WO2023058513A1 - Work machine - Google Patents

Work machine Download PDF

Info

Publication number
WO2023058513A1
WO2023058513A1 PCT/JP2022/036107 JP2022036107W WO2023058513A1 WO 2023058513 A1 WO2023058513 A1 WO 2023058513A1 JP 2022036107 W JP2022036107 W JP 2022036107W WO 2023058513 A1 WO2023058513 A1 WO 2023058513A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
vibration reduction
power transmission
weight member
gear
Prior art date
Application number
PCT/JP2022/036107
Other languages
French (fr)
Japanese (ja)
Inventor
太郎 岡部
Original Assignee
工機ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工機ホールディングス株式会社 filed Critical 工機ホールディングス株式会社
Publication of WO2023058513A1 publication Critical patent/WO2023058513A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D16/00Portable percussive machines with superimposed rotation, the rotational movement of the output shaft of a motor being modified to generate axial impacts on the tool bit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D17/00Details of, or accessories for, portable power-driven percussive tools
    • B25D17/24Damping the reaction force

Definitions

  • the present invention relates to working machines.
  • a gear housing is provided in an outer shell housing that constitutes the outer shell of the work machine.
  • a power transmission mechanism is provided in the gear housing, and the power transmission mechanism applies an impact force in the front-rear direction to the tip tool.
  • the work machine has a vibration reduction mechanism, and the vibration reduction mechanism reduces vibration generated by the power transmission mechanism.
  • the vibration reduction mechanism is arranged between the gear housing and the outer housing. Specifically, the vibration reduction mechanisms are arranged outside the gear housing in the left-right direction. For this reason, the size of the working machine tends to increase.
  • One or more embodiments of the present invention include a drive source, a tip tool, and a cylindrical member connected to the drive source and the tip tool and having a first direction as an axial direction.
  • a power transmission unit configured to apply an impact force in the first direction to the tip tool by being operated by the drive source; a case that accommodates at least the tubular member; a vibration reduction section that reduces vibration in the first direction that occurs in the case, and the vibration reduction section includes a guide member that extends in the first direction and the guide member that is relatively movable in the first direction. and a biasing member that biases the weight member in the first direction.
  • the biasing member is arranged to overlap the cylindrical member in two directions and a third direction orthogonal to the first direction and the second direction, and the biasing member is positioned at the center of gravity of the weight member when viewed in the first direction.
  • the working machine is arranged to be displaced in the second direction.
  • the power transmission section has a power transmission member, and the power transmission member extends relative to the tubular member in a second direction when viewed in a first direction. and at least a part of the weight member is sandwiched in the second direction by the tubular member and the power transmission member.
  • One or more embodiments of the present invention is a work machine in which the power transmission member is a gear having the second direction as an axial direction and transmitting rotational force to the tubular member.
  • the weight member has a curved surface extending along the circumferential direction of the tubular member.
  • One or more embodiments of the present invention is a work machine in which the weight member is supported by a pair of the guide members spaced apart in the second direction.
  • One or more embodiments of the present invention is a working machine, wherein the biasing member is a coil spring attached to the guide member.
  • a pair of the vibration reduction parts are provided inside the case, and the vibration reduction parts are arranged in one of the third directions with respect to the cylindrical member.
  • the working machines are arranged on one side and the other side, respectively.
  • One or more embodiments of the present invention is a working machine in which the weight members in the pair of vibration reducing sections are connected by a weight connecting section.
  • the vibration reduction section has a holder that supports both ends of the guide member in the longitudinal direction, and the holder is supported by the biasing force of the biasing member. It is a work machine that is pressed against the wall surface of the
  • FIG. 2 is a perspective view seen diagonally from the rear left, showing a state in which the power transmission mechanism and the vibration reduction mechanism are housed in the inner case shown in FIG. 1 ;
  • FIG. 3 is a top plan view showing a state in which the power transmission mechanism and the vibration reduction mechanism shown in FIG. 2 are accommodated in the inner case;
  • FIG. 4 is a cross-sectional view (cross-sectional view taken along line 4-4 in FIG. 3) seen from the rear side showing a state in which the power transmission mechanism and the vibration reduction mechanism shown in FIG. 3 are housed in the inner case;
  • FIG. 3 is an enlarged perspective view of the vibration reduction mechanism shown in FIG.
  • (A) is an enlarged perspective view showing the vibration reduction mechanism on the right side shown in FIG. 5, and (B) is a side view of the vibration reduction mechanism shown in (A) as seen from the left side.
  • (A) is a perspective view showing a weight member of the vibration reduction mechanism shown in FIG. 6 (A)
  • (B) is a side view of the weight member shown in (A) as seen from the left
  • ( C) is a rear view of the weight member shown in (A) as seen from the rear side. It is the side view seen from the left side which shows the modification 1 of the vibration reduction mechanism used for the hammer drill which concerns on this embodiment.
  • FIG. 11 is a cross-sectional view corresponding to FIG. 4 showing how the vibration reduction mechanism shown in FIG. 10 is accommodated in the inner case;
  • FIG. 1 A hammer drill 10 as a working machine according to the present embodiment will be described with reference to FIGS. 1 to 7.
  • FIG. The hammer drill 10 is configured as a tool for drilling or the like on a workpiece.
  • An arrow UP, an arrow FR, and an arrow RH appropriately shown in the drawings indicate the upper side, the front side, and the right side of the hammer drill 10 .
  • the up-down, front-rear, and left-right directions are used, the up-down direction, front-rear direction, and left-right direction of the hammer drill 10 are indicated unless otherwise specified.
  • the front-back direction corresponds to the first direction of the invention
  • the up-down direction corresponds to the second direction of the invention
  • the left-right direction corresponds to the third direction of the invention.
  • the lower side corresponds to one side in the second direction of the present invention.
  • hatching is omitted as appropriate for the sake of convenience.
  • the hammer drill 10 includes a housing 12, a motor 34 as a drive source accommodated in the housing 12, and a power transmission unit for transmitting the drive force of the motor 34 to the tip tool T. and a transmission mechanism 40 .
  • the hammer drill 10 has a mode switching mechanism 66, and by operating a switching lever 67 of the mode switching mechanism 66, the transmission path to the tip tool T in the power transmission mechanism 40 is switched,
  • the hammer drill 10 is configured to be switched between a hammer mode in which the tip tool T is applied with an impact force, and a hammer drill mode in which the tip tool T is provided with a rotational force and an impact force.
  • the hammer drill 10 has a pair of left and right vibration reduction mechanisms 80 (see FIGS. 2 and 3) as vibration reduction units. It is designed to Each configuration of the hammer drill 10 will be described below.
  • the housing 12 is formed in a hollow shape and constitutes the outer shell of the hammer drill 10 .
  • the housing 12 has a body housing 14 and a handle 16 arranged on the rear side of the body housing 14 (one side in the front-rear direction).
  • the body housing 14 extends in the front-rear direction, and the rear end portion of the body housing 14 protrudes downward.
  • the body housing 14 is composed of a plurality of housing members.
  • the handle 16 extends vertically, and the upper and lower ends of the handle 16 are connected to the body housing 14 by a vibration isolation mechanism 20 so that the handle 16 can move relative to the body housing 14 in the front-rear direction. configured as possible.
  • the anti-vibration mechanism 20 has a hinge connecting portion 21 that connects the lower end of the handle 16 to the main body housing 14. The hinge connecting portion 21 rotates to the rear lower end portion of the main body housing 14 with the horizontal direction as the axial direction. connected as possible.
  • the anti-vibration mechanism 20 has an elastic connecting portion 22 that connects the upper end of the handle 16 to the body housing 14 .
  • the elastic connecting portion 22 is made of an elastic material such as an elastomer, and is formed in a cylindrical and bellows shape whose axial direction is the front-rear direction. It is formed integrally with the body housing 14 .
  • the anti-vibration mechanism 20 has an anti-vibration spring 23 configured as a compression coil spring.
  • the anti-vibration spring 23 is arranged in the elastic connecting portion 22 to move the handle 16 and the body housing 14 forward and backward. biased outward.
  • the anti-vibration mechanism 20 has a stopper mechanism (not shown) to hold the handle 16 at the non-pushed position shown in FIG.
  • the handle 16 is configured to be displaced forward from the non-pressing position by pressing the handle 16 forward during processing of the workpiece.
  • a vertically intermediate portion of the handle 16 is configured as a grip portion 16A that is gripped by an operator.
  • a trigger 26 is provided on the upper portion of the grip portion 16A.
  • the trigger 26 is formed in a substantially elongated block shape extending in the vertical direction, and is operably exposed forward from the grip portion 16A.
  • a lower end portion of the trigger 26 is rotatably connected to the handle 16 with the lateral direction as an axial direction, and the trigger 26 is configured to be pulled rearward.
  • a switch 28 is provided in the handle 16 behind the trigger 26 . When the operator pulls the trigger 26, the switch 28 is turned on.
  • the switch 28 is electrically connected to a control section 30 provided at the lower end of the body housing 14 and outputs an output signal to the control section 30 according to the operating state of the trigger 26 .
  • a power cord 32 is provided at the lower end of the handle 16.
  • the power cord 32 extends downward from the handle 16 and is configured to be connectable to a commercial power source.
  • the power cord 32 is electrically connected to the control unit 30 , and power is supplied to the control unit 30 from a commercial power supply via the power cord 32 .
  • the motor 34 is constructed as a three-phase brushless motor, accommodated in the lower part of the main body housing 14 , and arranged in front of the control section 30 .
  • the motor 34 includes a drive shaft 34A whose axial direction is the vertical direction, a substantially cylindrical rotor 34B fixed to the drive shaft 34A, and a substantially cylindrical stator 34C arranged radially outside the rotor 34B. is composed of A lower end portion of the drive shaft 34A is rotatably supported by a bearing 35, and an upper end portion of the drive shaft 34A is rotatably supported by a bearing 36. As shown in FIG. A pinion gear 34A1 is formed at the upper end of the drive shaft 34A.
  • the motor 34 is electrically connected to the controller 30 and driven under the control of the controller 30 .
  • the power transmission mechanism 40 includes a crank mechanism portion 42 , a rotation mechanism portion 47 and a power applying mechanism portion 53 .
  • the power transmission mechanism 40 is housed in an inner case 72 as a case, and the inner case 72 is housed in the upper part of the body housing 14 .
  • the crank mechanism portion 42 and the rotation mechanism portion 47 constitute the lower portion of the power transmission mechanism 40
  • the power applying mechanism portion 53 constitutes the upper portion of the power transmission mechanism 40
  • the crank mechanism portion 42 and the rotation mechanism 47 are arranged side by side in the front-rear direction.
  • the configuration of the inner case 72 will be described, and then each configuration of the power transmission mechanism 40 will be described.
  • the inner case 72 includes a case body 73 and a case cover 74.
  • An inner case 72 is formed.
  • a rear portion of the case main body 73 is configured as a gear case portion 73A, and the gear case portion 73A is formed in a generally concave shape that opens upward.
  • the front portion of the case main body 73 is configured as a cylindrical case portion 73B.
  • the cylindrical case portion 73B is formed in a substantially cylindrical shape whose axial direction is the front-rear direction, and extends forward from the upper portion of the gear case portion 73A. is served.
  • the case cover 74 is formed in a substantially plate shape with the plate thickness direction extending in the vertical direction, and is assembled to the upper opening of the gear case portion 73A to close the opening.
  • a bearing 36 for supporting the drive shaft 34A of the motor 34 is fixed to the bottom wall of the gear case portion 73A, and the pinion gear 34A1 of the drive shaft 34A is arranged in the lower end portion of the gear case portion 73A.
  • crank mechanism part 42 As shown in Fig. 1, the crank mechanism part 42 is accommodated in the rear part of the gear case part 73A.
  • the crank mechanism portion 42 has a crankshaft 43 and a crank gear 44 .
  • the crankshaft 43 is formed in a generally bottomed cylindrical shape that opens downward, is arranged behind the pinion gear 34A1 of the motor 34, and the lower end of the crankshaft 43 is fixed to the bottom wall of the gear case portion 73A.
  • the crank gear 44 is formed in a substantially cylindrical shape whose axial direction is the vertical direction, and is rotatably supported by the crank shaft 43 via a bearing 45 .
  • a gear portion is formed on the outer peripheral portion of the lower end portion of the crank gear 44 , and the gear portion is meshed with the pinion gear 34 A 1 of the motor 34 .
  • a connection shaft 44A projecting upward is provided at the upper end of the crank gear 44, and the connection shaft 44A is arranged at a position eccentric to the center of the crankshaft 43. As shown in FIG.
  • the rotation mechanism 47 is accommodated in the front portion of the gear case portion 73A.
  • the rotation mechanism portion 47 has a rotation shaft 48 and a transmission gear 50 as a power transmission member.
  • the rotating shaft 48 is formed in a substantially columnar shape with an axial direction extending in the vertical direction, and is arranged on the front side of the pinion gear 34A1 of the motor 34. rotatably supported.
  • a bevel gear 48A is formed at the upper end of the rotary shaft 48. As shown in FIG.
  • the transmission gear 50 is formed in a substantially disk shape with the plate thickness direction extending in the vertical direction, and is connected to the upper end side portion of the rotating shaft 48 so as to be integrally rotatable.
  • the transmission gear 50 has a slip clutch 51 by which the transmission gear 50 and the rotating shaft 48 are connected. Specifically, a recess opening downward is formed in the lower surface of the transmission gear 50, and a slip clutch 51 is disposed in the recess to connect the transmission gear 50 and the rotating shaft 48.
  • a gear portion is formed on the outer peripheral portion of the transmission gear 50 , and the gear portion is meshed with the pinion gear 34 A 1 of the motor 34 .
  • the slip clutch 51 when a rotational torque equal to or greater than a predetermined value acts on the slip clutch 51, the connection state between the rotary shaft 48 and the transmission gear 50 by the slip clutch 51 is released. That is, the slip clutch 51 is configured as a so-called torque limiter mechanism so that the motor 34 is not overloaded by the slip clutch 51 .
  • the transmission gear 50 forms the outermost portion of the power transmission mechanism 40 in the left-right direction. That is, in the power transmission mechanism 40, the transmission gear 50 is configured as the largest member in the left-right direction.
  • the maximum lateral dimension of the inner case 72 (gear case portion 73A) is set by the diameter of the transmission gear 50. As shown in FIG.
  • the power application mechanism 53 includes a cylinder 54, a retainer sleeve 55, a ring gear 56 as a tubular member, a clutch 58, a piston 60 , a striker 63 , and a meson 64 .
  • the cylinder 54 and the retainer sleeve 55 are formed in a substantially cylindrical shape whose axial direction is the front-rear direction, and are arranged coaxially.
  • a front end portion of the cylinder 54 is fitted into a rear end portion of the retainer sleeve 55 so that the cylinder 54 and the retainer sleeve 55 are connected so as to be rotatable together.
  • the cylinder 54 and the retainer sleeve 55 are housed in the upper portion of the gear case portion 73A of the inner case 72 and the cylindrical case portion 73B. More specifically, the rear end portion of the cylinder 54 is arranged above the rotation mechanism portion 47 and in front of the connecting shaft 44A in the crank mechanism portion 42 .
  • the front end of the retainer sleeve 55 protrudes forward beyond the inner case 72 .
  • the cylinder 54 and the retainer sleeve 55 are rotatably supported by the inner case 72 and the body housing 14 via bearings.
  • a tip tool T is attached to the front end of the retainer sleeve 55 and protrudes forward from the front end of the body housing 14 .
  • the ring gear 56 is formed in a substantially cylindrical shape whose axial direction is the front-rear direction, is externally inserted in the rear end portion of the cylinder 54 , and is rotatably supported by the cylinder 54 . Specifically, the ring gear 56 is arranged above the transmission gear 50 and housed in the gear case portion 73A. A bevel gear 56A is formed at the rear end portion of the ring gear 56, and the bevel gear 56A meshes with the bevel gear 48A of the rotating shaft 48 of the rotating mechanism portion 47. As shown in FIG. The rear end portion of the ring gear 56 is bent radially outward in a substantially crank-like shape and protrudes radially outward compared to other portions of the ring gear 56 when viewed in vertical cross section.
  • the axis AL1 of the transmission gear 50 described above passes through the axis AL2 of the ring gear 56 (cylinder 54). Furthermore, the outermost diameter dimension of the ring gear 56 is set to be smaller than the diameter of the transmission gear 50 (see FIG. 4), and the ring gear 56 is located in the upper portion of the power transmission mechanism 40 (the power applying mechanism portion 53) in the left-right direction. It constitutes the outermost part.
  • the clutch 58 is formed in a substantially cylindrical shape whose axial direction is the front-rear direction, and is externally fitted on the cylinder 54 on the rear side of the ring gear 56 .
  • Clutch 58 is splined to cylinder 54 . That is, the clutch 58 is connected to the cylinder 54 so as to be rotatable together and relatively movable in the front-rear direction.
  • the front end of the clutch 58 is arranged radially inside the rear end of the ring gear 56 and engages with the ring gear 56 in the circumferential direction.
  • the driving force of the motor 34 is transmitted to the cylinder 54 by the rotating mechanism portion 47, the ring gear 56, and the clutch 58, and the cylinder 54 and the retainer sleeve 55 are rotated to impart a rotational force to the tip tool T. ing.
  • the clutch 58 is disengaged from the ring gear 56 by moving the clutch 58 rearward by the mode switching mechanism 66, which will be described later, so that the drive force is not transmitted from the rotation mechanism 47 to the cylinder 54. It is configured to be blocked.
  • the piston 60 is formed in a generally bottomed cylindrical shape that is open rearward, and is inserted into the rear portion of the cylinder 54 so as to be relatively movable in the front-rear direction. Further, the piston 60 is provided with a piston connecting shaft 61 whose axial direction is the vertical direction. A front end portion of a piston rod 62 extending in the front-rear direction is rotatably connected to the piston connecting shaft 61, and a rear end portion of the piston rod 62 is rotatably connected to the connecting shaft 44A of the crank mechanism portion 42. Concatenated. As a result, the driving force of the motor 34 is transmitted to the piston 60 by the crank mechanism 42 and the piston rod 62, and the piston 60 reciprocates in the front-rear direction.
  • the striker 63 is formed in a substantially columnar shape whose axial direction is the front-rear direction, and is inserted into the cylinder 54 so as to be relatively movable in the front-rear direction.
  • the striker 63 is spaced in front of the piston 60, and the space between the piston 60 and the striker 63 in the cylinder 54 is configured as an air chamber 54A.
  • the intermediate element 64 is formed in a substantially columnar shape whose axial direction is the front-rear direction, and is inserted into the retainer sleeve 55 so as to be relatively movable in the front-rear direction.
  • the intermediate element 64 is arranged adjacent to the front side of the striking element 63 .
  • the mode switching mechanism 66 includes a switching lever 67 and a switching arm 69 .
  • the switching lever 67 is formed in a substantially bottomed cylindrical shape that opens downward, is disposed at the rear end of the main body housing 14 , and is exposed upward from the main body housing 14 so as to be operable.
  • a lever shaft 68 is fixed to the central portion of the switching lever 67 .
  • the lever shaft 68 is formed in a substantially columnar shape with an axial direction extending in the vertical direction, and protrudes downward from the switching lever 67 .
  • a lever shaft 68 is rotatably supported by a case cover 74 of the inner case 72 .
  • the switching arm 69 is formed in a substantially elongated shape extending in the front-rear direction.
  • a front end of the switching arm 69 is connected to the clutch 58 of the power applying mechanism 53
  • a rear end of the switching arm 69 is connected to the lever shaft 68 via an arm connecting shaft 70 .
  • the arm connecting shaft 70 is arranged eccentrically with respect to the central axis of the lever shaft 68 .
  • the switching arm 69 is displaced in the front-rear direction by rotating the switching lever 67 .
  • the switching arm 69 is arranged at the position shown in FIG. 1, and the ring gear 56 and the clutch 58 are engaged.
  • the switching arm 69 is displaced rearward and the engagement state between the ring gear 56 and the clutch 58 is released. It's becoming
  • the pair of left and right vibration reduction mechanisms 80 are accommodated in both left and right end portions of the gear case portion 73A of the inner case 72, respectively.
  • a pair of left and right vibration reduction mechanisms 80 are housed in spaces S on both sides of the ring gear 56 in the left and right direction above the transmission gear 50 in the gear case portion 73A.
  • the pair of left and right vibration reduction mechanisms 80 are configured symmetrically with respect to the central portion of the inner case 72 in the left-right direction. Therefore, in the following description, the vibration reduction mechanism 80 on the right side will be described, and the description of the vibration reduction mechanism 80 on the left side will be omitted as appropriate.
  • the vibration reduction mechanism 80 includes a pair of front and rear holders 82, an upper guide shaft 84 and a lower guide shaft 86 as guide members, a weight member 90, and front and rear guide shafts as urging members. and a pair of weight springs 96 .
  • the pair of holders 82 are formed in a substantially rectangular plate shape with the thickness direction in the front-rear direction and the longitudinal direction in the vertical direction, and constitute both ends of the vibration reduction mechanism 80 in the front-rear direction.
  • the lower end of the holder 82 is engaged with the inner case 72 in the front-rear direction and the left-right direction, and the upper end of the holder 82 is engaged with the case cover 74 in the front-rear direction and the left-right direction to be fixed to the inner case 72 .
  • the front holder 82 is urged forward by a front weight spring 96, which will be described later, and the rear holder 82 is urged rearward by a rear weight spring 96 to form a pair of holders 82. are pressed against the wall surface of the case body 73 . Thereby, the fixed state of the holder 82 (vibration reduction mechanism 80) is maintained.
  • a pair of left and right upper bearing portions 82A are formed on the upper portions of the pair of front and rear holders 82 .
  • the upper bearing portion 82A is formed in a substantially cylindrical shape whose axial direction is the front-rear direction, and protrudes inward in the front-rear direction from the holder 82 .
  • a lower bearing portion 82B is formed below the pair of holders 82 .
  • the lower bearing portion 82B is formed in a substantially cylindrical shape whose axial direction is the front-rear direction, and protrudes from the holder 82 inward in the front-rear direction.
  • the positions of the upper bearing portion 82A and the lower bearing portion 82B in the left-right direction are set so that the lower bearing portion 82B is arranged between the pair of left and right upper bearing portions 82A when viewed from the front-rear direction.
  • the upper guide shaft 84 and the lower guide shaft 86 are formed in a substantially columnar shape whose axial direction is the front-rear direction. Both ends in the longitudinal direction of the upper guide shaft 84 are fitted into the upper bearing portions 82A on the left-right outer side (that is, on the right side) of the holder 82, and the upper guide shaft 84 is held by the pair of front and rear holders 82. There is Both ends of the lower guide shaft 86 in the longitudinal direction are fitted into the lower bearing portions 82B of the holder 82 so that the lower guide shaft 86 is held by the pair of front and rear holders 82 .
  • the lower guide shaft 86 is arranged laterally inward (toward the ring gear 56 ) with respect to the upper guide shaft 84 .
  • the upper guide shaft 84 is arranged slightly below the axis AL2 of the ring gear 56 when viewed in the front-rear direction.
  • ring dampers 88 are externally inserted on both ends of the upper guide shaft 84 in the front-rear direction.
  • the ring damper 88 is made of an elastic material such as rubber, and serves as a member that mitigates collision between a weight member 90 and an upper bearing portion 82A of the holder 82, which will be described later.
  • the weight member 90 includes a weight portion 92 forming an upper portion of the weight member 90 and a spring mounting portion 94 forming a lower portion of the weight member 90 .
  • the weight portion 92 is formed in a substantially inverted T-shaped block shape when viewed from the left-right direction, with the left-right direction being the thickness direction.
  • An upper guide hole 92A is formed through the lower end portion of the weight portion 92 in the front-rear direction.
  • the upper guide shaft 84 is inserted into the upper guide hole 92A, and the weight portion 92 is supported by the upper guide shaft 84 so as to be relatively movable in the front-rear direction.
  • the center of gravity G (see FIG. 4) of the weight member 90 is arranged at a position overlapping the weight portion 92 when viewed from the front-rear direction. Specifically, the center of gravity G of the weight member 90 is positioned near the upper guide hole 92A when viewed from the front-rear direction.
  • the spring mounting portion 94 is formed in a plate-like shape with the thickness direction extending in the front-rear direction, and extends downward from the central portion in the front-rear direction of the weight portion 92 . Further, the spring mounting portion 94 is formed with a pair of front and rear mounting cylinder portions 94A for mounting a weight spring 96, which will be described later.
  • the mounting cylinder portion 94A is formed in a cylindrical shape whose axial direction is the front-rear direction, and protrudes outward from the spring mounting portion 94 in the front-rear direction.
  • the inside of the mounting cylinder portion 94A is configured as a lower guide hole 94B, and the lower guide hole 94B penetrates in the front-rear direction so that the insides of the pair of front and rear mounting cylinder portions 94A communicate with each other.
  • the lower guide shaft 86 is inserted into the lower guide hole 94B, and the spring mounting portion 94 is supported by the lower guide shaft 86 so as to be relatively movable in the front-rear direction.
  • the spring mounting portion 94 for mounting the weight spring 96 and the weight portion 92 functioning as a weight portion are arranged to be shifted in the vertical direction.
  • the weight member 90 is arranged close to the right side of the ring gear 56, and substantially the entire weight member 90 overlaps the ring gear 56 in the left-right direction (see FIG. 4). Specifically, the upper end of the weight member 90 is arranged below the uppermost end of the ring gear 56, and the lower end of the weight member 90 is arranged slightly below the lowermost end of the ring gear 56. Further, the position of the weight member 90 in the front-rear direction is set so that the entire weight member 90 overlaps the transmission gear 50 when viewed from above.
  • the outer shape of the spring mounting portion 94 is formed in a substantially circular shape centered on the lower guide hole 94B when viewed from the front-rear direction, and the outer peripheral surface of the weight portion 92 and the outer peripheral surface of the spring mounting portion 94 are aligned. connected smoothly.
  • a curved surface 90A is formed on the left-right inner side surface of the weight member 90 (that is, the left side surface, which faces the ring gear 56 in the radial direction).
  • the curved surface 90A is curved in an arc centered on the axis AL2 of the ring gear 56 when viewed from the front-rear direction, and is formed at the lower portion of the weight portion 92 and the upper portion of the spring mounting portion 94. Smoothly connected to the bottom surface.
  • a portion of the spring mounting portion 94 projects leftward from the weight portion 92 and is arranged to bite into the space S between the ring gear 56 and the transmission gear 50 .
  • the weight member 90 extends vertically along the circumferential direction of the ring gear 56 on the right side of the ring gear 56 .
  • the outermost portion of the ring gear 56 (the portion where the bevel gear 56A is formed) and part of the weight member 90 overlap in the vertical direction.
  • a side surface 90 ⁇ /b>B on the left-right direction outer side of the weight member 90 is formed in a planar shape along a plane orthogonal to the left-right direction, and is smoothly connected to the lower surface of the spring mounting portion 94 .
  • the side surfaces 90B of the weight member 90 are arranged close to the left and right side surfaces of the gear case portion 73A.
  • a pair of front and rear weight springs 96 are configured as compression coil springs.
  • the weight spring 96 is arranged outside the spring mounting portion 94 of the weight member 90 in the front-rear direction, and is attached to the lower guide shaft 86 on the lower side.
  • the rear end portion of the weight spring 96 on the front side is externally fitted on the mounting cylinder portion 94A on the front side
  • the front end portion of the weight spring 96 on the front side is externally fitted on the lower bearing portion 82B of the holder 82 on the front side. ing.
  • the front end portion of the rear weight spring 96 is fitted over the rear mounting cylinder portion 94A, and the rear end portion of the rear weight spring 96 is fitted over the lower bearing portion 82B of the rear holder 82. It is As a result, the weight spring 96 is arranged at a position shifted downward with respect to the weight portion 92 (the center of gravity G of the weight member 90). In other words, the center AL3 of the weight spring 96 is arranged at a position different from the center of gravity G of the weight member 90 when viewed in the front-rear direction. In other words, the center of gravity G of the weight member 90 is arranged outside the arrangement range of the weight spring 96 when viewed in the front-rear direction.
  • the lower guide shaft 86 is inserted through the weight spring 96, there is a gap between the lower guide shaft 86 and the weight spring 96 that is equal to the thickness of the mounting tubular portion 94A and the lower bearing portion 82B. direction is provided.
  • the weight spring 96 on the front side urges the spring mounting portion 94 rearward
  • the weight spring 96 on the rear side urges the spring mounting portion 94 frontward
  • the weight member 90 moves the upper guide shaft 84 and the lower guide. It is held at the central portion of the shaft 86 in the front-rear direction.
  • the radius of the weight spring 96 is set slightly smaller than the radius of the spring mounting portion 94 of the weight member 90, and is set so that the weight spring 96 does not protrude beyond the spring mounting portion 94 when viewed from the front-rear direction. ing.
  • the switching arm 69 of the mode switching mechanism 66 engages the ring gear 56 and the clutch 58 .
  • the crank mechanism 42 and the rotation mechanism 47 are actuated, and the impact force and the rotation force are applied to the tip tool T from the power application mechanism 53. be.
  • the clutch 58 is displaced rearward by the switching arm 69 of the mode switching mechanism 66, and the engagement state between the ring gear 56 and the clutch 58 is released. Accordingly, when the operator pulls the trigger 26 to drive the motor 34 , the crank mechanism 42 is operated and only the impact force is applied to the tip tool T from the power applying mechanism 53 .
  • the vibration reduction mechanism 80 is provided inside the inner case 72 .
  • the vibration reduction mechanism 80 has a weight member 90, and the weight member 90 is supported by a pair of upper and lower guide shafts 84 and 86 so as to be relatively movable in the front-rear direction.
  • the weight member 90 is biased in the front-rear direction by a pair of front and rear weight springs 96 .
  • the vibration energy transmitted to the inner case 72 can be absorbed by the vibration reduction mechanism 80 by the weight member 90 vibrating in the longitudinal direction when the power transmission mechanism 40 is operated. Therefore, since the vibration transmitted to the operator is reduced, the workability of the hammer drill 10 can be improved.
  • the weight member 90 is arranged in the inner case 72 at a position overlapping the ring gear 56 in the left-right direction and the up-down direction when viewed in the front-rear direction. is shifted downward with respect to the center of gravity G.
  • the weight member 90 has a spring attachment portion 94 to which a weight spring 96 is attached, and a weight portion 92 functioning as a weight portion where the center of gravity G is located, which are arranged with a vertical shift. extends upward from the spring mounting portion 94 .
  • the size of the weight member 90 can be reduced, and the size of the hammer drill 10 can be reduced.
  • the weight of the comparative example is formed in a cylindrical shape whose axial direction is the front-rear direction.
  • the weight portion functioning as a weight portion and the spring mounting portion for mounting the weight spring 96 are not displaced in the vertical direction.
  • the weight member of the comparative example is movably connected to the upper guide shaft 84 or the lower guide shaft 86 and biased by the pair of front and rear weight springs 96 so as to sandwich the weight member of the comparative example from the outside in the front-rear direction. In order to secure the weight in the weight member, it is necessary to increase the size of the weight member.
  • the size of the weight member of the comparative example if the size of the weight member is increased in the radial direction, it is necessary to increase the size of the inner case 72 in the lateral direction and the vertical direction. Further, for example, in the weight member of the comparative example, if the size of the weight member is increased in the longitudinal direction, it is necessary to increase the size of the inner case 72 in the longitudinal direction. As a result, the size of the hammer drill 10 may increase.
  • the weight member 90 is arranged in the inner case 72 at a position overlapping the ring gear 56 in the left-right direction and the up-down direction when viewed from the front-rear direction. Also, in the weight member 90, a spring attachment portion 94 to which a weight spring 96 is attached and a weight portion 92 functioning as a weight portion are arranged so as to be displaced in the vertical direction. That is, the weight member 90 can extend vertically along the circumferential direction of the ring gear 56 on the outer side of the ring gear 56 in the left-right direction. Therefore, the size of the weight member 90 can be reduced compared to the weight member of the comparative example, and the size of the hammer drill 10 can be reduced. As described above, the hammer drill 10 can be downsized and the workability can be improved.
  • the vibration reduction mechanism 80 is provided outside the inner case 72 .
  • the wall surface of the inner case 72 is interposed between the space in the inner case 72 in which the power transmission mechanism 40 is accommodated and the space in which the vibration reduction mechanism 80 is accommodated, the weight member 90 can be moved vertically. It is difficult to arrange so as to overlap the ring gear 56 in the direction and the left-right direction.
  • the size of the hammer drill 10 may increase.
  • both the vibration reduction mechanism 80 and the power transmission mechanism 40 are accommodated in the inner case 72, so the weight member 90 is arranged so as to overlap the ring gear 56 in the vertical and horizontal directions.
  • the weight portion 92 is arranged outside the ring gear 56 (cylinder 54 ) in the left-right direction, and the spring mounting portion 94 is arranged below the weight portion 92 . More specifically, when viewed from the front-rear direction, the weight portion 92 where the center of gravity G of the weight member 90 is located is arranged slightly below the axis AL2 of the ring gear 56 (cylinder 54), and the spring mounting portion 94 is located at the weight portion. It is arranged below 92. As a result, in the weight member 90, the center of gravity G of the weight member 90 is arranged closer to the axis line AL2 in the vertical direction than in a configuration in which the positions of the weight portion 92 and the spring mounting portion 94 are reversed vertically.
  • the vibration reduction effect of the vibration reduction mechanism 80 can be enhanced.
  • the power transmission mechanism 40 also has a transmission gear 50 .
  • the transmission gear 50 extends in the left-right direction below the ring gear 56 , and at least a portion of the weight member 90 is vertically sandwiched between the ring gear 56 and the transmission gear 50 .
  • the spring mounting portion 94 of the weight member 90 protrudes from the weight portion 92 toward the ring gear 56 , and the protruding portion is vertically sandwiched between the ring gear 56 and the transmission gear 50 .
  • the part between the ring gear 56 and the transmission gear 50 in the space S of the gear case portion 73A can be used to dispose a part of the spring mounting portion 94 and the weight spring 96.
  • FIG. Therefore, it is possible to prevent the weight spring 96 from projecting outward in the left-right direction from the weight member 90 while ensuring the diameter (spring diameter) of the weight spring 96 .
  • a curved surface 90A is formed on the inner side surface of the weight member 90 in the left-right direction. Thereby, the weight of the weight member 90 can be ensured while the weight member 90 is arranged close to the ring gear 56 . As a result, it is possible to effectively contribute to miniaturization of the weight member 90 in the lateral direction.
  • the weight member 90 is supported by a pair of upper guide shaft 84 and lower guide shaft 86 so as to be relatively movable in the front-rear direction. Thereby, the weight member 90 can be arranged along the circumferential direction of the ring gear 56 while stabilizing the posture of the weight member 90 .
  • the weight spring 96 is a compression coil spring attached to the lower guide shaft 86 .
  • the posture of the weight spring 96 can be stabilized by the lower guide shaft 86, and the weight spring 96 can bias the weight member 90 in the front-rear direction.
  • the vibration reduction mechanism 80 also includes a pair of front and rear holders 82 that support both ends of the upper guide shaft 84 and the lower guide shaft 86 in the longitudinal direction. is pressed against the gear case portion 73A. As a result, the urging force of the weight spring 96 that urges the weight member 90 in the front-rear direction can be utilized to keep the holder 82 firmly fixed to the inner case 72 .
  • the vibration reduction mechanism 80 is also arranged in the inner case 72 in which the power transmission mechanism 40 is accommodated, the power transmission mechanism 40 is also installed when the inner case 72 is opened for maintenance of the power transmission mechanism 40. Therefore, maintenance of the hammer drill 10 is improved. Furthermore, the lubricant such as grease applied to the power transmission mechanism 40 to lubricate the power transmission mechanism 40 can scatter to the vibration reduction mechanism 80 during driving, so the power transmission mechanism 40 is also lubricated. Wear and the like are less likely to occur, improving reliability.
  • Modification 1 of the vibration reduction mechanism 80 will be described below with reference to FIG. Modification 1 of vibration reduction mechanism 80 is configured in the same manner as vibration reduction mechanism 80 of the present embodiment except for the following points. Note that FIG. 8 shows the vibration reduction mechanism 80 arranged on the right side, and in FIG. attached.
  • the upper guide shaft 84 is omitted from the vibration reduction mechanism 80 , and the weight member 90 is supported only by the lower guide shaft 86 .
  • the lower guide shaft 86 is formed in a non-circular shape when viewed from its longitudinal direction. In this modified example, the lower guide shaft 86 is formed to have a substantially track-shaped cross section.
  • the weight member 90 In the weight member 90, the upper guide hole 92A is omitted, and the lower guide hole 94B is formed in an elongated hole shape corresponding to the outer shape of the lower guide shaft 86. As shown in FIG. Thereby, the weight member 90 is connected to the lower guide shaft 86 so as to be relatively movable in the front-rear direction and not relatively rotatable.
  • the weight member 90 is arranged radially outside the ring gear 56 along the circumferential direction of the ring gear 56, and the weight spring 96 is attached to the ring gear 56 side, and the weight spring 96 can be arranged below the center of gravity G of the weight member 90 and closer to the ring gear 56 side. Therefore, in the first modification of the vibration reduction mechanism 80 as well, the hammer drill 10 can be downsized and the workability can be improved.
  • the upper guide shaft 84 is omitted from the vibration reduction mechanism 80. As shown in FIG. Therefore, it is possible to reduce the number of parts and the number of assembly man-hours, and contribute to the cost reduction of the vibration reduction mechanism 80 .
  • Modification 2 of the vibration reduction mechanism 80 will be described below with reference to FIG. Modification 2 of vibration reduction mechanism 80 is configured in the same manner as vibration reduction mechanism 80 of the present embodiment except for the following points. Note that FIG. 9 shows the vibration reduction mechanism 80 arranged on the right side, and in FIG. attached.
  • the lower guide shaft 86 is omitted from the vibration reduction mechanism 80 and the weight member 90 is supported only by the upper guide shaft 84 .
  • the upper guide shaft 84 is formed in a non-circular shape when viewed from its longitudinal direction.
  • the weight member 90 In the weight member 90, the lower guide hole 94B is omitted, and the upper guide hole 92A is formed in an elongated hole shape corresponding to the outer shape of the upper guide shaft 84. As shown in FIG. Thereby, the weight member 90 is connected to the upper guide shaft 84 so as to be relatively movable in the front-rear direction and not relatively rotatable.
  • the weight member 90 is arranged radially outside the ring gear 56 along the circumferential direction of the ring gear 56, and the weight spring 96 is attached to the ring gear 56 side, and the weight spring 96 can be arranged below the center of gravity G of the weight member 90 and closer to the ring gear 56 side. Therefore, in the second modification of the vibration reduction mechanism 80 as well, the hammer drill 10 can be downsized and the workability can be improved.
  • the upper guide shaft 84 is omitted from the vibration reduction mechanism 80. As shown in FIG. Therefore, it is possible to reduce the number of parts and the number of assembly man-hours, and contribute to the cost reduction of the vibration reduction mechanism 80 .
  • FIG. Modification 3 of vibration reduction mechanism 80 is configured in the same manner as vibration reduction mechanism 80 of the present embodiment except for the following points.
  • FIGS. 10 and 11 the same reference numerals are given to the parts configured in the same manner as the vibration reduction mechanism 80 of the present embodiment.
  • a connection arm 98 is provided as a weight connection portion for connecting the weight members 90 of the pair of left and right vibration reduction mechanisms 80 to each other.
  • the connecting arm 98 is arranged above the ring gear 56 and has a substantially semi-disc shape that opens downward along the circumferential direction of the ring gear 56 . Both longitudinal ends of the connecting arm 98 are connected to the upper end of the weight member 90 .
  • the pair of left and right vibration reduction mechanisms 80 operate integrally.
  • the weight member 90 is arranged radially outside the ring gear 56 along the circumferential direction of the ring gear 56, and the weight spring 96 is attached to the ring gear 56 side, and the weight spring 96 can be arranged below the center of gravity G of the weight member 90 and closer to the ring gear 56 side. Therefore, also in the modification 3 of the vibration reduction mechanism 80, workability
  • the pair of left and right vibration reduction mechanisms 80 can be operated integrally by the connecting arm 98.
  • FIG. since the left and right weight members 90 are connected by the connection arm 98, the weight of the left and right weight members 90 can be made heavier than in the present embodiment. Therefore, for example, the weight of the weight member 90 as a whole can be adjusted according to the resonance frequency during operation of various hammer drills. Therefore, it is possible to absorb vibrations generated during operation in correspondence with various hammer drills.

Abstract

The present invention improves workability while achieving reduction in size. In vibration reduction mechanisms 80 of a hammer drill 10, weight members 90 are disposed at locations, in an inner case 72, that overlap a ring gear 56 in the right-left direction and vertical direction when viewed from the front-back direction. Weight springs 96 are disposed so as to be displaced downward from the centers of gravity G of the weight members 90 when viewed from the front-back direction. More specifically, in each of the weight members 90, a spring mounting part 94 having the corresponding weight spring 96 mounted thereto and a weight part 92 serving as a weight section in which the center of gravity G is located are disposed so as to be displaced from each other in the vertical direction, and the weight part 92 extends upward from the spring mounting part 94. Accordingly, it is possible to reduce the physical size of the weight members 90 and eventually reduce the physical size of the hammer drill 10.

Description

作業機work machine
本発明は、作業機に関するものである。 The present invention relates to working machines.
下記特許文献1に記載の作業機では、作業機の外郭を構成する外郭ハウジング内にギヤハウジングが設けられている。また、ギヤハウジング内には、動力伝達機構が設けられており、動力伝達機構によって、前後方向の打撃力が先端工具に付与される。また、作業機は、振動低減機構を有しており、振動低減機構によって、動力伝達機構により発生する振動を低減している。これにより、例えば、作業者に対する作業性を向上することができる。 In the work machine described in Patent Document 1 below, a gear housing is provided in an outer shell housing that constitutes the outer shell of the work machine. A power transmission mechanism is provided in the gear housing, and the power transmission mechanism applies an impact force in the front-rear direction to the tip tool. In addition, the work machine has a vibration reduction mechanism, and the vibration reduction mechanism reduces vibration generated by the power transmission mechanism. Thereby, for example, workability for workers can be improved.
WO2015/166995WO2015/166995
しかしながら、上記作業機では、振動低減機構が、ギヤハウジングと外郭ハウジングとの間に配置されている。具体的には、振動低減機構が、ギヤハウジングの左右方向外側にそれぞれ配置されている。このため、作業機の体格が大型化する傾向となる。 However, in the working machine described above, the vibration reduction mechanism is arranged between the gear housing and the outer housing. Specifically, the vibration reduction mechanisms are arranged outside the gear housing in the left-right direction. For this reason, the size of the working machine tends to increase.
本発明は、上記事実を考慮して、小型化を図りつつ、作業性を向上することができる作業機を提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a work machine capable of improving workability while reducing the size of the machine.
本発明の1又はそれ以上の実施形態は、駆動源と、先端工具と、前記駆動源及び前記先端工具に連結されると共に、第1方向を軸方向とする円筒形状の筒状部材を含んで構成され、前記駆動源によって作動することで前記先端工具に前記第1方向の打撃力を付与する動力伝達部と、少なくとも前記筒状部材を収容するケースと、前記ケースの内部に収容され、前記ケースに生じる前記第1方向の振動を低減する振動低減部と、を備え、前記振動低減部は、前記第1方向に延在するガイド部材と、前記第1方向に相対移動可能に前記ガイド部材に支持されたウエイト部材と、前記ウエイト部材を前記第1方向に付勢する付勢部材と、を含んで構成され、前記ウエイト部材は、第1方向視において、前記第1方向と直交する第2方向、及び、前記第1方向及び前記第2方向と直交する第3方向に前記筒状部材と重なるように配置され、前記付勢部材は、第1方向視において、前記ウエイト部材の重心に対して前記第2方向にずれて配置されている作業機である。 One or more embodiments of the present invention include a drive source, a tip tool, and a cylindrical member connected to the drive source and the tip tool and having a first direction as an axial direction. a power transmission unit configured to apply an impact force in the first direction to the tip tool by being operated by the drive source; a case that accommodates at least the tubular member; a vibration reduction section that reduces vibration in the first direction that occurs in the case, and the vibration reduction section includes a guide member that extends in the first direction and the guide member that is relatively movable in the first direction. and a biasing member that biases the weight member in the first direction. The biasing member is arranged to overlap the cylindrical member in two directions and a third direction orthogonal to the first direction and the second direction, and the biasing member is positioned at the center of gravity of the weight member when viewed in the first direction. The working machine is arranged to be displaced in the second direction.
本発明の1又はそれ以上の実施形態は、前記動力伝達部は、動力伝達部材を有しており、第1方向視で、前記動力伝達部材が、前記筒状部材に対して第2方向一方側において前記第3方向に延在され、前記ウエイト部材の少なくとも一部が、前記筒状部材及び前記動力伝達部材によって前記第2方向に挟み込まれている作業機である。 In one or more embodiments of the present invention, the power transmission section has a power transmission member, and the power transmission member extends relative to the tubular member in a second direction when viewed in a first direction. and at least a part of the weight member is sandwiched in the second direction by the tubular member and the power transmission member.
本発明の1又はそれ以上の実施形態は、前記動力伝達部材は、前記第2方向を軸方向とし且つ前記筒状部材に回転力を伝達するギヤである作業機である。 One or more embodiments of the present invention is a work machine in which the power transmission member is a gear having the second direction as an axial direction and transmitting rotational force to the tubular member.
本発明の1又はそれ以上の実施形態は、前記ウエイト部材は、前記筒状部材の周方向に沿って延在された湾曲面を有している作業機である。 In one or more embodiments of the present invention, the weight member has a curved surface extending along the circumferential direction of the tubular member.
本発明の1又はそれ以上の実施形態は、前記ウエイト部材が、前記第2方向に離間して配置された一対の前記ガイド部材によって支持されている作業機である。 One or more embodiments of the present invention is a work machine in which the weight member is supported by a pair of the guide members spaced apart in the second direction.
本発明の1又はそれ以上の実施形態は、前記付勢部材は、前記ガイド部材に装着されたコイルスプリングである作業機である。 One or more embodiments of the present invention is a working machine, wherein the biasing member is a coil spring attached to the guide member.
本発明の1又はそれ以上の実施形態は、前記ケースの内部には、一対の前記振動低減部が設けられており、前記振動低減部が、前記筒状部材に対して前記第3方向の一方側及び他方側にそれぞれ配置されている作業機である。 In one or more embodiments of the present invention, a pair of the vibration reduction parts are provided inside the case, and the vibration reduction parts are arranged in one of the third directions with respect to the cylindrical member. The working machines are arranged on one side and the other side, respectively.
本発明の1又はそれ以上の実施形態は、一対の前記振動低減部における前記ウエイト部材が、ウエイト連結部によって連結されている作業機である。 One or more embodiments of the present invention is a working machine in which the weight members in the pair of vibration reducing sections are connected by a weight connecting section.
本発明の1又はそれ以上の実施形態は、前記振動低減部は、前記ガイド部材の長手方向両端部を支持するホルダを有しており、前記ホルダは、前記付勢部材の付勢力によって前記ケースの壁面に圧接されている作業機である。 In one or more embodiments of the present invention, the vibration reduction section has a holder that supports both ends of the guide member in the longitudinal direction, and the holder is supported by the biasing force of the biasing member. It is a work machine that is pressed against the wall surface of the
本発明の1又はそれ以上の実施形態によれば、小型化を図りつつ、作業性を向上することができる。 According to one or more embodiments of the present invention, workability can be improved while miniaturization is achieved.
本実施形態に係るハンマドリルを示す右側から見た縦断面図である。It is the longitudinal cross-sectional view seen from the right side which shows the hammer drill which concerns on this embodiment. 図1に示されるインナケースへの動力伝達機構及び振動低減機構の収容状態を示す左斜め後方から見た斜視図である。FIG. 2 is a perspective view seen diagonally from the rear left, showing a state in which the power transmission mechanism and the vibration reduction mechanism are housed in the inner case shown in FIG. 1 ; 図2に示される動力伝達機構及び振動低減機構のインナケースへの収容状態を示す上側から見た平面図である。FIG. 3 is a top plan view showing a state in which the power transmission mechanism and the vibration reduction mechanism shown in FIG. 2 are accommodated in the inner case; 図3に示される動力伝達機構及び振動低減機構のインナケースへの収容状態を示す後側から見た断面図(図3の4-4線断面図)である。FIG. 4 is a cross-sectional view (cross-sectional view taken along line 4-4 in FIG. 3) seen from the rear side showing a state in which the power transmission mechanism and the vibration reduction mechanism shown in FIG. 3 are housed in the inner case; 図2に示される振動低減機構のインナケースへの収容状態を拡大して示す左斜め後方から見た斜視図である。FIG. 3 is an enlarged perspective view of the vibration reduction mechanism shown in FIG. 2 when it is housed in an inner case, as seen obliquely from the rear left; (A)は、図5に示される右側の振動低減機構を拡大して示す斜視図であり、(B)は、(A)に示される振動低減機構の左側から見た側面図である。(A) is an enlarged perspective view showing the vibration reduction mechanism on the right side shown in FIG. 5, and (B) is a side view of the vibration reduction mechanism shown in (A) as seen from the left side. (A)は、図6(A)に示される振動低減機構のウエイト部材を示す斜視図であり、(B)は、(A)に示されるウエイト部材の左側から見た側面図であり、(C)は、(A)に示されるウエイト部材の後側から見た後面図である。(A) is a perspective view showing a weight member of the vibration reduction mechanism shown in FIG. 6 (A), (B) is a side view of the weight member shown in (A) as seen from the left, ( C) is a rear view of the weight member shown in (A) as seen from the rear side. 本実施形態に係るハンマドリルに用いられる振動低減機構の変形例1を示す左側から見た側面図である。It is the side view seen from the left side which shows the modification 1 of the vibration reduction mechanism used for the hammer drill which concerns on this embodiment. 本実施形態に係るハンマドリルに用いられる振動低減機構の変形例2を示す左側から見た側面図である。It is the side view seen from the left side which shows the modification 2 of the vibration reduction mechanism used for the hammer drill which concerns on this embodiment. 本実施形態に係るハンマドリルに用いられる振動低減機構の変形例3を示す左斜め後方から見た斜視図である。It is the perspective view seen from the diagonally rear left which shows the modification 3 of the vibration reduction mechanism used for the hammer drill which concerns on this embodiment. 図10に示される振動低減機構のインナケースへの収容状態を示す図4に対応する断面図である。FIG. 11 is a cross-sectional view corresponding to FIG. 4 showing how the vibration reduction mechanism shown in FIG. 10 is accommodated in the inner case;
図1~図7を用いて、本実施形態に係る作業機としてのハンマドリル10について説明する。ハンマドリル10は、加工物に対して孔あけ加工等を施す工具として構成されている。なお、図面に適宜示される矢印UP、矢印FR、矢印RHは、ハンマドリル10の上側、前側、右側を示している。以下の説明において、上下、前後、左右の方向を用いて説明するときには、特に断りのない限り、ハンマドリル10の上下方向、前後方向、左右方向を示すものとする。そして、前後方向が本発明の第1方向に対応し、上下方向が本発明の第2方向に対応し、左右方向が本発明の第3方向に対応する。また、下側が本発明の第2方向一方側に対応する。さらに、図面では、便宜上、ハッチングを適宜省略している。 A hammer drill 10 as a working machine according to the present embodiment will be described with reference to FIGS. 1 to 7. FIG. The hammer drill 10 is configured as a tool for drilling or the like on a workpiece. An arrow UP, an arrow FR, and an arrow RH appropriately shown in the drawings indicate the upper side, the front side, and the right side of the hammer drill 10 . In the following description, when the up-down, front-rear, and left-right directions are used, the up-down direction, front-rear direction, and left-right direction of the hammer drill 10 are indicated unless otherwise specified. The front-back direction corresponds to the first direction of the invention, the up-down direction corresponds to the second direction of the invention, and the left-right direction corresponds to the third direction of the invention. Also, the lower side corresponds to one side in the second direction of the present invention. Furthermore, in the drawings, hatching is omitted as appropriate for the sake of convenience.
図1に示されるように、ハンマドリル10は、ハウジング12と、ハウジング12内に収容された、駆動源としてのモータ34と、モータ34の駆動力を先端工具Tへ伝達する動力伝達部としての動力伝達機構40と、を含んで構成されている。また、ハンマドリル10は、モード切替機構部66を有しており、モード切替機構部66の切替レバー67が操作されることで、動力伝達機構40における先端工具Tへの伝達経路が切替えられて、ハンマドリル10が、先端工具Tに打撃力を付与するハンマモード、又は、先端工具Tに回転力及び打撃力を付与するハンマドリルモードに切替わるように構成されている。また、ハンマドリル10は、振動低減部としての左右一対の振動低減機構80(図2及び図3参照)を有しており、ハンマドリル10の作動時に生じる前後方向の振動を振動低減機構80のよって吸収するようになっている。以下、ハンマドリル10の各構成について説明する。 As shown in FIG. 1, the hammer drill 10 includes a housing 12, a motor 34 as a drive source accommodated in the housing 12, and a power transmission unit for transmitting the drive force of the motor 34 to the tip tool T. and a transmission mechanism 40 . Further, the hammer drill 10 has a mode switching mechanism 66, and by operating a switching lever 67 of the mode switching mechanism 66, the transmission path to the tip tool T in the power transmission mechanism 40 is switched, The hammer drill 10 is configured to be switched between a hammer mode in which the tip tool T is applied with an impact force, and a hammer drill mode in which the tip tool T is provided with a rotational force and an impact force. In addition, the hammer drill 10 has a pair of left and right vibration reduction mechanisms 80 (see FIGS. 2 and 3) as vibration reduction units. It is designed to Each configuration of the hammer drill 10 will be described below.
(ハウジング12について) ハウジング12は、中空状に形成されて、ハンマドリル10の外郭を構成している。ハウジング12は、本体ハウジング14と、本体ハウジング14の後側(前後方向一方側)に配置されたハンドル16と、を有している。本体ハウジング14は、前後方向に延在されており、本体ハウジング14の後端部が下側へ突出している。本体ハウジング14は、複数のハウジング部材によって構成されている。 (Regarding the housing 12 ) The housing 12 is formed in a hollow shape and constitutes the outer shell of the hammer drill 10 . The housing 12 has a body housing 14 and a handle 16 arranged on the rear side of the body housing 14 (one side in the front-rear direction). The body housing 14 extends in the front-rear direction, and the rear end portion of the body housing 14 protrudes downward. The body housing 14 is composed of a plurality of housing members.
ハンドル16は、上下方向に延在されており、ハンドル16の上端部及び下端部が、防振機構20によって本体ハウジング14に連結されて、ハンドル16が本体ハウジング14に対して前後方向に相対移動可能に構成されている。防振機構20は、ハンドル16の下端部を本体ハウジング14に連結するヒンジ連結部21を有しており、ヒンジ連結部21は、左右方向を軸方向として本体ハウジング14の後側下端部に回転可能に連結されている。防振機構20は、ハンドル16の上端部を本体ハウジング14に連結する弾性連結部22を有している。弾性連結部22は、エラストマなどの弾性材によって構成されると共に、前後方向を軸方向とする筒状で且つ蛇腹状に形成されており、弾性連結部22の前後方向両端部が、ハンドル16及び本体ハウジング14に一体に形成されている。 The handle 16 extends vertically, and the upper and lower ends of the handle 16 are connected to the body housing 14 by a vibration isolation mechanism 20 so that the handle 16 can move relative to the body housing 14 in the front-rear direction. configured as possible. The anti-vibration mechanism 20 has a hinge connecting portion 21 that connects the lower end of the handle 16 to the main body housing 14. The hinge connecting portion 21 rotates to the rear lower end portion of the main body housing 14 with the horizontal direction as the axial direction. connected as possible. The anti-vibration mechanism 20 has an elastic connecting portion 22 that connects the upper end of the handle 16 to the body housing 14 . The elastic connecting portion 22 is made of an elastic material such as an elastomer, and is formed in a cylindrical and bellows shape whose axial direction is the front-rear direction. It is formed integrally with the body housing 14 .
また、防振機構20は、圧縮コイルスプリングとして構成された防振バネ23を有しており、防振バネ23は、弾性連結部22内に配置されて、ハンドル16及び本体ハウジング14を前後方向外側に付勢している。さらに、防振機構20は、図示しないストッパ機構を有しており、ハンドル16が、図1に示される非押込位置に保持されている。そして、加工物への加工時にハンドル16を前側へ押し付けることで、ハンドル16が、非押込位置から前側へ変位するように構成されている。 The anti-vibration mechanism 20 has an anti-vibration spring 23 configured as a compression coil spring. The anti-vibration spring 23 is arranged in the elastic connecting portion 22 to move the handle 16 and the body housing 14 forward and backward. biased outward. Furthermore, the anti-vibration mechanism 20 has a stopper mechanism (not shown) to hold the handle 16 at the non-pushed position shown in FIG. The handle 16 is configured to be displaced forward from the non-pressing position by pressing the handle 16 forward during processing of the workpiece.
ハンドル16の上下方向中間部は、作業者が把持する把持部16Aとして構成されている。把持部16Aの上部には、トリガ26が設けられている。トリガ26は、上下方向に延在された略長尺ブロック状に形成されて、把持部16Aから前側へ操作可能に露出している。トリガ26の下端部は、左右方向を軸方向としてハンドル16に回転可能に連結されており、トリガ26が後側へ引き操作可能に構成されている。ハンドル16内には、トリガ26の後側において、スイッチ28が設けられている。そして、作業者によってトリガ26が引き操作されることで、スイッチ28がオンする。スイッチ28は、本体ハウジング14の下端部に設けられた制御部30に電気的に接続され、トリガ26の操作状態に応じた出力信号を制御部30に出力する。 A vertically intermediate portion of the handle 16 is configured as a grip portion 16A that is gripped by an operator. A trigger 26 is provided on the upper portion of the grip portion 16A. The trigger 26 is formed in a substantially elongated block shape extending in the vertical direction, and is operably exposed forward from the grip portion 16A. A lower end portion of the trigger 26 is rotatably connected to the handle 16 with the lateral direction as an axial direction, and the trigger 26 is configured to be pulled rearward. A switch 28 is provided in the handle 16 behind the trigger 26 . When the operator pulls the trigger 26, the switch 28 is turned on. The switch 28 is electrically connected to a control section 30 provided at the lower end of the body housing 14 and outputs an output signal to the control section 30 according to the operating state of the trigger 26 .
ハンドル16の下端部には、電源コード32が設けられており、電源コード32は、ハンドル16から下側へ延出して、商用電源に接続可能に構成されている。電源コード32は、制御部30に電気的に接続されており、電源コード32を介して商用電源から制御部30に電力が供給される。 A power cord 32 is provided at the lower end of the handle 16. The power cord 32 extends downward from the handle 16 and is configured to be connectable to a commercial power source. The power cord 32 is electrically connected to the control unit 30 , and power is supplied to the control unit 30 from a commercial power supply via the power cord 32 .
(モータ34について) モータ34は、3相のブラシレスモータとして構成されて、本体ハウジング14の下部に収容されると共に、制御部30の前側に配置されている。モータ34は、上下方向を軸方向とする駆動軸34Aと、駆動軸34Aに固定された略円筒状のロータ34Bと、ロータ34Bの径方向外側に配置された略円筒状のステータ34Cと、を含んで構成されている。駆動軸34Aの下端部は、軸受35に回転可能に支持されており、駆動軸34Aの上端側の部分は、軸受36に回転可能に支持されている。駆動軸34Aの上端部には、ピニオンギヤ34A1が形成されている。モータ34は、制御部30に電気的に接続されており、制御部30の制御によって駆動する。 (Regarding the motor 34 ) The motor 34 is constructed as a three-phase brushless motor, accommodated in the lower part of the main body housing 14 , and arranged in front of the control section 30 . The motor 34 includes a drive shaft 34A whose axial direction is the vertical direction, a substantially cylindrical rotor 34B fixed to the drive shaft 34A, and a substantially cylindrical stator 34C arranged radially outside the rotor 34B. is composed of A lower end portion of the drive shaft 34A is rotatably supported by a bearing 35, and an upper end portion of the drive shaft 34A is rotatably supported by a bearing 36. As shown in FIG. A pinion gear 34A1 is formed at the upper end of the drive shaft 34A. The motor 34 is electrically connected to the controller 30 and driven under the control of the controller 30 .
(動力伝達機構40について) 動力伝達機構40は、クランク機構部42と、回転機構部47と、動力付与機構部53と、を含んで構成されている。動力伝達機構40は、ケースとしてのインナケース72に収容されており、インナケース72は本体ハウジング14の上部に収容されている。動力伝達機構40では、クランク機構部42及び回転機構部47が、動力伝達機構40の下部を構成し、動力付与機構部53が、動力伝達機構40の上部を構成しており、クランク機構部42及び回転機構部47が前後方向に並んで配置されている。以下、先に、インナケース72の構成について説明し、次いで、動力伝達機構40の各構成について説明する。 (Power transmission mechanism 40 ) The power transmission mechanism 40 includes a crank mechanism portion 42 , a rotation mechanism portion 47 and a power applying mechanism portion 53 . The power transmission mechanism 40 is housed in an inner case 72 as a case, and the inner case 72 is housed in the upper part of the body housing 14 . In the power transmission mechanism 40 , the crank mechanism portion 42 and the rotation mechanism portion 47 constitute the lower portion of the power transmission mechanism 40 , the power applying mechanism portion 53 constitutes the upper portion of the power transmission mechanism 40 , and the crank mechanism portion 42 and the rotation mechanism 47 are arranged side by side in the front-rear direction. Hereinafter, first, the configuration of the inner case 72 will be described, and then each configuration of the power transmission mechanism 40 will be described.
(インナケース72について) 図1~図5に示されるように、インナケース72は、ケース本体73と、ケースカバー74と、を含んで構成されており、ケースカバー74が、ケース本体73に組付けられて、インナケース72が形成されている。ケース本体73の後部は、ギヤケース部73Aとして構成されており、ギヤケース部73Aは、上側へ開放された略凹状に形成されている。ケース本体73の前部は、筒状ケース部73Bとして構成されており、筒状ケース部73Bは、前後方向を軸方向とする略円筒状に形成されて、ギヤケース部73Aの上部から前側へ延出されている。ケースカバー74は、上下方向を板厚方向とする略プレート状に形成され、ギヤケース部73Aの上側の開口部に組付けられて、当該開口部を閉塞している。そして、前述したモータ34の駆動軸34Aを支持する軸受36がギヤケース部73Aの底壁に固定されて、駆動軸34Aのピニオンギヤ34A1がギヤケース部73Aの下端部内に配置されている。 (Regarding the inner case 72) As shown in FIGS. 1 to 5, the inner case 72 includes a case body 73 and a case cover 74. An inner case 72 is formed. A rear portion of the case main body 73 is configured as a gear case portion 73A, and the gear case portion 73A is formed in a generally concave shape that opens upward. The front portion of the case main body 73 is configured as a cylindrical case portion 73B. The cylindrical case portion 73B is formed in a substantially cylindrical shape whose axial direction is the front-rear direction, and extends forward from the upper portion of the gear case portion 73A. is served. The case cover 74 is formed in a substantially plate shape with the plate thickness direction extending in the vertical direction, and is assembled to the upper opening of the gear case portion 73A to close the opening. A bearing 36 for supporting the drive shaft 34A of the motor 34 is fixed to the bottom wall of the gear case portion 73A, and the pinion gear 34A1 of the drive shaft 34A is arranged in the lower end portion of the gear case portion 73A.
(クランク機構部42について) 図1に示されるように、クランク機構部42は、ギヤケース部73Aの後部内に収容されている。クランク機構部42は、クランク軸43と、クランクギヤ44と、を有している。クランク軸43は、下側へ開放された略有底円筒状に形成され、モータ34のピニオンギヤ34A1の後側に配置されており、クランク軸43の下端部が、ギヤケース部73Aの底壁に固定されている。クランクギヤ44は、上下方向を軸方向とする略円筒状に形成されて、軸受45を介してクランク軸43に回転可能に支持されている。クランクギヤ44の下端部の外周部には、ギヤ部が形成されており、当該ギヤ部が、モータ34のピニオンギヤ34A1に噛合されている。クランクギヤ44の上端部には、上側へ突出した連結軸44Aが設けられており、連結軸44Aは、クランク軸43の中心に対して偏心した位置に配置されている。 (Regarding the crank mechanism part 42) As shown in Fig. 1, the crank mechanism part 42 is accommodated in the rear part of the gear case part 73A. The crank mechanism portion 42 has a crankshaft 43 and a crank gear 44 . The crankshaft 43 is formed in a generally bottomed cylindrical shape that opens downward, is arranged behind the pinion gear 34A1 of the motor 34, and the lower end of the crankshaft 43 is fixed to the bottom wall of the gear case portion 73A. It is The crank gear 44 is formed in a substantially cylindrical shape whose axial direction is the vertical direction, and is rotatably supported by the crank shaft 43 via a bearing 45 . A gear portion is formed on the outer peripheral portion of the lower end portion of the crank gear 44 , and the gear portion is meshed with the pinion gear 34 A 1 of the motor 34 . A connection shaft 44A projecting upward is provided at the upper end of the crank gear 44, and the connection shaft 44A is arranged at a position eccentric to the center of the crankshaft 43. As shown in FIG.
(回転機構部47について) 図1及び図4に示されるように、回転機構部47は、ギヤケース部73Aの前部内に収容されている。回転機構部47は、回転軸48と、動力伝達部材としての伝達ギヤ50と、を有している。回転軸48は、上下方向を軸方向とする略円柱状に形成され、モータ34のピニオンギヤ34A1の前側に配置されており、回転軸48の下部が軸受49を介してギヤケース部73Aの底壁に回転可能に支持されている。回転軸48の上端部には、ベベルギヤ48Aが形成されている。 (Regarding the Rotation Mechanism 47) As shown in FIGS. 1 and 4, the rotation mechanism 47 is accommodated in the front portion of the gear case portion 73A. The rotation mechanism portion 47 has a rotation shaft 48 and a transmission gear 50 as a power transmission member. The rotating shaft 48 is formed in a substantially columnar shape with an axial direction extending in the vertical direction, and is arranged on the front side of the pinion gear 34A1 of the motor 34. rotatably supported. A bevel gear 48A is formed at the upper end of the rotary shaft 48. As shown in FIG.
伝達ギヤ50は、上下方向を板厚方向とする略円板状に形成されて、回転軸48の上端側部分に、一体回転可能に連結されている。伝達ギヤ50は、スリップクラッチ51を有しており、スリップクラッチ51によって伝達ギヤ50と回転軸48とが連結されている。具体的には、伝達ギヤ50の下面には、下側へ開放された凹部が形成されており、スリップクラッチ51が、当該凹部に配置されて、伝達ギヤ50と回転軸48とを連結している。伝達ギヤ50の外周部にはギヤ部が形成されており、当該ギヤ部が、モータ34のピニオンギヤ34A1に噛合されている。また、スリップクラッチ51に所定値以上の回転トルクが作用したときには、スリップクラッチ51による回転軸48と伝達ギヤ50との連結状態が解除されるようになっている。すなわち、スリップクラッチ51は、所謂トルクリミッタ機構として構成されて、スリップクラッチ51によってモータ34に過負荷が生じないように構成されている。また、伝達ギヤ50は、動力伝達機構40における左右方向の最外形部を構成している。すなわち、動力伝達機構40では、伝達ギヤ50が左右方向において最も大きい部材として構成されている。これにより、インナケース72(ギヤケース部73A)の左右方向の最大寸法が、伝達ギヤ50の直径によって設定されている。 The transmission gear 50 is formed in a substantially disk shape with the plate thickness direction extending in the vertical direction, and is connected to the upper end side portion of the rotating shaft 48 so as to be integrally rotatable. The transmission gear 50 has a slip clutch 51 by which the transmission gear 50 and the rotating shaft 48 are connected. Specifically, a recess opening downward is formed in the lower surface of the transmission gear 50, and a slip clutch 51 is disposed in the recess to connect the transmission gear 50 and the rotating shaft 48. there is A gear portion is formed on the outer peripheral portion of the transmission gear 50 , and the gear portion is meshed with the pinion gear 34 A 1 of the motor 34 . Further, when a rotational torque equal to or greater than a predetermined value acts on the slip clutch 51, the connection state between the rotary shaft 48 and the transmission gear 50 by the slip clutch 51 is released. That is, the slip clutch 51 is configured as a so-called torque limiter mechanism so that the motor 34 is not overloaded by the slip clutch 51 . In addition, the transmission gear 50 forms the outermost portion of the power transmission mechanism 40 in the left-right direction. That is, in the power transmission mechanism 40, the transmission gear 50 is configured as the largest member in the left-right direction. Thus, the maximum lateral dimension of the inner case 72 (gear case portion 73A) is set by the diameter of the transmission gear 50. As shown in FIG.
(動力付与機構部53について) 図1~図4に示されるように、動力付与機構部53は、シリンダ54と、リテーナスリーブ55と、筒状部材としてのリングギヤ56と、クラッチ58と、ピストン60と、打撃子63と、中間子64と、を含んで構成されている。 (About power application mechanism 53) As shown in FIGS. 1 to 4, the power application mechanism 53 includes a cylinder 54, a retainer sleeve 55, a ring gear 56 as a tubular member, a clutch 58, a piston 60 , a striker 63 , and a meson 64 .
シリンダ54及びリテーナスリーブ55は、前後方向を軸方向とする略円筒状に形成されると共に、同軸上に配置されている。また、シリンダ54の前端部がリテーナスリーブ55の後端部内に嵌入されて、シリンダ54及びリテーナスリーブ55が一体回転可能に連結されている。シリンダ54及びリテーナスリーブ55は、インナケース72のギヤケース部73Aの上部、及び筒状ケース部73Bに収容されている。より具体的には、シリンダ54の後端部が、回転機構部47の上側で且つクランク機構部42における連結軸44Aの前側に配置されている。一方、リテーナスリーブ55の前端部は、インナケース72よりも前側へ突出している。シリンダ54及びリテーナスリーブ55は、軸受を介してインナケース72及び本体ハウジング14に回転可能に支持されている。そして、先端工具Tが、リテーナスリーブ55の前端部に取付けられて、本体ハウジング14の前端部から前側へ突出している。 The cylinder 54 and the retainer sleeve 55 are formed in a substantially cylindrical shape whose axial direction is the front-rear direction, and are arranged coaxially. A front end portion of the cylinder 54 is fitted into a rear end portion of the retainer sleeve 55 so that the cylinder 54 and the retainer sleeve 55 are connected so as to be rotatable together. The cylinder 54 and the retainer sleeve 55 are housed in the upper portion of the gear case portion 73A of the inner case 72 and the cylindrical case portion 73B. More specifically, the rear end portion of the cylinder 54 is arranged above the rotation mechanism portion 47 and in front of the connecting shaft 44A in the crank mechanism portion 42 . On the other hand, the front end of the retainer sleeve 55 protrudes forward beyond the inner case 72 . The cylinder 54 and the retainer sleeve 55 are rotatably supported by the inner case 72 and the body housing 14 via bearings. A tip tool T is attached to the front end of the retainer sleeve 55 and protrudes forward from the front end of the body housing 14 .
リングギヤ56は、前後方向を軸方向とする略円筒状に形成され、シリンダ54の後端側部分に外挿されて、シリンダ54に回転可能に支持されている。詳しくは、リングギヤ56は、伝達ギヤ50の上側に配置されて、ギヤケース部73A内に収容されている。リングギヤ56の後端部には、ベベルギヤ56Aが形成されており、ベベルギヤ56Aは、回転機構部47における回転軸48のベベルギヤ48Aに噛合されている。なお、リングギヤ56の後端部は、縦断面視で、径方向外側へ略クランク状に屈曲されて、リングギヤ56の他の部分と比べて径方向外側へ突出している。また、前述した伝達ギヤ50の軸線AL1が、リングギヤ56(シリンダ54)の軸線AL2を通過している。さらに、リングギヤ56の最外径寸法が、伝達ギヤ50の直径よりも小さく設定されており(図4参照)、リングギヤ56が、動力伝達機構40の上部(動力付与機構部53)における左右方向の最外形部を構成している。 The ring gear 56 is formed in a substantially cylindrical shape whose axial direction is the front-rear direction, is externally inserted in the rear end portion of the cylinder 54 , and is rotatably supported by the cylinder 54 . Specifically, the ring gear 56 is arranged above the transmission gear 50 and housed in the gear case portion 73A. A bevel gear 56A is formed at the rear end portion of the ring gear 56, and the bevel gear 56A meshes with the bevel gear 48A of the rotating shaft 48 of the rotating mechanism portion 47. As shown in FIG. The rear end portion of the ring gear 56 is bent radially outward in a substantially crank-like shape and protrudes radially outward compared to other portions of the ring gear 56 when viewed in vertical cross section. Further, the axis AL1 of the transmission gear 50 described above passes through the axis AL2 of the ring gear 56 (cylinder 54). Furthermore, the outermost diameter dimension of the ring gear 56 is set to be smaller than the diameter of the transmission gear 50 (see FIG. 4), and the ring gear 56 is located in the upper portion of the power transmission mechanism 40 (the power applying mechanism portion 53) in the left-right direction. It constitutes the outermost part.
クラッチ58は、前後方向を軸方向とする略円筒状に形成され、リングギヤ56の後側において、シリンダ54に外挿されている。クラッチ58は、シリンダ54にスプライン篏合されている。すなわち、クラッチ58は、シリンダ54に一体回転可能に且つ前後方向に相対移動可能に連結されている。クラッチ58の前端部は、リングギヤ56の後端部の径方向内側に配置されて、リングギヤ56と周方向に係合している。これにより、モータ34の駆動力が回転機構部47、リングギヤ56、及びクラッチ58によってシリンダ54に伝達され、シリンダ54及びリテーナスリーブ55が回転して、先端工具Tに回転力を付与する構成になっている。一方、後述するモード切替機構部66によってクラッチ58が後側へ移動することで、クラッチ58とリングギヤ56との係合状態が解除されて、回転機構部47からシリンダ54への駆動力の伝達が遮断される構成になっている。 The clutch 58 is formed in a substantially cylindrical shape whose axial direction is the front-rear direction, and is externally fitted on the cylinder 54 on the rear side of the ring gear 56 . Clutch 58 is splined to cylinder 54 . That is, the clutch 58 is connected to the cylinder 54 so as to be rotatable together and relatively movable in the front-rear direction. The front end of the clutch 58 is arranged radially inside the rear end of the ring gear 56 and engages with the ring gear 56 in the circumferential direction. As a result, the driving force of the motor 34 is transmitted to the cylinder 54 by the rotating mechanism portion 47, the ring gear 56, and the clutch 58, and the cylinder 54 and the retainer sleeve 55 are rotated to impart a rotational force to the tip tool T. ing. On the other hand, the clutch 58 is disengaged from the ring gear 56 by moving the clutch 58 rearward by the mode switching mechanism 66, which will be described later, so that the drive force is not transmitted from the rotation mechanism 47 to the cylinder 54. It is configured to be blocked.
図1に示されるように、ピストン60は、後側へ開放された略有底円筒状に形成されて、シリンダ54の後部内に前後方向に相対移動可能に挿入されている。また、ピストン60には、上下方向を軸方向とするピストン連結軸61が設けられている。ピストン連結軸61には、前後方向に延在されたピストンロッド62の前端部が回転可能に連結されており、ピストンロッド62の後端部が、クランク機構部42の連結軸44Aに回転可能に連結されている。これにより、モータ34の駆動力が、クランク機構部42及びピストンロッド62によってピストン60に伝達されて、ピストン60が前後方向に往復移動する構成になっている。 As shown in FIG. 1, the piston 60 is formed in a generally bottomed cylindrical shape that is open rearward, and is inserted into the rear portion of the cylinder 54 so as to be relatively movable in the front-rear direction. Further, the piston 60 is provided with a piston connecting shaft 61 whose axial direction is the vertical direction. A front end portion of a piston rod 62 extending in the front-rear direction is rotatably connected to the piston connecting shaft 61, and a rear end portion of the piston rod 62 is rotatably connected to the connecting shaft 44A of the crank mechanism portion 42. Concatenated. As a result, the driving force of the motor 34 is transmitted to the piston 60 by the crank mechanism 42 and the piston rod 62, and the piston 60 reciprocates in the front-rear direction.
打撃子63は、前後方向を軸方向とする略円柱状に形成され、シリンダ54に前後方向に相対移動可能に挿入されている。打撃子63は、ピストン60の前側に離間して配置されており、シリンダ54内におけるピストン60と打撃子63との間の空間が、空気室54Aとして構成されている。 The striker 63 is formed in a substantially columnar shape whose axial direction is the front-rear direction, and is inserted into the cylinder 54 so as to be relatively movable in the front-rear direction. The striker 63 is spaced in front of the piston 60, and the space between the piston 60 and the striker 63 in the cylinder 54 is configured as an air chamber 54A.
中間子64は、前後方向を軸方向とする略円柱状に形成されて、リテーナスリーブ55内に前後方向に相対移動可能に挿入されている。中間子64は、打撃子63の前側に隣接して配置されている。これにより、ピストン60が前側へ移動して空気室54A内の圧力が上昇することで、打撃子63及び中間子64が前側へ移動して、前後方向に沿った打撃力が先端工具Tに付与される構成になっている。 The intermediate element 64 is formed in a substantially columnar shape whose axial direction is the front-rear direction, and is inserted into the retainer sleeve 55 so as to be relatively movable in the front-rear direction. The intermediate element 64 is arranged adjacent to the front side of the striking element 63 . As a result, the piston 60 moves forward and the pressure in the air chamber 54A rises, so that the striker 63 and the intermediate member 64 move forward, and a striking force is applied to the tip tool T in the front-rear direction. It is configured to
(モード切替機構部66について) モード切替機構部66は、切替レバー67と、切替アーム69と、を含んで構成されている。 (Regarding the Mode Switching Mechanism 66 ) The mode switching mechanism 66 includes a switching lever 67 and a switching arm 69 .
切替レバー67は、下側へ開放された略有底円筒状に形成され、本体ハウジング14の後端部に配置されると共に、本体ハウジング14から上側に操作可能に露出されている。切替レバー67の中央部には、レバー軸68が固定されており、レバー軸68は、上下方向を軸方向とする略円柱状に形成され、切替レバー67から下側へ突出している。そして、レバー軸68がインナケース72のケースカバー74に回転可能に支持されている。 The switching lever 67 is formed in a substantially bottomed cylindrical shape that opens downward, is disposed at the rear end of the main body housing 14 , and is exposed upward from the main body housing 14 so as to be operable. A lever shaft 68 is fixed to the central portion of the switching lever 67 . The lever shaft 68 is formed in a substantially columnar shape with an axial direction extending in the vertical direction, and protrudes downward from the switching lever 67 . A lever shaft 68 is rotatably supported by a case cover 74 of the inner case 72 .
切替アーム69は、前後方向に延在された略長尺状に形成されている。切替アーム69の前端部は、動力付与機構部53のクラッチ58に連結されており、切替アーム69の後端部は、アーム連結軸70を介してレバー軸68に連結されている。アーム連結軸70は、レバー軸68の中心軸に対して偏心した位置に配置されている。これにより、切替レバー67が回転することで、切替アーム69が前後方向に変位するようになっている。具体的には、ハンマドリル10のハンマドリルモードでは、切替アーム69が図1に示される位置に配置されて、リングギヤ56とクラッチ58とが係合している。一方、図示は省略するが、ハンマドリル10のハンマモードでは、切替レバー67を回転させることで、切替アーム69が後側へ変位し、リングギヤ56とクラッチ58との係合状態が解除される構成になっている。 The switching arm 69 is formed in a substantially elongated shape extending in the front-rear direction. A front end of the switching arm 69 is connected to the clutch 58 of the power applying mechanism 53 , and a rear end of the switching arm 69 is connected to the lever shaft 68 via an arm connecting shaft 70 . The arm connecting shaft 70 is arranged eccentrically with respect to the central axis of the lever shaft 68 . As a result, the switching arm 69 is displaced in the front-rear direction by rotating the switching lever 67 . Specifically, in the hammer drill mode of the hammer drill 10, the switching arm 69 is arranged at the position shown in FIG. 1, and the ring gear 56 and the clutch 58 are engaged. On the other hand, although not shown, in the hammer mode of the hammer drill 10, by rotating the switching lever 67, the switching arm 69 is displaced rearward and the engagement state between the ring gear 56 and the clutch 58 is released. It's becoming
(振動低減機構80について) 図3及び図4に示されるように、左右一対の振動低減機構80は、インナケース72のギヤケース部73Aの左右方向両端部分にそれぞれ収容されている。具体的には、左右一対の振動低減機構80が、ギヤケース部73Aにおける伝達ギヤ50の上側で且つリングギヤ56の左右方向両側の空間S内に収容されている。左右一対の振動低減機構80は、インナケース72の左右方向中央部に対して、左右対称に構成されている。このため、以下の説明では、右側の振動低減機構80について説明し、左側の振動低減機構80の説明については適宜省略する。 (Regarding the Vibration Reduction Mechanism 80) As shown in FIGS. 3 and 4, the pair of left and right vibration reduction mechanisms 80 are accommodated in both left and right end portions of the gear case portion 73A of the inner case 72, respectively. Specifically, a pair of left and right vibration reduction mechanisms 80 are housed in spaces S on both sides of the ring gear 56 in the left and right direction above the transmission gear 50 in the gear case portion 73A. The pair of left and right vibration reduction mechanisms 80 are configured symmetrically with respect to the central portion of the inner case 72 in the left-right direction. Therefore, in the following description, the vibration reduction mechanism 80 on the right side will be described, and the description of the vibration reduction mechanism 80 on the left side will be omitted as appropriate.
図2~図7に示されるように、振動低減機構80は、前後一対のホルダ82と、ガイド部材としてのアッパガイドシャフト84及びロアガイドシャフト86と、ウエイト部材90と、付勢部材としての前後一対のウエイトスプリング96と、を含んで構成されている。 As shown in FIGS. 2 to 7, the vibration reduction mechanism 80 includes a pair of front and rear holders 82, an upper guide shaft 84 and a lower guide shaft 86 as guide members, a weight member 90, and front and rear guide shafts as urging members. and a pair of weight springs 96 .
(ホルダ82について) 一対のホルダ82は、前後方向を板厚方向とし且つ上下方向を長手方向とする略矩形板状に形成されて、振動低減機構80の前後方向両端部を構成している。そして、ホルダ82の下端部が、インナケース72に前後方向及び左右方向に係合し、ホルダ82の上端部が、ケースカバー74に前後方向及び左右方向に係合して、インナケース72に固定されている。なお、前側のホルダ82は、後述する前側のウエイトスプリング96によって、前側へ付勢され、後側のホルダ82は、後側のウエイトスプリング96によって、後側へ付勢されて、一対のホルダ82がケース本体73の壁面に圧接されている。これにより、ホルダ82(振動低減機構80)の固定状態が維持されている。 (Regarding holders 82) The pair of holders 82 are formed in a substantially rectangular plate shape with the thickness direction in the front-rear direction and the longitudinal direction in the vertical direction, and constitute both ends of the vibration reduction mechanism 80 in the front-rear direction. The lower end of the holder 82 is engaged with the inner case 72 in the front-rear direction and the left-right direction, and the upper end of the holder 82 is engaged with the case cover 74 in the front-rear direction and the left-right direction to be fixed to the inner case 72 . It is The front holder 82 is urged forward by a front weight spring 96, which will be described later, and the rear holder 82 is urged rearward by a rear weight spring 96 to form a pair of holders 82. are pressed against the wall surface of the case body 73 . Thereby, the fixed state of the holder 82 (vibration reduction mechanism 80) is maintained.
前後一対のホルダ82の上部には、左右一対の上側軸受部82Aが形成されている。上側軸受部82Aは、前後方向を軸方向とする略円筒状に形成されて、ホルダ82から前後方向内側へ突出している。一対のホルダ82の下部には、下側軸受部82Bが形成されている。下側軸受部82Bは、上側軸受部82Aと同様に、前後方向を軸方向とする略円筒状に形成されて、ホルダ82から前後方向内側へ突出している。また、前後方向から見て、下側軸受部82Bが、左右一対の上側軸受部82Aの間に配置されるように、左右方向における上側軸受部82A及び下側軸受部82Bの位置が設定されている。 A pair of left and right upper bearing portions 82A are formed on the upper portions of the pair of front and rear holders 82 . The upper bearing portion 82A is formed in a substantially cylindrical shape whose axial direction is the front-rear direction, and protrudes inward in the front-rear direction from the holder 82 . Below the pair of holders 82, a lower bearing portion 82B is formed. Similarly to the upper bearing portion 82A, the lower bearing portion 82B is formed in a substantially cylindrical shape whose axial direction is the front-rear direction, and protrudes from the holder 82 inward in the front-rear direction. In addition, the positions of the upper bearing portion 82A and the lower bearing portion 82B in the left-right direction are set so that the lower bearing portion 82B is arranged between the pair of left and right upper bearing portions 82A when viewed from the front-rear direction. there is
(アッパガイドシャフト84及びロアガイドシャフト86について) アッパガイドシャフト84及びロアガイドシャフト86は、前後方向を軸方向とする略円柱状に形成されている。そして、アッパガイドシャフト84の長手方向両端部が、ホルダ82における左右方向外側(つまり、右側)の上側軸受部82A内に嵌入されて、アッパガイドシャフト84が、前後一対のホルダ82に保持されている。また、ロアガイドシャフト86の長手方向両端部が、ホルダ82の下側軸受部82B内に嵌入されて、ロアガイドシャフト86が前後一対のホルダ82に保持されている。すなわち、ロアガイドシャフト86がアッパガイドシャフト84に対して左右方向内側(リングギヤ56側)に寄って配置されている。また、アッパガイドシャフト84は、前後方向から見て、リングギヤ56の軸線AL2よりも若干下側に配置されている。また、アッパガイドシャフト84の前後方向両端部には、リングダンパ88が外挿されている。リングダンパ88は、ゴム等の弾性材によって構成されて、後述するウエイト部材90とホルダ82の上側軸受部82Aとの衝突を緩和する部材として構成されている。 (Regarding the Upper Guide Shaft 84 and the Lower Guide Shaft 86) The upper guide shaft 84 and the lower guide shaft 86 are formed in a substantially columnar shape whose axial direction is the front-rear direction. Both ends in the longitudinal direction of the upper guide shaft 84 are fitted into the upper bearing portions 82A on the left-right outer side (that is, on the right side) of the holder 82, and the upper guide shaft 84 is held by the pair of front and rear holders 82. there is Both ends of the lower guide shaft 86 in the longitudinal direction are fitted into the lower bearing portions 82B of the holder 82 so that the lower guide shaft 86 is held by the pair of front and rear holders 82 . In other words, the lower guide shaft 86 is arranged laterally inward (toward the ring gear 56 ) with respect to the upper guide shaft 84 . The upper guide shaft 84 is arranged slightly below the axis AL2 of the ring gear 56 when viewed in the front-rear direction. Further, ring dampers 88 are externally inserted on both ends of the upper guide shaft 84 in the front-rear direction. The ring damper 88 is made of an elastic material such as rubber, and serves as a member that mitigates collision between a weight member 90 and an upper bearing portion 82A of the holder 82, which will be described later.
(ウエイト部材90について) ウエイト部材90は、ウエイト部材90の上部を構成するウエイト部92と、ウエイト部材90の下部を構成するスプリング取付部94と、を含んで構成されている。 (Regarding Weight Member 90 ) The weight member 90 includes a weight portion 92 forming an upper portion of the weight member 90 and a spring mounting portion 94 forming a lower portion of the weight member 90 .
ウエイト部92は、左右方向を厚み方向とし且つ左右方向から見て略逆T字形ブロック状に形成されている。ウエイト部92の下端部には、上側ガイド孔92Aが前後方向に貫通形成されている。そして、アッパガイドシャフト84が上側ガイド孔92A内に挿入されて、ウエイト部92がアッパガイドシャフト84に前後方向に相対移動可能に支持されている。また、前後方向から見て、ウエイト部材90の重心G(図4参照)は、ウエイト部92と重なる位置に配置されている。詳しくは、前後方向から見て、ウエイト部材90の重心Gが、上側ガイド孔92Aの近傍に位置している。 The weight portion 92 is formed in a substantially inverted T-shaped block shape when viewed from the left-right direction, with the left-right direction being the thickness direction. An upper guide hole 92A is formed through the lower end portion of the weight portion 92 in the front-rear direction. The upper guide shaft 84 is inserted into the upper guide hole 92A, and the weight portion 92 is supported by the upper guide shaft 84 so as to be relatively movable in the front-rear direction. Further, the center of gravity G (see FIG. 4) of the weight member 90 is arranged at a position overlapping the weight portion 92 when viewed from the front-rear direction. Specifically, the center of gravity G of the weight member 90 is positioned near the upper guide hole 92A when viewed from the front-rear direction.
スプリング取付部94は、前後方向を板厚方向とするプレート状に形成されて、ウエイト部92の前後方向中央部から下側へ延出している。また、スプリング取付部94には、後述するウエイトスプリング96を取付けるための前後一対の取付筒部94Aが形成されている。取付筒部94Aは、前後方向を軸方向とする円筒状に形成されて、スプリング取付部94から前後方向外側へ突出している。取付筒部94Aの内部は、下側ガイド孔94Bとして構成されており、前後一対の取付筒部94Aの内部が連通するように、下側ガイド孔94Bが前後方向に貫通している。そして、ロアガイドシャフト86が下側ガイド孔94B内に挿入されて、スプリング取付部94がロアガイドシャフト86に前後方向に相対移動可能に支持されている。これにより、ウエイト部材90では、ウエイトスプリング96を取付けるスプリング取付部94と、重り部として機能するウエイト部92と、が上下方向にずれて配置されている。 The spring mounting portion 94 is formed in a plate-like shape with the thickness direction extending in the front-rear direction, and extends downward from the central portion in the front-rear direction of the weight portion 92 . Further, the spring mounting portion 94 is formed with a pair of front and rear mounting cylinder portions 94A for mounting a weight spring 96, which will be described later. The mounting cylinder portion 94A is formed in a cylindrical shape whose axial direction is the front-rear direction, and protrudes outward from the spring mounting portion 94 in the front-rear direction. The inside of the mounting cylinder portion 94A is configured as a lower guide hole 94B, and the lower guide hole 94B penetrates in the front-rear direction so that the insides of the pair of front and rear mounting cylinder portions 94A communicate with each other. The lower guide shaft 86 is inserted into the lower guide hole 94B, and the spring mounting portion 94 is supported by the lower guide shaft 86 so as to be relatively movable in the front-rear direction. As a result, in the weight member 90, the spring mounting portion 94 for mounting the weight spring 96 and the weight portion 92 functioning as a weight portion are arranged to be shifted in the vertical direction.
ここで、ウエイト部材90は、リングギヤ56の右側に近接して配置されて、左右方向においてウエイト部材90の略全体とリングギヤ56とが重なっている(図4参照)。具体的には、ウエイト部材90の上端は、リングギヤ56の最上端よりも下側に配置されており、ウエイト部材90の下端が、リングギヤ56の最下端よりも若干下側に配置されている。また、上側から見て、ウエイト部材90の全体が、伝達ギヤ50と重なるように、前後方向におけるウエイト部材90の位置が設定されている。 Here, the weight member 90 is arranged close to the right side of the ring gear 56, and substantially the entire weight member 90 overlaps the ring gear 56 in the left-right direction (see FIG. 4). Specifically, the upper end of the weight member 90 is arranged below the uppermost end of the ring gear 56, and the lower end of the weight member 90 is arranged slightly below the lowermost end of the ring gear 56. Further, the position of the weight member 90 in the front-rear direction is set so that the entire weight member 90 overlaps the transmission gear 50 when viewed from above.
さらに、スプリング取付部94の外形は、前後方向から見て、下側ガイド孔94Bを中心とする略円形状に形成されており、ウエイト部92の外周面とスプリング取付部94の外周面とが滑らかに接続されている。具体的には、ウエイト部材90の左右方向内側面(すなわち、左側面であり、リングギヤ56と径方向に対向する面)には、湾曲面90Aが形成されている。湾曲面90Aは、前後方向から見て、リングギヤ56の軸線AL2を中心とする円弧状に湾曲しており、ウエイト部92の下部及びスプリング取付部94の上部に形成されて、スプリング取付部94の下面に滑らかに接続されている。 Further, the outer shape of the spring mounting portion 94 is formed in a substantially circular shape centered on the lower guide hole 94B when viewed from the front-rear direction, and the outer peripheral surface of the weight portion 92 and the outer peripheral surface of the spring mounting portion 94 are aligned. connected smoothly. Specifically, a curved surface 90A is formed on the left-right inner side surface of the weight member 90 (that is, the left side surface, which faces the ring gear 56 in the radial direction). The curved surface 90A is curved in an arc centered on the axis AL2 of the ring gear 56 when viewed from the front-rear direction, and is formed at the lower portion of the weight portion 92 and the upper portion of the spring mounting portion 94. Smoothly connected to the bottom surface.
すなわち、ウエイト部材90では、スプリング取付部94の一部が、ウエイト部92よりも左側へ張出されて、空間Sにおけるリングギヤ56と伝達ギヤ50との間に食い込むように配置されている。換言すると、ウエイト部材90が、リングギヤ56の右側において、リングギヤ56の周方向に沿うように、上下方向に延在されている。これにより、上下方向において、リングギヤ56の最外形部(ベベルギヤ56Aが形成された部分)とウエイト部材90の一部とが重なっている。また、ウエイト部材90の左右方向外側の側面90Bは、左右方向に対して直交する面に沿った平面状に形成されて、スプリング取付部94の下面に滑らかに接続されている。そして、ウエイト部材90の側面90Bが、ギヤケース部73Aの左右の側面に近接して配置されている。 That is, in the weight member 90 , a portion of the spring mounting portion 94 projects leftward from the weight portion 92 and is arranged to bite into the space S between the ring gear 56 and the transmission gear 50 . In other words, the weight member 90 extends vertically along the circumferential direction of the ring gear 56 on the right side of the ring gear 56 . As a result, the outermost portion of the ring gear 56 (the portion where the bevel gear 56A is formed) and part of the weight member 90 overlap in the vertical direction. A side surface 90</b>B on the left-right direction outer side of the weight member 90 is formed in a planar shape along a plane orthogonal to the left-right direction, and is smoothly connected to the lower surface of the spring mounting portion 94 . The side surfaces 90B of the weight member 90 are arranged close to the left and right side surfaces of the gear case portion 73A.
(ウエイトスプリング96について) 前後一対のウエイトスプリング96は、圧縮コイルスプリングとして構成されている。ウエイトスプリング96は、ウエイト部材90におけるスプリング取付部94の前後方向外側に配置されると共に、下側のロアガイドシャフト86に装着されている。具体的には、前側のウエイトスプリング96の後端部が前側の取付筒部94Aに外挿されて、前側のウエイトスプリング96の前端部が前側のホルダ82の下側軸受部82Bに外挿されている。一方、後側のウエイトスプリング96の前端部が後側の取付筒部94Aに外挿されて、後側のウエイトスプリング96の後端部が後側のホルダ82の下側軸受部82Bに外挿されている。これにより、ウエイトスプリング96が、ウエイト部92(ウエイト部材90の重心G)に対して下側にずれた位置に配置されている。換言すると、前後方向視においてウエイトスプリング96の中心AL3が、ウエイト部材90の重心Gに対して異なる位置に配置されている。さらに言い換えると、前後方向視において、ウエイト部材90の重心Gは、ウエイトスプリング96の配置範囲外に配置される。また、ロアガイドシャフト86はウエイトスプリング96の内部を挿通しているものの、ロアガイドシャフト86とウエイトスプリング96との間には、取付筒部94Aと下側軸受部82Bの厚み分の間隙が径方向に設けられている。 (Regarding weight springs 96) A pair of front and rear weight springs 96 are configured as compression coil springs. The weight spring 96 is arranged outside the spring mounting portion 94 of the weight member 90 in the front-rear direction, and is attached to the lower guide shaft 86 on the lower side. Specifically, the rear end portion of the weight spring 96 on the front side is externally fitted on the mounting cylinder portion 94A on the front side, and the front end portion of the weight spring 96 on the front side is externally fitted on the lower bearing portion 82B of the holder 82 on the front side. ing. On the other hand, the front end portion of the rear weight spring 96 is fitted over the rear mounting cylinder portion 94A, and the rear end portion of the rear weight spring 96 is fitted over the lower bearing portion 82B of the rear holder 82. It is As a result, the weight spring 96 is arranged at a position shifted downward with respect to the weight portion 92 (the center of gravity G of the weight member 90). In other words, the center AL3 of the weight spring 96 is arranged at a position different from the center of gravity G of the weight member 90 when viewed in the front-rear direction. In other words, the center of gravity G of the weight member 90 is arranged outside the arrangement range of the weight spring 96 when viewed in the front-rear direction. Also, although the lower guide shaft 86 is inserted through the weight spring 96, there is a gap between the lower guide shaft 86 and the weight spring 96 that is equal to the thickness of the mounting tubular portion 94A and the lower bearing portion 82B. direction is provided.
そして、前側のウエイトスプリング96がスプリング取付部94を後側へ付勢し、後側のウエイトスプリング96がスプリング取付部94を前側へ付勢して、ウエイト部材90がアッパガイドシャフト84及びロアガイドシャフト86の前後方向中央部に位置した状態に保持されている。なお、ウエイトスプリング96の半径は、ウエイト部材90のスプリング取付部94の半径よりも若干小さく設定されており、前後方向から見て、ウエイトスプリング96がスプリング取付部94よりも突出しないように設定されている。 The weight spring 96 on the front side urges the spring mounting portion 94 rearward, the weight spring 96 on the rear side urges the spring mounting portion 94 frontward, and the weight member 90 moves the upper guide shaft 84 and the lower guide. It is held at the central portion of the shaft 86 in the front-rear direction. The radius of the weight spring 96 is set slightly smaller than the radius of the spring mounting portion 94 of the weight member 90, and is set so that the weight spring 96 does not protrude beyond the spring mounting portion 94 when viewed from the front-rear direction. ing.
(作用効果) 次に、本実施形態の作用及び効果について説明する。 (Function and effect) Next, the function and effect of this embodiment will be described.
ハンマドリル10のハンマドリルモードでは、モード切替機構部66の切替アーム69によって、リングギヤ56とクラッチ58とが係合する。これにより、作業者によるトリガ26の引き操作でモータ34が駆動すると、クランク機構部42及び回転機構部47が作動して、打撃力及び回転力が動力付与機構部53から先端工具Tに付与される。 In the hammer drill mode of the hammer drill 10 , the switching arm 69 of the mode switching mechanism 66 engages the ring gear 56 and the clutch 58 . As a result, when the motor 34 is driven by the operator pulling the trigger 26, the crank mechanism 42 and the rotation mechanism 47 are actuated, and the impact force and the rotation force are applied to the tip tool T from the power application mechanism 53. be.
一方、ハンマドリル10のハンマモードでは、モード切替機構部66の切替アーム69によってクラッチ58が後側に変位して、リングギヤ56とクラッチ58との係合状態が解除される。これにより、作業者によるトリガ26の引き操作でモータ34が駆動すると、クランク機構部42が作動して、打撃力のみが動力付与機構部53から先端工具Tに付与される。 On the other hand, in the hammer mode of the hammer drill 10, the clutch 58 is displaced rearward by the switching arm 69 of the mode switching mechanism 66, and the engagement state between the ring gear 56 and the clutch 58 is released. Accordingly, when the operator pulls the trigger 26 to drive the motor 34 , the crank mechanism 42 is operated and only the impact force is applied to the tip tool T from the power applying mechanism 53 .
そして、ハンマドリル10のハンマドリルモード及びハンマモードの何れのモードにおいても、動力伝達機構40が作動することによる前後方向の打撃力が先端工具Tに付与される。これにより、動力伝達機構40の作動時に発生する振動がインナケース72に伝達される。 In both the hammer drill mode and the hammer mode of the hammer drill 10, an impact force in the front-rear direction is applied to the tip tool T due to the operation of the power transmission mechanism 40. As shown in FIG. As a result, vibrations generated when the power transmission mechanism 40 operates are transmitted to the inner case 72 .
ここで、ハンマドリル10では、振動低減機構80がインナケース72の内部に設けられている。振動低減機構80は、ウエイト部材90を有しており、ウエイト部材90は、上下一対のアッパガイドシャフト84及びロアガイドシャフト86によって前後方向に相対移動可能に支持されている。また、ウエイト部材90は、前後一対のウエイトスプリング96によって前後方向に付勢されている。これにより、動力伝達機構40の作動時にウエイト部材90が前後方向に振動することで、インナケース72に伝達された振動エネルギを振動低減機構80によって吸収することができる。したがって、作業者に伝達される振動が低減されるため、ハンマドリル10の作業性を向上することができる。 Here, in the hammer drill 10 , the vibration reduction mechanism 80 is provided inside the inner case 72 . The vibration reduction mechanism 80 has a weight member 90, and the weight member 90 is supported by a pair of upper and lower guide shafts 84 and 86 so as to be relatively movable in the front-rear direction. The weight member 90 is biased in the front-rear direction by a pair of front and rear weight springs 96 . As a result, the vibration energy transmitted to the inner case 72 can be absorbed by the vibration reduction mechanism 80 by the weight member 90 vibrating in the longitudinal direction when the power transmission mechanism 40 is operated. Therefore, since the vibration transmitted to the operator is reduced, the workability of the hammer drill 10 can be improved.
また、ウエイト部材90は、インナケース72内において、前後方向から見て、左右方向及び上下方向においてリングギヤ56と重なる位置に配置されており、ウエイトスプリング96が、前後方向から見て、ウエイト部材90の重心Gに対して下側にずれて配置されている。具体的には、ウエイト部材90は、ウエイトスプリング96が取付けられるスプリング取付部94と、重心Gが位置する重り部として機能するウエイト部92と、が上下方向にずれて配置されて、ウエイト部92がスプリング取付部94から上側へ延出されている。これにより、ウエイト部材90の体格を小型化しつつ、ひいては、ハンマドリル10の体格を小型化することができる。 Further, the weight member 90 is arranged in the inner case 72 at a position overlapping the ring gear 56 in the left-right direction and the up-down direction when viewed in the front-rear direction. is shifted downward with respect to the center of gravity G. Specifically, the weight member 90 has a spring attachment portion 94 to which a weight spring 96 is attached, and a weight portion 92 functioning as a weight portion where the center of gravity G is located, which are arranged with a vertical shift. extends upward from the spring mounting portion 94 . As a result, the size of the weight member 90 can be reduced, and the size of the hammer drill 10 can be reduced.
以下、この点について比較例のウエイトと比較しつつ説明する。比較例のウエイトは、前後方向を軸方向とする円筒状に形成されている。すなわち、比較例のウエイトでは、重り部として機能するウエイト部と、ウエイトスプリング96を取付けるためのスプリング取付部とが上下方向にずれていない構造となっている。そして、比較例のウエイト部材をアッパガイドシャフト84又はロアガイドシャフト86に移動可能に連結し、前後一対のウエイトスプリング96によって比較例のウエイト部材を前後方向外側から挟み込むようにして付勢した場合には、ウエイト部材における重さを確保するため、ウエイト部材の体格を大きくする必要がある。例えば、比較例のウエイト部材において、ウエイト部材の体格を径方向に大きくした場合には、インナケース72の体格を左右方向及び上下方向に大きくする必要がある。また、例えば、比較例のウエイト部材において、ウエイト部材の体格を前後方向に大きくした場合には、インナケース72の体格を前後方向に大きくする必要がある。これにより、ハンマドリル10の体格が大型化する可能性がある。 Hereinafter, this point will be described while comparing with the weight of the comparative example. The weight of the comparative example is formed in a cylindrical shape whose axial direction is the front-rear direction. In other words, in the weight of the comparative example, the weight portion functioning as a weight portion and the spring mounting portion for mounting the weight spring 96 are not displaced in the vertical direction. When the weight member of the comparative example is movably connected to the upper guide shaft 84 or the lower guide shaft 86 and biased by the pair of front and rear weight springs 96 so as to sandwich the weight member of the comparative example from the outside in the front-rear direction. In order to secure the weight in the weight member, it is necessary to increase the size of the weight member. For example, in the weight member of the comparative example, if the size of the weight member is increased in the radial direction, it is necessary to increase the size of the inner case 72 in the lateral direction and the vertical direction. Further, for example, in the weight member of the comparative example, if the size of the weight member is increased in the longitudinal direction, it is necessary to increase the size of the inner case 72 in the longitudinal direction. As a result, the size of the hammer drill 10 may increase.
これに対して、本実施の形態では、上述のように、ウエイト部材90が、インナケース72内において、前後方向から見て、左右方向及び上下方向においてリングギヤ56と重なる位置に配置されている。また、ウエイト部材90は、ウエイトスプリング96が取付けられるスプリング取付部94と、重り部として機能するウエイト部92と、が上下方向にずれて配置されている。すなわち、ウエイト部材90を、リングギヤ56の左右方向外側において、リングギヤ56の周方向に沿うように上下方向に延在させることができる。したがって、上記比較例のウエイト部材に対して、ウエイト部材90の体格を小型化することができると共に、ハンマドリル10の体格の小型化を図ることができる。以上により、ハンマドリル10の小型化を図りつつ、作業性を向上することができる。 In contrast, in the present embodiment, as described above, the weight member 90 is arranged in the inner case 72 at a position overlapping the ring gear 56 in the left-right direction and the up-down direction when viewed from the front-rear direction. Also, in the weight member 90, a spring attachment portion 94 to which a weight spring 96 is attached and a weight portion 92 functioning as a weight portion are arranged so as to be displaced in the vertical direction. That is, the weight member 90 can extend vertically along the circumferential direction of the ring gear 56 on the outer side of the ring gear 56 in the left-right direction. Therefore, the size of the weight member 90 can be reduced compared to the weight member of the comparative example, and the size of the hammer drill 10 can be reduced. As described above, the hammer drill 10 can be downsized and the workability can be improved.
また、別の比較例として、振動低減機構80がインナケース72の外部に設けられる構成を考える。別の比較例においては、動力伝達機構40の収容されるインナケース72内の空間と振動低減機構80が収容される空間との間にインナケース72の壁面が介在するため、ウエイト部材90を上下方向及び左右方向にリングギヤ56と重なるように配置することは困難である。また、振動低減機構80が収容される空間の外部にも別途外壁が設けられるため、ハンマドリル10の体格が大型化する可能性がある。これに対して本実施の形態では、インナケース72内に振動低減機構80と動力伝達機構40の両者が収容されるため、ウエイト部材90を上下方向及び左右方向にリングギヤ56と重なるように配置することができるほか、インナケース72以外に外壁を設ける必要がなくなり、ハンマドリル10の小型化を図ることができる。 As another comparative example, a configuration in which the vibration reduction mechanism 80 is provided outside the inner case 72 is considered. In another comparative example, since the wall surface of the inner case 72 is interposed between the space in the inner case 72 in which the power transmission mechanism 40 is accommodated and the space in which the vibration reduction mechanism 80 is accommodated, the weight member 90 can be moved vertically. It is difficult to arrange so as to overlap the ring gear 56 in the direction and the left-right direction. In addition, since a separate outer wall is provided outside the space in which the vibration reduction mechanism 80 is accommodated, the size of the hammer drill 10 may increase. On the other hand, in the present embodiment, both the vibration reduction mechanism 80 and the power transmission mechanism 40 are accommodated in the inner case 72, so the weight member 90 is arranged so as to overlap the ring gear 56 in the vertical and horizontal directions. In addition, there is no need to provide an outer wall other than the inner case 72, and the size of the hammer drill 10 can be reduced.
また、ウエイト部材90では、ウエイト部92がリングギヤ56(シリンダ54)の左右方向外側に配置され、スプリング取付部94がウエイト部92の下側に配置されている。詳しくは、前後方向から見て、ウエイト部材90の重心Gが位置するウエイト部92が、リングギヤ56(シリンダ54)の軸線AL2に対して若干下側に配置されおり、スプリング取付部94がウエイト部92の下側に配置されている。これにより、仮に、ウエイト部材90において、ウエイト部92とスプリング取付部94との位置を上下に反転させた構成と比べて、上下方向において、ウエイト部材90の重心Gを軸線AL2の近くに配置することができる。すなわち、ウエイト部92をロアガイドシャフト86に移動可能に連結し、スプリング取付部94をアッパガイドシャフト84に移動可能に連結した構成と比べて、ウエイト部材90の重心Gの軸線AL2からの上下方向のオフセット量を小さくすることができる。これにより、先端工具Tに前後方向の打撃力を付与するピストン60及び打撃子63を収容するシリンダ54の左右方向外側にウエイト部材90の重心Gを配置できる。したがって、振動低減機構80の振動低減効果を高くすることができる。 In the weight member 90 , the weight portion 92 is arranged outside the ring gear 56 (cylinder 54 ) in the left-right direction, and the spring mounting portion 94 is arranged below the weight portion 92 . More specifically, when viewed from the front-rear direction, the weight portion 92 where the center of gravity G of the weight member 90 is located is arranged slightly below the axis AL2 of the ring gear 56 (cylinder 54), and the spring mounting portion 94 is located at the weight portion. It is arranged below 92. As a result, in the weight member 90, the center of gravity G of the weight member 90 is arranged closer to the axis line AL2 in the vertical direction than in a configuration in which the positions of the weight portion 92 and the spring mounting portion 94 are reversed vertically. be able to. That is, compared to a configuration in which the weight portion 92 is movably connected to the lower guide shaft 86 and the spring mounting portion 94 is movably connected to the upper guide shaft 84, the vertical direction of the center of gravity G of the weight member 90 from the axis AL2 is higher. can be reduced. As a result, the center of gravity G of the weight member 90 can be arranged laterally outside the cylinder 54 that accommodates the piston 60 and the striker 63 that apply the striking force in the longitudinal direction to the tip tool T. As shown in FIG. Therefore, the vibration reduction effect of the vibration reduction mechanism 80 can be enhanced.
また、動力伝達機構40は、伝達ギヤ50を有している。そして、前後方向から見て、伝達ギヤ50が、リングギヤ56の下側において左右方向に延在されており、ウエイト部材90の少なくとも一部が、リングギヤ56及び伝達ギヤ50によって上下方向に挟み込まれている。具体的には、ウエイト部材90におけるスプリング取付部94がウエイト部92よりもリングギヤ56側へ張り出されて、当該張り出された部分が、リングギヤ56及び伝達ギヤ50によって上下方向に挟み込まれている。これにより、ギヤケース部73Aの空間Sにおけるリングギヤ56と伝達ギヤ50との間の部分を活用して、スプリング取付部94及びウエイトスプリング96の一部を配置することができる。したがって、ウエイトスプリング96の直径(バネ径)を確保しつつ、ウエイトスプリング96がウエイト部材90から左右方向外側へ突出することを抑制できる。 The power transmission mechanism 40 also has a transmission gear 50 . When viewed from the front-rear direction, the transmission gear 50 extends in the left-right direction below the ring gear 56 , and at least a portion of the weight member 90 is vertically sandwiched between the ring gear 56 and the transmission gear 50 . there is Specifically, the spring mounting portion 94 of the weight member 90 protrudes from the weight portion 92 toward the ring gear 56 , and the protruding portion is vertically sandwiched between the ring gear 56 and the transmission gear 50 . . As a result, the part between the ring gear 56 and the transmission gear 50 in the space S of the gear case portion 73A can be used to dispose a part of the spring mounting portion 94 and the weight spring 96. FIG. Therefore, it is possible to prevent the weight spring 96 from projecting outward in the left-right direction from the weight member 90 while ensuring the diameter (spring diameter) of the weight spring 96 .
また、ウエイト部材90の左右方向内側面には、湾曲面90Aが形成されており、湾曲面90Aは、リングギヤ56の周方向に沿って延在された円弧状に形成されている。これにより、ウエイト部材90をリングギヤ56に近接して配置しつつ、ウエイト部材90の重さを確保することができる。その結果、左右方向におけるウエイト部材90の体格の小型化に効果的に寄与することができる。 A curved surface 90A is formed on the inner side surface of the weight member 90 in the left-right direction. Thereby, the weight of the weight member 90 can be ensured while the weight member 90 is arranged close to the ring gear 56 . As a result, it is possible to effectively contribute to miniaturization of the weight member 90 in the lateral direction.
また、ウエイト部材90は、一対のアッパガイドシャフト84及びロアガイドシャフト86によって前後方向に相対移動可能に支持されている。これにより、ウエイト部材90の姿勢を安定化しつつ、ウエイト部材90をリングギヤ56の周方向に沿って配置することができる。 The weight member 90 is supported by a pair of upper guide shaft 84 and lower guide shaft 86 so as to be relatively movable in the front-rear direction. Thereby, the weight member 90 can be arranged along the circumferential direction of the ring gear 56 while stabilizing the posture of the weight member 90 .
また、ウエイトスプリング96は、ロアガイドシャフト86に装着された圧縮コイルスプリングである。これにより、ロアガイドシャフト86によってウエイトスプリング96の姿勢の安定化を図りつつ、ウエイトスプリング96によってウエイト部材90を前後方向に付勢することができる。 Also, the weight spring 96 is a compression coil spring attached to the lower guide shaft 86 . As a result, the posture of the weight spring 96 can be stabilized by the lower guide shaft 86, and the weight spring 96 can bias the weight member 90 in the front-rear direction.
また、ハンマドリル10では、左右一対の振動低減機構80がインナケース72に設けられており、振動低減機構80がリングギヤ56に対して左右方向両側にそれぞれ配置されている。これにより、動力伝達機構40の作動時にインナケース72に伝達される振動を、一対の振動低減機構80によってバランスよく吸収することができる。 Further, in the hammer drill 10 , a pair of left and right vibration reduction mechanisms 80 are provided in the inner case 72 , and the vibration reduction mechanisms 80 are arranged on both sides in the left and right direction with respect to the ring gear 56 . As a result, vibrations transmitted to the inner case 72 during operation of the power transmission mechanism 40 can be absorbed in a well-balanced manner by the pair of vibration reduction mechanisms 80 .
また、振動低減機構80は、アッパガイドシャフト84及びロアガイドシャフト86の長手方向両端部を支持する前後一対のホルダ82を有しており、ホルダ82は、ウエイトスプリング96の付勢力によってインナケース72におけるギヤケース部73Aに圧接されている。これにより、ウエイト部材90を前後方向に付勢するウエイトスプリング96の付勢力を活用して、ホルダ82のインナケース72への固定状態を良好に維持することができる。 The vibration reduction mechanism 80 also includes a pair of front and rear holders 82 that support both ends of the upper guide shaft 84 and the lower guide shaft 86 in the longitudinal direction. is pressed against the gear case portion 73A. As a result, the urging force of the weight spring 96 that urges the weight member 90 in the front-rear direction can be utilized to keep the holder 82 firmly fixed to the inner case 72 .
また、動力伝達機構40の収容されるインナケース72内に振動低減機構80も併せて配置されるため、動力伝達機構40のメンテナンスのためにインナケース72を開放した際に動力伝達機構40も併せてメンテナンスすることができ、ハンマドリル10のメンテナンス性が良好となる。さらには、動力伝達機構40を潤滑するために動力伝達機構40に塗布されるグリス等の潤滑剤が、駆動中に振動低減機構80へと飛散可能となるため、動力伝達機構40も潤滑されて摩耗などが生じにくくなり、信頼性が向上する。 In addition, since the vibration reduction mechanism 80 is also arranged in the inner case 72 in which the power transmission mechanism 40 is accommodated, the power transmission mechanism 40 is also installed when the inner case 72 is opened for maintenance of the power transmission mechanism 40. Therefore, maintenance of the hammer drill 10 is improved. Furthermore, the lubricant such as grease applied to the power transmission mechanism 40 to lubricate the power transmission mechanism 40 can scatter to the vibration reduction mechanism 80 during driving, so the power transmission mechanism 40 is also lubricated. Wear and the like are less likely to occur, improving reliability.
(振動低減機構80の変形例) 次に、振動低減機構80の変形例について説明する。 (Modification of Vibration Reduction Mechanism 80) Next, a modification of the vibration reduction mechanism 80 will be described.
(振動低減機構80の変形例1) 以下、図8を用いて、振動低減機構80の変形例1について説明する。振動低減機構80の変形例1では、以下に示す点を除いて、本実施の形態の振動低減機構80と同様に構成されている。なお、図8には、右側に配置された振動低減機構80が図示されており、図8では、本実施の形態の振動低減機構80と同様に構成されている部位には、同一の符号を付している。 (Modification 1 of Vibration Reduction Mechanism 80) Modification 1 of the vibration reduction mechanism 80 will be described below with reference to FIG. Modification 1 of vibration reduction mechanism 80 is configured in the same manner as vibration reduction mechanism 80 of the present embodiment except for the following points. Note that FIG. 8 shows the vibration reduction mechanism 80 arranged on the right side, and in FIG. attached.
振動低減機構80の変形例1では、振動低減機構80において、アッパガイドシャフト84が省略されており、ウエイト部材90がロアガイドシャフト86のみによって支持されている。ロアガイドシャフト86は、その長手方から見て、非円形形状に形成されている。本変形例では、ロアガイドシャフト86が、断面略トラック形状に形成されている。 In Modified Example 1 of the vibration reduction mechanism 80 , the upper guide shaft 84 is omitted from the vibration reduction mechanism 80 , and the weight member 90 is supported only by the lower guide shaft 86 . The lower guide shaft 86 is formed in a non-circular shape when viewed from its longitudinal direction. In this modified example, the lower guide shaft 86 is formed to have a substantially track-shaped cross section.
ウエイト部材90では、上側ガイド孔92Aが省略されており、下側ガイド孔94Bが、ロアガイドシャフト86の外形形状に対応して長孔状に形成されている。これにより、ウエイト部材90が、前後方向に相対移動可能に且つ相対回転不能にロアガイドシャフト86に連結されている。 In the weight member 90, the upper guide hole 92A is omitted, and the lower guide hole 94B is formed in an elongated hole shape corresponding to the outer shape of the lower guide shaft 86. As shown in FIG. Thereby, the weight member 90 is connected to the lower guide shaft 86 so as to be relatively movable in the front-rear direction and not relatively rotatable.
そして、振動低減機構80の変形例1においても、本実施の形態と同様に、ウエイト部材90を、リングギヤ56の径方向外側において、リングギヤ56の周方向に沿うように配置して、ウエイトスプリング96が取付けられるスプリング取付部94をリングギヤ56側に張出させて、ウエイトスプリング96をウエイト部材90の重心Gに対して下側かつリングギヤ56側へ寄せて配置することができる。したがって、振動低減機構80の変形例1においても、ハンマドリル10の小型化を図りつつ、作業性を向上することができる。 In the first modification of the vibration reduction mechanism 80, similarly to the present embodiment, the weight member 90 is arranged radially outside the ring gear 56 along the circumferential direction of the ring gear 56, and the weight spring 96 is attached to the ring gear 56 side, and the weight spring 96 can be arranged below the center of gravity G of the weight member 90 and closer to the ring gear 56 side. Therefore, in the first modification of the vibration reduction mechanism 80 as well, the hammer drill 10 can be downsized and the workability can be improved.
また、振動低減機構80の変形例1では、振動低減機構80においてアッパガイドシャフト84を省略している。このため、部品点数及び組付工数の削減を図ることができると共に、振動低減機構80のコストダウンに寄与することができる。 Further, in the first modification of the vibration reduction mechanism 80, the upper guide shaft 84 is omitted from the vibration reduction mechanism 80. As shown in FIG. Therefore, it is possible to reduce the number of parts and the number of assembly man-hours, and contribute to the cost reduction of the vibration reduction mechanism 80 .
(振動低減機構80の変形例2) 以下、図9を用いて、振動低減機構80の変形例2について説明する。振動低減機構80の変形例2では、以下に示す点を除いて、本実施の形態の振動低減機構80と同様に構成されている。なお、図9には、右側に配置された振動低減機構80が図示されており、図9では、本実施の形態の振動低減機構80と同様に構成されている部位には、同一の符号を付している。 (Modification 2 of Vibration Reduction Mechanism 80) Modification 2 of the vibration reduction mechanism 80 will be described below with reference to FIG. Modification 2 of vibration reduction mechanism 80 is configured in the same manner as vibration reduction mechanism 80 of the present embodiment except for the following points. Note that FIG. 9 shows the vibration reduction mechanism 80 arranged on the right side, and in FIG. attached.
振動低減機構80の変形例2では、振動低減機構80において、ロアガイドシャフト86が省略されており、ウエイト部材90がアッパガイドシャフト84のみによって支持されている。アッパガイドシャフト84は、振動低減機構80の変形例1におけるロアガイドシャフト86と同様に、その長手方から見て、非円形形状に形成されている。 In the second modification of the vibration reduction mechanism 80 , the lower guide shaft 86 is omitted from the vibration reduction mechanism 80 and the weight member 90 is supported only by the upper guide shaft 84 . As with the lower guide shaft 86 in the first modification of the vibration reduction mechanism 80, the upper guide shaft 84 is formed in a non-circular shape when viewed from its longitudinal direction.
ウエイト部材90では、下側ガイド孔94Bが省略されており、上側ガイド孔92Aが、アッパガイドシャフト84の外形形状に対応して長孔状に形成されている。これにより、ウエイト部材90が、前後方向に相対移動可能に且つ相対回転不能にアッパガイドシャフト84に連結されている。 In the weight member 90, the lower guide hole 94B is omitted, and the upper guide hole 92A is formed in an elongated hole shape corresponding to the outer shape of the upper guide shaft 84. As shown in FIG. Thereby, the weight member 90 is connected to the upper guide shaft 84 so as to be relatively movable in the front-rear direction and not relatively rotatable.
そして、振動低減機構80の変形例2においても、本実施の形態と同様に、ウエイト部材90を、リングギヤ56の径方向外側において、リングギヤ56の周方向に沿うように配置して、ウエイトスプリング96が取付けられるスプリング取付部94をリングギヤ56側に張出させて、ウエイトスプリング96をウエイト部材90の重心Gに対して下側かつリングギヤ56側へ寄せて配置することができる。したがって、振動低減機構80の変形例2においても、ハンマドリル10の小型化を図りつつ、作業性を向上することができる。 In the second modification of the vibration reduction mechanism 80, similarly to the present embodiment, the weight member 90 is arranged radially outside the ring gear 56 along the circumferential direction of the ring gear 56, and the weight spring 96 is attached to the ring gear 56 side, and the weight spring 96 can be arranged below the center of gravity G of the weight member 90 and closer to the ring gear 56 side. Therefore, in the second modification of the vibration reduction mechanism 80 as well, the hammer drill 10 can be downsized and the workability can be improved.
また、振動低減機構80の変形例2では、振動低減機構80においてアッパガイドシャフト84を省略している。このため、部品点数及び組付工数の削減を図ることができると共に、振動低減機構80のコストダウンに寄与することができる。 Further, in the second modification of the vibration reduction mechanism 80, the upper guide shaft 84 is omitted from the vibration reduction mechanism 80. As shown in FIG. Therefore, it is possible to reduce the number of parts and the number of assembly man-hours, and contribute to the cost reduction of the vibration reduction mechanism 80 .
(振動低減機構80の変形例3) 以下、図10及び図11を用いて、振動低減機構80の変形例3について説明する。振動低減機構80の変形例3では、以下に示す点を除いて、本実施の形態の振動低減機構80と同様に構成されている。なお、図10及び図11では、本実施の形態の振動低減機構80と同様に構成されている部位には、同一の符号を付している。 (Modification 3 of Vibration Reduction Mechanism 80) Modification 3 of the vibration reduction mechanism 80 will be described below with reference to FIGS. 10 and 11. FIG. Modification 3 of vibration reduction mechanism 80 is configured in the same manner as vibration reduction mechanism 80 of the present embodiment except for the following points. In FIGS. 10 and 11, the same reference numerals are given to the parts configured in the same manner as the vibration reduction mechanism 80 of the present embodiment.
振動低減機構80の変形例3では、左右一対の振動低減機構80におけるウエイト部材90同士を連結するためのウエイト連結部としての連結アーム98が設けられている。連結アーム98は、リングギヤ56の上側に配置されると共に、リングギヤ56の周方向に沿った下側へ開放された略半円板状に形成されている。そして、連結アーム98の長手方向両端部がウエイト部材90の上端に接続されている。これにより、振動低減機構80の変形例3では、左右一対の振動低減機構80が一体に作動するようになっている。 In Modified Example 3 of the vibration reduction mechanism 80, a connection arm 98 is provided as a weight connection portion for connecting the weight members 90 of the pair of left and right vibration reduction mechanisms 80 to each other. The connecting arm 98 is arranged above the ring gear 56 and has a substantially semi-disc shape that opens downward along the circumferential direction of the ring gear 56 . Both longitudinal ends of the connecting arm 98 are connected to the upper end of the weight member 90 . As a result, in the third modification of the vibration reduction mechanism 80, the pair of left and right vibration reduction mechanisms 80 operate integrally.
そして、振動低減機構80の変形例3においても、本実施の形態と同様に、ウエイト部材90を、リングギヤ56の径方向外側において、リングギヤ56の周方向に沿うように配置して、ウエイトスプリング96が取付けられるスプリング取付部94をリングギヤ56側に張出させて、ウエイトスプリング96をウエイト部材90の重心Gに対して下側かつリングギヤ56側へ寄せて配置することができる。したがって、振動低減機構80の変形例3においても、ハンマドリル10の小型化を図りつつ、作業性を向上することができる。 In the third modification of the vibration reduction mechanism 80, similarly to the present embodiment, the weight member 90 is arranged radially outside the ring gear 56 along the circumferential direction of the ring gear 56, and the weight spring 96 is attached to the ring gear 56 side, and the weight spring 96 can be arranged below the center of gravity G of the weight member 90 and closer to the ring gear 56 side. Therefore, also in the modification 3 of the vibration reduction mechanism 80, workability|operativity can be improved, achieving size reduction of the hammer drill 10. FIG.
また、振動低減機構80の変形例3では、連結アーム98によって左右一対の振動低減機構80を一体に作動させることができる。また、左右のウエイト部材90が連結アーム98によって連結されているため、左右のウエイト部材90の全体の重量を、本実施の形態と比べて重くすることができる。したがって、例えば、各種ハンマドリルにおける作動時の共振周波数に対応して、ウエイト部材90の全体の重量を調整することができる。したがって、各種ハンマドリルに対応して、作動時に生じる振動を吸収することができる。 Further, in the third modification of the vibration reduction mechanism 80, the pair of left and right vibration reduction mechanisms 80 can be operated integrally by the connecting arm 98. FIG. Further, since the left and right weight members 90 are connected by the connection arm 98, the weight of the left and right weight members 90 can be made heavier than in the present embodiment. Therefore, for example, the weight of the weight member 90 as a whole can be adjusted according to the resonance frequency during operation of various hammer drills. Therefore, it is possible to absorb vibrations generated during operation in correspondence with various hammer drills.
10…ハンマドリル(作業機)、34…モータ(駆動源)、40…動力伝達機構(動力伝達部)、50…伝達ギヤ(動力伝達部材)、56…リングギヤ(筒状部材)、72…インナケース(ケース)、80…振動低減機構(振動低減部)、82…ホルダ、84…アッパガイドシャフト(ガイド部材)、86…ロアガイドシャフト(ガイド部材)、90…ウエイト部材、90A…湾曲面、96…ウエイトスプリング(付勢部材)、98…連結アーム(ウエイト連結部)、G…ウエイト部材の重心、T…先端工具 DESCRIPTION OF SYMBOLS 10... Hammer drill (working machine), 34... Motor (drive source), 40... Power transmission mechanism (power transmission part), 50... Transmission gear (power transmission member), 56... Ring gear (cylindrical member), 72... Inner case (Case) 80 Vibration reduction mechanism (vibration reduction portion) 82 Holder 84 Upper guide shaft (guide member) 86 Lower guide shaft (guide member) 90 Weight member 90A Curved surface 96 ... Weight spring (biasing member), 98 ... Connection arm (weight connection part), G ... Center of gravity of weight member, T ... Tip tool

Claims (9)

  1. 駆動源と、
    先端工具と、
    前記駆動源及び前記先端工具に連結されると共に、第1方向を軸方向とする円筒形状の筒状部材を含んで構成され、前記駆動源によって作動することで前記先端工具に前記第1方向の打撃力を付与する動力伝達部と、
    少なくとも前記筒状部材を収容するケースと、
    前記ケースの内部に収容され、前記ケースに生じる前記第1方向の振動を低減する振動低減部と、
    を備え、
    前記振動低減部は、
    前記第1方向に延在するガイド部材と、
    前記第1方向に相対移動可能に前記ガイド部材に支持されたウエイト部材と、
    前記ウエイト部材を前記第1方向に付勢する付勢部材と、
    を含んで構成され、
    前記ウエイト部材は、第1方向視において、前記第1方向と直交する第2方向、及び、前記第1方向及び前記第2方向と直交する第3方向に前記筒状部材と重なるように配置され、
    前記付勢部材は、第1方向視において、前記ウエイト部材の重心に対して前記第2方向にずれて配置されている作業機。
    a driving source;
    a tip tool;
    It is connected to the drive source and the tip tool and includes a cylindrical tubular member having a first direction as an axial direction. a power transmission unit that imparts an impact force;
    a case that houses at least the tubular member;
    a vibration reduction unit that is housed inside the case and reduces vibration in the first direction that occurs in the case;
    with
    The vibration reduction unit is
    a guide member extending in the first direction;
    a weight member supported by the guide member so as to be relatively movable in the first direction;
    a biasing member that biases the weight member in the first direction;
    consists of
    The weight member is arranged to overlap the cylindrical member in a second direction orthogonal to the first direction and a third direction orthogonal to the first direction and the second direction when viewed from the first direction. ,
    In the working machine, the biasing member is arranged to be displaced in the second direction with respect to the center of gravity of the weight member when viewed in the first direction.
  2. 前記動力伝達部は、動力伝達部材を有しており、
    第1方向視で、前記動力伝達部材が、前記筒状部材に対して第2方向一方側において前記第3方向に延在され、前記ウエイト部材の少なくとも一部が、前記筒状部材及び前記動力伝達部材によって前記第2方向に挟み込まれている請求項1に記載の作業機。
    The power transmission unit has a power transmission member,
    When viewed in the first direction, the power transmission member extends in the third direction on one side in the second direction with respect to the tubular member, and at least a portion of the weight member is the tubular member and the power transmission member. The work machine according to claim 1, wherein the work machine is sandwiched in the second direction by the transmission member.
  3. 前記動力伝達部材は、前記第2方向を軸方向とし且つ前記筒状部材に回転力を伝達するギヤである請求項2に記載の作業機。 The working machine according to claim 2, wherein the power transmission member is a gear having the second direction as an axial direction and transmitting a rotational force to the cylindrical member.
  4. 前記ウエイト部材は、前記筒状部材の周方向に沿って延在された湾曲面を有している請求項1~請求項3の何れか1項に記載の作業機。 The working machine according to any one of claims 1 to 3, wherein the weight member has a curved surface extending along the circumferential direction of the tubular member.
  5. 前記ウエイト部材が、前記第2方向に離間して配置された一対の前記ガイド部材によって支持されている請求項1~請求項4の何れか1項に記載の作業機。 The working machine according to any one of claims 1 to 4, wherein the weight member is supported by a pair of the guide members spaced apart in the second direction.
  6. 前記付勢部材は、前記ガイド部材に装着されたコイルスプリングである請求項1~請求項5の何れか1項に記載の作業機。 The working machine according to any one of claims 1 to 5, wherein the biasing member is a coil spring attached to the guide member.
  7. 前記ケースの内部には、一対の前記振動低減部が設けられており、前記振動低減部が、前記筒状部材に対して前記第3方向の一方側及び他方側にそれぞれ配置されている請求項1~請求項6の何れか1項に記載の作業機。 A pair of said vibration reducing parts are provided inside said case, and said vibration reducing parts are arranged on one side and the other side of said cylindrical member in said third direction, respectively. The work machine according to any one of claims 1 to 6.
  8. 一対の前記振動低減部における前記ウエイト部材が、ウエイト連結部によって連結されている請求項7に記載の作業機。 The working machine according to claim 7, wherein the weight members in the pair of vibration reducing sections are connected by a weight connecting section.
  9. 前記振動低減部は、前記ガイド部材の長手方向両端部を支持するホルダを有しており、前記ホルダは、前記付勢部材の付勢力によって前記ケースの壁面に圧接されている請求項1~請求項8の何れか1項に記載の作業機。 The vibration reducing section has a holder that supports both ends of the guide member in the longitudinal direction, and the holder is pressed against the wall surface of the case by the biasing force of the biasing member. Item 8. The work machine according to any one of Items 8.
PCT/JP2022/036107 2021-10-08 2022-09-28 Work machine WO2023058513A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-166216 2021-10-08
JP2021166216 2021-10-08

Publications (1)

Publication Number Publication Date
WO2023058513A1 true WO2023058513A1 (en) 2023-04-13

Family

ID=85804230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036107 WO2023058513A1 (en) 2021-10-08 2022-09-28 Work machine

Country Status (1)

Country Link
WO (1) WO2023058513A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5242893B2 (en) * 2005-06-23 2013-07-24 ブラック アンド デッカー インク Hammer drill
WO2015166995A1 (en) * 2014-04-30 2015-11-05 日立工機株式会社 Work tool

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5242893B2 (en) * 2005-06-23 2013-07-24 ブラック アンド デッカー インク Hammer drill
WO2015166995A1 (en) * 2014-04-30 2015-11-05 日立工機株式会社 Work tool

Similar Documents

Publication Publication Date Title
JP5361504B2 (en) Impact tool
US7513317B2 (en) Impact tool with vibration control mechanism
JP6441588B2 (en) Impact tool
WO2013111460A1 (en) Striking tool
JP4793755B2 (en) Electric tool
JP2009509790A (en) Electric machine tool
AU2007223472A1 (en) Electrical power tool
JP6778071B2 (en) Hammer drill
JP6397337B2 (en) Electric tool
WO2016076377A1 (en) Striking device
WO2023058513A1 (en) Work machine
JP5356097B2 (en) Impact tool
US20230121902A1 (en) Impact tool
JP5009060B2 (en) Impact tool
JP4376666B2 (en) Work tools
JP4757043B2 (en) Work tools
WO2023281866A1 (en) Work machine
JP7060098B2 (en) Electric tool
JP2024011112A (en) impact tool
WO2022230513A1 (en) Work machine
JP7365197B2 (en) reciprocating tool
WO2020250715A1 (en) Electric work machine
JP6612496B2 (en) Impact tool
JP2022127769A (en) impact tool
JP2022122765A (en) Striking tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22878383

Country of ref document: EP

Kind code of ref document: A1