WO2023058610A1 - Automatic door, diagnostic device for automatic door, diagnostic method for automatic door, and diagnostic program for automatic door - Google Patents

Automatic door, diagnostic device for automatic door, diagnostic method for automatic door, and diagnostic program for automatic door Download PDF

Info

Publication number
WO2023058610A1
WO2023058610A1 PCT/JP2022/037006 JP2022037006W WO2023058610A1 WO 2023058610 A1 WO2023058610 A1 WO 2023058610A1 JP 2022037006 W JP2022037006 W JP 2022037006W WO 2023058610 A1 WO2023058610 A1 WO 2023058610A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
door
operation phase
detection
information
Prior art date
Application number
PCT/JP2022/037006
Other languages
French (fr)
Japanese (ja)
Inventor
良有 清政
寅貴 西井
Original Assignee
ナブテスコ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナブテスコ株式会社 filed Critical ナブテスコ株式会社
Priority to JP2023552874A priority Critical patent/JPWO2023058610A1/ja
Publication of WO2023058610A1 publication Critical patent/WO2023058610A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F15/00Power-operated mechanisms for wings
    • E05F15/70Power-operated mechanisms for wings with automatic actuation
    • E05F15/73Power-operated mechanisms for wings with automatic actuation responsive to movement or presence of persons or objects
    • E05F15/74Power-operated mechanisms for wings with automatic actuation responsive to movement or presence of persons or objects using photoelectric cells

Definitions

  • the present invention relates to automatic doors.
  • Patent Document 1 As an automatic door that automatically opens and closes with electric power, there is a known automatic door in which multiple infrared detection spots are formed in the detection area around the door (Patent Document 1). According to the detection information of each detection spot, it is possible to detect not only the normal opening and closing of the door, but also the occurrence of undesirable abnormal events such as erroneous opening and closing, opening, and repeated reversal of the door.
  • the present invention has been made in view of this situation, and its purpose is to provide an automatic door that can efficiently detect the occurrence of a predetermined event at the door.
  • an automatic door includes a control unit that controls opening and closing operations of a door provided at an opening, a sensor that has a detection area around the door, and a door from the control unit.
  • An operation phase acquisition unit that acquires operation phase information
  • a sensor information acquisition unit that acquires sensor detection information when it is determined that the door is in a predetermined operation phase based on the operation phase information acquired by the operation phase acquisition unit.
  • a determination unit that determines whether or not a predetermined event has occurred at the door based on the operation phase information acquired by the operation phase acquisition unit and the detection information acquired by the sensor information acquisition unit.
  • Another aspect of the present invention is an automatic door diagnostic device.
  • This device includes an operation phase acquisition unit that acquires operation phase information of a door provided at the opening of an automatic door, and determines that the door is in a predetermined operation phase based on the operation phase information acquired by the operation phase acquisition unit. Then, based on the sensor information acquisition unit that acquires the detection information of the sensor that has a detection area around the door, and the operation phase information acquired by the operation phase acquisition unit and the detection information acquired by the sensor information acquisition unit, a determination unit that determines whether or not a predetermined event has occurred.
  • FIG. 2 is a diagram schematically showing various constituent devices capable of communicating with each other inside and outside the automatic door; 4 schematically shows how light is projected and received by an activation sensor; 4 schematically shows a detection area on the floor around the door where light is emitted and received by the activation sensor. 4 shows an example of trajectory information of a detection spot that can be acquired from an activated sensor.
  • 1 is a functional block diagram showing a diagnosis device for an automatic door; FIG. A method for judging erroneous opening/closing by an erroneous opening/closing judging unit is shown. A method of determining openness by an open determination unit will be shown. A method of determining repeated inversion by a repeated inversion determination unit will be described.
  • FIG. 1 is a front view schematically showing an automatic door 100 according to an embodiment of the invention.
  • the automatic door 100 includes a door portion 10 that is driven to open and close, a controller 20 that controls the entire automatic door 100, a sensor 30 that detects a passerby (general term for a start sensor 31 and an auxiliary sensor 32), and a door that generates power. It mainly includes an engine 40 and a power transmission section 50 that transmits power to the door section 10 .
  • the left-right direction in FIG. 1 is the horizontal direction
  • the up-down direction in FIG. 1 is the vertical direction. is not limited to
  • the door portion 10 overlaps with a first movable door 11L and a second movable door 11R, which are horizontally movable, respectively, and when the first movable door 11L and the second movable door 11R are in an open state.
  • a first fixed door 12L and a second fixed door 12R provided at positions, and a guide mechanism 13 for guiding horizontal movements of the first movable door 11L and the second movable door 11R are provided.
  • the first movable door 11L, the second movable door 11R, the first fixed door 12L, and the second fixed door 12R are configured in a vertically long rectangular shape with a vertical dimension larger than a horizontal dimension.
  • the second movable door 11R shown on the right side in FIG. 1 is driven rightward.
  • the first movable door 11L is driven to the right
  • the second movable door 11R is driven to the left, contrary to when the door portion 10 is driven to open.
  • the number and shape of the doors constituting the door section 10 are not limited to those described above, and can be appropriately designed according to the needs of the installation location.
  • the movable direction of the door portion 10 is not limited to the horizontal direction, and may be a direction inclined from the horizontal direction.
  • the guide mechanism 13 includes a travel rail 131 , a door roller 132 , a guide rail 133 , and an anti-vibration portion 134 .
  • the running rail 131 is a columnar rail member extending horizontally over the entire movable range above the movable doors 11L and 11R.
  • Two door rollers 132 are provided above each of the movable doors 11L and 11R, and the movable doors 11L and 11R are suspended from the running rail 131. As shown in FIG. When the movable doors 11L and 11R are driven to open and close in the horizontal direction, the door rollers 132 roll on the travel rails 131, enabling smooth opening and closing operations.
  • the guide rail 133 is a groove-shaped rail member extending horizontally over the entire movable range below the movable doors 11L and 11R.
  • the anti-vibration part 134 projects from the lower part of the movable doors 11L and 11R and is accommodated in the groove-shaped guide rail 133. - ⁇ When the movable doors 11L and 11R are driven to open and close in the horizontal direction, the anti-vibration portion 134 moves along the guide rails 133, so that the direction of projection of the movable doors 11L and 11R (the direction perpendicular to the paper surface of FIG. 1) Vibration can be suppressed.
  • opening/closing speed is the horizontal speed of the first movable door 11L and the second movable door 11R, and the speed directions of both doors are opposite to each other. Although it is preferable that both doors have the same speed (speed), they may have different speeds. Also, the opening/closing speed may be set to different values for normal opening/closing and other times.
  • the movable door 11L during the open drive may be set to a value different from the speed during normal open drive. Further, even if the opening speed and closing speed when the door section 10 is driven by the temporary power supplied from the battery in an emergency such as a power failure when the normal power source cannot be used are set to values different from those during normal driving. good.
  • the opening/closing strength is the magnitude of the force when opening and closing the movable doors 11L and 11R, and is controlled by the torque value generated by the motor 42, which will be described later. Similar to the opening/closing speed described above, basically, it is preferable that the movable doors 11L and 11R have the same opening/closing strength. Also, different opening/closing strengths may be set for normal opening/closing and other times.
  • the opening width is typically the horizontal distance between the first movable door 11L and the second movable door 11R when the door portion 10 is fully open. As shown in FIG.
  • W1 is the moving distance between the fully closed position and the fully open position of the first movable door 11L
  • W2 is the moving distance between the fully closed position and the fully open position of the second movable door 11R.
  • the aperture width is represented by W1+W2.
  • the moving distances W1 and W2 can be individually set within a range within the horizontal dimension of the automatic door 100 .
  • the opening width of the door portion 10 is reduced when the door portion 10 is driven by temporary power supplied from the battery. Power consumption due to opening/closing drive may be suppressed.
  • an activation sensor 31 as an optical sensor and an auxiliary sensor 32 are provided.
  • the activation sensor 31 is a photoelectric sensor provided on the surface of the blind 60 above the door portion 10 .
  • the activation sensor 31 includes a light projecting portion that projects light such as infrared rays toward the floor surface and a light receiving portion that receives reflected light from the floor surface.
  • the amount of light received by the light receiving unit changes, so the object can be detected.
  • the door section 10 is opened by driving the door engine 40. As shown in FIG.
  • the activation sensor 31 is provided on the indoor side (for example, the front side of the page of FIG. 1) and the outdoor side (for example, the back side of the page of FIG. 1), and can detect a passerby approaching from either side.
  • the indoor side for example, the front side of the page of FIG. 1
  • the outdoor side for example, the back side of the page of FIG. 1
  • an indoor-side starting sensor 31I and an outdoor-side starting sensor 31O respectively.
  • the activation sensor 31 may be configured to detect a passerby by reflection of radio waves such as microwaves or ultrasonic waves. Further, as indicated by 31A in FIG. 1, the door section 10 may be driven when a passerby presses a touch plate provided on at least one of the movable doors 11L and 11R. Further, in tourist facilities, amusement parks, etc., in addition to or in place of the detection and operation of passers-by, it is also assumed that the door section 10 is driven by the operation of a staff member of the facility. At this time, the facility staff can remotely drive the door section 10 using an operation panel provided at a position away from the door section 10 or an operation terminal capable of communicating with the automatic door 100 .
  • the auxiliary sensor 32 as a passage sensor for detecting a person or an object (hereinafter collectively referred to as a detection object) passing through the door portion 10 or passing through the opening is provided between the first fixed door 12L of the door portion 10 and the second fixed door 12L. It is a photoelectric sensor provided on the door 12R.
  • the auxiliary sensor 32 includes a light projecting part provided on one of the first fixed door 12L and the second fixed door 12R and a light receiving part provided on the other. The light projecting part and the light receiving part are provided at the same height from the floor surface, and the light receiving part receives light such as infrared rays projected horizontally from the light projecting part.
  • the main purpose of the auxiliary sensor 32 is to protect against closing.
  • the controller 20 stops the closing drive and performs reverse control to switch to the opening drive. .
  • the passerby detection accuracy can be increased and the safety can be further improved.
  • the auxiliary sensor 32 may be configured to detect passers-by by reflecting radio waves such as microwaves or ultrasonic waves. Also, the auxiliary sensor 32 may be provided at a location different from the fixed doors 12L and 12R. For example, it may be installed on the blind 60 like the activation sensor 31, or may be installed on the ceiling in the vicinity of the automatic door 100. FIG. If a plurality of such auxiliary sensors 32 are provided, the cost will be increased, but the safety will be dramatically improved.
  • the activation sensor 31 and the auxiliary sensor 32 are equipped with an amplifier in the output stage, and amplify detection information from each sensor to a predetermined level that can be handled by the controller 20 in the subsequent stage. Therefore, when the detection intensity of the sensor is low, the amplification factor is high, and when the detection intensity of the sensor is high, the amplification factor is low. Thus, the amplification factor of each sensor is data indicating the detection strength of each sensor.
  • the door engine 40 includes a motor drive section 41 , a motor 42 and a drive pulley 43 .
  • the motor drive unit 41 is composed of an intelligent power module (IPM), and supplies voltage or current to drive the motor 42 under the control of the controller 20 as a control unit that controls the opening and closing operation of the door 10 provided in the opening. generate.
  • the motor 42 as a power source for generating rotational power can be configured as various known motors, but in this embodiment, as an example, a brushless motor provided with an encoder using Hall elements is used.
  • the position of the rotor of the motor 42 detected by the encoder is input to the motor drive unit 41, and the corresponding drive voltage or drive current is applied to the motor 42 to generate desired rotational power.
  • a drive pulley 43 that is rotationally driven by the motor 42 is connected to the rotor of the motor 42 via a gear mechanism (not shown) and rotates in conjunction therewith.
  • the power transmission section 50 transmits the power generated by the door engine 40 to the door section 10 to open and close the movable doors 11L and 11R.
  • the power transmission section 50 includes a power transmission belt 51 , a driven pulley 52 and a connecting member 53 .
  • the power transmission belt 51 is an annular timing belt having a number of teeth formed on its inner peripheral surface, and is wound around the driving pulley 43 on the right side in FIG. 1 and around the driven pulley 52 on the left side in FIG. In this state, the horizontal dimension of the power transmission belt 51 is equal to the horizontal distance between the drive pulley 43 and the driven pulley 52, and is approximately equal to the horizontal dimension of the movable range of the movable doors 11L and 11R.
  • the connecting member 53 connects the movable doors 11L and 11R to the power transmission belt 51 and drives them to open and close.
  • one movable door is connected to the upper side of the power transmission belt 51 and the other movable door is connected to the lower side of the power transmission belt 51 .
  • the first movable door 11L moves to the left and the second movable door 11R moves to the right for opening, and the power transmission belt 51 rotates clockwise.
  • the first movable door 11L moves to the right and the second movable door 11R moves to the left for closing operation.
  • the door engine 40 when the activation sensor 31 detects a passerby, the door engine 40 generates counterclockwise rotational power under the control of the controller 20 to drive the door section 10 to open. Further, when a passerby is not detected for a predetermined period of time after the opening drive, the door engine 40 generates clockwise rotational power under the control of the controller 20 to drive the door section 10 to close.
  • the controller 20 performs reversal control to switch from the closing drive to the opening drive.
  • FIG. 2 schematically shows various constituent devices that can communicate with each other inside and outside the automatic door 100 .
  • the automatic door 100 has a bus 2 to which constituent devices are connected and which performs data communication between the constituent devices.
  • the bus 2 is configured according to any communication standard, such as CAN (Controller Area Network).
  • CAN Controller Area Network
  • CAN is designed so that constituent devices can communicate with each other without the intervention of a host computer, and is widely used to transmit control information of various systems, not limited to automatic doors.
  • Each constituent device connected to the bus 2 can transmit information to other constituent devices via the bus 2, and can selectively receive information necessary for itself among the information transmitted to the bus 2 by the other constituent devices. .
  • FIG. 2 shows, as components connected to the bus 2, a controller 20, an activation sensor 31, a touch plate 31A, an auxiliary sensor 32, an operation panel 33, an authentication device 34, an electric lock controller 35, an external interface 36, a display device 37, and a display device 37.
  • a controller 20 an activation sensor 31, a touch plate 31A, an auxiliary sensor 32, an operation panel 33, an authentication device 34, an electric lock controller 35, an external interface 36, a display device 37, and a display device 37.
  • any component constitutes the automatic door 100 .
  • the components provided in the actual automatic door 100 can be selected according to the purpose, and it is not necessary to provide all the illustrated components.
  • the controller 20 that controls the entire automatic door 100 is an essential component in many cases.
  • the operation panel 33 is a control panel that is operated by a staff member of a tourist facility, an amusement park, or the like to drive the door section 10 .
  • the attendant operates the operation panel 33 in accordance with the movement timing to control the opening and closing of the door section 10 of each room so that the user can move smoothly. can move.
  • the operation panel 33 may be fixedly installed in the facility, or may be carried by the staff. Also, the function of the operation panel 33 may be implemented in a communication terminal such as a tablet or a smartphone capable of communicating with the controller 20 or the like via an external interface 36, which will be described later.
  • the authentication device 34 authenticates passers-by who should be permitted to pass in places where a high level of security is required, such as the entrances of housing complexes and offices.
  • Authentication methods include password authentication by inputting a keypad provided in the vicinity of the door 10, biometric authentication using the passerby's biometric information such as fingerprints, and the like.
  • the controller 20 drives the door section 10 to open, and the passerby can pass through the automatic door 100. - ⁇ If authentication by the authentication device 34 fails, even if the activation sensor 31 detects the passerby, the controller 20 does not drive the door part 10 to open, thereby preventing unauthorized passage of the passerby.
  • the electric lock controller 35 controls the electric lock 35A that locks the automatic door 100.
  • the electric lock 35A includes, for example, a solenoid that generates a driving force according to the energized state as lock driving means for driving the lock between the locked position and the unlocked position.
  • the external interface 36 inputs and outputs signals to and from various external devices 36A outside the automatic door 100 through wired or wireless connection.
  • a work terminal such as a regulator used by a worker who goes to the site for installation or maintenance inspection of the automatic door 100, or a remote server connected via a public information communication network such as the Internet. and computers are exemplified.
  • Various settings such as control of each constituent device of the automatic door 100 and parameter adjustment can be performed by such input operation of the external device 36A.
  • the external device 36A can read information from each constituent device of the automatic door 100 and a memory attached thereto, and perform state diagnosis and maintenance inspection.
  • the bus 2 in the automatic door 100 is configured according to the CAN standard, but communication between the external device 36A and the external interface 36 is based on a different standard, such as Bluetooth (registered trademark). or Wi-Fi®, the external interface 36 functions as a protocol converter that converts signals based on one standard to signals based on the other standard.
  • a different standard such as Bluetooth (registered trademark). or Wi-Fi®
  • the external interface 36 functions as a protocol converter that converts signals based on one standard to signals based on the other standard.
  • the display device 37 is a display unit that displays the operating status of the automatic door 100 based on information received from other components.
  • the display device 37 has an input function such as a touch panel, various settings such as control of each constituent device of the automatic door 100 and parameter adjustment can be performed by touch operation on the display screen.
  • the display device 37 may be provided near the door section 10 or may be provided in a place away from the door section 10, for example, in the backyard where the automatic door 100 is managed in the same building.
  • Components constituting the automatic door 100 exemplified above that is, the controller 20, the activation sensor 31, the touch plate 31A, the auxiliary sensor 32, the operation panel 33, the authentication device 34, the electric lock controller 35, the external interface 36, and the display device 37 can communicate with each other via a bus 2 conforming to the CAN standard. That is, each component contains a CAN transceiver and a CAN controller for CAN communication.
  • the external interface 36 has a protocol converter that performs protocol conversion between the communication standard used by the external device 36A and the CAN standard. As a result, the external device 36A connected to the external interface 36 can communicate with other constituent devices of the automatic door 100 via the bus 2.
  • FIG. 3 schematically shows how each activation sensor 31 projects and receives light.
  • Each activation sensor 31 includes a light projecting portion 70 that projects light onto a detection area 90 around the door portion 10 and a light receiving portion 80 that receives reflected light from the detection area 90 .
  • the light projecting section 70 includes m light projecting elements 71-1, 71-2, . , 72-2 . . . 72-m (collectively referred to as projection lenses 72).
  • the light-receiving unit 80 includes n light-receiving elements 81-1, 81-2, . . . 82-n (collectively referred to as a light receiving lens 82).
  • the detection area 90 corresponds to the floor on which infrared rays are projected and received.
  • the light projecting section 70 and the light receiving section 80 are shown as separate bodies, but they may be constructed integrally.
  • each light projecting element 71 constituting the light projecting section 70 and each light receiving element 81 constituting the light receiving section 80 can be integrally configured as a photocoupler.
  • the light projecting element 71 is a light emitting element such as an LED that emits light based on an electrical signal. Infrared light, which is non-visible light, is used so that the automatic door 100 does not interfere with passers-by.
  • the light projecting lens 72 splits the light from the light projecting element 71 into a plurality of light rays. Although the number of rays generated by division is arbitrary, in the illustrated example, each projection lens 72 generates two rays. There are a total of m light projecting elements 71, and each light is split into two light beams by the light projecting lens 72, so the light projecting unit 70 generates a total of 2m light beams and irradiates the detection area 90 with them. .
  • the light receiving element 81 is a photodiode or the like that receives reflected light from the detection area 90 and generates light reception information, which is an electrical signal.
  • the wavelength band that can be received by the light receiving element 81 is matched with the light emitted by the light projecting element 71 (infrared light in this example).
  • the light-receiving lens 82 collects a plurality of light beams from the detection area 90 and irradiates the corresponding light-receiving elements 81 .
  • the number of light beams collected by each light receiving lens 82 is arbitrary, in the illustrated example, each light receiving lens 82 collects three light beams. Since there are a total of n receiving lenses 82 and each collects three light beams, the light receiving section 80 receives a total of 3n light beams from the sensing area 90 .
  • the total number is 72, that is, the case where m (the number of light emitting elements 71 and light emitting lenses 72) is 36 and n (the number of light receiving elements 81 and light receiving lenses 82) is 24 will be described as an example.
  • the number of split rays of the projection lens 72 is 2
  • the number of the light rays of the light receiving lens 82 is 3.
  • the number m of the light projecting elements 71 and the number of light receiving elements are set accordingly.
  • the number n of 81 can also be set arbitrarily.
  • the number m of the light emitting elements 71 and the number n of the light receiving elements 81 may be arbitrary natural numbers up to the desired total number of light rays (72).
  • the number of light projecting elements 71 is one, which is the minimum, one light projecting lens 72 similarly generates 72 light rays.
  • the number of light projecting elements 71 is 72, which is the maximum number, 72 light beams can be obtained without splitting the light with the light projecting lens 72, so the light projecting lens 72 is not necessary.
  • one light receiving lens 82 collects 72 light rays.
  • the number of light-receiving elements 81 is 72, which is the maximum number, the light rays do not need to be concentrated, so the light-receiving lens 82 is not necessary.
  • FIG. 4 schematically shows a detection area 90 on the floor around the door portion 10 where each activation sensor 31 projects and receives light.
  • the sensing area 90 is partitioned into 72 sensing spots corresponding to the 72 rays.
  • a rectangular detection area 90 is divided into a matrix or lattice of 6 rows and 12 columns.
  • This detection area 90 is the floor surface facing the opening of the door portion 10 of the automatic door 100, and the larger the line number, the closer it is to the opening. That is, the sensing spot in row number 1 is furthest from the aperture and the sensing spot in row number 6 is closest to the aperture.
  • row numbers L1 to L6 correspond to the area on the left side of the door portion 10 in FIG. 1
  • row numbers R1 to R6 correspond to the area on the right side of the door portion 10 in FIG.
  • the detection spots divided as described above are given unique spot numbers from 1 to 72 as shown in the figure.
  • Each detection spot is also given a light projection number and a light reception number.
  • the projection number represents the projection element 71 that projects light onto the detection spot.
  • the light receiving number represents the light receiving element 81 that receives the reflected light from the detection spot.
  • the 61st detection spot in the upper left corner of the figure receives light from the first light emitting element 71-1 and reflects it to the first light receiving element 81-1.
  • the 62nd detection spot on the right side receives the light from the first light emitting element 71-1 and reflects it to the second light receiving element 81-2.
  • the 12th detection spot in the lower right corner of the figure receives light from the 34th light emitting element 71-34 and reflects it to the 24th light receiving element 81-24.
  • each of the light projection elements 71-1 to 71-36 simultaneously projects light onto two adjacent detection spots in the left-right direction.
  • the number 1 light projecting element 71-1 simultaneously projects light to the 61st and 62nd detection spots adjacent in the horizontal direction.
  • the number 2 light emitting element 71-2 simultaneously projects light to the 63rd and 64th detection spots adjacent in the horizontal direction.
  • each of the light-receiving elements 81-1 to 81-24 receives reflected light from three detection spots that are not adjacent to each other and are arranged alternately in the vertical direction of FIG. 4 (the direction perpendicular to the paper surface of FIG. 1). receive light at the same time.
  • the number 1 light receiving element 81-1 simultaneously receives reflected light from three detection spots numbered 61, 37, and 13, which are arranged alternately in the vertical direction.
  • the 13th light-receiving element 81-13 simultaneously receives the reflected light from the 49th, 25th, and 1st detection spots arranged alternately in the vertical direction.
  • the division of the detection area 90 into detection spots, the selection of the light emitting element 71 and the light receiving element 81 used in each detection spot, and the assignment of various numbers to each detection spot as described above are merely examples, and other It can be any aspect.
  • the detection area 90 can be divided into detection spots in an arbitrary shape without being limited to a matrix or lattice.
  • the light emitting element 71 and the light receiving element 81 used in each detection spot by appropriately adjusting the arrangement and configuration of each light emitting element 71, each light emitting lens 72, each light receiving element 81, and each light receiving lens 82, any light emitting element 71 and any light receiving element 81 can be assigned to any detection spot.
  • the same light emitting element 71 is used for a plurality of detection spots arranged in the horizontal direction, and the same light receiving element 81 is used for a plurality of detection spots arranged in the vertical direction.
  • the light projecting element 71 may be used for a plurality of detection spots arranged vertically, and the same light receiving element 81 may be used for a plurality of detection spots arranged horizontally.
  • the same light emitting element 71 is used for a plurality of adjacent detection spots, and the same light receiving element 81 is used for a plurality of alternate detection spots that are not adjacent to each other.
  • the same light projecting element 71 may be used for a plurality of alternate detection spots that are not adjacent to each other, and the same light receiving element 81 may be used for a plurality of adjacent detection spots.
  • the interval between the plurality of detection spots sharing the same light emitting element 71 or the same light receiving element 81 is not limited to zero (adjacent) or one spot (every other spot) in the above example, but any number of spots. OK.
  • FIG. 5 shows an example of trajectory information of detection spots that can be acquired from each activation sensor 31 .
  • the detection spots that are painted out represent the detection spots that have been in the detection state for a certain period of time.
  • the detection information in each detection spot specifically, the change in the amount of light received by the light receiving element 81 constituting each detection spot, becomes equal to or greater than a predetermined open drive threshold, the detection spot is in the detection state. It says.
  • the controller 20 receives detection information equal to or greater than the opening drive threshold value from the detection spot that has entered the detection state, and drives the door section 10 to open via the door engine 40 .
  • the controller 20 may receive detection information below the open drive threshold from a detection spot that is not in the detection state. Detection information less than the open drive threshold value is not used to drive the door section 10 to open, but as will be described later, when determining whether an undesirable abnormal event has occurred in the door section 10, such as erroneous opening/closing, opening, or repeated reversal. available for Hereinafter, detection information equal to or greater than the open drive threshold is referred to as drive detection information, and detection information less than the open drive threshold is referred to as non-drive detection information, and the two may be distinguished from each other.
  • drive detection information detection information equal to or greater than the open drive threshold
  • non-drive detection information detection information less than the open drive threshold
  • FIG. 5(A) shows an example of trajectory information of detection spots that are in a detection state when the door portion 10 is normally opened and closed.
  • a trajectory extending linearly from outside the detection area 90 toward the opening of the door portion 10 is formed, suggesting that the passerby normally passed through the door portion 10 along the trajectory.
  • 5(B) to 5(D) show that the door 10 is erroneously driven open by a small number of detection spots that are in the detection state for some reason even though the passerby does not pass through the door 10.
  • An example of trajectory information in the case of accident is shown.
  • FIG. 5(B) it is suggested that the door 10 was erroneously driven open because a small number of detection spots on the door 10 were detected due to disturbances such as snow, insects, and direct sunlight. be done.
  • FIG. 5(B) it is suggested that the door 10 was erroneously driven open because a small number of detection spots on the door 10 were detected due to disturbances such as snow, insects, and direct sunlight. be done.
  • FIG. 5(C) suggests that the door 10 was erroneously driven open as a result of a pedestrian who did not pass through the door 10 accidentally walking across the corner of the detection area 90 .
  • FIG. 5(D) when a person who does not pass through the door part 10 stays near the opening, or when the detection spot near the opening is continuously detected due to the vibration of the blind 60 is generated, it is suggested that the door portion 10 was erroneously driven to open.
  • the number "5" displayed on the detection spot in the detection state means that the detection spot has been in the detection state five times in succession in the temporally continuous detection slots.
  • 5(B) to 5(D) causes undesirable abnormal events in the door 10 such as erroneous opening/closing, opening, and repeated reversal.
  • whether or not an abnormal event has occurred in the door section 10 is efficiently determined based on the trajectory information shown in FIGS. 5B to 5D.
  • FIG. 6 is a functional block diagram showing the diagnostic device 200 for automatic doors.
  • the diagnostic device 200 includes an operation phase acquisition section 210 , a sensor information acquisition section 220 , a determination section 230 , an output section 240 and a storage section 250 .
  • These functional blocks are realized through cooperation between hardware resources such as the computer's central processing unit, memory, input device, output device, and peripheral devices connected to the computer, and software executed using them. . Regardless of the type of computer or installation location, each of the above functional blocks may be implemented using the hardware resources of a single computer, or may be implemented by combining hardware resources distributed among multiple computers. .
  • some or all of the functional blocks of the diagnostic device 200 may be implemented by the controller 20 of the automatic door 100 itself, which is a computer, or may be implemented inside or outside the automatic door 100 capable of communicating with the controller 20. It may be realized by computer or hardware resources.
  • the operation phase acquisition unit 210 acquires operation phase information of the door unit 10 or the door engine 40 from the controller 20 . Specific examples of the operation phases of the door section 10 will be described later, but for example, one opening/closing operation of the door section 10 can be broken down into the following operation phases.
  • the sensor information acquisition unit 220 acquires detection information of the sensor 30 when determining that the door unit 10 is in a predetermined operation phase based on the operation phase information of the door unit 10 acquired by the operation phase acquisition unit 210 .
  • the types of sensors 30 indoor-side starting sensor 31I, outdoor-side starting sensor 31O, auxiliary sensor 32
  • the sensor information acquisition unit 220 also acquires state information indicating whether each sensor 30 is in a detection state.
  • the sensor information acquisition unit 220 obtains the drive detection information from the detection spot that has entered the detection state and is equal to or greater than the open drive threshold, and the detection amount that is less than the open drive threshold from the detection spot that has not reached the detection state.
  • Drive sensing information is obtained in a mutually distinguishable manner.
  • the determination unit 230 determines whether a predetermined event has occurred in the door unit 10 based on the operation phase information of the door unit 10 acquired by the operation phase acquisition unit 210 and the detection information of the sensor 30 acquired by the sensor information acquisition unit 220. do. Specifically, the determination unit 230 includes an erroneous opening/closing determination unit 231 that determines whether or not an erroneous opening/closing of the door unit 10 occurs when the object to be detected does not pass through the door unit 10, and a An open determination unit 232 that determines whether or not the door section 10 continues to be in the open state. A repetitive inversion determination unit 233 for determination is provided. Each determination unit 231 to 233 is provided with a small-capacity memory for temporarily storing the detection information of the sensor 30 during each determination process. A specific determination method in each of the determination units 231 to 233 will be described later.
  • the output unit 240 transmits the detection information of the sensor 30 acquired by the sensor information acquisition unit 220 together with the determination result to another computer or the like outside the diagnostic device 200.
  • the storage unit 250 is a storage medium provided inside and outside the automatic door 100 that stores the determination result of the determination unit 230 and the detection information of the sensor 30 output by the output unit 240 .
  • the output unit 240 may output the determination result and the detection information in real time to another computer or the like outside the diagnostic device 200 , or may output the determination result and the detection information stored in the storage unit 250 to maintenance of the automatic door 100 .
  • the information may be output to a work terminal or the like connected to the automatic door 100 as the external device 36A during inspection or the like.
  • the output unit 240 outputs an operation such as when the door unit 10 is not operating, specifically when the door unit 10 is “fully closed”, “open operation ⁇ fully open”, “fully open”, “close operation ⁇ fully closed”, and the like. It is preferable to output the detection information of the sensor 30 when in phase.
  • FIG. 7 shows a method for determining erroneous opening/closing by the erroneous opening/closing determination unit 231.
  • automated door state indicates the operation phase of the door unit 10 acquired by the operation phase acquisition unit 210
  • spot state indicates each phase acquired by the sensor information acquisition unit 220.
  • the detection information of the sensor 30 the non-driving detection information below the open drive threshold or the detection amount of the detection spot that does not reach the detection state is recorded.
  • the timing of recording the drive detection information above the open drive threshold or the trajectory information of the detection spot in the detection state as shown in FIG.
  • the sensor 30 that generated the “spot trajectory” that triggered the operation and the timing of recording the drive detection information of the sensor 30 different from the sensor 30 are shown.
  • the indoor side activation sensor 31I and the outdoor side activation sensor 31O In any of the above, the latter may be any of the indoor activation sensor 31I, the outdoor activation sensor 31O, and the auxiliary sensor 32, but for the sake of simplicity, unless otherwise specified, the indoor activation sensor 31I is referred to as the “spot state ” and/or “spot trajectory” are recorded, and “sensor detection state” is recorded for the outdoor activation sensor 31 O and/or the auxiliary sensor 32 .
  • the fact that the door portion 10 has actually opened/closed is important. This is because there is little need to record the "spot state" (non-driving detection information) that does not contribute to opening and closing.
  • the recording of the "spot trajectory" (driving detection information) of the indoor activation sensor 31I that contributes to the opening and closing of the door 10 and the “sensor detection state” (driving detection information) of the outdoor activation sensor 31O and the auxiliary sensor 32 are recorded. Recording is not stopped.
  • the recording in the "fully closed ⁇ open operation” operation phase can be estimated or determined only by the "spot trajectory" and/or the "sensor detection state". For example, in the "spot trajectory" recorded in the "fully closed ⁇ open operation” operation phase, as shown in Figs. In that case, there is a high possibility that erroneous opening and closing occurred.
  • the recording of the "spot trajectory" of the indoor-side activation sensor 31I and the recording of the "sensor detection state” of the outdoor-side activation sensor 31O and the auxiliary sensor 32 continue until the "fully open ⁇ closed operation” operation phase. be done. If the following two conditions are satisfied up to this stage, the erroneous opening/closing determination section 231 assumes or provisionally determines that erroneous opening/closing has occurred in the door portion 10 .
  • ⁇ Incorrect opening/closing judgment condition 1 In the recording of the “spot trajectory”, the total number of detection spots in the detection state from the operation phase of “fully closed ⁇ open operation” to the operation phase of “fully open ⁇ closed operation” is a predetermined error.
  • Erroneous opening/closing determination condition 1 suggests that the number of detection spots in the detection state as shown in FIGS. do. That is, the detection target detected by the "spot trajectory" that satisfies the erroneous open/close judgment condition 1 appears locally and temporarily, and is likely to be disturbance or noise such as snow, insects, direct sunlight, etc. .
  • Erroneous opening/closing determination condition 2 is that the object detected by the "spot trajectory" of the indoor activation sensor 31I also causes the auxiliary sensor 32 that detects passage of the door 10 to move to the opposite side of the door 10. It means that the outdoor side activation sensor 31O that detects it has not detected it either.
  • the erroneous opening/closing determination unit 231 may determine that the door 10 has not been erroneously opened/closed. In this case, the recording of the detection information of the sensor 30 in the subsequent operation phases after "closed operation” is stopped, and the sensor recorded from the "fully closed” operation phase to the "fully open ⁇ closed operation” operation phase. 30 sensing information may be discarded. On the other hand, when the above two conditions are satisfied, only the recording of the "sensor detection state" of the outdoor side activation sensor 31O and the auxiliary sensor 32 continues until the "closed operation ⁇ fully closed” operation phase.
  • the erroneous opening/closing determination condition 2 If the erroneous opening/closing determination condition 2 is still satisfied in these operation phases, that is, from the operation phase of "fully closed ⁇ open operation” to the operation phase of "closed operation ⁇ fully closed", the outdoor start sensor 31O and the auxiliary sensor 32 are not in the detection state, the erroneous opening/closing determination section 231 finally determines that erroneous opening/closing of the door portion 10 has occurred.
  • the erroneous opening/closing determination unit 231 determines that erroneous opening/closing has occurred, the determination result and the detection information of the sensor 30 that supports the determination ("spot state” recorded from “fully closed” to “fully closed ⁇ open operation”) , “spot trajectory” recorded from “fully closed” to “fully open ⁇ closed operation”, and “sensor detection state” recorded from “fully closed” to “closed operation ⁇ fully closed”) are output by the output unit 240 outputs to another computer or the like outside the diagnostic apparatus 200 and the storage unit 250 .
  • the user of the diagnostic device 200 can identify the sensor 30 and the detection spot that caused the erroneous opening and closing. can be specified.
  • the detection information temporarily recorded in each sensor 30 and the erroneous opening/closing determination unit 231 is reset.
  • the erroneous opening/closing determination unit 231 determines that erroneous opening/closing has not occurred, the detection information of each sensor 30 recorded in a series of operation phases cannot be output by the output unit 240 or stored by the storage unit 250. discarded without
  • each sensor 30 does not always record detection information, but detection information is recorded only when the door portion 10 is in a specific operation phase determined for each sensor 30. Therefore, the amount of data to be processed and the capacity of the storage unit 250 for storing them can be reduced.
  • the detection information of each sensor 30 can be discarded immediately, so that wasteful accumulation of detection information in the storage unit 250 can be prevented.
  • FIG. 8 shows a method of determining openness by the open determination unit 232.
  • Opening means that the door portion 10 continues to be in an open state for a predetermined time or longer. , means that the door unit 10 stays in the "fully open” operation phase continuously for two minutes or longer.
  • at least one of the indoor activation sensor 31I, the outdoor activation sensor 31O, and the auxiliary sensor 32 is in the detection state for a long time.
  • the auxiliary sensor 32 is in the detection state continuously (always ON) or intermittently (ON/OFF repetition) for a long time.
  • the auxiliary sensor 32 is not in the detection state, but one of the indoor side activation sensor 31I and the outdoor side activation sensor 31O is in the detection state continuously (always ON) or intermittently (ON/OFF repetition) for a long time.
  • the auxiliary sensor 32 is not in the detection state, but both the indoor-side activation sensor 31I and the outdoor-side activation sensor 31O are in the detection state at the same or different timings for a long period of time.
  • the recording of the detection information of these sensors 30 is continued in the subsequent "fully open” operation phase. It is determined that opening has occurred in the unit 10 . Specifically, when the cumulative time during which the sensor 30 is in the detection state is longer than a predetermined time (for example, two minutes), the open determination section 232 determines that the door section 10 has been opened. On the other hand, if the door portion 10 remains in the “fully open” operation phase for less than two minutes, the open determination section 232 determines that the door portion 10 has not been opened. In either case, recording of the detection information of all the sensors 30 is stopped in the subsequent "fully open ⁇ closed operation" operation phase.
  • a predetermined time for example, two minutes
  • the output unit 240 When the open determination unit 232 determines that opening has occurred, the determination result and detection information of the sensor 30 that supports the determination ("spot state” recorded from “open operation ⁇ fully open” to “fully open ⁇ closed operation”, “ spot locus” and “sensor detection state”), the output unit 240 outputs to another computer or the like outside the diagnostic apparatus 200 and the storage unit 250 .
  • the output from the output unit 240 is performed in the operation phase of "closed operation ⁇ fully closed” when the door unit 10 is stopped. may be output in the operation phase of
  • the user of the diagnostic device 200 analyzes the detection information of the sensor 30 output by the output unit 240 and the detection information of the sensor 30 stored by the storage unit 250, thereby identifying the sensor 30 and the detection spot that caused the opening. can be identified. Specifically, when the door unit 10 remains in the "fully open" operation phase for a long time, the drive detection information equal to or greater than the open drive threshold value for maintaining the door unit 10 in the fully open state is constantly detected. Alternatively, since the intermittently generated sensor 30 (at least one of the indoor-side activated sensor 31I, the outdoor-side activated sensor 31O, and the auxiliary sensor 32) and the detection spot can be specifically specified, the user of the diagnostic device 200 can open the door. Appropriate measures can be taken to prevent recurrence.
  • the detection information temporarily recorded in each sensor 30 and the open determination unit 232 is reset.
  • the open determination unit 232 determines that opening has not occurred, the detection information of each sensor 30 recorded in a series of operation phases is not output by the output unit 240 or stored by the storage unit 250. discarded.
  • each sensor 30 does not always record detection information, but the detection information is recorded only when the door section 10 is in a specific operation phase determined for each sensor 30. Therefore, the amount of data to be processed and the capacity of the storage unit 250 for storing them can be reduced. In addition, when the open determination unit 232 determines that the opening has not occurred, the detection information of each sensor 30 can be discarded immediately, thereby preventing useless accumulation of the detection information in the storage unit 250 . As described above, according to the open determination method of FIG. 8, it is possible to efficiently detect the occurrence of opening of the door portion 10 .
  • FIG. 9 shows a method for determining repeated inversion by the repeated inversion determination unit 233.
  • Repeated reversal means that the reversal in which the door portion 10 in the closing operation switches to the opening operation is repeated more than a predetermined number of times. It means that the reversal of returning to the "opening" operation phase instead of proceeding to the "closed operation ⁇ fully closed” operation phase is repeated more than a predetermined number of times.
  • the repetitive reversal determination unit 233 may consider the time from when the sensor information acquisition unit 220 starts acquiring detection information in the closing operation phase until it stops acquiring detection information in the opening operation phase. Specifically, the repetitive reversal determination unit 233 determines that the sensor information acquisition unit 220 has stopped acquiring the detection information in the opening operation phase within a specified time after the sensor information acquisition unit 220 started acquiring detection information in the closing operation phase. It may be determined that repeated reversals have occurred when the above is reached.
  • the detection information If the time from the start of acquisition of the detection information to the stop of acquisition is less than the predetermined time, there is a high possibility of repeated reversal due to repeated detection of a person or object staying near the door unit 10, but the detection information If the time from the acquisition start to the acquisition stop is longer than the predetermined time, there is a high possibility of accidental reversal due to detection of a person or object normally passing through the door section 10 .
  • the repetitive reversal determination unit 233 determines repetitive reversal based on the number of times the recording of the "spot state" and "spot trajectory" of the indoor activation sensor 31I is paused or resumed, instead of the repetitive reversal determination unit 210. Repeated reversal may be determined based on the number of times of switching from the closing operation to the opening operation of the door section 10 that can be acquired. For example, the repetitive reversal determination unit 233 determines when the door unit 10 is in the closing operation phase and when the door unit 10 is in the closing operation phase when the door unit 10 is in the operation phase until the door unit 10 returns to the closed state after moving from the closed state to the open operation. When the number of repetitions of the time in the opening operation phase is equal to or greater than a predetermined number of times, it is determined that repeated reversal has occurred.
  • the detection that caused the reversal by being detected by the indoor side activation sensor 31I Since it means that the object has been detected by the auxiliary sensor 32 that detects the passage of the door portion 10 and the outdoor side activation sensor 31O that detects the movement of the door portion 10 to the opposite side, normal passage of the detection object
  • the repeated inversion determination unit 233 does not have to consider the inversion in the determination of the repeated inversion assuming that the inversion is due to .
  • the door section 10 shifts to the operation phase of "closed operation ⁇ fully closed” while the number of times of pausing or resuming the recording of the "spot state" and “spot trajectory" of the indoor activation sensor 31I is less than the predetermined number of times.
  • the repetitive reversal determination section 233 determines that repetitive reversal has not occurred in the door portion 10 .
  • the recording of the detection information of all the sensors 30 is stopped.
  • the repeated reversal determination unit 233 determines that repetitive reversal has occurred, the detection information of the sensor 30 that supports the determination result and the determination (from “fully open ⁇ closed operation” to "closed operation ⁇ open operation” (reversal) repeatedly
  • the recorded “spot state” and “spot trajectory", and “sensor detection state” recorded from “fully open ⁇ closed operation” to “closed operation ⁇ fully closed") are output by the output unit 240 to another device outside the diagnostic device 200. It is output to a computer or the like or the storage unit 250 .
  • the output from the output unit 240 is performed in the operation phase of "closed operation ⁇ fully closed” when the door unit 10 is stopped. may be output in the operation phase of
  • the user of the diagnostic device 200 can identify the sensor 30 and the detection spot that caused the repeated reversal. can be identified.
  • the detection information temporarily recorded in each sensor 30 and the repetitive inversion determination unit 233 is reset.
  • the repetitive reversal determination unit 233 determines that repetitive reversal has not occurred, the detection information of each sensor 30 recorded in a series of operation phases cannot be output by the output unit 240 or stored by the storage unit 250. discarded without
  • each sensor 30 does not always record detection information, but detection information is recorded only when the door portion 10 is in a specific operation phase determined for each sensor 30. Therefore, the amount of data to be processed and the capacity of the storage unit 250 for storing them can be reduced. Further, when the repetitive reversal determination unit 233 determines that repetitive reversal has not occurred, the detection information of each sensor 30 can be discarded immediately, so that wasteful accumulation of the detection information in the storage unit 250 can be prevented. As described above, according to the repetitive reversal determination method of FIG.
  • the activation sensor 31 and the auxiliary sensor 32 provided in the automatic door 100 are given as examples of the sensor 30 having a detection area around the door portion 10 .
  • the sensor 30 an image sensor or a camera that captures an image of the surrounding area may be used.
  • the erroneous opening/closing determination unit 231, the opening determination unit 232, and the repetitive reversal determination unit 233 can efficiently determine whether or not erroneous opening/closing, opening, and repetitive reversal occur in the door unit 10 based on the photographed images.
  • each device described in the embodiments can be realized by hardware resources or software resources, or by cooperation between hardware resources and software resources.
  • Processors, ROMs, RAMs, and other LSIs can be used as hardware resources.
  • Programs such as operating systems and applications can be used as software resources.
  • those in which a plurality of functions are provided in a distributed manner may be provided by consolidating some or all of the plurality of functions. What is provided as a single function may be provided so that part or all of the plurality of functions are distributed. Regardless of whether the functions are centralized or distributed, it is sufficient that they are configured so as to achieve the objects of the invention.
  • the present invention relates to automatic doors.

Landscapes

  • Power-Operated Mechanisms For Wings (AREA)

Abstract

This automatic door 100 comprises: a controller 20 that controls an opening/closing operation of a door part 10 provided to an opening; a sensor 30 having a detection area around the door part 10; an operation phase acquisition unit 210 that acquires, from the controller 20, operation phase information about the door part 10; a sensor information acquisition unit 220 that acquires detection information from the sensor 30 when it has been determined that the door part 10 is in a prescribed operation phase on the basis of the operation phase information acquired by the operation phase acquisition unit 210; and an assessment unit 230 that assesses the presence/absence of a prescribed event at the door part 10 on the basis of the operation phase information acquired by the operation phase acquisition unit 210 and the detection information acquired by the sensor information acquisition unit 220.

Description

自動ドア、自動ドアの診断装置、自動ドアの診断方法、自動ドアの診断プログラムautomatic door, diagnostic device for automatic door, diagnostic method for automatic door, diagnostic program for automatic door
 本発明は自動ドアに関する。 The present invention relates to automatic doors.
 電力によって扉を自動的に開閉する自動ドアとして、扉の周辺の検知エリアに赤外線による複数の検知スポットが形成されたものが知られている(特許文献1)。各検知スポットの検知情報によれば、通常の扉の開閉だけでなく、誤開閉、開放、繰り返し反転等の望ましくない異常事象が扉に発生したことを検知できる。 As an automatic door that automatically opens and closes with electric power, there is a known automatic door in which multiple infrared detection spots are formed in the detection area around the door (Patent Document 1). According to the detection information of each detection spot, it is possible to detect not only the normal opening and closing of the door, but also the occurrence of undesirable abnormal events such as erroneous opening and closing, opening, and repeated reversal of the door.
特開2015-17990号公報JP 2015-17990 A
 扉の異常事象の診断のために各検知スポットの検知情報を自動ドアのメモリに蓄積する場合、蓄積期間が長いとメモリが大容量化してしまう問題があり、蓄積期間が短いと異常事象の検知漏れが発生してしまう問題がある。 When accumulating detection information from each detection spot in the memory of an automatic door for diagnosis of abnormal events on the door, if the accumulation period is long, the memory capacity increases. There is a problem of leakage.
 本発明はこうした状況に鑑みてなされたものであり、その目的は、扉における所定の事象の発生を効率的に検知できる自動ドアを提供することにある。 The present invention has been made in view of this situation, and its purpose is to provide an automatic door that can efficiently detect the occurrence of a predetermined event at the door.
 上記課題を解決するために、本発明のある態様の自動ドアは、開口に設けられた扉の開閉動作を制御する制御部と、扉の周辺に検知エリアを有するセンサと、制御部から扉の動作フェーズ情報を取得する動作フェーズ取得部と、動作フェーズ取得部が取得した動作フェーズ情報に基づいて扉が所定の動作フェーズにあることを判断した時に、センサの検知情報を取得するセンサ情報取得部と、動作フェーズ取得部が取得した動作フェーズ情報とセンサ情報取得部が取得した検知情報に基づいて、扉における所定の事象の発生有無を判定する判定部と、を備える。 In order to solve the above-described problems, an automatic door according to one aspect of the present invention includes a control unit that controls opening and closing operations of a door provided at an opening, a sensor that has a detection area around the door, and a door from the control unit. An operation phase acquisition unit that acquires operation phase information, and a sensor information acquisition unit that acquires sensor detection information when it is determined that the door is in a predetermined operation phase based on the operation phase information acquired by the operation phase acquisition unit. and a determination unit that determines whether or not a predetermined event has occurred at the door based on the operation phase information acquired by the operation phase acquisition unit and the detection information acquired by the sensor information acquisition unit.
 この態様によれば、扉が所定の動作フェーズにある時のセンサの検知情報を取得することで、扉における所定の事象の発生を効率的に検知できる。 According to this aspect, it is possible to efficiently detect the occurrence of a predetermined event on the door by acquiring the detection information of the sensor when the door is in the predetermined operation phase.
 本発明の別の態様は、自動ドアの診断装置である。この装置は、自動ドアの開口に設けられた扉の動作フェーズ情報を取得する動作フェーズ取得部と、動作フェーズ取得部が取得した動作フェーズ情報に基づいて扉が所定の動作フェーズにあることを判断した時に、扉の周辺に検知エリアを有するセンサの検知情報を取得するセンサ情報取得部と、動作フェーズ取得部が取得した動作フェーズ情報とセンサ情報取得部が取得した検知情報に基づいて、扉における所定の事象の発生有無を判定する判定部と、を備える。 Another aspect of the present invention is an automatic door diagnostic device. This device includes an operation phase acquisition unit that acquires operation phase information of a door provided at the opening of an automatic door, and determines that the door is in a predetermined operation phase based on the operation phase information acquired by the operation phase acquisition unit. Then, based on the sensor information acquisition unit that acquires the detection information of the sensor that has a detection area around the door, and the operation phase information acquired by the operation phase acquisition unit and the detection information acquired by the sensor information acquisition unit, a determination unit that determines whether or not a predetermined event has occurred.
 なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システム、記録媒体、コンピュータプログラムなどの間で変換したものもまた、本発明の態様として有効である。 It should be noted that any combination of the above constituent elements, and any conversion of the expression of the present invention between methods, devices, systems, recording media, computer programs, etc. are also effective as embodiments of the present invention.
 本発明によれば、扉における所定の事象の発生を効率的に検知できる。 According to the present invention, it is possible to efficiently detect the occurrence of a predetermined event at the door.
自動ドアを概略的に示す正面図である。It is a front view which shows an automatic door roughly. 自動ドアの内外で相互に通信可能な各種の構成機器を模式的に示す図である。FIG. 2 is a diagram schematically showing various constituent devices capable of communicating with each other inside and outside the automatic door; 起動センサによる投光および受光の態様を模式的に示す。4 schematically shows how light is projected and received by an activation sensor; 起動センサが投受光する扉部の周辺の床面の検知エリアを模式的に示す。4 schematically shows a detection area on the floor around the door where light is emitted and received by the activation sensor. 起動センサから取得可能な検知スポットの軌跡情報の例を示す。4 shows an example of trajectory information of a detection spot that can be acquired from an activated sensor. 自動ドアの診断装置を示す機能ブロック図である。1 is a functional block diagram showing a diagnosis device for an automatic door; FIG. 誤開閉判定部による誤開閉の判定方法を示す。A method for judging erroneous opening/closing by an erroneous opening/closing judging unit is shown. 開放判定部による開放の判定方法を示す。A method of determining openness by an open determination unit will be shown. 繰り返し反転判定部による繰り返し反転の判定方法を示す。A method of determining repeated inversion by a repeated inversion determination unit will be described.
 最初に、図1および図2を参照して、本発明の実施形態が適用される自動ドア100の概要を説明する。図1は、本発明の実施形態に係る自動ドア100を概略的に示す正面図である。自動ドア100は、開閉駆動される扉部10と、自動ドア100全体を制御するコントローラ20と、通行者を検知するセンサ30(起動センサ31、補助センサ32の総称)と、動力を発生させるドアエンジン40と、動力を扉部10に伝達する動力伝達部50とを主に備える。なお、以下の説明では、図1における左右方向を水平方向とし、図1における上下方向を鉛直方向とするが、自動ドア100は任意の姿勢で設置することができ、その設置方向が以下の例に限定されるものではない。 First, with reference to FIGS. 1 and 2, an outline of an automatic door 100 to which an embodiment of the present invention is applied will be described. FIG. 1 is a front view schematically showing an automatic door 100 according to an embodiment of the invention. The automatic door 100 includes a door portion 10 that is driven to open and close, a controller 20 that controls the entire automatic door 100, a sensor 30 that detects a passerby (general term for a start sensor 31 and an auxiliary sensor 32), and a door that generates power. It mainly includes an engine 40 and a power transmission section 50 that transmits power to the door section 10 . In the following description, the left-right direction in FIG. 1 is the horizontal direction, and the up-down direction in FIG. 1 is the vertical direction. is not limited to
 扉部10は、それぞれ水平方向に可動に設けられる第1の可動扉11Lと第2の可動扉11Rと、第1の可動扉11Lおよび第2の可動扉11Rが開状態のときにそれぞれと重なる位置に設けられる第1の固定扉12Lと第2の固定扉12Rと、第1の可動扉11Lと第2の可動扉11Rの水平方向の動作をガイドするガイド機構13を備える。第1の可動扉11L、第2の可動扉11R、第1の固定扉12L、第2の固定扉12Rは、鉛直方向の寸法が水平方向の寸法よりも大きい縦長の矩形状に構成される。扉部10の開駆動時には、図1で左側に示される第1の可動扉11Lが左方向に駆動され、図1で右側に示される第2の可動扉11Rが右側に駆動される。また、扉部10の閉駆動時には、開駆動時とは逆に、第1の可動扉11Lが右方向に駆動され、第2の可動扉11Rが左方向に駆動される。なお、扉部10を構成する扉の数や形状は上記に限られず、設置場所のニーズに合わせて適宜設計可能である。また、同様に、扉部10の可動方向も水平方向に限られず、水平方向から傾斜した方向としてもよい。 The door portion 10 overlaps with a first movable door 11L and a second movable door 11R, which are horizontally movable, respectively, and when the first movable door 11L and the second movable door 11R are in an open state. A first fixed door 12L and a second fixed door 12R provided at positions, and a guide mechanism 13 for guiding horizontal movements of the first movable door 11L and the second movable door 11R are provided. The first movable door 11L, the second movable door 11R, the first fixed door 12L, and the second fixed door 12R are configured in a vertically long rectangular shape with a vertical dimension larger than a horizontal dimension. When the door portion 10 is driven to open, the first movable door 11L shown on the left side in FIG. 1 is driven leftward, and the second movable door 11R shown on the right side in FIG. 1 is driven rightward. When the door portion 10 is driven to close, the first movable door 11L is driven to the right and the second movable door 11R is driven to the left, contrary to when the door portion 10 is driven to open. The number and shape of the doors constituting the door section 10 are not limited to those described above, and can be appropriately designed according to the needs of the installation location. Similarly, the movable direction of the door portion 10 is not limited to the horizontal direction, and may be a direction inclined from the horizontal direction.
 ガイド機構13は、走行レール131と、戸車132と、ガイドレール133と、振れ止め部134を備える。走行レール131は、可動扉11L、11Rの上方において、その可動域の全体に亘って水平方向に延伸する柱状のレール部材である。戸車132は、可動扉11L、11Rの上部にそれぞれ二つずつ設けられ、各可動扉11L、11Rを走行レール131に懸架する。各可動扉11L、11Rが水平方向に開閉駆動される際、戸車132が走行レール131を転動するため、円滑な開閉動作が可能となる。ガイドレール133は、可動扉11L、11Rの下方において、その可動域の全体に亘って水平方向に延伸する溝状のレール部材である。振れ止め部134は、可動扉11L、11Rの下部から張り出して溝状のガイドレール133に収まる。各可動扉11L、11Rが水平方向に開閉駆動される際、振れ止め部134がガイドレール133に沿って動くため、各可動扉11L、11Rの見込み方向(図1の紙面に垂直な方向)の振動を抑制できる。 The guide mechanism 13 includes a travel rail 131 , a door roller 132 , a guide rail 133 , and an anti-vibration portion 134 . The running rail 131 is a columnar rail member extending horizontally over the entire movable range above the movable doors 11L and 11R. Two door rollers 132 are provided above each of the movable doors 11L and 11R, and the movable doors 11L and 11R are suspended from the running rail 131. As shown in FIG. When the movable doors 11L and 11R are driven to open and close in the horizontal direction, the door rollers 132 roll on the travel rails 131, enabling smooth opening and closing operations. The guide rail 133 is a groove-shaped rail member extending horizontally over the entire movable range below the movable doors 11L and 11R. The anti-vibration part 134 projects from the lower part of the movable doors 11L and 11R and is accommodated in the groove-shaped guide rail 133. - 特許庁When the movable doors 11L and 11R are driven to open and close in the horizontal direction, the anti-vibration portion 134 moves along the guide rails 133, so that the direction of projection of the movable doors 11L and 11R (the direction perpendicular to the paper surface of FIG. 1) Vibration can be suppressed.
 なお、扉部10の開閉に関する各種のパラメータはコントローラ20で設定可能である。例えば、開閉速度、開閉強度、開口幅等を設定できる。開閉速度は、第1の可動扉11Lおよび第2の可動扉11Rの水平方向の速度であり、両扉の速度の方向は互いに逆向きである。両扉で速度の大きさ(速さ)は等しくするのが好適であるが、異なる速さとしてもよい。また、開閉速度は、通常開閉時とそれ以外の時で異なる値を設定してもよい。例えば、扉部10の通常の閉駆動中に、閉じる可動扉11L、11Rに通行者が挟まれるのを緊急回避するために開駆動に切り替えるいわゆる反転の場合、その開駆動時の可動扉11L、11Rの速度は、通常の開駆動時の速度と異なる値を設定してもよい。また、停電時等の通常の電源が利用できない非常時にバッテリから供給される臨時の電力によって扉部10が駆動される際の開速度や閉速度を通常の駆動時と異なる値に設定してもよい。 Various parameters related to the opening and closing of the door section 10 can be set by the controller 20. For example, opening/closing speed, opening/closing strength, opening width, etc. can be set. The opening/closing speed is the horizontal speed of the first movable door 11L and the second movable door 11R, and the speed directions of both doors are opposite to each other. Although it is preferable that both doors have the same speed (speed), they may have different speeds. Also, the opening/closing speed may be set to different values for normal opening/closing and other times. For example, in the case of so-called reversal switching to open drive in order to urgently avoid a passerby being caught in the closed movable doors 11L and 11R during the normal closing drive of the door section 10, the movable door 11L during the open drive, The speed of 11R may be set to a value different from the speed during normal open drive. Further, even if the opening speed and closing speed when the door section 10 is driven by the temporary power supplied from the battery in an emergency such as a power failure when the normal power source cannot be used are set to values different from those during normal driving. good.
 開閉強度は、可動扉11L、11Rの開閉時の力の大きさであり、後述するモータ42の発生トルク値で制御される。上記の開閉速度と同様に、基本的には可動扉11L、11Rで等しい開閉強度とするのが好適である。また、通常開閉時とそれ以外の時で異なる開閉強度を設定してもよい。開口幅は、典型的には扉部10が全開のときの第1の可動扉11Lと第2の可動扉11Rの水平方向の間隔である。図1に示されるように、第1の可動扉11Lの全閉位置と全開位置の間の移動距離をW1、第2の可動扉11Rの全閉位置と全開位置の間の移動距離をW2とすれば、開口幅はW1+W2で表される。ここで、移動距離W1、W2は、自動ドア100の水平方向寸法に収まる範囲で個別に設定できる。なお、停電時等の通常の電源が利用できない非常時にバッテリから供給される臨時の電力によって扉部10が駆動される際の開口幅を通常時よりも小さくすることで非常時の扉部10の開閉駆動による電力消費を抑制してもよい。 The opening/closing strength is the magnitude of the force when opening and closing the movable doors 11L and 11R, and is controlled by the torque value generated by the motor 42, which will be described later. Similar to the opening/closing speed described above, basically, it is preferable that the movable doors 11L and 11R have the same opening/closing strength. Also, different opening/closing strengths may be set for normal opening/closing and other times. The opening width is typically the horizontal distance between the first movable door 11L and the second movable door 11R when the door portion 10 is fully open. As shown in FIG. 1, W1 is the moving distance between the fully closed position and the fully open position of the first movable door 11L, and W2 is the moving distance between the fully closed position and the fully open position of the second movable door 11R. Then, the aperture width is represented by W1+W2. Here, the moving distances W1 and W2 can be individually set within a range within the horizontal dimension of the automatic door 100 . In an emergency such as a power outage when the normal power source cannot be used, the opening width of the door portion 10 is reduced when the door portion 10 is driven by temporary power supplied from the battery. Power consumption due to opening/closing drive may be suppressed.
 図1には、センサ30の例として、光学センサとしての起動センサ31と、補助センサ32が設けられる。起動センサ31は、扉部10の上方の無目60の表面に設けられる光電センサである。起動センサ31は、赤外線等の光を床面に向けて投光する投光部と、床面からの反射光を受光する受光部を備える。通行者等の物体が自動ドア100に近づいて光を遮ると受光部の受光量が変化するため、物体を検知できる。このような起動センサ31での検知情報がコントローラ20に入力されると、ドアエンジン40の駆動により扉部10が開く。なお、起動センサ31は室内側(例えば図1の紙面の表側)と室外側(例えば図1の紙面の裏側)にそれぞれ設けられ、いずれの側から近づく通行者も検知できる。以下で両者を区別する必要がある場合は、それぞれ室内側起動センサ31I、室外側起動センサ31Oと記載する。 In FIG. 1, as an example of the sensor 30, an activation sensor 31 as an optical sensor and an auxiliary sensor 32 are provided. The activation sensor 31 is a photoelectric sensor provided on the surface of the blind 60 above the door portion 10 . The activation sensor 31 includes a light projecting portion that projects light such as infrared rays toward the floor surface and a light receiving portion that receives reflected light from the floor surface. When an object such as a passerby approaches the automatic door 100 and blocks the light, the amount of light received by the light receiving unit changes, so the object can be detected. When such information detected by the activation sensor 31 is input to the controller 20, the door section 10 is opened by driving the door engine 40. As shown in FIG. The activation sensor 31 is provided on the indoor side (for example, the front side of the page of FIG. 1) and the outdoor side (for example, the back side of the page of FIG. 1), and can detect a passerby approaching from either side. In the following, when it is necessary to distinguish between the two, they are referred to as an indoor-side starting sensor 31I and an outdoor-side starting sensor 31O, respectively.
 なお、起動センサ31は、マイクロ波等の電波や超音波の反射により通行者を検知する構成としてもよい。また、図1で31Aとして示すように、可動扉11Lおよび11Rの少なくとも一方に設けられるタッチプレートが通行者によって押されることで、扉部10を駆動する構成としてもよい。また、観光施設やアミューズメントパーク等では、通行者の検知や操作に加えてまたは代えて、施設の係員の操作で扉部10を駆動する態様も想定される。このとき施設の係員は扉部10から離れた位置に設けられる操作盤や自動ドア100と通信可能な操作端末で遠隔から扉部10を駆動できる。 It should be noted that the activation sensor 31 may be configured to detect a passerby by reflection of radio waves such as microwaves or ultrasonic waves. Further, as indicated by 31A in FIG. 1, the door section 10 may be driven when a passerby presses a touch plate provided on at least one of the movable doors 11L and 11R. Further, in tourist facilities, amusement parks, etc., in addition to or in place of the detection and operation of passers-by, it is also assumed that the door section 10 is driven by the operation of a staff member of the facility. At this time, the facility staff can remotely drive the door section 10 using an operation panel provided at a position away from the door section 10 or an operation terminal capable of communicating with the automatic door 100 .
 扉部10を通行または開口を通過する人または物(以下、検知対象物と総称する)を検知する通行センサとしての補助センサ32は、扉部10の第1の固定扉12Lと第2の固定扉12Rに設けられる光電センサである。補助センサ32は、第1の固定扉12Lおよび第2の固定扉12Rの一方に設けられる投光部と、他方に設けられる受光部を備える。投光部と受光部は床面から同じ高さに設けられ、投光部から水平方向に投光される赤外線等の光を受光部で受光する。扉部10が開いている状態で、その開口部を通行者が通過して光を遮ると受光部の受光量が変化するため、通行者を検知できる。補助センサ32の主な目的は閉保護であり、可動扉11L、11Rの閉動作中に補助センサ32が通行者を検知すると、コントローラ20は閉駆動を中止して開駆動に切り替える反転制御を行う。これにより、通行者が閉じる可動扉11L、11Rに挟まれるのを防止できる。なお、このような閉保護の制御において、補助センサ32と同様に光電センサで構成される起動センサ31の検知情報を併用することで、通行者の検知精度を高めて安全性を更に向上できる。 The auxiliary sensor 32 as a passage sensor for detecting a person or an object (hereinafter collectively referred to as a detection object) passing through the door portion 10 or passing through the opening is provided between the first fixed door 12L of the door portion 10 and the second fixed door 12L. It is a photoelectric sensor provided on the door 12R. The auxiliary sensor 32 includes a light projecting part provided on one of the first fixed door 12L and the second fixed door 12R and a light receiving part provided on the other. The light projecting part and the light receiving part are provided at the same height from the floor surface, and the light receiving part receives light such as infrared rays projected horizontally from the light projecting part. When a passerby passes through the opening of the door part 10 and blocks the light, the amount of light received by the light receiving part changes, so that the passerby can be detected. The main purpose of the auxiliary sensor 32 is to protect against closing. When the auxiliary sensor 32 detects a passerby during the closing operation of the movable doors 11L and 11R, the controller 20 stops the closing drive and performs reverse control to switch to the opening drive. . As a result, it is possible to prevent a passerby from being caught between the closed movable doors 11L and 11R. In such a closed protection control, by using the detection information of the activation sensor 31 composed of a photoelectric sensor in the same way as the auxiliary sensor 32, the passerby detection accuracy can be increased and the safety can be further improved.
 なお、補助センサ32は、マイクロ波等の電波や超音波の反射により通行者を検知する構成としてもよい。また、補助センサ32は固定扉12L、12Rとは異なる場所に設けてもよい。例えば、起動センサ31と同様に無目60に設けてもよいし、自動ドア100近傍の天井に設置してもよい。このような補助センサ32を複数設ければ、高コストになる一方で安全性が飛躍的に高まる。 The auxiliary sensor 32 may be configured to detect passers-by by reflecting radio waves such as microwaves or ultrasonic waves. Also, the auxiliary sensor 32 may be provided at a location different from the fixed doors 12L and 12R. For example, it may be installed on the blind 60 like the activation sensor 31, or may be installed on the ceiling in the vicinity of the automatic door 100. FIG. If a plurality of such auxiliary sensors 32 are provided, the cost will be increased, but the safety will be dramatically improved.
 上記の起動センサ31および補助センサ32は、出力段に増幅器を備えており、各センサでの検知情報を、後段のコントローラ20で扱える所定のレベルまで増幅する。したがって、センサの検出強度が低い場合は増幅率が高くなり、センサの検出強度が大きい場合は増幅率が低くなる。このように、各センサの増幅率は各センサの検出強度を示すデータになっている。 The activation sensor 31 and the auxiliary sensor 32 are equipped with an amplifier in the output stage, and amplify detection information from each sensor to a predetermined level that can be handled by the controller 20 in the subsequent stage. Therefore, when the detection intensity of the sensor is low, the amplification factor is high, and when the detection intensity of the sensor is high, the amplification factor is low. Thus, the amplification factor of each sensor is data indicating the detection strength of each sensor.
 ドアエンジン40は、モータ駆動部41と、モータ42と、駆動プーリ43を備える。モータ駆動部41は、インテリジェントパワーモジュール(IPM)で構成され、開口に設けられた扉部10の開閉動作を制御する制御部としてのコントローラ20の制御の下でモータ42を駆動する電圧ないし電流を発生させる。回転動力を発生させる動力源としてのモータ42は、各種の公知のモータとして構成できるが、本実施形態では、一例として、ホール素子を用いたエンコーダを備えるブラシレスモータとする。エンコーダで検出されたモータ42の回転子の位置がモータ駆動部41に入力され、それに応じた駆動電圧ないし駆動電流がモータ42に印加されることで、所望の回転動力が発生される。モータ42によって回転駆動される駆動プーリ43は、図示しない歯車機構等を介してモータ42の回転子と連結され、連動して回転する。 The door engine 40 includes a motor drive section 41 , a motor 42 and a drive pulley 43 . The motor drive unit 41 is composed of an intelligent power module (IPM), and supplies voltage or current to drive the motor 42 under the control of the controller 20 as a control unit that controls the opening and closing operation of the door 10 provided in the opening. generate. The motor 42 as a power source for generating rotational power can be configured as various known motors, but in this embodiment, as an example, a brushless motor provided with an encoder using Hall elements is used. The position of the rotor of the motor 42 detected by the encoder is input to the motor drive unit 41, and the corresponding drive voltage or drive current is applied to the motor 42 to generate desired rotational power. A drive pulley 43 that is rotationally driven by the motor 42 is connected to the rotor of the motor 42 via a gear mechanism (not shown) and rotates in conjunction therewith.
 動力伝達部50は、ドアエンジン40で発生された動力を扉部10に伝達し、可動扉11L、11Rを開閉駆動する。動力伝達部50は、動力伝達ベルト51、従動プーリ52、連結部材53を備える。動力伝達ベルト51は、内周面に多数の歯が形成された環状のタイミングベルトであり、図1の右側において駆動プーリ43に巻き付けられ、図1の左側において従動プーリ52に巻き付けられる。この状態において動力伝達ベルト51の水平方向の寸法は、駆動プーリ43と従動プーリ52の水平方向の距離に等しく、また可動扉11L、11Rの可動域の水平方向の寸法と同程度である。モータ42により駆動プーリ43が回転すると、動力伝達ベルト51を介して従動プーリ52が連動して回転する。 The power transmission section 50 transmits the power generated by the door engine 40 to the door section 10 to open and close the movable doors 11L and 11R. The power transmission section 50 includes a power transmission belt 51 , a driven pulley 52 and a connecting member 53 . The power transmission belt 51 is an annular timing belt having a number of teeth formed on its inner peripheral surface, and is wound around the driving pulley 43 on the right side in FIG. 1 and around the driven pulley 52 on the left side in FIG. In this state, the horizontal dimension of the power transmission belt 51 is equal to the horizontal distance between the drive pulley 43 and the driven pulley 52, and is approximately equal to the horizontal dimension of the movable range of the movable doors 11L and 11R. When the drive pulley 43 is rotated by the motor 42 , the driven pulley 52 is interlocked and rotated via the power transmission belt 51 .
 連結部材53は、可動扉11L、11Rをそれぞれ動力伝達ベルト51に連結して、開閉駆動する。ここで、一方の可動扉は動力伝達ベルト51の上側に連結され、他方の可動扉は動力伝達ベルト51の下側に連結される。図1の例では、動力伝達ベルト51が反時計回りに回転すると、第1の可動扉11Lが左側に移動し第2の可動扉11Rが右側に移動する開動作となり、動力伝達ベルト51が時計回りに回転すると、第1の可動扉11Lが右側に移動し第2の可動扉11Rが左側に移動する閉動作となる。 The connecting member 53 connects the movable doors 11L and 11R to the power transmission belt 51 and drives them to open and close. Here, one movable door is connected to the upper side of the power transmission belt 51 and the other movable door is connected to the lower side of the power transmission belt 51 . In the example of FIG. 1, when the power transmission belt 51 rotates counterclockwise, the first movable door 11L moves to the left and the second movable door 11R moves to the right for opening, and the power transmission belt 51 rotates clockwise. When rotated, the first movable door 11L moves to the right and the second movable door 11R moves to the left for closing operation.
 以上のような構成の自動ドア100において、起動センサ31が通行者を検知すると、コントローラ20の制御の下、ドアエンジン40が反時計回りの回転動力を発生させ、扉部10を開駆動する。また、開駆動後、通行者が検知されない状態が所定時間継続した場合は、コントローラ20の制御の下、ドアエンジン40が時計回りの回転動力を発生させ、扉部10を閉駆動する。なお、閉駆動中に補助センサ32や起動センサ31が通行者を検知すると、コントローラ20が閉駆動から開駆動に切り替える反転制御を行う。 In the automatic door 100 configured as described above, when the activation sensor 31 detects a passerby, the door engine 40 generates counterclockwise rotational power under the control of the controller 20 to drive the door section 10 to open. Further, when a passerby is not detected for a predetermined period of time after the opening drive, the door engine 40 generates clockwise rotational power under the control of the controller 20 to drive the door section 10 to close. When the auxiliary sensor 32 or the activation sensor 31 detects a passerby during the closing drive, the controller 20 performs reversal control to switch from the closing drive to the opening drive.
 図2は、自動ドア100の内外で相互に通信可能な各種の構成機器を模式的に示す。自動ドア100は、各構成機器が接続され、構成機器間のデータ通信を行うバス2を有する。バス2は、任意の通信規格、例えばCAN(Controller Area Network)に則って構成される。CANは、ホストコンピュータを介さずに構成機器が相互に通信できるように設計されており、自動ドアに限らず様々なシステムの制御情報の伝送に広く利用されている。バス2に接続された各構成機器は、バス2を介して他の構成機器に情報を送信でき、他の構成機器がバス2に送信した情報のうち自身に必要な情報を選択的に受信できる。 FIG. 2 schematically shows various constituent devices that can communicate with each other inside and outside the automatic door 100 . The automatic door 100 has a bus 2 to which constituent devices are connected and which performs data communication between the constituent devices. The bus 2 is configured according to any communication standard, such as CAN (Controller Area Network). CAN is designed so that constituent devices can communicate with each other without the intervention of a host computer, and is widely used to transmit control information of various systems, not limited to automatic doors. Each constituent device connected to the bus 2 can transmit information to other constituent devices via the bus 2, and can selectively receive information necessary for itself among the information transmitted to the bus 2 by the other constituent devices. .
 図2には、バス2に接続される構成機器として、コントローラ20、起動センサ31、タッチプレート31A、補助センサ32、操作盤33、認証装置34、電気錠コントローラ35、外部インターフェース36、表示装置37が例示され、いずれの構成機器も自動ドア100を構成する。なお、本図は、バス2に接続されうる構成機器を例示列挙したものであり、図1に示されない構成機器も含まれている。また、実際の自動ドア100に設ける構成機器は目的に応じて選択でき、図示される全ての構成機器を設ける必要はない。例えば、通行者の検知や操作のみで扉部10を駆動する自動ドア100においては、係員等の操作を行うための操作盤33は設ける必要はない。逆に、観光施設やアミューズメントパーク等で、施設の係員の操作のみで扉部10を駆動する自動ドア100においては、通行者の検知や操作のための起動センサ31やタッチプレート31Aを設ける必要はない。ただし、自動ドア100全体を制御するコントローラ20は、多くの場合で必須の構成機器である。 FIG. 2 shows, as components connected to the bus 2, a controller 20, an activation sensor 31, a touch plate 31A, an auxiliary sensor 32, an operation panel 33, an authentication device 34, an electric lock controller 35, an external interface 36, a display device 37, and a display device 37. are exemplified, and any component constitutes the automatic door 100 . It should be noted that this figure lists and exemplifies configuration devices that can be connected to the bus 2, and configuration devices that are not shown in FIG. 1 are also included. In addition, the components provided in the actual automatic door 100 can be selected according to the purpose, and it is not necessary to provide all the illustrated components. For example, in the automatic door 100 that drives the door portion 10 only by detecting or operating a passerby, it is not necessary to provide the operation panel 33 for operation by a staff member or the like. Conversely, in a tourist facility, an amusement park, etc., in an automatic door 100 in which the door portion 10 is driven only by the operation of the staff of the facility, there is no need to provide the activation sensor 31 and the touch plate 31A for detecting and operating the passers-by. do not have. However, the controller 20 that controls the entire automatic door 100 is an essential component in many cases.
 図示される構成機器のうち、コントローラ20、起動センサ31、タッチプレート31A、補助センサ32については前述したので説明を省略する。操作盤33は、観光施設やアミューズメントパーク等で施設の係員が操作し、扉部10を駆動する制御盤である。例えば、利用者が所定のタイミングで異なる部屋を移動するアトラクションにおいては、その移動タイミングに合わせて係員が操作盤33を操作し、各部屋の扉部10を開閉制御することで利用者が円滑に移動できる。なお、操作盤33は、施設に固定的に設置されたものでもよいし、係員が携帯できるものでもよい。また、後述する外部インターフェース36を介してコントローラ20等と通信可能なタブレットやスマートフォン等の通信端末に操作盤33の機能を実装してもよい。 Among the illustrated components, the controller 20, the activation sensor 31, the touch plate 31A, and the auxiliary sensor 32 have been described above, so descriptions thereof will be omitted. The operation panel 33 is a control panel that is operated by a staff member of a tourist facility, an amusement park, or the like to drive the door section 10 . For example, in an attraction in which the user moves between different rooms at a predetermined timing, the attendant operates the operation panel 33 in accordance with the movement timing to control the opening and closing of the door section 10 of each room so that the user can move smoothly. can move. The operation panel 33 may be fixedly installed in the facility, or may be carried by the staff. Also, the function of the operation panel 33 may be implemented in a communication terminal such as a tablet or a smartphone capable of communicating with the controller 20 or the like via an external interface 36, which will be described later.
 認証装置34は、集合住宅やオフィスの入口など、高いレベルのセキュリティが要求される場所で、通行を許可すべき通行者を認証する。認証の方法は、扉部10近傍に設けられるキーパッドの入力によるパスワード認証や、指紋等の通行者の生体情報を用いた生体認証等がある。認証装置34での認証が成功すると、コントローラ20が扉部10を開駆動し、通行者は自動ドア100を通行できる。認証装置34での認証が失敗すると、たとえ起動センサ31が通行者を検知していたとしても、コントローラ20は扉部10を開駆動せず、未認証の通行者の不正な通行を阻止できる。 The authentication device 34 authenticates passers-by who should be permitted to pass in places where a high level of security is required, such as the entrances of housing complexes and offices. Authentication methods include password authentication by inputting a keypad provided in the vicinity of the door 10, biometric authentication using the passerby's biometric information such as fingerprints, and the like. When the authentication by the authentication device 34 succeeds, the controller 20 drives the door section 10 to open, and the passerby can pass through the automatic door 100. - 特許庁If authentication by the authentication device 34 fails, even if the activation sensor 31 detects the passerby, the controller 20 does not drive the door part 10 to open, thereby preventing unauthorized passage of the passerby.
 電気錠コントローラ35は、自動ドア100を施錠する電気錠35Aを制御する。電気錠35Aは、錠を施錠位置と解錠位置の間で駆動する錠駆動手段として、例えば通電状態に応じた駆動力を発生するソレノイドを備える。 The electric lock controller 35 controls the electric lock 35A that locks the automatic door 100. The electric lock 35A includes, for example, a solenoid that generates a driving force according to the energized state as lock driving means for driving the lock between the locked position and the unlocked position.
 外部インターフェース36は、有線または無線の接続により、自動ドア100外の各種の外部機器36Aとの間で信号を入出力する。外部機器36Aとしては、自動ドア100の設置や保守点検のために現場に赴いた作業員が使用する調整器等の作業端末や、インターネット等の公衆情報通信網を介して接続された遠隔のサーバやコンピュータが例示される。このような外部機器36Aの入力操作により、自動ドア100の各構成機器の制御やパラメータ調整等の各種設定を行える。また、外部機器36Aは、自動ドア100の各構成機器や、それらに付随して設けられるメモリから情報を読み取り、状態診断や保守点検を行える。なお、上述の通り、自動ドア100内のバス2はCAN規格に則って構成されるが、外部機器36Aと外部インターフェース36の間の通信が、それとは別の規格、例えば、Bluetooth(登録商標)やWi-Fi(登録商標)で行われる場合、外部インターフェース36は一方の規格に基づく信号を他方の規格に基づく信号に変換するプロトコル変換器として機能する。 The external interface 36 inputs and outputs signals to and from various external devices 36A outside the automatic door 100 through wired or wireless connection. As the external device 36A, a work terminal such as a regulator used by a worker who goes to the site for installation or maintenance inspection of the automatic door 100, or a remote server connected via a public information communication network such as the Internet. and computers are exemplified. Various settings such as control of each constituent device of the automatic door 100 and parameter adjustment can be performed by such input operation of the external device 36A. In addition, the external device 36A can read information from each constituent device of the automatic door 100 and a memory attached thereto, and perform state diagnosis and maintenance inspection. As described above, the bus 2 in the automatic door 100 is configured according to the CAN standard, but communication between the external device 36A and the external interface 36 is based on a different standard, such as Bluetooth (registered trademark). or Wi-Fi®, the external interface 36 functions as a protocol converter that converts signals based on one standard to signals based on the other standard.
 表示装置37は、他の構成機器から受信した情報に基づいて自動ドア100の稼働状況等を表示する表示部である。この表示装置37がタッチパネル等の入力機能を備える場合は、表示画面上のタッチ操作により、自動ドア100の各構成機器の制御やパラメータ調整等の各種設定を行える。なお、表示装置37は、扉部10の付近に設けてもよいし、扉部10から離れた場所、例えば、自動ドア100と同じ建物内でその管理を行うバックヤードに設けてもよい。 The display device 37 is a display unit that displays the operating status of the automatic door 100 based on information received from other components. When the display device 37 has an input function such as a touch panel, various settings such as control of each constituent device of the automatic door 100 and parameter adjustment can be performed by touch operation on the display screen. The display device 37 may be provided near the door section 10 or may be provided in a place away from the door section 10, for example, in the backyard where the automatic door 100 is managed in the same building.
 以上で例示列挙した自動ドア100を構成する構成機器、すなわち、コントローラ20、起動センサ31、タッチプレート31A、補助センサ32、操作盤33、認証装置34、電気錠コントローラ35、外部インターフェース36、表示装置37は、CAN規格に則ったバス2を介して相互に通信可能である。つまり、各構成機器はCAN通信のためのCANトランシーバとCANコントローラを内蔵している。外部インターフェース36は、これらに加え、外部機器36Aが利用する通信規格とCAN規格のプロトコル変換を行うプロトコル変換部を有する。これにより、外部インターフェース36に接続された外部機器36Aは、自動ドア100の他の構成機器とバス2を介して相互に通信可能である。 Components constituting the automatic door 100 exemplified above, that is, the controller 20, the activation sensor 31, the touch plate 31A, the auxiliary sensor 32, the operation panel 33, the authentication device 34, the electric lock controller 35, the external interface 36, and the display device 37 can communicate with each other via a bus 2 conforming to the CAN standard. That is, each component contains a CAN transceiver and a CAN controller for CAN communication. In addition to these, the external interface 36 has a protocol converter that performs protocol conversion between the communication standard used by the external device 36A and the CAN standard. As a result, the external device 36A connected to the external interface 36 can communicate with other constituent devices of the automatic door 100 via the bus 2. FIG.
 続いて、開口の内外または扉部10の両側にそれぞれ設けられる起動センサ31、すなわち、室内側起動センサ31Iおよび室外側起動センサ31Oが、扉部10の両側の周辺に形成する検知エリアおよび検知スポットについて説明する。図3は、各起動センサ31による投光および受光の態様を模式的に示す。各起動センサ31は、扉部10の周辺の検知エリア90に投光する投光部70と、検知エリア90からの反射光を受光する受光部80を備える。投光部70は、mを自然数として、m個の投光素子71-1、71-2・・・71-m(投光素子71と総称する)と、m個の投光レンズ72-1、72-2・・・72-m(投光レンズ72と総称する)を備える。受光部80は、nを自然数として、n個の受光素子81-1、81-2・・・81-n(受光素子81と総称する)と、n個の受光レンズ82-1、82-2・・・82-nを備える(受光レンズ82と総称する)。検知エリア90は、赤外線が投受光される床面に相当する。なお、図示の都合上、投光部70と受光部80を別体として示したが、一体として構成してもよい。特に、投光部70を構成する各投光素子71と受光部80を構成する各受光素子81はフォトカプラとして一体的に構成できる。 Subsequently, the activation sensors 31 provided inside and outside the opening or on both sides of the door portion 10, that is, the indoor activation sensor 31I and the outdoor activation sensor 31O form a detection area and a detection spot around both sides of the door portion 10. will be explained. FIG. 3 schematically shows how each activation sensor 31 projects and receives light. Each activation sensor 31 includes a light projecting portion 70 that projects light onto a detection area 90 around the door portion 10 and a light receiving portion 80 that receives reflected light from the detection area 90 . The light projecting section 70 includes m light projecting elements 71-1, 71-2, . , 72-2 . . . 72-m (collectively referred to as projection lenses 72). The light-receiving unit 80 includes n light-receiving elements 81-1, 81-2, . . . 82-n (collectively referred to as a light receiving lens 82). The detection area 90 corresponds to the floor on which infrared rays are projected and received. For convenience of illustration, the light projecting section 70 and the light receiving section 80 are shown as separate bodies, but they may be constructed integrally. In particular, each light projecting element 71 constituting the light projecting section 70 and each light receiving element 81 constituting the light receiving section 80 can be integrally configured as a photocoupler.
 投光素子71は、電気信号に基づいて発光するLED等の発光素子である。自動ドア100の通行者の妨げとならないように、非可視光である赤外線が用いられる。投光レンズ72は、投光素子71からの光を複数の光線に分割する。分割して生成する光線の本数は任意であるが、図示の例では、各投光レンズ72が二本の光線を生成する。投光素子71は全部でm個あり、それぞれの光が投光レンズ72で二本の光線に分割されるため、投光部70は合計2m本の光線を生成して検知エリア90に照射する。 The light projecting element 71 is a light emitting element such as an LED that emits light based on an electrical signal. Infrared light, which is non-visible light, is used so that the automatic door 100 does not interfere with passers-by. The light projecting lens 72 splits the light from the light projecting element 71 into a plurality of light rays. Although the number of rays generated by division is arbitrary, in the illustrated example, each projection lens 72 generates two rays. There are a total of m light projecting elements 71, and each light is split into two light beams by the light projecting lens 72, so the light projecting unit 70 generates a total of 2m light beams and irradiates the detection area 90 with them. .
 受光素子81は、検知エリア90からの反射光を受光して電気信号である受光情報を生成するフォトダイオード等である。受光素子81の受光可能な波長帯は、投光素子71が発する光(本例では赤外線)に合わせられる。受光レンズ82は、検知エリア90からの複数の光線を集め、対応する受光素子81に照射する。各受光レンズ82が集める光線の本数は任意であるが、図示の例では、各受光レンズ82が三本の光線を集める。受光レンズ82は全部でn個あり、それぞれが三本の光線を集めるため、受光部80は合計3n本の光線を検知エリア90から受け取る。 The light receiving element 81 is a photodiode or the like that receives reflected light from the detection area 90 and generates light reception information, which is an electrical signal. The wavelength band that can be received by the light receiving element 81 is matched with the light emitted by the light projecting element 71 (infrared light in this example). The light-receiving lens 82 collects a plurality of light beams from the detection area 90 and irradiates the corresponding light-receiving elements 81 . Although the number of light beams collected by each light receiving lens 82 is arbitrary, in the illustrated example, each light receiving lens 82 collects three light beams. Since there are a total of n receiving lenses 82 and each collects three light beams, the light receiving section 80 receives a total of 3n light beams from the sensing area 90 .
 投光部70が生成する2m本の光線と、受光部80が受け取る3n本の光線は、一対一に対応しており、総本数は等しい。つまり、2m=3nである。以下、この総本数が72の場合、すなわち、m(投光素子71および投光レンズ72の数)が36、n(受光素子81および受光レンズ82の数)が24の場合を例に説明する。なお、この例では、投光レンズ72の分割光線数を2、受光レンズ82の集約光線数を3としたが、これらも任意に設定でき、それに応じて投光素子71の数mと受光素子81の数nも任意に設定できる。具体的には、投光素子71の数mと、受光素子81の数nは、所望の光線総数(72)を上限とする任意の自然数でよい。投光素子71が最少の1個の場合、同じく1個の投光レンズ72が72本の光線を生成する。投光素子71が最多の72個の場合は、投光レンズ72で分光しなくても72本の光線が得られるので、投光レンズ72は不要である。受光素子81が最少の1個の場合、同じく1個の受光レンズ82が72本の光線を集める。受光素子81が最多の72個の場合は、光線を集約しなくてもよいので、受光レンズ82は不要である。 The 2m light beams generated by the light projecting unit 70 and the 3n light beams received by the light receiving unit 80 are in one-to-one correspondence, and the total number is the same. That is, 2m=3n. Hereinafter, the case where the total number is 72, that is, the case where m (the number of light emitting elements 71 and light emitting lenses 72) is 36 and n (the number of light receiving elements 81 and light receiving lenses 82) is 24 will be described as an example. . In this example, the number of split rays of the projection lens 72 is 2, and the number of the light rays of the light receiving lens 82 is 3. However, these can be arbitrarily set, and the number m of the light projecting elements 71 and the number of light receiving elements are set accordingly. The number n of 81 can also be set arbitrarily. Specifically, the number m of the light emitting elements 71 and the number n of the light receiving elements 81 may be arbitrary natural numbers up to the desired total number of light rays (72). When the number of light projecting elements 71 is one, which is the minimum, one light projecting lens 72 similarly generates 72 light rays. When the number of light projecting elements 71 is 72, which is the maximum number, 72 light beams can be obtained without splitting the light with the light projecting lens 72, so the light projecting lens 72 is not necessary. When the number of light receiving elements 81 is one, which is the minimum, one light receiving lens 82 collects 72 light rays. When the number of light-receiving elements 81 is 72, which is the maximum number, the light rays do not need to be concentrated, so the light-receiving lens 82 is not necessary.
 図4は、各起動センサ31が投受光する扉部10の周辺の床面の検知エリア90を模式的に示す。検知エリア90は、72本の光線に対応して、72個の検知スポットに区分される。図示の例では、矩形状の検知エリア90が、6行12列の行列状ないし格子状に区分される。この検知エリア90は、自動ドア100の扉部10の開口部に面した床面であり、行番号が大きくなるほど開口部に近い。すなわち、行番号1の検知スポットは開口部から最も遠く、行番号6の検知スポットは開口部に最も近い。また、列番号L1~L6は、図1における扉部10の左側の領域に対応し、列番号R1~R6は、図1における扉部10の右側の領域に対応する。以上のように区分された検知スポットには、図示のように1~72の固有のスポット番号が付与されている。 FIG. 4 schematically shows a detection area 90 on the floor around the door portion 10 where each activation sensor 31 projects and receives light. The sensing area 90 is partitioned into 72 sensing spots corresponding to the 72 rays. In the illustrated example, a rectangular detection area 90 is divided into a matrix or lattice of 6 rows and 12 columns. This detection area 90 is the floor surface facing the opening of the door portion 10 of the automatic door 100, and the larger the line number, the closer it is to the opening. That is, the sensing spot in row number 1 is furthest from the aperture and the sensing spot in row number 6 is closest to the aperture. Further, row numbers L1 to L6 correspond to the area on the left side of the door portion 10 in FIG. 1, and row numbers R1 to R6 correspond to the area on the right side of the door portion 10 in FIG. The detection spots divided as described above are given unique spot numbers from 1 to 72 as shown in the figure.
 各検知スポットには、投光番号と受光番号も付与される。投光番号は、その検知スポットに投光する投光素子71を表す。受光番号は、その検知スポットからの反射光を受光する受光素子81を表す。例えば、図の左上角の61番の検知スポットは、1番の投光素子71-1から光を受けて1番の受光素子81-1に反射する。その右隣の62番の検知スポットは、1番の投光素子71-1から光を受けて2番の受光素子81-2に反射する。また、図の右下角の12番の検知スポットは、34番の投光素子71-34から光を受けて24番の受光素子81-24に反射する。 Each detection spot is also given a light projection number and a light reception number. The projection number represents the projection element 71 that projects light onto the detection spot. The light receiving number represents the light receiving element 81 that receives the reflected light from the detection spot. For example, the 61st detection spot in the upper left corner of the figure receives light from the first light emitting element 71-1 and reflects it to the first light receiving element 81-1. The 62nd detection spot on the right side receives the light from the first light emitting element 71-1 and reflects it to the second light receiving element 81-2. Further, the 12th detection spot in the lower right corner of the figure receives light from the 34th light emitting element 71-34 and reflects it to the 24th light receiving element 81-24.
 投光番号に着目すると、各投光素子71-1~36は、左右方向に隣接する二つの検知スポットに同時に投光する。例えば、1番の投光素子71-1は、左右方向に隣接する61番と62番の検知スポットに同時に投光する。同様に、2番の投光素子71―2は、左右方向に隣接する63番と64番の検知スポットに同時に投光する。 Focusing on the light projection number, each of the light projection elements 71-1 to 71-36 simultaneously projects light onto two adjacent detection spots in the left-right direction. For example, the number 1 light projecting element 71-1 simultaneously projects light to the 61st and 62nd detection spots adjacent in the horizontal direction. Similarly, the number 2 light emitting element 71-2 simultaneously projects light to the 63rd and 64th detection spots adjacent in the horizontal direction.
 受光番号に着目すると、各受光素子81-1~24は、図4の上下方向(図1の紙面に垂直な方向)に一つ置きで並ぶ、互いに隣接しない三つの検知スポットからの反射光を同時に受光する。例えば、1番の受光素子81-1は、上下方向に一つ置きで並ぶ61番、37番、13番の三つの検知スポットからの反射光を同時に受光する。同様に、13番の受光素子81-13は、上下方向に一つ置きで並ぶ49番、25番、1番の三つの検知スポットからの反射光を同時に受光する。 Focusing on the light-receiving number, each of the light-receiving elements 81-1 to 81-24 receives reflected light from three detection spots that are not adjacent to each other and are arranged alternately in the vertical direction of FIG. 4 (the direction perpendicular to the paper surface of FIG. 1). receive light at the same time. For example, the number 1 light receiving element 81-1 simultaneously receives reflected light from three detection spots numbered 61, 37, and 13, which are arranged alternately in the vertical direction. Similarly, the 13th light-receiving element 81-13 simultaneously receives the reflected light from the 49th, 25th, and 1st detection spots arranged alternately in the vertical direction.
 以上に示した、検知エリア90の検知スポットへの区分、各検知スポットで使用する投光素子71および受光素子81の選択、各検知スポットへの各種番号の付与は一例に過ぎず、これ以外の態様でもよい。例えば、検知エリア90は、行列状ないし格子状に限らず、任意の形状で検知スポットに区分できる。また、各検知スポットで使用する投光素子71および受光素子81については、各投光素子71、各投光レンズ72、各受光素子81、各受光レンズ82の配置や構成を適宜調整することで、任意の投光素子71および任意の受光素子81を任意の検知スポットに割り当てることができる。以上の例では、同一の投光素子71を左右方向に並ぶ複数の検知スポットで使用し、同一の受光素子81を上下方向に並ぶ複数の検知スポットで使用したが、これとは逆に、同一の投光素子71を上下方向に並ぶ複数の検知スポットで使用し、同一の受光素子81を左右方向に並ぶ複数の検知スポットで使用してもよい。また、以上の例では、同一の投光素子71を隣接する複数の検知スポットで使用し、同一の受光素子81を一つ置きの互いに隣接しない複数の検知スポットで使用したが、これとは逆に、同一の投光素子71を一つ置きの互いに隣接しない複数の検知スポットで使用し、同一の受光素子81を隣接する複数の検知スポットで使用してもよい。なお、同一の投光素子71または同一の受光素子81を共用する複数の検知スポットの間隔は、以上の例のゼロ(隣接)や一スポット(一つ置き)に限らず、任意の数のスポットでよい。 The division of the detection area 90 into detection spots, the selection of the light emitting element 71 and the light receiving element 81 used in each detection spot, and the assignment of various numbers to each detection spot as described above are merely examples, and other It can be any aspect. For example, the detection area 90 can be divided into detection spots in an arbitrary shape without being limited to a matrix or lattice. Further, regarding the light emitting element 71 and the light receiving element 81 used in each detection spot, by appropriately adjusting the arrangement and configuration of each light emitting element 71, each light emitting lens 72, each light receiving element 81, and each light receiving lens 82, , any light emitting element 71 and any light receiving element 81 can be assigned to any detection spot. In the above example, the same light emitting element 71 is used for a plurality of detection spots arranged in the horizontal direction, and the same light receiving element 81 is used for a plurality of detection spots arranged in the vertical direction. The light projecting element 71 may be used for a plurality of detection spots arranged vertically, and the same light receiving element 81 may be used for a plurality of detection spots arranged horizontally. In the above example, the same light emitting element 71 is used for a plurality of adjacent detection spots, and the same light receiving element 81 is used for a plurality of alternate detection spots that are not adjacent to each other. Alternatively, the same light projecting element 71 may be used for a plurality of alternate detection spots that are not adjacent to each other, and the same light receiving element 81 may be used for a plurality of adjacent detection spots. Note that the interval between the plurality of detection spots sharing the same light emitting element 71 or the same light receiving element 81 is not limited to zero (adjacent) or one spot (every other spot) in the above example, but any number of spots. OK.
 図5は、各起動センサ31から取得可能な検知スポットの軌跡情報の例を示す。各図の検知エリア90における72個の検知スポットのうち、塗りつぶされた検知スポットは一定時間に検知状態になった検知スポットを表す。ここで、各検知スポットにおける検知情報、具体的には、各検知スポットを構成する受光素子81における受光量の変化が所定の開駆動閾値以上になった場合に、検知スポットが検知状態になったという。各図において検知状態になった検知スポットから開駆動閾値以上の検知情報を受け取ったコントローラ20は、ドアエンジン40を介して扉部10を開駆動する。なお、コントローラ20は、検知状態になっていない検知スポットから開駆動閾値未満の検知情報を受け取ってもよい。開駆動閾値未満の検知情報は扉部10の開駆動には用いられないが、後述するように、誤開閉、開放、繰り返し反転等の扉部10における望ましくない異常事象の発生有無を判定する際に利用できる。以降、開駆動閾値以上の検知情報を駆動検知情報、開駆動閾値未満の検知情報を非駆動検知情報といい、両者を区別することがある。 FIG. 5 shows an example of trajectory information of detection spots that can be acquired from each activation sensor 31 . Of the 72 detection spots in the detection area 90 in each figure, the detection spots that are painted out represent the detection spots that have been in the detection state for a certain period of time. Here, when the detection information in each detection spot, specifically, the change in the amount of light received by the light receiving element 81 constituting each detection spot, becomes equal to or greater than a predetermined open drive threshold, the detection spot is in the detection state. It says. In each figure, the controller 20 receives detection information equal to or greater than the opening drive threshold value from the detection spot that has entered the detection state, and drives the door section 10 to open via the door engine 40 . Note that the controller 20 may receive detection information below the open drive threshold from a detection spot that is not in the detection state. Detection information less than the open drive threshold value is not used to drive the door section 10 to open, but as will be described later, when determining whether an undesirable abnormal event has occurred in the door section 10, such as erroneous opening/closing, opening, or repeated reversal. available for Hereinafter, detection information equal to or greater than the open drive threshold is referred to as drive detection information, and detection information less than the open drive threshold is referred to as non-drive detection information, and the two may be distinguished from each other.
 図5(A)は、扉部10の通常開閉時において検知状態になった検知スポットの軌跡情報の例を示す。検知エリア90外から扉部10の開口部に向かって線状に延びる軌跡が形成されており、通行者が当該軌跡に沿って扉部10を正常に通行したことが示唆される。図5(B)~(D)は、通行者が扉部10を通行していないにも関わらず、何らかの理由で検知状態になった少数の検知スポットによって、扉部10が誤って開駆動されてしまった場合の軌跡情報の例を示す。図5(B)では、雪、虫、直射日光等の外乱の影響で扉部10の塗りつぶされた少数の検知スポットが検知状態になったため、扉部10が誤って開駆動されたことが示唆される。図5(C)では、扉部10を通行しない歩行者が偶然に検知エリア90の角部をかするように歩行した結果、扉部10が誤って開駆動されたことが示唆される。図5(D)では、扉部10を通行しない人が開口部付近に留まっている場合や、無目60の振動によって開口部付近の検知スポットが連続的に検知状態になってしまう無目揺れが発生している場合に、扉部10が誤って開駆動されたことが示唆される。なお、検知状態の検知スポットに表示された「5」の数字は、当該検知スポットが時間的に連続する検知スロットにおいて5回連続で検知状態になったことを意味する。図5(B)~(D)に示されるような場合に発生する扉部10の誤った開駆動は、誤開閉、開放、繰り返し反転等の扉部10における望ましくない異常事象の原因となる。後述するように、本実施形態では図5(B)~(D)のような軌跡情報に基づいて、扉部10における異常事象の発生有無を効率的に判定する。 FIG. 5(A) shows an example of trajectory information of detection spots that are in a detection state when the door portion 10 is normally opened and closed. A trajectory extending linearly from outside the detection area 90 toward the opening of the door portion 10 is formed, suggesting that the passerby normally passed through the door portion 10 along the trajectory. 5(B) to 5(D) show that the door 10 is erroneously driven open by a small number of detection spots that are in the detection state for some reason even though the passerby does not pass through the door 10. An example of trajectory information in the case of accident is shown. In FIG. 5(B), it is suggested that the door 10 was erroneously driven open because a small number of detection spots on the door 10 were detected due to disturbances such as snow, insects, and direct sunlight. be done. FIG. 5(C) suggests that the door 10 was erroneously driven open as a result of a pedestrian who did not pass through the door 10 accidentally walking across the corner of the detection area 90 . In FIG. 5(D), when a person who does not pass through the door part 10 stays near the opening, or when the detection spot near the opening is continuously detected due to the vibration of the blind 60 is generated, it is suggested that the door portion 10 was erroneously driven to open. The number "5" displayed on the detection spot in the detection state means that the detection spot has been in the detection state five times in succession in the temporally continuous detection slots. An erroneous opening drive of the door 10 that occurs in the cases shown in FIGS. 5(B) to 5(D) causes undesirable abnormal events in the door 10 such as erroneous opening/closing, opening, and repeated reversal. As will be described later, in the present embodiment, whether or not an abnormal event has occurred in the door section 10 is efficiently determined based on the trajectory information shown in FIGS. 5B to 5D.
 図6は、自動ドアの診断装置200を示す機能ブロック図である。診断装置200は、動作フェーズ取得部210と、センサ情報取得部220と、判定部230と、出力部240と、記憶部250を備える。これらの機能ブロックは、コンピュータの中央演算処理装置、メモリ、入力装置、出力装置、コンピュータに接続される周辺機器等のハードウェア資源と、それらを用いて実行されるソフトウェアの協働により実現される。コンピュータの種類や設置場所は問わず、上記の各機能ブロックは、単一のコンピュータのハードウェア資源で実現してもよいし、複数のコンピュータに分散したハードウェア資源を組み合わせて実現してもよい。特に本実施形態では、診断装置200の機能ブロックの一部または全部は、それ自体がコンピュータである自動ドア100のコントローラ20で実現してもよいし、コントローラ20と通信可能な自動ドア100内外のコンピュータやハードウェア資源で実現してもよい。 FIG. 6 is a functional block diagram showing the diagnostic device 200 for automatic doors. The diagnostic device 200 includes an operation phase acquisition section 210 , a sensor information acquisition section 220 , a determination section 230 , an output section 240 and a storage section 250 . These functional blocks are realized through cooperation between hardware resources such as the computer's central processing unit, memory, input device, output device, and peripheral devices connected to the computer, and software executed using them. . Regardless of the type of computer or installation location, each of the above functional blocks may be implemented using the hardware resources of a single computer, or may be implemented by combining hardware resources distributed among multiple computers. . In particular, in this embodiment, some or all of the functional blocks of the diagnostic device 200 may be implemented by the controller 20 of the automatic door 100 itself, which is a computer, or may be implemented inside or outside the automatic door 100 capable of communicating with the controller 20. It may be realized by computer or hardware resources.
 動作フェーズ取得部210は、コントローラ20から扉部10またはドアエンジン40の動作フェーズ情報を取得する。扉部10の動作フェーズの具体例については後述するが、例えば、扉部10の1回の開閉動作は以下の動作フェーズに分解できる。
・全閉中:扉部10が全閉状態で停止
・全閉→開作動:扉部10が全閉状態から開動作状態に遷移
・開作動中:扉部10が開動作状態で移動
・開作動→全開:扉部10が開動作状態から全開状態に遷移
・全開中:扉部10が全開状態で停止
・全開→閉作動:扉部10が全開状態から閉動作状態に遷移
・閉作動中:扉部10が閉動作状態で移動
・閉作動→全閉:扉部10が閉動作状態から全閉状態に遷移
The operation phase acquisition unit 210 acquires operation phase information of the door unit 10 or the door engine 40 from the controller 20 . Specific examples of the operation phases of the door section 10 will be described later, but for example, one opening/closing operation of the door section 10 can be broken down into the following operation phases.
・During full closing: Stops when the door 10 is fully closed ・Fully closed→opening operation: Transitions the door 10 from the fully closed state to the opening state ・During opening operation: Moves and opens the door 10 in the open state Operation→Fully open: The door part 10 transitions from the open operation state to the fully open state ・During full opening: The door part 10 stops while the door part 10 is fully open ・Fully open→Closed operation: The door part 10 transitions from the fully open state to the closed operation state・During closing operation : Door portion 10 moves and closes in the closed state→fully closed: The door portion 10 transitions from the closed state to the fully closed state.
 センサ情報取得部220は、動作フェーズ取得部210が取得した扉部10の動作フェーズ情報に基づいて扉部10が所定の動作フェーズにあることを判断した時に、センサ30の検知情報を取得する。後述するように、誤開閉、開放、繰り返し反転等の検知対象の事象によって、検知情報を取得するセンサ30の種類(室内側起動センサ31I、室外側起動センサ31O、補助センサ32)、各センサ30から取得する検知情報の内容、検知情報の取得タイミング等が異なる。なお、センサ情報取得部220は、各センサ30が検知状態か否かの状態情報も取得する。具体的には、センサ情報取得部220は、検知状態になった検知スポットからの開駆動閾値以上の駆動検知情報と、検知状態に至らない検知スポットからの開駆動閾値未満の検知量である非駆動検知情報を、互いに区別可能な態様で取得する。 The sensor information acquisition unit 220 acquires detection information of the sensor 30 when determining that the door unit 10 is in a predetermined operation phase based on the operation phase information of the door unit 10 acquired by the operation phase acquisition unit 210 . As will be described later, the types of sensors 30 (indoor-side starting sensor 31I, outdoor-side starting sensor 31O, auxiliary sensor 32) that acquire detection information are determined by events to be detected such as erroneous opening/closing, opening, and repeated reversal, and each sensor 30 The contents of the detection information acquired from, the acquisition timing of the detection information, etc. are different. The sensor information acquisition unit 220 also acquires state information indicating whether each sensor 30 is in a detection state. Specifically, the sensor information acquisition unit 220 obtains the drive detection information from the detection spot that has entered the detection state and is equal to or greater than the open drive threshold, and the detection amount that is less than the open drive threshold from the detection spot that has not reached the detection state. Drive sensing information is obtained in a mutually distinguishable manner.
 判定部230は、動作フェーズ取得部210が取得した扉部10の動作フェーズ情報とセンサ情報取得部220が取得したセンサ30の検知情報に基づいて、扉部10における所定の事象の発生有無を判定する。具体的には、判定部230は、検知対象物が扉部10を通行しない時に扉部10が開閉してしまう誤開閉の発生有無を判定する誤開閉判定部231と、扉部10が所定時間以上継続して開状態になってしまう開放の発生有無を判定する開放判定部232と、閉動作中の扉部10が開動作に切り替わる反転が所定回数以上繰り返されてしまう繰り返し反転の発生有無を判定する繰り返し反転判定部233を備える。各判定部231~233には、それぞれの判定処理の間にセンサ30の検知情報を一時的に格納する小容量のメモリが設けられる。各判定部231~233における具体的な判定方法については後述する。 The determination unit 230 determines whether a predetermined event has occurred in the door unit 10 based on the operation phase information of the door unit 10 acquired by the operation phase acquisition unit 210 and the detection information of the sensor 30 acquired by the sensor information acquisition unit 220. do. Specifically, the determination unit 230 includes an erroneous opening/closing determination unit 231 that determines whether or not an erroneous opening/closing of the door unit 10 occurs when the object to be detected does not pass through the door unit 10, and a An open determination unit 232 that determines whether or not the door section 10 continues to be in the open state. A repetitive inversion determination unit 233 for determination is provided. Each determination unit 231 to 233 is provided with a small-capacity memory for temporarily storing the detection information of the sensor 30 during each determination process. A specific determination method in each of the determination units 231 to 233 will be described later.
 出力部240は、所定の事象が発生したと判定部230が判定した場合、その判定結果と共にセンサ情報取得部220が取得したセンサ30の検知情報を、診断装置200外の別のコンピュータ等に対して出力する。記憶部250は、出力部240が出力した判定部230の判定結果とセンサ30の検知情報を記憶する自動ドア100の内外に設けられる記憶媒体である。出力部240は、判定結果と検知情報をリアルタイムで診断装置200外の別のコンピュータ等に対して出力してもよいし、記憶部250に記憶された判定結果と検知情報を自動ドア100の保守点検等の際に外部機器36Aとして自動ドア100に接続された作業端末等に対して出力してもよい。なお、出力部240は、扉部10が動作していない時、具体的には扉部10が「全閉中」「開作動→全開」「全開中」「閉作動→全閉」等の動作フェーズにある時に、センサ30の検知情報を出力するのが好ましい。 When the determination unit 230 determines that a predetermined event has occurred, the output unit 240 transmits the detection information of the sensor 30 acquired by the sensor information acquisition unit 220 together with the determination result to another computer or the like outside the diagnostic device 200. output. The storage unit 250 is a storage medium provided inside and outside the automatic door 100 that stores the determination result of the determination unit 230 and the detection information of the sensor 30 output by the output unit 240 . The output unit 240 may output the determination result and the detection information in real time to another computer or the like outside the diagnostic device 200 , or may output the determination result and the detection information stored in the storage unit 250 to maintenance of the automatic door 100 . The information may be output to a work terminal or the like connected to the automatic door 100 as the external device 36A during inspection or the like. Note that the output unit 240 outputs an operation such as when the door unit 10 is not operating, specifically when the door unit 10 is “fully closed”, “open operation→fully open”, “fully open”, “close operation→fully closed”, and the like. It is preferable to output the detection information of the sensor 30 when in phase.
 図7は、誤開閉判定部231による誤開閉の判定方法を示す。本図および後続の同様の図において、「自動ドアの状態」は動作フェーズ取得部210で取得される扉部10の動作フェーズを示し、「スポット状態」はセンサ情報取得部220で取得される各センサ30の検知情報のうち開駆動閾値未満の非駆動検知情報または検知状態に至らない検知スポットの検知量を記録するタイミングを示し、「スポット軌跡」はセンサ情報取得部220で取得される各センサ30の検知情報のうち開駆動閾値以上の駆動検知情報または図5で示したような検知状態になった検知スポットの軌跡情報を記録するタイミングを示し、「センサ検知状態」は扉部10の開閉動作のトリガーとなった「スポット軌跡」を生成したセンサ30と、当該センサ30とは異なる他のセンサ30の駆動検知情報を記録するタイミングを示す。 FIG. 7 shows a method for determining erroneous opening/closing by the erroneous opening/closing determination unit 231. FIG. In this figure and the following similar figures, "automatic door state" indicates the operation phase of the door unit 10 acquired by the operation phase acquisition unit 210, and "spot state" indicates each phase acquired by the sensor information acquisition unit 220. In the detection information of the sensor 30, the non-driving detection information below the open drive threshold or the detection amount of the detection spot that does not reach the detection state is recorded. 30 of the detection information, the timing of recording the drive detection information above the open drive threshold or the trajectory information of the detection spot in the detection state as shown in FIG. The sensor 30 that generated the “spot trajectory” that triggered the operation and the timing of recording the drive detection information of the sensor 30 different from the sensor 30 are shown.
 「スポット状態」および/または「スポット軌跡」が記録されるセンサ30と「センサ検知状態」が記録されるセンサ30は、前者については互いに異なっていれば室内側起動センサ31Iと室外側起動センサ31Oのいずれでも、後者については室内側起動センサ31I、室外側起動センサ31O、補助センサ32のいずれでもよいが、以下では説明を簡素化するため特に断らない限り、室内側起動センサ31Iについて「スポット状態」および/または「スポット軌跡」が記録され、室外側起動センサ31Oおよび/または補助センサ32について「センサ検知状態」が記録されるものとする。 If the sensor 30 that records the "spot state" and/or the "spot trajectory" and the sensor 30 that records the "sensor detection state" are different from each other for the former, the indoor side activation sensor 31I and the outdoor side activation sensor 31O In any of the above, the latter may be any of the indoor activation sensor 31I, the outdoor activation sensor 31O, and the auxiliary sensor 32, but for the sake of simplicity, unless otherwise specified, the indoor activation sensor 31I is referred to as the "spot state ” and/or “spot trajectory” are recorded, and “sensor detection state” is recorded for the outdoor activation sensor 31 O and/or the auxiliary sensor 32 .
 図7において、扉部10が「全閉中」の動作フェーズにある時、室内側起動センサ31Iの「スポット状態」および「スポット軌跡」の記録が開始されると共に、室外側起動センサ31Oおよび補助センサ32の「センサ検知状態」の記録が開始される。室内側起動センサ31Iの「スポット軌跡」において開駆動閾値以上の駆動検知情報が記録されると、開駆動される扉部10の動作フェーズが「全閉→開作動」に遷移し、室内側起動センサ31Iの「スポット状態」(非駆動検知情報)の記録が停止される。誤開閉の判定においては、扉部10が実際に開閉したという事実が重要であり、「全閉→開作動」の動作フェーズで扉部10が開動作状態に遷移した後は、扉部10の開閉に寄与しない「スポット状態」(非駆動検知情報)を記録する必要性が低いためである。一方、扉部10の開閉に寄与する室内側起動センサ31Iの「スポット軌跡」(駆動検知情報)の記録と、室外側起動センサ31Oおよび補助センサ32の「センサ検知状態」(駆動検知情報)の記録は停止されない。 In FIG. 7, when the door section 10 is in the "fully closed" operation phase, recording of the "spot state" and "spot trajectory" of the indoor activation sensor 31I is started, and the outdoor activation sensor 31O and the auxiliary Recording of the "sensor detection state" of the sensor 32 is started. When drive detection information equal to or greater than the open drive threshold value is recorded in the "spot locus" of the indoor-side activation sensor 31I, the operation phase of the door portion 10 driven to open transitions from "fully closed to open operation", and indoor-side activation is performed. Recording of the "spot state" (non-driving detection information) of the sensor 31I is stopped. In judging erroneous opening/closing, the fact that the door portion 10 has actually opened/closed is important. This is because there is little need to record the "spot state" (non-driving detection information) that does not contribute to opening and closing. On the other hand, the recording of the "spot trajectory" (driving detection information) of the indoor activation sensor 31I that contributes to the opening and closing of the door 10 and the "sensor detection state" (driving detection information) of the outdoor activation sensor 31O and the auxiliary sensor 32 are recorded. Recording is not stopped.
 なお、誤開閉の判定精度を高める上では「スポット軌跡」および「センサ検知状態」の記録を後続の動作フェーズでも継続するのが好ましいが、「全閉→開作動」の動作フェーズで記録された「スポット軌跡」および/または「センサ検知状態」だけでも誤開閉を推定または判定できる。例えば、「全閉→開作動」の動作フェーズで記録された「スポット軌跡」において、図5(B)や(C)のように検知状態になった検知スポットが少数の場合や孤立している場合は誤開閉が発生した可能性が高い。また、「全閉→開作動」の動作フェーズで記録された「センサ検知状態」において、室外側起動センサ31Oおよび補助センサ32のいずれもが検知状態にならなかった場合、室内側起動センサ31Iによって検知された検知対象物が、扉部10の通行を検知する補助センサ32にも、扉部10の反対側への移動を検知する室外側起動センサ31Oにも検知されなかったことを意味するため、検知対象物が扉部10を通行しない時に扉部10が開閉してしまう誤開閉が発生した可能性が高い。 In addition, in order to improve the judgment accuracy of erroneous opening and closing, it is preferable to continue recording the "spot trajectory" and "sensor detection state" in the subsequent operation phase, but the recording in the "fully closed → open operation" operation phase The erroneous opening and closing can be estimated or determined only by the "spot trajectory" and/or the "sensor detection state". For example, in the "spot trajectory" recorded in the "fully closed → open operation" operation phase, as shown in Figs. In that case, there is a high possibility that erroneous opening and closing occurred. In addition, in the "sensor detection state" recorded in the "fully closed → open operation" operation phase, if neither the outdoor side start sensor 31O nor the auxiliary sensor 32 is in the detection state, the indoor side start sensor 31I This means that neither the auxiliary sensor 32 that detects the passage of the door portion 10 nor the outdoor-side activation sensor 310 that detects the movement of the door portion 10 to the opposite side detects the detected object. , there is a high possibility that erroneous opening and closing of the door section 10 occurs when the object to be detected does not pass through the door section 10 .
 図7の例では、室内側起動センサ31Iの「スポット軌跡」の記録と、室外側起動センサ31Oおよび補助センサ32の「センサ検知状態」の記録は、「全開→閉作動」の動作フェーズまで継続される。ここまでの段階で以下の二つの条件が成立している場合、誤開閉判定部231は扉部10において誤開閉が発生したと仮定または暫定的に判定する。
・誤開閉判定条件1:「スポット軌跡」の記録において、「全閉→開作動」の動作フェーズから「全開→閉作動」の動作フェーズにかけて、検知状態になった検知スポットの総数が所定の誤開閉判定閾値より小さい。
・誤開閉判定条件2:「センサ検知状態」の記録において、「全閉→開作動」の動作フェーズから「全開→閉作動」の動作フェーズにかけて、他のいずれのセンサ30(室外側起動センサ31Oおよび補助センサ32)も検知状態にならなかった。
In the example of FIG. 7, the recording of the "spot trajectory" of the indoor-side activation sensor 31I and the recording of the "sensor detection state" of the outdoor-side activation sensor 31O and the auxiliary sensor 32 continue until the "fully open→closed operation" operation phase. be done. If the following two conditions are satisfied up to this stage, the erroneous opening/closing determination section 231 assumes or provisionally determines that erroneous opening/closing has occurred in the door portion 10 .
・Incorrect opening/closing judgment condition 1: In the recording of the “spot trajectory”, the total number of detection spots in the detection state from the operation phase of “fully closed → open operation” to the operation phase of “fully open → closed operation” is a predetermined error. It is smaller than the open/close judgment threshold.
・ Erroneous opening/closing determination condition 2: In the recording of the “sensor detection state”, any other sensor 30 (the outdoor side activation sensor 31O and the auxiliary sensor 32) did not enter the detection state either.
 誤開閉判定条件1は、図5(B)や(C)のように検知状態になった検知スポットが少数で、それらが連続する複数の動作フェーズに亘って移動や残留しなかったことを示唆する。すなわち、誤開閉判定条件1を満たす「スポット軌跡」で検知された検知対象物は局所的かつ一時的に現れたものであり、雪、虫、直射日光等の外乱またはノイズである可能性が高い。誤開閉判定条件2は、室内側起動センサ31Iの「スポット軌跡」で検知された検知対象物が、扉部10の通行を検知する補助センサ32にも、扉部10の反対側への移動を検知する室外側起動センサ31Oにも検知されなかったことを意味する。 Erroneous opening/closing determination condition 1 suggests that the number of detection spots in the detection state as shown in FIGS. do. That is, the detection target detected by the "spot trajectory" that satisfies the erroneous open/close judgment condition 1 appears locally and temporarily, and is likely to be disturbance or noise such as snow, insects, direct sunlight, etc. . Erroneous opening/closing determination condition 2 is that the object detected by the "spot trajectory" of the indoor activation sensor 31I also causes the auxiliary sensor 32 that detects passage of the door 10 to move to the opposite side of the door 10. It means that the outdoor side activation sensor 31O that detects it has not detected it either.
 以上の二つの条件のいずれかが成立していない場合、誤開閉判定部231は扉部10において誤開閉が発生しなかったと判定してもよい。この場合、「閉作動中」以降の後続の動作フェーズにおけるセンサ30の検知情報の記録を停止すると共に、「全閉中」の動作フェーズから「全開→閉作動」の動作フェーズにかけて記録されたセンサ30の検知情報を破棄してもよい。一方、以上の二つの条件が成立している場合、室外側起動センサ31Oおよび補助センサ32の「センサ検知状態」の記録のみが「閉作動→全閉」の動作フェーズまで継続される。これらの動作フェーズでも上記の誤開閉判定条件2が引き続き成立している場合、すなわち、「全閉→開作動」の動作フェーズから「閉作動→全閉」の動作フェーズにかけて、室外側起動センサ31Oおよび補助センサ32のいずれもが検知状態にならなかった場合、誤開閉判定部231は扉部10において誤開閉が発生したと最終的に判定する。 If either of the above two conditions is not satisfied, the erroneous opening/closing determination unit 231 may determine that the door 10 has not been erroneously opened/closed. In this case, the recording of the detection information of the sensor 30 in the subsequent operation phases after "closed operation" is stopped, and the sensor recorded from the "fully closed" operation phase to the "fully open→closed operation" operation phase. 30 sensing information may be discarded. On the other hand, when the above two conditions are satisfied, only the recording of the "sensor detection state" of the outdoor side activation sensor 31O and the auxiliary sensor 32 continues until the "closed operation→fully closed" operation phase. If the erroneous opening/closing determination condition 2 is still satisfied in these operation phases, that is, from the operation phase of "fully closed→open operation" to the operation phase of "closed operation→fully closed", the outdoor start sensor 31O and the auxiliary sensor 32 are not in the detection state, the erroneous opening/closing determination section 231 finally determines that erroneous opening/closing of the door portion 10 has occurred.
 誤開閉が発生したと誤開閉判定部231が判定した場合、その判定結果および判定を裏付けるセンサ30の検知情報(「全閉中」から「全閉→開作動」にかけて記録された「スポット状態」、「全閉中」から「全開→閉作動」にかけて記録された「スポット軌跡」、「全閉中」から「閉作動→全閉」にかけて記録された「センサ検知状態」)を、出力部240が診断装置200外の別のコンピュータ等や記憶部250に対して出力する。診断装置200のユーザは、出力部240によって出力されたセンサ30の検知情報や記憶部250によって記憶されたセンサ30の検知情報を分析することで、誤開閉の原因となったセンサ30や検知スポットを特定することができる。なお、出力部240による出力後、各センサ30や誤開閉判定部231において一時的に記録されていた検知情報はリセットされる。一方、誤開閉が発生しなかったと誤開閉判定部231が判定した場合、一連の動作フェーズで記録された各センサ30の検知情報は、出力部240による出力または記憶部250による記憶の対象とならずに破棄される。 When the erroneous opening/closing determination unit 231 determines that erroneous opening/closing has occurred, the determination result and the detection information of the sensor 30 that supports the determination ("spot state" recorded from "fully closed" to "fully closed→open operation") , “spot trajectory” recorded from “fully closed” to “fully open→closed operation”, and “sensor detection state” recorded from “fully closed” to “closed operation→fully closed”) are output by the output unit 240 outputs to another computer or the like outside the diagnostic apparatus 200 and the storage unit 250 . By analyzing the detection information of the sensor 30 output by the output unit 240 and the detection information of the sensor 30 stored by the storage unit 250, the user of the diagnostic device 200 can identify the sensor 30 and the detection spot that caused the erroneous opening and closing. can be specified. After output by the output unit 240, the detection information temporarily recorded in each sensor 30 and the erroneous opening/closing determination unit 231 is reset. On the other hand, when the erroneous opening/closing determination unit 231 determines that erroneous opening/closing has not occurred, the detection information of each sensor 30 recorded in a series of operation phases cannot be output by the output unit 240 or stored by the storage unit 250. discarded without
 図7の誤開閉判定方法によれば、各センサ30が常に検知情報を記録するのではなく、各センサ30について定められた特定の動作フェーズに扉部10がある時に限って検知情報が記録されるので、処理すべきデータ量やこれらを記憶する記憶部250の容量を削減できる。また、誤開閉が発生しなかったと誤開閉判定部231が判定した場合、各センサ30の検知情報を即時に破棄できるので、無駄な検知情報の記憶部250への蓄積を防止できる。このように図7の誤開閉判定方法によれば、扉部10における誤開閉の発生を効率的に検知できる。 According to the erroneous opening/closing determination method of FIG. 7, each sensor 30 does not always record detection information, but detection information is recorded only when the door portion 10 is in a specific operation phase determined for each sensor 30. Therefore, the amount of data to be processed and the capacity of the storage unit 250 for storing them can be reduced. In addition, when the erroneous opening/closing determination unit 231 determines that erroneous opening/closing has not occurred, the detection information of each sensor 30 can be discarded immediately, so that wasteful accumulation of detection information in the storage unit 250 can be prevented. As described above, according to the erroneous opening/closing determination method of FIG.
 図8は、開放判定部232による開放の判定方法を示す。開放とは、扉部10が所定時間以上継続して開状態になってしまうことであり、例えば、センサ30が検知状態になっている累積時間が所定時間(例えば2分)以上になることや、扉部10が2分以上継続して「全開中」の動作フェーズに留まることをいう。開放発生時には、長時間に亘って室内側起動センサ31I、室外側起動センサ31O、補助センサ32の少なくともいずれかが検知状態になっている。例えば、室内側起動センサ31Iおよび室外側起動センサ31Oはいずれも検知状態にないが補助センサ32が長時間に亘って連続的(常時ON)または断続的(ON/OFF繰り返し)に検知状態にある場合、補助センサ32は検知状態にないが室内側起動センサ31Iおよび室外側起動センサ31Oの一方が長時間に亘って連続的(常時ON)または断続的(ON/OFF繰り返し)に検知状態にある場合、補助センサ32は検知状態にないが室内側起動センサ31Iおよび室外側起動センサ31Oの両方が長時間に亘って同じまたは異なるタイミングで検知状態になる場合、等が想定される。扉部10が「開作動→全開」の動作フェーズにあって全開状態に遷移する時、扉部10の開動作のトリガーとなった室内側起動センサ31Iの「スポット状態」および「スポット軌跡」の記録が開始されると共に、室外側起動センサ31Oおよび補助センサ32の「センサ検知状態」の記録が開始される。 FIG. 8 shows a method of determining openness by the open determination unit 232. FIG. Opening means that the door portion 10 continues to be in an open state for a predetermined time or longer. , means that the door unit 10 stays in the "fully open" operation phase continuously for two minutes or longer. When opening occurs, at least one of the indoor activation sensor 31I, the outdoor activation sensor 31O, and the auxiliary sensor 32 is in the detection state for a long time. For example, neither the indoor activation sensor 31I nor the outdoor activation sensor 31O are in the detection state, but the auxiliary sensor 32 is in the detection state continuously (always ON) or intermittently (ON/OFF repetition) for a long time. In this case, the auxiliary sensor 32 is not in the detection state, but one of the indoor side activation sensor 31I and the outdoor side activation sensor 31O is in the detection state continuously (always ON) or intermittently (ON/OFF repetition) for a long time. In this case, it is assumed that the auxiliary sensor 32 is not in the detection state, but both the indoor-side activation sensor 31I and the outdoor-side activation sensor 31O are in the detection state at the same or different timings for a long period of time. When the door section 10 is in the operation phase of "open operation → fully open" and transitions to the fully open state, the "spot state" and "spot trajectory" of the indoor activation sensor 31I that triggers the opening operation of the door section 10 are shown. Along with the start of recording, recording of the "sensor detection state" of the outdoor activation sensor 31O and the auxiliary sensor 32 is also started.
 これらのセンサ30の検知情報の記録は続く「全開中」の動作フェーズでも継続され、この状態で扉部10が2分以上「全開中」の動作フェーズに留まった場合、開放判定部232は扉部10において開放が発生したと判定する。具体的には、センサ30が検知状態になっている累積時間が所定時間(例えば2分)以上になった場合、開放判定部232は扉部10において開放が発生したと判定する。一方、扉部10が「全開中」の動作フェーズに留まっていた時間が2分未満の場合、開放判定部232は扉部10において開放が発生しなかったと判定する。いずれの場合でも、続く「全開→閉作動」の動作フェーズにおいて、全てのセンサ30の検知情報の記録が停止される。ただし、開放が発生したと判定された場合であって、扉部10が開放判定の2分よりも長い例えば5分以上「全開中」の動作フェーズに留まった場合、「全開→閉作動」の動作フェーズへの移行を待たずに全てのセンサ30の検知情報の記録を停止してもよい。 The recording of the detection information of these sensors 30 is continued in the subsequent "fully open" operation phase. It is determined that opening has occurred in the unit 10 . Specifically, when the cumulative time during which the sensor 30 is in the detection state is longer than a predetermined time (for example, two minutes), the open determination section 232 determines that the door section 10 has been opened. On the other hand, if the door portion 10 remains in the “fully open” operation phase for less than two minutes, the open determination section 232 determines that the door portion 10 has not been opened. In either case, recording of the detection information of all the sensors 30 is stopped in the subsequent "fully open→closed operation" operation phase. However, when it is determined that opening has occurred, and the door section 10 remains in the "fully open" operation phase for five minutes or more, which is longer than the two minutes of the open determination, the "fully open→closed operation" is performed. Recording of the detection information of all the sensors 30 may be stopped without waiting for the transition to the operation phase.
 開放が発生したと開放判定部232が判定した場合、その判定結果および判定を裏付けるセンサ30の検知情報(「開作動→全開」から「全開→閉作動」にかけて記録された「スポット状態」、「スポット軌跡」、「センサ検知状態」)を、出力部240が診断装置200外の別のコンピュータ等や記憶部250に対して出力する。この出力部240による出力は、扉部10が停止する「閉作動→全閉」の動作フェーズで行われるが、このうち少なくとも一部の情報を同じく扉部10が停止している「全開中」の動作フェーズで出力してもよい。 When the open determination unit 232 determines that opening has occurred, the determination result and detection information of the sensor 30 that supports the determination ("spot state" recorded from "open operation → fully open" to "fully open → closed operation", " spot locus” and “sensor detection state”), the output unit 240 outputs to another computer or the like outside the diagnostic apparatus 200 and the storage unit 250 . The output from the output unit 240 is performed in the operation phase of "closed operation→fully closed" when the door unit 10 is stopped. may be output in the operation phase of
 診断装置200のユーザは、出力部240によって出力されたセンサ30の検知情報や記憶部250によって記憶されたセンサ30の検知情報を分析することで、開放の原因となったセンサ30や検知スポットを特定できる。具体的には、扉部10が長時間に亘って「全開中」の動作フェーズに留まっていた際に、扉部10を全開状態に維持するための開駆動閾値以上の駆動検知情報を定常的または断続的に生成していたセンサ30(室内側起動センサ31I、室外側起動センサ31O、補助センサ32の少なくともいずれか)や検知スポットを具体的に特定できるため、診断装置200のユーザは開放の再発を防止するための適切な措置を講ずることができる。なお、出力部240による出力後、各センサ30や開放判定部232において一時的に記録されていた検知情報はリセットされる。一方、開放が発生しなかったと開放判定部232が判定した場合、一連の動作フェーズで記録された各センサ30の検知情報は、出力部240による出力または記憶部250による記憶の対象とならずに破棄される。 The user of the diagnostic device 200 analyzes the detection information of the sensor 30 output by the output unit 240 and the detection information of the sensor 30 stored by the storage unit 250, thereby identifying the sensor 30 and the detection spot that caused the opening. can be identified. Specifically, when the door unit 10 remains in the "fully open" operation phase for a long time, the drive detection information equal to or greater than the open drive threshold value for maintaining the door unit 10 in the fully open state is constantly detected. Alternatively, since the intermittently generated sensor 30 (at least one of the indoor-side activated sensor 31I, the outdoor-side activated sensor 31O, and the auxiliary sensor 32) and the detection spot can be specifically specified, the user of the diagnostic device 200 can open the door. Appropriate measures can be taken to prevent recurrence. After output by the output unit 240, the detection information temporarily recorded in each sensor 30 and the open determination unit 232 is reset. On the other hand, when the open determination unit 232 determines that opening has not occurred, the detection information of each sensor 30 recorded in a series of operation phases is not output by the output unit 240 or stored by the storage unit 250. discarded.
 図8の開放判定方法によれば、各センサ30が常に検知情報を記録するのではなく、各センサ30について定められた特定の動作フェーズに扉部10がある時に限って検知情報が記録されるので、処理すべきデータ量やこれらを記憶する記憶部250の容量を削減できる。また、開放が発生しなかったと開放判定部232が判定した場合、各センサ30の検知情報を即時に破棄できるので、無駄な検知情報の記憶部250への蓄積を防止できる。このように図8の開放判定方法によれば、扉部10における開放の発生を効率的に検知できる。 According to the open determination method of FIG. 8, each sensor 30 does not always record detection information, but the detection information is recorded only when the door section 10 is in a specific operation phase determined for each sensor 30. Therefore, the amount of data to be processed and the capacity of the storage unit 250 for storing them can be reduced. In addition, when the open determination unit 232 determines that the opening has not occurred, the detection information of each sensor 30 can be discarded immediately, thereby preventing useless accumulation of the detection information in the storage unit 250 . As described above, according to the open determination method of FIG. 8, it is possible to efficiently detect the occurrence of opening of the door portion 10 .
 図9は、繰り返し反転判定部233による繰り返し反転の判定方法を示す。繰り返し反転とは、閉動作中の扉部10が開動作に切り替わる反転が所定回数以上繰り返されてしまうことであり、具体的には、「閉作動中」の動作フェーズにある扉部10が続く「閉作動→全閉」の動作フェーズに進む代わりに「開作動中」の動作フェーズに戻ってしまう反転が所定回数以上繰り返されることをいう。扉部10が「全開→閉作動」の動作フェーズにあって閉動作状態に遷移する時、室内側起動センサ31Iの「スポット状態」および「スポット軌跡」の記録が開始されると共に、室外側起動センサ31Oおよび補助センサ32の「センサ検知状態」の記録が開始される。 FIG. 9 shows a method for determining repeated inversion by the repeated inversion determination unit 233. FIG. Repeated reversal means that the reversal in which the door portion 10 in the closing operation switches to the opening operation is repeated more than a predetermined number of times. It means that the reversal of returning to the "opening" operation phase instead of proceeding to the "closed operation→fully closed" operation phase is repeated more than a predetermined number of times. When the door section 10 is in the operation phase of "fully open→close operation" and transitions to the closed operation state, recording of the "spot state" and "spot trajectory" of the indoor activation sensor 31I is started, and the outdoor activation is performed. Recording of the "sensor detection state" of the sensor 31O and the auxiliary sensor 32 is started.
 続く「閉作動中」の動作フェーズにおいて「開作動中」に戻る反転が発生すると、反転の原因となった室内側起動センサ31Iの「スポット状態」および「スポット軌跡」の記録が一時停止される一方、室外側起動センサ31Oおよび補助センサ32の「センサ検知状態」の記録は継続される。その後、扉部10が再び「全開→閉作動」の動作フェーズになると、室内側起動センサ31Iの「スポット状態」および「スポット軌跡」の記録が再開される。このように、室内側起動センサ31Iの「スポット状態」および「スポット軌跡」の記録の一時停止または再開の回数が反転の回数を表し、これが所定回数以上になると繰り返し反転判定部233は扉部10において繰り返し反転が発生したと判定する。 When a reversal to return to "opening operation" occurs in the subsequent "closing operation" operation phase, recording of the "spot state" and "spot trajectory" of the indoor activation sensor 31I that caused the reversal is suspended. On the other hand, recording of the "sensor detection state" of the outdoor side activation sensor 31O and the auxiliary sensor 32 is continued. After that, when the door portion 10 enters the operation phase of "fully open→closed operation" again, recording of the "spot state" and "spot trajectory" of the indoor activation sensor 31I is resumed. In this way, the number of times the recording of the "spot state" and "spot trajectory" of the indoor activation sensor 31I is paused or resumed represents the number of times of reversal. It is determined that reversal has occurred repeatedly at .
 この場合、繰り返し反転判定部233は、センサ情報取得部220が閉動作フェーズにおける検知情報の取得を開始してから開動作フェーズにおける検知情報の取得を停止するまでの時間を考慮してもよい。具体的には、繰り返し反転判定部233は、センサ情報取得部220が閉動作フェーズにおける検知情報の取得を開始してから所定時間以内に開動作フェーズにおける検知情報の取得を停止した回数が所定回数以上になった場合に繰り返し反転が発生したと判定してもよい。検知情報の取得開始から取得停止までの時間が所定時間以下の場合は、扉部10の付近に留まっている人や物を繰り返し検知したことによる繰り返し反転の可能性が高い一方で、検知情報の取得開始から取得停止までの時間が所定時間より大きい場合は、扉部10を正常に通過する人や物を検知したことによる偶発的な反転の可能性が高い。 In this case, the repetitive reversal determination unit 233 may consider the time from when the sensor information acquisition unit 220 starts acquiring detection information in the closing operation phase until it stops acquiring detection information in the opening operation phase. Specifically, the repetitive reversal determination unit 233 determines that the sensor information acquisition unit 220 has stopped acquiring the detection information in the opening operation phase within a specified time after the sensor information acquisition unit 220 started acquiring detection information in the closing operation phase. It may be determined that repeated reversals have occurred when the above is reached. If the time from the start of acquisition of the detection information to the stop of acquisition is less than the predetermined time, there is a high possibility of repeated reversal due to repeated detection of a person or object staying near the door unit 10, but the detection information If the time from the acquisition start to the acquisition stop is longer than the predetermined time, there is a high possibility of accidental reversal due to detection of a person or object normally passing through the door section 10 .
 なお、繰り返し反転判定部233は、室内側起動センサ31Iの「スポット状態」および「スポット軌跡」の記録の一時停止または再開の回数に基づいて繰り返し反転を判定する代わりに、動作フェーズ取得部210で取得できる扉部10の閉動作から開動作への切り替わり回数に基づいて繰り返し反転を判定してもよい。例えば、繰り返し反転判定部233は、扉部10が閉状態から開動作に移った後、閉状態に戻るまでの動作フェーズにある時に、扉部10が閉動作フェーズにある時と扉部10が開動作フェーズにある時を繰り返した回数が所定回数以上になった場合に、繰り返し反転が発生したと判定する。 Note that the repetitive reversal determination unit 233 determines repetitive reversal based on the number of times the recording of the "spot state" and "spot trajectory" of the indoor activation sensor 31I is paused or resumed, instead of the repetitive reversal determination unit 210. Repeated reversal may be determined based on the number of times of switching from the closing operation to the opening operation of the door section 10 that can be acquired. For example, the repetitive reversal determination unit 233 determines when the door unit 10 is in the closing operation phase and when the door unit 10 is in the closing operation phase when the door unit 10 is in the operation phase until the door unit 10 returns to the closed state after moving from the closed state to the open operation. When the number of repetitions of the time in the opening operation phase is equal to or greater than a predetermined number of times, it is determined that repeated reversal has occurred.
 ただし、この間に記録された「センサ検知状態」において室外側起動センサ31Oおよび補助センサ32の少なくともいずれかが検知状態になった場合、室内側起動センサ31Iによって検知されて反転の原因となった検知対象物が、扉部10の通行を検知する補助センサ32や扉部10の反対側への移動を検知する室外側起動センサ31Oに検知されたことを意味するため、検知対象物の正常な通行による反転であるとして繰り返し反転判定部233は当該反転を繰り返し反転の判定において考慮しなくてもよい。 However, if at least one of the outdoor side activation sensor 31O and the auxiliary sensor 32 is in the detection state in the "sensor detection state" recorded during this period, the detection that caused the reversal by being detected by the indoor side activation sensor 31I Since it means that the object has been detected by the auxiliary sensor 32 that detects the passage of the door portion 10 and the outdoor side activation sensor 31O that detects the movement of the door portion 10 to the opposite side, normal passage of the detection object The repeated inversion determination unit 233 does not have to consider the inversion in the determination of the repeated inversion assuming that the inversion is due to .
 一方、室内側起動センサ31Iの「スポット状態」および「スポット軌跡」の記録の一時停止または再開の回数が所定回数未満のまま、扉部10が「閉作動→全閉」の動作フェーズに移行した場合、繰り返し反転判定部233は扉部10において繰り返し反転が発生しなかったと判定する。「閉作動→全閉」の動作フェーズでは、全てのセンサ30の検知情報の記録が停止される。 On the other hand, the door section 10 shifts to the operation phase of "closed operation→fully closed" while the number of times of pausing or resuming the recording of the "spot state" and "spot trajectory" of the indoor activation sensor 31I is less than the predetermined number of times. In this case, the repetitive reversal determination section 233 determines that repetitive reversal has not occurred in the door portion 10 . In the operation phase of "closed operation→fully closed", the recording of the detection information of all the sensors 30 is stopped.
 繰り返し反転が発生したと繰り返し反転判定部233が判定した場合、その判定結果および判定を裏付けるセンサ30の検知情報(「全開→閉作動」から「閉作動中→開作動中」(反転)にかけて繰り返し記録された「スポット状態」および「スポット軌跡」、「全開→閉作動」から「閉作動→全閉」にかけて記録された「センサ検知状態」)を、出力部240が診断装置200外の別のコンピュータ等や記憶部250に対して出力する。この出力部240による出力は、扉部10が停止する「閉作動→全閉」の動作フェーズで行われるが、このうち少なくとも一部の情報を同じく扉部10が停止している「全開中」の動作フェーズで出力してもよい。 When the repeated reversal determination unit 233 determines that repetitive reversal has occurred, the detection information of the sensor 30 that supports the determination result and the determination (from "fully open → closed operation" to "closed operation → open operation" (reversal) repeatedly The recorded "spot state" and "spot trajectory", and "sensor detection state" recorded from "fully open → closed operation" to "closed operation → fully closed") are output by the output unit 240 to another device outside the diagnostic device 200. It is output to a computer or the like or the storage unit 250 . The output from the output unit 240 is performed in the operation phase of "closed operation→fully closed" when the door unit 10 is stopped. may be output in the operation phase of
 診断装置200のユーザは、出力部240によって出力されたセンサ30の検知情報や記憶部250によって記憶されたセンサ30の検知情報を分析することで、繰り返し反転の原因となったセンサ30や検知スポットを特定できる。なお、出力部240による出力後、各センサ30や繰り返し反転判定部233において一時的に記録されていた検知情報はリセットされる。一方、繰り返し反転が発生しなかったと繰り返し反転判定部233が判定した場合、一連の動作フェーズで記録された各センサ30の検知情報は、出力部240による出力または記憶部250による記憶の対象とならずに破棄される。 By analyzing the detection information of the sensor 30 output by the output unit 240 and the detection information of the sensor 30 stored by the storage unit 250, the user of the diagnostic device 200 can identify the sensor 30 and the detection spot that caused the repeated reversal. can be identified. After the output by the output unit 240, the detection information temporarily recorded in each sensor 30 and the repetitive inversion determination unit 233 is reset. On the other hand, when the repetitive reversal determination unit 233 determines that repetitive reversal has not occurred, the detection information of each sensor 30 recorded in a series of operation phases cannot be output by the output unit 240 or stored by the storage unit 250. discarded without
 図9の繰り返し反転判定方法によれば、各センサ30が常に検知情報を記録するのではなく、各センサ30について定められた特定の動作フェーズに扉部10がある時に限って検知情報が記録されるので、処理すべきデータ量やこれらを記憶する記憶部250の容量を削減できる。また、繰り返し反転が発生しなかったと繰り返し反転判定部233が判定した場合、各センサ30の検知情報を即時に破棄できるので、無駄な検知情報の記憶部250への蓄積を防止できる。このように図9の繰り返し反転判定方法によれば、扉部10における繰り返し反転の発生を効率的に検知できる。 According to the repetitive reversal determination method of FIG. 9, each sensor 30 does not always record detection information, but detection information is recorded only when the door portion 10 is in a specific operation phase determined for each sensor 30. Therefore, the amount of data to be processed and the capacity of the storage unit 250 for storing them can be reduced. Further, when the repetitive reversal determination unit 233 determines that repetitive reversal has not occurred, the detection information of each sensor 30 can be discarded immediately, so that wasteful accumulation of the detection information in the storage unit 250 can be prevented. As described above, according to the repetitive reversal determination method of FIG.
 以上、本発明を実施形態に基づいて説明した。実施形態は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。 The present invention has been described above based on the embodiments. It should be understood by those skilled in the art that the embodiments are examples, and that various modifications can be made to combinations of each component and each treatment process, and such modifications are also within the scope of the present invention.
 実施形態では、扉部10の周辺に検知エリアを有するセンサ30の例として、自動ドア100に設けられる起動センサ31や補助センサ32を挙げたが、自動ドア100の内外に設けられて扉部10の周辺を撮影する画像センサやカメラをセンサ30として用いてもよい。この場合、誤開閉判定部231、開放判定部232、繰り返し反転判定部233は、撮影された画像に基づいて、扉部10における誤開閉、開放、繰り返し反転の発生有無を効率的に判定できる。 In the embodiment, the activation sensor 31 and the auxiliary sensor 32 provided in the automatic door 100 are given as examples of the sensor 30 having a detection area around the door portion 10 . As the sensor 30, an image sensor or a camera that captures an image of the surrounding area may be used. In this case, the erroneous opening/closing determination unit 231, the opening determination unit 232, and the repetitive reversal determination unit 233 can efficiently determine whether or not erroneous opening/closing, opening, and repetitive reversal occur in the door unit 10 based on the photographed images.
 なお、実施形態で説明した各装置の機能構成はハードウェア資源またはソフトウェア資源により、あるいはハードウェア資源とソフトウェア資源の協働により実現できる。ハードウェア資源としてプロセッサ、ROM、RAM、その他のLSIを利用できる。ソフトウェア資源としてオペレーティングシステム、アプリケーション等のプログラムを利用できる。 Note that the functional configuration of each device described in the embodiments can be realized by hardware resources or software resources, or by cooperation between hardware resources and software resources. Processors, ROMs, RAMs, and other LSIs can be used as hardware resources. Programs such as operating systems and applications can be used as software resources.
 本明細書で開示した実施形態のうち、複数の機能が分散して設けられているものは、当該複数の機能の一部又は全部を集約して設けても良く、逆に複数の機能が集約して設けられているものを、当該複数の機能の一部又は全部が分散するように設けることができる。機能が集約されているか分散されているかにかかわらず、発明の目的を達成できるように構成されていればよい。 Among the embodiments disclosed in this specification, those in which a plurality of functions are provided in a distributed manner may be provided by consolidating some or all of the plurality of functions. What is provided as a single function may be provided so that part or all of the plurality of functions are distributed. Regardless of whether the functions are centralized or distributed, it is sufficient that they are configured so as to achieve the objects of the invention.
 本発明は自動ドアに関する。 The present invention relates to automatic doors.
 10 扉部、20 コントローラ、30 センサ、31 起動センサ、31I 室内側起動センサ、31O 室外側起動センサ、32 補助センサ、40 ドアエンジン、90 検知エリア、100 自動ドア、200 診断装置、210 動作フェーズ取得部、220 センサ情報取得部、230 判定部、231 誤開閉判定部、232 開放判定部、233 繰り返し反転判定部、240 出力部、250 記憶部。 10 door part, 20 controller, 30 sensor, 31 activation sensor, 31I indoor activation sensor, 31O outdoor activation sensor, 32 auxiliary sensor, 40 door engine, 90 detection area, 100 automatic door, 200 diagnostic device, 210 operation phase acquisition 220 sensor information acquisition unit 230 determination unit 231 erroneous open/close determination unit 232 open determination unit 233 repeated reversal determination unit 240 output unit 250 storage unit.

Claims (19)

  1.  開口に設けられた扉の開閉動作を制御する制御部と、
     前記扉の周辺に検知エリアを有するセンサと、
     前記制御部から前記扉の動作フェーズ情報を取得する動作フェーズ取得部と、
     前記動作フェーズ取得部が取得した動作フェーズ情報に基づいて前記扉が所定の動作フェーズにあることを判断した時に、前記センサの検知情報を取得するセンサ情報取得部と、
     前記動作フェーズ取得部が取得した動作フェーズ情報と前記センサ情報取得部が取得した検知情報に基づいて、前記扉における所定の事象の発生有無を判定する判定部と、
     を備える自動ドア。
    a control unit that controls the opening and closing operation of the door provided in the opening;
    a sensor having a detection area around the door;
    an operation phase acquisition unit that acquires operation phase information of the door from the control unit;
    a sensor information acquisition unit that acquires detection information of the sensor when it is determined that the door is in a predetermined operation phase based on the operation phase information acquired by the operation phase acquisition unit;
    a determination unit that determines whether a predetermined event has occurred at the door based on the operation phase information acquired by the operation phase acquisition unit and the detection information acquired by the sensor information acquisition unit;
    automatic door with
  2.  前記センサは、前記開口の内外にそれぞれ設けられた前記自動ドアの起動センサであり、
     前記センサ情報取得部は、前記動作フェーズ取得部が取得した動作フェーズ情報に基づいて前記扉が所定の動作フェーズにあることを判断した時に、それぞれの前記起動センサの検知情報を取得し、
     前記判定部は、それぞれの前記起動センサの検知情報に基づいて前記所定の事象の発生有無を判定する、
     請求項1に記載の自動ドア。
    The sensor is an activation sensor for the automatic door provided inside and outside the opening,
    the sensor information acquisition unit acquires detection information of each of the activation sensors when determining that the door is in a predetermined operation phase based on the operation phase information acquired by the operation phase acquisition unit;
    The determination unit determines whether or not the predetermined event has occurred based on the detection information of each of the activation sensors.
    The automatic door according to claim 1.
  3.  前記所定の事象が発生したと前記判定部が判定した場合、前記センサ情報取得部が取得した検知情報を出力する出力部を更に備える、請求項1または2に記載の自動ドア。 The automatic door according to claim 1 or 2, further comprising an output unit that outputs the detection information acquired by the sensor information acquisition unit when the determination unit determines that the predetermined event has occurred.
  4.  前記出力部が出力した検知情報を記憶する記憶部を更に備える、請求項3に記載の自動ドア。 The automatic door according to claim 3, further comprising a storage unit that stores the detection information output by the output unit.
  5.  前記出力部は、前記扉が停止する動作フェーズにある時に前記検知情報を出力する、請求項3に記載の自動ドア。 The automatic door according to claim 3, wherein the output unit outputs the detection information when the door is in an operation phase in which it stops.
  6.  前記センサ情報取得部は、前記センサが検知状態か否かの状態情報を取得する、請求項1または2に記載の自動ドア。 The automatic door according to claim 1 or 2, wherein the sensor information acquisition unit acquires state information indicating whether the sensor is in a detection state.
  7.  前記検知エリアは複数の検知スポットを含み、
     前記センサ情報取得部は、前記複数の検知スポットの検知量を取得する、
     請求項6に記載の自動ドア。
    the sensing area includes a plurality of sensing spots;
    The sensor information acquisition unit acquires the detection amounts of the plurality of detection spots,
    The automatic door according to claim 6.
  8.  前記検知エリアは複数の検知スポットを含み、
     前記センサ情報取得部は、検知状態になった前記検知スポットの軌跡情報を取得する、
     請求項1または2に記載の自動ドア。
    the sensing area includes a plurality of sensing spots;
    The sensor information acquisition unit acquires trajectory information of the detection spot that has entered a detection state.
    The automatic door according to claim 1 or 2.
  9.  前記センサ情報取得部は、前記扉が閉状態から開動作に移る動作フェーズにある時に、前記検知スポットの軌跡情報を取得し、
     前記判定部は、前記軌跡情報を生成した検知スポットの数が所定の閾値未満の場合に、前記所定の事象としての誤開閉が発生したと判定する、
     請求項8に記載の自動ドア。
    The sensor information acquisition unit acquires trajectory information of the detection spot when the door is in an operation phase in which the door moves from a closed state to an opening operation,
    The determination unit determines that erroneous opening and closing as the predetermined event has occurred when the number of detection spots that generated the trajectory information is less than a predetermined threshold.
    The automatic door according to claim 8.
  10.  前記センサ情報取得部は、前記扉が閉状態から開動作に移った後、閉動作に移るまでの動作フェーズにある時に、前記検知スポットの軌跡情報を取得し、
     前記判定部は、前記軌跡情報を生成した検知スポットの数が所定の閾値未満の場合に、前記所定の事象としての誤開閉が発生したと判定する、
     請求項8に記載の自動ドア。
    The sensor information acquisition unit acquires trajectory information of the detection spot during an operation phase from when the door moves from a closed state to an opening operation until it moves to a closing operation,
    The determination unit determines that erroneous opening and closing as the predetermined event has occurred when the number of detection spots that generated the trajectory information is less than a predetermined threshold.
    The automatic door according to claim 8.
  11.  前記センサは、前記開口を通過する人または物を検知する通行センサを含み、
     前記センサ情報取得部は、前記扉が閉状態から開動作に移った後、閉状態に戻るまでの動作フェーズにある時に、前記通行センサの検知情報を取得し、
     前記判定部は、前記軌跡情報を生成した検知スポットの数が所定の閾値未満の場合であって、前記通行センサが人または物を検知しなかった場合に誤開閉が発生したと判定する、
     請求項9に記載の自動ドア。
    the sensor includes a traffic sensor that detects a person or object passing through the opening;
    The sensor information acquisition unit acquires detection information from the traffic sensor during an operation phase from when the door moves from the closed state to the opening operation until it returns to the closed state,
    The determination unit determines that an erroneous opening has occurred when the number of detection spots that generated the trajectory information is less than a predetermined threshold and the traffic sensor does not detect a person or an object.
    The automatic door according to claim 9.
  12.  前記センサ情報取得部は、前記扉が開状態になっている動作フェーズにある時に、前記センサの検知情報を取得し、
     前記判定部は、前記センサが検知状態になっている累積時間が所定時間以上になった場合に、前記所定の事象としての開放が発生したと判定する、
     請求項1または2に記載の自動ドア。
    The sensor information acquisition unit acquires detection information from the sensor during an operation phase in which the door is in an open state,
    The determination unit determines that the opening as the predetermined event has occurred when the cumulative time during which the sensor is in the detection state is equal to or greater than a predetermined time.
    The automatic door according to claim 1 or 2.
  13.  前記センサ情報取得部は、前記扉が閉動作フェーズにある時に前記センサの検知情報を取得し、前記扉が前記閉動作フェーズから切り替わった開動作フェーズにある時に前記センサの検知情報の取得を停止し、
     前記判定部は、前記センサ情報取得部が前記閉動作フェーズにおける検知情報の取得と、前記開動作フェーズにおける検知情報の取得の停止を繰り返した回数が所定回数以上になった場合に、前記所定の事象としての繰り返し反転が発生したと判定する、
     請求項1または2に記載の自動ドア。
    The sensor information acquisition unit acquires detection information from the sensor when the door is in a closing operation phase, and stops acquiring detection information from the sensor when the door is in an opening operation phase switched from the closing operation phase. death,
    When the number of times the sensor information acquisition unit repeats the acquisition of the detection information in the closing operation phase and the stop of acquisition of the detection information in the opening operation phase reaches a predetermined number of times or more, the determination unit determines the predetermined number of times. Determining that a repeated reversal as an event has occurred,
    The automatic door according to claim 1 or 2.
  14.  前記判定部は、前記センサ情報取得部が前記閉動作フェーズにおける検知情報の取得を開始してから所定時間以内に前記開動作フェーズにおける検知情報の取得を停止した回数が所定回数以上になった場合に繰り返し反転が発生したと判定する、請求項13に記載の自動ドア。 When the number of times the sensor information acquisition unit stops acquiring the detection information in the opening operation phase within a predetermined time after the sensor information acquisition unit starts acquiring the detection information in the closing operation phase is equal to or greater than a predetermined number of times 14. The automatic door according to claim 13, wherein it is determined that repeated reversals have occurred in .
  15.  前記センサは、前記開口を通過する人または物を検知する通行センサを含み、
     前記センサ情報取得部は、前記扉が開状態から閉動作に移った後、閉状態に至るまでの動作フェーズにある時に、前記通行センサの検知情報を取得し、
     前記判定部は、前記センサ情報取得部が前記閉動作フェーズにおける検知情報の取得と、前記開動作フェーズにおける検知情報の取得の停止を繰り返した回数が所定回数以上になった場合であって、前記通行センサが人または物を検知しなかった場合に繰り返し反転が発生したと判定する、
     請求項13に記載の自動ドア。
    the sensor includes a traffic sensor that detects a person or object passing through the opening;
    The sensor information acquisition unit acquires detection information from the traffic sensor during an operation phase from when the door moves from an open state to a closed state until it reaches a closed state,
    When the number of times the sensor information acquisition unit repeats the acquisition of the detection information in the closing operation phase and the stop of acquisition of the detection information in the opening operation phase reaches a predetermined number of times or more, Determining that a reversal has occurred repeatedly if the traffic sensor does not detect a person or object;
    Automatic door according to claim 13.
  16.  前記センサ情報取得部は、前記扉が閉動作フェーズにある時に前記センサの検知情報を取得し、前記扉が前記閉動作フェーズから切り替わった開動作フェーズにある時に前記センサの検知情報の取得を停止し、
     前記判定部は、前記扉が閉状態から開動作に移った後、閉状態に戻るまでの動作フェーズにある時に、前記扉が閉動作フェーズにある時と前記扉が開動作フェーズにある時を繰り返した回数が所定回数以上になった場合に、前記所定の事象としての繰り返し反転が発生したと判定する、
     請求項1または2に記載の自動ドア。
    The sensor information acquisition unit acquires detection information from the sensor when the door is in a closing operation phase, and stops acquiring detection information from the sensor when the door is in an opening operation phase switched from the closing operation phase. death,
    The determination unit determines when the door is in a closing operation phase and when the door is in an opening operation phase when the door is in an operation phase from when the door moves from the closed state to the open operation until it returns to the closed state. Determining that the repeated reversal as the predetermined event has occurred when the number of repetitions is a predetermined number or more;
    The automatic door according to claim 1 or 2.
  17.  自動ドアの開口に設けられた扉の動作フェーズ情報を取得する動作フェーズ取得部と、
     前記動作フェーズ取得部が取得した動作フェーズ情報に基づいて前記扉が所定の動作フェーズにあることを判断した時に、前記扉の周辺に検知エリアを有するセンサの検知情報を取得するセンサ情報取得部と、
     前記動作フェーズ取得部が取得した動作フェーズ情報と前記センサ情報取得部が取得した検知情報に基づいて、前記扉における所定の事象の発生有無を判定する判定部と、
     を備える自動ドアの診断装置。
    an operation phase acquisition unit that acquires operation phase information of a door provided in an opening of an automatic door;
    a sensor information acquisition unit that acquires detection information from a sensor having a detection area around the door when it is determined that the door is in a predetermined operation phase based on the operation phase information acquired by the operation phase acquisition unit; ,
    a determination unit that determines whether a predetermined event has occurred at the door based on the operation phase information acquired by the operation phase acquisition unit and the detection information acquired by the sensor information acquisition unit;
    diagnostic equipment for automatic doors.
  18.  開口に設けられた扉の開閉動作を制御する制御部と、前記扉の周辺に検知エリアを有するセンサと、を備える自動ドアの診断方法であって、
     前記制御部から前記扉の動作フェーズ情報を取得する動作フェーズ取得ステップと、
     前記動作フェーズ取得ステップで取得した動作フェーズ情報に基づいて前記扉が所定の動作フェーズにあることを判断した時に、前記センサの検知情報を取得するセンサ情報取得ステップと、
     前記動作フェーズ取得ステップで取得した動作フェーズ情報と前記センサ情報取得ステップで取得した検知情報に基づいて、前記扉における所定の事象の発生有無を判定する判定ステップと、
     を備える自動ドアの診断方法。
    A diagnostic method for an automatic door, comprising: a controller for controlling the opening/closing operation of a door provided in an opening; and a sensor having a detection area around the door,
    an operation phase acquisition step of acquiring operation phase information of the door from the control unit;
    a sensor information acquisition step of acquiring detection information of the sensor when it is determined that the door is in a predetermined operation phase based on the operation phase information acquired in the operation phase acquisition step;
    a determination step of determining whether or not a predetermined event has occurred at the door based on the operation phase information acquired in the operation phase acquisition step and the detection information acquired in the sensor information acquisition step;
    A method for diagnosing an automatic door comprising:
  19.  開口に設けられた扉の開閉動作を制御する制御部と、前記扉の周辺に検知エリアを有するセンサと、を備える自動ドアの診断プログラムであって、
     前記制御部から前記扉の動作フェーズ情報を取得する動作フェーズ取得ステップと、
     前記動作フェーズ取得ステップで取得した動作フェーズ情報に基づいて前記扉が所定の動作フェーズにあることを判断した時に、前記センサの検知情報を取得するセンサ情報取得ステップと、
     前記動作フェーズ取得ステップで取得した動作フェーズ情報と前記センサ情報取得ステップで取得した検知情報に基づいて、前記扉における所定の事象の発生有無を判定する判定ステップと、
     をコンピュータに実行させる自動ドアの診断プログラム。
    A diagnostic program for an automatic door, comprising: a controller for controlling the opening/closing operation of a door provided in an opening; and a sensor having a detection area around the door,
    an operation phase acquisition step of acquiring operation phase information of the door from the control unit;
    a sensor information acquisition step of acquiring detection information of the sensor when it is determined that the door is in a predetermined operation phase based on the operation phase information acquired in the operation phase acquisition step;
    a determination step of determining whether or not a predetermined event has occurred at the door based on the operation phase information acquired in the operation phase acquisition step and the detection information acquired in the sensor information acquisition step;
    Automatic door diagnostic program that causes the computer to run
PCT/JP2022/037006 2021-10-06 2022-10-03 Automatic door, diagnostic device for automatic door, diagnostic method for automatic door, and diagnostic program for automatic door WO2023058610A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023552874A JPWO2023058610A1 (en) 2021-10-06 2022-10-03

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021164641 2021-10-06
JP2021-164641 2021-10-06

Publications (1)

Publication Number Publication Date
WO2023058610A1 true WO2023058610A1 (en) 2023-04-13

Family

ID=85804290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037006 WO2023058610A1 (en) 2021-10-06 2022-10-03 Automatic door, diagnostic device for automatic door, diagnostic method for automatic door, and diagnostic program for automatic door

Country Status (2)

Country Link
JP (1) JPWO2023058610A1 (en)
WO (1) WO2023058610A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003091756A (en) * 2001-09-19 2003-03-28 Nabco Ltd Automatic door device having failure monitoring function
JP2007231650A (en) * 2006-03-02 2007-09-13 Nabtesco Corp Automatic door
EP2418517A2 (en) * 2010-08-09 2012-02-15 Dorma GmbH&Co. Kg Optoelectronic Sensor
JP2019178546A (en) * 2018-03-30 2019-10-17 ナブテスコ株式会社 Sensor for detecting person or object, automatic door system, automatic door and evaluation method for automatic door
JP2020016054A (en) * 2018-07-24 2020-01-30 ナブテスコ株式会社 Information processor and automatic door sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003091756A (en) * 2001-09-19 2003-03-28 Nabco Ltd Automatic door device having failure monitoring function
JP2007231650A (en) * 2006-03-02 2007-09-13 Nabtesco Corp Automatic door
EP2418517A2 (en) * 2010-08-09 2012-02-15 Dorma GmbH&Co. Kg Optoelectronic Sensor
JP2019178546A (en) * 2018-03-30 2019-10-17 ナブテスコ株式会社 Sensor for detecting person or object, automatic door system, automatic door and evaluation method for automatic door
JP2020016054A (en) * 2018-07-24 2020-01-30 ナブテスコ株式会社 Information processor and automatic door sensor

Also Published As

Publication number Publication date
JPWO2023058610A1 (en) 2023-04-13

Similar Documents

Publication Publication Date Title
EP3409629B2 (en) Image analytics for elevator maintenance
EP2077368B1 (en) Method of controlling an automatic door system
CN102471032A (en) Health check of door obstacle device
CA3004557C (en) Remote monitoring and control of movable barrier status
KR102093615B1 (en) Parking management system and malfuction monitorung method
WO2023058610A1 (en) Automatic door, diagnostic device for automatic door, diagnostic method for automatic door, and diagnostic program for automatic door
JP2013193798A (en) Elevator door diagnosis system
JP5522916B2 (en) Elevator door safety device
JP7550613B2 (en) Automatic doors, how to operate automatic doors, and automatic door operation programs
JPH0920471A (en) Elevator shaft information generating equipment
JP7591384B2 (en) Automatic door, diagnostic support device for optical sensor, optical sensor, diagnostic method for automatic door, diagnostic support method for optical sensor, diagnostic program for automatic door, diagnostic support program for optical sensor
JP2022065511A (en) Automatic door management device, automatic door management method. and automatic door management program
JP7554639B2 (en) Automatic doors, electronic devices, automatic door operation methods, automatic door operation programs
JP2004252763A (en) Monitoring system
JP2022187586A (en) automatic door, automatic door control method, automatic door control program
JP2023027481A (en) Automatic door, voltage setting method for automatic door, and voltage setting program of automatic door
JP2012218925A (en) Elevator controller
JP2022120670A (en) Door construction diagnosis support device, door construction diagnosis support method, and program
JP2005132598A (en) Control device for elevator door
JP3020106B2 (en) Safety device for building electric switchgear
KR102767468B1 (en) Fire shutter wireless automatic setting system
JP5055969B2 (en) Elevator apparatus and control method
JP7254657B2 (en) Electric lock discrimination system, electric lock discrimination device, electric lock discrimination method, electric lock discrimination program and automatic door system
JP5059322B2 (en) Security system
JP2022119621A (en) AUTOMATIC DOOR MAINTENANCE ASSISTANCE DEVICE, AUTOMATIC DOOR MAINTENANCE ASSISTANCE METHOD, AND PROGRAM

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22878479

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023552874

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22878479

Country of ref document: EP

Kind code of ref document: A1