WO2021039592A1 - Method for supporting drug discovery, device for supporting drug discovery and program - Google Patents

Method for supporting drug discovery, device for supporting drug discovery and program Download PDF

Info

Publication number
WO2021039592A1
WO2021039592A1 PCT/JP2020/031480 JP2020031480W WO2021039592A1 WO 2021039592 A1 WO2021039592 A1 WO 2021039592A1 JP 2020031480 W JP2020031480 W JP 2020031480W WO 2021039592 A1 WO2021039592 A1 WO 2021039592A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
information
drug discovery
threshold value
fluorescent
Prior art date
Application number
PCT/JP2020/031480
Other languages
French (fr)
Japanese (ja)
Inventor
高橋 優
義一 栗原
祐輝 三宅
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2021542816A priority Critical patent/JPWO2021039592A1/ja
Publication of WO2021039592A1 publication Critical patent/WO2021039592A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/15Medicinal preparations ; Physical properties thereof, e.g. dissolubility
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor

Definitions

  • the present invention relates to a drug discovery support method, a drug discovery support device, and a program.
  • An object of the present invention is to provide a drug discovery support method, a drug discovery support device, and a program capable of quickly and accurately determining the sensitivity of a drug and a suitable biological part.
  • the drug discovery support method of the present invention is used.
  • the drug discovery support device of the present invention is An acquisition means for acquiring expression information of a target part in a plurality of biological parts and a fluorescently labeled target biological substance of the target part to be compared with the target part.
  • a display control means for displaying the list information obtained by digitizing the expression information of each part acquired by the acquisition means and displaying the list information, and the threshold value information indicating a predetermined threshold value on the display unit. To be equipped.
  • the program of the present invention Computer, An acquisition means for acquiring expression information of a target part in a plurality of biological parts and a fluorescently labeled target biological substance of the target part to be compared with the target part. A display control means for displaying on the display unit the list information obtained by digitizing the expression information of each part acquired by the acquisition means and displaying the list information and the threshold value information indicating a predetermined threshold value. It is a program that functions as.
  • FIG. 1 It is a figure which shows the schematic structure of the drug discovery support system which concerns on this invention. It is a block diagram which shows the functional structure of the information acquisition apparatus of FIG. It is a figure which shows an example of evaluation support information. It is a figure for demonstrating evaluation support information. It is a figure which shows an example of evaluation support information.
  • FIG. 1 shows an overall configuration example of a drug discovery support system 100 that executes the drug discovery support method according to the present invention.
  • the drug discovery support system 100 acquires a microscopic image of a tissue sample stained with a predetermined staining reagent, and analyzes the acquired microscopic image to quantitatively express the expression of a specific biological substance in the tissue sample to be observed. It is a system that can output the feature amount represented by.
  • the drug discovery support system 100 is configured by connecting a microscope image acquisition device 1A and an information acquisition device 2A as a drug discovery support device so as to be able to transmit and receive data via an interface such as a cable 3A.
  • the connection method between the microscope image acquisition device 1A and the information acquisition device 2A is not particularly limited.
  • the microscope image acquisition device 1A and the information acquisition device 2A may be connected by a LAN (Local Area Network) or may be wirelessly connected.
  • LAN Local Area Network
  • the microscope image acquisition device 1A is a known optical microscope with a camera, which acquires a microscope image of a tissue sample on a slide placed on a slide fixing stage and transmits it to the information acquisition device 2A.
  • the microscope image acquisition device 1A is configured to include an irradiation means, an imaging means, an imaging means, a communication I / F, and the like.
  • the irradiation means is composed of a light source, a filter, and the like, and irradiates a tissue sample on the slide placed on the slide fixing stage with light.
  • the imaging means is composed of an eyepiece, an objective lens, or the like, and forms a transmitted light, a reflected light, or a fluorescence emitted from a tissue sample on a slide by the irradiated light.
  • the imaging means is a microscope-installed camera equipped with a CCD (Charge Coupled Device) sensor or the like, and images an image formed on an imaging surface by the imaging means to generate digital image data of a microscope image.
  • the communication I / F transmits the image data of the generated microscope image to the information acquisition device 2A.
  • the microscope image acquisition device 1A includes a bright field unit in which an irradiation means and an imaging means suitable for bright field observation are combined, and a fluorescence unit in which an irradiation means and an imaging means suitable for fluorescence observation are combined. It is possible to switch between bright field and fluorescence by switching the unit.
  • the microscope image acquisition device 1A is not limited to a microscope with a camera, and is, for example, a virtual microscope slide creation device (for example, a special microscope image acquisition device) that scans a slide on a slide fixing stage of a microscope to acquire a microscope image of the entire tissue specimen. (See Table 2002-514319) and the like may be used. According to the virtual microscope slide creating device, it is possible to acquire image data in which the entire image of the tissue sample on the slide can be viewed at once on the display unit.
  • a virtual microscope slide creation device for example, a special microscope image acquisition device
  • the information acquisition device 2A analyzes the microscope image transmitted from the microscope image acquisition device 1A.
  • FIG. 2 shows an example of the functional configuration of the information acquisition device 2A.
  • the information acquisition device 2A is configured to include a control unit 21, an operation unit 22, a display unit 23, a communication I / F 24, a storage unit 25, and the like, and each unit is connected via a bus 26. There is.
  • the control unit 21 is configured to include a CPU (Central Processing Unit), a RAM (Random Access Memory), etc., executes various processes in cooperation with various programs stored in the storage unit 25, and executes various processes to obtain information acquisition device 2A. Controls the operation of.
  • a CPU Central Processing Unit
  • RAM Random Access Memory
  • the operation unit 22 is configured to include a keyboard equipped with character input keys, number input keys, various function keys, and a pointing device such as a mouse, and a key press signal operated by the keyboard and an operation signal by the mouse. Is output to the control unit 21 as an input signal.
  • the display unit 23 is configured to include, for example, a monitor such as a CRT (Cathode Ray Tube) or an LCD (Liquid Crystal Display), and displays various screens according to instructions of display signals input from the control unit 21.
  • a monitor such as a CRT (Cathode Ray Tube) or an LCD (Liquid Crystal Display)
  • LCD Liquid Crystal Display
  • the communication I / F 24 is an interface for transmitting and receiving data to and from an external device such as the microscope image acquisition device 1A, and inputs a fluorescent image captured by the microscope image acquisition device 1A to the information acquisition device 2A. Act as a means for.
  • the storage unit 25 is composed of, for example, an HDD (Hard Disk Drive), a semiconductor non-volatile memory, or the like. As described above, various programs, various data, and the like are stored in the storage unit 25.
  • the information acquisition device 2A may be provided with a LAN adapter, a router, or the like, and may be connected to an external device via a communication network such as a LAN.
  • the drug discovery support methods according to this embodiment are mainly 1. 2. The process of staining sections of multiple organs (living parts) using a staining reagent. 2. The step of detecting the domain of the biological substance from the stained section and 3. It has a step of evaluating the expression level of the domain of the detected biological substance.
  • fluorescent nanoparticles can be used as a staining reagent.
  • Fluorescent nanoparticles are nano-sized particles that emit fluorescence when irradiated with excitation light, and are particles capable of emitting fluorescence having sufficient intensity to represent a target biological substance as a bright spot one by one.
  • fluorescent nanoparticles preferably fluorescent substance integrated nanoparticles (PID) are used.
  • a biological substance recognition site that recognizes one domain is bound to one of the nanoparticles, and a predetermined fluorescent substance is contained therein.
  • a fluorescent substance having a biological substance recognition site that recognizes a domain different from the biological substance recognition site of one nanoparticle is bound to the other nanoparticle, and has a fluorescence wavelength different from that of the fluorescent substance of one nanoparticle. It is included. That is, each nanoparticles contains biomaterial recognition sites that are different from each other and fluorescent substances having different fluorescence wavelengths. Therefore, different domains of the same protein can be clearly distinguished and stained due to the difference in fluorescence wavelength caused by the fluorescent substance.
  • three or more types of nanoparticles may be used to detect three or more types of domains. Details of the types and characteristics of fluorescent substances and methods for detecting biological substances are as follows.
  • Target biomaterial is a substance that is subject to immunohistochemical staining using a fluorescent label, mainly for detection or quantification from the viewpoint of pathological diagnosis, and is expressed in a tissue section. It is a biological substance.
  • target biological substance applicable to the present embodiment examples include biological substances that can be used as biomarkers such as proteins (antigens) and mRNA. Specific examples include, but are not limited to, PD-L1, HER2, TIM-3, and the like.
  • Fluorescent substance-accumulated nanoparticles are based on particles made of organic substances or inorganic substances, and a plurality of fluorescent substances (for example, fluorescent organic dyes and quantum dots described later) are contained therein. Nano-sized particles having a structure that is and / or is adsorbed on the surface thereof. As the fluorescent substance-accumulated nanoparticles, it is preferable that the matrix and the fluorescent substance have substituents or sites having opposite charges and electrostatically interact with each other. As the fluorescent substance-accumulated nanoparticles, fluorescent dye-accumulated nanoparticles, quantum dot-accumulated nanoparticles, and the like are used.
  • fluorescent substance used in the dyeing reagent for acquiring a fluorescent image examples include a fluorescent organic dye and quantum dots (semiconductor particles). When excited by ultraviolet-near-infrared light having a wavelength in the range of 200 to 700 nm, it is preferable to exhibit visible to near-infrared light having a wavelength in the range of 400 to 1000 nm.
  • Fluorescein dye molecules Fluorescein dye molecules, rhodamine dye molecules, Alexa Fluor (Invigen) dye molecules, BODIPY (Invigen) dye molecules, cascade dye molecules, coumarin dye molecules, and eodin dyes
  • examples thereof include molecules, NBD-based dye molecules, pyrene-based dye molecules, Texas Red-based dye molecules, cyanine-based dye molecules, and the like.
  • Quantum dots include group II-VI compounds, group III-V compounds, or group IV elements as components ("group II-VI quantum dots”, “group III-V quantum dots”, and “group III-V quantum dots, respectively”. Either of "Group IV quantum dots") can be used. It may be used alone or in a mixture of a plurality of types.
  • Specific examples include, but are not limited to, CdSe, CdS, CdTe, ZnSe, ZnS, ZnTe, InP, InN, InAs, InGaP, GaP, GaAs, Si, and Ge.
  • a quantum dot having the above quantum dot as a core and a shell provided on the core.
  • the core is CdSe and the shell is ZnS
  • CdSe / ZnS when the core is CdSe and the shell is ZnS, it is described as CdSe / ZnS.
  • CdSe / ZnS, CdS / ZnS, InP / ZnS, InGaP / ZnS, Si / SiO 2 , Si / ZnS, Ge / GeO 2 , Ge / ZnS and the like can be used, but are not limited thereto.
  • the quantum dots may be surface-treated with an organic polymer or the like.
  • CdSe / ZnS having a surface carboxy group manufactured by Invitrogen
  • CdSe / ZnS having a surface amino group manufactured by Invitrogen
  • the fluorescent substance to be accumulated in the fluorescent substance-accumulated nanoparticles in addition to the fluorescent organic dye and the quantum dot as described above, for example, Y 2 O 3 , Zn 2 SiO 4, etc. are used as the parent body, and Mn 2+, Eu 3+, etc. are activated. Examples thereof include a "long afterglow phosphor" as an agent.
  • the organic substances are resins generally classified as thermosetting resins such as melamine resin, urea resin, aniline resin, guanamine resin, phenol resin, xylene resin, and furan resin; styrene.
  • Resins generally classified as thermoplastic resins such as resins, acrylic resins, acrylonitrile resins, AS resins (acrylonitrile-styrene copolymers), ASA resins (acrylonitrile-styrene-methyl acrylate copolymers); polylactic acid, etc.
  • Other resins; polysaccharides can be exemplified.
  • the inorganic substance in the mother body include silica and glass.
  • Quantum dot integrated nanoparticles have a structure in which the quantum dots are contained in the mother body and / or are adsorbed on the surface thereof. When the quantum dots are contained in the mother body, the quantum dots need only be dispersed inside the mother body, and may or may not be chemically bonded to the mother body itself.
  • the fluorescent dye-accumulated nanoparticles have a structure in which the fluorescent organic dye is contained in the mother body and / or is adsorbed on the surface thereof.
  • the fluorescent organic dye may or may not be chemically bonded to the mother body itself as long as it is dispersed inside the mother body.
  • fluorescent substance integrated nanoparticles can be produced according to a known method.
  • the fluorescent substance-encapsulating silica particles containing silica as a base and a fluorescent substance contained therein are fluorescent substances such as quantum dots and fluorescent organic dyes, and a silica precursor such as tetraethoxysilane. It can be prepared by dropping a solution in which and is dissolved in a solution in which ethanol and ammonia are dissolved and hydrolyzing the silica precursor.
  • a solution of those resins or a dispersion of fine particles is prepared in advance. It can be produced by adding a fluorescent substance such as a quantum dot or a fluorescent organic dye to the mixture and stirring the mixture. Alternatively, the fluorescent substance-accumulated resin particles can be produced by advancing the polymerization reaction after adding the fluorescent substance to the solution of the resin raw material.
  • thermosetting resin such as a melamine resin
  • the raw material of the resin (monomer or oligomer or prepolymer, for example, methylol melamine which is a condensate of melamine and formaldehyde) and a fluorescent organic dye are used.
  • Fluorescent dye-accumulated resin particles can be produced by heating a reaction mixture containing a surfactant and a polymerization reaction accelerator (acid or the like), and proceeding the polymerization reaction by an emulsion polymerization method.
  • the raw material of the resin and the fluorescent organic dye (as the raw material monomer of the resin, the organic fluorescent dye is previously bonded by a covalent bond or the like).
  • the reaction mixture containing the above-mentioned monomer (may be used) and a polymerization initiator (benzoyl peroxide, azobisisobutyronitrile, etc.) is heated, and the polymerization reaction is allowed to proceed by a radical polymerization method or an ionic polymerization method. Therefore, the fluorescent dye-accumulated resin particles can be produced.
  • the average particle size of the fluorescent substance-accumulated nanoparticles used in the present embodiment is not particularly limited, but those having a large particle size have difficulty in accessing the antigen, and the particle size is small and the brightness value is low. Since the signal of the nanoparticles accumulating fluorescent substances is buried in background noise (camera noise and autofluorescence of cells), those having a wavelength of about 20 to 500 nm are preferable.
  • the average particle size is determined by taking an electron micrograph using a scanning electron microscope (SEM), measuring the cross-sectional area of a sufficient number of particles, and using each measured value as the area of a circle. Asked as. In the present application, the arithmetic mean of the particle sizes of 1000 particles is taken as the average particle size. The coefficient of variation was also a value calculated from the particle size distribution of 1000 particles.
  • SEM scanning electron microscope
  • an antibody that specifically recognizes and binds to a protein as a target biological substance as an antigen can be used.
  • an antibody that recognizes and binds to a specific domain of the same target biological substance (protein) is used as the primary antibody.
  • PD-L1 when PD-L1 is the target biological substance, "SP263”, “SP142” (all manufactured by Ventana), and “E1L3N” (Cell Signaling Technology) are used as anti-PD-L1 antibodies that can recognize the intracellular domain.
  • As an anti-PD-L1 antibody that can recognize the extracellular domain "22c3" (manufactured by Dako) and “28-8" (manufactured by Abcam) can be used.
  • HER2 When HER2 is used as the target biological substance, "4B5" (manufactured by Ventana), "CB11” (manufactured by BioGenex), and extracellular domain can be recognized as anti-HER2 antibodies capable of recognizing the intracellular domain.
  • SV2-61 ⁇ manufactured by Nichirei Bioscience
  • TIM-3 used as the target biological substance
  • F38-2E2 "RMT3-23” (all manufactured by BioLegend)
  • MM0936 used as anti-TIM-3 antibodies that can recognize the intracellular domain
  • 14S23 "RM0135-6F46” (both manufactured by Abcam), and "344823” (manufactured by R & D Systems) can be used as an anti-TIM-3 antibody capable of recognizing the extracellular domain.
  • the primary antibody may be an antibody fragment or derivative instead of a natural full-length antibody as long as it has the ability to specifically recognize and bind to a specific biological substance (antigen). That is, the term "antibody” as used herein refers to not only full-length antibody, but also antibody fragments such as Fab, F (ab) '2, Fv, scFv, chimeric antibody (humanized antibody, etc.), and multifunctional antibody. Derivatives such as are included.
  • an antibody that specifically recognizes and binds to the primary antibody as an antigen can be used.
  • Both the primary antibody and the secondary antibody may be polyclonal antibodies, but monoclonal antibodies are preferable from the viewpoint of quantitative stability.
  • the type of animal (immune animal) that produces the antibody is not particularly limited, and may be selected from mice, rats, guinea pigs, rabbits, goats, sheep, and the like as in the conventional case.
  • An immunostaining agent is obtained by dispersing a labeled antibody in which an antibody capable of directly or indirectly binding to a target biological substance and a labeling substance are directly or indirectly bound in an appropriate medium. Will be generated.
  • the primary antibody and the fluorescent substance-accumulated nanoparticles indirectly that is, the antigen-antibody reaction or the avidin-biotin reaction was used.
  • an immunostaining agent in which an antibody and fluorescent nanoparticles are indirectly linked, [primary antibody against the target biological substance] ... [antibody against the primary antibody (secondary antibody)] to [fluorescent nanoparticles (fluorescent nanoparticle) )].
  • “...” indicates that the bond is formed by an antigen-antibody reaction, and the mode of binding indicated by “ ⁇ ” is not particularly limited, and is, for example, covalent bond, ionic bond, hydrogen bond, coordination bond, or physical bond. Examples thereof include adsorption or chemisorption, and may be mediated by a linker molecule if necessary.
  • the secondary antibody-fluorescent substance-accumulated nanoparticle conjugate can be prepared, for example, by using a silane coupling agent which is a compound widely used for binding an inorganic substance and an organic substance.
  • This silane coupling agent is a compound having an alkoxysilyl group that gives a silanol group by hydrolysis at one end of the molecule and a functional group such as a carboxyl group, an amino group, an epoxy group, or an aldehyde group at the other end. It binds to an inorganic substance via the oxygen atom of the silanol group.
  • silane coupling agent having a polyethylene glycol chain for example, PEG-silaneno. SIM6492.7 manufactured by Gelest
  • two or more kinds may be used in combination.
  • a known method can be used for the reaction procedure between the fluorescent substance-accumulated nanoparticles and the silane coupling agent.
  • the obtained silica nanoparticles containing a fluorescent substance are dispersed in pure water, aminolopyrtriethoxysilane is added, and the mixture is reacted at room temperature for 12 hours.
  • silica nanoparticles having a surface modified with an aminopropyl group can be obtained by centrifugation or filtration.
  • the amino group with the carboxyl group in the antibody the antibody can be bound to silica nanoparticles containing a fluorescent substance via an amide bond.
  • a condensing agent such as EDC (1-Ethyl-3- [3-Dimethylaminopropyl] carbodiimide Hydrochloride: manufactured by Pierce) can also be used.
  • a linker compound having a site capable of directly binding to silica nanoparticles containing an organic molecule-modified fluorescent substance and a site capable of binding to a molecular target substance can be used.
  • sulfo-SMCC Sulfosuccinimidyl-4- [N-maleimidomethyl] cyclohexane-1-carboxylate: manufactured by Pierce
  • Pierce having both a site that selectively reacts with an amino group and a site that selectively reacts with a mercapto group.
  • a biological substance recognition site a site that can specifically recognize a biological substance, for example, biotin, avidin, an antibody, etc.
  • the fluorescent substance is either a fluorescent organic dye or a quantum dot.
  • similar procedures can be applied. That is, by impregnating polystyrene nanoparticles having a functional group such as an amino group with quantum dots or a fluorescent organic dye, fluorescent substance-accumulated polystyrene particles having a functional group can be obtained, and thereafter, by using EDC or sulfo-SMCC. , Fluorescent substance-accumulated polystyrene particles to which the antibody is bound are formed.
  • an immunostaining agent in which an antibody and fluorescent nanoparticles are indirectly linked, [primary antibody against a target biological substance] ... [antibody against a primary antibody (secondary antibody)]-[biotin] / [avidin]- [Fluorescent substance (fluorescent substance-accumulated nanoparticles)] (Here, "! indicates that the bond is bound by an antigen-antibody reaction, and "-" is a covalent bond that may be mediated by a linker molecule, if necessary. It indicates that they are bound, and "/" indicates that they are bound by the avidin-biotin reaction).) Examples thereof include a complex consisting of three molecules linked in a manner.
  • biotin-modified secondary antibody for example, a commercially available biotin labeling reagent (kit) is used based on a known method capable of binding biotin to a desired antibody (protein). Can be produced. Further, if a biotin-modified secondary antibody itself in which biotin is bound to a desired antibody in advance is commercially available, it may be used.
  • Fluorescent material-accumulated nanoparticles-avidin conjugate are also produced based on a known method capable of binding avidin to a phosphor, for example, using a commercially available avidin labeling reagent (kit). can do.
  • the avidin in this case may be an improved form such as streptavidin or neutravidin, which has a higher binding force with biotin than avidin.
  • the functional groups of the resin and the functional groups of avidin (protein) are, if necessary, a linker molecule such as PEG having functional groups at both ends of the molecule. It can be combined by means of.
  • a linker molecule such as PEG having functional groups at both ends of the molecule.
  • a linker molecule such as PEG having functional groups at both ends of the molecule.
  • a functional group such as an amino group
  • a monomer having a functional group for example, an epoxy group
  • the functional group itself or a functional group converted from the functional group for example, an amino group produced by reacting aqueous ammonia
  • another functional group can be utilized by utilizing those functional groups.
  • a group can also be introduced.
  • a desired functional group can be introduced by surface modification with a silane coupling agent.
  • an amino group is introduced by using aminopropyltrimethoxysilane. be able to.
  • a thiol group can be introduced by reacting, for example, N-succinimidyl S-acetylthioacetate (SATA) with the amino group of avidin.
  • tissue specimen is a tissue section of an organ collected from a subject (such as a cancer patient) or a cell obtained by culturing cells contained in the tissue collected from the subject.
  • a subject such as a cancer patient
  • three or more organs of a subject are targeted, and lesion cells such as tumor cells (target portion) from each organ and normal cells (target portion) to be compared with the lesion cells are selected. It is collected as a tissue sample.
  • the source of the lesion cells and the normal cells is not limited to the same subject. That is, lesion cells and normal cells may be collected from different subjects.
  • Tissue specimens generally take the form of specimen slides on which tissue sections or cells are placed, as is commonly used when evaluating the expression level of a target biological substance by immunohistochemical staining.
  • the method for preparing the tissue specimen is not particularly limited, and generally, for example, a tissue section collected from a subject is fixed with formalin or the like, dehydrated with alcohol, treated with xylene, and subjected to high-temperature paraffin.
  • a tissue sample prepared by embedding paraffin in it can be obtained by making a section of 3 to 4 ⁇ m, and the sample slide can be obtained by placing the tissue section on a slide glass and drying it. Can be made.
  • the staining method for tissue specimens will be described below.
  • the staining method described below is not limited to tissue sections and can also be applied to cell staining.
  • Specimen preparation step (6.1.1) Deparaffin treatment
  • the section is immersed in a container containing xylene to remove paraffin.
  • the temperature is not particularly limited, but it can be carried out at room temperature.
  • the immersion time is preferably 3 minutes or more and 30 minutes or less. If necessary, xylene may be replaced during immersion.
  • the section is immersed in a container containing ethanol to remove xylene.
  • the temperature is not particularly limited, but it can be carried out at room temperature.
  • the immersion time is preferably 3 minutes or more and 30 minutes or less. If necessary, ethanol may be replaced during immersion.
  • the temperature is not particularly limited, but it can be carried out at room temperature.
  • the immersion time is preferably 3 minutes or more and 30 minutes or less. If necessary, the water may be replaced during immersion.
  • the activation treatment of the target biological substance is carried out according to a known method.
  • the activation conditions are not particularly specified, but the activation solution is 0.01 M citrate buffer (pH 6.0), 1 mM EDTA solution (pH 8.0), 5% urea, and 0.1 M Tris-hydrochloric acid buffer.
  • a liquid or the like can be used.
  • the pH condition is such that a signal is output from the range of pH 2.0 to 13.0 depending on the tissue section to be used and the tissue roughness is such that the signal can be evaluated. Normally, the pH is 6.0 to 8.0, but for special tissue sections, for example, pH 3.0 is also used.
  • an autoclave As the heating device, an autoclave, a microwave, a pressure cooker, a water bath, or the like can be used.
  • the temperature is not particularly limited, but it can be carried out at room temperature.
  • the temperature can be 50 to 130 ° C. and the time can be 5 to 30 minutes.
  • the section after activation treatment is immersed in a container containing PBS and washed.
  • the temperature is not particularly limited, but it can be carried out at room temperature.
  • the immersion time is preferably 3 minutes or more and 30 minutes or less. If necessary, PBS may be replaced during immersion.
  • (6.2) Immunohistochemical Staining Step in order to stain the target biological substance, a solution of the immunostaining agent is placed on a section and reacted with the target biological substance.
  • the solution of the immunostaining agent used in the immunohistochemical staining step may be prepared in advance before this step.
  • the conditions for performing the immunohistochemical staining step are based on the conventional immunohistochemical staining method so that an appropriate signal can be obtained. It can be adjusted as appropriate.
  • the temperature is not particularly limited, but it can be carried out at room temperature.
  • the reaction time is preferably 30 minutes or more and 24 hours or less. It is preferable to drop a known blocking agent such as PBS containing BSA or a surfactant such as Tween 20 before performing the treatment as described above.
  • the immunostaining agent is a complex of [primary antibody (probe)] ... [secondary antibody]-[biotin] / [avidin]-[fluorescent nanoparticles (fluorescent substance-accumulated nanoparticles, etc.)], the first Immersing the tissue sample in the solution of the primary antibody (primary reaction process), then immersing the tissue sample in the solution of the secondary antibody-biotin conjugate (secondary reaction process), and finally according to the present invention.
  • a treatment fluorescence labeling treatment
  • tissue specimen after the immunohistochemical staining step is subjected to treatments such as immobilization / dehydration, permeation, and encapsulation so as to be suitable for observation.
  • the tissue specimen may be immersed in a fixation treatment solution (crosslinking agent such as formalin, paraformaldehyde, glutaaldehyde, acetone, ethanol, methanol).
  • the permeation treatment may be performed by immersing the tissue specimen after the immobilization / dehydration treatment in a permeation solution (xylene or the like).
  • the encapsulation treatment may be performed by immersing the tissue specimen that has undergone the permeation treatment in the encapsulation liquid.
  • the conditions for performing these treatments for example, the temperature and the immersion time when immersing the tissue specimen in a predetermined treatment solution, may be appropriately adjusted so as to obtain an appropriate signal according to the conventional immunostaining method. it can.
  • Morphological Observation Staining Step Apart from the immunohistochemical staining step, morphological observation staining may be performed so that the morphology of cells, tissues, organs, etc. can be observed in a bright field.
  • the morphological observation dyeing step can be performed according to a conventional method. For morphological observation of tissue specimens, staining with eosin, in which cytoplasm, interstitium, various fibers, erythrocytes, and keratinocytes are stained in red to deep red, is standardly used.
  • Staining with hematoxylin in which the cell nucleus, lime, cartilage tissue, bacteria, and mucus are stained in blue to pale blue, is also standardly used (the method of performing these two stainings at the same time is hematoxylin / eosin staining). Known as (HE staining)).
  • staining with a fluorescent dye such as DAPI (4', 6-diamidino-2-phenylindole) that specifically stains the cell nucleus may be performed.
  • DAPI 6-diamidino-2-phenylindole
  • Evaluation method (7.1) Observation / imaging step
  • the microscope image acquisition device 1A is set to a desired magnification, and the target biological substance used in the immunohistochemical staining step is displayed in the same field of view.
  • the tissue specimen is irradiated with excitation light corresponding to each fluorescent substance to be fluorescently labeled, and a fluorescent image due to fluorescence emitted from those fluorescent substances is observed and photographed.
  • the quantification step image processing of a fluorescent image and quantification of the expression level are performed.
  • the quantification step according to the present embodiment corresponds to the acquisition step according to the present invention, and is executed by the control unit 21.
  • the control unit 21 acquires expression information of fluorescently labeled target biological substances of normal cells and abnormal cells in three or more organs. In this embodiment, about 3 to 100 samples of normal cells and about 3 to 100 samples of abnormal cells are used to obtain the above expression information.
  • the control unit 21 measures the fluorescence labeling signal such as the number of bright spots of fluorescence or the emission brightness corresponding to the target biological substance based on the image processing in the information acquisition device 2A for the fluorescent image taken with respect to the target biological substance.
  • the value obtained by quantifying the expression level of each target biological substance in the cell region is acquired as expression information.
  • the number of PID particles corresponding to the number of bright spots is measured, and the value obtained by calculating the number of particles per cell can be used as expression information.
  • the expression information may be a value obtained by calculating the number of particles per unit area of the tissue.
  • Examples of software that can be used for image processing and quantification of expression level include "ImageJ" (open source). By using such image processing software, processing such as extracting bright spots of a predetermined wavelength (color) from a fluorescent image and measuring the number of bright spots having a predetermined brightness or higher is semi-automatically and quickly. Can be done.
  • the size is constant and can be recognized by microscopic observation.
  • a signal whose size is larger than a constant value is judged to be an aggregated bright spot.
  • the bright spots and aggregated bright spots can be semi-automatically and quickly distinguished using software.
  • the display unit 23 displays the list information obtained by digitizing the expression information acquired in the quantification step and displaying the list information, and the evaluation support information including the threshold value indicating a predetermined threshold value. Let me.
  • FIG. 3 is an example showing the evaluation support information displayed on the display unit 23.
  • the list information is a bar-shaped display of the distribution of expression information (number of particles per cell) of normal cells and abnormal cells for each organ.
  • the threshold value information is a linear display of a predetermined threshold value (indicated by a broken line in FIG. 3).
  • the threshold is taken from multiple finalally effective tissue specimens taken before or during preoperative chemotherapy.
  • an ROC curve receiveriver operating characteristic curve
  • PID score mean value of the number of PID particles per cell
  • the threshold is a background (negative control: PID at the time of reaction without a primary antibody, as used in ELISA (Enzyme-Linked ImmunoSorbent Assay), which is a general biological measurement. It is also possible to add 3 times the standard deviation ⁇ to the mean value of the score) (mean value of negative control + 3 ⁇ ).
  • the method of setting the threshold value is not limited to this, and other than this, the threshold value setting method may be set based on the result of comparing the expression information of normal cells and abnormal cells. Further, using AI (Artificial Intelligence), a threshold value may be set by iteratively analyzing a large amount of information and finding a pattern from the information.
  • AI Artificial Intelligence
  • a threshold value may be set by iteratively analyzing a large amount of information and finding a pattern from the information.
  • the drug discovery support method used in the present invention is used for adjusting the sensitivity of the drug after setting the threshold value from the information obtained from the actual tissue sample, or the threshold value is determined from the list information obtained by quantifying the expression information.
  • it can be widely used for drug discovery creation, such as by using it as a method for determining the sensitivity of a drug.
  • Pattern (1) is an example showing the case where the maximum value of normal cells ⁇ threshold value and the minimum value of abnormal cells> threshold value.
  • Pattern (2) is an example showing the case where the minimum value of normal cells> the threshold value and the minimum value of abnormal cells> the threshold value. In the case of pattern (2), it is necessary to adjust the sensitivity to the drug, and it can be inferred that the drug is suitable for this organ.
  • Pattern (3) is an example showing the case where the minimum value of normal cells> the threshold value and the maximum value of abnormal cells ⁇ threshold value. In the case of pattern (3), it can be inferred that it is inappropriate for this organ. That is, when this happens, it can be determined that it is bad for the organ.
  • Pattern (4) is an example showing the case where the maximum value of normal cells ⁇ threshold value and the maximum value of abnormal cells ⁇ threshold value. In the case of pattern (4), it can be inferred that the sensitivity needs to be adjusted.
  • the evaluation support information of the present embodiment lists the expression information of a plurality of organs and displays them together with the threshold value, it enables the user to visually grasp the sensitivity and the suitable organ at a glance. Is. Drug discovery is performed according to the threshold value. Further, on the display unit 23, the position of the threshold information can be adjusted by an instruction operation via the operation unit 22 of the user. This makes it possible to quickly and easily infer the ideal position for a plurality of organs.
  • the expression information values of normal cells and abnormal cells for the liver, kidney, large intestine, and small intestine are displayed as list information.
  • the threshold information L1 when the threshold information L1 is shown, it can be inferred that the liver, kidney, and large intestine are target candidates and are inappropriate for the small intestine.
  • the threshold value information L2 when the threshold value information L2 is shown, it is considered to be effective for the liver and the large intestine, but there is a concern about side effects on the kidney and the small intestine.
  • the threshold information L3 is shown in FIG. 3, the effect can be expected in any of the liver, kidney, large intestine, and small intestine, but side effects are a concern.
  • the threshold value and the expression information value of the cell are compared, and when a certain ratio of the expression information value displayed in a rod shape is larger than the threshold value, it can be judged to be effective. Since a certain percentage that can be judged to be effective differs depending on the antigen, it is judged for each antigen.
  • expression information may be acquired from a more localized structure (Golgi apparatus, endoplasmic reticulum, mitochondria, cytoplasm, cell membrane, cell nucleus, etc.).
  • Golgi apparatus, endoplasmic reticulum, mitochondria are extracted from the fluorescent image of the abnormal cell, and the expression information of the target biological substance (HER2 protein or HER2 mRNA) is acquired from the extracted image. ..
  • the target biological substance HER2 protein or HER2 mRNA
  • protein and mRNA can be detected on the same tissue section, it is possible to identify a subject or an organ in which the target mRNA is expressed but the protein is not expressed.
  • the drug discovery support method of the present embodiment is fluorescently labeled with abnormal cells (target part) in a plurality of organs (biological sites) and normal cells (target part) to be compared with the abnormal cells.
  • the acquisition process for acquiring the expression information of the target biological substance, the list information obtained by digitizing the expression information of each part acquired in the acquisition process, and the threshold information indicating a predetermined threshold are displayed on the display unit. It has a process.
  • the display step displays list information in which the expression information of each part is arranged in a bar shape and threshold information in which the threshold value is displayed in a straight line. Therefore, the value indicating the expression information of the abnormal cells and the normal cells of a plurality of organs and the threshold value can be recognized at a glance, and the sensitivity of the drug and the suitable organ can be quickly and accurately determined.
  • a threshold value setting step of setting a threshold value based on background data representing a background component included in the expression information of each part.
  • the threshold value can be set based on the background data.
  • the acquisition step acquires the expression information of the fluorescently labeled target biological substance of the abnormal cells and the prenormal cells in the three or more organs. Therefore, the list information for the three or more organs is obtained. And by comparing the threshold information, it is more useful in improving the efficiency of the drug discovery stage.
  • the expression information is acquired from three or more organs of the subject, but the expression information may be acquired from at least two organs.
  • the present invention can be used to quickly and accurately determine the sensitivity of a drug and a suitable biological site.
  • Pathological diagnosis support system 1A Microscopic image acquisition device 2A Information acquisition device 21 Control unit (acquisition means, display control means) 22 Operation unit 23 Display unit 24 Communication I / F 25 Memory

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Hematology (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Urology & Nephrology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pathology (AREA)
  • Wood Science & Technology (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Sustainable Development (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

A method for supporting drug discovery, said method comprising: an acquisition step for acquiring the expression data of a target living organism which is fluorescently labeled at non-normal cells (target parts) and normal cells (control parts), said normal cells being to be compared with the non-normal cells, in multiple organs (body regions); and a display step for displaying list data, in which the expression data of the individual parts acquired in the acquisition step is quantified and listed, and threshold data, in which preset thresholds are indicated, on a display unit.

Description

創薬支援方法、創薬支援装置及びプログラムDrug discovery support methods, drug discovery support devices and programs
 本発明は、創薬支援方法、創薬支援装置及びプログラムに関する。 The present invention relates to a drug discovery support method, a drug discovery support device, and a program.
 近年、癌患者が増加傾向にあり、各患者に合わせた個別化治療の実現にあたって、創薬段階において様々な検討が必要とされている。
 創薬段階の検討の補助的役割として、蛍光物質集積ナノ粒子(Phosphor Integrated Dot:PID)を用いて、細胞内の癌タンパク質などの目的生体物質の発現量を定量評価する技術の開発が進められている(例えば、特許文献1参照)。
In recent years, the number of cancer patients has been increasing, and various studies are required at the drug discovery stage in order to realize personalized treatment for each patient.
As an auxiliary role in the study of the drug discovery stage, the development of a technology for quantitatively evaluating the expression level of target biological substances such as intracellular cancer proteins using phosphor integrated nanoparticles (PID) has been promoted. (See, for example, Patent Document 1).
国際公開第2012/029342号International Publication No. 2012/029342
 しかしながら、投薬の際に、薬がどの生体部位に適しているかを推測する方法は未だ確立されていない。すなわち、投薬時の薬の感度や、対応する生体部位を推測するためには様々なデータから段階を踏んで判断する必要があり、迅速に正確な判断をするのは困難であった。 However, a method for guessing which biological part the drug is suitable for when administering the drug has not yet been established. That is, in order to estimate the sensitivity of the drug at the time of administration and the corresponding biological part, it is necessary to make a step-by-step judgment from various data, and it is difficult to make a quick and accurate judgment.
 本発明は、薬の感度と適した生体部位を迅速かつ正確に判断することを可能とする創薬支援方法、創薬支援装置及びプログラムを提供することを目的とする。 An object of the present invention is to provide a drug discovery support method, a drug discovery support device, and a program capable of quickly and accurately determining the sensitivity of a drug and a suitable biological part.
 上記課題を解決するため、本発明の創薬支援方法は、
 複数の生体部位における目的部と、前記目的部の比較対象となる対象部の蛍光標識された目的生体物質の発現情報を取得する取得工程と、
 前記取得工程により取得した各部の発現情報を数値化して一覧表示した一覧情報、及び、所定の閾値を示す閾値情報を、表示部に表示させる表示工程と、
 を有する。
In order to solve the above problems, the drug discovery support method of the present invention is used.
An acquisition step of acquiring expression information of a target part in a plurality of biological parts and a fluorescently labeled target biological substance of the target part to be compared with the target part.
A display step of displaying the list information obtained by digitizing the expression information of each part acquired by the acquisition step and displaying the list information, and the threshold information indicating a predetermined threshold value on the display unit.
Have.
 また、本発明の創薬支援装置は、
 複数の生体部位における目的部と、前記目的部の比較対象となる対象部の蛍光標識された目的生体物質の発現情報を取得する取得手段、
 前記取得手段により取得した各部の発現情報を数値化して一覧表示した一覧情報、及び、所定の閾値を示す閾値情報を、表示部に表示させる表示制御手段と、
 を備える。
Further, the drug discovery support device of the present invention is
An acquisition means for acquiring expression information of a target part in a plurality of biological parts and a fluorescently labeled target biological substance of the target part to be compared with the target part.
A display control means for displaying the list information obtained by digitizing the expression information of each part acquired by the acquisition means and displaying the list information, and the threshold value information indicating a predetermined threshold value on the display unit.
To be equipped.
 また、本発明のプログラムは、
 コンピューターを、
 複数の生体部位における目的部と、前記目的部の比較対象となる対象部の蛍光標識された目的生体物質の発現情報を取得する取得手段、
 前記取得手段により取得した各部の発現情報を数値化して一覧表示した一覧情報、及び、所定の閾値を示す閾値情報を、表示部に表示させる表示制御手段、
 として機能させるプログラムである。
In addition, the program of the present invention
Computer,
An acquisition means for acquiring expression information of a target part in a plurality of biological parts and a fluorescently labeled target biological substance of the target part to be compared with the target part.
A display control means for displaying on the display unit the list information obtained by digitizing the expression information of each part acquired by the acquisition means and displaying the list information and the threshold value information indicating a predetermined threshold value.
It is a program that functions as.
 本発明によれば、薬の感度と適した生体部位を迅速かつ正確に判断することが可能となる。 According to the present invention, it is possible to quickly and accurately determine the sensitivity of a drug and a suitable biological part.
本発明に係る創薬支援システムの概略構成を示す図である。It is a figure which shows the schematic structure of the drug discovery support system which concerns on this invention. 図1の情報取得装置の機能的構成を示すブロック図である。It is a block diagram which shows the functional structure of the information acquisition apparatus of FIG. 評価支援情報の一例を示す図である。It is a figure which shows an example of evaluation support information. 評価支援情報について説明するための図である。It is a figure for demonstrating evaluation support information. 評価支援情報の一例を示す図である。It is a figure which shows an example of evaluation support information.
 以下、本発明を実施するための形態について説明するが、本発明はこれらに限定されない。 Hereinafter, embodiments for carrying out the present invention will be described, but the present invention is not limited thereto.
<創薬支援システム>
 図1に、本発明に係る創薬支援方法を実行する創薬支援システム100の全体構成例を示す。創薬支援システム100は、所定の染色試薬で染色された組織標本の顕微鏡画像を取得し、取得された顕微鏡画像を解析することにより、観察対象の組織標本における特定の生体物質の発現を定量的に表す特徴量を出力することのできるシステムである。
<Drug discovery support system>
FIG. 1 shows an overall configuration example of a drug discovery support system 100 that executes the drug discovery support method according to the present invention. The drug discovery support system 100 acquires a microscopic image of a tissue sample stained with a predetermined staining reagent, and analyzes the acquired microscopic image to quantitatively express the expression of a specific biological substance in the tissue sample to be observed. It is a system that can output the feature amount represented by.
 図1に示すように、創薬支援システム100は、顕微鏡画像取得装置1Aと、創薬支援装置としての情報取得装置2Aと、がケーブル3A等のインターフェースを介してデータ送受信可能に接続されて構成されている。なお、顕微鏡画像取得装置1Aと情報取得装置2Aとの接続方式は特に限定されない。例えば、顕微鏡画像取得装置1Aと情報取得装置2AはLAN(Local Area Network)により接続されることとしてもよいし、無線により接続される構成としてもよい。 As shown in FIG. 1, the drug discovery support system 100 is configured by connecting a microscope image acquisition device 1A and an information acquisition device 2A as a drug discovery support device so as to be able to transmit and receive data via an interface such as a cable 3A. Has been done. The connection method between the microscope image acquisition device 1A and the information acquisition device 2A is not particularly limited. For example, the microscope image acquisition device 1A and the information acquisition device 2A may be connected by a LAN (Local Area Network) or may be wirelessly connected.
 顕微鏡画像取得装置1Aは、公知のカメラ付き光学顕微鏡であり、スライド固定ステージ上に載置されたスライド上の組織標本の顕微鏡画像を取得し、情報取得装置2Aに送信するものである。
 顕微鏡画像取得装置1Aは、照射手段、結像手段、撮像手段、通信I/F等を備えて構成されている。照射手段は、光源、フィルター等により構成され、スライド固定ステージに載置されたスライド上の組織標本に光を照射する。結像手段は、接眼レンズ、対物レンズ等により構成され、照射した光によりスライド上の組織標本から発せられる透過光、反射光、又は蛍光を結像する。撮像手段は、CCD(Charge Coupled Device)センサー等を備え、結像手段により結像面に結像される像を撮像して顕微鏡画像のデジタル画像データを生成する顕微鏡設置カメラである。通信I/Fは、生成された顕微鏡画像の画像データを情報取得装置2Aに送信する。本実施の形態において、顕微鏡画像取得装置1Aは、明視野観察に適した照射手段及び結像手段を組み合わせた明視野ユニット、蛍光観察に適した照射手段及び結像手段を組み合わせた蛍光ユニットが備えられており、ユニットを切り替えることにより明視野/蛍光を切り替えることが可能である。
The microscope image acquisition device 1A is a known optical microscope with a camera, which acquires a microscope image of a tissue sample on a slide placed on a slide fixing stage and transmits it to the information acquisition device 2A.
The microscope image acquisition device 1A is configured to include an irradiation means, an imaging means, an imaging means, a communication I / F, and the like. The irradiation means is composed of a light source, a filter, and the like, and irradiates a tissue sample on the slide placed on the slide fixing stage with light. The imaging means is composed of an eyepiece, an objective lens, or the like, and forms a transmitted light, a reflected light, or a fluorescence emitted from a tissue sample on a slide by the irradiated light. The imaging means is a microscope-installed camera equipped with a CCD (Charge Coupled Device) sensor or the like, and images an image formed on an imaging surface by the imaging means to generate digital image data of a microscope image. The communication I / F transmits the image data of the generated microscope image to the information acquisition device 2A. In the present embodiment, the microscope image acquisition device 1A includes a bright field unit in which an irradiation means and an imaging means suitable for bright field observation are combined, and a fluorescence unit in which an irradiation means and an imaging means suitable for fluorescence observation are combined. It is possible to switch between bright field and fluorescence by switching the unit.
 なお、顕微鏡画像取得装置1Aとしては、カメラ付き顕微鏡に限定されず、例えば、顕微鏡のスライド固定ステージ上のスライドをスキャンして組織標本全体の顕微鏡画像を取得するバーチャル顕微鏡スライド作成装置(例えば、特表2002-514319号公報参照)等を用いてもよい。バーチャル顕微鏡スライド作成装置によれば、スライド上の組織標本全体像を表示部で一度に閲覧可能な画像データを取得することができる。 The microscope image acquisition device 1A is not limited to a microscope with a camera, and is, for example, a virtual microscope slide creation device (for example, a special microscope image acquisition device) that scans a slide on a slide fixing stage of a microscope to acquire a microscope image of the entire tissue specimen. (See Table 2002-514319) and the like may be used. According to the virtual microscope slide creating device, it is possible to acquire image data in which the entire image of the tissue sample on the slide can be viewed at once on the display unit.
 情報取得装置2Aは、顕微鏡画像取得装置1Aから送信された顕微鏡画像を解析する。
 図2に、情報取得装置2Aの機能構成例を示す。図2に示すように、情報取得装置2Aは、制御部21、操作部22、表示部23、通信I/F24、記憶部25等を備えて構成され、各部はバス26を介して接続されている。
The information acquisition device 2A analyzes the microscope image transmitted from the microscope image acquisition device 1A.
FIG. 2 shows an example of the functional configuration of the information acquisition device 2A. As shown in FIG. 2, the information acquisition device 2A is configured to include a control unit 21, an operation unit 22, a display unit 23, a communication I / F 24, a storage unit 25, and the like, and each unit is connected via a bus 26. There is.
 制御部21は、CPU(Central Processing Unit)、RAM(Random Access Memory)等を備えて構成され、記憶部25に記憶されている各種プログラムとの協働により各種処理を実行し、情報取得装置2Aの動作を統括的に制御する。 The control unit 21 is configured to include a CPU (Central Processing Unit), a RAM (Random Access Memory), etc., executes various processes in cooperation with various programs stored in the storage unit 25, and executes various processes to obtain information acquisition device 2A. Controls the operation of.
 操作部22は、文字入力キー、数字入力キー、及び各種機能キー等を備えたキーボードと、マウス等のポインティングデバイスを備えて構成され、キーボードで押下操作されたキーの押下信号とマウスによる操作信号とを、入力信号として制御部21に出力する。 The operation unit 22 is configured to include a keyboard equipped with character input keys, number input keys, various function keys, and a pointing device such as a mouse, and a key press signal operated by the keyboard and an operation signal by the mouse. Is output to the control unit 21 as an input signal.
 表示部23は、例えば、CRT(Cathode Ray Tube)やLCD(Liquid Crystal Display)等のモニタを備えて構成されており、制御部21から入力される表示信号の指示に従って、各種画面を表示する。 The display unit 23 is configured to include, for example, a monitor such as a CRT (Cathode Ray Tube) or an LCD (Liquid Crystal Display), and displays various screens according to instructions of display signals input from the control unit 21.
 通信I/F24は、顕微鏡画像取得装置1Aをはじめとする外部機器との間でデータ送受信を行うためのインターフェースであり、顕微鏡画像取得装置1Aによって撮像された蛍光画像を情報取得装置2Aに入力するための手段として機能する。 The communication I / F 24 is an interface for transmitting and receiving data to and from an external device such as the microscope image acquisition device 1A, and inputs a fluorescent image captured by the microscope image acquisition device 1A to the information acquisition device 2A. Act as a means for.
 記憶部25は、例えばHDD(Hard Disk Drive)や半導体の不揮発性メモリー等で構成されている。記憶部25には、前述のように各種プログラムや各種データ等が記憶されている。
 その他、情報取得装置2Aは、LANアダプターやルーター等を備え、LAN等の通信ネットワークを介して外部機器と接続される構成としてもよい。
The storage unit 25 is composed of, for example, an HDD (Hard Disk Drive), a semiconductor non-volatile memory, or the like. As described above, various programs, various data, and the like are stored in the storage unit 25.
In addition, the information acquisition device 2A may be provided with a LAN adapter, a router, or the like, and may be connected to an external device via a communication network such as a LAN.
<創薬支援方法>
 以下、本発明に係る創薬支援方法について説明する。
 本実施形態に係る創薬支援方法は、主に、1.染色試薬を用いて複数の臓器(生体部位)の切片を染色する工程と、2.染色後の切片から生体物質のドメインを検出する工程と、3.検出された生体物質のドメインの発現量を評価する工程と、を有している。
<Drug discovery support method>
Hereinafter, the drug discovery support method according to the present invention will be described.
The drug discovery support methods according to this embodiment are mainly 1. 2. The process of staining sections of multiple organs (living parts) using a staining reagent. 2. The step of detecting the domain of the biological substance from the stained section and 3. It has a step of evaluating the expression level of the domain of the detected biological substance.
 上記1.の工程では、染色試薬として蛍光ナノ粒子を使用することができる。
 蛍光ナノ粒子とは、励起光の照射を受けて蛍光発光するナノサイズの粒子であって、目的生体物質を1分子ずつ輝点として表すのに十分な強度の蛍光を発光しうる粒子である。
 蛍光ナノ粒子として、好ましくは蛍光物質集積ナノ粒子(Phosphor Integrated Dot:PID)が使用される。
Above 1. In the above step, fluorescent nanoparticles can be used as a staining reagent.
Fluorescent nanoparticles are nano-sized particles that emit fluorescence when irradiated with excitation light, and are particles capable of emitting fluorescence having sufficient intensity to represent a target biological substance as a bright spot one by one.
As the fluorescent nanoparticles, preferably fluorescent substance integrated nanoparticles (PID) are used.
 例えば、2種類のナノ粒子を用いた場合、一方のナノ粒子には、一のドメインを認識する生体物質認識部位が結合され、かつ、所定の蛍光物質が内包されている。他方のナノ粒子には、一方のナノ粒子の生体物質認識部位とは異なるドメインを認識する生体物質認識部位が結合され、かつ、一方のナノ粒子の蛍光物質とは異なる蛍光波長を有する蛍光物質が内包されている。即ち、各ナノ粒子には、互いに異なる生体物質認識部位が結合されるとともに、蛍光波長が互いに異なる蛍光物質が内包されている。そのため、蛍光物質に起因する蛍光波長の違いから、同一のタンパク質の異なるドメインを明確に区別して染色することができる。
 なお、生体物質認識部位と蛍光物質(蛍光波長)とが互いに異なれば、3種類以上のナノ粒子を用いて3種類以上のドメインを検出するものとしてもよい。
 蛍光物質などの種類や特性、生体物質検出方法の詳細は下記のとおりである。
For example, when two types of nanoparticles are used, a biological substance recognition site that recognizes one domain is bound to one of the nanoparticles, and a predetermined fluorescent substance is contained therein. A fluorescent substance having a biological substance recognition site that recognizes a domain different from the biological substance recognition site of one nanoparticle is bound to the other nanoparticle, and has a fluorescence wavelength different from that of the fluorescent substance of one nanoparticle. It is included. That is, each nanoparticles contains biomaterial recognition sites that are different from each other and fluorescent substances having different fluorescence wavelengths. Therefore, different domains of the same protein can be clearly distinguished and stained due to the difference in fluorescence wavelength caused by the fluorescent substance.
If the biomaterial recognition site and the fluorescent substance (fluorescent wavelength) are different from each other, three or more types of nanoparticles may be used to detect three or more types of domains.
Details of the types and characteristics of fluorescent substances and methods for detecting biological substances are as follows.
(1)目的生体物質
 目的生体物質とは、主に病理診断の観点からの検出または定量のために、蛍光標識体を用いた免疫組織化学染色の対象とするものをいい、組織切片に発現している生体物質である。
(1) Target biomaterial The target biomaterial is a substance that is subject to immunohistochemical staining using a fluorescent label, mainly for detection or quantification from the viewpoint of pathological diagnosis, and is expressed in a tissue section. It is a biological substance.
 本実施形態に適用可能な目的生体物質としては、例えば、タンパク質(抗原)、mRNAなどのバイオマーカーとして利用することができる生体物質が挙げられる。具体的には、PD-L1、HER2、TIM-3などが挙げられるが、これらに限定されない。 Examples of the target biological substance applicable to the present embodiment include biological substances that can be used as biomarkers such as proteins (antigens) and mRNA. Specific examples include, but are not limited to, PD-L1, HER2, TIM-3, and the like.
(2)蛍光物質集積ナノ粒子
 蛍光物質集積ナノ粒子は、有機物または無機物でできた粒子を母体とし、複数の蛍光物質(例えば、後述する蛍光有機色素や量子ドットなど)がその中に内包されている及び/又はその表面に吸着している構造を有する、ナノサイズの粒子である。
 蛍光物質集積ナノ粒子としては、母体と蛍光物質とが、互いに反対の電荷を有する置換基または部位を有し、静電的相互作用が働くものであることが好適である。
 蛍光物質集積ナノ粒子としては、蛍光色素集積ナノ粒子、量子ドット集積ナノ粒子などが使用される。
(2) Fluorescent substance-accumulated nanoparticles Fluorescent substance-accumulated nanoparticles are based on particles made of organic substances or inorganic substances, and a plurality of fluorescent substances (for example, fluorescent organic dyes and quantum dots described later) are contained therein. Nano-sized particles having a structure that is and / or is adsorbed on the surface thereof.
As the fluorescent substance-accumulated nanoparticles, it is preferable that the matrix and the fluorescent substance have substituents or sites having opposite charges and electrostatically interact with each other.
As the fluorescent substance-accumulated nanoparticles, fluorescent dye-accumulated nanoparticles, quantum dot-accumulated nanoparticles, and the like are used.
(2.1)蛍光物質
 蛍光画像の取得のための染色試薬に用いられる蛍光物質としては、蛍光有機色素及び量子ドット(半導体粒子)を挙げることができる。200~700nmの範囲内の波長の紫外~近赤外光により励起されたときに、400~1000nmの範囲内の波長の可視~近赤外光の発光を示すことが好ましい。
(2.1) Fluorescent substance Examples of the fluorescent substance used in the dyeing reagent for acquiring a fluorescent image include a fluorescent organic dye and quantum dots (semiconductor particles). When excited by ultraviolet-near-infrared light having a wavelength in the range of 200 to 700 nm, it is preferable to exhibit visible to near-infrared light having a wavelength in the range of 400 to 1000 nm.
 蛍光有機色素としては、フルオレセイン系色素分子、ローダミン系色素分子、Alexa Fluor(インビトロジェン社製)系色素分子、BODIPY(インビトロジェン社製)系色素分子、カスケード系色素分子、クマリン系色素分子、エオジン系色素分子、NBD系色素分子、ピレン系色素分子、Texas Red系色素分子、シアニン系色素分子等を挙げることができる。 Fluorescein dye molecules, rhodamine dye molecules, Alexa Fluor (Invigen) dye molecules, BODIPY (Invigen) dye molecules, cascade dye molecules, coumarin dye molecules, and eodin dyes Examples thereof include molecules, NBD-based dye molecules, pyrene-based dye molecules, Texas Red-based dye molecules, cyanine-based dye molecules, and the like.
 具体的には、5-カルボキシ-フルオレセイン、6-カルボキシ-フルオレセイン、5,6-ジカルボキシ-フルオレセイン、6-カルボキシ-2’,4,4’,5’,7,7’-ヘキサクロロフルオレセイン、6-カルボキシ-2’,4,7,7’-テトラクロロフルオレセイン、6-カルボキシ-4’,5’-ジクロロ-2’,7’-ジメトキシフルオレセイン、ナフトフルオレセイン、5-カルボキシ-ローダミン、6-カルボキシ-ローダミン、5,6-ジカルボキシ-ローダミン、ローダミン6G、テトラメチルローダミン、X-ローダミン、及びAlexa Fluor 350、Alexa Fluor 405、Alexa Fluor 430、Alexa Fluor 488、Alexa Fluor 500、Alexa Fluor 514、Alexa Fluor 532、Alexa Fluor 546、Alexa Fluor 555、Alexa Fluor 568、Alexa Fluor 594、Alexa Fluor 610、Alexa Fluor 633、Alexa Fluor 635、Alexa Fluor 647、Alexa Fluor 660、Alexa Fluor 680、Alexa Fluor 700、Alexa Fluor 750、BODIPY FL、BODIPY TMR、BODIPY 493/503、BODIPY 530/550、BODIPY 558/568、BODIPY 564/570、BODIPY 576/589、BODIPY 581/591、BODIPY 630/650、BODIPY 650/665(以上インビトロジェン社製)、メトキシクマリン、エオジン、NBD、ピレン、Cy5、Cy5.5、Cy7等を挙げることができる。単独でも複数種を混合したものを用いてもよい。 Specifically, 5-carboxy-fluorescein, 6-carboxy-fluorescein, 5,6-dicarboxy-fluorescein, 6-carboxy-2', 4,4', 5', 7,7'-hexachlorofluorescein, 6 -Carboxy-2', 4,7,7'-tetrachlorofluorescein, 6-carboxy-4', 5'-dichloro-2', 7'-dimethoxyfluorescein, naphthofluorescein, 5-carboxy-rhodamine, 6-carboxy -Rhodamine, 5,6-dicarboxy-Rhodamine, Rhodamine 6G, Tetramethyl Rhodamine, X-Rhodamine, and Alexa Fluor 350, Alexa Fluor 405, Alexa Fluor 430, Alexa Fluor 488, Alexa Fluor 500, Alexa Fluor 514, Alexa Fluor 532, Alexa Fluor 546, Alexa Fluor 555, Alexa Fluor 568, Alexa Fluor 594, Alexa Fluor 610, Alexa Fluor 633, Alexa Fluor 635, Alexa Fluor 647, Alexa Fluor 660, Alexa Fluor 680, Alexa Fluor 700, Alexa Fluor BODIPY FL, BODIPY TMR, BODIPY 493/503, BODIPY 530/550, BODIPY 558/568, BODIPY 564/570, BODIPY 576/589, BODIPY 581/591, BODIPY 630/650, BODIPY 650/665 (manufactured by Invitrogen) ), methoxycumarin, eodin, NBD, pyrene, Cy5, Cy5.5, Cy7 and the like. It may be used alone or in a mixture of a plurality of types.
 量子ドットとしては、II-VI族化合物、III-V族化合物、又はIV族元素を成分として含有する量子ドット(それぞれ、「II-VI族量子ドット」、「III-V族量子ドット」、「IV族量子ドット」ともいう。)のいずれかを用いることができる。単独でも複数種を混合したものを用いてもよい。 Quantum dots include group II-VI compounds, group III-V compounds, or group IV elements as components ("group II-VI quantum dots", "group III-V quantum dots", and "group III-V quantum dots, respectively". Either of "Group IV quantum dots") can be used. It may be used alone or in a mixture of a plurality of types.
 具体的には、CdSe、CdS、CdTe、ZnSe、ZnS、ZnTe、InP、InN、InAs、InGaP、GaP、GaAs、Si、Geが挙げられるが、これらに限定されない。 Specific examples include, but are not limited to, CdSe, CdS, CdTe, ZnSe, ZnS, ZnTe, InP, InN, InAs, InGaP, GaP, GaAs, Si, and Ge.
 上記量子ドットをコアとし、その上にシェルを設けた量子ドットを用いることもできる。以下、本明細書中シェルを有する量子ドットの表記法として、コアがCdSe、シェルがZnSの場合、CdSe/ZnSと表記する。例えば、CdSe/ZnS、CdS/ZnS、InP/ZnS、InGaP/ZnS、Si/SiO2、Si/ZnS、Ge/GeO2、Ge/ZnS等を用いることができるが、これらに限定されない。
 量子ドットは必要に応じて、有機ポリマー等により表面処理が施されているものを用いてもよい。例えば、表面カルボキシ基を有するCdSe/ZnS(インビトロジェン社製)、表面アミノ基を有するCdSe/ZnS(インビトロジェン社製)等が挙げられる。
It is also possible to use a quantum dot having the above quantum dot as a core and a shell provided on the core. Hereinafter, as the notation of the quantum dot having a shell in the present specification, when the core is CdSe and the shell is ZnS, it is described as CdSe / ZnS. For example, CdSe / ZnS, CdS / ZnS, InP / ZnS, InGaP / ZnS, Si / SiO 2 , Si / ZnS, Ge / GeO 2 , Ge / ZnS and the like can be used, but are not limited thereto.
If necessary, the quantum dots may be surface-treated with an organic polymer or the like. For example, CdSe / ZnS having a surface carboxy group (manufactured by Invitrogen), CdSe / ZnS having a surface amino group (manufactured by Invitrogen), and the like can be mentioned.
 なお、蛍光物質集積ナノ粒子に集積させる蛍光物質としては、上述したような蛍光有機色素及び量子ドットの他、例えば、Y23、Zn2SiO4等を母体とし、Mn2+,Eu3+等を賦活剤とする「長残光蛍光体」を挙げることができる。 As the fluorescent substance to be accumulated in the fluorescent substance-accumulated nanoparticles, in addition to the fluorescent organic dye and the quantum dot as described above, for example, Y 2 O 3 , Zn 2 SiO 4, etc. are used as the parent body, and Mn 2+, Eu 3+, etc. are activated. Examples thereof include a "long afterglow phosphor" as an agent.
(2.2)母体
 母体のうち、有機物としては、メラミン樹脂、尿素樹脂、アニリン樹脂、グアナミン樹脂、フェノール樹脂、キシレン樹脂、フラン樹脂など、一般的に熱硬化性樹脂に分類される樹脂;スチレン樹脂、アクリル樹脂、アクリロニトリル樹脂、AS樹脂(アクリロニトリル-スチレン共重合体)、ASA樹脂(アクリロニトリル-スチレン-アクリル酸メチル共重合体)など、一般的に熱可塑性樹脂に分類される樹脂;ポリ乳酸等のその他の樹脂;多糖を例示することができる。
 母体のうち、無機物としては、シリカ、ガラスなどを例示することができる。
(2.2) Mother Body Among the mother bodies, the organic substances are resins generally classified as thermosetting resins such as melamine resin, urea resin, aniline resin, guanamine resin, phenol resin, xylene resin, and furan resin; styrene. Resins generally classified as thermoplastic resins such as resins, acrylic resins, acrylonitrile resins, AS resins (acrylonitrile-styrene copolymers), ASA resins (acrylonitrile-styrene-methyl acrylate copolymers); polylactic acid, etc. Other resins; polysaccharides can be exemplified.
Examples of the inorganic substance in the mother body include silica and glass.
(2.3)量子ドット集積ナノ粒子
 量子ドット集積ナノ粒子とは、上記量子ドットが、上記母体の中に内包されている、及び/又はその表面に吸着している構造を有する。
 量子ドットが母体に内包されている場合、量子ドットは母体内部に分散されていればよく、母体自体と化学的に結合していてもよいし、していなくてもよい。
(2.3) Quantum Dot Accumulated Nanoparticles Quantum dot integrated nanoparticles have a structure in which the quantum dots are contained in the mother body and / or are adsorbed on the surface thereof.
When the quantum dots are contained in the mother body, the quantum dots need only be dispersed inside the mother body, and may or may not be chemically bonded to the mother body itself.
(2.4)蛍光色素集積ナノ粒子
 蛍光色素集積ナノ粒子とは、上記蛍光有機色素が、上記母体の中に内包されている、及び/又はその表面に吸着している構造を有する。
 なお、蛍光有機色素が母体に内包されている場合、蛍光有機色素は母体内部に分散されていればよく、母体自体と化学的に結合していてもよいし、していなくてもよい。
(2.4) Fluorescent dye-accumulated nanoparticles The fluorescent dye-accumulated nanoparticles have a structure in which the fluorescent organic dye is contained in the mother body and / or is adsorbed on the surface thereof.
When the fluorescent organic dye is encapsulated in the mother body, the fluorescent organic dye may or may not be chemically bonded to the mother body itself as long as it is dispersed inside the mother body.
(2.5)蛍光物質集積ナノ粒子の作製
 蛍光物質集積ナノ粒子は、公知の方法に従って作製することができる。
 具体的には、例えば、シリカを母体とし、その中に蛍光物質が内包されている蛍光物質内包シリカ粒子は、量子ドット、蛍光有機色素などの蛍光物質と、テトラエトキシシランのようなシリカ前駆体とが溶解している溶液を、エタノールおよびアンモニアが溶解している溶液に滴下し、シリカ前駆体を加水分解することにより作製することができる。
(2.5) Preparation of Fluorescent Material Accumulated Nanoparticles Fluorescent substance integrated nanoparticles can be produced according to a known method.
Specifically, for example, the fluorescent substance-encapsulating silica particles containing silica as a base and a fluorescent substance contained therein are fluorescent substances such as quantum dots and fluorescent organic dyes, and a silica precursor such as tetraethoxysilane. It can be prepared by dropping a solution in which and is dissolved in a solution in which ethanol and ammonia are dissolved and hydrolyzing the silica precursor.
 一方、樹脂を母体とし、蛍光物質を樹脂粒子の表面に吸着させるか、樹脂粒子中に内包させるかした蛍光物質集積樹脂粒子は、それらの樹脂の溶液ないし微粒子の分散液を先に用意しておき、そこに量子ドット、蛍光有機色素などの蛍光物質を添加して撹拌することにより作製することができる。あるいは、樹脂原料の溶液に蛍光物質を添加した後、重合反応を進行させることにより、蛍光物質集積樹脂粒子を作製することもできる。
 例えば、母体となる樹脂としてメラミン樹脂のような熱硬化性樹脂を用いる場合、その樹脂の原料(モノマーまたはオリゴマーないしプレポリマー、たとえばメラミンとホルムアルデヒドの縮合物であるメチロールメラミン)と、蛍光有機色素と、好ましくはさらに界面活性剤および重合反応促進剤(酸など)とを含有する反応混合物を加熱し、乳化重合法によって重合反応を進行させることにより、蛍光色素集積樹脂粒子を作製することができる。また、母体となる樹脂としてスチレン系共重合体のような熱可塑性樹脂を用いる場合、その樹脂の原料と、蛍光有機色素と(樹脂の原料モノマーとして、あらかじめ有機蛍光色素を共有結合などで結合させたモノマーを用いるようにしてもよい)、重合開始剤(過酸化ベンゾイル、アゾビスイソブチロニトリルなど)を含有する反応混合物を加熱し、ラジカル重合法またはイオン重合法によって重合反応を進行させることにより、蛍光色素集積樹脂粒子を作製することができる。
On the other hand, for fluorescent substance-accumulated resin particles in which a resin is used as a base and a fluorescent substance is adsorbed on the surface of the resin particles or encapsulated in the resin particles, a solution of those resins or a dispersion of fine particles is prepared in advance. It can be produced by adding a fluorescent substance such as a quantum dot or a fluorescent organic dye to the mixture and stirring the mixture. Alternatively, the fluorescent substance-accumulated resin particles can be produced by advancing the polymerization reaction after adding the fluorescent substance to the solution of the resin raw material.
For example, when a thermosetting resin such as a melamine resin is used as a base resin, the raw material of the resin (monomer or oligomer or prepolymer, for example, methylol melamine which is a condensate of melamine and formaldehyde) and a fluorescent organic dye are used. Fluorescent dye-accumulated resin particles can be produced by heating a reaction mixture containing a surfactant and a polymerization reaction accelerator (acid or the like), and proceeding the polymerization reaction by an emulsion polymerization method. When a thermoplastic resin such as a styrene-based copolymer is used as the base resin, the raw material of the resin and the fluorescent organic dye (as the raw material monomer of the resin, the organic fluorescent dye is previously bonded by a covalent bond or the like). The reaction mixture containing the above-mentioned monomer (may be used) and a polymerization initiator (benzoyl peroxide, azobisisobutyronitrile, etc.) is heated, and the polymerization reaction is allowed to proceed by a radical polymerization method or an ionic polymerization method. Therefore, the fluorescent dye-accumulated resin particles can be produced.
(2.6)平均粒径
 本実施の形態で用いられる蛍光物質集積ナノ粒子の平均粒径は特に限定されないが、粒子径が大きいものは抗原にアクセスしにくく、粒子径が小さく輝度値が低いものは蛍光物質集積ナノ粒子の信号がバックグラウンドノイズ(カメラのノイズや細胞の自家蛍光)に埋もれてしまうことから、20~500nm程度のものが好適である。
 また、粒径のばらつきを示す変動係数(=(標準偏差/平均値)×100%)は特に限定されないが、20%以下のものを用いることができ、好ましくは5~15%である。
 平均粒径は、走査型電子顕微鏡(SEM)を用いて電子顕微鏡写真を撮影し十分な数の粒子について断面積を計測し、各計測値を円の面積としたときの円の直径を粒径として求めた。本願においては、1000個の粒子の粒径の算術平均を平均粒径とした。変動係数も、1000個の粒子の粒径分布から算出した値とした。
(2.6) Average particle size The average particle size of the fluorescent substance-accumulated nanoparticles used in the present embodiment is not particularly limited, but those having a large particle size have difficulty in accessing the antigen, and the particle size is small and the brightness value is low. Since the signal of the nanoparticles accumulating fluorescent substances is buried in background noise (camera noise and autofluorescence of cells), those having a wavelength of about 20 to 500 nm are preferable.
The coefficient of variation (= (standard deviation / average value) × 100%) indicating the variation in particle size is not particularly limited, but 20% or less can be used, preferably 5 to 15%.
The average particle size is determined by taking an electron micrograph using a scanning electron microscope (SEM), measuring the cross-sectional area of a sufficient number of particles, and using each measured value as the area of a circle. Asked as. In the present application, the arithmetic mean of the particle sizes of 1000 particles is taken as the average particle size. The coefficient of variation was also a value calculated from the particle size distribution of 1000 particles.
(3)抗体
 一次抗体には、目的生体物質としてのタンパク質を抗原として特異的に認識して結合する抗体(IgG)を用いることができる。
 本実施形態においては、一次抗体として、同一の目的生体物質(タンパク質)の特定のドメインを認識して結合するものを用いる。
(3) Antibody As the primary antibody, an antibody (IgG) that specifically recognizes and binds to a protein as a target biological substance as an antigen can be used.
In the present embodiment, as the primary antibody, an antibody that recognizes and binds to a specific domain of the same target biological substance (protein) is used.
 例えば、PD-L1を目的生体物質とする場合は、細胞内ドメインを認識可能な抗PD-L1抗体として、「SP263」、「SP142」(いずれもベンタナ社製)、「E1L3N」(Cell Signaling Technology社製)、細胞外ドメインを認識可能な抗PD-L1抗体として、「22c3」(ダコ社製)、「28-8」(アブカム社製)を用いることができる。
 また、HER2を目的生体物質とする場合には、細胞内ドメインを認識可能な抗HER2抗体として、「4B5」(ベンタナ社製)、「CB11」(BioGenex社製)、細胞外ドメインを認識可能な抗HER2抗体として、「SV2-61γ」(ニチレイバイオサイエンス社製)用いることができる。
 また、TIM-3を目的生体物質とする場合には、細胞内ドメインを認識可能な抗TIM-3抗体として、「F38-2E2」、「RMT3-23」(いずれもBioLegend社製)、「MM0936-14S23」、「RM0135-6F46」(いずれもアブカム社製)、細胞外ドメインを認識可能な抗TIM-3抗体として、「344823」(R&D Systems社製)用いることができる。
For example, when PD-L1 is the target biological substance, "SP263", "SP142" (all manufactured by Ventana), and "E1L3N" (Cell Signaling Technology) are used as anti-PD-L1 antibodies that can recognize the intracellular domain. As an anti-PD-L1 antibody that can recognize the extracellular domain, "22c3" (manufactured by Dako) and "28-8" (manufactured by Abcam) can be used.
When HER2 is used as the target biological substance, "4B5" (manufactured by Ventana), "CB11" (manufactured by BioGenex), and extracellular domain can be recognized as anti-HER2 antibodies capable of recognizing the intracellular domain. As an anti-HER2 antibody, "SV2-61γ" (manufactured by Nichirei Bioscience) can be used.
When TIM-3 is used as the target biological substance, "F38-2E2", "RMT3-23" (all manufactured by BioLegend), and "MM0936" are used as anti-TIM-3 antibodies that can recognize the intracellular domain. "-14S23", "RM0135-6F46" (both manufactured by Abcam), and "344823" (manufactured by R & D Systems) can be used as an anti-TIM-3 antibody capable of recognizing the extracellular domain.
 なお、一次抗体は、特定の生体物質(抗原)を特異的に認識して結合する能力を有するものであれば、天然の全長の抗体でなく、抗体断片または誘導体であってもよい。すなわち、本明細書における「抗体」という用語には、全長の抗体だけでなく、Fab、F(ab)’2、Fv、scFvなどの抗体断片およびキメラ抗体(ヒト化抗体等)、多機能抗体などの誘導体が包含される。 The primary antibody may be an antibody fragment or derivative instead of a natural full-length antibody as long as it has the ability to specifically recognize and bind to a specific biological substance (antigen). That is, the term "antibody" as used herein refers to not only full-length antibody, but also antibody fragments such as Fab, F (ab) '2, Fv, scFv, chimeric antibody (humanized antibody, etc.), and multifunctional antibody. Derivatives such as are included.
 二次抗体には、一次抗体を抗原として特異的に認識して結合する抗体(IgG)を用いることができる。 As the secondary antibody, an antibody (IgG) that specifically recognizes and binds to the primary antibody as an antigen can be used.
 一次抗体および二次抗体はいずれも、ポリクローナル抗体であってもよいが、定量の安定性の観点から、モノクローナル抗体が好ましい。抗体を産生する動物(免疫動物)の種類は特に限定されるものではなく、従来と同様、マウス、ラット、モルモット、ウサギ、ヤギ、ヒツジなどから選択すればよい。 Both the primary antibody and the secondary antibody may be polyclonal antibodies, but monoclonal antibodies are preferable from the viewpoint of quantitative stability. The type of animal (immune animal) that produces the antibody is not particularly limited, and may be selected from mice, rats, guinea pigs, rabbits, goats, sheep, and the like as in the conventional case.
(4)免疫染色剤
 免疫染色剤は、目的生体物質に直接的又は間接的に結合しうる抗体と標識物質とを直接的又は間接的に結合させた標識化抗体を適当な媒体に分散させて生成される。
 なお、蛍光標識の効率を向上させて蛍光の劣化につながる時間経過をなるべく抑えるためには、一次抗体および蛍光物質集積ナノ粒子が間接的に、つまり抗原抗体反応やアビジン・ビオチン反応などを利用した、共有結合以外の結合によって連結される複合体を用いることが好ましいが、これに限定されない。
(4) Immunostaining agent An immunostaining agent is obtained by dispersing a labeled antibody in which an antibody capable of directly or indirectly binding to a target biological substance and a labeling substance are directly or indirectly bound in an appropriate medium. Will be generated.
In order to improve the efficiency of the fluorescent label and suppress the passage of time leading to the deterioration of fluorescence as much as possible, the primary antibody and the fluorescent substance-accumulated nanoparticles indirectly, that is, the antigen-antibody reaction or the avidin-biotin reaction was used. , It is preferable to use a complex linked by a bond other than a covalent bond, but the present invention is not limited to this.
 抗体及び蛍光ナノ粒子が間接的に連結される免疫染色剤の一例として、[目的生体物質に対する一次抗体]…[一次抗体に対する抗体(二次抗体)]~[蛍光ナノ粒子(蛍光体集積ナノ粒子)]が挙げられる。ここで、“…”は抗原抗体反応により結合していることを表し、“~”が示す結合の態様としては特に限定されず、例えば、共有結合,イオン結合,水素結合,配位結合,物理吸着または化学吸着等が挙げられ、必要に応じてリンカー分子を介していてもよい。 As an example of an immunostaining agent in which an antibody and fluorescent nanoparticles are indirectly linked, [primary antibody against the target biological substance] ... [antibody against the primary antibody (secondary antibody)] to [fluorescent nanoparticles (fluorescent nanoparticle) )]. Here, “…” indicates that the bond is formed by an antigen-antibody reaction, and the mode of binding indicated by “~” is not particularly limited, and is, for example, covalent bond, ionic bond, hydrogen bond, coordination bond, or physical bond. Examples thereof include adsorption or chemisorption, and may be mediated by a linker molecule if necessary.
 二次抗体~蛍光物質集積ナノ粒子結合体は、例えば、無機物と有機物とを結合させるために広く用いられている化合物であるシランカップリング剤を用いて作製することができる。このシランカップリング剤は、分子の一端に加水分解でシラノール基を与えるアルコキシシリル基を有し、他端に、カルボキシル基,アミノ基,エポキシ基,アルデヒド基などの官能基を有する化合物であり、上記シラノール基の酸素原子を介して無機物と結合する。具体的には、メルカプトプロピルトリエトキシシラン,グリシドキシプロピルトリエトキシシラン,アミノプロピルトリエトキシシラン,ポリエチレングリコール鎖を有するシランカップリング剤(例えば、Gelest社製PEG-silaneno.SIM6492.7)等が挙げられる。シランカップリング剤を用いる場合、2種以上を併用してもよい。 The secondary antibody-fluorescent substance-accumulated nanoparticle conjugate can be prepared, for example, by using a silane coupling agent which is a compound widely used for binding an inorganic substance and an organic substance. This silane coupling agent is a compound having an alkoxysilyl group that gives a silanol group by hydrolysis at one end of the molecule and a functional group such as a carboxyl group, an amino group, an epoxy group, or an aldehyde group at the other end. It binds to an inorganic substance via the oxygen atom of the silanol group. Specifically, mercaptopropyltriethoxysilane, glycidoxypropyltriethoxysilane, aminopropyltriethoxysilane, a silane coupling agent having a polyethylene glycol chain (for example, PEG-silaneno. SIM6492.7 manufactured by Gelest) and the like can be used. Can be mentioned. When a silane coupling agent is used, two or more kinds may be used in combination.
 蛍光物質集積ナノ粒子とシランカップリング剤との反応手順は、公知の手法を用いることができる。例えば、得られた蛍光物質を内包したシリカナノ粒子を純水中に分散させ、アミノロピルトリエトキシシランを添加し、室温で12時間反応させる。反応終了後、遠心分離またはろ過により表面がアミノプロピル基で修飾された蛍光物質を内包したシリカナノ粒子を得ることができる。続いてアミノ基と抗体中のカルボキシル基とを反応させることで、アミド結合を介し抗体を、蛍光物質を内包したシリカナノ粒子と結合させることができる。なお、必要に応じて、EDC(1-Ethyl-3-[3-Dimethylaminopropyl] carbodiimide Hydrochloride:Pierce社製)のような縮合剤を用いることもできる。 A known method can be used for the reaction procedure between the fluorescent substance-accumulated nanoparticles and the silane coupling agent. For example, the obtained silica nanoparticles containing a fluorescent substance are dispersed in pure water, aminolopyrtriethoxysilane is added, and the mixture is reacted at room temperature for 12 hours. After completion of the reaction, silica nanoparticles having a surface modified with an aminopropyl group can be obtained by centrifugation or filtration. Subsequently, by reacting the amino group with the carboxyl group in the antibody, the antibody can be bound to silica nanoparticles containing a fluorescent substance via an amide bond. If necessary, a condensing agent such as EDC (1-Ethyl-3- [3-Dimethylaminopropyl] carbodiimide Hydrochloride: manufactured by Pierce) can also be used.
 また、必要により、有機分子修飾された蛍光物質を内包したシリカナノ粒子と直接結合しうる部位と、分子標的物質と結合し得る部位とを有するリンカー化合物を用いることができる。具体例として、アミノ基に選択的に反応する部位とメルカプト基に選択的に反応する部位との両方を有するsulfo-SMCC(Sulfosuccinimidyl-4-[N-maleimidomethyl] cyclohexane-1-carboxylate:Pierce社製)を用いると、アミノプロピルトリエトキシシランで修飾した蛍光物質を内包したシリカナノ粒子のアミノ基と、抗体中のメルカプト基とを結合させることで、抗体が結合した蛍光物質を内包したシリカナノ粒子が得られる。 Further, if necessary, a linker compound having a site capable of directly binding to silica nanoparticles containing an organic molecule-modified fluorescent substance and a site capable of binding to a molecular target substance can be used. As a specific example, sulfo-SMCC (Sulfosuccinimidyl-4- [N-maleimidomethyl] cyclohexane-1-carboxylate: manufactured by Pierce) having both a site that selectively reacts with an amino group and a site that selectively reacts with a mercapto group. ) Is used to bind the amino group of silica nanoparticles containing a fluorescent substance modified with aminopropyltriethoxysilane to the mercapto group in the antibody to obtain silica nanoparticles containing the fluorescent substance to which the antibody is bound. Be done.
 蛍光物質を内包したポリスチレン粒子に生体物質認識部位(生体物質を特異的に認識可能な部位、例えば、ビオチン、アビジン、抗体等)を結合させる場合、蛍光物質が蛍光有機色素あるいは量子ドットの何れの場合であっても、同様の手順を適用することができる。すなわち、アミノ基など官能基を有するポリスチレンナノ粒子に量子ドットまたは蛍光有機色素を含浸することにより、官能基を有する蛍光物質集積ポリスチレン粒子を得ることができ、以降EDCまたはsulfo-SMCCを用いることで、抗体が結合した蛍光物質集積ポリスチレン粒子ができる。 When a biological substance recognition site (a site that can specifically recognize a biological substance, for example, biotin, avidin, an antibody, etc.) is bound to polystyrene particles containing a fluorescent substance, the fluorescent substance is either a fluorescent organic dye or a quantum dot. In some cases, similar procedures can be applied. That is, by impregnating polystyrene nanoparticles having a functional group such as an amino group with quantum dots or a fluorescent organic dye, fluorescent substance-accumulated polystyrene particles having a functional group can be obtained, and thereafter, by using EDC or sulfo-SMCC. , Fluorescent substance-accumulated polystyrene particles to which the antibody is bound are formed.
 抗体及び蛍光ナノ粒子が間接的に連結される免疫染色剤の他の一例として、[目的生体物質に対する一次抗体]…[一次抗体に対する抗体(二次抗体)]-[ビオチン]/[アビジン]-[蛍光体(蛍光物質集積ナノ粒子)](ここで、“…”は抗原抗体反応により結合していることを表し、“-”は必要に応じてリンカー分子を介していてもよい共有結合により結合していることを表し、“/”はアビジン・ビオチン反応により結合していることを表す。)という様式によって連結される、3つの分子からなる複合体が挙げられる。 As another example of an immunostaining agent in which an antibody and fluorescent nanoparticles are indirectly linked, [primary antibody against a target biological substance] ... [antibody against a primary antibody (secondary antibody)]-[biotin] / [avidin]- [Fluorescent substance (fluorescent substance-accumulated nanoparticles)] (Here, "..." indicates that the bond is bound by an antigen-antibody reaction, and "-" is a covalent bond that may be mediated by a linker molecule, if necessary. It indicates that they are bound, and "/" indicates that they are bound by the avidin-biotin reaction).) Examples thereof include a complex consisting of three molecules linked in a manner.
 二次抗体-ビオチン結合体(ビオチン修飾二次抗体)は、所望の抗体(タンパク質)にビオチンを結合させることのできる公知の手法に基づいて、たとえば市販されているビオチン標識試薬(キット)を利用して作製することができる。また、あらかじめ所望の抗体にビオチンが結合されているビオチン修飾二次抗体自体が市販されていれば、それを利用してもよい。 For the secondary antibody-biotin conjugate (biotin-modified secondary antibody), for example, a commercially available biotin labeling reagent (kit) is used based on a known method capable of binding biotin to a desired antibody (protein). Can be produced. Further, if a biotin-modified secondary antibody itself in which biotin is bound to a desired antibody in advance is commercially available, it may be used.
 蛍光物質集積ナノ粒子-アビジン結合体(アビジン修飾蛍光体)も、蛍光体にアビジンを結合させることのできる公知の手法に基づいて、たとえば市販されているアビジン標識試薬(キット)を利用して作製することができる。この場合のアビジンは、ビオチンとの間でアビジンよりも高い結合力が働く、ストレプトアビジンやニュートラアビジンなどの改良型であってもよい。 Fluorescent material-accumulated nanoparticles-avidin conjugate (avidin-modified fluorophore) are also produced based on a known method capable of binding avidin to a phosphor, for example, using a commercially available avidin labeling reagent (kit). can do. The avidin in this case may be an improved form such as streptavidin or neutravidin, which has a higher binding force with biotin than avidin.
 蛍光物質集積ナノ粒子-アビジン結合体の作製方法の具体例を挙げれば次の通りである。
 蛍光物質集積ナノ粒子が樹脂を母体とする場合、その樹脂が有する官能基と、アビジン(タンパク質)が有する官能基とを、必要に応じて分子の両末端に官能基を有するPEG等のリンカー分子を介することにより、結合させることができる。例えば、メラミン樹脂であればアミノ基等の官能基を利用することができるし、アクリル樹脂、スチレン樹脂等であれば、側鎖に官能基(たとえばエポキシ基)を有するモノマーを共重合させることにより、その官能基自体またはその官能基から変換された官能基(例えばアンモニア水を反応させることにより生成するアミノ基)を利用することができるし、さらにはそれらの官能基を利用して別の官能基を導入することもできる。
Specific examples of the method for producing the fluorescent substance-accumulated nanoparticles-avidin conjugate are as follows.
When the fluorescent substance-accumulated nanoparticles are based on a resin, the functional groups of the resin and the functional groups of avidin (protein) are, if necessary, a linker molecule such as PEG having functional groups at both ends of the molecule. It can be combined by means of. For example, in the case of a melamine resin, a functional group such as an amino group can be used, and in the case of an acrylic resin, a styrene resin, etc., a monomer having a functional group (for example, an epoxy group) is copolymerized in the side chain. , The functional group itself or a functional group converted from the functional group (for example, an amino group produced by reacting aqueous ammonia) can be utilized, and further, another functional group can be utilized by utilizing those functional groups. A group can also be introduced.
 また、蛍光物質集積ナノ粒子がシリカを母体とする場合、シランカップリング剤で表面修飾することにより所望の官能基を導入することができ、例えばアミノプロピルトリメトキシシランを用いればアミノ基を導入することができる。
 一方、アビジンに対しては、たとえばN-スクシンイミジルS-アセチルチオアセテート(SATA)をアビジンのアミノ基と反応させることにより、チオール基を導入することができる。そして、アミノ基との反応性を有するN-ヒドロキシスクシンイミド(NHS)エステルおよびチオール基との反応性を有するマレイミド基をポリエチレングリコール(PEG)鎖の両端に有するクロスリンカー試薬を利用することにより、アミノ基を有する蛍光物質集積ナノ粒子と、チオール基が導入されたアビジンとを連結することができる。
When the phosphor-accumulated nanoparticles are based on silica, a desired functional group can be introduced by surface modification with a silane coupling agent. For example, an amino group is introduced by using aminopropyltrimethoxysilane. be able to.
On the other hand, for avidin, a thiol group can be introduced by reacting, for example, N-succinimidyl S-acetylthioacetate (SATA) with the amino group of avidin. Then, by using a crosslinker reagent having an N-hydroxysuccinimide (NHS) ester having a reactivity with an amino group and a maleimide group having a reactivity with a thiol group at both ends of a polyethylene glycol (PEG) chain, the amino is used. Fluorescent substance-accumulated nanoparticles having a group and avidin into which a thiol group has been introduced can be linked.
(5)組織標本
 組織標本とは、被験体(癌患者など)から採取された臓器の組織切片や、被験体から採取された組織に含まれる細胞を培養した細胞である。本実施形態では、被験体の3つ以上の臓器を対象として、それぞれの臓器から腫瘍細胞などの病変細胞(目的部)と、その病変細胞の比較対象となる正常細胞(対象部)とを、組織標本として採取している。なお、病変細胞と正常細胞の採取元は、同じ被験体に限定されない。すなわち、異なる被検体から病変細胞と正常細胞を採取してもよい。
 組織標本は、一般的には、免疫組織化学染色により目的生体物質の発現量を評価する場合などで慣用されているような、組織切片や細胞を載置した標本スライドの形態をとる。
 組織標本の作製法は特に限定されず、一般的には、例えば、被験体から採取した組織切片を、ホルマリン等を用いて固定し、アルコールで脱水処理した後、キシレン処理を行い、高温のパラフィン中に浸すことでパラフィン包埋を行うことで作製した組織試料を3~4μmの切片にすることで得ることができ、当該組織切片をスライドガラス上に載置して乾燥することで標本スライドを作製することができる。
(5) Tissue Specimen A tissue specimen is a tissue section of an organ collected from a subject (such as a cancer patient) or a cell obtained by culturing cells contained in the tissue collected from the subject. In the present embodiment, three or more organs of a subject are targeted, and lesion cells such as tumor cells (target portion) from each organ and normal cells (target portion) to be compared with the lesion cells are selected. It is collected as a tissue sample. The source of the lesion cells and the normal cells is not limited to the same subject. That is, lesion cells and normal cells may be collected from different subjects.
Tissue specimens generally take the form of specimen slides on which tissue sections or cells are placed, as is commonly used when evaluating the expression level of a target biological substance by immunohistochemical staining.
The method for preparing the tissue specimen is not particularly limited, and generally, for example, a tissue section collected from a subject is fixed with formalin or the like, dehydrated with alcohol, treated with xylene, and subjected to high-temperature paraffin. A tissue sample prepared by embedding paraffin in it can be obtained by making a section of 3 to 4 μm, and the sample slide can be obtained by placing the tissue section on a slide glass and drying it. Can be made.
(6)染色方法
 以下、組織標本の染色方法について述べる。以下に説明する染色方法は組織切片に限定されず、細胞染色にも適用可能である。
(6) Staining method The staining method for tissue specimens will be described below. The staining method described below is not limited to tissue sections and can also be applied to cell staining.
(6.1)標本作製工程
(6.1.1)脱パラフィン処理
 キシレンを入れた容器に、切片を浸漬させ、パラフィン除去する。温度は特に限定されるものではないが、室温で行うことができる。浸漬時間は、3分以上30分以下であることが好ましい。また必要により浸漬途中でキシレンを交換してもよい。
(6.1) Specimen preparation step (6.1.1) Deparaffin treatment The section is immersed in a container containing xylene to remove paraffin. The temperature is not particularly limited, but it can be carried out at room temperature. The immersion time is preferably 3 minutes or more and 30 minutes or less. If necessary, xylene may be replaced during immersion.
 次いでエタノールを入れた容器に切片を浸漬させ、キシレン除去する。温度は特に限定されるものではないが、室温で行うことができる。浸漬時間は、3分以上30分以下であることが好ましい。また必要により浸漬途中でエタノールを交換してもよい。 Next, the section is immersed in a container containing ethanol to remove xylene. The temperature is not particularly limited, but it can be carried out at room temperature. The immersion time is preferably 3 minutes or more and 30 minutes or less. If necessary, ethanol may be replaced during immersion.
 水を入れた容器に、切片を浸漬させ、エタノール除去する。温度は特に限定されるものではないが、室温で行うことができる。浸漬時間は、3分以上30分以下であることが好ましい。また必要により浸漬途中で水を交換してもよい。 Immerse the section in a container filled with water and remove ethanol. The temperature is not particularly limited, but it can be carried out at room temperature. The immersion time is preferably 3 minutes or more and 30 minutes or less. If necessary, the water may be replaced during immersion.
(6.1.2)賦活化処理
 公知の方法に倣い、目的生体物質の賦活化処理を行う。賦活化条件に特に定めはないが、賦活液としては、0.01Mのクエン酸緩衝液(pH6.0)、1mMのEDTA溶液(pH8.0)、5%尿素、0.1Mのトリス塩酸緩衝液などを用いることができる。
 pH条件は用いる組織切片に応じてpH2.0~13.0の範囲から、シグナルが出て、組織の荒れがシグナルを評価できる程度となる条件で行う。通常はpH6.0~8.0で行うが、特殊な組織切片ではたとえばpH3.0でも行う。
 加熱機器はオートクレーブ、マイクロウェーブ、圧力鍋、ウォーターバスなどを用いることができる。温度は特に限定されるものではないが、室温で行うことができる。温度は50~130℃、時間は5~30分で行うことができる。
(6.1.2) Activation treatment The activation treatment of the target biological substance is carried out according to a known method. The activation conditions are not particularly specified, but the activation solution is 0.01 M citrate buffer (pH 6.0), 1 mM EDTA solution (pH 8.0), 5% urea, and 0.1 M Tris-hydrochloric acid buffer. A liquid or the like can be used.
The pH condition is such that a signal is output from the range of pH 2.0 to 13.0 depending on the tissue section to be used and the tissue roughness is such that the signal can be evaluated. Normally, the pH is 6.0 to 8.0, but for special tissue sections, for example, pH 3.0 is also used.
As the heating device, an autoclave, a microwave, a pressure cooker, a water bath, or the like can be used. The temperature is not particularly limited, but it can be carried out at room temperature. The temperature can be 50 to 130 ° C. and the time can be 5 to 30 minutes.
 次いでPBSを入れた容器に、賦活処理後の切片を浸漬させ、洗浄を行う。温度は特に限定されるものではないが、室温で行うことができる。浸漬時間は、3分以上30分以下であることが好ましい。また必要により浸漬途中でPBSを交換してもよい。 Next, the section after activation treatment is immersed in a container containing PBS and washed. The temperature is not particularly limited, but it can be carried out at room temperature. The immersion time is preferably 3 minutes or more and 30 minutes or less. If necessary, PBS may be replaced during immersion.
(6.2)免疫組織化学染色工程
 免疫組織化学染色工程では、目的生体物質を染色するために、免疫染色剤の溶液を切片に乗せ、目的生体物質との反応を行う。
 免疫組織化学染色工程に用いる免疫染色剤の溶液については、この工程の前にあらかじめ調製しておけばよい。
(6.2) Immunohistochemical Staining Step In the immunohistochemical staining step, in order to stain the target biological substance, a solution of the immunostaining agent is placed on a section and reacted with the target biological substance.
The solution of the immunostaining agent used in the immunohistochemical staining step may be prepared in advance before this step.
 免疫組織化学染色工程を行う上での条件、すなわち免疫染色剤の溶液に組織標本を浸漬する際の温度および浸漬時間は、従来の免疫組織化学染色法に準じて、適切なシグナルが得られるよう適宜調整することができる。
 温度は特に限定されるものではないが、室温で行うことができる。反応時間は、30分以上24時間以下であることが好ましい。
 上述したような処理を行う前に、BSA含有PBSなど公知のブロッキング剤やTween20などの界面活性剤を滴下することが好ましい。
The conditions for performing the immunohistochemical staining step, that is, the temperature and the immersion time when immersing the tissue specimen in the solution of the immunostaining agent, are based on the conventional immunohistochemical staining method so that an appropriate signal can be obtained. It can be adjusted as appropriate.
The temperature is not particularly limited, but it can be carried out at room temperature. The reaction time is preferably 30 minutes or more and 24 hours or less.
It is preferable to drop a known blocking agent such as PBS containing BSA or a surfactant such as Tween 20 before performing the treatment as described above.
 例えば、免疫染色剤が、[一次抗体(プローブ)]…[二次抗体]-[ビオチン]/[アビジン]-[蛍光ナノ粒子(蛍光物質集積ナノ粒子等)]という複合体である場合、最初に一次抗体の溶液に組織標本を浸漬する処理(1次反応処理)、次に二次抗体-ビオチン結合体の溶液に組織標本を浸漬する処理(2次反応処理)、最後に本発明に係る蛍光ナノ粒子用希釈液に分散させたアビジン-蛍光ナノ粒子の溶液に組織標本である組織切片を浸漬する処理(蛍光標識処理)を行えばよい。 For example, when the immunostaining agent is a complex of [primary antibody (probe)] ... [secondary antibody]-[biotin] / [avidin]-[fluorescent nanoparticles (fluorescent substance-accumulated nanoparticles, etc.)], the first Immersing the tissue sample in the solution of the primary antibody (primary reaction process), then immersing the tissue sample in the solution of the secondary antibody-biotin conjugate (secondary reaction process), and finally according to the present invention. A treatment (fluorescence labeling treatment) may be performed in which a tissue section as a tissue sample is immersed in a solution of avidin-fluorescent nanoparticles dispersed in a diluted solution for fluorescent nanoparticles.
(6.3)標本後処理工程
 免疫組織化学染色工程を終えた組織標本は、観察に適したものとなるよう、固定化・脱水、透徹、封入などの処理を行うことが好ましい。
(6.3) Specimen Post-treatment Step It is preferable that the tissue specimen after the immunohistochemical staining step is subjected to treatments such as immobilization / dehydration, permeation, and encapsulation so as to be suitable for observation.
 固定化・脱水処理は、組織標本を固定処理液(ホルマリン、パラホルムアルデヒド、グルタールアルデヒド、アセトン、エタノール、メタノールなどの架橋剤)に浸漬すればよい。透徹処理は、固定化・脱水処理を終えた組織標本を透徹液(キシレンなど)に浸漬すればよい。封入処理は、透徹処理を終えた組織標本を封入液に浸漬すればよい。
 これらの処理を行う上での条件、たとえば組織標本を所定の処理液に浸漬する際の温度および浸漬時間は、従来の免疫染色法に準じて、適切なシグナルが得られるよう適宜調整することができる。
For the immobilization / dehydration treatment, the tissue specimen may be immersed in a fixation treatment solution (crosslinking agent such as formalin, paraformaldehyde, glutaaldehyde, acetone, ethanol, methanol). The permeation treatment may be performed by immersing the tissue specimen after the immobilization / dehydration treatment in a permeation solution (xylene or the like). The encapsulation treatment may be performed by immersing the tissue specimen that has undergone the permeation treatment in the encapsulation liquid.
The conditions for performing these treatments, for example, the temperature and the immersion time when immersing the tissue specimen in a predetermined treatment solution, may be appropriately adjusted so as to obtain an appropriate signal according to the conventional immunostaining method. it can.
(6.4)形態観察染色工程
 免疫組織化学染色工程とは別に、明視野において細胞、組織、臓器などの形態を観察することができるようにするための、形態観察染色を行ってもよい。
 形態観察染色工程は、常法に従って行うことができる。
 組織標本の形態観察に関しては、細胞質・間質・各種線維・赤血球・角化細胞が赤~濃赤色に染色される、エオジンを用いた染色が標準的に用いられている。細胞核・石灰部・軟骨組織・細菌・粘液が青藍色~淡青色に染色される、ヘマトキシリンを用いた染色も標準的に用いられている(これら2つの染色を同時に行う方法はヘマトキシリン・エオジン染色(HE染色)として知られている)。また、細胞核を特異的に染色するDAPI(4',6-diamidino-2-phenylindole)のような蛍光色素を用いた染色を行ってもよい。
 形態観察染色工程を含める場合は、免疫組織化学染色工程の後に行うようにしてもよいし、免疫組織化学染色工程の前に行うようにしてもよい。
(6.4) Morphological Observation Staining Step Apart from the immunohistochemical staining step, morphological observation staining may be performed so that the morphology of cells, tissues, organs, etc. can be observed in a bright field.
The morphological observation dyeing step can be performed according to a conventional method.
For morphological observation of tissue specimens, staining with eosin, in which cytoplasm, interstitium, various fibers, erythrocytes, and keratinocytes are stained in red to deep red, is standardly used. Staining with hematoxylin, in which the cell nucleus, lime, cartilage tissue, bacteria, and mucus are stained in blue to pale blue, is also standardly used (the method of performing these two stainings at the same time is hematoxylin / eosin staining). Known as (HE staining)). In addition, staining with a fluorescent dye such as DAPI (4', 6-diamidino-2-phenylindole) that specifically stains the cell nucleus may be performed.
When the morphological observation staining step is included, it may be performed after the immunohistochemical staining step or before the immunohistochemical staining step.
(7)評価方法
(7.1)観察・撮影工程
 観察・撮影工程では、顕微鏡画像取得装置1Aを所望の倍率に設定し、同一視野において、免疫組織化学染色工程に用いられた目的生体物質を蛍光標識するそれぞれの蛍光物質に対応した励起光を組織標本に照射し、それらの蛍光物質から発せられた蛍光による蛍光画像を観察・撮影する。
(7) Evaluation method (7.1) Observation / imaging step In the observation / imaging step, the microscope image acquisition device 1A is set to a desired magnification, and the target biological substance used in the immunohistochemical staining step is displayed in the same field of view. The tissue specimen is irradiated with excitation light corresponding to each fluorescent substance to be fluorescently labeled, and a fluorescent image due to fluorescence emitted from those fluorescent substances is observed and photographed.
(7.2)定量工程
 定量工程では、蛍光画像の画像処理及び発現量の定量化を行う。なお、本実施形態に係る定量工程は、本発明に係る取得工程に該当し、制御部21により実行される。
 制御部21は、3つ以上の臓器における正常細胞と非正常細胞の蛍光標識された目的生体物質の発現情報を取得する。本実施形態では、正常細胞と非正常細胞のサンプルとして各々3~100個程度を用いて、上記発現情報を取得している。
 具体的に、制御部21は、目的生体物質に関して撮影された蛍光画像について、情報取得装置2Aにおいて画像処理に基づき、目的生体物質に対応する蛍光の輝点数又は発光輝度などの蛍光標識シグナルを計測し、細胞領域内にある各目的生体物質の発現量を定量化した値を、発現情報として取得する。例えば、輝点数に対応するPID粒子の数を計測し、細胞当たりの粒子数を算出した値を、発現情報とすることができる。また、発現情報としては、組織の単位面積当たりの粒子数を算出した値であっても良い。
 画像処理及び発現量の定量化に用いることができるソフトウェアとしては、例えば「ImageJ」(オープンソース)が挙げられる。このような画像処理ソフトウェアを利用することにより、蛍光画像から、所定の波長(色)の輝点を抽出し、そのうち所定の輝度以上の輝点の数を計測する処理などを半自動的に、迅速に行うことができる。
 また、輝点は蛍光ナノ粒子1個に由来するので、大きさが一定であり顕微鏡観察で認識できる。大きさが一定値(例えば、観測される蛍光ナノ粒子の平均値)より大きなシグナルは凝集輝点と判断する。この輝点と凝集輝点は、ソフトウェアを用いて半自動的に迅速に区別することができる。
(7.2) Quantification step In the quantification step, image processing of a fluorescent image and quantification of the expression level are performed. The quantification step according to the present embodiment corresponds to the acquisition step according to the present invention, and is executed by the control unit 21.
The control unit 21 acquires expression information of fluorescently labeled target biological substances of normal cells and abnormal cells in three or more organs. In this embodiment, about 3 to 100 samples of normal cells and about 3 to 100 samples of abnormal cells are used to obtain the above expression information.
Specifically, the control unit 21 measures the fluorescence labeling signal such as the number of bright spots of fluorescence or the emission brightness corresponding to the target biological substance based on the image processing in the information acquisition device 2A for the fluorescent image taken with respect to the target biological substance. Then, the value obtained by quantifying the expression level of each target biological substance in the cell region is acquired as expression information. For example, the number of PID particles corresponding to the number of bright spots is measured, and the value obtained by calculating the number of particles per cell can be used as expression information. Further, the expression information may be a value obtained by calculating the number of particles per unit area of the tissue.
Examples of software that can be used for image processing and quantification of expression level include "ImageJ" (open source). By using such image processing software, processing such as extracting bright spots of a predetermined wavelength (color) from a fluorescent image and measuring the number of bright spots having a predetermined brightness or higher is semi-automatically and quickly. Can be done.
Moreover, since the bright spot is derived from one fluorescent nanoparticle, the size is constant and can be recognized by microscopic observation. A signal whose size is larger than a constant value (for example, the average value of observed fluorescent nanoparticles) is judged to be an aggregated bright spot. The bright spots and aggregated bright spots can be semi-automatically and quickly distinguished using software.
(7.3)表示工程
 表示工程では、定量工程で取得された発現情報を数値化して一覧表示した一覧情報、及び、所定の閾値を示す閾値情報を含む評価支援情報を、表示部23に表示させる。
(7.3) Display step In the display step, the display unit 23 displays the list information obtained by digitizing the expression information acquired in the quantification step and displaying the list information, and the evaluation support information including the threshold value indicating a predetermined threshold value. Let me.
 図3は、表示部23に表示された評価支援情報を示す一例である。
 図3に示すように、一覧情報は、各臓器について、正常細胞と非正常細胞の発現情報(細胞当たりの粒子数)の分布を棒状に並べて表示したものである。
 また、閾値情報は、所定の閾値を直線状(図3では破線で示している)に表示したものである。
FIG. 3 is an example showing the evaluation support information displayed on the display unit 23.
As shown in FIG. 3, the list information is a bar-shaped display of the distribution of expression information (number of particles per cell) of normal cells and abnormal cells for each organ.
Further, the threshold value information is a linear display of a predetermined threshold value (indicated by a broken line in FIG. 3).
 閾値(カットオフ値)は、術前化学療法を行う前に、または術前化学療法を行っている最中に採取した組織標本のうち、最終的に効果の得られた複数の被験体から採取した組織標本(pCR群)と、最終的に効果の得られなかった複数の被験体から採取した組織標本(非pCR群)において、各標本に含まれる特定の目的生体物質の発現量を表す数値を取得し、pCR群の結果と非pCR群の結果を比較することによって導き出すことができる。
 具体的には、pCR群、非pCR群それぞれのHER2のPIDスコア(1細胞あたりのPID粒子数の平均値)についてのROC曲線(receiver operating characteristic curve)を作成し、統計学的に設定することができる。
The threshold (cutoff value) is taken from multiple finalally effective tissue specimens taken before or during preoperative chemotherapy. Numerical value representing the expression level of a specific target biological substance contained in each sample in the tissue sample (pCR group) and the tissue sample (non-pCR group) collected from a plurality of subjects who did not finally obtain the effect. Can be derived by obtaining and comparing the results of the pCR group with the results of the non-pCR group.
Specifically, an ROC curve (receiver operating characteristic curve) for the PID score (mean value of the number of PID particles per cell) of HER2 in each of the pCR group and the non-pCR group should be created and set statistically. Can be done.
 また、閾値は、一般的な生物学的な測定であるELISA(Enzyme-Linked Immuno Sorbent Assay)などで採用されているように、バックグランド(ネガティブコントロール:1次抗体なしでの反応の時のPIDスコア)の平均値に標準偏差σの3倍を足した値(ネガティブコントロールの平均値+3σ)とすることもできる。 In addition, the threshold is a background (negative control: PID at the time of reaction without a primary antibody, as used in ELISA (Enzyme-Linked ImmunoSorbent Assay), which is a general biological measurement. It is also possible to add 3 times the standard deviation σ to the mean value of the score) (mean value of negative control + 3σ).
 また、閾値設定の手法はこれに限られず、これ以外にも、正常細胞と非正常細胞の発現情報を比較した結果に基づいて設定されてもよい。また、AI(Artificial Intelligence)を用い、大量の情報を反復的に分析してそこからパターンを見つけ出すこと等により閾値を設定するなどしてもよい。
 このように本願発明に用いられる創薬支援方法は、実際の組織標本から得られる情報から閾値を設定した後に薬の感度の調整に用いることや、発現情報を数値化した一覧情報から閾値を決定し、薬の感度を見定める方法などに使用するなど、幅広く創薬創出に役立てることができる。
Further, the method of setting the threshold value is not limited to this, and other than this, the threshold value setting method may be set based on the result of comparing the expression information of normal cells and abnormal cells. Further, using AI (Artificial Intelligence), a threshold value may be set by iteratively analyzing a large amount of information and finding a pattern from the information.
As described above, the drug discovery support method used in the present invention is used for adjusting the sensitivity of the drug after setting the threshold value from the information obtained from the actual tissue sample, or the threshold value is determined from the list information obtained by quantifying the expression information. However, it can be widely used for drug discovery creation, such as by using it as a method for determining the sensitivity of a drug.
 かかる評価支援情報においては、各細胞の発現情報の値が閾値よりも大きいことをもって、組織標本を採取した被検者に薬が有効であるか否か(術前化学療法を行うことにより効果があるか否か)を予測することができる。
 すなわち、閾値が低くなるほど、目的生体物質の発現量の少ないサンプルにも有効となり、感度が高くなることが示される。また、臓器ごとの正常細胞と非正常細胞の値の比較により、その臓器に適しているか否かが予測される。
In such evaluation support information, whether or not the drug is effective for the subject who collected the tissue sample because the value of the expression information of each cell is larger than the threshold value (the effect is obtained by performing preoperative chemotherapy). Whether or not there is) can be predicted.
That is, it is shown that the lower the threshold value, the more effective it is for a sample in which the expression level of the target biological substance is small, and the higher the sensitivity. In addition, by comparing the values of normal cells and abnormal cells for each organ, it is predicted whether or not it is suitable for that organ.
 図4を用いて、正常細胞及び非正常細胞の発現情報の値と、閾値との関係について、説明する。
 パターン(1)は、正常細胞の最高値<閾値、且つ、非正常細胞の最低値>閾値となった場合を示す例である。パターン(1)の場合、薬に対する感度が良好で、且つ、薬がこの臓器に適していると推測できる。すなわち、このようになった場合、ターゲット候補と判断することができる。
 パターン(2)は、正常細胞の最低値>閾値、且つ、非正常細胞の最低値>閾値となった場合を示す例である。パターン(2)の場合、薬に対する感度の調整が必要であるが、薬がこの臓器に適していると推測できる。すなわち、このようになった場合、副作用が懸念させると判断することができる。
 パターン(3)は、正常細胞の最低値>閾値、且つ、非正常細胞の最高値<閾値となった場合を示す例である。パターン(3)の場合、この臓器に不適切であると推測できる。すなわち、このようになった場合、臓器に悪いと判断することができる。
 パターン(4)は、正常細胞の最高値<閾値、且つ、非正常細胞の最高値<閾値となった場合を示す例である。パターン(4)の場合、感度の調整が必要と推測できる。
The relationship between the value of the expression information of normal cells and abnormal cells and the threshold value will be described with reference to FIG.
Pattern (1) is an example showing the case where the maximum value of normal cells <threshold value and the minimum value of abnormal cells> threshold value. In the case of pattern (1), it can be inferred that the sensitivity to the drug is good and the drug is suitable for this organ. That is, when this happens, it can be determined as a target candidate.
Pattern (2) is an example showing the case where the minimum value of normal cells> the threshold value and the minimum value of abnormal cells> the threshold value. In the case of pattern (2), it is necessary to adjust the sensitivity to the drug, and it can be inferred that the drug is suitable for this organ. That is, when this happens, it can be determined that side effects are a concern.
Pattern (3) is an example showing the case where the minimum value of normal cells> the threshold value and the maximum value of abnormal cells <threshold value. In the case of pattern (3), it can be inferred that it is inappropriate for this organ. That is, when this happens, it can be determined that it is bad for the organ.
Pattern (4) is an example showing the case where the maximum value of normal cells <threshold value and the maximum value of abnormal cells <threshold value. In the case of pattern (4), it can be inferred that the sensitivity needs to be adjusted.
 本実施形態の上記評価支援情報は、複数の臓器についての発現情報が一覧化されて閾値とともに表示されるため、ユーザーが視覚的に一目で感度と適した臓器を把握することを可能とするものである。閾値に合わせて創薬が行われる。
 また、表示部23上で、閾値情報は、ユーザーの操作部22を介した指示操作により、その位置を調整することが可能である。これにより、複数の臓器に対して理想的な位置を、迅速かつ容易に推測することができる。
Since the evaluation support information of the present embodiment lists the expression information of a plurality of organs and displays them together with the threshold value, it enables the user to visually grasp the sensitivity and the suitable organ at a glance. Is. Drug discovery is performed according to the threshold value.
Further, on the display unit 23, the position of the threshold information can be adjusted by an instruction operation via the operation unit 22 of the user. This makes it possible to quickly and easily infer the ideal position for a plurality of organs.
 ここで、図3の例では、一覧情報として、肝臓、腎臓、大腸、小腸についての正常細胞及び非正常細胞の発現情報値が表示されている。
 例えば、図3において、閾値情報L1が示された場合、肝臓、腎臓、大腸がターゲット候補であり、小腸に対しては不適切であると推測できる。
 また、図3において、閾値情報L2が示された場合、肝臓、大腸に対して有効と考えられるものの、腎臓や小腸に副作用が懸念される。
 また、図3において、閾値情報L3が示された場合、肝臓、腎臓、大腸、小腸のいずれにおいても効果が期待できる一方で、副作用が懸念される。
 このように例えば、閾値と細胞の発現情報値を比較して、棒状で表示された発現情報値の一定の割合が閾値よりも大きい場合、有効と判断できる。有効と判断できる一定の割合は、抗原によって異なるため、抗原毎に判断することになる。
Here, in the example of FIG. 3, the expression information values of normal cells and abnormal cells for the liver, kidney, large intestine, and small intestine are displayed as list information.
For example, in FIG. 3, when the threshold information L1 is shown, it can be inferred that the liver, kidney, and large intestine are target candidates and are inappropriate for the small intestine.
Further, in FIG. 3, when the threshold value information L2 is shown, it is considered to be effective for the liver and the large intestine, but there is a concern about side effects on the kidney and the small intestine.
Further, when the threshold information L3 is shown in FIG. 3, the effect can be expected in any of the liver, kidney, large intestine, and small intestine, but side effects are a concern.
In this way, for example, the threshold value and the expression information value of the cell are compared, and when a certain ratio of the expression information value displayed in a rod shape is larger than the threshold value, it can be judged to be effective. Since a certain percentage that can be judged to be effective differs depending on the antigen, it is judged for each antigen.
 なお、例えば図5に示すように、より局地化した構造物(ゴルジ体、小胞体、ミトコンドリア、細胞質、細胞膜、細胞核等)から発現情報を取得しても良い。図5の場合、非正常細胞の蛍光画像から、ゴルジ体、小胞体、ミトコンドリアを抽出して、その抽出した画像から目的生体物質(HER2タンパク質や、HER2 mRNA)の発現情報を取得した例である。
 このようにすることで、より局地化した分析が可能となる。また、同一組織切片上でのタンパク質とmRNAの検出も可能であることから、対象となるmRNAは発現しているが、タンパク質は発現していない被験者やその臓器も特定することが可能である。
In addition, as shown in FIG. 5, for example, expression information may be acquired from a more localized structure (Golgi apparatus, endoplasmic reticulum, mitochondria, cytoplasm, cell membrane, cell nucleus, etc.). In the case of FIG. 5, it is an example in which the Golgi apparatus, endoplasmic reticulum, and mitochondria are extracted from the fluorescent image of the abnormal cell, and the expression information of the target biological substance (HER2 protein or HER2 mRNA) is acquired from the extracted image. ..
By doing so, more localized analysis becomes possible. In addition, since protein and mRNA can be detected on the same tissue section, it is possible to identify a subject or an organ in which the target mRNA is expressed but the protein is not expressed.
[実施形態の効果]
 以上のように、本実施形態の創薬支援方法は、複数の臓器(生体部位)における非正常細胞(目的部)と、非正常細胞の比較対象となる正常細胞(対象部)の蛍光標識された目的生体物質の発現情報を取得する取得工程と、取得工程により取得した各部の発現情報を数値化して一覧表示した一覧情報、及び、所定の閾値を示す閾値情報を、表示部に表示させる表示工程と、を有する。
 また、表示工程は、各部の発現情報を棒状に並べて表示した一覧情報と、閾値を直線状に表示した閾値情報とを表示する。
 このため、複数の臓器の非正常細胞と正常細胞の発現情報を示す値と、閾値とを、一目で認識でき、薬の感度と適した臓器を迅速かつ正確に判断することが可能となる。
[Effect of embodiment]
As described above, the drug discovery support method of the present embodiment is fluorescently labeled with abnormal cells (target part) in a plurality of organs (biological sites) and normal cells (target part) to be compared with the abnormal cells. The acquisition process for acquiring the expression information of the target biological substance, the list information obtained by digitizing the expression information of each part acquired in the acquisition process, and the threshold information indicating a predetermined threshold are displayed on the display unit. It has a process.
In addition, the display step displays list information in which the expression information of each part is arranged in a bar shape and threshold information in which the threshold value is displayed in a straight line.
Therefore, the value indicating the expression information of the abnormal cells and the normal cells of a plurality of organs and the threshold value can be recognized at a glance, and the sensitivity of the drug and the suitable organ can be quickly and accurately determined.
 また、本実施形態よれば、各部の発現情報に含まれるバックグラウンド成分を表すバックグラウンドデータに基づいて閾値を設定する閾値設定工程を有する。
 バックグラウンドデータに基づいて閾値が設定される構成とすることができる。
Further, according to the present embodiment, there is a threshold value setting step of setting a threshold value based on background data representing a background component included in the expression information of each part.
The threshold value can be set based on the background data.
 また、本実施形態よれば、取得工程は、3つ以上の臓器における非正常細胞と前正常細胞の蛍光標識された目的生体物質の発現情報を取得する
 このため、3つ以上の臓器に対する一覧情報及び閾値情報を比較することで、創薬段階の効率化にあたりより有益である。
Further, according to the present embodiment, the acquisition step acquires the expression information of the fluorescently labeled target biological substance of the abnormal cells and the prenormal cells in the three or more organs. Therefore, the list information for the three or more organs is obtained. And by comparing the threshold information, it is more useful in improving the efficiency of the drug discovery stage.
 以上、本発明を適用した好ましい実施形態について説明したが、上記実施形態における記述内容は、本発明の好適な一例であり、これに限定されるものではない。 Although the preferred embodiment to which the present invention is applied has been described above, the description content in the above embodiment is a preferable example of the present invention, and is not limited thereto.
 例えば、上記実施形態では、被験体の3つ以上の臓器から発現情報を取得することとしているが、少なくとも2つの臓器から発現情報を取得すればよい。 For example, in the above embodiment, the expression information is acquired from three or more organs of the subject, but the expression information may be acquired from at least two organs.
 本発明は、薬の感度と適した生体部位を迅速かつ正確に判断することに利用することができる。 The present invention can be used to quickly and accurately determine the sensitivity of a drug and a suitable biological site.
100 病理診断支援システム
1A 顕微鏡画像取得装置
2A 情報取得装置
21 制御部(取得手段、表示制御手段)
22 操作部
23 表示部
24 通信I/F
25 記憶部
100 Pathological diagnosis support system 1A Microscopic image acquisition device 2A Information acquisition device 21 Control unit (acquisition means, display control means)
22 Operation unit 23 Display unit 24 Communication I / F
25 Memory

Claims (9)

  1.  複数の生体部位における目的部と、前記目的部の比較対象となる対象部の蛍光標識された目的生体物質の発現情報を取得する取得工程と、
     前記取得工程により取得した各部の発現情報を数値化して一覧表示した一覧情報、及び、所定の閾値を示す閾値情報を、表示部に表示させる表示工程と、
     を有する創薬支援方法。
    An acquisition step of acquiring expression information of a target part in a plurality of biological parts and a fluorescently labeled target biological substance of the target part to be compared with the target part.
    A display step of displaying the list information obtained by digitizing the expression information of each part acquired by the acquisition step and displaying the list information, and the threshold information indicating a predetermined threshold value on the display unit.
    Drug discovery support method with.
  2.  前記生体部位は臓器である請求項1に記載の創薬支援方法。 The drug discovery support method according to claim 1, wherein the biological part is an organ.
  3.  前記目的部は非正常細胞であり、前記対象部は正常細胞である請求項1又は2に記載の創薬支援方法。 The drug discovery support method according to claim 1 or 2, wherein the target part is an abnormal cell and the target part is a normal cell.
  4.  前記目的部は、前記非正常細胞における所定構造物である請求項3に記載の創薬支援方法。 The drug discovery support method according to claim 3, wherein the target unit is a predetermined structure in the abnormal cell.
  5.  前記表示工程は、前記各部の発現情報を棒状に並べて表示した前記一覧情報と、前記閾値を直線状に表示した前記閾値情報とを表示する請求項1から4のいずれか一項に記載の創薬支援方法。 The wound according to any one of claims 1 to 4, wherein the display step displays the list information in which the expression information of each part is displayed side by side in a bar shape and the threshold information in which the threshold value is linearly displayed. Drug support method.
  6.  前記取得工程は、3つ以上の生体部位における前記目的部と前記対象部の蛍光標識された目的生体物質の発現情報を取得する請求項1から5のいずれか一項に記載の創薬支援方法。 The drug discovery support method according to any one of claims 1 to 5, wherein the acquisition step acquires expression information of the target portion and the fluorescently labeled target biological substance in the target portion in three or more biological parts. ..
  7.  前記各部の発現情報に含まれるバックグラウンド成分を表すバックグラウンドデータに基づいて前記閾値を設定する閾値設定工程を有する請求項1から6のいずれか一項に記載の創薬支援方法。 The drug discovery support method according to any one of claims 1 to 6, further comprising a threshold setting step of setting the threshold value based on background data representing a background component included in the expression information of each part.
  8.  複数の生体部位における目的部と、前記目的部の比較対象となる対象部の蛍光標識された目的生体物質の発現情報を取得する取得手段、
     前記取得手段により取得した各部の発現情報を数値化して一覧表示した一覧情報、及び、所定の閾値を示す閾値情報を、表示部に表示させる表示制御手段と、
     を備える創薬支援装置。
    An acquisition means for acquiring expression information of a target part in a plurality of biological parts and a fluorescently labeled target biological substance of the target part to be compared with the target part.
    A display control means for displaying the list information obtained by digitizing the expression information of each part acquired by the acquisition means and displaying the list information, and the threshold value information indicating a predetermined threshold value on the display unit.
    Drug discovery support device equipped with.
  9.  コンピューターを、
     複数の生体部位における目的部と、前記目的部の比較対象となる対象部の蛍光標識された目的生体物質の発現情報を取得する取得手段、
     前記取得手段により取得した各部の発現情報を数値化して一覧表示した一覧情報、及び、所定の閾値を示す閾値情報を、表示部に表示させる表示制御手段、
     として機能させるプログラム。
    Computer,
    An acquisition means for acquiring expression information of a target part in a plurality of biological parts and a fluorescently labeled target biological substance of the target part to be compared with the target part.
    A display control means for displaying on the display unit the list information obtained by digitizing the expression information of each part acquired by the acquisition means and displaying the list information and the threshold value information indicating a predetermined threshold value.
    A program that functions as.
PCT/JP2020/031480 2019-08-29 2020-08-20 Method for supporting drug discovery, device for supporting drug discovery and program WO2021039592A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021542816A JPWO2021039592A1 (en) 2019-08-29 2020-08-20

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-156236 2019-08-29
JP2019156236 2019-08-29

Publications (1)

Publication Number Publication Date
WO2021039592A1 true WO2021039592A1 (en) 2021-03-04

Family

ID=74685516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031480 WO2021039592A1 (en) 2019-08-29 2020-08-20 Method for supporting drug discovery, device for supporting drug discovery and program

Country Status (2)

Country Link
JP (1) JPWO2021039592A1 (en)
WO (1) WO2021039592A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003242154A (en) * 2002-02-18 2003-08-29 Celestar Lexico-Sciences Inc Method and apparatus for managing gene manifestation information, program, and recording medium
JP2008101968A (en) * 2006-10-18 2008-05-01 Yokogawa Electric Corp Screening apparatus for drug development, and development method for drug development
WO2009048039A1 (en) * 2007-10-12 2009-04-16 Konica Minolta Medical & Graphic, Inc. Molecule/cell imaging method and semiconductor nanoparticle
JP2010169678A (en) * 2008-12-25 2010-08-05 Canon Inc Labelling agent for biosample, labelling method using labelling agent, and screening method
JP2011509246A (en) * 2007-12-26 2011-03-24 ヴァクシネックス, インコーポレイテッド Anti-C35 antibody combination therapy and method
WO2012029269A1 (en) * 2010-09-02 2012-03-08 国立大学法人東北大学 Method for determining cancer onset or cancer onset risk
JP2012256175A (en) * 2011-06-08 2012-12-27 Yokogawa Electric Corp Image processing method, image processing device, and drug development support device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003242154A (en) * 2002-02-18 2003-08-29 Celestar Lexico-Sciences Inc Method and apparatus for managing gene manifestation information, program, and recording medium
JP2008101968A (en) * 2006-10-18 2008-05-01 Yokogawa Electric Corp Screening apparatus for drug development, and development method for drug development
WO2009048039A1 (en) * 2007-10-12 2009-04-16 Konica Minolta Medical & Graphic, Inc. Molecule/cell imaging method and semiconductor nanoparticle
JP2011509246A (en) * 2007-12-26 2011-03-24 ヴァクシネックス, インコーポレイテッド Anti-C35 antibody combination therapy and method
JP2010169678A (en) * 2008-12-25 2010-08-05 Canon Inc Labelling agent for biosample, labelling method using labelling agent, and screening method
WO2012029269A1 (en) * 2010-09-02 2012-03-08 国立大学法人東北大学 Method for determining cancer onset or cancer onset risk
JP2012256175A (en) * 2011-06-08 2012-12-27 Yokogawa Electric Corp Image processing method, image processing device, and drug development support device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GODA, HIDEKI ET AL.: "HSTT (High Sensitive Tissue Testing) Technology", 2 HSTT(HIGH SENSITIVE TISSUE TESTING),KONICA MINOLTA TECHNOLOGY REPORT, vol. 14, 2017, pages 14 - 17 *

Also Published As

Publication number Publication date
JPWO2021039592A1 (en) 2021-03-04

Similar Documents

Publication Publication Date Title
EP3124969B1 (en) Biological-material quantitation method based on multiple-antigen immunostaining
JP5906623B2 (en) Biological substance expression level evaluation system
AU2010206657A1 (en) Apparatus and methods for detecting inflammation using quantum dots
JP6960224B2 (en) Biomaterial quantification method, pathological diagnosis support system and program
JP6597316B2 (en) Image processing apparatus and program
US10656092B2 (en) Biological material quantifying method, image processing device, pathological diagnosis support system and recording medium
JP5887823B2 (en) Organization evaluation method
WO2015146938A1 (en) Tissue evaluation method, image processing device, pathological diagnosis support system, and program
WO2017014196A1 (en) Target biological substance analysis method and analysis system
US20180156699A1 (en) Pathological Specimen, Method For Producing Pathological Specimen, And Method For Acquiring Fluorescence Image
WO2017175523A1 (en) Fluorescent immunostaining method
JP5863057B2 (en) Organization evaluation method
WO2021039592A1 (en) Method for supporting drug discovery, device for supporting drug discovery and program
US20200165666A1 (en) Diluent for fluorescent nano particles, kit for immunofluorescent staining which utilizes same, solution for immunofluorescent staining, immunofluorescent staining method, and gene staining method
WO2020166469A1 (en) Information provision method, information provision device, and program
JP6702339B2 (en) Image processing device and program
JP7160047B2 (en) Biological substance quantification method, image processing device and program
WO2020050373A1 (en) Information acquiring method, information acquiring device, and program
WO2021192910A1 (en) Image generation method, image generation device, and program
JPWO2019078230A1 (en) Biomaterial quantification method, image processing device, pathological diagnosis support system and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20857321

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021542816

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20857321

Country of ref document: EP

Kind code of ref document: A1