody 20 and the secondary antibody 30 is broken, the fluorescent nanoparticles 50 are released from the sample. It will be put away. The released fluorescent nanoparticles 50 may bind to other fluorescent nanoparticles 50 via other biotin 40 or the like bound to the secondary antibody 30 and aggregate.
 これに対し、本実施の形態に係る染色方法では、例えば、図2に示されるように、標的物質110の周囲に共有結合により固定化された第1結合物質160に、蛍光ナノ粒子170の表面を修飾する第2結合物質180を結合させる。この場合、蛍光ナノ粒子170は、強固な共有結合を介して標本(例えば組織切片)に結合する。したがって、蛍光ナノ粒子170が標的物質110の周囲から遊離しにくい。また、上記の場合、1個の蛍光ナノ粒子170は、複数箇所で標本に結合されることが多い。したがって、仮に一箇所の結合が切れたとしても、蛍光ナノ粒子170が標的物質110の周囲から遊離することはない。 On the other hand, in the staining method according to the present embodiment, for example, as shown in FIG. A second binding substance 180 that modifies the is bound. In this case, fluorescent nanoparticles 170 are attached to the specimen (eg, tissue section) via strong covalent bonds. Therefore, fluorescent nanoparticles 170 are less likely to be released from the surroundings of target substance 110 . Moreover, in the above case, one fluorescent nanoparticle 170 is often bound to the sample at a plurality of locations. Therefore, even if the binding at one site is broken, the fluorescent nanoparticles 170 will not be released from the surroundings of the target substance 110 .
 以下、上記(1)~(4)の工程について、図3A~Dを参照しながら説明する。 The steps (1) to (4) above will be described below with reference to FIGS. 3A to 3D.
 (1)第1結合物質の固定化
 まず、標本中の標的物質の周囲に第1結合物質を共有結合により固定化する。ここで「標的物質の周囲」とは、標的物質そのものも含む。したがって、第1結合物質は、標的物質に共有結合してもよい。
(1) Immobilization of First Binding Substance First, the first binding substance is immobilized around the target substance in the sample by covalent bonding. Here, the phrase "surrounding the target substance" includes the target substance itself. Thus, the first binding substance may covalently bind to the target substance.
 標本の種類は、特に限定されず、目的に応じて適宜選択されうる。標本の例には、ヒトまたはヒト以外の動物の組織および細胞、ならびに培養細胞が含まれる。たとえば、ヒトの腫瘍について分析したい場合は、検体としてヒト腫瘍組織を準備すればよい。ヒトまたはヒト以外の動物の組織は、固定された上で、パラフィン切片や凍結切片などの組織切片の形態で使用されうる。また、ヒトまたはヒト以外の動物の細胞は、塗抹標本の形態で使用されうる。また、培養細胞は、スライドガラス上で培養された形態、およびパラフィン切片や凍結切片などの切片の形態で使用されうる。 The type of specimen is not particularly limited and can be selected as appropriate according to the purpose. Examples of specimens include human or non-human animal tissues and cells, and cultured cells. For example, to analyze human tumors, human tumor tissue should be prepared as a specimen. Human or non-human animal tissue can be used in the form of tissue sections such as paraffin sections and frozen sections after being fixed. Human or non-human animal cells can also be used in the form of a smear. Cultured cells can also be used in the form of cultured on glass slides and in the form of sections such as paraffin sections and frozen sections.
 標的物質の種類は、特に限定されず、目的に応じて適宜選択されうる。たとえば、標的物質は、タンパク質などの生体物質や薬剤などであってもよい。 The type of target substance is not particularly limited and can be appropriately selected according to the purpose. For example, the target substance may be a biological substance such as a protein, a drug, or the like.
 標的物質の周囲に第1結合物質を共有結合により固定化する方法は、特に限定されない。たとえば、(1-1)触媒で修飾された捕捉物質を標的物質に直接または間接的に結合させる工程(図3Aおよび図3B参照)と、(1-2)第1結合物質で修飾された基質を、捕捉物質を介して標的物質に結合した触媒の存在下で標的物質の周囲に共有結合させる工程(図3C参照)と、を順に行えばよい。 The method of immobilizing the first binding substance around the target substance by covalent bonding is not particularly limited. For example, (1-1) a step of directly or indirectly binding a capture substance modified with a catalyst to a target substance (see FIGS. 3A and 3B), and (1-2) a substrate modified with the first binding substance is covalently bound around the target substance in the presence of the catalyst bound to the target substance via the capture substance (see FIG. 3C).
 上記(1-1)の工程では、触媒で修飾された捕捉物質を標的物質に直接または間接的に結合させる。このとき、触媒で修飾された捕捉物質は、標的物質に直接結合してもよいし、間接的に結合してもよい。たとえば、捕捉物質が抗体である場合、触媒で修飾された捕捉物質は、標的物質に結合する1次抗体であってもよいし、標的物質に結合した1次抗体に結合する2次抗体であってもよい。 In the step (1-1) above, the catalyst-modified capture substance is directly or indirectly bound to the target substance. At this time, the catalyst-modified capture substance may directly or indirectly bind to the target substance. For example, if the capture agent is an antibody, the catalytically modified capture agent may be a primary antibody that binds to the target agent or a secondary antibody that binds to the primary antibody bound to the target agent. may
 捕捉物質の種類は、標的物質に直接または間接的に、かつ特異的に結合できれば特に限定されない。捕捉物質は、例えば抗体またはその断片、アプタマー(DNAアプタマー、RNAアプタマー)などである。触媒で修飾された捕捉物質が標的物質に直接結合する場合、捕捉物質は、標的物質に特異的に結合する抗体またはその断片であってもよい。触媒で修飾された捕捉物質が標的物質に間接的に結合する場合、捕捉物質は、標的物質に特異的に結合した1次抗体に特異的に結合する2次抗体またはその断片であってもよい。 The type of capture substance is not particularly limited as long as it can directly or indirectly and specifically bind to the target substance. Capture substances are, for example, antibodies or fragments thereof, aptamers (DNA aptamers, RNA aptamers), and the like. When the catalytically modified capture agent binds directly to the target agent, the capture agent may be an antibody or fragment thereof that specifically binds to the target agent. When the catalytically modified capture agent indirectly binds to the target agent, the capture agent may be a secondary antibody or fragment thereof that specifically binds to the primary antibody specifically bound to the target agent. .
 捕捉物質は、触媒で修飾されている。捕捉物質と触媒との間には、ポリエチレングリコール(PEG)などのリンカーが挿入されていてもよい。触媒は、次の(1-2)の工程で、第1結合物質で修飾された基質が標的物質の周囲に結合する反応を促進させる。したがって、触媒の種類は、基質の種類に応じて適宜選択されうる。たとえば、基質がチラミドやStyramideなどのペルオキシダーゼによりラジカル化する化合物である場合、触媒はホースラディッシュペルオキシダーゼ(HRP)などのペルオキシダーゼでありうる。チラミドやStyramideなどは、過酸化水素の存在下でペルオキシダーゼによりラジカル化され、電子リッチなアミノ酸残基(例えばチロシンおよびトリプトファン)に結合する。また、基質がフッ素原子を含むキノンメチド前駆体である場合、触媒はアルカリフォスファターゼ(ALP)でありうる。キノンメチド前駆体は、アルカリフォスファターゼによるリン酸基の加水分解によりキノンメチドとなり、求核性の高い官能基(例えばアミノ基およびチオール基)に結合する。 The capture substance is modified with a catalyst. A linker such as polyethylene glycol (PEG) may be inserted between the capture substance and the catalyst. The catalyst promotes the reaction in which the substrate modified with the first binding substance binds around the target substance in the next step (1-2). Therefore, the type of catalyst can be appropriately selected according to the type of substrate. For example, if the substrate is a compound that is radicalized by a peroxidase such as tyramide or styramide, the catalyst can be a peroxidase such as horseradish peroxidase (HRP). Tyramides, styramides, and the like are radicalized by peroxidase in the presence of hydrogen peroxide and bind to electron-rich amino acid residues (eg, tyrosine and tryptophan). Alternatively, when the substrate is a quinone methide precursor containing a fluorine atom, the catalyst can be alkaline phosphatase (ALP). A quinone methide precursor is converted to a quinone methide by hydrolysis of the phosphate group by alkaline phosphatase, and binds to highly nucleophilic functional groups (eg, amino and thiol groups).
 たとえば、工程(1-1)では、図3Aに示されるように、標本に標的物質110に特異的に結合する1次抗体120を含む液体を提供して、標的物質110に1次抗体120を結合させる。この後、標本を洗浄して、標的物質110に結合しなかった1次抗体120を除去する。次いで、図3Bに示されるように、標本に触媒(ホースラディッシュペルオキシダーゼ)140で修飾された2次抗体130を含む液体を提供して、標的物質110に結合した1次抗体120に触媒140で修飾された2次抗体130を結合させる。この後、標本を洗浄して、1次抗体120に結合しなかった2次抗体130を除去する。 For example, in step (1-1), as shown in FIG. combine. After that, the sample is washed to remove the primary antibody 120 that has not bound to the target substance 110 . Then, as shown in FIG. 3B, the specimen is provided with a liquid containing a secondary antibody 130 modified with a catalyst (horseradish peroxidase) 140 to allow the primary antibody 120 bound to the target substance 110 to be modified with the catalyst 140. secondary antibody 130 is bound. After that, the specimen is washed to remove the secondary antibody 130 that has not bound to the primary antibody 120 .
 上記(1-2)の工程では、第1結合物質で修飾された基質を標的物質の周囲に共有結合させる。この反応は、捕捉物質を介して標的物質に結合した触媒の存在下で進行する。したがって、基質は、標的物質の周囲のみに結合する。 In step (1-2) above, the substrate modified with the first binding substance is covalently bound around the target substance. This reaction proceeds in the presence of a catalyst bound to a target substance via a capture substance. Therefore, the substrate binds only around the target substance.
 基質は、第1結合物質で修飾されており、第1結合物質を標的物質の周囲に固定化する役割を担っている。基質と第1結合物質との間には、ポリエチレングリコール(PEG)などのリンカーが挿入されていてもよい。前述のとおり、基質の種類は、触媒の種類に応じて適宜選択されうる。すなわち、触媒がホースラディッシュペルオキシダーゼなどのペルオキシダーゼである場合、基質はチラミドやStyramideなどのペルオキシダーゼによりラジカル化する化合物でありうる。また、触媒がアルカリフォスファターゼである場合、基質はフッ素原子を含むキノンメチド前駆体でありうる。 The substrate is modified with the first binding substance and has the role of immobilizing the first binding substance around the target substance. A linker such as polyethylene glycol (PEG) may be inserted between the substrate and the first binding substance. As described above, the type of substrate can be appropriately selected according to the type of catalyst. Thus, if the catalyst is a peroxidase such as horseradish peroxidase, the substrate can be a compound that is radicalized by the peroxidase such as tyramide or styramide. Alternatively, when the catalyst is alkaline phosphatase, the substrate can be a fluorine atom-containing quinone methide precursor.
 第1結合物質は、蛍光ナノ粒子の表面を修飾する第2結合物質に結合する物質である。したがって、第1結合物質の種類は、第2結合物質の種類に応じて適宜選択されうる。たとえば、第2結合物質がアビジン、ストレプトアビジンまたはニュートラアビジンである場合、第1結合物質はビオチンでありうる。また、第1結合物質は、フルオレセインイソチオシアネート(FITC)、ジゴキシゲニン、2,4-ジニトロフェノールなどの、抗体が認識可能な小分子(ハプテン)であってもよい。この場合、第2結合物質は、この小分子に特異的に結合する抗体またはその断片でありうる。また、第2結合物質がロドコッカス・ロドクラウス(Rhodococcus rhodochrous)由来のハロアルカンデハロゲナーゼの変異体であるHaloTagタンパク質である場合、第1結合物質は、HaloTag ligandでありうる。蛍光ナノ粒子の遊離を防ぐ観点からは、第1結合物質と第2結合物質との結合は、強固であることが好ましい。たとえば、ビオチンとアビジンなどとの結合は、非共有結合ではあるが共有結合並みに強い。また、HaloTagタンパク質とHaloTag ligandとの結合は、共有結合である。したがって、これらの結合を利用する場合、一箇所の結合のみでも蛍光ナノ粒子の遊離を十分に防ぐことができる。一方、小分子(ハプテン)と抗体との結合は、非共有結合であるため、標本と蛍光ナノ粒子との間に複数箇所の結合が生成されることが好ましい。 The first binding substance is a substance that binds to the second binding substance that modifies the surface of the fluorescent nanoparticles. Therefore, the type of the first binding substance can be appropriately selected according to the type of the second binding substance. For example, if the second binding substance is avidin, streptavidin or neutravidin, the first binding substance can be biotin. Alternatively, the first binding substance may be a small molecule (hapten) recognizable by an antibody, such as fluorescein isothiocyanate (FITC), digoxigenin, 2,4-dinitrophenol, and the like. In this case, the second binding agent can be an antibody or fragment thereof that specifically binds to this small molecule. Alternatively, when the second binding substance is a HaloTag protein that is a mutant of haloalkane dehalogenase from Rhodococcus rhodochrous, the first binding substance can be a HaloTag ligand. From the viewpoint of preventing liberation of the fluorescent nanoparticles, it is preferable that the binding between the first binding substance and the second binding substance be strong. For example, the binding between biotin and avidin is non-covalent but as strong as covalent binding. Also, the binding between the HaloTag protein and the HaloTag ligand is a covalent bond. Therefore, when these bonds are used, the liberation of the fluorescent nanoparticles can be sufficiently prevented even with only one bond. On the other hand, since the binding between a small molecule (hapten) and an antibody is a non-covalent bond, it is preferable to generate multiple binding sites between the specimen and the fluorescent nanoparticles.
 たとえば、工程(1-2)では、図3Cに示されるように、標本に第1結合物質(ビオチン)160で修飾された基質(チラミド)150を含む液体を提供して、第1結合物質160で修飾された基質150を標的物質110の周囲にのみ共有結合させる。この後、標本を洗浄して、結合しなかった基質150を除去する。 For example, in step (1-2), as shown in FIG. 3C, the specimen is provided with a liquid containing a substrate (tyramide) 150 modified with a first binding substance (biotin) 160, and the first binding substance 160 The substrate 150 modified with is covalently bound only around the target substance 110 . After this, the specimen is washed to remove unbound substrate 150 .
 (2)蛍光ナノ粒子の固定化
 次に、蛍光ナノ粒子の表面を修飾する第2結合物質を第1結合物質に結合させて、蛍光ナノ粒子を固定化する。これにより、標本が染色される。
(2) Immobilization of Fluorescent Nanoparticles Next, the second binding substance that modifies the surface of the fluorescent nanoparticles is bound to the first binding substance to immobilize the fluorescent nanoparticles. This stains the specimen.
 蛍光ナノ粒子は、有機物または無機物でできた粒子を母体とし、複数の蛍光体を含む、ナノサイズの粒子である。蛍光体の種類は、特に限定されないが、例えば蛍光色素または半導体ナノ粒子である。複数の蛍光体は、粒子内に存在していてもよいし、粒子の表面に存在していてもよい。蛍光体集積粒子は、標的物質を1分子ずつ輝点として示すのに十分な強度の蛍光を発することができる。  Fluorescent nanoparticles are nano-sized particles that contain multiple phosphors and are based on particles made of organic or inorganic substances. Although the type of phosphor is not particularly limited, it is, for example, a fluorescent dye or semiconductor nanoparticles. A plurality of phosphors may be present within the particle or may be present on the surface of the particle. The phosphor-accumulating particles are capable of emitting fluorescence of sufficient intensity to show the target substance as a bright spot one molecule at a time.
 母体の材料となる有機物の例には、メラミン樹脂や尿素樹脂、アニリン樹脂、グアナミン樹脂、フェノール樹脂、キシレン樹脂、フラン樹脂などの熱硬化性樹脂;スチレン樹脂やアクリル樹脂、アクリロニトリル樹脂、AS樹脂(アクリロニトリル-スチレン共重合体)、ASA樹脂(アクリロニトリル-スチレン-アクリル酸メチル共重合体)などの熱可塑性樹脂;ポリ乳酸などのその他の樹脂;および多糖が含まれる。母体の材料となる無機物の例には、シリカおよびガラスが含まれる。母体および蛍光物質は、互いに反対の電荷を有する置換基または部位を有しており、静電的相互作用が働くものであることが好ましい。 Examples of organic substances used as base materials include thermosetting resins such as melamine resin, urea resin, aniline resin, guanamine resin, phenol resin, xylene resin, and furan resin; styrene resin, acrylic resin, acrylonitrile resin, AS resin ( acrylonitrile-styrene copolymer), thermoplastic resins such as ASA resin (acrylonitrile-styrene-methyl acrylate copolymer); other resins such as polylactic acid; and polysaccharides. Examples of inorganic matrix materials include silica and glass. It is preferred that the matrix and the fluorescent substance have substituents or moieties with opposite charges and that electrostatic interaction works.
 蛍光体が蛍光色素の場合、蛍光色素の種類は、特に限定されない。蛍光色素の例には、ローダミン系色素分子、スクアリリウム系色素分子、シアニン系色素分子、芳香環系色素分子、オキサジン系色素分子、カルボピロニン系色素分子、およびピロメセン系色素分子が含まれる。市販されている蛍光色素の例には、Alexa Fluor系色素(登録商標、Thermo Fisher Scientific社)、BODIPY系色素(登録商標、Thermo Fisher Scientific社)、Cy系色素(登録商標、Thermo Fisher Scientific社)、DY系色素(Dyomics社)、HiLyte系色素(Anaspec社)、DyLight系色素(登録商標、Thermo Fisher Scientific社)、ATTO系色素(登録商標、ATTO-TEC社)、およびMFP系色素(MoBiTec社)が含まれる。なお、これらの色素の総称は、化合物中の主要な構造(骨格)または商標に基づき命名されており、それぞれに属する蛍光色素の範囲は当業者であれば過度の試行錯誤を要することなく適切に把握できるものである。 When the phosphor is a fluorescent dye, the type of fluorescent dye is not particularly limited. Examples of fluorescent dyes include rhodamine-based dye molecules, squarylium-based dye molecules, cyanine-based dye molecules, aromatic ring-based dye molecules, oxazine-based dye molecules, carbopyronine-based dye molecules, and pyromethene-based dye molecules. Examples of commercially available fluorescent dyes include Alexa Fluor-based dyes (registered trademark, Thermo Fisher Scientific), BODIPY-based dyes (registered trademark, Thermo Fisher Scientific), and Cy-based dyes (registered trademark, Thermo Fisher Scientific). , DY dyes (Dyomics), HiLyte dyes (Anaspec), DyLight dyes (registered trademark, Thermo Fisher Scientific), ATTO dyes (registered trademark, ATTO-TEC), and MFP dyes (MoBiTec) ) is included. These dyes are collectively named based on the main structure (skeleton) or trademark in the compound, and a person skilled in the art can appropriately determine the range of fluorescent dyes belonging to each without excessive trial and error. It is comprehensible.
 蛍光体が半導体ナノ粒子の場合、半導体ナノ粒子を構成する半導体の種類は、蛍光を放出できるものであれば特に限定されない。半導体ナノ粒子を構成する半導体は、例えばII-VI族化合物半導体、III-V族化合物半導体、またはIV族半導体である。半導体ナノ粒子を構成する半導体の例には、CdSe、CdS、CdTe、ZnSe、ZnS、ZnTe、InP、InN、InAs、InGaP、GaP、GaAs、SiおよびGeが含まれる。 When the phosphor is a semiconductor nanoparticle, the type of semiconductor that constitutes the semiconductor nanoparticle is not particularly limited as long as it can emit fluorescence. Semiconductors constituting semiconductor nanoparticles are, for example, II-VI group compound semiconductors, III-V group compound semiconductors, or IV group semiconductors. Examples of semiconductors that make up the semiconductor nanoparticles include CdSe, CdS, CdTe, ZnSe, ZnS, ZnTe, InP, InN, InAs, InGaP, GaP, GaAs, Si and Ge.
 蛍光ナノ粒子は、公知の方法に従って作製することができる。たとえば、蛍光体(蛍光色素または半導体ナノ粒子)とテトラエトキシシランなどのシリカ前駆体とを含む液体を、エタノールおよびアンモニアが溶解している溶液に滴下し、シリカ前駆体を加水分解することで、シリカからなる母体の中に蛍光体が存在する蛍光ナノ粒子を作製することができる。また、樹脂の溶液または樹脂の分散液に蛍光体(蛍光色素または半導体ナノ粒子)を添加して撹拌することで、樹脂からなる母体の表面または中に蛍光体が存在する蛍光ナノ粒子を作製することができる。 Fluorescent nanoparticles can be produced according to known methods. For example, a liquid containing a phosphor (fluorescent dye or semiconductor nanoparticles) and a silica precursor such as tetraethoxysilane is added dropwise to a solution in which ethanol and ammonia are dissolved to hydrolyze the silica precursor. Fluorescent nanoparticles can be made in which the phosphor is present in a matrix made of silica. In addition, by adding a phosphor (fluorescent dye or semiconductor nanoparticles) to a resin solution or a resin dispersion and stirring, fluorescent nanoparticles in which the phosphor is present on or in the resin matrix are produced. be able to.
 また、樹脂原料の溶液に蛍光色素を添加した後、重合反応を進行させることにより、樹脂からなる母体の表面または中に蛍光色素が存在する蛍光ナノ粒子を作製することができる。たとえば、母体となる樹脂としてメラミン樹脂などの熱硬化性樹脂を用いる場合、その樹脂の原料(例えばメラミンとホルムアルデヒドの縮合物であるメチロールメラミン)と、蛍光色素と、好ましくはさらに界面活性剤および重合反応促進剤(酸など)とを含有する混合物を加熱し、乳化重合法によって重合反応を進行させることにより、熱硬化性樹脂からなる母体の表面または中に蛍光色素が存在する蛍光ナノ粒子を作製することができる。また、母体となる樹脂としてスチレン系共重合体などの熱可塑性樹脂を用いる場合、その樹脂の原料と、蛍光色素と、重合開始剤(過酸化ベンゾイルやアゾビスイソブチロニトリルなど)とを含有する混合物を加熱し、ラジカル重合法またはイオン重合法によって重合反応を進行させることにより、熱可塑性樹脂からなる母体の表面または中に蛍光色素が存在する蛍光ナノ粒子を作製することができる。 In addition, by adding a fluorescent dye to a resin raw material solution and then allowing the polymerization reaction to proceed, fluorescent nanoparticles in which the fluorescent dye is present on the surface or in the resin matrix can be produced. For example, when a thermosetting resin such as a melamine resin is used as a base resin, a raw material for the resin (for example, methylolmelamine, which is a condensate of melamine and formaldehyde), a fluorescent dye, and preferably a surfactant and polymerization. A mixture containing a reaction accelerator (such as an acid) is heated, and a polymerization reaction proceeds by an emulsion polymerization method to produce fluorescent nanoparticles in which a fluorescent dye is present on or in a matrix made of a thermosetting resin. can do. In addition, when using a thermoplastic resin such as a styrene copolymer as the base resin, it contains the raw material of the resin, a fluorescent dye, and a polymerization initiator (benzoyl peroxide, azobisisobutyronitrile, etc.). By heating the mixture and allowing the polymerization reaction to proceed by a radical polymerization method or an ionic polymerization method, fluorescent nanoparticles in which a fluorescent dye is present on or in a matrix made of a thermoplastic resin can be produced.
 蛍光ナノ粒子の平均粒径は、特に限定されないが、輝点としての検出のしやすさなどを考慮すると、通常は10~500nm、好ましくは50~200nmである。また、粒径のばらつきを示す変動係数は、通常は20%以下であり、好ましくは5~15%である。このような条件を満たす蛍光ナノ粒子は、製造条件を調整することにより製造することができる。たとえば、乳化重合法により蛍光ナノ粒子を作製する場合は、添加する界面活性剤の量によって粒径を調節することができる。一般的に、母体原料の量に対する界面活性剤の量が相対的に多くなれば、粒径は小さくなり、母体原料の量に対する界面活性剤の量が相対的に少なくなれば、粒径は大きくなる。 The average particle diameter of the fluorescent nanoparticles is not particularly limited, but it is usually 10 to 500 nm, preferably 50 to 200 nm, considering the ease of detection as bright spots. Also, the coefficient of variation, which indicates the variation in particle size, is usually 20% or less, preferably 5 to 15%. Fluorescent nanoparticles satisfying such conditions can be produced by adjusting the production conditions. For example, when producing fluorescent nanoparticles by emulsion polymerization, the particle size can be adjusted by the amount of surfactant added. In general, the larger the amount of surfactant relative to the amount of parent material, the smaller the particle size, and the smaller the amount of surfactant relative to the amount of parent material, the larger the particle size. Become.
 なお、蛍光ナノ粒子の粒径は、走査型電子顕微鏡(SEM)を用いて蛍光ナノ粒子の投影面積を計測し、円相当径に換算することで測定できる。複数の蛍光ナノ粒子からなる集団の平均粒径および変動係数は、十分な数(例えば1000個)の蛍光ナノ粒子について算出された粒径(円相当径)を用いて算出される。 The particle size of the fluorescent nanoparticles can be measured by measuring the projected area of the fluorescent nanoparticles using a scanning electron microscope (SEM) and converting it into an equivalent circle diameter. The average particle size and coefficient of variation of a population of a plurality of fluorescent nanoparticles are calculated using the particle size (equivalent circle diameter) calculated for a sufficient number (eg, 1000) of fluorescent nanoparticles.
 蛍光ナノ粒子は、第2結合物質で修飾されている。蛍光ナノ粒子と第2結合物質との間には、ポリエチレングリコール(PEG)などのリンカーが挿入されていてもよい。第2結合物質は、標的物質の周囲に固定化されている第1結合物質に結合する物質である。前述のとおり、第2結合物質の種類は、第1結合物質の種類に応じて適宜選択されうる。すなわち、第1結合物質がビオチンである場合、第2結合物質はアビジン、ストレプトアビジンまたはニュートラアビジンでありうる。また、第1結合物質が抗体が認識可能な小分子(ハプテン)である場合、第2結合物質はこの小分子に特異的に結合する抗体またはその断片でありうる。 The fluorescent nanoparticles are modified with the second binding substance. A linker such as polyethylene glycol (PEG) may be inserted between the fluorescent nanoparticles and the second binding substance. The second binding substance is a substance that binds to the first binding substance immobilized around the target substance. As described above, the type of the second binding substance can be appropriately selected according to the type of the first binding substance. Thus, if the first binding substance is biotin, the second binding substance can be avidin, streptavidin or neutravidin. Also, if the first binding substance is a small molecule (hapten) recognizable by an antibody, the second binding substance can be an antibody or fragment thereof that specifically binds to this small molecule.
 たとえば、工程(2)では、図3Dに示されるように、標本に第2結合物質(ストレプトアビジン)180で修飾された蛍光ナノ粒子170を含む液体を提供して、蛍光ナノ粒子170の表面を修飾する第2結合物質180を第1結合物質160に結合させる。これにより、蛍光ナノ粒子170が標的物質110の周囲に固定化される。この後、標本を洗浄して、結合しなかった蛍光ナノ粒子170を除去する。 For example, in step (2), as shown in FIG. 3D, the sample is provided with a liquid containing fluorescent nanoparticles 170 modified with a second binding substance (streptavidin) 180, so that the surfaces of the fluorescent nanoparticles 170 are A second binding substance 180 to be modified is bound to the first binding substance 160 . Thereby, the fluorescent nanoparticles 170 are immobilized around the target substance 110 . The specimen is then washed to remove unbound fluorescent nanoparticles 170 .
 以上の工程(1)および工程(2)により、図2に示されるような、標的物質110と、標的物質110の周囲に共有結合により固定化されている第1結合物質160と、第2結合物質180で修飾されている蛍光ナノ粒子170と、を有し、蛍光ナノ粒子170を修飾する第2結合物質180が第1結合物質160と結合している、標本を得ることができる。上記(1-1)および(1-2)の工程を行った場合は、図2に示されるように、この標本は、標的物質110に直接または間接的に結合した、触媒140で修飾された捕捉物質130をさらに有する。この場合、第1結合物質160は、触媒140の基質150を介して標的物質110の周囲に共有結合により固定化されている。 Through the above steps (1) and (2), the target substance 110, the first binding substance 160 covalently immobilized around the target substance 110, and the second binding substance as shown in FIG. a second binding substance 180 modifying the fluorescent nanoparticles 170 bound to the first binding substance 160 . When the above steps (1-1) and (1-2) were performed, the sample was modified with catalyst 140 directly or indirectly bound to target substance 110, as shown in FIG. It further has a capture substance 130 . In this case, the first binding substance 160 is covalently immobilized around the target substance 110 via the substrate 150 of the catalyst 140 .
 図2に示されるように、本実施の形態に係る染色方法では、標的物質110の周囲に共有結合により固定化された複数の第1結合物質160に、蛍光ナノ粒子170の表面を修飾する複数の第2結合物質180が結合する。この場合、蛍光ナノ粒子170は、強固な共有結合を介して標本に結合する。したがって、蛍光ナノ粒子170が標的物質110の周囲から遊離しにくい。また、1個の蛍光ナノ粒子170は、複数箇所で標本(例えば組織切片)に結合されることが多い。したがって、仮に一箇所の結合が切れたとしても、蛍光ナノ粒子170が標的物質110の周囲から遊離することはない。 As shown in FIG. 2, in the staining method according to the present embodiment, a plurality of first binding substances 160 immobilized around a target substance 110 by covalent bonding are added to a plurality of fluorescent nanoparticles 170 for modifying the surface of the fluorescent nanoparticles 170. of the second binding substance 180 are bound. In this case, fluorescent nanoparticles 170 bind to the specimen via strong covalent bonds. Therefore, fluorescent nanoparticles 170 are less likely to be released from the surroundings of target substance 110 . Also, one fluorescent nanoparticle 170 is often bound to a specimen (eg, tissue section) at multiple locations. Therefore, even if the binding at one site is broken, the fluorescent nanoparticles 170 will not be released from the surroundings of the target substance 110 .
 なお、工程(1)の前後または工程(2)の前後に、他の色素または蛍光色素によりさらに標本を染色してもよい。たとえば、すべての細胞の核を染色したい場合は、Hoechst系色素(登録商標、Thermo Fisher Scientific社)やDAPIなどで標本をさらに染色すればよい。 Before and after step (1) or before and after step (2), the specimen may be further stained with another dye or fluorescent dye. For example, when it is desired to stain the nuclei of all cells, the sample may be further stained with Hoechst dye (registered trademark, Thermo Fisher Scientific), DAPI, or the like.
 (3)蛍光ナノ粒子の情報の獲得
 標本の染色だけでなく評価も行う場合は、さらに、固定化された前記蛍光ナノ粒子の情報を得る。
(3) Acquisition of Information on Fluorescent Nanoparticles When performing not only staining of specimens but also evaluation, information on the immobilized fluorescent nanoparticles is further obtained.
 固定化された蛍光ナノ粒子の情報を得る方法は、特に限定されない。たとえば、蛍光顕微鏡や共焦点レーザー顕微鏡、ホールスライドスキャナーなどを用いて、蛍光ナノ粒子に含まれる蛍光体に対応する波長の励起光を標本に照射し、蛍光ナノ粒子から放出された蛍光による蛍光像を撮影すればよい。 The method of obtaining information on immobilized fluorescent nanoparticles is not particularly limited. For example, using a fluorescence microscope, a confocal laser microscope, a whole-slide scanner, etc., the sample is irradiated with excitation light of a wavelength corresponding to the phosphor contained in the fluorescent nanoparticles, and a fluorescence image is obtained from the fluorescence emitted from the fluorescent nanoparticles. should be taken.
 (4)標的物質を評価
 最後に、工程(3)で得られた蛍光ナノ粒子の情報に基づいて標的物質を評価する。
(4) Evaluation of Target Substance Finally, the target substance is evaluated based on the information of the fluorescent nanoparticles obtained in step (3).
 蛍光ナノ粒子の情報に基づいて標的物質を評価する方法は、特に限定されない。たとえば、撮影した蛍光像を画像処理して蛍光ナノ粒子の位置および数を特定する。蛍光像において、1個の輝点は1個の蛍光ナノ粒子に由来するので、通常は輝点の大きさは一定である。画像処理に用いるソフトウェアは、特に限定されないが、例えばImageJ(オープンソース)を使用することができる。このような画像処理ソフトウェアを利用することにより、所定の波長(色)の輝点を抽出してその輝度の総和を算出したり、所定の輝度以上の輝点の数を計測したりする処理を容易に行うことができる。そして、例えば、蛍光ナノ粒子の位置および数などから、標的物質の分布や量などを評価することができる。 The method of evaluating the target substance based on the information of the fluorescent nanoparticles is not particularly limited. For example, the captured fluorescence image is image-processed to specify the position and number of the fluorescent nanoparticles. In the fluorescence image, one bright spot is derived from one fluorescent nanoparticle, and thus the size of the bright spot is usually constant. Software used for image processing is not particularly limited, but ImageJ (open source), for example, can be used. By using such image processing software, it is possible to extract luminescent spots of a predetermined wavelength (color) and calculate the sum of their luminances, or to count the number of luminescent spots with a predetermined luminance or more. can be easily done. Then, for example, the distribution and amount of the target substance can be evaluated from the position and number of the fluorescent nanoparticles.
 (効果)
 以上のように、本発明に係る染色方法によれば、標的物質の周囲に共有結合により固定化された第1結合物質により蛍光ナノ粒子を保持させるため、標的物質の周囲から蛍光ナノ粒子が遊離することを抑制できる。したがって、本発明に係る染色方法によれば、蛍光ナノ粒子の凝集を防ぐことができ、より定量的に標的物質を検出することができる。
(effect)
As described above, according to the staining method of the present invention, since the fluorescent nanoparticles are retained by the first binding substance immobilized around the target substance by covalent bonding, the fluorescent nanoparticles are released from the surroundings of the target substance. can be suppressed. Therefore, according to the staining method of the present invention, aggregation of the fluorescent nanoparticles can be prevented, and the target substance can be detected more quantitatively.
 この後の実施例で示すように、本発明に係る染色方法を用いることで、従来の蛍光ナノ粒子を用いた染色方法を用いた場合よりも標本をより明瞭に染色することができる。 As shown in the examples below, the staining method according to the present invention can stain specimens more clearly than the conventional staining method using fluorescent nanoparticles.
 また、本発明と同様にホースラディッシュペルオキシダーゼおよび基質(チラミド)を用いる免疫組織化学染色として、チラミドシグナル増幅(TSA)を含む染色法(TSA蛍光法)が知られている。TSA蛍光法では、チラミドの反応時間の増大に伴いシグナルも増大する。よって、TSA蛍光法では、反応時間が変動してしまうことにより、シグナルの定量性が損なわれてしまう。これに対し、本発明に係る染色方法では、この後の実施例で示すように、第1結合物質で修飾された基質の反応時間が変動してもシグナルはほとんど変動しない。よって、本発明に係る染色方法では、反応時間が変動してしまっても、シグナルの定量性が損なわれにくい。 A staining method including tyramide signal amplification (TSA) (TSA fluorescence method) is also known as immunohistochemical staining using horseradish peroxidase and a substrate (tyramide) as in the present invention. In the TSA fluorescence method, the signal increases as the tyramide reaction time increases. Therefore, in the TSA fluorescence method, the quantification of the signal is impaired due to fluctuations in the reaction time. In contrast, in the staining method according to the present invention, as shown in Examples below, the signal hardly varies even if the reaction time of the substrate modified with the first binding substance varies. Therefore, in the staining method according to the present invention, even if the reaction time fluctuates, the quantification of the signal is less likely to be impaired.
 さらに、TSA蛍光法では、標的物質が少ない場合にバックグラウンドが高くなる傾向がある。これに対し、この後の実施例で示すように、本発明に係る染色方法では、標的物質が少ない場合であってもバックグラウンドが低い。 Furthermore, in the TSA fluorescence method, the background tends to be high when there are few target substances. In contrast, as shown in the examples below, the staining method according to the present invention provides a low background even when the amount of the target substance is small.
 以下、本発明について実施例を参照して詳細に説明するが、本発明はこれらの実施例により限定されない。 The present invention will be described in detail below with reference to examples, but the present invention is not limited by these examples.
 [実験1]
 実験1では、ヒト乳がん組織の切片を対象に、本発明に係る染色方法(実施例、図2参照)と従来の蛍光ナノ粒子を用いた染色方法(比較例、図1参照)を比較した。
[Experiment 1]
In Experiment 1, the staining method according to the present invention (Example, see FIG. 2) and the conventional staining method using fluorescent nanoparticles (Comparative Example, see FIG. 1) were compared for sections of human breast cancer tissue.
 ヒト乳がん組織のパラフィン切片が載置されたスライドガラスをキシレンおよびエタノールに順に浸漬して、切片からパラフィンを除去した。切片を洗浄した後、切片を賦活化溶液に浸漬した状態で加熱して抗原の賦活化を行った。ウシ血清アルブミンを含むブロッキング溶液を切片に提供し、組織表面をブロッキングした。抗HER2ウサギモノクローナル抗体(4B5)(ベンタナ社)を含む液体を切片に提供し、4℃で一晩静置した。その後、切片を洗浄した。 A slide glass on which a paraffin section of human breast cancer tissue was placed was immersed in xylene and ethanol in order to remove paraffin from the section. After washing the section, the section was immersed in the activation solution and heated to activate the antigen. A blocking solution containing bovine serum albumin was applied to the sections to block the tissue surface. A liquid containing anti-HER2 rabbit monoclonal antibody (4B5) (Ventana) was applied to the sections and allowed to stand overnight at 4°C. Sections were then washed.
 その後、実施例としては、ホースラディッシュペルオキシダーゼ修飾抗ウサギIgGポリクローナル抗体を含む液体を切片に提供し、室温で30分間静置した。切片を洗浄した後、過酸化水素を含むトリス緩衝液で希釈したビオチン修飾チラミド溶液を切片に提供し、室温で10分間静置した。その後、切片を洗浄した。 After that, as an example, a liquid containing a horseradish peroxidase-modified anti-rabbit IgG polyclonal antibody was applied to the sections and allowed to stand at room temperature for 30 minutes. After washing the sections, a biotin-modified tyramide solution diluted in Tris buffer containing hydrogen peroxide was applied to the sections and allowed to stand at room temperature for 10 minutes. Sections were then washed.
 一方、比較例としては、上記ホースラディッシュペルオキシダーゼ修飾抗ウサギIgGポリクローナル抗体の代わりにビオチン修飾抗ウサギIgGポリクローナル抗体を含む液体を切片に提供し、室温で30分間静置した。その後、切片を洗浄した。比較例では、ビオチン修飾チラミドを切片に提供しなかった。 On the other hand, as a comparative example, instead of the horseradish peroxidase-modified anti-rabbit IgG polyclonal antibody, the section was provided with a liquid containing biotin-modified anti-rabbit IgG polyclonal antibody, and allowed to stand at room temperature for 30 minutes. Sections were then washed. In a comparative example, no biotin-modified tyramide was applied to the sections.
 その後、実施例および比較例のいずれにおいても、ストレプトアビジン修飾蛍光ナノ粒子を含む液体を切片に提供し、室温で静置した。蛍光ナノ粒子としては、国際公開第2017/109828号に記載の方法で調製した蛍光ナノ粒子を使用した。洗浄後、DAPIを用いて核の対比染色を行い、切片を封入した。 After that, in both Examples and Comparative Examples, a liquid containing streptavidin-modified fluorescent nanoparticles was applied to the sections and allowed to stand at room temperature. As the fluorescent nanoparticles, fluorescent nanoparticles prepared by the method described in WO2017/109828 were used. After washing, nuclear counterstaining was performed with DAPI and sections were mounted.
 図4Aは、実施例に係る染色方法の染色結果を示す写真であり、図4Bは、比較例に係る染色方法の染色結果を示す写真である。蛍光ナノ粒子に起因するシグナルは赤色、DAPIに起因するシグナルは青色であるが、図4Aおよび図4Bではいずれのシグナルも白色(グレースケール)で示している。 FIG. 4A is a photograph showing the staining result of the staining method according to the example, and FIG. 4B is a photograph showing the staining result of the staining method according to the comparative example. The signal due to the fluorescent nanoparticles is red and the signal due to DAPI is blue, but both signals are shown in white (grayscale) in FIGS. 4A and 4B.
 これらの写真を比較すると、本発明に係る染色方法(実施例)を用いることで、従来の染色方法(比較例)を用いた場合よりもより明瞭に染色できることがわかる。この結果から、本発明に係る染色方法では、蛍光ナノ粒子が標的物質の近傍にしっかりと保持され、明瞭な染色画像が得られることが示唆された。 By comparing these photographs, it can be seen that the dyeing method (Example) according to the present invention can be dyed more clearly than the conventional dyeing method (Comparative Example). This result suggests that the staining method according to the present invention firmly retains the fluorescent nanoparticles in the vicinity of the target substance and provides a clear stained image.
 [実験2]
 実験2では、HER2の発現量が異なる4種類の細胞株を対象に、本発明に係る染色方法(実施例、図2参照)と従来の蛍光ナノ粒子を用いた染色方法(比較例、図1参照)を比較した。
[Experiment 2]
In Experiment 2, four types of cell lines with different HER2 expression levels were subjected to a staining method according to the present invention (see Example, FIG. 2) and a conventional staining method using fluorescent nanoparticles (Comparative Example, FIG. 1). ) were compared.
 実験2では、染色対象として、HT1080(ヒト線維肉腫細胞株、HER2スコア0)、MCF7(ヒト乳がん細胞株、HER2スコア1+)、T47D(ヒト乳がん細胞株、HER2スコア1+)、ZR-75-1(ヒト乳がん細胞株、HER2スコア2+)を使用した。実験2では、ヒト乳がん組織のパラフィン切片の代わりに培養細胞のパラフィン切片を用いた点を除いては、実験1と同様の手順で細胞を染色した。 In Experiment 2, staining targets were HT1080 (human fibrosarcoma cell line, HER2 score 0), MCF7 (human breast cancer cell line, HER2 score 1+), T47D (human breast cancer cell line, HER2 score 1+), ZR-75-1. (human breast cancer cell line, HER2 score 2+) was used. In Experiment 2, cells were stained in the same manner as in Experiment 1, except that paraffin sections of cultured cells were used instead of paraffin sections of human breast cancer tissue.
 図5Aは、実施例に係る染色方法を用いた場合のHT1080細胞株の染色結果を示す写真であり、図5Bは、比較例に係る染色方法を用いた場合のHT1080細胞株の染色結果を示す写真である。これらの写真では、蛍光ナノ粒子からの蛍光シグナルのみを示しており、対比染色の蛍光シグナルは示していない。これらの写真を比較すると、本発明に係る染色方法(実施例)を用いることで、従来の染色方法(比較例)を用いた場合よりもより明瞭に染色できることがわかる。 FIG. 5A is a photograph showing the staining result of the HT1080 cell line when the staining method according to the example is used, and FIG. 5B is the photograph showing the staining result of the HT1080 cell line when the staining method according to the comparative example is used. It is a photograph. These pictures show only the fluorescence signal from the fluorescent nanoparticles and not the fluorescence signal of the counterstain. A comparison of these photographs shows that the dyeing method according to the present invention (Example) can be dyed more clearly than the conventional dyeing method (Comparative Example).
 図6は、各細胞株についての、FACSを用いて測定された1細胞あたりの抗HER2抗体の結合数(FACS値)と、実施例または比較例の染色方法で染色された細胞の1細胞あたりの蛍光強度との関係を示すグラフである。黒塗りの丸は実施例の染色方法の結果を示し、白塗りの丸は比較例の染色方法の結果を示している。このグラフから、本発明に係る染色方法(実施例)は、従来の染色方法(比較例)と同程度以上の定量性を確保できることがわかる。 Figure 6 shows the number of bound anti-HER2 antibodies per cell measured using FACS (FACS value) for each cell line, and per cell stained by the staining method of Example or Comparative Example. is a graph showing the relationship between the fluorescence intensity of . A black circle indicates the result of the dyeing method of the example, and a white circle indicates the result of the dyeing method of the comparative example. From this graph, it can be seen that the dyeing method (Example) according to the present invention can ensure quantitative performance equivalent to or higher than that of the conventional dyeing method (Comparative Example).
 [実験3]
 実験3では、HER2の発現量が異なる4種類の細胞株を対象に、本発明に係る染色方法(実施例)と従来のチラミドシグナル増幅(TSA)を含む染色法(TSA蛍光法、比較例)を比較した。
[Experiment 3]
In Experiment 3, four types of cell lines with different HER2 expression levels were subjected to a staining method according to the present invention (Example) and a conventional staining method including tyramide signal amplification (TSA) (TSA fluorescence method, Comparative Example). ) were compared.
 実験3でも、染色対象として、HT1080(ヒト線維肉腫細胞株、HER2スコア0)、MCF7(ヒト乳がん細胞株、HER2スコア1+)、T47D(ヒト乳がん細胞株、HER2スコア1+)、ZR-75-1(ヒト乳がん細胞株、HER2スコア2+)を使用した。 In Experiment 3, HT1080 (human fibrosarcoma cell line, HER2 score 0), MCF7 (human breast cancer cell line, HER2 score 1+), T47D (human breast cancer cell line, HER2 score 1+), ZR-75-1 were used as staining targets. (human breast cancer cell line, HER2 score 2+) was used.
 実施例としては、ヒト乳がん組織のパラフィン切片の代わりに培養細胞のパラフィン切片を用いた点、および過酸化水素を含むトリス緩衝液で希釈したビオチン修飾チラミド溶液を提供した後の静置時間(チラミドの反応時間)を6~14分間とした点を除いては、実験1と同様の手順で細胞を染色した。 Examples include the use of paraffin sections of cultured cells instead of paraffin sections of human breast cancer tissue, and the standing time (tyramide Cells were stained in the same procedure as in Experiment 1, except that the reaction time of the reaction) was 6 to 14 minutes.
 一方、比較例としては、ストレプトアビジン修飾蛍光ナノ粒子の代わりにストレプトアビジン修飾蛍光色素(Alexa Fluor 594)を切片に提供し、室温で静置した。比較例では、ストレプトアビジン修飾蛍光ナノ粒子を切片に提供しなかった。 On the other hand, as a comparative example, streptavidin-modified fluorescent dye (Alexa Fluor 594) was provided to the sections instead of streptavidin-modified fluorescent nanoparticles, and left at room temperature. In a comparative example, sections were not provided with streptavidin-modified fluorescent nanoparticles.
 図7は、実施例に係る染色方法および比較例に係る染色方法の染色結果を示す写真である。これらの写真では、蛍光ナノ粒子からの蛍光シグナルのみを示しており、対比染色の蛍光シグナルは示していない。なお、図7の左上の写真および図5Aの写真は、いずれも本発明に係る染色方法で染色したHT1080細胞株の写真だが、互いに階調(コントラスト)が異なっている。 FIG. 7 is a photograph showing the dyeing results of the dyeing method according to the example and the dyeing method according to the comparative example. These pictures show only the fluorescence signal from the fluorescent nanoparticles and not the fluorescence signal of the counterstain. The upper left photograph of FIG. 7 and the photograph of FIG. 5A are both photographs of the HT1080 cell line stained by the staining method according to the present invention, but the gradation (contrast) is different from each other.
 図8は、各細胞株についての、チラミドの反応時間と、実施例または比較例の染色方法で染色された細胞の1細胞あたりの蛍光強度との関係を示すグラフである。 FIG. 8 is a graph showing the relationship between the tyramide reaction time and the fluorescence intensity per cell stained by the staining method of Example or Comparative Example for each cell line.
 これらの結果から、本発明に係る染色方法(実施例)は、従来のTSA蛍光法(比較例)に比べて、標的物質(HER2)が少なくてもバックグラウンドが低く、標的物質の発現量に応じて染色強度(蛍光強度)が変化することがわかる。すなわち、本発明に係る染色方法で染色することで、標的物質の発現量が異なる4種類の細胞株を識別できる。また、従来のTSA蛍光法(比較例)では、チラミドの反応時間が長くなるにつれてシグナル強度も増大する傾向にあるのに対し、本発明に係る染色方法(実施例)では、TSA蛍光法と同様にHRPおよびチラミドを用いているにもかかわらず、シグナル強度がチラミドの反応時間に依存しないこともわかる。すなわち、本発明に係る染色方法は、TSA蛍光法に比べて反応時間に対する安定性が高い。 From these results, the staining method (Example) according to the present invention has a low background even if the target substance (HER2) is less than the conventional TSA fluorescence method (Comparative Example), and the expression level of the target substance is low. It can be seen that the staining intensity (fluorescence intensity) changes accordingly. That is, by staining with the staining method according to the present invention, four types of cell lines with different expression levels of target substances can be identified. In addition, in the conventional TSA fluorescence method (comparative example), the signal intensity tends to increase as the reaction time of tyramide increases, whereas in the staining method according to the present invention (example), the same as the TSA fluorescence method It can also be seen that the signal intensity does not depend on the reaction time of tyramide, despite the use of HRP and tyramide in . That is, the staining method according to the present invention has higher stability with respect to reaction time than the TSA fluorescence method.
 本出願は、2021年10月8日出願の特願2021-166285に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用される。 This application claims priority based on Japanese Patent Application No. 2021-166285 filed on October 8, 2021. All contents described in the specification and drawings are incorporated herein by reference.
 本発明に係る染色方法、評価方法および標本は、例えば病理診断などに有用である。 The staining method, evaluation method and specimen according to the present invention are useful, for example, for pathological diagnosis.
 10 標的物質
 20 1次抗体
 30 2次抗体
 40 ビオチン
 50 蛍光ナノ粒子
 60 ストレプトアビジン
 110 標的物質
 120 1次抗体
 130 2次抗体
 140 触媒
 150 基質
 160 第1結合物質
 170 蛍光ナノ粒子
 180 第2結合物質
10 target substance 20 primary antibody 30 secondary antibody 40 biotin 50 fluorescent nanoparticles 60 streptavidin 110 target substance 120 primary antibody 130 secondary antibody 140 catalyst 150 substrate 160 first binding substance 170 fluorescent nanoparticles 180 second binding substance

Claims (12)

  1.  標的物質の周囲に第1結合物質を共有結合により固定化する工程と、
     蛍光ナノ粒子の表面を修飾する第2結合物質を前記第1結合物質に結合させて、前記蛍光ナノ粒子を固定化する工程と、
     を含む、染色方法。
    covalently immobilizing the first binding substance around the target substance;
    binding a second binding substance that modifies the surface of the fluorescent nanoparticles to the first binding substance to immobilize the fluorescent nanoparticles;
    staining method, including
  2.  前記第1結合物質を固定化する工程は、
     触媒で修飾された捕捉物質を、前記標的物質に直接または間接的に結合させる工程と、
     前記第1結合物質で修飾された基質を、前記捕捉物質を介して前記標的物質に結合した前記触媒の存在下で前記標的物質の周囲に共有結合させる工程と、
     を含む、
     請求項1に記載の染色方法。
    The step of immobilizing the first binding substance comprises:
    Directly or indirectly binding a catalytically modified capture agent to the target agent;
    covalently binding the substrate modified with the first binding substance around the target substance in the presence of the catalyst bound to the target substance via the capture substance;
    including,
    The dyeing method according to claim 1.
  3.  前記触媒は、ペルオキシダーゼであり、
     前記基質は、前記ペルオキシダーゼによりラジカル化する化合物である、
     請求項2に記載の染色方法。
    the catalyst is peroxidase,
    The substrate is a compound that is radicalized by the peroxidase,
    The dyeing method according to claim 2.
  4.  前記第1結合物質は、ビオチンであり、
     前記第2結合物質は、アビジン、ストレプトアビジンまたはニュートラアビジンである、
     請求項1~3のいずれか一項に記載の染色方法。
    the first binding substance is biotin;
    wherein said second binding substance is avidin, streptavidin or neutravidin;
    The dyeing method according to any one of claims 1 to 3.
  5.  標的物質の周囲に第1結合物質を共有結合により固定化する工程と、
     蛍光ナノ粒子の表面を修飾する第2結合物質を前記第1結合物質に結合させて、前記蛍光ナノ粒子を固定化する工程と、
     固定化された前記蛍光ナノ粒子の情報を得る工程と、
     前記蛍光ナノ粒子の情報に基づいて前記標的物質を評価する工程と、
     を含む、評価方法。
    covalently immobilizing the first binding substance around the target substance;
    binding a second binding substance that modifies the surface of the fluorescent nanoparticles to the first binding substance to immobilize the fluorescent nanoparticles;
    obtaining information about the immobilized fluorescent nanoparticles;
    evaluating the target substance based on the information of the fluorescent nanoparticles;
    evaluation methods, including;
  6.  前記第1結合物質を固定化する工程は、
     触媒で修飾された捕捉物質を、前記標的物質に直接または間接的に結合させる工程と、
     前記第1結合物質で修飾された基質を、前記捕捉物質を介して前記標的物質に結合した前記触媒の存在下で前記標的物質の周囲に共有結合させる工程と、
     を含む、
     請求項5に記載の評価方法。
    The step of immobilizing the first binding substance comprises:
    Directly or indirectly binding a catalytically modified capture agent to the target agent;
    covalently binding the substrate modified with the first binding substance around the target substance in the presence of the catalyst bound to the target substance via the capture substance;
    including,
    The evaluation method according to claim 5.
  7.  前記触媒は、ペルオキシダーゼであり、
     前記基質は、前記ペルオキシダーゼによりラジカル化する化合物である、
     請求項6に記載の評価方法。
    the catalyst is peroxidase,
    The substrate is a compound that is radicalized by the peroxidase,
    The evaluation method according to claim 6.
  8.  前記第1結合物質は、ビオチンであり、
     前記第2結合物質は、アビジン、ストレプトアビジンまたはニュートラアビジンである、
     請求項5~7のいずれか一項に記載の評価方法。
    the first binding substance is biotin;
    wherein said second binding substance is avidin, streptavidin or neutravidin;
    The evaluation method according to any one of claims 5-7.
  9.  標的物質と、
     前記標的物質の周囲に共有結合により固定化されている第1結合物質と、
     前記第1結合物質と結合可能な第2結合物質で修飾されている蛍光ナノ粒子と、
     を有し、
     前記蛍光ナノ粒子を修飾する前記第2結合物質は、前記第1結合物質と結合している、
     標本。
    a target substance;
    a first binding substance covalently immobilized around the target substance;
    a fluorescent nanoparticle modified with a second binding substance capable of binding to the first binding substance;
    has
    the second binding substance that modifies the fluorescent nanoparticles is bound to the first binding substance;
    Specimen.
  10.  前記標的物質に直接または間接的に結合した、触媒で修飾された捕捉物質をさらに有し、
     前記第1結合物質は、前記触媒の基質を介して前記標的物質の周囲に共有結合により固定化されている、
     請求項9に記載の標本。
    further comprising a catalytically modified capture agent directly or indirectly bound to said target agent;
    The first binding substance is covalently immobilized around the target substance via the substrate of the catalyst,
    A specimen according to claim 9 .
  11.  前記触媒は、ペルオキシダーゼであり、
     前記基質は、前記ペルオキシダーゼによりラジカル化する化合物である、
     請求項10に記載の標本。
    the catalyst is peroxidase,
    The substrate is a compound that is radicalized by the peroxidase,
    11. Specimen according to claim 10.
  12.  前記第1結合物質は、ビオチンであり、
     前記第2結合物質は、アビジン、ストレプトアビジンまたはニュートラアビジンである、
     請求項9~11のいずれか一項に記載の標本。
    the first binding substance is biotin;
    wherein said second binding substance is avidin, streptavidin or neutravidin;
    Specimen according to any one of claims 9-11.
PCT/JP2022/037046 2021-10-08 2022-10-04 Dyeing method, evaluation method and sample WO2023058624A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-166285 2021-10-08
JP2021166285 2021-10-08

Publications (1)

Publication Number Publication Date
WO2023058624A1 true WO2023058624A1 (en) 2023-04-13

Family

ID=85803457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037046 WO2023058624A1 (en) 2021-10-08 2022-10-04 Dyeing method, evaluation method and sample

Country Status (1)

Country Link
WO (1) WO2023058624A1 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5863748A (en) * 1997-03-14 1999-01-26 New Life Science Products, Inc. p-Hydroxycinnamoyl-containing substrates for an analyte dependent enzyme activation system
JP2010533842A (en) * 2007-07-13 2010-10-28 プロメテウス ラボラトリーズ インコーポレイテッド Drug selection for the treatment of lung cancer using antibody arrays
JP2013531801A (en) * 2010-07-02 2013-08-08 ヴェンタナ メディカル システムズ, インク. Hapten conjugates for target detection
JP2014525585A (en) * 2011-09-02 2014-09-29 ネステク ソシエテ アノニム Signal pathway protein profiling to determine therapeutic efficacy
JP2015525675A (en) * 2012-08-10 2015-09-07 ジョンソン、マッセイ、フュエル、セルズ、リミテッドJohnson Matthey Fuel Cells Limited Method for preparing a catalyst material
WO2015133523A1 (en) * 2014-03-06 2015-09-11 コニカミノルタ株式会社 Integrated phosphor nanoparticle marking agent, and fluorescent immunostaining method employing same
WO2016147825A1 (en) * 2015-03-13 2016-09-22 シスメックス株式会社 Method for detecting test substance and reagent kit used in said method
JP2017521644A (en) * 2014-05-15 2017-08-03 メソ スケール テクノロジーズ エルエルシー Improved assay method
JP2017536548A (en) * 2014-11-25 2017-12-07 ヴェンタナ メディカル システムズ, インク. Proximity assay using chemical ligation and hapten transfer
JP2018119975A (en) * 2009-10-20 2018-08-02 ダイアテック ホールディングス, インコーポレイテッドDiaTech Holdings, Inc. Proximity-mediated assay for detecting carcinogenic fusion protein
US20190265235A1 (en) * 2016-07-18 2019-08-29 Cell Idx, Inc. Reagent compounds, compositions, kits, and methods for amplified assays
JP2019527744A (en) * 2016-06-28 2019-10-03 ヴェンタナ メディカル システムズ, インク. Novel colors for chromogenic IHC and ISH staining with multi-dye quinone methide and tyramide conjugates
JP2019532012A (en) * 2016-06-28 2019-11-07 ヴェンタナ メディカル システムズ, インク. Application of click chemistry for signal amplification in IHC and ISH assays

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5863748A (en) * 1997-03-14 1999-01-26 New Life Science Products, Inc. p-Hydroxycinnamoyl-containing substrates for an analyte dependent enzyme activation system
JP2010533842A (en) * 2007-07-13 2010-10-28 プロメテウス ラボラトリーズ インコーポレイテッド Drug selection for the treatment of lung cancer using antibody arrays
JP2018119975A (en) * 2009-10-20 2018-08-02 ダイアテック ホールディングス, インコーポレイテッドDiaTech Holdings, Inc. Proximity-mediated assay for detecting carcinogenic fusion protein
JP2013531801A (en) * 2010-07-02 2013-08-08 ヴェンタナ メディカル システムズ, インク. Hapten conjugates for target detection
JP2014525585A (en) * 2011-09-02 2014-09-29 ネステク ソシエテ アノニム Signal pathway protein profiling to determine therapeutic efficacy
JP2015525675A (en) * 2012-08-10 2015-09-07 ジョンソン、マッセイ、フュエル、セルズ、リミテッドJohnson Matthey Fuel Cells Limited Method for preparing a catalyst material
WO2015133523A1 (en) * 2014-03-06 2015-09-11 コニカミノルタ株式会社 Integrated phosphor nanoparticle marking agent, and fluorescent immunostaining method employing same
JP2017521644A (en) * 2014-05-15 2017-08-03 メソ スケール テクノロジーズ エルエルシー Improved assay method
JP2017536548A (en) * 2014-11-25 2017-12-07 ヴェンタナ メディカル システムズ, インク. Proximity assay using chemical ligation and hapten transfer
WO2016147825A1 (en) * 2015-03-13 2016-09-22 シスメックス株式会社 Method for detecting test substance and reagent kit used in said method
JP2019527744A (en) * 2016-06-28 2019-10-03 ヴェンタナ メディカル システムズ, インク. Novel colors for chromogenic IHC and ISH staining with multi-dye quinone methide and tyramide conjugates
JP2019532012A (en) * 2016-06-28 2019-11-07 ヴェンタナ メディカル システムズ, インク. Application of click chemistry for signal amplification in IHC and ISH assays
US20190265235A1 (en) * 2016-07-18 2019-08-29 Cell Idx, Inc. Reagent compounds, compositions, kits, and methods for amplified assays

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Power Styramide™ Signal Amplification Reagent (PSA™)", COSMOBIO - PRODUCT INFORMATION, COSMOBIO, JP, JP, XP009547062, Retrieved from the Internet <URL:https://www.cosmobio.co.jp/product/detail/power-styramide-signal-amplification-abd.asp?entry_id=36989> *
TANAKA KEIKO: "Quinone methide signal amplification system (QMSA) ", TOPICS ON CHEMISTR, no. 157, 28 June 2016 (2016-06-28), XP093055562 *

Similar Documents

Publication Publication Date Title
EP3124969B1 (en) Biological-material quantitation method based on multiple-antigen immunostaining
JP6296050B2 (en) Resin particles for fluorescent labeling
US10509039B2 (en) Integrated phosphor nanoparticle marking agent, and fluorescent immunostaining employing same
US20120071338A1 (en) Polymerization-based amplification for immunostaining and biodetection
WO2015045961A1 (en) Fluorescent nanoparticle label, multiple immunostain kit, and multiple immunostaining method
JP6960224B2 (en) Biomaterial quantification method, pathological diagnosis support system and program
JP6614161B2 (en) Phosphor integrated nanoparticles used for fluorescence observation
US10352859B2 (en) Method for determining quantity of biological material in tissue section
JP2019090816A (en) Pathological specimens and method for producing pathological specimens
WO2023058624A1 (en) Dyeing method, evaluation method and sample
JP2017044482A (en) Method for selecting fluorescent dye containing resin particle solution, and method for adjusting concentration
EP3441761A1 (en) Fluorescent immunostaining method
EP3608669A1 (en) Fluorescent premix particles, fluorescent stain containing same, and fluorescent staining method in which these are used
US20200165666A1 (en) Diluent for fluorescent nano particles, kit for immunofluorescent staining which utilizes same, solution for immunofluorescent staining, immunofluorescent staining method, and gene staining method
JP6583011B2 (en) Method for washing immunostained slides using acidic aqueous solution
EP3173785B1 (en) Labeling reagent containing a molecularly targeted drug
WO2017014196A1 (en) Target biological substance analysis method and analysis system
WO2021192910A1 (en) Image generation method, image generation device, and program
WO2021039592A1 (en) Method for supporting drug discovery, device for supporting drug discovery and program
JP2018155608A (en) Multistage fluorescent staining method using fluorescent accumulated grain composite body and fluorescent accumulated grain composite body
JP7001083B2 (en) Fluorescent integrated nanoparticles used for fluorescence observation
WO2020050373A1 (en) Information acquiring method, information acquiring device, and program
JP6398419B2 (en) Labeling agent containing sorafenib
WO2022196203A1 (en) Image formation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22878493

Country of ref document: EP

Kind code of ref document: A1