WO2023058516A1 - Multilayer nonwoven fabric, method for producing same, and protective garment - Google Patents

Multilayer nonwoven fabric, method for producing same, and protective garment Download PDF

Info

Publication number
WO2023058516A1
WO2023058516A1 PCT/JP2022/036141 JP2022036141W WO2023058516A1 WO 2023058516 A1 WO2023058516 A1 WO 2023058516A1 JP 2022036141 W JP2022036141 W JP 2022036141W WO 2023058516 A1 WO2023058516 A1 WO 2023058516A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonwoven fabric
fabric layer
laminated
spunbond nonwoven
layer
Prior art date
Application number
PCT/JP2022/036141
Other languages
French (fr)
Japanese (ja)
Inventor
中嶋格
島田大樹
小出現
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN202280056341.3A priority Critical patent/CN117897524A/en
Priority to JP2022559949A priority patent/JPWO2023058516A1/ja
Publication of WO2023058516A1 publication Critical patent/WO2023058516A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D13/00Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches
    • A41D13/008Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches protecting against electric shocks or static electricity
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D13/00Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches
    • A41D13/12Surgeons' or patients' gowns or dresses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/244Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing sulfur or phosphorus
    • D06M13/282Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing sulfur or phosphorus with compounds containing phosphorus
    • D06M13/292Mono-, di- or triesters of phosphoric or phosphorous acids; Salts thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain

Definitions

  • the present invention relates to a laminated nonwoven fabric, and particularly to a laminated nonwoven fabric that is composed of fibers made of polyolefin resin, has excellent water resistance and antistatic properties, and has excellent productivity as a protective clothing application.
  • non-woven fabrics have been used for various purposes, such as industrial materials, civil engineering materials, construction materials, living materials, agricultural materials, sanitary materials, and medical materials.
  • Non-woven fabrics used in protective clothing must have both water resistance and dust protection performance to protect the wearer from chemical mist, dust, and aerosols that cause infectious diseases generated at manufacturing sites.
  • a protective clothing material in which a polypropylene-based spunbond nonwoven fabric is laminated with a porous film (for example, see Patent Document 1).
  • a laminated nonwoven fabric has been proposed in which a polypropylene-based spunbond nonwoven fabric coated with an antistatic agent and a meltblown nonwoven fabric are laminated together (see, for example, Patent Document 2).
  • a conventional protective clothing material a laminate of non-woven fabric and porous film, can maintain water resistance due to the film, but it has poor breathability, and the inside of the clothing becomes stuffy when worn, making it impossible to work for a long time.
  • a laminated nonwoven fabric made by laminating a polypropylene-based spunbond nonwoven fabric coated with an antistatic agent and a meltblown nonwoven fabric has breathability because it does not have a film, and although it improves the clumping inside the clothes when worn, the antistatic agent absorbs moisture in the air, liquefies, penetrates into the laminated nonwoven fabric, reaches the meltblown nonwoven fabric, and has a problem of lowering the water resistance.
  • the object of the present invention was made in view of the above circumstances, and the object is a laminated nonwoven fabric that has both high water resistance and antistatic properties without being laminated with a film, a method for producing the same, and It is to provide a protective clothing using this.
  • the inventors of the present invention have made intensive studies to achieve the above object, and found that a spunbonded nonwoven fabric layer composed of fibers made of a polyolefin resin and containing at least a phosphate ester is formed on one surface of the laminated nonwoven fabric. a spunbond nonwoven fabric layer on the other surface, and at least one melt-blown nonwoven fabric layer composed of fibers made of polyolefin resin disposed therebetween; It was found that by controlling the thickness ratio of the spunbond nonwoven fabric layers on both sides of the nonwoven fabric, both high water resistance and antistatic properties can be achieved.
  • a spunbond nonwoven fabric layer A1 made of fibers made of polyolefin resin and containing at least a phosphate ester is arranged on one surface
  • a spunbond nonwoven fabric layer A2 made of fibers made of polyolefin resin is arranged on the other surface
  • the ratio (t A1 /t A2 ) of the thickness (t A1 ) of the spunbond nonwoven fabric layer A1 to the thickness ( t A2 ) of the spunbond nonwoven fabric layer A2 in the non-fused portion of the laminated nonwoven fabric is 1.5 or more.
  • Laminated nonwoven fabric which is 3.0 or less.
  • the height H1 of the non-fused portion on the one surface of the laminated nonwoven fabric is 50 ⁇ m or more and 200 ⁇ m or less, and the height H1 of the height H2 of the non-fused portion on the other surface of the laminated nonwoven fabric.
  • the ratio (t B /t) of the thickness (t B ) of the melt blown nonwoven fabric layer B to the thickness (t) of the entire laminated nonwoven fabric is 0.05 or more and 0.15 or less [1] to The laminated nonwoven fabric according to any one of [3].
  • a spunbond nonwoven fabric layer A1 is defined as the spunbond nonwoven fabric layer A1 on the side of the sheet that is in contact with the roll having a smooth roll surface, and a liquid containing at least a phosphate ester is applied to the surface of the spunbond nonwoven fabric layer A1.
  • a method for producing a laminated nonwoven fabric comprising:
  • a laminated nonwoven fabric composed of fibers made of polyolefin resin, excellent in water resistance and antistatic properties, suitable for use as protective clothing, a method for producing the same, and protective clothing obtained from the laminated nonwoven fabric.
  • FIG. 1 is a cross-sectional conceptual diagram illustrating one embodiment of the laminated nonwoven fabric of the present invention.
  • the laminated nonwoven fabric of the present invention comprises, on one surface, a spunbond nonwoven fabric layer A1 composed of fibers made of a polyolefin resin and containing at least a phosphate ester, and on the other surface, a polyolefin A spunbonded nonwoven fabric layer A2 composed of fibers made of a resin is disposed, and at least one layer of fibers made of a polyolefin resin is provided between the spunbonded nonwoven fabric layer A1 and the spunbonded nonwoven fabric layer A2.
  • the spunbond nonwoven fabric having the thickness (t A1 ) of the spunbond nonwoven fabric layer A1 in the non-fused portion of the laminated nonwoven fabric.
  • the ratio (t A1 /t A2 ) to the thickness (t A2 ) of layer A2 is 1.5 or more and 3.0 or less.
  • the spunbond nonwoven fabric layer A1, the spunbond nonwoven fabric layer A2, and the meltblown nonwoven fabric layer B according to the present invention are all made of fibers made of polyolefin resin.
  • the "polyolefin-based resin” in the present invention refers to a resin whose main repeating unit is an olefin unit.
  • polyethylene-based resin and “polypropylene-based resin” They refer to resins whose units are ethylene units and propylene units, respectively.
  • the polyolefin resin (P A ) used for the fibers constituting the spunbond nonwoven fabric layer A1 and the fibers constituting the spunbond nonwoven fabric layer A2 is used for the fibers constituting the melt blown nonwoven fabric layer B.
  • the polyolefin-based resin obtained is sometimes referred to as a polyolefin-based resin (P B ).
  • Polyolefin-based resins include polyethylene-based resins, polypropylene-based resins, polybutene-based resins, and polymethylpentene-based resins.
  • Polyethylene-based resins include ethylene homopolymers and copolymers of ethylene and various ⁇ -olefins
  • polypropylene-based resins include propylene homopolymers or propylene and various ⁇ -olefins.
  • a copolymer etc. are mentioned.
  • polypropylene-based resins are preferably used from the viewpoint of spinnability and strength characteristics.
  • the proportion of propylene units in this polypropylene-based resin is preferably 60% by mass or more, more preferably 70% by mass or more, and even more preferably 80% by mass or more. By doing so, good spinnability can be maintained and strength can be improved.
  • the polyolefin resin (P A ) preferably has a melt flow rate (sometimes abbreviated as MFR) of 75 g/10 min or more and 850 g/10 min or less.
  • MFR melt flow rate
  • the MFR melt flow rate
  • the stress during drawing can be reduced, and even if drawing is performed at a high spinning speed, Stable spinning becomes possible.
  • the fiber diameter of the spunbond nonwoven fabric layer is reduced, the surface is smoothed, and an antistatic agent such as a phosphate ester is uniformly applied to the surface, so that a laminated nonwoven fabric having good antistatic properties can be obtained. can be done.
  • the MFR 850 g/10 minutes or less, more preferably 600 g/10 minutes or less, and even more preferably 400 g/10 minutes or less, the molecular weight of the polyolefin resin (P A ) increases, and the Since the strength is increased, a laminated nonwoven fabric having sufficient strength to be used as protective clothing material can be obtained.
  • the polyolefin resin (P B ) preferably has an MFR of 200 g/10 min or more and 2500 g/10 min or less.
  • MFR the MFR of 200 g/10 minutes or more, more preferably 400 g/10 minutes or more, and even more preferably 600 g/10 minutes or more.
  • the stress during drawing is reduced, so that the production capacity can be maintained and the fiber diameter can be reduced.
  • a melt-blown nonwoven fabric layer can be obtained, and both productivity and water resistance can be achieved.
  • the MFR to 2,500 g/10 min or less, more preferably 2,000 g/10 min or less, and even more preferably 1,500 g/10 min or less, the back pressure of the die increases, and fluctuations in the resin discharge amount can be suppressed. Therefore, the melt-blown nonwoven fabric layer has a uniform fiber diameter, and a laminated nonwoven fabric with less variation in water pressure resistance can be obtained.
  • the value measured by ASTM D1238 (method A) is adopted for the MFR of the polyolefin resin.
  • ASTM D1238 method A
  • polypropylene is measured under a load of 2.16 kg and a temperature of 230°C
  • polyethylene is measured under a load of 2.16 kg and a temperature of 190°C.
  • the polyolefin-based resin used in the present invention may be a mixture of two or more types, and a resin composition containing other polyolefin-based resins, thermoplastic elastomers, and the like can also be used.
  • a resin composition containing other polyolefin-based resins, thermoplastic elastomers, and the like can also be used.
  • two or more resins having different MFRs can be blended at any ratio to adjust the MFR of the polyolefin resin (P A ) and/or the polyolefin resin (P B ).
  • the MFR of the resin to be blended with the main polyolefin resin is preferably 10 g/10 min or more and 1000 g/10 min or less, more preferably 20 g/10 min or more and 800 g/10 min or less, and further It is preferably 30 g/10 minutes or more and 600 g/10 minutes or less. By doing so, it is possible to prevent partial occurrence of viscosity unevenness in the blended polyolefin resin, uneven fineness, and deterioration of spinnability.
  • the polyolefin resin used in the present invention contains antioxidants, weathering agents, light stabilizers, antifogging agents, blocking agents, lubricants, nucleating agents, and pigments such as titanium oxide, as long as the effects of the present invention are not impaired. Additives such as, or other polymers can be added as necessary.
  • the molecular weight of this resin is may be decreased to increase the MFR.
  • a method for increasing the MFR for example, a method of heating the resin before use to thermally decompose it, a method of adding a peroxide and heat-treating the resin, and the like are conceivable.
  • the melting point of the polyolefin resin used in the present invention is preferably 80°C or higher and 200°C or lower.
  • the melting point is preferably 80° C. or higher, more preferably 100° C. or higher, and even more preferably 120° C. or higher.
  • heat resistance that can withstand practical use can be easily obtained.
  • the melting point is set to preferably 200° C. or lower, more preferably 180° C. or lower, the yarn extruded from the spinneret can be easily cooled, thereby suppressing fusion between fibers and facilitating stable spinning.
  • the fibers made of the polyolefin resin (P A ) constituting the spunbond nonwoven fabric layer A1 according to the present invention preferably have an average single fiber diameter of 10.0 ⁇ m or more and 14.0 ⁇ m or less.
  • the average single fiber diameter preferably 10.0 ⁇ m or more, more preferably 12.0 ⁇ m or more, it is possible to suppress a decrease in water pressure resistance due to permeation of post-processing chemicals due to capillary action.
  • the average single fiber diameter to preferably 14.0 ⁇ m or less, more preferably 13.0 ⁇ m or less, the flexibility and uniformity are high, and even if the content ratio of the melt blown nonwoven fabric layer in the laminated nonwoven fabric is low, it is practical.
  • a laminated nonwoven fabric having excellent durable water resistance can be obtained.
  • the fibers made of the polyolefin resin (P A ) constituting the spunbond nonwoven fabric layer A2 according to the present invention preferably have an average single fiber diameter of 6.5 ⁇ m or more and 10.0 ⁇ m or less.
  • the average single fiber diameter preferably 6.5 ⁇ m or more, more preferably 7.5 ⁇ m or more, and even more preferably 8.4 ⁇ m or more, a decrease in spinnability is prevented and a nonwoven fabric layer having a stable average single fiber diameter is obtained. can be formed.
  • the average single fiber diameter preferably 10.0 ⁇ m or less, more preferably 9.0 ⁇ m or less, the flexibility and uniformity are high, and even if the content ratio of the melt blown nonwoven fabric layer in the laminated nonwoven fabric is low, it is practical.
  • a laminated nonwoven fabric having excellent durable water resistance can be obtained.
  • the average single fiber diameter ( ⁇ m) of the fibers made of the polyolefin resin (P A ) constituting the spunbond nonwoven fabric layers A1 and A2 according to the present invention is calculated by the following procedure.
  • a scanning electron microscope "VHX-D500" manufactured by Keyence Corporation can be used.
  • this device can be used as a scanning electron microscope (SEM) shown in the description of the measurement method.
  • SEM scanning electron microscope
  • the fibers made of the polyolefin resin (P B ) constituting the melt blown nonwoven fabric layer B according to the present invention preferably have an average single fiber diameter of 0.1 ⁇ m or more and 8.0 ⁇ m or less.
  • the average single fiber diameter of the fibers made of the polyolefin resin (P B ) is preferably 0.1 ⁇ m or more, more preferably 0.4 ⁇ m or more, the fibers are easily collected when forming the melt blown nonwoven fabric layer. It is possible to suppress scattering to the surroundings and to obtain a more uniform laminated nonwoven fabric.
  • the barrier properties of the melt blown nonwoven fabric layer B can be improved, and the water pressure resistance of the laminated nonwoven fabric can be improved.
  • the average single fiber diameter ( ⁇ m) of the fibers composed of the polyolefin resin (P B ) constituting the melt blown nonwoven fabric layer B according to the present invention is calculated by the following procedure. (1) Collect 10 small piece samples at random from the laminated nonwoven fabric. (2) The sampled specimen is cut with a freezing microtome, the obtained cross section is subjected to a conductive treatment, and the cross section is photographed with an SEM at a magnification of 4000 to 10000 times. (3) The width of 100 fibers in total, 10 fibers from the melt-blown nonwoven fabric layer B of each sample, is measured. (4) Calculate the average single fiber diameter ( ⁇ m) from the average value of the 100 measured values.
  • the laminated nonwoven fabric of the present invention comprises, on one surface, a spunbond nonwoven fabric layer A1 composed of fibers made of a polyolefin resin and containing at least a phosphate ester, and on the other surface, a polyolefin A spunbonded nonwoven fabric layer A2 composed of fibers made of a resin is disposed, and at least one layer of fibers made of a polyolefin resin is provided between the spunbonded nonwoven fabric layer A1 and the spunbonded nonwoven fabric layer A2.
  • a melt-blown nonwoven fabric layer B composed of is arranged.
  • FIG. 1 is a cross-sectional conceptual diagram illustrating one embodiment of the laminated nonwoven fabric of the present invention.
  • a spunbond nonwoven fabric layer A1 (12) is arranged on one surface of a laminated nonwoven fabric (11), and a spunbond nonwoven fabric layer A2 (14) is arranged on the other surface.
  • a laminated nonwoven fabric (11) in which one meltblown nonwoven fabric layer B (13) is arranged between the bonded nonwoven fabric layer A1 (12) and the spunbond nonwoven fabric layer A2 (14) is exemplified.
  • the fusion-bonded portion (15) is a region where the fibers constituting the spunbond nonwoven fabric layer A1 (12), the spunbond nonwoven fabric layer A2 (14), and the melt blown nonwoven fabric layer B (13) in the laminated nonwoven fabric are melted.
  • the portion other than this is defined as the non-fused portion (16) in the present invention.
  • the spunbond nonwoven fabric layer A1 (12) and the spunbond nonwoven fabric layer A2 (14) are distinguished by measuring the respective thicknesses (t A1 , t A2 ) in the non-fused portion (16) by the method described later, A spunbond nonwoven fabric layer having a greater thickness is used as the spunbond nonwoven fabric layer A1 (12).
  • the spunbond nonwoven fabric layer A1 according to the present invention contains at least a phosphate ester.
  • the expression that the spunbond nonwoven fabric layer "contains a phosphate ester” means that the fibers constituting the spunbond nonwoven fabric layer contain the phosphate ester, or the spunbond nonwoven fabric layer is composed of It refers to the state in which a phosphate ester is applied to the surface of the fiber.
  • the state in which the fibers constituting the spunbond nonwoven fabric layer contain the phosphate ester includes, for example, the state in which the phosphate ester is kneaded into the polyolefin resin.
  • the state in which the phosphate ester is applied to the surface of the fibers constituting the spunbond nonwoven fabric layer includes, for example, the state in which the phosphate ester is applied to the surface of the fibers, more specifically, the spunbond nonwoven fabric layer. Examples include a state in which 0.01% by mass or more and 2% by mass or less is provided with respect to the mass of the layer. From the viewpoint of production cost and antistatic properties, it is more preferable that the phosphate ester is applied to the surface of the fibers constituting the spunbond nonwoven fabric layer.
  • phosphate ester for example, from the group consisting of (alcohol) and (a compound obtained by adding an alkylene oxide having 2 to 4 carbon atoms at a ratio of 1 to 10 mol with respect to 1 mol of alcohol) Phosphoric acid ester obtained by reacting at least one selected with (phosphorus pentoxide or phosphorus oxyhalide), alkali metal salt of phosphoric acid ester, alkaline earth metal salt of phosphoric acid ester, phosphoric acid Amine salts of esters are mentioned.
  • the laminated nonwoven fabric having excellent antistatic properties It is more preferable because it can be
  • the present invention by using a phosphate ester, it is possible to impart antistatic performance to the laminated nonwoven fabric while maintaining the waterproof pressure resistance of the laminated nonwoven fabric.
  • the antistatic performance itself can be expressed by imparting some kind of hydrophilic substance to the laminated nonwoven fabric. However, it may liquefy and permeate into the laminated nonwoven fabric. Furthermore, if the liquid penetrates into the meltblown layer, which is a functional layer that exhibits barrier properties such as water pressure resistance, the water pressure resistance of the laminated nonwoven fabric may be greatly reduced.
  • the present invention has found that by using this phosphate ester, it is possible to obtain a laminated nonwoven fabric having excellent water resistance while exhibiting a certain degree of hydrophilicity and exhibiting sufficient antistatic properties. .
  • a phosphate ester in the spunbond nonwoven layer of the laminated nonwoven fabric of the present invention can be confirmed by extraction tests, elemental analysis, energy dispersive X-ray analysis, nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy (FT-IR). ), etc., or by using them in combination.
  • FT-IR Fourier transform infrared spectroscopy
  • the laminated nonwoven fabric of the present invention for example, from the surface of the spunbond nonwoven fabric layer A1 side, (spunbond nonwoven fabric layer A1) / (meltblown nonwoven fabric layer B) / (spunbond nonwoven fabric layer A2) ), SMS nonwoven fabric laminated with (spunbond nonwoven fabric layer A1) / (meltblown nonwoven fabric layer B) / (meltblown nonwoven fabric layer B) / (spunbond nonwoven fabric layer A2), (spunbond nonwoven fabric Layer A1)/(spunbond nonwoven layer A1)/(meltblown nonwoven layer B)/(meltblown nonwoven layer B)/(spunbond nonwoven layer A2), or (spunbond nonwoven layer A1)/(meltblown nonwoven layer B) /(meltblown nonwoven fabric layer B)/(spunbond nonwoven fabric layer A2)/(spunbond nonwoven fabric layer A2) laminated SSMMS nonwoven fabric.
  • the spunbond nonwoven fabric layer A1 preferably further contains silicone.
  • the silicone exhibits appropriate water repellency, suppresses the decrease in water pressure resistance due to the addition of the phosphate ester that exhibits antistatic performance, and makes it easier to achieve both antistatic performance and high water pressure resistance.
  • the expression that the spunbond nonwoven fabric layer A1 "contains silicone” means that the fibers that constitute the spunbond nonwoven fabric layer A1 contain silicone, or that the fibers that constitute the spunbond nonwoven fabric layer A1 contain silicone. It refers to a state in which silicone is applied to the surface of Further, the term “silicone” as used in the present invention refers to a synthetic polymer compound having a main skeleton formed by siloxane bonds.
  • a state in which silicone is contained in the fibers constituting the spunbond nonwoven fabric layer A1 includes a state in which silicone is kneaded into a polyolefin resin.
  • the state in which silicone is applied to the surfaces of the fibers constituting the spunbond nonwoven fabric layer A1 includes, for example, the state in which silicone is applied to the surfaces of the fibers, more specifically, the spunbond nonwoven fabric layer A1.
  • a state in which 0.01% by mass or more and 2% by mass or less is added to the mass can be mentioned.
  • silicone examples include amino-modified silicone oil, epoxy-modified silicone oil, carbonyl-modified silicone oil, carbinol-modified silicone oil, polyether-modified silicone oil, amino/alkoxy-modified silicone oil, epoxy/polyether-modified silicone oil, amino/ Polyether-modified silicone oil, dimethylsilicone oil, phenylsilicone oil and the like can be mentioned.
  • the presence of silicone in the spunbond nonwoven fabric layer A1 of the laminated nonwoven fabric of the present invention can be analyzed by an extraction test, elemental analysis, energy dispersive X-ray analysis, FT-IR, etc., or a combination thereof.
  • the surface of a test piece taken from a laminated nonwoven fabric is analyzed with an energy dispersive X-ray device, and in the fluorescent X-ray spectrum obtained, when a signal derived from silicon is detected, the spunbond nonwoven fabric layer on the surface Determined to contain silicone.
  • the ratio (t A1 /t A2 ) of the spunbond nonwoven fabric layer A1 (t A1 ) in the non-fused portion to the thickness (t A2 ) of the spunbond nonwoven fabric layer A2 is 1.5 or more3. 0 or less.
  • the thickness ratio t A1 /t A2 is preferably 1.7 or more, it is possible to suppress a decrease in water pressure resistance due to permeation of an antistatic agent such as a phosphate ester.
  • an antistatic agent such as a phosphate ester
  • the thickness ratio t A1 /t A2 to 3.0 or less, it is possible to suppress the occurrence of wrinkles due to shrinkage when providing the fused portion.
  • the thickness ratio of the spunbond nonwoven fabric layer in the laminated nonwoven fabric of the present invention is measured as follows. (1) A test piece having a width of 20 mm ⁇ 20 mm is taken from the laminated nonwoven fabric. (2) The sampled test piece is cut with a freezing microtome, the obtained cross section is subjected to a conductive treatment, and the cross section is photographed with an SEM at a magnification of 300 times. If the SEM photograph of the cross section includes the fused portion, the observation field of view is moved and the photograph is taken again.
  • the thickness ratio (t A1 /t A2 ) can be controlled by adjusting the basis weight and fiber diameter of each spunbond nonwoven fabric layer.
  • the height H1 of the non-fused portion on the surface on which the spunbond nonwoven fabric layer A1 is arranged is 50 ⁇ m or more and 200 ⁇ m or less, and the height H2 of the non-fused portion on the other surface is
  • the ratio (H 2 /H 1 ) to H 1 is preferably 1.1 or more and 4.0 or less .
  • H1 is preferably 200 ⁇ m or less, more preferably 180 ⁇ m or less, still more preferably 150 ⁇ m or less, and particularly preferably 120 ⁇ m or less, so that the surface is smooth and antistatic agents such as phosphate esters are uniformly applied. It is applied to the surface and has good antistatic properties.
  • the height ratio (H 2 /H 1 ) is preferably 1.1 or more, more preferably 1.5 or more, so that the laminated nonwoven fabric becomes soft, and when used as protective clothing It is possible to improve the comfort of wearing and the storability when folding the protective clothing.
  • H 2 /H 1 By setting H 2 /H 1 to preferably 4.0 or less, more preferably 3.0 or less, and even more preferably 2.0 or less, deformation of the melt blown nonwoven fabric layer can be suppressed and water pressure resistance is improved. be able to.
  • the height H 2 of the non-fused portion on the other surface is preferably 200 ⁇ m or more and 400 ⁇ m or less as long as the range of the height ratio (H 2 /H 1 ) is satisfied.
  • the thickness is preferably 200 ⁇ m or more, the laminated nonwoven fabric becomes soft, and comfort when used as protective clothing and storability when the protective clothing is folded can be improved.
  • the thickness is preferably 400 ⁇ m or less, more preferably 370 ⁇ m or less, and even more preferably 350 ⁇ m or less, deformation of the melt blown nonwoven fabric layer can be suppressed and water pressure resistance can be improved.
  • the heights H 1 and H 2 of the non-fused portions will be explained using the example of the conceptual cross-sectional view of FIG. 1 .
  • Height difference H between the highest point of the non-fused portion and the lowest point of the fused portion on one surface (the surface on the side of the spunbond nonwoven fabric layer A1 (12)) in the cross section of the laminated nonwoven fabric (11) 1 is the height H1 of the unfused portion, and the highest point of the unfused portion and the lowest point of the fused portion on the other surface (the surface on the side of the spunbond nonwoven fabric layer A2 (14)); is the height H2 of the unfused portion.
  • the heights H 1 and H 2 of the non-fused portions in the laminated nonwoven fabric of the present invention and the ratio of H 2 to H 1 (H 2 /H 1 ) are measured as follows. (1) A test piece having a width of 20 mm ⁇ 20 mm is taken from the laminated nonwoven fabric. (2) The sampled test piece is cut with a freezing microtome so as to include the non-fused portion, the obtained cross section is subjected to a conductive treatment, and the cross section is photographed using an SEM.
  • the method of adjusting the height of the non-fused portion of the laminated nonwoven fabric is possible by adjusting the basis weight and fiber diameter of the spunbond nonwoven fabric layer. It is also possible by adjusting the engraving shape of the calender roll used in the later-described fusing step.
  • the ratio (t B /t) of the thickness (t B ) of the melt-blown nonwoven fabric layer B of the laminated nonwoven fabric of the present invention to the thickness (t) of the entire laminated nonwoven fabric is preferably 0.05 or more and 0.15 or less. Water resistance can be improved by setting t B /t to preferably 0.05 or more, more preferably 0.08 or more.
  • the thickness of the entire laminated nonwoven fabric is the distance from the highest point on the surface of the spunbond nonwoven fabric layer A1 in the non-fused portion to the highest point on the surface of the spunbond nonwoven fabric layer A2 in the cross section of the laminated nonwoven fabric. say about
  • t B /t preferably 0.15 or less, more preferably 0.12 or less, sufficient strength for use as protective clothing can be obtained.
  • the ratio (t B /t) of the thickness (t B ) of the melt blown nonwoven fabric layer B in the laminated nonwoven fabric of the present invention to the thickness (t) of the entire laminated nonwoven fabric (t B /t) is measured as follows. (1) A test piece having a width of 20 mm ⁇ 20 mm is taken from the laminated nonwoven fabric. (2) The sampled test piece is cut with a freezing microtome, the obtained cross section is subjected to a conductive treatment, and the cross section is photographed with an SEM at a magnification of 300 times. If the SEM photograph of the cross section includes the fused portion, the observation field of view is moved and the photograph is taken again.
  • t B /t can be adjusted by adjusting the basis weight of the melt blown nonwoven fabric layer B and the average single fiber diameter. It is also possible by adjusting the bonding temperature, linear pressure and clearance in the fusion bonding process.
  • the basis weight of the laminated nonwoven fabric of the present invention is preferably 40 g/m 2 or more and 100 g/m 2 or less. By setting the basis weight to preferably 40 g/m 2 or more, more preferably 50 g/m 2 or more, it is possible to obtain a laminated nonwoven fabric having practical water pressure resistance and mechanical strength.
  • the basis weight preferably 100 g/m 2 or less, more preferably 70 g/m 2 or less, it is possible to obtain a laminated nonwoven fabric that does not hinder the wearer's workability when used as protective clothing. In addition, it is possible to reduce the thickness of the protective clothing when it is folded, and it is possible to reduce the storage space for stockpile items.
  • the basis weight of the laminated nonwoven fabric of the present invention is measured by the following procedure according to JIS L1913:2010 "General nonwoven fabric test method", "6.2 Mass per unit area”.
  • Three test pieces of 20 cm x 25 cm are collected per 1 m width of the sample.
  • (3) The average value is represented by mass (g/m 2 ) per 1 m 2 .
  • the laminated nonwoven fabric of the present invention preferably has a water pressure resistance per unit basis weight of 15 mmH 2 O/(g/m 2 ) or more.
  • a water pressure resistance per unit basis weight 15 mmH 2 O/(g/m 2 ) or more.
  • the upper limit of water pressure is preferably 30 mmH 2 O/(g/m 2 ).
  • the water pressure resistance per unit basis weight of the laminated nonwoven fabric of the present invention is according to JIS L1092: 2009 "Waterproof test method for textile products""7.1.1 A method (low water pressure method)" according to the following procedure. measured by (1) Five test pieces each having a width of 150 mm ⁇ 150 mm are taken from the laminated nonwoven fabric. (2) The test piece is set in the clamp of the measuring device (the part of the test piece that comes into contact with water has a size of 100 cm 2 ). (3) Raise the level device filled with water at a speed of 600 mm/min ⁇ 30 mm/min, and measure the water level in mm units when water comes out from three places on the back side of the test piece. (4) Perform the above measurements on five test pieces, and calculate the average value. (5) Divide the calculated ventilation amount (mmH 2 O) by the basis weight (g/m 2 ) measured by the above method.
  • the air permeability per unit basis weight of the laminated nonwoven fabric of the present invention is 0.01 (cm 3 /(cm 2 ⁇ sec))/(g/m 2 ) or more and 5 (cm 3 /(cm 2 ⁇ sec))/( g/m 2 ) or less.
  • the permeation amount per unit basis weight is preferably 2 (cm 3 /(cm 2 ⁇ sec))/(g/m 2 ) or less, more preferably 1 (cm 3 /(cm 2 ⁇ sec))/(g/ m 2 ) or less, and more preferably 0.5 (cm 3 /(cm 2 ⁇ sec))/(g/m 2 ) or less, to maintain the water resistance required for protective clothing and the like.
  • the air permeability per unit basis weight is preferably 0.02 (cm 3 /(cm 2 ⁇ sec)) / (g/m 2 ) or more, more preferably 0.04 (cm 3 /(cm 2 ⁇ sec) ))/(g/m 2 ) or more, more preferably 0.06 (cm 3 /(cm 2 ⁇ sec))/(g/m 2 ) or more, when worn for protective clothing etc. It can reduce steam.
  • the air permeability can be adjusted by the basis weight, average single fiber diameter, basis weight of the melt-blown nonwoven fabric layer B, thermocompression bonding conditions (compression rate, temperature and linear pressure), and the like.
  • the permeation amount per unit basis weight of the laminated nonwoven fabric of the present invention is measured according to JIS L1913:2010 "General nonwoven fabric test methods", "6.8.1 Frazier method", by the following procedure.
  • the method for producing a laminated nonwoven fabric of the present invention preferably comprises forming a spunbond nonwoven fabric layer, forming at least one meltblown nonwoven fabric layer thereon, and further forming the spunbond nonwoven fabric layer thereon to form a laminate. and the laminate is fused using a hot embossing roll, which is a combination of a roll with a smooth surface on one side and a roll with an engraved surface on the other side. a step of obtaining a sheet (step 2), and a spunbond nonwoven fabric layer A1 on the side of the sheet with which the roll having a smooth roll surface abuts, and the spunbond nonwoven fabric layer A1 side of the sheet. a step of applying a liquid containing at least a phosphate ester to the surface (step 3).
  • Step 1 Step of forming a spunbond nonwoven fabric layer, forming at least one meltblown nonwoven fabric layer thereon, and further forming the spunbond nonwoven fabric layer thereon to form a laminate
  • the spunbond nonwoven fabric layer and the meltblown nonwoven fabric layer can be formed by a spunbond method and a meltblown method, respectively.
  • fibers formed by a meltblowing method are deposited directly on the initially formed spunbond nonwoven fabric layer to form a meltblown nonwoven fabric layer, and further, The resulting nonwoven layers are sequentially deposited with additional fibers to form a laminate, such as by depositing the fibers formed by the spunbond process to form a spunbond nonwoven layer, or formed separately.
  • the spunbond nonwoven fabric layer and the melt blown nonwoven fabric layer are superimposed, and the nonwoven fabric layers are fused by heating and pressurizing, or bonded with an adhesive such as a hot melt adhesive or a solvent adhesive to form a laminate.
  • an adhesive such as a hot melt adhesive or a solvent adhesive to form a laminate.
  • a preferred embodiment is a method of sequentially depositing fibers on the obtained nonwoven fabric layer to form a laminate.
  • the laminated structure is as described above.
  • a spunbond nonwoven fabric layer is formed by spinning a molten polyolefin resin from a spinneret as long fibers, cooling and stretching the fibers, and then collecting the fibers on a moving net.
  • the drawing may be performed by sucking compressed air using an ejector or the like.
  • Various shapes such as round and rectangular can be adopted for the shape of the spinneret and ejector.
  • the combination of a rectangular nozzle and a rectangular ejector is recommended because it uses a relatively small amount of compressed air and is excellent in terms of energy cost, and because the yarns are less likely to fuse or rub against each other, and the yarns can be easily opened. It is preferably used.
  • a polyolefin resin is melted in an extruder, weighed, supplied to a spinneret, and spun as long fibers.
  • the spinning temperature at which the polyolefin resin is melted and spun is preferably 200°C or higher and 270°C or lower, more preferably 210°C or higher and 260°C or lower, and still more preferably 220°C or higher and 250°C or lower.
  • the filament of the spun filament is cooled, and the cooling methods include, for example, a method of forcibly blowing cold air onto the filament, a method of natural cooling at the ambient temperature around the filament, and a spinneret and ejector. A method of adjusting the distance between them can be mentioned, or a method of combining these methods can be adopted. In addition, the cooling conditions can be appropriately adjusted in consideration of the discharge amount per single hole of the spinneret, the spinning temperature, the atmospheric temperature, and the like.
  • the yarn that has been cooled and solidified may be pulled by compressed air jetted from the ejector and stretched.
  • the spinning speed is preferably 3000 m/min or more and 6500 m/min or less, more preferably 3500 m/min or more and 6500 m/min or less, and still more preferably 4000 m/min or more and 6500 m/min or less.
  • the obtained filaments are collected on a moving net or on an already formed spunbond nonwoven layer or meltblown nonwoven layer placed on a moving net to form a nonwoven fabric layer.
  • the meltblown nonwoven fabric layer can be formed by adopting a known manufacturing method.
  • a polyolefin resin is melted in an extruder and supplied to the nozzle, and hot air is blown on the thread extruded from the nozzle to thin it, and then placed on a collection net or a moving net.
  • a meltblown nonwoven fabric layer is formed on an already formed spunbond nonwoven fabric layer or a meltblown nonwoven fabric layer.
  • the meltblowing method does not require complicated steps, can easily obtain fine fibers of several ⁇ m, and can exhibit high water resistance.
  • Step 2 A step of fusing the laminate using a hot embossing roll, which is a combination of a roll with a smooth surface on one side and a roll with an engraved surface on the other side, to obtain a sheet
  • a hot embossing roll which is a combination of a roll having a smooth surface on one side and a roll having an engraved surface on the other side.
  • thermocompression effect As for the surface material of the hot embossing roll, in order to obtain a sufficient thermocompression effect and to prevent the engraving (unevenness) of one embossing roll (engraving roll) from being transferred to the surface of the other roll, metal rolls and A preferred embodiment is pairing with a metal roll.
  • the embossing adhesion area ratio by the hot embossing roll is preferably 5% or more and 30% or less.
  • the bonding area is preferably 5% or more, more preferably 8% or more, and even more preferably 10% or more, it is possible to obtain strength that can be used practically as a laminated nonwoven fabric.
  • the adhesion area is preferably 30% or less, more preferably 25% or less, and even more preferably 20% or less, it is possible to obtain appropriate flexibility in protective clothing and the like.
  • the embossed bonding area ratio here refers to the ratio of the area of the fused portion to the total area of the laminated nonwoven fabric. Specifically, in the case of heat-bonding with a roll having unevenness and a flat roll, it refers to the ratio of the portion (fused portion) where the convex portion of the roll having unevenness contacts the laminated nonwoven fabric to the entire laminated nonwoven fabric.
  • Circular, elliptical, square, rectangular, parallelogram, rhombus, regular hexagon, regular octagon, etc. can be used as the shape of the bonded part by the heat embossing roll.
  • the bonded portions are uniformly present at regular intervals in the longitudinal direction (conveyance direction) and the width direction of the laminated nonwoven fabric. By doing so, variations in the strength of the laminated nonwoven fabric can be reduced.
  • the surface temperature of the hot embossing roll during fusion is -50°C or higher and -15°C or lower with respect to the melting point of the polyolefin resin used.
  • the surface temperature of a hot embossing roll is preferably ⁇ 15° C. or less, and more preferably ⁇ 20° C. or less, relative to the melting point of the polyolefin resin, thereby suppressing excessive fusion and making the laminated nonwoven fabric especially protective. Appropriate flexibility and workability suitable for use in clothes can be obtained.
  • the linear pressure of the hot embossing roll during fusion is preferably 50 N/cm or more and 500 N/cm or less.
  • the linear pressure of the hot embossing roll is preferably 50 N/cm or more, more preferably 100 N/cm or more, and even more preferably 150 N/cm or more, the laminated nonwoven fabric is appropriately fused and has a strength suitable for practical use. Obtainable.
  • the linear pressure of the heat embossing roll to preferably 500 N/cm or less, more preferably 400 N/cm or less, and even more preferably 300 N/cm or less, it can be used as a laminated nonwoven fabric, especially for protective clothing. Appropriate moderate flexibility and workability can be obtained.
  • thermocompression bonding with a thermal calender roll consisting of a pair of upper and lower flat rolls before and/or after fusion bonding with the above-mentioned thermal embossing rolls.
  • a pair of upper and lower flat rolls is a metal roll or elastic roll that does not have unevenness on the surface of the roll. can be used.
  • the elastic roll here means a roll made of a material having elasticity compared to a metal roll.
  • elastic rolls include so-called paper rolls such as paper, cotton and aramid paper, and resin rolls made of urethane-based resins, epoxy-based resins, silicone-based resins, polyester-based resins, hard rubbers, and mixtures thereof. be done.
  • Step 3 A step of applying a liquid containing at least a phosphate ester to the surface of the spunbond nonwoven fabric layer A1, which is the spunbond nonwoven fabric layer A1 on the side of the sheet with which the roll surface is in contact).
  • the spunbond nonwoven fabric layer A1 is the spunbond nonwoven fabric layer A1 on the side of the sheet that is in contact with the smooth roll surface, and at least phosphoric acid is added to the surface of the spunbond nonwoven fabric layer A1 side.
  • the solution is wound up from a chemical bath filled with the liquid by a metal roll rotating in the chemical bath, and the laminated nonwoven fabric is brought into contact with the upper side of the metal roll.
  • a roll coating method a gravure method, a flexographic method, a spray coating method, etc., in which a liquid is transferred to the surface of the laminated nonwoven fabric.
  • the roll coating method can be used because it has excellent productivity, can uniformly apply the solution, can easily adjust the amount of liquid applied, and can apply liquid only to one side of the laminated nonwoven fabric. preferable.
  • the liquid (the liquid containing at least the phosphate ester) further contains silicone. By doing so, a higher water pressure resistance can be maintained.
  • this liquid can be in the form of solution, emulsion, etc., according to the characteristics of the phosphate ester.
  • drying After applying the liquid, it is preferable to dry the solvent contained in the solution.
  • a method of drying with hot air and infrared rays, a method of drying by contact with a heat source, and the like may be used.
  • the laminated nonwoven fabric is preferably used at least in the front body.
  • the laminated nonwoven fabric By using the laminated nonwoven fabric at least on the front body, it is possible to protect the wearer's body from harmful mist and floating dust.
  • the protective clothing of the present invention for example, JIS T8115: 2015 “Chemical protective clothing”, “4.5 Sealing clothing for spray protection (type 4)", for protecting the wearer from spray liquid chemical substances
  • it can be in the form of one-piece coveralls or upper and lower garments, and can also include a hood, visor, and booties according to the desired mode.
  • JIS T8122 2015 "Protective clothing against biologically hazardous substances", “3.2 Whole body protective clothing for biohazard countermeasures” Protective clothing for hazard countermeasures, full body for non-airtight, non-positive pressure biohazard countermeasures to protect the wearer from biologically hazardous substances such as liquid or suspended solid dust described in "3.5 Sealed clothing” Protective clothing is also included.
  • the protective clothing of the present invention is a chemical protective clothing having a structure that protects a part of the body, for example, "4.8 partial chemical protective clothing (type PB)" of JIS T8115:2015 "chemical protective clothing” 80% or more of the mass of chemical protective clothing with a structure that protects a part of the body described in 1., which is an apron, footwear cover, gown, hood, jacket, lab coat, arm cover, smock, etc. It is preferable that 100% or less is the laminated nonwoven fabric. Even in this case, the wearing part can be effectively protected from harmful mist and floating dust.
  • PB partial chemical protective clothing
  • protective clothing for biohazard countermeasures that is structured to protect a part of the body
  • JIS T8122 2015 "Protective clothing against biologically hazardous substances”
  • 3.6 Whole body protective clothing for biohazard countermeasures which is a protective clothing that protects the body from permeation of biohazardous substances, such as gowns, surgical clothing, laboratory clothing, jackets, trousers, aprons, etc.
  • JIS T8122 2015 "Protective clothing against biologically hazardous substances”
  • “3.7 Whole body protective clothing for biohazard countermeasures” partial protective equipment such as caps, shoe covers, arm covers, etc.
  • it is preferable that 80% or more and 100% or less of the mass is the laminated nonwoven fabric. Even in this case, the wearing part can be effectively protected from harmful mist and floating dust.
  • the protective clothing of the present invention can be manufactured by a known method.
  • the laminated nonwoven fabric of the present invention will be specifically described based on examples. In the measurement of each physical property, unless otherwise specified, the measurement was performed according to the method described above.
  • MFR of polyolefin resin (g/10 min): The MFR of the polyolefin resin (A) and the polyolefin resin (B) was measured under the conditions of a load of 2.16 kg and a temperature of 230° C. for the polypropylene resin, and a load of 2.16 kg and a temperature of 230° C. for the polyethylene resin. Measurement was performed at 190°C.
  • Spunbond nonwoven fabric layers A1 and A2, meltblown nonwoven fabric layer B, laminated nonwoven fabric basis weight (g/m 2 ) Spunbond nonwoven fabric layers A1 and A2 and meltblown nonwoven fabric layer B are separately placed on a collection net under the same conditions as (spunbond nonwoven fabric layer A1), (spunbond nonwoven fabric layer A2), and (meltblown nonwoven fabric layer B) described later. It was measured by the above method from the sampled nonwoven fabric layer. The basis weight of the laminated nonwoven fabric was measured by the method described above.
  • Surface electrical resistance ( ⁇ ) of laminated nonwoven fabric: The surface electrical resistance of the laminated nonwoven fabric conforms to the European standard (EN1149-1:2006) and was measured using a digital ultra-high resistance/micro current meter 8340A manufactured by ADC by the following procedure.
  • A. Ten test pieces of 10 cm ⁇ 10 cm are taken from the laminated nonwoven fabric.
  • B. One surface of the test piece is set in contact with the measuring part of the device, a voltage of 100 V is applied, and the surface electric resistance value is recorded 15 seconds later.
  • C The surface electrical resistance of the other surface of the test piece is similarly recorded, and the smaller value is taken as the surface electrical resistance of the test piece.
  • D The above 10 sheets were measured, the average value was calculated, and the surface electrical resistance was obtained with two significant digits.
  • [Method for preparing coating solution] [Coating liquid A] Add 58.8 g of sodium lauryl phosphate (CAS registration number: 50957-96-5) and 1.2 g of silicone oil (“KF-96-10CS” manufactured by Shin-Etsu Chemical Co., Ltd.) to 1940 g of pure water at room temperature. , and mixed by stirring under atmospheric pressure to obtain a coating liquid A.
  • a coating liquid B was obtained in the same manner as the coating liquid A, except that the silicone oil was not used in the coating liquid A.
  • Coating fluid C Coating Liquid C was obtained in the same manner as Coating Liquid A, except that sodium lauryl phosphate was not used in Coating Liquid A.
  • Example 1 (Spunbond nonwoven fabric layer A1) A homopolymer polypropylene resin having an MFR of 200 g/10 min and a melting point of 163° C. is melted with an extruder, and is spun at a spinning temperature of 235° C. and a single hole discharge rate of 0.40 g/min from a rectangular nozzle with a hole diameter of ⁇ 0.30 mm and a hole depth of 2 mm. conditions. After the spun yarn is cooled and solidified, it is pulled and stretched by compressed air in a rectangular ejector at an ejector pressure of 0.35 MPa, collected on a moving net, and made of polypropylene long fibers. A 33 g/m 2 spunbond nonwoven layer A1 was formed. The average single fiber diameter of the fibers constituting the formed spunbond nonwoven fabric layer A1 was 11.2 ⁇ m.
  • meltblown nonwoven fabric layer B A polypropylene resin consisting of a homopolymer having an MFR of 1100 g/min was melted in an extruder and spun from a spinneret with a hole diameter of ⁇ 0.25 mm at a spinning temperature of 260° C. and a single hole discharge rate of 0.10 g/min. Thereafter, air was jetted onto the yarn under conditions of an air temperature of 290° C. and an air pressure of 0.10 MPa, and collected on the spunbond nonwoven fabric layer A1 to form a melt blown nonwoven fabric layer B.
  • the melt-blown nonwoven fabric layer B had a basis weight of 10 g/m 2 and an average single fiber diameter of 1.1 ⁇ m.
  • spunbond nonwoven fabric layer A2 On the meltblown nonwoven fabric layer B, the spunbond nonwoven fabric layer A1 was formed under the conditions where the single hole discharge rate was changed to 0.20 g / min, and the polypropylene long fibers were collected, and the spunbond with a basis weight of 17 g / m 2 was obtained. A nonwoven fabric layer A2 was formed. The spunbond nonwoven fabric layer A2 had a basis weight of 17 g/m 2 and an average single fiber diameter of the constituent fibers of 8.7 ⁇ m.
  • laminated nonwoven fabric By the above method, a laminated fiber web having a total basis weight of 60 g/m 2 and comprising a laminate of spunbond nonwoven fabric layer A1, meltblown nonwoven fabric layer B, and spunbond nonwoven fabric layer A2 was obtained. Next, the obtained laminated fiber web is subjected to a pair of upper and lower thermal embossing rolls, each of which is composed of an embossing roll made of metal engraved with a polka dot pattern and having a bonding area ratio of 16% as the upper roll, and a metal flat roll as the lower roll. was used to perform thermal bonding under the conditions of a linear pressure of 300 N/cm and a thermal bonding temperature of 130°C.
  • Example 2 In (Spunbond nonwoven fabric layer A1) of Example 1, the single hole discharge rate was 0.40 g/min, but it was changed to 0.45 g/min. was 0.20 g/min, a laminated nonwoven fabric was obtained in the same manner as in Example 1, except that it was changed to 0.15 g/min. Table 1 shows the results and the like.
  • Example 3 In (Spunbond nonwoven fabric layer A1) of Example 1, the single hole discharge rate was 0.40 g/min. was 0.20 g/min, a laminated nonwoven fabric was obtained in the same manner as in Example 1, except that it was changed to 0.24 g/min. Table 1 shows the results and the like.
  • Example 4 A laminated nonwoven fabric was obtained in the same manner as in Example 1, except that the coating liquid A was applied to the (laminated nonwoven fabric) of Example 1, except that the coating liquid B was used. Table 1 shows the results and the like.
  • Example 5 In (spunbond nonwoven fabric layer A1), (meltblown nonwoven fabric layer B), and (spunbond nonwoven fabric layer A2) of Example 1, except that the movement speed of the net for collecting fibers was changed to 1.5 times that of Example 1. obtained a laminated nonwoven fabric in the same manner as in Example 1. Table 1 shows the results and the like.
  • Example 6 A laminated nonwoven fabric was obtained in the same manner as in Example 1, except that the single hole discharge rate of (meltblown nonwoven fabric layer B) of Example 1 was 0.10 g/min, but was changed to 0.05 g/min. Table 2 shows the results and the like.
  • Example 7 In the (laminated nonwoven fabric) of Example 1, as a pair of upper and lower thermal embossing rolls, an embossing roll made of metal engraved with a polka dot pattern and having a bonding area ratio of 16% is used as the upper roll, and a metal flat roll is used as the lower roll.
  • the upper roll was changed to a metal flat roll
  • the lower roll was changed to a metal embossing roll with a polka dot pattern engraving and an adhesion area ratio of 16%.
  • Table 2 shows the results and the like.
  • Example 8 A laminated nonwoven fabric was obtained in the same manner as in Example 7, except that the single hole discharge rate of (meltblown nonwoven fabric layer B) of Example 7 was 0.10 g/min, but was changed to 0.05 g/min. Table 2 shows the results and the like.
  • Example 3 A laminated nonwoven fabric was obtained in the same manner as in Example 1, except that the meltblown nonwoven fabric layer B was not formed. Table 3 shows the results and the like.
  • Example 4 A laminated nonwoven fabric was obtained in the same manner as in Example 1, except that the coating liquid A was applied to the (laminated nonwoven fabric) of Example 1, except that the coating liquid C was applied. Table 3 shows the results and the like.
  • Example 5 In the (laminated nonwoven fabric) of Example 1, a laminated nonwoven fabric was obtained in the same manner as in Example 1, except that when the coating liquid A was applied, the coating liquid was not applied. Table 3 shows the results and the like.
  • the laminated nonwoven fabrics of Examples 1 to 8 contain a phosphate ester in the spunbond nonwoven layer A1 , and the ratio ( t A1 /t A2 ) was 1.5 or more and 3 or less, and the water pressure resistance per unit basis weight was 15 mmH 2 O/(g/m 2 ) or more, indicating excellent water resistance.
  • the laminated nonwoven fabric of Comparative Example 1 had t A1 /t A2 of less than 1.5 and was inferior in water resistance. Further, the laminated nonwoven fabric of Comparative Example 2 had t A1 /t A2 exceeding 3, and the melt-blown nonwoven fabric layer B was damaged in the lamination process, and thus was inferior in water resistance. Since the laminated nonwoven fabric of Comparative Example 3 did not contain the melt blown nonwoven fabric layer B, the water pressure resistance was low. Since the laminated nonwoven fabrics of Comparative Examples 4 and 5 did not contain phosphate ester in the spunbond nonwoven fabric layer, the surface electrical resistance was high and the antistatic performance was low.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

Provided are a multilayer nonwoven fabric having both high water resistance and antistatic properties despite no films being layered therein, a method for producing the multilayer nonwoven fabric, and a protective garment using the multilayer nonwoven fabric. One surface of the multilayer nonwoven fabric is formed from fibers comprising a polyolefin resin and has a spunbond nonwoven fabric layer A1 containing at least a phosphate ester arranged thereon, the other surface has arranged thereon a spunbond nonwoven fabric layer A2 formed from fibers comprising a polyolefin resin, and a meltblown nonwoven fabric layer B formed from at least one layer of fibers comprising a polyolefin resin is arranged between the spunbond nonwoven fabric layer A1 and the spunbond nonwoven fabric layer A2. The ratio (tA1/tA2) of the thickness (tA1) of the spunbond nonwoven fabric layer A1 to the thickness (tA2) of the spunbond nonwoven fabric layer A2 in a non-fused section of the multilayer nonwoven fabric is 1.5-3.0.

Description

積層不織布およびその製造方法ならびに防護服LAMINATED NONWOVEN FABRIC AND MANUFACTURING METHOD THEREOF AND PROTECTIVE CLOTHING
 本発明は、積層不織布に関し、特に、ポリオレフィン系樹脂からなる繊維から構成され、耐水性と帯電防止性に優れており、防護服用途として生産性に優れた積層不織布に関するものである。 The present invention relates to a laminated nonwoven fabric, and particularly to a laminated nonwoven fabric that is composed of fibers made of polyolefin resin, has excellent water resistance and antistatic properties, and has excellent productivity as a protective clothing application.
 近年、不織布はさまざまな用途に使用されており、例えば、産業資材、土木資材、建築資材、生活資材、農業資材、衛生資材および医療用資材等が挙げられる。 In recent years, non-woven fabrics have been used for various purposes, such as industrial materials, civil engineering materials, construction materials, living materials, agricultural materials, sanitary materials, and medical materials.
 中でも、放射性物質の除染作業や感染症の世界的な流行から防護服向け用途が注目されている。防護服に使用される不織布には製造現場で発生する薬剤ミストや粉塵、感染症の原因となるエアロゾルから着用者を保護するための耐水性と粉塵防護性能の両立が必要である。 Especially, due to the decontamination work of radioactive substances and the global epidemic of infectious diseases, its use for protective clothing is attracting attention. Non-woven fabrics used in protective clothing must have both water resistance and dust protection performance to protect the wearer from chemical mist, dust, and aerosols that cause infectious diseases generated at manufacturing sites.
 従来、このような防護服に用いられる素材として、ポリプロピレン系スパンボンド不織布に、多孔性フィルムを張り合わせた防護服材料が提案されている(例えば、特許文献1を参照。)。 Conventionally, as a material used for such protective clothing, a protective clothing material has been proposed in which a polypropylene-based spunbond nonwoven fabric is laminated with a porous film (for example, see Patent Document 1).
 また、火災の着火元となる静電気の発生を抑えて粉塵爆発をさせない必要がある用途の防護服では帯電防止性が求められ、例えば、帯電防止性を備える防護服材料として、カチオン系またはノニオン系の帯電防止剤を塗工したポリプロピレン系スパンボンド不織布とメルトブロー不織布とを張り合わせた積層不織布が提案されている(例えば、特許文献2を参照。)。 In addition, antistatic properties are required for protective clothing for applications where it is necessary to suppress the generation of static electricity, which is the source of fire ignition, to prevent dust explosions. A laminated nonwoven fabric has been proposed in which a polypropylene-based spunbond nonwoven fabric coated with an antistatic agent and a meltblown nonwoven fabric are laminated together (see, for example, Patent Document 2).
特開2016-102202号公報JP 2016-102202 A 国際公開第2019/171995号WO2019/171995
 従来の防護服材料である、不織布と多孔性フィルムとの積層体はフィルムによって耐水性は保持できるが、通気性に劣り、着用時に衣服内が蒸れて長時間は作業できない課題がある。また、帯電防止剤を塗工したポリプロピレン系スパンボンド不織布とメルトブロー不織布を張り合わせた積層不織布では、フィルムがないために通気性があり、着用時の衣服内の群れは改善されるものの、帯電防止剤が空気中の水分を吸収して液体化し、積層不織布内部に浸透してメルトブロー不織布に達し、耐水性が低下するという課題がある。そこで、本発明の目的は、上記の事情に鑑みてなされたものであって、その目的は、フィルムが積層されなくとも、高い耐水性と帯電防止性とを併せ持つ、積層不織布およびその製法、ならびにこれを用いてなる防護服を提供することにある。 A conventional protective clothing material, a laminate of non-woven fabric and porous film, can maintain water resistance due to the film, but it has poor breathability, and the inside of the clothing becomes stuffy when worn, making it impossible to work for a long time. In addition, a laminated nonwoven fabric made by laminating a polypropylene-based spunbond nonwoven fabric coated with an antistatic agent and a meltblown nonwoven fabric has breathability because it does not have a film, and although it improves the clumping inside the clothes when worn, the antistatic agent absorbs moisture in the air, liquefies, penetrates into the laminated nonwoven fabric, reaches the meltblown nonwoven fabric, and has a problem of lowering the water resistance. Therefore, the object of the present invention was made in view of the above circumstances, and the object is a laminated nonwoven fabric that has both high water resistance and antistatic properties without being laminated with a film, a method for producing the same, and It is to provide a protective clothing using this.
 本発明者らは、上記目的を達成するべく鋭意検討を重ねた結果、積層不織布の一方の表面に、ポリオレフィン系樹脂からなる繊維で構成されてなり、少なくともリン酸エステルを含むスパンボンド不織布層が配され、他方の表面にスパンボンド不織布層が配され、さらに、それらの間に少なくとも1層のポリオレフィン樹脂からなる繊維で構成されたメルトブロー不織布層が配されてなる積層不織布を用い、さらに、積層不織布の両面のスパンボンド不織布層の厚みの比を制御することによって、高い耐水性と帯電防止性とを両立できるという知見を得た。 The inventors of the present invention have made intensive studies to achieve the above object, and found that a spunbonded nonwoven fabric layer composed of fibers made of a polyolefin resin and containing at least a phosphate ester is formed on one surface of the laminated nonwoven fabric. a spunbond nonwoven fabric layer on the other surface, and at least one melt-blown nonwoven fabric layer composed of fibers made of polyolefin resin disposed therebetween; It was found that by controlling the thickness ratio of the spunbond nonwoven fabric layers on both sides of the nonwoven fabric, both high water resistance and antistatic properties can be achieved.
 本発明はこれら知見に基づいて完成に至ったものであり、本発明によれば、以下の発明が提供される。 The present invention has been completed based on these findings, and the following inventions are provided according to the present invention.
 [1] 一方の表面に、ポリオレフィン系樹脂からなる繊維で構成されてなり、少なくともリン酸エステルを含んでなるスパンボンド不織布層A1が配されてなり、
 他方の表面に、ポリオレフィン系樹脂からなる繊維で構成されてなるスパンボンド不織布層A2が配されてなり、
 前記スパンボンド不織布層A1と前記スパンボンド不織布層A2との間に、少なくとも1層のポリオレフィン系樹脂からなる繊維で構成されてなるメルトブロー不織布層Bが配されてなる積層不織布であって、
 前記積層不織布の非融着部における、前記スパンボンド不織布層A1の厚み(tA1)の、前記スパンボンド不織布層A2の厚み(tA2)に対する比(tA1/tA2)が1.5以上3.0以下である、積層不織布。
[1] A spunbond nonwoven fabric layer A1 made of fibers made of polyolefin resin and containing at least a phosphate ester is arranged on one surface,
A spunbond nonwoven fabric layer A2 made of fibers made of polyolefin resin is arranged on the other surface,
A laminated nonwoven fabric in which at least one melt-blown nonwoven fabric layer B composed of fibers made of a polyolefin resin is arranged between the spunbond nonwoven fabric layer A1 and the spunbond nonwoven fabric layer A2,
The ratio (t A1 /t A2 ) of the thickness (t A1 ) of the spunbond nonwoven fabric layer A1 to the thickness ( t A2 ) of the spunbond nonwoven fabric layer A2 in the non-fused portion of the laminated nonwoven fabric is 1.5 or more. Laminated nonwoven fabric, which is 3.0 or less.
 [2] 前記積層不織布の、前記一方の表面の非融着部の高さHが50μm以上200μm以下であり、前記他方の表面の非融着部の高さHの前記高さHに対する比(H/H)が1.1以上4.0以下である、前記[1]に記載の積層不織布。 [2] The height H1 of the non-fused portion on the one surface of the laminated nonwoven fabric is 50 μm or more and 200 μm or less, and the height H1 of the height H2 of the non-fused portion on the other surface of the laminated nonwoven fabric. The laminated nonwoven fabric according to [1], wherein the ratio (H 2 /H 1 ) is 1.1 or more and 4.0 or less.
 [3] 前記スパンボンド不織布層A1がさらにシリコーンを含む、前記[1]または[2]に記載の積層不織布。 [3] The laminated nonwoven fabric according to [1] or [2], wherein the spunbond nonwoven fabric layer A1 further contains silicone.
 [4] 前記メルトブロー不織布層Bの厚み(t)の、前記積層不織布全体の厚み(t)に対する比(t/t)が0.05以上0.15以下である、前記[1]~[3]のいずれかに記載の積層不織布。 [4] The ratio (t B /t) of the thickness (t B ) of the melt blown nonwoven fabric layer B to the thickness (t) of the entire laminated nonwoven fabric is 0.05 or more and 0.15 or less [1] to The laminated nonwoven fabric according to any one of [3].
 [5] 前記[1]~[4]のいずれかに記載の積層不織布の製造方法であって、
 スパンボンド不織布層を形成し、その上に少なくとも1層のメルトブロー不織布層を形成し、さらにその上にスパンボンド不織布層を形成して積層体を形成する工程と、
 前記積層体を、片方のロール表面が平滑なロールと、他方のロール表面に彫刻が施されたロールとの組み合わせからなる、熱エンボスロールを用いて融着させ、シートを得る工程と、
 前記シートのうち、前記ロール表面が平滑なロールが当接した側のスパンボンド不織布層をスパンボンド不織布層A1として、そのスパンボンド不織布層A1側の表面に、少なくともリン酸エステルを含む液体を付与する工程と、
を含む、積層不織布の製造方法。
[5] A method for producing a laminated nonwoven fabric according to any one of [1] to [4],
forming a spunbond nonwoven layer, forming at least one meltblown nonwoven layer thereon, and further forming a spunbond nonwoven layer thereon to form a laminate;
a step of fusing the laminate using a thermal embossing roll, which is a combination of a roll having a smooth surface on one side and a roll having an engraved surface on the other side, to obtain a sheet;
A spunbond nonwoven fabric layer A1 is defined as the spunbond nonwoven fabric layer A1 on the side of the sheet that is in contact with the roll having a smooth roll surface, and a liquid containing at least a phosphate ester is applied to the surface of the spunbond nonwoven fabric layer A1. and
A method for producing a laminated nonwoven fabric, comprising:
 [6] 前記液体が、さらにシリコーンを含む、前記[5]に記載の積層不織布の製造方法。 [6] The method for producing a laminated nonwoven fabric according to [5], wherein the liquid further contains silicone.
 [7] 前記[1]~[4]のいずれかに記載の積層不織布が少なくとも前身頃に使用されてなる、防護服。 [7] Protective clothing in which the laminated nonwoven fabric according to any one of [1] to [4] is used at least in the front body.
 [8] 質量の80%以上100%以下が前記[1]~[4]のいずれかに記載の積層不織布である、防護服。 [8] Protective clothing, wherein 80% or more and 100% or less of the mass is the laminated nonwoven fabric according to any one of [1] to [4].
 本発明によれば、ポリオレフィン系樹脂からなる繊維から構成され、耐水性と帯電防止性に優れ、防護服用途に適した積層不織布とその製法、およびその積層不織布から得られる防護服が得られる。 According to the present invention, it is possible to obtain a laminated nonwoven fabric composed of fibers made of polyolefin resin, excellent in water resistance and antistatic properties, suitable for use as protective clothing, a method for producing the same, and protective clothing obtained from the laminated nonwoven fabric.
図1は、本発明の積層不織布の一実施形態を例示する、断面概念図である。FIG. 1 is a cross-sectional conceptual diagram illustrating one embodiment of the laminated nonwoven fabric of the present invention.
 本発明の積層不織布は、一方の表面に、ポリオレフィン系樹脂からなる繊維で構成されてなり、少なくともリン酸エステルを含んでなるスパンボンド不織布層A1が配されてなり、他方の表面に、ポリオレフィン系樹脂からなる繊維で構成されてなるスパンボンド不織布層A2が配されてなり、前記のスパンボンド不織布層A1と前記のスパンボンド不織布層A2との間に、少なくとも1層のポリオレフィン系樹脂からなる繊維で構成されてなるメルトブロー不織布層Bが配されてなる積層不織布であって、前記の積層不織布の非融着部における、前記のスパンボンド不織布層A1の厚み(tA1)の、前記スパンボンド不織布層A2の厚み(tA2)に対する比(tA1/tA2)が1.5以上3.0以下である。以下に、その構成要素について詳細に説明するが、本発明はその要旨を超えない限り、以下に説明する範囲に何ら限定されるものではない。 The laminated nonwoven fabric of the present invention comprises, on one surface, a spunbond nonwoven fabric layer A1 composed of fibers made of a polyolefin resin and containing at least a phosphate ester, and on the other surface, a polyolefin A spunbonded nonwoven fabric layer A2 composed of fibers made of a resin is disposed, and at least one layer of fibers made of a polyolefin resin is provided between the spunbonded nonwoven fabric layer A1 and the spunbonded nonwoven fabric layer A2. The spunbond nonwoven fabric having the thickness (t A1 ) of the spunbond nonwoven fabric layer A1 in the non-fused portion of the laminated nonwoven fabric. The ratio (t A1 /t A2 ) to the thickness (t A2 ) of layer A2 is 1.5 or more and 3.0 or less. The constituent elements will be described in detail below, but the present invention is not limited to the scope described below as long as it does not exceed the gist of the present invention.
 [ポリオレフィン系樹脂]
 本発明に係る、スパンボンド不織布層A1、スパンボンド不織布層A2、メルトブロー不織布層Bは、いずれもポリオレフィン系樹脂からなる繊維で構成されてなる。ここで、本発明における「ポリオレフィン系樹脂」とは、主となる繰り返し単位がオレフィン単位である樹脂のことを指し、同様に「ポリエチレン系樹脂」、「ポリプロピレン系樹脂」とは、主となる繰り返し単位が、それぞれ、エチレン単位、プロピレン単位である樹脂のことを指すものである。また、本発明において、スパンボンド不織布層A1を構成する繊維、スパンボンド不織布層A2を構成する繊維に用いられるポリオレフィン系樹脂をポリオレフィン系樹脂(P)、メルトブロー不織布層Bを構成する繊維に用いられるポリオレフィン系樹脂をポリオレフィン系樹脂(P)と称することがある。
[Polyolefin resin]
The spunbond nonwoven fabric layer A1, the spunbond nonwoven fabric layer A2, and the meltblown nonwoven fabric layer B according to the present invention are all made of fibers made of polyolefin resin. Here, the "polyolefin-based resin" in the present invention refers to a resin whose main repeating unit is an olefin unit. Similarly, "polyethylene-based resin" and "polypropylene-based resin" They refer to resins whose units are ethylene units and propylene units, respectively. Further, in the present invention, the polyolefin resin (P A ) used for the fibers constituting the spunbond nonwoven fabric layer A1 and the fibers constituting the spunbond nonwoven fabric layer A2 is used for the fibers constituting the melt blown nonwoven fabric layer B. The polyolefin-based resin obtained is sometimes referred to as a polyolefin-based resin (P B ).
 このポリオレフィン系樹脂としては、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリブテン系樹脂、ポリメチルペンテン系樹脂などが挙げられる。ポリエチレン系樹脂としては、エチレンの単独重合体もしくはエチレンと各種α-オレフィンとの共重合体などが挙げられ、また、ポリプロピレン系樹脂としては、プロピレンの単独重合体もしくはプロピレンと各種α-オレフィンとの共重合体などが挙げられる。中でも、紡糸性や強度の特性の観点から、ポリプロピレン系樹脂が好ましく用いられる。 Polyolefin-based resins include polyethylene-based resins, polypropylene-based resins, polybutene-based resins, and polymethylpentene-based resins. Polyethylene-based resins include ethylene homopolymers and copolymers of ethylene and various α-olefins, and polypropylene-based resins include propylene homopolymers or propylene and various α-olefins. A copolymer etc. are mentioned. Among them, polypropylene-based resins are preferably used from the viewpoint of spinnability and strength characteristics.
 このポリプロピレン系樹脂について、プロピレン単位の割合が60質量%以上であることが好ましく、より好ましくは70質量%以上であり、さらに好ましくは80質量%以上である。このようにすることで良好な紡糸性を維持し、かつ強度を向上させることができる。 The proportion of propylene units in this polypropylene-based resin is preferably 60% by mass or more, more preferably 70% by mass or more, and even more preferably 80% by mass or more. By doing so, good spinnability can be maintained and strength can be improved.
 前記のポリオレフィン系樹脂(P)は、メルトフローレート(MFRと略記することがある)が75g/10分以上850g/10分以下であることが好ましい。MFRを75g/10分以上、より好ましくは120g/10分以上、さらに好ましくは155g/10分以上とすることで、延伸時の応力を低くすることができ、速い紡糸速度で延伸したとしても、安定した紡糸が可能となる。これにより、スパンボンド不織布層の繊維径が細くなることで、表面が平滑化され、リン酸エステル等の帯電防止剤が均一に表面付与されるため、帯電防止性が良好な積層不織布を得ることができる。一方、MFRを850g/10分以下、より好ましくは600g/10分以下、さらに好ましくは400g/10分以下とすることで、ポリオレフィン系樹脂(P)の分子量が大きくなり、繊維1本あたりの強度が高くなるため、防護服材料として使用するのに十分な強度の積層不織布を得ることができる。 The polyolefin resin (P A ) preferably has a melt flow rate (sometimes abbreviated as MFR) of 75 g/10 min or more and 850 g/10 min or less. By setting the MFR to 75 g/10 minutes or more, more preferably 120 g/10 minutes or more, and even more preferably 155 g/10 minutes or more, the stress during drawing can be reduced, and even if drawing is performed at a high spinning speed, Stable spinning becomes possible. As a result, the fiber diameter of the spunbond nonwoven fabric layer is reduced, the surface is smoothed, and an antistatic agent such as a phosphate ester is uniformly applied to the surface, so that a laminated nonwoven fabric having good antistatic properties can be obtained. can be done. On the other hand, by setting the MFR to 850 g/10 minutes or less, more preferably 600 g/10 minutes or less, and even more preferably 400 g/10 minutes or less, the molecular weight of the polyolefin resin (P A ) increases, and the Since the strength is increased, a laminated nonwoven fabric having sufficient strength to be used as protective clothing material can be obtained.
 また、前記のポリオレフィン系樹脂(P)は、MFRが200g/10分以上2500g/10分以下であることが好ましい。MFRを200g/10分以上、より好ましくは400g/10分以上、さらに好ましくは600g/10分以上とすることで、延伸時の応力が低下するため、生産能力を維持しながら、繊維径の細いメルトブロー不織布層を得ることができ、生産性と耐水性を両立が可能となる。一方、MFRを2500g/10分以下、より好ましくは2000g/10分以下、さらに好ましくは1500g/10分以下とすることで、口金背面圧力が大きくなり、樹脂の吐出量の変動を抑えることができるため、メルトブロー不織布層の繊維径が均一となり、耐水圧のばらつきの少ない積層不織布を得ることができる。 The polyolefin resin (P B ) preferably has an MFR of 200 g/10 min or more and 2500 g/10 min or less. By setting the MFR to 200 g/10 minutes or more, more preferably 400 g/10 minutes or more, and even more preferably 600 g/10 minutes or more, the stress during drawing is reduced, so that the production capacity can be maintained and the fiber diameter can be reduced. A melt-blown nonwoven fabric layer can be obtained, and both productivity and water resistance can be achieved. On the other hand, by setting the MFR to 2,500 g/10 min or less, more preferably 2,000 g/10 min or less, and even more preferably 1,500 g/10 min or less, the back pressure of the die increases, and fluctuations in the resin discharge amount can be suppressed. Therefore, the melt-blown nonwoven fabric layer has a uniform fiber diameter, and a laminated nonwoven fabric with less variation in water pressure resistance can be obtained.
 なお、本発明において、ポリオレフィン系樹脂のMFRは、ASTM D1238 (A法)によって測定される値を採用する。なお、この規格によれば、例えば、ポリプロピレンは荷重:2.16kg、温度:230℃にて、ポリエチレンは荷重:2.16kg、温度:190℃にて測定することが規定されている。 In addition, in the present invention, the value measured by ASTM D1238 (method A) is adopted for the MFR of the polyolefin resin. According to this standard, for example, polypropylene is measured under a load of 2.16 kg and a temperature of 230°C, and polyethylene is measured under a load of 2.16 kg and a temperature of 190°C.
 本発明で用いられるポリオレフィン系樹脂としては、2種以上の混合物であってもよく、またその他のポリオレフィン系樹脂や熱可塑性エラストマー等を含有する樹脂組成物を用いることもできる。当然、MFRの異なる2種類以上の樹脂を任意の割合でブレンドして、ポリオレフィン系樹脂(P)、および/またはポリオレフィン系樹脂(P)のMFRを調整することもできる。この場合、主となるポリオレフィン系樹脂に対してブレンドする樹脂のMFRは、10g/10分以上1000g/10分以下であることが好ましく、より好ましくは20g/10分以上800g/10分以下、さらに好ましくは30g/10分以上600g/10分以下である。このようにすることにより、ブレンドしたポリオレフィン系樹脂に部分的に粘度斑が生じたり、繊度が不均一化したり、紡糸性が悪化したりすることを防ぐことができる。 The polyolefin-based resin used in the present invention may be a mixture of two or more types, and a resin composition containing other polyolefin-based resins, thermoplastic elastomers, and the like can also be used. Of course, two or more resins having different MFRs can be blended at any ratio to adjust the MFR of the polyolefin resin (P A ) and/or the polyolefin resin (P B ). In this case, the MFR of the resin to be blended with the main polyolefin resin is preferably 10 g/10 min or more and 1000 g/10 min or less, more preferably 20 g/10 min or more and 800 g/10 min or less, and further It is preferably 30 g/10 minutes or more and 600 g/10 minutes or less. By doing so, it is possible to prevent partial occurrence of viscosity unevenness in the blended polyolefin resin, uneven fineness, and deterioration of spinnability.
 本発明で用いられるポリオレフィン系樹脂には、本発明の効果を損なわない範囲で、酸化防止剤、耐候剤、光安定剤、防曇剤、ブロッキング剤、滑剤、核剤、および酸化チタン等の顔料等の添加物、あるいは他の重合体を必要に応じて添加することができる。 The polyolefin resin used in the present invention contains antioxidants, weathering agents, light stabilizers, antifogging agents, blocking agents, lubricants, nucleating agents, and pigments such as titanium oxide, as long as the effects of the present invention are not impaired. Additives such as, or other polymers can be added as necessary.
 また、後述する繊維を紡出する際、部分的な粘度斑の発生を防ぎ、繊維の繊度を均一化し、さらに繊維径を後述するように細くするため、用いる樹脂に対して、この樹脂の分子量を低下させてMFRを上げても良い。MFRを上げる方法としては、例えば、使用前に樹脂を加熱して熱分解する方法や、過酸化物を添加して熱処理する方法等が考えられる。 In addition, when spinning the fibers described later, in order to prevent the occurrence of partial viscosity unevenness, uniform the fineness of the fibers, and further reduce the fiber diameter as described later, the molecular weight of this resin is may be decreased to increase the MFR. As a method for increasing the MFR, for example, a method of heating the resin before use to thermally decompose it, a method of adding a peroxide and heat-treating the resin, and the like are conceivable.
 本発明で用いられるポリオレフィン系樹脂の融点は、80℃以上200℃以下であることが好ましい。融点を好ましくは80℃以上、より好ましくは100℃以上、さらに好ましくは120℃以上とすることにより、実用に耐え得る耐熱性が得られやすくなる。また、融点を好ましくは200℃以下、より好ましくは180℃以下とすることにより、口金から吐出された糸条を冷却し易くなり、繊維同士の融着を抑制し安定した紡糸が行い易くなる。 The melting point of the polyolefin resin used in the present invention is preferably 80°C or higher and 200°C or lower. By setting the melting point to preferably 80° C. or higher, more preferably 100° C. or higher, and even more preferably 120° C. or higher, heat resistance that can withstand practical use can be easily obtained. In addition, by setting the melting point to preferably 200° C. or lower, more preferably 180° C. or lower, the yarn extruded from the spinneret can be easily cooled, thereby suppressing fusion between fibers and facilitating stable spinning.
 [繊維]
 本発明に係るスパンボンド不織布層A1を構成するポリオレフィン系樹脂(PA)からなる繊維は、平均単繊維径が10.0μm以上14.0μm以下であることが好ましい。平均単繊維径を好ましくは10.0μm以上、より好ましくは12.0μm以上、とすることにより、毛細管現象による後加工薬剤の浸透による耐水圧の低下を抑制できる。一方、平均単繊維径を好ましくは14.0μm以下、より好ましくは13.0μm以下とすることにより、柔軟性や均一性が高く、積層不織布におけるメルトブロー不織布層の含有比率が低くても、実用に耐えうる耐水性に優れた積層不織布を得ることができる。
[fiber]
The fibers made of the polyolefin resin (P A ) constituting the spunbond nonwoven fabric layer A1 according to the present invention preferably have an average single fiber diameter of 10.0 μm or more and 14.0 μm or less. By setting the average single fiber diameter to preferably 10.0 μm or more, more preferably 12.0 μm or more, it is possible to suppress a decrease in water pressure resistance due to permeation of post-processing chemicals due to capillary action. On the other hand, by setting the average single fiber diameter to preferably 14.0 μm or less, more preferably 13.0 μm or less, the flexibility and uniformity are high, and even if the content ratio of the melt blown nonwoven fabric layer in the laminated nonwoven fabric is low, it is practical. A laminated nonwoven fabric having excellent durable water resistance can be obtained.
 本発明に係るスパンボンド不織布層A2を構成するポリオレフィン系樹脂(PA)からなる繊維は、平均単繊維径が6.5μm以上10.0μm以下であることが好ましい。平均単繊維径を好ましくは6.5μm以上、より好ましくは7.5μm以上、さらに好ましくは8.4μm以上とすることにより、紡糸性の低下を防ぎ、安定した平均単繊維径を有する不織布層を形成することができる。一方、平均単繊維径を好ましくは10.0μm以下、より好ましくは9.0μm以下とすることにより、柔軟性や均一性が高く、積層不織布におけるメルトブロー不織布層の含有比率が低くても、実用に耐えうる耐水性に優れた積層不織布を得ることができる。 The fibers made of the polyolefin resin (P A ) constituting the spunbond nonwoven fabric layer A2 according to the present invention preferably have an average single fiber diameter of 6.5 μm or more and 10.0 μm or less. By setting the average single fiber diameter to preferably 6.5 μm or more, more preferably 7.5 μm or more, and even more preferably 8.4 μm or more, a decrease in spinnability is prevented and a nonwoven fabric layer having a stable average single fiber diameter is obtained. can be formed. On the other hand, by setting the average single fiber diameter to preferably 10.0 μm or less, more preferably 9.0 μm or less, the flexibility and uniformity are high, and even if the content ratio of the melt blown nonwoven fabric layer in the laminated nonwoven fabric is low, it is practical. A laminated nonwoven fabric having excellent durable water resistance can be obtained.
 なお、本発明に係るスパンボンド不織布層A1、A2を構成するポリオレフィン系樹脂(PA)からなる繊維の平均単繊維径(μm)は、以下の手順によって算出される。なお、測定には、例えば、株式会社キーエンス製の走査型電子顕微鏡「VHX-D500」を使用できる。以降、特に断りがない限り、測定方法の説明で示される走査型電子顕微鏡(SEM)としては本装置を使用することができるものとする。
(1)積層不織布について、ランダムに小片サンプル10個を採取する。
(2)SEMで撮影倍率500~1000倍の表面写真を撮影し、各サンプルから10本ずつ、計100本のポリオレフィン繊維の幅を測定する。
(3)測定した100本の値の平均値から平均単繊維径(μm)を算出する。
The average single fiber diameter (μm) of the fibers made of the polyolefin resin (P A ) constituting the spunbond nonwoven fabric layers A1 and A2 according to the present invention is calculated by the following procedure. For the measurement, for example, a scanning electron microscope "VHX-D500" manufactured by Keyence Corporation can be used. Henceforth, unless otherwise specified, this device can be used as a scanning electron microscope (SEM) shown in the description of the measurement method.
(1) Collect 10 small piece samples at random from the laminated nonwoven fabric.
(2) Take a photograph of the surface with an SEM at a magnification of 500 to 1000, and measure the width of 100 polyolefin fibers in total, 10 from each sample.
(3) Calculate the average single fiber diameter (μm) from the average value of the 100 measured values.
 一方、本発明に係るメルトブロー不織布層Bを構成するポリオレフィン系樹脂(P)からなる繊維は、平均単繊維径が0.1μm以上8.0μm以下であることが好ましい。ポリオレフィン系樹脂(P)からなる繊維の平均単繊維径を好ましくは0.1μm以上、より好ましくは0.4μm以上とすることで、メルトブロー不織布層を形成する際に容易に繊維を捕集することができ、周囲への飛散を抑制して、より均一な積層不織布とすることができる。一方、平均繊維径を好ましくは8.0μm以下、より好ましくは7.0μm以下とすることで、メルトブロー不織布層Bのバリア性は向上させ、積層不織布の耐水圧を向上できる。 On the other hand, the fibers made of the polyolefin resin (P B ) constituting the melt blown nonwoven fabric layer B according to the present invention preferably have an average single fiber diameter of 0.1 μm or more and 8.0 μm or less. By setting the average single fiber diameter of the fibers made of the polyolefin resin (P B ) to preferably 0.1 μm or more, more preferably 0.4 μm or more, the fibers are easily collected when forming the melt blown nonwoven fabric layer. It is possible to suppress scattering to the surroundings and to obtain a more uniform laminated nonwoven fabric. On the other hand, by setting the average fiber diameter to preferably 8.0 μm or less, more preferably 7.0 μm or less, the barrier properties of the melt blown nonwoven fabric layer B can be improved, and the water pressure resistance of the laminated nonwoven fabric can be improved.
 本発明に係るメルトブロー不織布層Bを構成するポリオレフィン系樹脂(P)からなる繊維の平均単繊維径(μm)は、以下の手順によって算出される。
(1)積層不織布について、ランダムに小片サンプル10個を採取する。
(2)採取した試験片を凍結ミクロトームで切削し、得られた断面に対して導電処理を施し、SEMを用いて撮影倍率4000~10000倍にて断面を撮影する。
(3)各サンプルのメルトブロー不織布層Bから10本ずつ、計100本の繊維の幅を測定する。
(4)測定した100本の値の平均値から平均単繊維径(μm)を算出する。
The average single fiber diameter (μm) of the fibers composed of the polyolefin resin (P B ) constituting the melt blown nonwoven fabric layer B according to the present invention is calculated by the following procedure.
(1) Collect 10 small piece samples at random from the laminated nonwoven fabric.
(2) The sampled specimen is cut with a freezing microtome, the obtained cross section is subjected to a conductive treatment, and the cross section is photographed with an SEM at a magnification of 4000 to 10000 times.
(3) The width of 100 fibers in total, 10 fibers from the melt-blown nonwoven fabric layer B of each sample, is measured.
(4) Calculate the average single fiber diameter (μm) from the average value of the 100 measured values.
 [積層不織布]
 本発明の積層不織布は、一方の表面に、ポリオレフィン系樹脂からなる繊維で構成されてなり、少なくともリン酸エステルを含んでなるスパンボンド不織布層A1が配されてなり、他方の表面に、ポリオレフィン系樹脂からなる繊維で構成されてなるスパンボンド不織布層A2が配されてなり、前記のスパンボンド不織布層A1と前記のスパンボンド不織布層A2との間に、少なくとも1層のポリオレフィン系樹脂からなる繊維で構成されてなるメルトブロー不織布層Bが配されてなる。このように構成することにより、化学防護服用不織布として要求されるレベル以上の耐水性能と帯電防止性とを付与することができる。
[Laminated nonwoven fabric]
The laminated nonwoven fabric of the present invention comprises, on one surface, a spunbond nonwoven fabric layer A1 composed of fibers made of a polyolefin resin and containing at least a phosphate ester, and on the other surface, a polyolefin A spunbonded nonwoven fabric layer A2 composed of fibers made of a resin is disposed, and at least one layer of fibers made of a polyolefin resin is provided between the spunbonded nonwoven fabric layer A1 and the spunbonded nonwoven fabric layer A2. A melt-blown nonwoven fabric layer B composed of is arranged. By configuring in this way, it is possible to impart water resistance and antistatic properties at or above the levels required for nonwoven fabrics for chemical protective clothing.
 さらに、本発明の積層不織布の構成について、図1を用いて説明する。図1は、本発明の積層不織布の一実施形態を例示する、断面概念図である。図1には、積層不織布(11)の一方の表面にスパンボンド不織布層A1(12)が配されてなり、他方の表面にスパンボンド不織布層A2(14)が配されてなり、前記のスパンボンド不織布層A1(12)と前記のスパンボンド不織布層A2(14)との間に、1層のメルトブロー不織布層B(13)が配されてなる積層不織布(11)が例示されている。融着部(15)とは、積層不織布においてスパンボンド不織布層A1(12)、スパンボンド不織布層A2(14)、そして、メルトブロー不織布層B(13)のそれぞれを構成する繊維が溶融するなどして融着している部分のことを指し、それ以外の部分を、本発明における非融着部(16)とする。なお、スパンボンド不織布層A1(12)とスパンボンド不織布層A2(14)との区別は、非融着部(16)におけるそれぞれの厚み(tA1、tA2)を後述の方法によって測定し、より厚みのあるスパンボンド不織布層をスパンボンド不織布層A1(12)として行うこととする。 Furthermore, the configuration of the laminated nonwoven fabric of the present invention will be described with reference to FIG. FIG. 1 is a cross-sectional conceptual diagram illustrating one embodiment of the laminated nonwoven fabric of the present invention. In FIG. 1, a spunbond nonwoven fabric layer A1 (12) is arranged on one surface of a laminated nonwoven fabric (11), and a spunbond nonwoven fabric layer A2 (14) is arranged on the other surface. A laminated nonwoven fabric (11) in which one meltblown nonwoven fabric layer B (13) is arranged between the bonded nonwoven fabric layer A1 (12) and the spunbond nonwoven fabric layer A2 (14) is exemplified. The fusion-bonded portion (15) is a region where the fibers constituting the spunbond nonwoven fabric layer A1 (12), the spunbond nonwoven fabric layer A2 (14), and the melt blown nonwoven fabric layer B (13) in the laminated nonwoven fabric are melted. The portion other than this is defined as the non-fused portion (16) in the present invention. The spunbond nonwoven fabric layer A1 (12) and the spunbond nonwoven fabric layer A2 (14) are distinguished by measuring the respective thicknesses (t A1 , t A2 ) in the non-fused portion (16) by the method described later, A spunbond nonwoven fabric layer having a greater thickness is used as the spunbond nonwoven fabric layer A1 (12).
 本発明に係るスパンボンド不織布層A1は、少なくともリン酸エステルを含んでなる。ここで、本発明において、スパンボンド不織布層が「リン酸エステルを含む」とは、スパンボンド不織布層を構成する繊維の中にリン酸エステルを含んでいる状態、あるいは、スパンボンド不織布層を構成する繊維の表面にリン酸エステルが付与されている状態のことをいう。 The spunbond nonwoven fabric layer A1 according to the present invention contains at least a phosphate ester. Here, in the present invention, the expression that the spunbond nonwoven fabric layer "contains a phosphate ester" means that the fibers constituting the spunbond nonwoven fabric layer contain the phosphate ester, or the spunbond nonwoven fabric layer is composed of It refers to the state in which a phosphate ester is applied to the surface of the fiber.
 スパンボンド不織布層を構成する繊維の中にリン酸エステルを含んでいる状態としては、例えば、リン酸エステルがポリオレフィン系樹脂に練りこまれてなる状態などが挙げられる。また、スパンボンド不織布層を構成する繊維の表面にリン酸エステルが付与されている状態としては、例えば、リン酸エステルが繊維の表面に付与されている状態、より具体的には、スパンボンド不織布層の質量に対し0.01質量%以上2質量%以下付与されている状態などが挙げられる。生産コストや帯電防止性の観点から、スパンボンド不織布層を構成する繊維の表面にリン酸エステルが付与されている状態がより好ましい様態である。 The state in which the fibers constituting the spunbond nonwoven fabric layer contain the phosphate ester includes, for example, the state in which the phosphate ester is kneaded into the polyolefin resin. In addition, the state in which the phosphate ester is applied to the surface of the fibers constituting the spunbond nonwoven fabric layer includes, for example, the state in which the phosphate ester is applied to the surface of the fibers, more specifically, the spunbond nonwoven fabric layer. Examples include a state in which 0.01% by mass or more and 2% by mass or less is provided with respect to the mass of the layer. From the viewpoint of production cost and antistatic properties, it is more preferable that the phosphate ester is applied to the surface of the fibers constituting the spunbond nonwoven fabric layer.
 前記のリン酸エステルとしては、例えば、(アルコール)、および、(アルコール1モルに対し炭素数2以上4以下のアルキレンオキシドを1モル以上10モル以下の割合で付加させた化合物)からなる群から選ばれる少なくとも一つと、(五酸化二リン、または、オキシハロゲン化リン)とを反応させて得られるリン酸エステル、リン酸エステルのアルカリ金属塩、リン酸エステルのアルカリ土類金属塩、リン酸エステルのアミン塩が挙げられる。中でも、前記のアルコールが、炭素数6以上22以下の脂肪族直鎖アルキルアルコール、もしくは、炭素数7以上24以下の分岐構造を有する脂肪族アルキルアルコールであると、帯電防止性に優れた積層不織布とすることができるため、より好ましい。 As the phosphate ester, for example, from the group consisting of (alcohol) and (a compound obtained by adding an alkylene oxide having 2 to 4 carbon atoms at a ratio of 1 to 10 mol with respect to 1 mol of alcohol) Phosphoric acid ester obtained by reacting at least one selected with (phosphorus pentoxide or phosphorus oxyhalide), alkali metal salt of phosphoric acid ester, alkaline earth metal salt of phosphoric acid ester, phosphoric acid Amine salts of esters are mentioned. Among them, when the alcohol is an aliphatic linear alkyl alcohol having 6 to 22 carbon atoms or an aliphatic alkyl alcohol having a branched structure having 7 to 24 carbon atoms, the laminated nonwoven fabric having excellent antistatic properties It is more preferable because it can be
 本発明において、リン酸エステルを用いることで、積層不織布の耐水圧を維持しながら、積層不織布に帯電防止性能を付与することができる。一般に、帯電防止性能自体は、何らかの親水性を有する物質を積層不織布に付与することで発現できるが、親水性を有する物質を積層不織布に付与すると、親水性を有する物質が空気中の水分を吸湿し、液状化して積層不織布内部に浸透してしまうことがある。さらに、耐水圧等のバリア性を発現する機能層であるメルトブロー層にまで浸透してしまった場合には、積層不織布の耐水圧を大きく低下させることがある。本発明は、このリン酸エステルを用いることで、一定の親水性能を発揮して、十分な帯電防止性を発揮しつつ、優れた耐水性能を有する積層不織布が得られることを見出したものである。 In the present invention, by using a phosphate ester, it is possible to impart antistatic performance to the laminated nonwoven fabric while maintaining the waterproof pressure resistance of the laminated nonwoven fabric. In general, the antistatic performance itself can be expressed by imparting some kind of hydrophilic substance to the laminated nonwoven fabric. However, it may liquefy and permeate into the laminated nonwoven fabric. Furthermore, if the liquid penetrates into the meltblown layer, which is a functional layer that exhibits barrier properties such as water pressure resistance, the water pressure resistance of the laminated nonwoven fabric may be greatly reduced. The present invention has found that by using this phosphate ester, it is possible to obtain a laminated nonwoven fabric having excellent water resistance while exhibiting a certain degree of hydrophilicity and exhibiting sufficient antistatic properties. .
 本発明の積層不織布のスパンボンド不織布層に、リン酸エステルを含むことは、抽出試験、元素分析、エネルギー分散型X線分析法、核磁気共鳴スペクトル測定、フーリエ変換赤外分光測定(FT-IR)等、あるいはこれらを併用することにより分析できる。例えば、全反射測定法により得られた積層不織布のFT-IRスペクトルにおいて、950~1060cm-1にリン酸エステルのP-O-C結合に由来するピークが検出された場合、表面のスパンボンド不織布層にリン酸エステルが含まれていると判定される。 The inclusion of a phosphate ester in the spunbond nonwoven layer of the laminated nonwoven fabric of the present invention can be confirmed by extraction tests, elemental analysis, energy dispersive X-ray analysis, nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy (FT-IR). ), etc., or by using them in combination. For example, in the FT-IR spectrum of the laminated nonwoven fabric obtained by total reflection measurement, when a peak derived from the P—O—C bond of the phosphate ester is detected at 950 to 1060 cm −1 , the spunbond nonwoven fabric on the surface It is determined that the layer contains a phosphate ester.
 なお、本発明の積層不織布の具体的な積層構成としては、例えば、スパンボンド不織布層A1側の表面から順に、(スパンボンド不織布層A1)/(メルトブロー不織布層B)/(スパンボンド不織布層A2)と積層されてなるSMS不織布、(スパンボンド不織布層A1)/(メルトブロー不織布層B)/(メルトブロー不織布層B)/(スパンボンド不織布層A2)と積層されてなるSMMS不織布、(スパンボンド不織布層A1)/(スパンボンド不織布層A1)/(メルトブロー不織布層B)/(メルトブロー不織布層B)/(スパンボンド不織布層A2)、あるいは、(スパンボンド不織布層A1)/(メルトブロー不織布層B)/(メルトブロー不織布層B)/(スパンボンド不織布層A2)/(スパンボンド不織布層A2)と積層されてなるSSMMS不織布が挙げられる。 In addition, as a specific laminated structure of the laminated nonwoven fabric of the present invention, for example, from the surface of the spunbond nonwoven fabric layer A1 side, (spunbond nonwoven fabric layer A1) / (meltblown nonwoven fabric layer B) / (spunbond nonwoven fabric layer A2) ), SMS nonwoven fabric laminated with (spunbond nonwoven fabric layer A1) / (meltblown nonwoven fabric layer B) / (meltblown nonwoven fabric layer B) / (spunbond nonwoven fabric layer A2), (spunbond nonwoven fabric Layer A1)/(spunbond nonwoven layer A1)/(meltblown nonwoven layer B)/(meltblown nonwoven layer B)/(spunbond nonwoven layer A2), or (spunbond nonwoven layer A1)/(meltblown nonwoven layer B) /(meltblown nonwoven fabric layer B)/(spunbond nonwoven fabric layer A2)/(spunbond nonwoven fabric layer A2) laminated SSMMS nonwoven fabric.
 本発明の積層不織布は、前記のスパンボンド不織布層A1がさらにシリコーンを含むことが好ましい。このようにすることで、シリコーンが適度な撥水性を発現し、帯電防止性能を発現するリン酸エステル付与による耐水圧低下を抑制して、帯電防止性と高い耐水圧の両立がより容易なものとすることができる。 In the laminated nonwoven fabric of the present invention, the spunbond nonwoven fabric layer A1 preferably further contains silicone. By doing so, the silicone exhibits appropriate water repellency, suppresses the decrease in water pressure resistance due to the addition of the phosphate ester that exhibits antistatic performance, and makes it easier to achieve both antistatic performance and high water pressure resistance. can be
 ここで、本発明において、スパンボンド不織布層A1が「シリコーンを含む」とは、スパンボンド不織布層A1を構成する繊維の中にシリコーンを含んでいる状態、あるいはスパンボンド不織布層A1を構成する繊維の表面にシリコーンが付与されている状態のことをいう。また、本発明で言う「シリコーン」とは、シロキサン結合による主骨格を持つ合成高分子化合物のことを指す。 Here, in the present invention, the expression that the spunbond nonwoven fabric layer A1 "contains silicone" means that the fibers that constitute the spunbond nonwoven fabric layer A1 contain silicone, or that the fibers that constitute the spunbond nonwoven fabric layer A1 contain silicone. It refers to a state in which silicone is applied to the surface of Further, the term "silicone" as used in the present invention refers to a synthetic polymer compound having a main skeleton formed by siloxane bonds.
 スパンボンド不織布層A1を構成する繊維の中にシリコーンを含んでいる状態としては、シリコーンがポリオレフィン系樹脂に練りこまれてなる状態などが挙げられる。また、スパンボンド不織布層A1を構成する繊維の表面にシリコーンが付与されている状態としては、例えば、シリコーンが繊維の表面に付与されている状態、より具体的には、スパンボンド不織布層A1の質量に対し0.01質量%以上2質量%以下付与されている状態が挙げられる。 A state in which silicone is contained in the fibers constituting the spunbond nonwoven fabric layer A1 includes a state in which silicone is kneaded into a polyolefin resin. The state in which silicone is applied to the surfaces of the fibers constituting the spunbond nonwoven fabric layer A1 includes, for example, the state in which silicone is applied to the surfaces of the fibers, more specifically, the spunbond nonwoven fabric layer A1. A state in which 0.01% by mass or more and 2% by mass or less is added to the mass can be mentioned.
 シリコーンとしては、例えば、アミノ変性シリコーンオイル、エポキシ変性シリコーンオイル、カルボニル変性シリコーンオイル、カルビノール変性シリコーンオイル、ポリエーテル変性シリコーンオイル、アミノ/アルコキシ変性シリコーンオイル、エポキシ/ポリエーテル変性シリコーンオイル、アミノ/ポリエーテル変性シリコーンオイル、ジメチルシリコーンオイル、フェニルシリコーンオイル等が挙げられる。 Examples of silicone include amino-modified silicone oil, epoxy-modified silicone oil, carbonyl-modified silicone oil, carbinol-modified silicone oil, polyether-modified silicone oil, amino/alkoxy-modified silicone oil, epoxy/polyether-modified silicone oil, amino/ Polyether-modified silicone oil, dimethylsilicone oil, phenylsilicone oil and the like can be mentioned.
 本発明の積層不織布のスパンボンド不織布層A1にシリコーンが含まれていることは、抽出試験、元素分析、エネルギー分散型X線分析法、FT-IR等、あるいはこれらを併用することにより分析できる。例えば、積層不織布から採取した試験片の表面を、エネルギー分散型X線装置により分析し、得られた蛍光X線スペクトルにおいて、ケイ素に由来するシグナルが検出された場合、表面のスパンボンド不織布層にシリコーンが含まれていると判定される。 The presence of silicone in the spunbond nonwoven fabric layer A1 of the laminated nonwoven fabric of the present invention can be analyzed by an extraction test, elemental analysis, energy dispersive X-ray analysis, FT-IR, etc., or a combination thereof. For example, the surface of a test piece taken from a laminated nonwoven fabric is analyzed with an energy dispersive X-ray device, and in the fluorescent X-ray spectrum obtained, when a signal derived from silicon is detected, the spunbond nonwoven fabric layer on the surface Determined to contain silicone.
 本発明の積層不織布は、非融着部におけるスパンボンド不織布層A1(tA1)の、スパンボンド不織布層A2の厚み(tA2)に対する比(tA1/tA2)が1.5以上3.0以下である。前記の厚みの比tA1/tA2を好ましくは1.7以上とすることで、リン酸エステル等の帯電防止剤の浸透による耐水圧の低下を抑制することができる。一方、前記の厚みの比tA1/tA2が3.0以下とすることで、融着部を設ける際の収縮によるしわの発生を抑制することができる。 In the laminated nonwoven fabric of the present invention, the ratio (t A1 /t A2 ) of the spunbond nonwoven fabric layer A1 (t A1 ) in the non-fused portion to the thickness (t A2 ) of the spunbond nonwoven fabric layer A2 is 1.5 or more3. 0 or less. By setting the thickness ratio t A1 /t A2 to preferably 1.7 or more, it is possible to suppress a decrease in water pressure resistance due to permeation of an antistatic agent such as a phosphate ester. On the other hand, by setting the thickness ratio t A1 /t A2 to 3.0 or less, it is possible to suppress the occurrence of wrinkles due to shrinkage when providing the fused portion.
 本発明の積層不織布におけるスパンボンド不織布層の厚み比は以下のように測定される。
(1)積層不織布から幅20mm×20mmの試験片を採取する。
(2)採取した試験片を凍結ミクロトームで切削し、得られた断面に対して導電処理を施し、SEMを用いて撮影倍率300倍にて断面を撮影する。断面のSEM写真に融着部が含まれる場合は、観察視野を移動させて再度撮影する。
(3)断面のSEM写真から、スパンボンド不織布層A1、A2それぞれについて、スパンボンド不織布層の表面からメルトブロー不織布層の界面までの距離を5点ずつ計測し、各平均値をtA1、tA2とする。
(4)tA1をtA2で除し、小数点以下第二位を四捨五入して、厚みの比tA1/tA2を計算する。
The thickness ratio of the spunbond nonwoven fabric layer in the laminated nonwoven fabric of the present invention is measured as follows.
(1) A test piece having a width of 20 mm×20 mm is taken from the laminated nonwoven fabric.
(2) The sampled test piece is cut with a freezing microtome, the obtained cross section is subjected to a conductive treatment, and the cross section is photographed with an SEM at a magnification of 300 times. If the SEM photograph of the cross section includes the fused portion, the observation field of view is moved and the photograph is taken again.
(3) From the SEM photograph of the cross section, for each of the spunbond nonwoven fabric layers A1 and A2, the distance from the surface of the spunbond nonwoven fabric layer to the interface of the meltblown nonwoven fabric layer was measured at 5 points, and each average value was t A1 and t A2 . and
(4) Divide t A1 by t A2 and round off to the second decimal place to calculate the thickness ratio t A1 /t A2 .
 前記の厚みの比(tA1/tA2)は各スパンボンド不織布層の目付や繊維径を調整することによって制御することができる。 The thickness ratio (t A1 /t A2 ) can be controlled by adjusting the basis weight and fiber diameter of each spunbond nonwoven fabric layer.
 本発明の積層不織布は、スパンボンド不織布層A1が配された表面における非融着部の高さHが、50μm以上200μm以下で、他方の表面における非融着部の高さHの、Hに対する比(H/H)が、1.1以上4.0以下であることが好ましい。 In the laminated nonwoven fabric of the present invention, the height H1 of the non-fused portion on the surface on which the spunbond nonwoven fabric layer A1 is arranged is 50 μm or more and 200 μm or less, and the height H2 of the non-fused portion on the other surface is The ratio (H 2 /H 1 ) to H 1 is preferably 1.1 or more and 4.0 or less .
 前記の高さHを好ましくは50μm以上とすることで、積層不織布が柔軟なものとなり、防護服としたときの着心地や防護服をたたむ際の収納性をよりよいものとすることができる。一方、Hを好ましくは200μm以下、より好ましくは180μm以下、さらに好ましくは150μm以下、特に好ましくは120μm以下とすることで、表面が平滑となることでリン酸エステル等の帯電防止剤が均一に表面付与され、帯電防止性が良好となる。 By setting the height H1 to preferably 50 μm or more, the laminated nonwoven fabric becomes flexible, and comfort when used as a protective clothing and storability when the protective clothing is folded can be improved. . On the other hand, H1 is preferably 200 μm or less, more preferably 180 μm or less, still more preferably 150 μm or less, and particularly preferably 120 μm or less, so that the surface is smooth and antistatic agents such as phosphate esters are uniformly applied. It is applied to the surface and has good antistatic properties.
 そして、前記の高さの比(H/H)については、好ましくは1.1以上、より好ましくは1.5以上とすることで、積層不織布が柔軟なものとなり、防護服としたときの着心地や防護服をたたむ際の収納性をよりよいものとすることができる。H/Hを好ましくは4.0以下、より好ましくは3.0以下、さらに好ましくは2.0以下とすることで、メルトブロー不織布層の変形を抑制することができ、耐水圧を向上することができる。 The height ratio (H 2 /H 1 ) is preferably 1.1 or more, more preferably 1.5 or more, so that the laminated nonwoven fabric becomes soft, and when used as protective clothing It is possible to improve the comfort of wearing and the storability when folding the protective clothing. By setting H 2 /H 1 to preferably 4.0 or less, more preferably 3.0 or less, and even more preferably 2.0 or less, deformation of the melt blown nonwoven fabric layer can be suppressed and water pressure resistance is improved. be able to.
 なお、他方の表面における非融着部の高さHは、上記の高さの比(H/H)の範囲を満たす限りにおいて、200μm以上400μm以下であることが好ましい。好ましくは200μm以上とすることで、積層不織布が柔軟なものとなり、防護服としたときの着心地や防護服をたたむ際の収納性をよりよいものとすることができる。一方、好ましくは400μm以下、より好ましくは370μm以下、さらに好ましくは350μm以下とすることで、メルトブロー不織布層の変形を抑制することができ、耐水圧を向上することができる。 The height H 2 of the non-fused portion on the other surface is preferably 200 μm or more and 400 μm or less as long as the range of the height ratio (H 2 /H 1 ) is satisfied. When the thickness is preferably 200 μm or more, the laminated nonwoven fabric becomes soft, and comfort when used as protective clothing and storability when the protective clothing is folded can be improved. On the other hand, when the thickness is preferably 400 μm or less, more preferably 370 μm or less, and even more preferably 350 μm or less, deformation of the melt blown nonwoven fabric layer can be suppressed and water pressure resistance can be improved.
 本発明の積層不織布において、非融着部の高さH、Hを図1の断面概念図の例を用いて説明する。積層不織布(11)の断面において、一方の表面(スパンボンド不織布層A1(12)側の表面)における、非融着部の最も高い点と融着部の最も低い点との間の高低差Hが、非融着部の高さHであり、他方の表面(スパンボンド不織布層A2(14)側の表面)における、非融着部の最も高い点と融着部の最も低い点との間の高低差Hが非融着部の高さHである。 In the laminated nonwoven fabric of the present invention, the heights H 1 and H 2 of the non-fused portions will be explained using the example of the conceptual cross-sectional view of FIG. 1 . Height difference H between the highest point of the non-fused portion and the lowest point of the fused portion on one surface (the surface on the side of the spunbond nonwoven fabric layer A1 (12)) in the cross section of the laminated nonwoven fabric (11) 1 is the height H1 of the unfused portion, and the highest point of the unfused portion and the lowest point of the fused portion on the other surface (the surface on the side of the spunbond nonwoven fabric layer A2 (14)); is the height H2 of the unfused portion.
 本発明の積層不織布における非融着部の高さH、H、そして、HのHに対する比(H/H)は以下のように測定される。
(1)積層不織布から幅20mm×20mmの試験片を採取する。
(2)採取した試験片を非融着部を含むように凍結ミクロトームで切削し、得られた断面に対して導電処理を施し、SEMを用いて断面を撮影する。
(3)断面SEM写真から、スパンボンド不織布層A1、A2それぞれについて、融着部の最も低い点を通る接線と非融着部のスパンボンド不織布層の表面の最も高い点を通る接線との間の距離(μm)を5点ずつ計測し、各平均値(μm)の小数点以下第一位を四捨五入した値をH(μm)、H(μm)とする。
(4)HをHで除し、小数点以下第二位を四捨五入して、高さの比(H/H)を計算する。
The heights H 1 and H 2 of the non-fused portions in the laminated nonwoven fabric of the present invention and the ratio of H 2 to H 1 (H 2 /H 1 ) are measured as follows.
(1) A test piece having a width of 20 mm×20 mm is taken from the laminated nonwoven fabric.
(2) The sampled test piece is cut with a freezing microtome so as to include the non-fused portion, the obtained cross section is subjected to a conductive treatment, and the cross section is photographed using an SEM.
(3) From the cross-sectional SEM photograph, for each of the spunbond nonwoven fabric layers A1 and A2, between the tangent line passing through the lowest point of the fused part and the tangent line passing through the highest point of the surface of the spunbond nonwoven fabric layer in the non-fused part The distance (μm) is measured at 5 points, and the values obtained by rounding each average value (μm) to the first decimal place are defined as H 1 (μm) and H 2 (μm).
(4) Divide H2 by H1 and round off to the second decimal place to calculate the height ratio ( H2 / H1 ).
 積層不織布の非融着部の高さを調節する方法は前記のスパンボンド不織布層の目付や繊維径を調節することにより可能である。また、後述の融着工程で使用するカレンダーロールの彫刻形状を調整することによっても可能である。 The method of adjusting the height of the non-fused portion of the laminated nonwoven fabric is possible by adjusting the basis weight and fiber diameter of the spunbond nonwoven fabric layer. It is also possible by adjusting the engraving shape of the calender roll used in the later-described fusing step.
 本発明の積層不織布のメルトブロー不織布層Bの厚み(t)の、積層不織布全体の厚み(t)に対する比(t/t)は0.05以上0.15以下であることが好ましい。t/tを好ましくは0.05以上、より好ましくは0.08以上とすることで耐水性を向上させることができる。ここでいう、積層不織布全体の厚みとは、積層不織布の断面において、非融着部におけるスパンボンド不織布層A1の表面の最も高い点から、スパンボンド不織布層A2の表面の最も高い点までの距離のことを言う。 The ratio (t B /t) of the thickness (t B ) of the melt-blown nonwoven fabric layer B of the laminated nonwoven fabric of the present invention to the thickness (t) of the entire laminated nonwoven fabric is preferably 0.05 or more and 0.15 or less. Water resistance can be improved by setting t B /t to preferably 0.05 or more, more preferably 0.08 or more. Here, the thickness of the entire laminated nonwoven fabric is the distance from the highest point on the surface of the spunbond nonwoven fabric layer A1 in the non-fused portion to the highest point on the surface of the spunbond nonwoven fabric layer A2 in the cross section of the laminated nonwoven fabric. say about
 一方、t/tを好ましくは0.15以下、より好ましくは0.12以下とすることで防護服として利用するのに十分な強度を得ることができる。 On the other hand, by setting t B /t to preferably 0.15 or less, more preferably 0.12 or less, sufficient strength for use as protective clothing can be obtained.
 本発明の積層不織布におけるメルトブロー不織布層Bの厚み(t)の、積層不織布全体の厚み(t)に対する比(t/t)は、以下のように測定される。
(1)積層不織布から幅20mm×20mmの試験片を採取する。
(2)採取した試験片を凍結ミクロトームで切削し、得られた断面に対して導電処理を施し、SEMを用いて撮影倍率300倍にて断面を撮影する。断面のSEM写真に融着部が含まれる場合は、観察視野を移動させて再度撮影する。
(3)断面のSEM写真から、スパンボンド不織布層A1とメルトブロー不織布層Bとの界面から、スパンボンド不織布層A2とメルトブロー不織布層Bとの界面までの距離を5点計測し、その平均値をメルトブロー不織布層Bの厚み(t)とする。
(4)断面SEM写真から、スパンボンド不織布層A1の表面からスパンボンド不織布層A2の表面までの距離を5点計測し、その平均値を積層不織布全体の厚み(t)とする。
(5)tをtで除し、小数点以下第三位を四捨五入した値を厚みの比(t/t)とする。
The ratio (t B /t) of the thickness (t B ) of the melt blown nonwoven fabric layer B in the laminated nonwoven fabric of the present invention to the thickness (t) of the entire laminated nonwoven fabric (t B /t) is measured as follows.
(1) A test piece having a width of 20 mm×20 mm is taken from the laminated nonwoven fabric.
(2) The sampled test piece is cut with a freezing microtome, the obtained cross section is subjected to a conductive treatment, and the cross section is photographed with an SEM at a magnification of 300 times. If the SEM photograph of the cross section includes the fused portion, the observation field of view is moved and the photograph is taken again.
(3) From the SEM photograph of the cross section, the distance from the interface between the spunbond nonwoven fabric layer A1 and the meltblown nonwoven fabric layer B to the interface between the spunbond nonwoven fabric layer A2 and the meltblown nonwoven fabric layer B is measured at five points, and the average value is calculated. The thickness of the melt-blown nonwoven fabric layer B is defined as (t B ).
(4) From the cross-sectional SEM photograph, measure the distance from the surface of the spunbond nonwoven fabric layer A1 to the surface of the spunbond nonwoven fabric layer A2 at five points, and take the average value as the thickness (t) of the entire laminated nonwoven fabric.
(5) Divide tB by t and round off to the third decimal place to obtain the thickness ratio ( tB /t).
 t/tはメルトブロー不織布層Bの目付、平均単繊維径を調節することによって調節することが可能である。また、融着工程における接着温度や線圧、クリアランスを調節することによっても可能である。 t B /t can be adjusted by adjusting the basis weight of the melt blown nonwoven fabric layer B and the average single fiber diameter. It is also possible by adjusting the bonding temperature, linear pressure and clearance in the fusion bonding process.
 本発明の積層不織布の目付は、40g/m以上100g/m以下であることが好ましい。目付を好ましくは40g/m以上とし、より好ましくは50g/m以上とすることにより、実用に供し得る耐水圧や機械的強度の積層不織布を得ることができる。 The basis weight of the laminated nonwoven fabric of the present invention is preferably 40 g/m 2 or more and 100 g/m 2 or less. By setting the basis weight to preferably 40 g/m 2 or more, more preferably 50 g/m 2 or more, it is possible to obtain a laminated nonwoven fabric having practical water pressure resistance and mechanical strength.
 一方、目付を好ましくは100g/m以下、より好ましくは70g/m以下とすることにより、防護服として使用する場合、着用者の作業性を阻害しない積層不織布とすることができる。また、防護服をたたんだ際の厚みを抑制することができ、備蓄品としての保管場所を小さくすることができる。 On the other hand, by setting the basis weight to preferably 100 g/m 2 or less, more preferably 70 g/m 2 or less, it is possible to obtain a laminated nonwoven fabric that does not hinder the wearer's workability when used as protective clothing. In addition, it is possible to reduce the thickness of the protective clothing when it is folded, and it is possible to reduce the storage space for stockpile items.
 なお、本発明の積層不織布の目付は、JIS L1913:2010「一般不織布試験方法」の「6.2 単位面積当たりの質量」に準じ、以下の手順によって測定される。
(1)20cm×25cmの試験片を、試料の幅1m当たり3枚採取する。
(2)標準状態におけるそれぞれの質量(g)を量る。
(3)その平均値を1m当たりの質量(g/m)で表する。
The basis weight of the laminated nonwoven fabric of the present invention is measured by the following procedure according to JIS L1913:2010 "General nonwoven fabric test method", "6.2 Mass per unit area".
(1) Three test pieces of 20 cm x 25 cm are collected per 1 m width of the sample.
(2) Weigh each mass (g) in the standard state.
(3) The average value is represented by mass (g/m 2 ) per 1 m 2 .
 本発明の積層不織布は、単位目付当たりの耐水圧が15mmHO/(g/m)以上であることが好ましい。単位目付当たりの耐水圧を15mmHO/(g/m)以上、より好ましくは17mmHO/(g/m)以上とすることにより、実用に耐えうる耐水性を維持しつつ、柔軟性に優れる積層不織布とすることができる。耐水圧の上限について特に制限はないが、高い耐水圧を発現する不織布構造は緻密な構造となるため、積層不織布の通気性は低下し、防護服の着用時の蒸れが発生することから、耐水圧の上限は、30mmHO/(g/m)が好ましい。 The laminated nonwoven fabric of the present invention preferably has a water pressure resistance per unit basis weight of 15 mmH 2 O/(g/m 2 ) or more. By setting the water pressure resistance per unit basis weight to 15 mmH 2 O/(g/m 2 ) or more, and more preferably 17 mmH 2 O/(g/m 2 ) or more, the flexibility is maintained while maintaining practical water resistance. A laminated nonwoven fabric having excellent properties can be obtained. There is no particular upper limit to the water pressure resistance, but since the nonwoven fabric structure that exhibits high water pressure resistance has a dense structure, the air permeability of the laminated nonwoven fabric decreases and it gets stuffy when wearing protective clothing. The upper limit of water pressure is preferably 30 mmH 2 O/(g/m 2 ).
 なお、本発明の積層不織布の単位目付当たりの耐水圧は、JIS L1092:2009「繊維製品の防水性試験方法」の「7.1.1 A法(低水圧法)」に準じ、以下の手順によって測定される。
(1)積層不織布から幅150mm×150mmの試験片を5枚採取する。
(2)試験片を測定装置のクランプ(試験片の水に当たる部分が100cmの大きさのもの)にセットする。
(3)水を入れた水準装置を600mm/min±30mm/minの速さで水位を上昇させ、試験片の裏側に3か所から水が出たときの水位をmm単位で測定する。
(4)上記の測定を5枚の試験片で行い、その平均値を算出する。
(5)算出した通気量(mmHO)を、前記の方法で測定された目付(g/m)で除する。
In addition, the water pressure resistance per unit basis weight of the laminated nonwoven fabric of the present invention is according to JIS L1092: 2009 "Waterproof test method for textile products""7.1.1 A method (low water pressure method)" according to the following procedure. measured by
(1) Five test pieces each having a width of 150 mm×150 mm are taken from the laminated nonwoven fabric.
(2) The test piece is set in the clamp of the measuring device (the part of the test piece that comes into contact with water has a size of 100 cm 2 ).
(3) Raise the level device filled with water at a speed of 600 mm/min±30 mm/min, and measure the water level in mm units when water comes out from three places on the back side of the test piece.
(4) Perform the above measurements on five test pieces, and calculate the average value.
(5) Divide the calculated ventilation amount (mmH 2 O) by the basis weight (g/m 2 ) measured by the above method.
 本発明の積層不織布の単位目付当たりの通気量は、0.01(cm/(cm・秒))/(g/m)以上5(cm/(cm・秒))/(g/m)以下であることが好ましい。単位目付当たりの通気量を好ましくは2(cm/(cm・秒))/(g/m)以下とし、より好ましくは1(cm/(cm・秒))/(g/m)以下とし、さらに好ましくは0.5(cm/(cm・秒))/(g/m)以下とすることにより、防護服用途等で必要となる耐水性を維持することができる。一方、単位目付当たりの通気量を好ましくは0.02(cm/(cm・秒))/(g/m)以上とし、より好ましくは0.04(cm/(cm・秒))/(g/m)以上とし、さらに好ましくは0.06(cm/(cm・秒))/(g/m)以上とすることにより、防護服用途などで着用時の蒸れを軽減できる。通気量は、目付、平均単繊径、メルトブロー不織布層Bの目付および熱圧着条件(圧着率、温度および線圧)などによって調節することができる。 The air permeability per unit basis weight of the laminated nonwoven fabric of the present invention is 0.01 (cm 3 /(cm 2 ·sec))/(g/m 2 ) or more and 5 (cm 3 /(cm 2 ·sec))/( g/m 2 ) or less. The permeation amount per unit basis weight is preferably 2 (cm 3 /(cm 2 ·sec))/(g/m 2 ) or less, more preferably 1 (cm 3 /(cm 2 ·sec))/(g/ m 2 ) or less, and more preferably 0.5 (cm 3 /(cm 2 ·sec))/(g/m 2 ) or less, to maintain the water resistance required for protective clothing and the like. can be done. On the other hand, the air permeability per unit basis weight is preferably 0.02 (cm 3 /(cm 2 ·sec)) / (g/m 2 ) or more, more preferably 0.04 (cm 3 /(cm 2 ·sec) ))/(g/m 2 ) or more, more preferably 0.06 (cm 3 /(cm 2 ·sec))/(g/m 2 ) or more, when worn for protective clothing etc. It can reduce steam. The air permeability can be adjusted by the basis weight, average single fiber diameter, basis weight of the melt-blown nonwoven fabric layer B, thermocompression bonding conditions (compression rate, temperature and linear pressure), and the like.
 なお、本発明の積層不織布の単位目付当たりの通気量は、JIS L1913:2010「一般不織布試験方法」の「6.8.1 フラジール形法」に準じ、以下の手順によって測定される。
(1)積層不織布から80cm×100cmの試験片を切り出す。
(2)気圧計の圧力125Paで、試験片において任意の20点について測定する。
(3)上記20点の平均値について、小数点以下第二位を四捨五入して算出する。
(4)算出した通気量(cm/(cm・秒))を、目付(g/m)で除する。
The permeation amount per unit basis weight of the laminated nonwoven fabric of the present invention is measured according to JIS L1913:2010 "General nonwoven fabric test methods", "6.8.1 Frazier method", by the following procedure.
(1) Cut out a test piece of 80 cm×100 cm from the laminated nonwoven fabric.
(2) Measure at arbitrary 20 points on the test piece at a barometer pressure of 125 Pa.
(3) Calculate the average value of the above 20 points by rounding off to the second decimal place.
(4) Divide the calculated permeation rate (cm 3 /(cm 2 ·sec)) by the basis weight (g/m 2 ).
 [積層不織布の製造方法]
 次に、本発明の積層不織布を製造する方法の好ましい態様について、具体的に説明する。
[Method for producing laminated nonwoven fabric]
Next, preferred embodiments of the method for producing the laminated nonwoven fabric of the present invention will be specifically described.
 本発明の積層不織布の製造方法は、好ましくは、スパンボンド不織布層を形成し、その上に少なくとも1層のメルトブロー不織布層を形成し、さらにその上に前記スパンボンド不織布層を形成して積層体を形成する工程(工程1)と、前記積層体を、片方のロール表面が平滑なロールと、他方のロール表面に彫刻が施されたロールとの組み合わせからなる、熱エンボスロールを用いて融着させ、シートを得る工程(工程2)と、前記シートのうち、前記ロール表面が平滑なロールが当接した側のスパンボンド不織布層をスパンボンド不織布層A1として、そのスパンボンド不織布層A1側の表面に、少なくともリン酸エステルを含む液体を付与する工程(工程3)と、を含む。 The method for producing a laminated nonwoven fabric of the present invention preferably comprises forming a spunbond nonwoven fabric layer, forming at least one meltblown nonwoven fabric layer thereon, and further forming the spunbond nonwoven fabric layer thereon to form a laminate. and the laminate is fused using a hot embossing roll, which is a combination of a roll with a smooth surface on one side and a roll with an engraved surface on the other side. a step of obtaining a sheet (step 2), and a spunbond nonwoven fabric layer A1 on the side of the sheet with which the roll having a smooth roll surface abuts, and the spunbond nonwoven fabric layer A1 side of the sheet. a step of applying a liquid containing at least a phosphate ester to the surface (step 3).
 (工程1:スパンボンド不織布層を形成し、その上に少なくとも1層のメルトブロー不織布層を形成し、さらにその上に前記スパンボンド不織布層を形成して積層体を形成する工程)
 本工程において、スパンボンド不織布層、メルトブロー不織布層はそれぞれ、スパンボンド法、メルトブロー法により形成することができる。これらを積層して積層体を形成する方法としては、例えば、最初に形成したスパンボンド不織布層の上に、直接、メルトブロー法によって形成される繊維を堆積させてメルトブロー不織布層を形成し、さらに、スパンボンド法によって形成される繊維を堆積させてスパンボンド不織布層を形成するというように、逐次、得られている不織布層にさらに繊維を堆積させて積層体を形成する方法、あるいは、別々に形成したスパンボンド不織布層とメルトブロー不織布層とを重ね合わせ、加熱・加圧によりこれらの不織布層を融着させるか、ホットメルト接着剤や溶剤系接着剤等の接着剤によって接着するなどして積層体を形成する方法などを採用することができる。生産性の観点からは、逐次、得られている不織布層にさらに繊維を堆積させて積層体を形成する方法が好ましい態様である。なお、積層構成は、前記のとおりである。
(Step 1: Step of forming a spunbond nonwoven fabric layer, forming at least one meltblown nonwoven fabric layer thereon, and further forming the spunbond nonwoven fabric layer thereon to form a laminate)
In this step, the spunbond nonwoven fabric layer and the meltblown nonwoven fabric layer can be formed by a spunbond method and a meltblown method, respectively. As a method of forming a laminate by laminating these, for example, fibers formed by a meltblowing method are deposited directly on the initially formed spunbond nonwoven fabric layer to form a meltblown nonwoven fabric layer, and further, The resulting nonwoven layers are sequentially deposited with additional fibers to form a laminate, such as by depositing the fibers formed by the spunbond process to form a spunbond nonwoven layer, or formed separately. The spunbond nonwoven fabric layer and the melt blown nonwoven fabric layer are superimposed, and the nonwoven fabric layers are fused by heating and pressurizing, or bonded with an adhesive such as a hot melt adhesive or a solvent adhesive to form a laminate. can be adopted. From the viewpoint of productivity, a preferred embodiment is a method of sequentially depositing fibers on the obtained nonwoven fabric layer to form a laminate. In addition, the laminated structure is as described above.
 スパンボンド不織布層は、溶融したポリオレフィン系樹脂を紡糸口金から長繊維として紡出し、これを冷却して延伸した後、移動するネット上に繊維を捕集して形成する。なお、延伸はエジェクター等により圧縮エアで吸引して延伸してもよい。 A spunbond nonwoven fabric layer is formed by spinning a molten polyolefin resin from a spinneret as long fibers, cooling and stretching the fibers, and then collecting the fibers on a moving net. The drawing may be performed by sucking compressed air using an ejector or the like.
 紡糸口金やエジェクターの形状は、丸形や矩形等、種々の形状のものを採用することができる。なかでも、圧縮エアの使用量が比較的少なくエネルギーコストに優れること、糸条同士の融着や擦過が起こりにくく、糸条の開繊も容易であることから、矩形口金と矩形エジェクターの組み合わせが好ましく用いられる。 Various shapes such as round and rectangular can be adopted for the shape of the spinneret and ejector. In particular, the combination of a rectangular nozzle and a rectangular ejector is recommended because it uses a relatively small amount of compressed air and is excellent in terms of energy cost, and because the yarns are less likely to fuse or rub against each other, and the yarns can be easily opened. It is preferably used.
 本発明では、ポリオレフィン系樹脂を押出機において溶融し、計量して紡糸口金へと供給し、長繊維として紡出する。ポリオレフィン系樹脂を溶融し紡糸する際の紡糸温度は、200℃以上270℃以下であることが好ましく、より好ましくは210℃以上260℃以下であり、さらに好ましくは220℃以上250℃以下である。紡糸温度を上記範囲内とすることにより、安定した溶融状態とし、優れた紡糸安定性を得ることができる。 In the present invention, a polyolefin resin is melted in an extruder, weighed, supplied to a spinneret, and spun as long fibers. The spinning temperature at which the polyolefin resin is melted and spun is preferably 200°C or higher and 270°C or lower, more preferably 210°C or higher and 260°C or lower, and still more preferably 220°C or higher and 250°C or lower. By setting the spinning temperature within the above range, a stable molten state can be obtained and excellent spinning stability can be obtained.
 紡出した長繊維の糸条は冷却されるが、この冷却方法としては、例えば、冷風を強制的に糸条に吹き付ける方法、糸条周りの雰囲気温度で自然冷却する方法、および紡糸口金とエジェクター間の距離を調整する方法等が挙げられ、またはこれらの方法を組み合わせる方法を採用することができる。また、冷却条件は、紡糸口金の単孔あたりの吐出量、紡糸温度および雰囲気温度等を考慮して、適宜調整して採用することができる。 The filament of the spun filament is cooled, and the cooling methods include, for example, a method of forcibly blowing cold air onto the filament, a method of natural cooling at the ambient temperature around the filament, and a spinneret and ejector. A method of adjusting the distance between them can be mentioned, or a method of combining these methods can be adopted. In addition, the cooling conditions can be appropriately adjusted in consideration of the discharge amount per single hole of the spinneret, the spinning temperature, the atmospheric temperature, and the like.
 次に、冷却されて固化した糸条は、エジェクターから噴射される圧縮エアによって牽引し、延伸してもよい。紡糸速度は、3000m/分以上6500m/分以下であることが好ましく、より好ましくは3500m/分以上6500m/分以下であり、さらに好ましくは4000m/分以上6500m/分以下である。紡糸速度を3000m/分以上6500m/分以下とすることにより、高い生産性を有することになり、また繊維の配向結晶化が進み、高強度の長繊維を得ることができる。 Next, the yarn that has been cooled and solidified may be pulled by compressed air jetted from the ejector and stretched. The spinning speed is preferably 3000 m/min or more and 6500 m/min or less, more preferably 3500 m/min or more and 6500 m/min or less, and still more preferably 4000 m/min or more and 6500 m/min or less. By setting the spinning speed to 3000 m/min or more and 6500 m/min or less, high productivity can be obtained, and the oriented crystallization of the fibers can be promoted to obtain high-strength long fibers.
 続いて、得られた長繊維を、移動するネット上、あるいは、移動するネット上に載せられた、既に形成したスパンボンド不織布層、あるいは、メルトブロー不織布層の上に捕集して不織布層化する。本発明では、これらの不織布層に対して、ネット上でその片面から熱フラットロールを当接して仮接着させることも好ましい態様である。このようにすることにより、ネット上を搬送中に不織布層の表層がめくれたり吹き流れたりして地合が悪化することを防ぎ、糸条を捕集してから熱圧着するまでの搬送性を改善することができる。 Subsequently, the obtained filaments are collected on a moving net or on an already formed spunbond nonwoven layer or meltblown nonwoven layer placed on a moving net to form a nonwoven fabric layer. . In the present invention, it is also a preferred embodiment to temporarily bond these nonwoven fabric layers by contacting a hot flat roll from one side thereof on the net. By doing so, it is possible to prevent the surface layer of the nonwoven fabric layer from being turned up or blown away during transportation on the net, thereby preventing the texture from deteriorating, and improving the transportability from the collection of the yarn to the thermocompression bonding. can be improved.
 次に、メルトブロー不織布層は、公知の製造方法を採用して形成することができる。ポリオレフィン系樹脂を押出機内で溶融して口金部に供給し、口金から押し出した糸条に熱風を吹きつけ、細化させた後、捕集ネット上、あるいは、移動するネット上に載せられた、既に形成したスパンボンド不織布層、あるいは、メルトブロー不織布層の上にメルトブロー不織布層を形成する。メルトブロー法では、複雑な工程を必要とせず、数μmの細繊維を容易に得ることができ、高い耐水性を発現することができる。 Next, the meltblown nonwoven fabric layer can be formed by adopting a known manufacturing method. A polyolefin resin is melted in an extruder and supplied to the nozzle, and hot air is blown on the thread extruded from the nozzle to thin it, and then placed on a collection net or a moving net. A meltblown nonwoven fabric layer is formed on an already formed spunbond nonwoven fabric layer or a meltblown nonwoven fabric layer. The meltblowing method does not require complicated steps, can easily obtain fine fibers of several μm, and can exhibit high water resistance.
 (工程2:積層体を、片方のロール表面が平滑なロールと、他方のロール表面に彫刻が施されたロールとの組み合わせからなる、熱エンボスロールを用いて融着させ、シートを得る工程)
 本工程においては、片方のロール表面が平滑なロールと、他方のロール表面に彫刻が施されたロールとの組み合わせからなる、熱エンボスロールを用いて融着させてシートを得る。このようにすることで、生産性に優れ、最終的に得られる積層不織布も、部分的な融着部で強度を付与され、かつ、非融着部でスパンボンド不織布ならではの風合いや肌触りを保持することができる。
(Step 2: A step of fusing the laminate using a hot embossing roll, which is a combination of a roll with a smooth surface on one side and a roll with an engraved surface on the other side, to obtain a sheet)
In this step, a sheet is obtained by fusing using a hot embossing roll, which is a combination of a roll having a smooth surface on one side and a roll having an engraved surface on the other side. By doing so, the productivity is excellent, and the finally obtained laminated nonwoven fabric is given strength in the partially fused portions, and retains the texture and feel unique to spunbond nonwoven fabric in the non-fused portions. can do.
 熱エンボスロールの表面材質としては、十分な熱圧着効果を得て、かつ片方のエンボスロール(彫刻ロール)の彫刻(凹凸部)が他方のロール表面に転写することを防ぐため、金属製ロールと金属製ロールとを対にすることが好ましい態様である。 As for the surface material of the hot embossing roll, in order to obtain a sufficient thermocompression effect and to prevent the engraving (unevenness) of one embossing roll (engraving roll) from being transferred to the surface of the other roll, metal rolls and A preferred embodiment is pairing with a metal roll.
 熱エンボスロールによるエンボス接着面積率は、5%以上30%以下であることが好ましい。接着面積を好ましくは5%以上とし、より好ましくは8%以上とし、さらに好ましくは10%以上することにより、積層不織布として実用に供し得る強度を得ることができる。一方、接着面積を好ましくは30%以下とし、より好ましくは25%以下とし、さらに好ましくは20%以下とすることにより、防護服等における適度な柔軟性を得ることができる。 The embossing adhesion area ratio by the hot embossing roll is preferably 5% or more and 30% or less. By setting the bonding area to preferably 5% or more, more preferably 8% or more, and even more preferably 10% or more, it is possible to obtain strength that can be used practically as a laminated nonwoven fabric. On the other hand, by setting the adhesion area to preferably 30% or less, more preferably 25% or less, and even more preferably 20% or less, it is possible to obtain appropriate flexibility in protective clothing and the like.
 ここでいうエンボス接着面積率とは、融着部の面積の積層不織布の面積全体に占める割合のことを言う。具体的には、凹凸を有するロールとフラットロールにより熱接着する場合、凹凸を有するロールの凸部が積層不織布に当接する部分(融着部)の積層不織布全体に占める割合のことを言う。 The embossed bonding area ratio here refers to the ratio of the area of the fused portion to the total area of the laminated nonwoven fabric. Specifically, in the case of heat-bonding with a roll having unevenness and a flat roll, it refers to the ratio of the portion (fused portion) where the convex portion of the roll having unevenness contacts the laminated nonwoven fabric to the entire laminated nonwoven fabric.
 熱エンボスロールによる接着部の形状としては、円形、楕円形、正方形、長方形、平行四辺形、ひし形、正六角形および正八角形などを用いることができる。また接着部は、積層不織布の長手方向(搬送方向)と幅方向に、それぞれ一定の間隔で均一に存在していることが好ましい。このようにすることにより、積層不織布の強度のばらつきを低減することができる。  Circular, elliptical, square, rectangular, parallelogram, rhombus, regular hexagon, regular octagon, etc. can be used as the shape of the bonded part by the heat embossing roll. Moreover, it is preferable that the bonded portions are uniformly present at regular intervals in the longitudinal direction (conveyance direction) and the width direction of the laminated nonwoven fabric. By doing so, variations in the strength of the laminated nonwoven fabric can be reduced.
 融着させる際の熱エンボスロールの表面温度は、使用しているポリオレフィン系樹脂の融点に対し-50℃以上-15℃以下とすることが好ましい態様である。熱エンボスロールの表面温度をポリオレフィン系樹脂の融点に対し好ましくは-50℃以上とし、より好ましくは-45℃以上とすることにより、適度に融着させ実用に供しうる強度の積層不織布を得ることができる。また、熱エンボスロールの表面温度をポリオレフィン系樹脂の融点に対し好ましくは-15℃以下とし、より好ましくは-20℃以下とすることにより、過度な融着を抑制し、積層不織布として、特に防護服用途での使用に適した適度な柔軟性・加工性を得ることができる。 It is a preferred embodiment that the surface temperature of the hot embossing roll during fusion is -50°C or higher and -15°C or lower with respect to the melting point of the polyolefin resin used. To obtain a laminated nonwoven fabric having a practically sufficient strength through moderate fusion by setting the surface temperature of a hot embossing roll to preferably −50° C. or higher, more preferably −45° C. or higher with respect to the melting point of a polyolefin resin. can be done. In addition, the surface temperature of the hot embossing roll is preferably −15° C. or less, and more preferably −20° C. or less, relative to the melting point of the polyolefin resin, thereby suppressing excessive fusion and making the laminated nonwoven fabric especially protective. Appropriate flexibility and workability suitable for use in clothes can be obtained.
 融着させる際の熱エンボスロールの線圧は、50N/cm以上500N/cm以下であることが好ましい。熱エンボスロールの線圧を好ましくは50N/cm以上とし、より好ましくは100N/cm以上とし、さらに好ましくは150N/cm以上とすることにより、適度に融着させ実用に供しうる強度の積層不織布を得ることができる。一方、熱エンボスロールの線圧を好ましくは500N/cm以下とし、より好ましくは400N/cm以下とし、さらに好ましくは300N/cm以下とすることにより、積層不織布として、特に防護服用途での使用に適した適度な柔軟性・加工性を得ることができる。 The linear pressure of the hot embossing roll during fusion is preferably 50 N/cm or more and 500 N/cm or less. By setting the linear pressure of the hot embossing roll to preferably 50 N/cm or more, more preferably 100 N/cm or more, and even more preferably 150 N/cm or more, the laminated nonwoven fabric is appropriately fused and has a strength suitable for practical use. Obtainable. On the other hand, by setting the linear pressure of the heat embossing roll to preferably 500 N/cm or less, more preferably 400 N/cm or less, and even more preferably 300 N/cm or less, it can be used as a laminated nonwoven fabric, especially for protective clothing. Appropriate moderate flexibility and workability can be obtained.
 また、本発明の積層不織布の厚みを調整するために、上記の熱エンボスロールによる融着の前および/あるいは後に、上下一対のフラットロールからなる熱カレンダーロールにより熱圧着を施すこともできる。上下一対のフラットロールとは、ロールの表面に凹凸のない金属製ロールや弾性ロールのことであり、金属製ロールと金属製ロールを対にしたり、金属製ロールと弾性ロールを対にしたりして用いることができる。 In addition, in order to adjust the thickness of the laminated nonwoven fabric of the present invention, it is also possible to perform thermocompression bonding with a thermal calender roll consisting of a pair of upper and lower flat rolls before and/or after fusion bonding with the above-mentioned thermal embossing rolls. A pair of upper and lower flat rolls is a metal roll or elastic roll that does not have unevenness on the surface of the roll. can be used.
 また、ここで弾性ロールとは、金属製ロールと比較して弾性を有する材質からなるロールのことである。弾性ロールとしては、ペーパー、コットンおよびアラミドペーパー等のいわゆるペーパーロールや、ウレタン系樹脂、エポキシ系樹脂、シリコーン系樹脂、ポリエステル系樹脂および硬質ゴム、およびこれらの混合物からなる樹脂製のロールなどが挙げられる。 Also, the elastic roll here means a roll made of a material having elasticity compared to a metal roll. Examples of elastic rolls include so-called paper rolls such as paper, cotton and aramid paper, and resin rolls made of urethane-based resins, epoxy-based resins, silicone-based resins, polyester-based resins, hard rubbers, and mixtures thereof. be done.
 (工程3:前記シートのうち、前記ロール表面が平滑なロールが当接した側のスパンボンド不織布層をスパンボンド不織布層A1として、その表面に、少なくともリン酸エステルを含む液体を付与する工程)
 本工程では、前記のシートのうち、前記のロール表面が平滑なロールが当接した側のスパンボンド不織布層をスパンボンド不織布層A1として、そのスパンボンド不織布層A1側の表面に、少なくともリン酸エステルを含む液体を付与することによって、前記の工程で形成された平滑な表面へ液体を付与することにより、帯電防止性のばらつきを抑制し、意図する帯電防止性を有する積層不織布を得ることができる。
(Step 3: A step of applying a liquid containing at least a phosphate ester to the surface of the spunbond nonwoven fabric layer A1, which is the spunbond nonwoven fabric layer A1 on the side of the sheet with which the roll surface is in contact).
In the present step, the spunbond nonwoven fabric layer A1 is the spunbond nonwoven fabric layer A1 on the side of the sheet that is in contact with the smooth roll surface, and at least phosphoric acid is added to the surface of the spunbond nonwoven fabric layer A1 side. By applying a liquid containing an ester to the smooth surface formed in the above step, variations in antistatic properties can be suppressed, and a laminated nonwoven fabric having intended antistatic properties can be obtained. can.
 前記のシートへ少なくともリン酸エステルを含む液体を付与する方法としては、液体を満たした薬液槽から、薬液槽中を回転する金属ロールによって溶液を巻き上げ、金属ロールの上方に積層不織布を当接させることにより、液体を積層不織布表面へ転写させるロールコーティング法、グラビア法、フレキソ法、スプレーコーティング法等が挙げられる。中でも、生産性に優れ、溶液を均一に付与することができ、かつ液体の付与量の調節が容易にでき、さらには積層不織布の片面にのみ液体を付与できることから、ロールコーティング法を用いることが好ましい。 As a method for applying a liquid containing at least a phosphate ester to the sheet, the solution is wound up from a chemical bath filled with the liquid by a metal roll rotating in the chemical bath, and the laminated nonwoven fabric is brought into contact with the upper side of the metal roll. Examples include a roll coating method, a gravure method, a flexographic method, a spray coating method, etc., in which a liquid is transferred to the surface of the laminated nonwoven fabric. Among them, the roll coating method can be used because it has excellent productivity, can uniformly apply the solution, can easily adjust the amount of liquid applied, and can apply liquid only to one side of the laminated nonwoven fabric. preferable.
 また、前記の液体(少なくともリン酸エステルを含む液体)に、さらにシリコーンを含むことがより好ましい。このようにすることで、より高い耐水圧を維持することができる。 Further, it is more preferable that the liquid (the liquid containing at least the phosphate ester) further contains silicone. By doing so, a higher water pressure resistance can be maintained.
 なお、この液体は、リン酸エステルなどの特性に合わせて、溶液、エマルジョンなどの形態を用いることができる。 It should be noted that this liquid can be in the form of solution, emulsion, etc., according to the characteristics of the phosphate ester.
 前記の液体を付与した後は、前記の溶液に含まれる溶媒を乾燥させることが好ましい。この、乾燥の方法としては、熱風及び赤外線により乾燥させる方法、熱源に接触させて乾燥させる方法等を用いてよい。 After applying the liquid, it is preferable to dry the solvent contained in the solution. As the drying method, a method of drying with hot air and infrared rays, a method of drying by contact with a heat source, and the like may be used.
 [防護服]
 本発明の防護服は、前記の積層不織布が少なくとも前身頃に使用されてなることが好ましい。前記積層不織布が少なくとも前身頃に使用されてなることで、有害なミストや浮遊粉塵から着用者の身体を保護することができる。
[Protective clothing]
In the protective clothing of the present invention, the laminated nonwoven fabric is preferably used at least in the front body. By using the laminated nonwoven fabric at least on the front body, it is possible to protect the wearer's body from harmful mist and floating dust.
 本発明の防護服としては、例えば、JIS T8115:2015「化学防護服」の「4.5 スプレー防護用密閉服(タイプ4)」に記載の、スプレー状液体化学物質から着用者を防護するための構造の全身化学防護服、「4.6 浮遊固体粉じん防護用密閉服(タイプ5)」に記載の、浮遊固体粉じんから着用者を防護するための構造の全身化学防護服、「4.7 ミスト防護用密閉服(タイプ6)」に記載の、ミスト状液体化学物質から着用者を防護するための構造の全身化学防護服が挙げられる。そして、ワンピース・カバーオール、または上下服の形態が挙げられ、所望の態様に合わせ、フードやバイザー、ブーティを含ませることもできる。また、JIS T8122:2015「生物学的危険物質に対する防護服」の「3.2 バイオハザード対策用全身防護服」に記載の、手、足、及び頭部を含め全身又は大部分を防護するバイオハザード対策用防護服、「3.5 密閉服」に記載の、液状又は浮遊固体粉じんの生物学的危険物質から着用者を防護するための、非気密形・非陽圧形バイオハザード対策用全身防護服なども挙げられる。 As the protective clothing of the present invention, for example, JIS T8115: 2015 "Chemical protective clothing", "4.5 Sealing clothing for spray protection (type 4)", for protecting the wearer from spray liquid chemical substances The full-body chemical protective clothing with the structure of "4.6 Sealing clothing for protection from suspended solid dust (Type 5)", the full-body chemical protective clothing with the structure to protect the wearer from suspended solid dust, "4.7 Sealing clothing for mist protection (type 6)", which is a full-body chemical protective clothing structured to protect the wearer from misty liquid chemicals. And, it can be in the form of one-piece coveralls or upper and lower garments, and can also include a hood, visor, and booties according to the desired mode. In addition, JIS T8122: 2015 "Protective clothing against biologically hazardous substances", "3.2 Whole body protective clothing for biohazard countermeasures" Protective clothing for hazard countermeasures, full body for non-airtight, non-positive pressure biohazard countermeasures to protect the wearer from biologically hazardous substances such as liquid or suspended solid dust described in "3.5 Sealed clothing" Protective clothing is also included.
 また、本発明の防護服は、その防護服が身体の一部分を防護する構造の化学防護服、例えば、JIS T8115:2015「化学防護服」の「4.8 部分化学防護服(タイプPB)」に記載の身体の一部分を防護する構造の化学防護服であって、エプロン、フットウェアカバー、ガウン、フード、ジャケット、実験衣、腕カバー、スモック等である場合においては、その質量の80%以上100%以下が前記の積層不織布であることが好ましい。この場合においても、有害なミストや浮遊粉塵から着用箇所を有効に保護することができる。 In addition, the protective clothing of the present invention is a chemical protective clothing having a structure that protects a part of the body, for example, "4.8 partial chemical protective clothing (type PB)" of JIS T8115:2015 "chemical protective clothing" 80% or more of the mass of chemical protective clothing with a structure that protects a part of the body described in 1., which is an apron, footwear cover, gown, hood, jacket, lab coat, arm cover, smock, etc. It is preferable that 100% or less is the laminated nonwoven fabric. Even in this case, the wearing part can be effectively protected from harmful mist and floating dust.
 あるいは、その防護服が身体の一部分を防護する構造のバイオハザード対策用防護服、例えば、JIS T8122:2015「生物学的危険物質に対する防護服」の「3.6 バイオハザード対策用全身防護服」に記載の、部分防護服であって、ガウン、手術衣、実験衣、ジャケット、ズボン、エプロンなど、身体の躯体部分を生物学的危険物質の浸透から防護する防護服である場合、さらには、JIS T8122:2015「生物学的危険物質に対する防護服」の「3.7 バイオハザード対策用全身防護服」に記載の、部分防護具であって、キャップ、シューズカバー、腕カバーなど、身体の一部分を生物学的危険物質の浸透から防護する防護具である場合においても、その質量の80%以上100%以下が前記の積層不織布であることが好ましい。この場合においても、有害なミストや浮遊粉塵から着用箇所を有効に保護することができる。 Alternatively, protective clothing for biohazard countermeasures that is structured to protect a part of the body, for example, JIS T8122: 2015 "Protective clothing against biologically hazardous substances", "3.6 Whole body protective clothing for biohazard countermeasures" , which is a protective clothing that protects the body from permeation of biohazardous substances, such as gowns, surgical clothing, laboratory clothing, jackets, trousers, aprons, etc. JIS T8122: 2015 "Protective clothing against biologically hazardous substances", "3.7 Whole body protective clothing for biohazard countermeasures", partial protective equipment such as caps, shoe covers, arm covers, etc. In the case of protective equipment for protecting against permeation of biologically hazardous substances, it is preferable that 80% or more and 100% or less of the mass is the laminated nonwoven fabric. Even in this case, the wearing part can be effectively protected from harmful mist and floating dust.
 本発明の防護服は、公知の方法で製造することができる。 The protective clothing of the present invention can be manufactured by a known method.
 実施例に基づき、本発明の積層不織布について具体的に説明する。各物性の測定において、特段の記載がないものは、前記の方法に基づいて測定を行ったものである。 The laminated nonwoven fabric of the present invention will be specifically described based on examples. In the measurement of each physical property, unless otherwise specified, the measurement was performed according to the method described above.
 (1)ポリオレフィン系樹脂のMFR(g/10分):
 ポリオレフィン系樹脂(A)、ポリオレフィン系樹脂(B)のMFRは、ポリプロピレン系樹脂については荷重が2.16kg、温度が230℃の条件で、ポリエチレン系樹脂については、荷重が2.16kg、温度が190℃の条件で測定した。
(1) MFR of polyolefin resin (g/10 min):
The MFR of the polyolefin resin (A) and the polyolefin resin (B) was measured under the conditions of a load of 2.16 kg and a temperature of 230° C. for the polypropylene resin, and a load of 2.16 kg and a temperature of 230° C. for the polyethylene resin. Measurement was performed at 190°C.
 (2) スパンボンド不織布層A1、A2、メルトブロー不織布層B、積層不織布の目付(g/m
 スパンボンド不織布層A1、A2、メルトブロー不織布層Bの目付は、後述の(スパンボンド不織布層A1)、(スパンボンド不織布層A2)、(メルトブロー不織布層B)と同条件で別途捕集ネット上に採取した不織布層より、前記の方法によって測定した。積層不織布の目付は、前記の方法によって測定した。
(2) Spunbond nonwoven fabric layers A1 and A2, meltblown nonwoven fabric layer B, laminated nonwoven fabric basis weight (g/m 2 )
Spunbond nonwoven fabric layers A1 and A2 and meltblown nonwoven fabric layer B are separately placed on a collection net under the same conditions as (spunbond nonwoven fabric layer A1), (spunbond nonwoven fabric layer A2), and (meltblown nonwoven fabric layer B) described later. It was measured by the above method from the sampled nonwoven fabric layer. The basis weight of the laminated nonwoven fabric was measured by the method described above.
 (3) スパンボンド不織布層A1、A2、メルトブロー不織布層Bの平均単繊維径(μm)
 走査型電子顕微鏡として、株式会社キーエンス製「VHX-D500」を用い、前記の方法によって測定した。
(3) Average single fiber diameter (μm) of spunbond nonwoven fabric layers A1 and A2 and meltblown nonwoven fabric layer B
As a scanning electron microscope, "VHX-D500" manufactured by KEYENCE CORPORATION was used, and measurement was performed by the method described above.
 (4) スパンボンド不織布層A1、A2、メルトブロー不織布層B、積層不織布の厚み(tA1、tA2、t、t(μm))
 走査型電子顕微鏡として、株式会社キーエンス製「VHX-D500」を用い、前記の方法によって測定した。
(4) Thicknesses of spunbond nonwoven fabric layers A1 and A2, meltblown nonwoven fabric layer B, and laminated nonwoven fabric (t A1 , t A2 , t B , t (μm))
As a scanning electron microscope, "VHX-D500" manufactured by KEYENCE CORPORATION was used, and measurement was performed by the method described above.
 (5) 非融着部の高さH、H、高さの比(H/H
 走査型電子顕微鏡として、株式会社キーエンス製「VHX-D500」を用い、前記の方法によって測定した。
(5) Heights H 1 and H 2 of non-fused portions, ratio of heights (H 2 /H 1 )
As a scanning electron microscope, "VHX-D500" manufactured by KEYENCE CORPORATION was used, and measurement was performed by the method described above.
 (6)積層不織布の単位目付当たりの耐水圧((mmHO)/(g/m)):
 スイス・テクステスト社 耐水圧試験機「ハイドロテスター」(FX-3000-IV型)を用いた。なお、算出した耐水圧(mmHO)を、上記の方法に基づいて求めた目付(g/m)から、次の式より小数点以下第二位を四捨五入して単位目付当たりの耐水圧を算出した。
単位目付当たりの耐水圧=耐水圧(mmHO)/目付(g/m)。
(6) Water pressure resistance per unit basis weight of laminated nonwoven fabric ((mmH 2 O)/(g/m 2 )):
A water pressure tester "Hydrotester" (FX-3000-IV type) manufactured by Textest, Switzerland was used. The calculated water pressure resistance (mmH 2 O) is rounded off to the second decimal place from the following formula from the basis weight (g/m 2 ) obtained based on the above method, and the water pressure resistance per unit basis weight is calculated. Calculated.
Water pressure resistance per unit basis weight = water pressure resistance (mmH 2 O) / basis weight (g/m 2 ).
 (7)積層不織布の表面電気抵抗(Ω):
 積層不織布の表面電気抵抗は欧州規格(EN1149-1:2006)に準拠し、エーディーシー社 デジタル超高抵抗/微小電流計8340Aを使用し、以下の手順によって測定した。
A.積層不織布から10cm×10cmの試験片を10枚採取する。
B.試験片の一方の面が装置の測定部に接触するようにセットし、100Vの電圧を印可して15秒後の表面電気抵抗値を記録する。
C.試験片のもう一方の面についても、同様に表面電気抵抗を記録し、小さい方の値をその試験片の表面電気抵抗値とする。
D.上記10枚について測定を行い、平均値を算出し、有効数字2桁で表面電気抵抗を求めた。
(7) Surface electrical resistance (Ω) of laminated nonwoven fabric:
The surface electrical resistance of the laminated nonwoven fabric conforms to the European standard (EN1149-1:2006) and was measured using a digital ultra-high resistance/micro current meter 8340A manufactured by ADC by the following procedure.
A. Ten test pieces of 10 cm×10 cm are taken from the laminated nonwoven fabric.
B. One surface of the test piece is set in contact with the measuring part of the device, a voltage of 100 V is applied, and the surface electric resistance value is recorded 15 seconds later.
C. The surface electrical resistance of the other surface of the test piece is similarly recorded, and the smaller value is taken as the surface electrical resistance of the test piece.
D. The above 10 sheets were measured, the average value was calculated, and the surface electrical resistance was obtained with two significant digits.
 (8)積層不織布の単位目付当たりの通気量((cm3/(cm・秒))/(g/m)):
 前記の方法に基づいて、通気量の測定を行った。なお、算出した通気量(cm3/(cm・秒))を、上記の方法に基づいて求めた目付(g/m)から、次の式より小数点以下第三位を四捨五入して単位目付当たりの通気量を算出した。
単位目付当たりの通気量=通気量(cm3/(cm・秒))/目付(g/m)。
(8) Permeability per unit basis weight of laminated nonwoven fabric ((cm 3 /(cm 2 ·sec))/(g/m 2 )):
The air permeability was measured according to the method described above. The permeation rate (cm 3 /(cm 2 ·sec)) calculated based on the basis weight (g/m 2 ) obtained based on the above method is rounded off to the third decimal place by the following formula. The permeation amount per basis weight was calculated.
Permeability per unit basis weight = Permeability (cm 3 /(cm 2 ·sec)) / basis weight (g/m 2 ).
 [塗工液の調製法]
 [塗工液A]
 室温の純水1940gに、ラウリルリン酸ナトリウム(CAS登録番号:50957-96-5)58.8g、及びシリコーンオイル(信越化学工業株式会社製「KF-96-10CS」)1.2gを加えて、大気圧下で撹拌して混合し、塗工液Aを得た。
[Method for preparing coating solution]
[Coating liquid A]
Add 58.8 g of sodium lauryl phosphate (CAS registration number: 50957-96-5) and 1.2 g of silicone oil (“KF-96-10CS” manufactured by Shin-Etsu Chemical Co., Ltd.) to 1940 g of pure water at room temperature. , and mixed by stirring under atmospheric pressure to obtain a coating liquid A.
 [塗工液B]
 塗工液Aにおいて、シリコーンオイルを不使用に変更した以外は、塗工液Aと同様にして塗工液Bを得た。
[Coating solution B]
A coating liquid B was obtained in the same manner as the coating liquid A, except that the silicone oil was not used in the coating liquid A.
 [塗工液C]
 塗工液Aにおいて、ラウリルリン酸ナトリウムを不使用に変更した以外は、塗工液Aと同様にして塗工液Cを得た。
[Coating fluid C]
Coating Liquid C was obtained in the same manner as Coating Liquid A, except that sodium lauryl phosphate was not used in Coating Liquid A.
 [実施例1]
 (スパンボンド不織布層A1)
 MFR200g/10分、融点163℃のホモポリマーからなるポリプロピレン樹脂を押出機で溶融し、孔径φ0.30mm、孔深度2mmの矩形口金から、紡糸温度235℃、単孔吐出量0.40g/分の条件で紡出した。紡出した糸条を冷却固化した後、これを矩形エジェクターにおいて、エジェクター圧力を0.35MPaとした圧縮エアによって牽引、延伸し、移動するネット上に捕集して、ポリプロピレン長繊維からなる、目付33g/mのスパンボンド不織布層A1を形成した。形成したスパンボンド不織布層A1を構成する繊維の平均単繊維径は11.2μmであった。
[Example 1]
(Spunbond nonwoven fabric layer A1)
A homopolymer polypropylene resin having an MFR of 200 g/10 min and a melting point of 163° C. is melted with an extruder, and is spun at a spinning temperature of 235° C. and a single hole discharge rate of 0.40 g/min from a rectangular nozzle with a hole diameter of φ0.30 mm and a hole depth of 2 mm. conditions. After the spun yarn is cooled and solidified, it is pulled and stretched by compressed air in a rectangular ejector at an ejector pressure of 0.35 MPa, collected on a moving net, and made of polypropylene long fibers. A 33 g/m 2 spunbond nonwoven layer A1 was formed. The average single fiber diameter of the fibers constituting the formed spunbond nonwoven fabric layer A1 was 11.2 μm.
 (メルトブロー不織布層B)
 MFR1100g/分のホモポリマーからなるポリプロピレン樹脂を押出機で溶融し、孔径φ0.25mmの口金から、紡糸温度260℃、単孔吐出量0.10g/分で紡出した。その後、エア温度290℃、エア圧力0.10MPaの条件でエアを糸条に噴射し、前記のスパンボンド不織布層A1上に捕集し、メルトブロー不織布層Bを形成した。メルトブロー不織布層Bの目付は10g/mであり、平均単繊維径は1.1μmであった。
(Meltblown nonwoven fabric layer B)
A polypropylene resin consisting of a homopolymer having an MFR of 1100 g/min was melted in an extruder and spun from a spinneret with a hole diameter of φ0.25 mm at a spinning temperature of 260° C. and a single hole discharge rate of 0.10 g/min. Thereafter, air was jetted onto the yarn under conditions of an air temperature of 290° C. and an air pressure of 0.10 MPa, and collected on the spunbond nonwoven fabric layer A1 to form a melt blown nonwoven fabric layer B. The melt-blown nonwoven fabric layer B had a basis weight of 10 g/m 2 and an average single fiber diameter of 1.1 µm.
 (スパンボンド不織布層A2)
 前記メルトブロー不織布層Bの上に、スパンボンド不織布層A1を形成した条件から単孔吐出量0.20g/分に変更した条件で、ポリプロピレン長繊維を捕集させ、目付17g/mのスパンボンド不織布層A2を形成した。スパンボンド不織布層A2の目付は17g/mであり、構成する繊維の平均単繊維径は8.7μmであった。
(Spunbond nonwoven fabric layer A2)
On the meltblown nonwoven fabric layer B, the spunbond nonwoven fabric layer A1 was formed under the conditions where the single hole discharge rate was changed to 0.20 g / min, and the polypropylene long fibers were collected, and the spunbond with a basis weight of 17 g / m 2 was obtained. A nonwoven fabric layer A2 was formed. The spunbond nonwoven fabric layer A2 had a basis weight of 17 g/m 2 and an average single fiber diameter of the constituent fibers of 8.7 µm.
 (積層不織布)
 前記の方法によって、総目付60g/mの、スパンボンド不織布層A1-メルトブロー不織布層B-スパンボンド不織布層A2を積層した積層繊維ウェブを得た。次いで、得られた積層繊維ウェブを、上ロールに金属製で水玉柄の彫刻がなされた接着面積率16%のエンボスロールを、下ロールに金属製フラットロールで構成される上下一対の熱エンボスロールを用いて、線圧300N/cm、熱接着温度130℃の条件で熱接着した。熱接着した積層繊維ウェブの下層側に、薬剤槽中をウェブ搬送速度の10%の速さで回転する金属ロールを用いて、塗工液Aを付着させ、120℃に設定した乾燥機中を1秒間通過させることで揮発成分を除去し、積層不織布を得た。結果などを表1に示す。
(Laminated nonwoven fabric)
By the above method, a laminated fiber web having a total basis weight of 60 g/m 2 and comprising a laminate of spunbond nonwoven fabric layer A1, meltblown nonwoven fabric layer B, and spunbond nonwoven fabric layer A2 was obtained. Next, the obtained laminated fiber web is subjected to a pair of upper and lower thermal embossing rolls, each of which is composed of an embossing roll made of metal engraved with a polka dot pattern and having a bonding area ratio of 16% as the upper roll, and a metal flat roll as the lower roll. was used to perform thermal bonding under the conditions of a linear pressure of 300 N/cm and a thermal bonding temperature of 130°C. On the lower layer side of the heat-bonded laminated fiber web, using a metal roll that rotates in the chemical tank at a speed of 10% of the web conveying speed, the coating liquid A is attached, and the dryer set at 120 ° C. Volatile components were removed by passing for 1 second to obtain a laminated nonwoven fabric. Table 1 shows the results and the like.
 [実施例2]
 実施例1の(スパンボンド不織布層A1)において、単孔吐出量が0.40g/分であったところ、0.45g/分に変更し、(スパンボンド不織布層A2)において、単孔吐出量が0.20g/分であったところ、0.15g/分に変更した以外は、実施例1と同様に積層不織布を得た。結果などを表1に示す。
[Example 2]
In (Spunbond nonwoven fabric layer A1) of Example 1, the single hole discharge rate was 0.40 g/min, but it was changed to 0.45 g/min. was 0.20 g/min, a laminated nonwoven fabric was obtained in the same manner as in Example 1, except that it was changed to 0.15 g/min. Table 1 shows the results and the like.
 [実施例3]
 実施例1の(スパンボンド不織布層A1)において、単孔吐出量が0.40g/分であったところ、0.36g/分に変更し、(スパンボンド不織布層A2)において、単孔吐出量が0.20g/分であったところ、0.24g/分に変更した以外は、実施例1と同様に積層不織布を得た。結果などを表1に示す。
[Example 3]
In (Spunbond nonwoven fabric layer A1) of Example 1, the single hole discharge rate was 0.40 g/min. was 0.20 g/min, a laminated nonwoven fabric was obtained in the same manner as in Example 1, except that it was changed to 0.24 g/min. Table 1 shows the results and the like.
 [実施例4]
 実施例1の(積層不織布)において、塗工液Aを付与したところ、塗工液Bに変更した以外は、実施例1と同様に積層不織布を得た。結果などを表1に示す。
[Example 4]
A laminated nonwoven fabric was obtained in the same manner as in Example 1, except that the coating liquid A was applied to the (laminated nonwoven fabric) of Example 1, except that the coating liquid B was used. Table 1 shows the results and the like.
 [実施例5]
 実施例1の(スパンボンド不織布層A1)、(メルトブロー不織布層B)、(スパンボンド不織布層A2)において、繊維を捕集するネットの移動速度を実施例1の1.5倍に変更した以外は、実施例1と同様に積層不織布を得た。結果などを表1に示す。
[Example 5]
In (spunbond nonwoven fabric layer A1), (meltblown nonwoven fabric layer B), and (spunbond nonwoven fabric layer A2) of Example 1, except that the movement speed of the net for collecting fibers was changed to 1.5 times that of Example 1. obtained a laminated nonwoven fabric in the same manner as in Example 1. Table 1 shows the results and the like.
 [実施例6]
 実施例1の(メルトブロー不織布層B)において、単孔吐出量が0.10g/分であったところ、0.05g/分に変更した以外は、実施例1と同様に積層不織布を得た。結果などを表2に示す。
[Example 6]
A laminated nonwoven fabric was obtained in the same manner as in Example 1, except that the single hole discharge rate of (meltblown nonwoven fabric layer B) of Example 1 was 0.10 g/min, but was changed to 0.05 g/min. Table 2 shows the results and the like.
 [実施例7]
 実施例1の(積層不織布)において、上下一対の熱エンボスロールとして、上ロールに金属製で水玉柄の彫刻がなされた接着面積率16%のエンボスロールを、下ロールに金属製フラットロールで構成される上下一対の熱エンボスロールを用いたところ、上ロールを金属製フラットロールに、下ロールを金属製で水玉柄の彫刻がなされた接着面積率16%のエンボスロールに、それぞれ変更した以外は、実施例1と同様に積層不織布を得た。結果などを表2に示す。
[Example 7]
In the (laminated nonwoven fabric) of Example 1, as a pair of upper and lower thermal embossing rolls, an embossing roll made of metal engraved with a polka dot pattern and having a bonding area ratio of 16% is used as the upper roll, and a metal flat roll is used as the lower roll. When using a pair of upper and lower thermal embossing rolls, the upper roll was changed to a metal flat roll, and the lower roll was changed to a metal embossing roll with a polka dot pattern engraving and an adhesion area ratio of 16%. , to obtain a laminated nonwoven fabric in the same manner as in Example 1. Table 2 shows the results and the like.
 [実施例8]
 実施例7の(メルトブロー不織布層B)において、単孔吐出量が0.10g/分であったところ、0.05g/分に変更した以外は、実施例7と同様に積層不織布を得た。結果などを表2に示す。
[Example 8]
A laminated nonwoven fabric was obtained in the same manner as in Example 7, except that the single hole discharge rate of (meltblown nonwoven fabric layer B) of Example 7 was 0.10 g/min, but was changed to 0.05 g/min. Table 2 shows the results and the like.
 [比較例1]
 実施例1の(スパンボンド不織布層A1)において、単孔吐出量が0.40g/分であったところ、0.30g/分に変更し、(スパンボンド不織布層A2)において、単孔吐出量が0.20g/分であったところ、0.30g/分に変更した以外は、実施例1と同様に積層不織布を得た。結果などを表3に示す。
[Comparative Example 1]
In (Spunbond nonwoven fabric layer A1) of Example 1, the single hole discharge rate was 0.40 g/min. was 0.20 g/min, a laminated nonwoven fabric was obtained in the same manner as in Example 1, except that it was changed to 0.30 g/min. Table 3 shows the results and the like.
 [比較例2]
 実施例1の(スパンボンド不織布層A1)において、単孔吐出量が0.40g/分であったところ、0.48g/分に変更し、(スパンボンド不織布層A2)において、単孔吐出量が0.20g/分であったところ、0.12g/分に変更した以外は、実施例1と同様に積層不織布を得た。結果などを表3に示す。
[Comparative Example 2]
In (Spunbond nonwoven fabric layer A1) of Example 1, the single hole discharge rate was 0.40 g/min, but it was changed to 0.48 g/min. was 0.20 g/min, a laminated nonwoven fabric was obtained in the same manner as in Example 1, except that it was changed to 0.12 g/min. Table 3 shows the results and the like.
 [比較例3]
 実施例1において、メルトブロー不織布層Bを形成しない以外は、実施例1と同様に積層不織布を得た。結果などを表3に示す。
[Comparative Example 3]
A laminated nonwoven fabric was obtained in the same manner as in Example 1, except that the meltblown nonwoven fabric layer B was not formed. Table 3 shows the results and the like.
 [比較例4]
 実施例1の(積層不織布)において、塗工液Aを付与したところ、塗工液Cに変更した以外は、実施例1と同様に積層不織布を得た。結果などを表3に示す。
[Comparative Example 4]
A laminated nonwoven fabric was obtained in the same manner as in Example 1, except that the coating liquid A was applied to the (laminated nonwoven fabric) of Example 1, except that the coating liquid C was applied. Table 3 shows the results and the like.
 [比較例5]
 実施例1の(積層不織布)において、塗工液Aを付与したところ、塗工液を付与しなかった以外は、実施例1と同様に積層不織布を得た。結果などを表3に示す。
[Comparative Example 5]
In the (laminated nonwoven fabric) of Example 1, a laminated nonwoven fabric was obtained in the same manner as in Example 1, except that when the coating liquid A was applied, the coating liquid was not applied. Table 3 shows the results and the like.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例1~8の積層不織布は、スパンボンド不織布層A1にリン酸エステルを含み、スパンボンド不織布層A1の厚み(tA1)の、スパンボンド不織布層A2の厚み(tA2)に対する比(tA1/tA2)が1.5以上3以下であり、単位目付当たりの耐水圧は15mmHO/(g/m)以上と優れた耐水性を有していた。 The laminated nonwoven fabrics of Examples 1 to 8 contain a phosphate ester in the spunbond nonwoven layer A1 , and the ratio ( t A1 /t A2 ) was 1.5 or more and 3 or less, and the water pressure resistance per unit basis weight was 15 mmH 2 O/(g/m 2 ) or more, indicating excellent water resistance.
 一方、比較例1の積層不織布は、tA1/tA2が1.5未満であり、耐水性能に劣るものであった。また、比較例2の積層不織布はtA1/tA2が3を超え、メルトブロー不織布層Bが積層工程で傷つくため耐水性に劣るものであった。比較例3の積層不織布はメルトブロー不織布層Bを含まないため、耐水圧は低かった。比較例4、5の積層不織布はスパンボンド不織布層にリン酸エステルを含まないため、表面電気抵抗が高く、帯電防止性能は低かった。 On the other hand, the laminated nonwoven fabric of Comparative Example 1 had t A1 /t A2 of less than 1.5 and was inferior in water resistance. Further, the laminated nonwoven fabric of Comparative Example 2 had t A1 /t A2 exceeding 3, and the melt-blown nonwoven fabric layer B was damaged in the lamination process, and thus was inferior in water resistance. Since the laminated nonwoven fabric of Comparative Example 3 did not contain the melt blown nonwoven fabric layer B, the water pressure resistance was low. Since the laminated nonwoven fabrics of Comparative Examples 4 and 5 did not contain phosphate ester in the spunbond nonwoven fabric layer, the surface electrical resistance was high and the antistatic performance was low.
11:積層不織布
12:スパンボンド不織布層A1
13:メルトブロー不織布層B
14:スパンボンド不織布層A2
15:融着部
16:非融着部
11: Laminated nonwoven fabric 12: Spunbond nonwoven fabric layer A1
13: Meltblown nonwoven fabric layer B
14: Spunbond nonwoven fabric layer A2
15: fused portion 16: non-fused portion

Claims (8)

  1.  一方の表面に、ポリオレフィン系樹脂からなる繊維で構成されてなり、少なくともリン酸エステルを含んでなるスパンボンド不織布層A1が配されてなり、
     他方の表面に、ポリオレフィン系樹脂からなる繊維で構成されてなるスパンボンド不織布層A2が配されてなり、
     前記スパンボンド不織布層A1と前記スパンボンド不織布層A2との間に、少なくとも1層のポリオレフィン系樹脂からなる繊維で構成されてなるメルトブロー不織布層Bが配されてなる積層不織布であって、
     前記積層不織布の非融着部における、前記スパンボンド不織布層A1の厚み(tA1)の、前記スパンボンド不織布層A2の厚み(tA2)に対する比(tA1/tA2)が1.5以上3.0以下である、積層不織布。
    A spunbond nonwoven fabric layer A1 made of fibers made of a polyolefin resin and containing at least a phosphate ester is arranged on one surface,
    A spunbond nonwoven fabric layer A2 made of fibers made of polyolefin resin is arranged on the other surface,
    A laminated nonwoven fabric in which at least one melt-blown nonwoven fabric layer B composed of fibers made of a polyolefin resin is arranged between the spunbond nonwoven fabric layer A1 and the spunbond nonwoven fabric layer A2,
    The ratio (t A1 /t A2 ) of the thickness (t A1 ) of the spunbond nonwoven fabric layer A1 to the thickness ( t A2 ) of the spunbond nonwoven fabric layer A2 in the non-fused portion of the laminated nonwoven fabric is 1.5 or more. Laminated nonwoven fabric, which is 3.0 or less.
  2.  前記積層不織布の、前記一方の表面の非融着部の高さHが50μm以上200μm以下であり、前記他方の表面の非融着部の高さHの前記高さHに対する比(H/H)が1.1以上4.0以下である、請求項1に記載の積層不織布。 The height H1 of the non-fused portion on the one surface of the laminated nonwoven fabric is 50 μm or more and 200 μm or less, and the ratio of the height H2 of the non-fused portion on the other surface to the height H1 ( The laminated nonwoven fabric according to claim 1, wherein H2 / H1 ) is 1.1 or more and 4.0 or less.
  3.  前記スパンボンド不織布層A1がさらにシリコーンを含む、請求項1に記載の積層不織布。 The laminated nonwoven fabric according to claim 1, wherein the spunbond nonwoven fabric layer A1 further contains silicone.
  4.  前記メルトブロー不織布層Bの厚み(t)の、前記積層不織布全体の厚み(t)に対する比(t/t)が0.05以上0.15以下である、請求項1に記載の積層不織布。 The laminated nonwoven fabric according to claim 1, wherein the ratio ( tB /t) of the thickness (tB) of the melt blown nonwoven fabric layer B to the thickness (t) of the entire laminated nonwoven fabric is 0.05 or more and 0.15 or less. .
  5.  請求項1に記載の積層不織布の製造方法であって、
     スパンボンド不織布層を形成し、その上に少なくとも1層のメルトブロー不織布層を形成し、さらにその上にスパンボンド不織布層を形成して積層体を形成する工程と、
     前記積層体を、片方のロール表面が平滑なロールと、他方のロール表面に彫刻が施されたロールとの組み合わせからなる、熱エンボスロールを用いて融着させ、シートを得る工程と、
     前記シートのうち、前記ロール表面が平滑なロールが当接した側のスパンボンド不織布層をスパンボンド不織布層A1として、そのスパンボンド不織布層A1側の表面に、少なくともリン酸エステルを含む液体を付与する工程と、
    を含む、積層不織布の製造方法。
    A method for producing a laminated nonwoven fabric according to claim 1,
    forming a spunbond nonwoven layer, forming at least one meltblown nonwoven layer thereon, and further forming a spunbond nonwoven layer thereon to form a laminate;
    a step of fusing the laminate using a thermal embossing roll, which is a combination of a roll having a smooth surface on one side and a roll having an engraved surface on the other side, to obtain a sheet;
    A spunbond nonwoven fabric layer A1 is defined as the spunbond nonwoven fabric layer A1 on the side of the sheet that is in contact with the roll having a smooth roll surface, and a liquid containing at least a phosphate ester is applied to the surface of the spunbond nonwoven fabric layer A1. and
    A method for producing a laminated nonwoven fabric, comprising:
  6.  前記液体が、さらにシリコーンを含む、請求項5に記載の積層不織布の製造方法。 The method for producing a laminated nonwoven fabric according to claim 5, wherein the liquid further contains silicone.
  7.  請求項1に記載の積層不織布が少なくとも前身頃に使用されてなる、防護服。 A protective garment in which the laminated nonwoven fabric according to claim 1 is used at least in the front body.
  8.  質量の80%以上100%以下が請求項1に記載の積層不織布である、防護服。 A protective clothing in which 80% or more and 100% or less of the mass is the laminated nonwoven fabric according to claim 1.
PCT/JP2022/036141 2021-10-08 2022-09-28 Multilayer nonwoven fabric, method for producing same, and protective garment WO2023058516A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280056341.3A CN117897524A (en) 2021-10-08 2022-09-28 Laminated nonwoven fabric, method for producing same, and protective garment
JP2022559949A JPWO2023058516A1 (en) 2021-10-08 2022-09-28

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021165895 2021-10-08
JP2021-165895 2021-10-08

Publications (1)

Publication Number Publication Date
WO2023058516A1 true WO2023058516A1 (en) 2023-04-13

Family

ID=85804256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036141 WO2023058516A1 (en) 2021-10-08 2022-09-28 Multilayer nonwoven fabric, method for producing same, and protective garment

Country Status (3)

Country Link
JP (1) JPWO2023058516A1 (en)
CN (1) CN117897524A (en)
WO (1) WO2023058516A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023181940A1 (en) * 2022-03-25 2023-09-28 東レ株式会社 Laminated nonwoven fabric and protective clothing

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01192807A (en) * 1988-01-28 1989-08-02 Asahi Chem Ind Co Ltd Sheet material for operation
JP2005124777A (en) * 2003-10-23 2005-05-19 Kurashiki Seni Kako Kk Infection prevention mask
CN101358410A (en) * 2007-07-31 2009-02-04 东丽高新聚化(南通)有限公司 Method of preparing polypropylene multi-layer nonwoven fabrics for medical treatment
WO2014042253A1 (en) * 2012-09-14 2014-03-20 出光興産株式会社 Multilayer nonwoven fabric and method for producing same
CN108162544A (en) * 2016-12-07 2018-06-15 东丽纤维研究所(中国)有限公司 Non-woven fabrics and its manufacturing method and purposes are taken in a kind of protection
WO2019171995A1 (en) * 2018-03-09 2019-09-12 東レ株式会社 Antistatic dustproof fabric and protective clothing using same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01192807A (en) * 1988-01-28 1989-08-02 Asahi Chem Ind Co Ltd Sheet material for operation
JP2005124777A (en) * 2003-10-23 2005-05-19 Kurashiki Seni Kako Kk Infection prevention mask
CN101358410A (en) * 2007-07-31 2009-02-04 东丽高新聚化(南通)有限公司 Method of preparing polypropylene multi-layer nonwoven fabrics for medical treatment
WO2014042253A1 (en) * 2012-09-14 2014-03-20 出光興産株式会社 Multilayer nonwoven fabric and method for producing same
CN108162544A (en) * 2016-12-07 2018-06-15 东丽纤维研究所(中国)有限公司 Non-woven fabrics and its manufacturing method and purposes are taken in a kind of protection
WO2019171995A1 (en) * 2018-03-09 2019-09-12 東レ株式会社 Antistatic dustproof fabric and protective clothing using same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023181940A1 (en) * 2022-03-25 2023-09-28 東レ株式会社 Laminated nonwoven fabric and protective clothing

Also Published As

Publication number Publication date
CN117897524A (en) 2024-04-16
JPWO2023058516A1 (en) 2023-04-13

Similar Documents

Publication Publication Date Title
KR101433405B1 (en) Liquid water resistant and water vapor permeable garments
EP2231391B1 (en) Liquid water resistant and water vapor permeable garments comprising hydrophobic treated nonwoven made from nanofibers
KR101720439B1 (en) Nonwoven fabric laminate
EP2131689B1 (en) Liquid water resistant and water vapor permeable garments comprising hydrophobic treated nonwoven made from nanofibers
EP3239394B1 (en) Protective clothing
KR101551554B1 (en) Nonwoven laminate
US7998885B2 (en) Fine-fiber nonwoven-supported coating structure
US5834384A (en) Nonwoven webs with one or more surface treatments
CN105568563B (en) Raw material and protective garment are taken in protection
KR20100080794A (en) Fabric and fabric laminate
CN113373599A (en) Spun-bonded nonwoven fabric, nonwoven fabric laminate, medical garment, drape, and melt-blown nonwoven fabric
US20110179558A1 (en) Breathable Protective Fabric and Garment
JP5072870B2 (en) Composite fabric
WO2023058516A1 (en) Multilayer nonwoven fabric, method for producing same, and protective garment
KR20180104704A (en) Sterilization packaging material
US20220287395A1 (en) Protective garment
JP4799097B2 (en) Medical adhesive tape substrate and method for producing the same
JP2023149450A (en) Laminated nonwoven fabric and protective clothing
JPWO2019059203A1 (en) Protective clothing fabric
WO2022176649A1 (en) Protective garment
WO2022163855A1 (en) Protective clothing
JP6842340B2 (en) Spunbonded non-woven fabric and sanitary materials
JP2024518414A (en) Extensible flame retardant material
JP2023149449A (en) laminated nonwoven fabric
JP2022094973A (en) Fabric for protective garment

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022559949

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22878386

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280056341.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE