WO2023058361A1 - Sensor - Google Patents

Sensor Download PDF

Info

Publication number
WO2023058361A1
WO2023058361A1 PCT/JP2022/032718 JP2022032718W WO2023058361A1 WO 2023058361 A1 WO2023058361 A1 WO 2023058361A1 JP 2022032718 W JP2022032718 W JP 2022032718W WO 2023058361 A1 WO2023058361 A1 WO 2023058361A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
strain
detection circuit
sensor elements
generating body
Prior art date
Application number
PCT/JP2022/032718
Other languages
French (fr)
Japanese (ja)
Inventor
ありさ 大竹
Original Assignee
日本電産コパル電子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産コパル電子株式会社 filed Critical 日本電産コパル電子株式会社
Publication of WO2023058361A1 publication Critical patent/WO2023058361A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/16Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
    • G01L5/161Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using variations in ohmic resistance
    • G01L5/1627Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using variations in ohmic resistance of strain gauges

Definitions

  • Embodiments of the present invention relate to sensors that detect force.
  • Torque sensors are known in which a bridge circuit containing a plurality of strain sensors detects forces transmitted between a first structure and a second structure.
  • a torque sensor that detects an abnormality based on the difference in output voltages of two bridge circuits including a plurality of strain sensors has been disclosed (see, for example, Patent Document 1).
  • a detection circuit such as a bridge circuit
  • An object of the present embodiment is to provide a sensor that reduces the difference in detection accuracy between duplicated detection circuits.
  • a sensor according to an embodiment of the present invention comprises: a first structure formed in a ring shape; a second structure formed in a ring shape on an inner peripheral side of the first structure; a strain-generating body provided between a structure, a plurality of first sensor elements constituting a first system detection circuit and arranged on an upper surface of the strain-generating body for detecting strain, and the first system detection
  • a second-system detection circuit duplicated with the circuit is configured to detect strain placed on the lower surface of the strain-generating body so as to match the arrangement of the plurality of first sensor elements via the strain-generating body. and a plurality of second sensor elements.
  • FIG. 1 is an enlarged perspective view of the vicinity of the sensor portion of the torque sensor according to the first embodiment.
  • FIG. 2 is a top view showing the configuration of the torque sensor according to the first embodiment.
  • FIG. 3 is a top view showing the configuration of the sensor section according to the first embodiment.
  • 4 is a bottom view showing the configuration of the sensor unit according to the first embodiment.
  • FIG. 5 is a side view showing the configuration of the sensor section according to the first embodiment.
  • FIG. 6 is a front view showing the mounting state of the torque sensor according to the first embodiment.
  • FIG. 7 is a cross-sectional view of the torque sensor mounting plate shown in FIG. 6 taken along line AA.
  • FIG. 8 is a simplified diagram showing the state of the torque sensor when an external load is applied to the torque sensor mounting plate according to the first embodiment.
  • 9 is a top view showing the top surface of the first flexible substrate according to the first embodiment.
  • FIG. 10 is a side view of the state in which the first flexible substrate is attached to the sensor unit according to the first embodiment, viewed from the first structure side.
  • FIG. 11 is a top view showing the upper surface of the sensor unit according to the first embodiment with the second and third flexible substrates attached thereto.
  • FIG. 12 is a bottom view showing the bottom surface of the sensor unit according to the first embodiment, to which the second and third flexible substrates are attached.
  • FIG. 13 is a side view showing a state in which the second and third flexible substrates are attached to the sensor section according to the first embodiment;
  • FIG. 14 is an outline drawing showing the outline of the fourth flexible substrate according to the first embodiment.
  • FIG. 15 is a state diagram showing the first state of the fourth flexible substrate according to the first embodiment.
  • FIG. 16 is a state diagram showing a second state of the fourth flexible substrate according to the first embodiment.
  • FIG. 17 is a state diagram showing a third state of the fourth flexible substrate according to the first embodiment;
  • FIG. 18 is an outline drawing showing the outline of the fifth flexible substrate according to the first embodiment.
  • FIG. 19 is a state diagram showing a folded state of the fifth flexible substrate according to the first embodiment.
  • FIG. 20 is an outline view showing an example in which the outline of the fifth flexible substrate according to the first embodiment is modified.
  • FIG. 21 is a top view showing the configuration of the sensor section according to the second embodiment of the present invention.
  • FIG. 22 is a bottom view showing the configuration of the sensor section according to the second embodiment.
  • FIG. 23 is a side view showing the configuration of the sensor section according to the second embodiment.
  • FIG. 1 is an enlarged perspective view of the vicinity of the sensor section 14 of the torque sensor 10 according to the first embodiment.
  • FIG. 2 is a top view showing the configuration of the torque sensor 10 according to this embodiment.
  • the same parts are given the same reference numerals.
  • the torque sensor 10 is not limited to the one described here, and may be changed into various shapes or configurations.
  • the torque sensor 10 may be a sensor with another name such as a force sensor as long as it detects at least torque (z-axis moment Mz).
  • the force sensor detects translational forces Fx, Fy, Fz and moments Mx, My, Mz of the three orthogonal axes (x-axis, y-axis, z-axis) shown in FIG.
  • the torque sensor 10 includes a first structure 11, a second structure 12, a plurality of third structures 13, a plurality of sensor units 14, a case 15, and a cable 16.
  • the first structure 11, the second structure 12 and the third structure 13 are integrally formed as one elastic body.
  • the first structure 11, the second structure 12 and the third structure 13 are made of metal such as stainless steel. Materials other than metal (resin, etc.) may also be used.
  • the first structure 11 and the second structure 12 are formed in an annular shape.
  • the diameter of the second structure 12 is smaller than the diameter of the first structure 11 .
  • the second structure 12 is arranged on the inner peripheral side concentrically with the first structure 11 .
  • a plurality of third structures 13 are radially arranged and provided as beams connecting the first structures 11 and the second structures 12 . Any number of third structures 13 may be provided.
  • the thickness (the length in the z-axis direction) of the third structure 13 is thinner than the thicknesses of the first structure 11 and the second structure 12 .
  • the thickness of the third structure 13 is inclined so as to become thinner toward the center from both ends connected to the first structure 11 or the second structure 12, and the central portion has a uniform thickness. It is flat.
  • the thickness (length in the z-axis direction) of the third structure 13 is made longer than the width (length in the circumferential direction) to facilitate torque detection.
  • the thickness and width of body 13 may be arbitrarily determined.
  • the case 15 is provided so as to cover the hollow portion provided in the central portion of the second structure 12 .
  • a data processing circuit for processing data detected by each sensor unit 14 is provided in the hollow portion.
  • the data processing circuit is electrically connected to each sensor unit 14 via a flexible printed circuit board.
  • the data processing circuit is supplied with power through the cable 16 and outputs the data-processed sensor signal to the outside.
  • the sensor unit 14 detects strain caused by relative movement of the first structure 11 and the second structure 12 . Data indicating the strain detected by the sensor unit 14 is transmitted to the data processing circuit as an electrical signal. The data processing circuit detects the applied force such as torque based on the strain detected by the sensor section 14 . Although four sensor units 14 are provided at equal intervals (90 degree intervals) in the circumferential direction here, any number of sensor units 14 may be provided.
  • the sensor unit 14 includes a strain body 20, four A-system sensor elements 21a, 21b, 21c, and 21d, four B-system sensor elements 22a, 22b, 22c, and 22d, and two terminal portions Ta and Tb.
  • the sensor section 14 is provided so as to span between the first structure 11 and the second structure 12 . Both ends of the sensor section 14 are fixed to the first structure 11 and the second structure 12, respectively.
  • the first structure 11 and the second structure 12 are formed with recesses 11a and 12a that are thinner than the other portions in order to fix both ends of the sensor section 14 .
  • a cover for protecting the sensor section 14 from external factors such as waterproofing and dustproofing is fitted into the concave portions 11a and 12a on the upper surface of the sensor section 14 .
  • the lower surface of the sensor section 14 may be similarly provided with a cover.
  • the sensor section 14 is attached.
  • a fixing plate 31 is arranged so as to hold both ends of the strain body 20 from above, and both ends of the strain body 20 together with the fixing plate 31 are screwed to the first structure 11 and the second structure 12, respectively. 32 to fix.
  • the sensor unit 14 may be attached in any way.
  • the A system sensor elements 21 a to 21 d and the B system sensor elements 22 a to 22 d are arranged between the first structure 11 and the second structure 12 of the strain body 20 .
  • the A-system sensor elements 21 a to 21 d are arranged on the upper surface (surface) of the strain body 20 .
  • the B-system sensor elements 22 a to 22 d are arranged on the lower surface (back surface) of the strain generating body 20 .
  • the A-system sensor elements 21a-21d and the B-system sensor elements 22a-22d are wired to form an A-system detection circuit and a B-system detection circuit, respectively.
  • the two detection circuits are redundant detection circuits for detecting torque and the like, and detect torque and the like independently.
  • the torque sensor 10 outputs torque or the like as a detection result based on detection data from the two detection circuits. Note that the torque sensor 10 may determine the torque or the like as the detection result based on the detection data of one of the two detection circuits.
  • the A system sensor elements 21a to 21d and the B system sensor elements 22a to 22d are strain gauges, and the detection circuit is a full bridge circuit, but the present invention is not limited to this.
  • the detection circuit of each system includes two strain gauges provided on the strain generating body 20, and a portion that does not substantially deform due to the application of torque (for example, the data processing circuit provided on the second structure 12). ) may be a bridge circuit composed of reference resistors provided in the .
  • two sensor elements arbitrarily selected from among the four sensor elements 21a to 21d and 22a to 22d of each system and two reference resistors provided in the data processing circuit may constitute a bridge circuit. good.
  • the following embodiments are not limited to full bridge circuits, and similar bridge circuits may be configured.
  • FIG. 3 is a top view showing the configuration of the sensor section 14 according to this embodiment.
  • FIG. 4 is a bottom view showing the configuration of the sensor section 14 according to this embodiment.
  • FIG. 5 is a side view showing the configuration of the sensor section 14 according to this embodiment.
  • the wiring of the sensor elements 21a to 21d and 22a to 22d is not limited to the configuration described here, and may be wired in any way.
  • the strain-generating body 20 has a rectangular plate shape with an upper surface Pt and a lower surface Pu.
  • the sensor elements 21a to 21d and 22a to 22d are plate-shaped with rectangular upper and lower surfaces.
  • the arrangement of the A system sensor elements 21 a to 21 d on the upper surface Pt of the strain body 20 matches the arrangement of the B system sensor elements 22 a to 22 d on the lower surface Pu of the strain body 20 .
  • first to fourth B-system sensor elements 22a to 22d corresponding to the respective positions of the first to fourth A-system sensor elements 21a to 21d are provided via the strain-generating body 20. is located.
  • the first to fourth A system sensor elements 21a to 21d correspond to the first to fourth B system sensor elements 22a to 22d, respectively.
  • the correspondence between the A system sensor elements 21a to 21d and the B system sensor elements 22a to 22d is, for example, the position on the electric circuit where the A system sensor elements 21a to 21d are provided in the A system detection circuit (for example, bridge circuit).
  • the positions on the electric circuit where the B-system sensor elements 22a to 22d are provided in the B-system detection circuit (eg, bridge circuit) are the same.
  • the first A-system sensor element 21a and the second A-system sensor element 21b are arranged at two corners of the strain body 20 on the first structure 11 side.
  • the first and second A-system sensor elements 21a and 21b are arranged at an angle with respect to the longitudinal direction of the strain generating body 20 so that the ends on the first structure 11 side face outward.
  • the first A-system sensor element 21a is arranged so as to be symmetrical with the second A-system sensor element 21b with respect to the center line that halves the strain generating body 20 in the longitudinal direction.
  • the third A-system sensor element 21c and the fourth A-system sensor element 21d are arranged at two corners of the strain body 20 on the second structure 12 side.
  • the third and fourth A-system sensor elements 21c and 21d are arranged at an angle with respect to the longitudinal direction of the strain generating body 20 so that the ends on the second structure 12 side face outward.
  • the third A-system sensor element 21c is arranged so as to be line-symmetrical to the fourth A-system sensor element 21d with respect to the center line that halves the strain-generating body 20 in the longitudinal direction.
  • the third and fourth A-system sensor elements 21c and 21d are arranged relative to the center line that halves the strain-generating body 20 in the lateral direction (perpendicular to the longitudinal direction) relative to the first and second A-system sensor elements. It is arranged so as to be symmetrical with the elements 21a and 21b.
  • the A-system terminal portion Ta is arranged in the center of the upper surface of the strain-generating body 20 in the longitudinal direction, and each terminal is arranged side by side in the lateral direction.
  • Each terminal of the A-system sensor elements 21a to 21d is electrically connected to a central terminal of the A-system terminal portion Ta by two wirings Wa.
  • Each terminal of the A-system sensor elements 21a to 21d may be connected to any terminal of the A-system terminal portion Ta.
  • the first to fourth B-system sensor elements 22a to 22d and the B-system terminal portion Tb are arranged on the lower surface Pu of the strain generating body 20 with the first to fourth A-system sensor elements 21a to 21d and the A-system terminal portion Ta. similarly arranged. As a result, the first to fourth B-system sensor elements 22a to 22d and the first to fourth A-system sensor elements 21a to 21d are positioned via the strain-generating body 20, respectively.
  • the A-system terminal portion Ta is located at the B-system terminal portion Tb with the strain-generating body 20 interposed therebetween.
  • the positions of the B-system sensor elements 22a to 22d on the lower surface Pu of the strain-generating body 20 correspond to the positions of the A-system sensor elements 21a to 21d on the upper surface Pt of the strain-generating body 20, with the longitudinal direction being the vertical direction. It is left-right reversed.
  • FIG. 6 is a front view showing the mounting state of the torque sensor 10.
  • FIG. FIG. 7 is a cross-sectional view of the torque sensor mounting plate 41 shown in FIG. 6 taken along line AA. Note that FIG. 7 simply shows the adapter 42, the speed reducer 43, and the motor 44. As shown in FIG.
  • the torque sensor 10 is attached to the torque sensor mounting plate 41 . Thereby, the first structure 11 of the torque sensor 10 is fixed to the torque sensor mounting plate 41 .
  • the torque sensor attachment plate 41 is a member attached to a structure to which torque or the like is applied.
  • the second structure 12 of the torque sensor 10 is fixed to a speed reducer 43 connected to a motor 44 via an adapter 42 .
  • torque output from the motor 44 is applied to the torque sensor mounting plate 41 via the reduction gear 43 , the adapter 42 and the torque sensor 10 .
  • the torque sensor mounting plate 41 and the structure to which it is mounted are operated by torque output from the motor 44 .
  • the second structure 12 of the torque sensor 10 is attached to the side to which torque or the like is applied (torque sensor mounting plate 41 or the like), and the first structure 11 of the torque sensor 10 is attached to the side to which torque or the like is applied (motor 44 etc.).
  • FIG. 8 is a simplified diagram showing the state of the torque sensor 10 when an external load is applied to the torque sensor mounting plate 41.
  • FIG. 6 and 8 show two layout patterns P1 and P2 of the four sensor units 14, and the sensor units 14 are attached in one of the two layout patterns P1 and P2. Note that the sensor unit 14 is not limited to these two layout patterns P1 and P2, and other layout patterns may be employed.
  • the elastic bodies (the first structure 11, the second structure 12, and the third structure 13) of the torque sensor 10 change from the circular shape indicated by the dotted line to the elliptical shape indicated by the solid line. transform. If the elastic body after deformation is elliptical, the elastic body is pulled in the long axis direction and compressed in the short axis direction.
  • each sensor unit 14 of both arrangement patterns P1 and P2 is also deformed from the rectangle indicated by the dotted line to the quadrangle indicated by the solid line.
  • the stress received by the external load Fw differs depending on the position where the sensor section 14 is arranged in any of the arrangement patterns P1 and P2.
  • each sensor unit 14 is provided with A-system sensor elements 21a to 21d and B-system sensor elements 22a to 22d that respectively constitute a duplicated A-system detection circuit and B-system detection circuit. Therefore, even if the stress received by each sensor unit 14 is different, the detection accuracy of each detection circuit of each system is substantially the same.
  • the sensor unit 14 having only the A system detection circuit is arranged in the layout pattern P1
  • the sensor unit 14 having only the B system detection circuit is arranged in the layout pattern P2.
  • the terminal portions Ta and Tb may be electrically connected to the data processing circuit in any way, a flexible substrate other than the flexible substrate described here may be used, or wiring may be performed without using a flexible substrate at all. You may
  • FIG. 9 is a top view showing the top surface of the first flexible board FP1.
  • FIG. 10 is a side view of the state in which the first flexible substrate FP1 is attached to the sensor section 14, viewed from the first structure 11 side.
  • the first flexible board FP1 has a T-shape in which the longitudinal direction is the direction in which the sensor section 14 and the data processing circuit are connected, and the end portion on the sensor section 14 side in the longitudinal direction extends wide.
  • the first flexible board FP1 has four connectors CNa, CNb1, CNb2 and CNd.
  • the connector CNa is located in the center of the wide extending portion of the first flexible board FP1.
  • Connectors CNb1 and CNb2 are located at both ends of the widened portion.
  • the connector CNd is located at the longitudinal end of the first flexible board FP1 on the side of the data processing circuit.
  • the connector CNa is connected to the A-system terminal portion Ta provided on the upper surface Pt of the strain generating body 20 .
  • the connectors CNb1 and CNb2 are connected to the B system terminal portion Tb provided on the lower surface Pu of the strain generating body 20 so that the wide extending portion of the first flexible substrate FP1 covers the side surface of the strain generating body 20.
  • Connector CNd is connected to a data processing circuit.
  • FIG. 11 is a top view showing the top surface of the sensor section 14 with the two flexible boards FP21 and FP22 attached.
  • FIG. 12 is a bottom view showing the bottom surface of the sensor unit 14 with the two flexible boards FP21 and FP22 attached.
  • FIG. 13 is a side view showing a state in which two flexible boards FP21 and FP22 are attached to the sensor section 14.
  • the second flexible board FP21 and the third flexible board FP22 have a rectangular parallelepiped shape whose longitudinal direction is the direction in which the sensor section 14 and the data processing circuit are connected.
  • the length in the longitudinal direction of the third flexible board FP22 is preferably longer than the length in the longitudinal direction of the second flexible board FP21, but may be the same length or shorter.
  • a connector CNa is provided at one end in the longitudinal direction of the second flexible board FP21, and a connector CNd is provided at the other end.
  • a connector CNb is provided at one end in the longitudinal direction of the third flexible board FP22, and a connector CNd is provided at the other end.
  • the second flexible board FP21 connects the connector CNa to the A-system terminal portion Ta provided on the upper surface Pt of the strain-generating body 20, and connects the connector CNd to the data processing circuit.
  • the third flexible board FP22 is arranged so as to overlap the second flexible board FP21.
  • the connector CNb side portion of the third flexible board FP22 is wound around the side surface of the strain body 20 so that the connector CNb is turned toward the lower surface Pu of the strain body 20 . In this manner, the connector CNb is connected to the B system terminal portion Tb.
  • a connector CNd of the third flexible board FP22 is connected to a data processing circuit.
  • FIG. 14 is an outline drawing showing the outline of the fourth flexible board FP4.
  • 15 to 17 are state diagrams showing first to third states of the fourth flexible board FP4.
  • the fourth flexible board FP4 has a shape including a first shape portion P41 and a second shape portion P42.
  • the first shape portion P41 has a rectangular parallelepiped shape whose longitudinal direction is the direction in which the sensor section 14 and the data processing circuit are connected.
  • a connector CNb is provided at the longitudinal end of the first shape portion P41 on the sensor section 14 side.
  • the second shape portion P42 has a longitudinal direction in a direction in which the sensor portion 14 and the data processing circuit are connected, and an end portion of the longitudinal direction on the sensor portion 14 side protrudes to the side opposite to the first shape portion P41 in the lateral direction. It is L-shaped.
  • a connector CNa is provided at the end of the projecting portion of the second shape portion P42.
  • a connector CNd is provided at the data processing circuit side end in the longitudinal direction of the second shape portion P42.
  • the first shape portion P41 and the second shape portion P42 are connected so that they are aligned side by side in the longitudinal direction.
  • a connection portion between the first shape portion P41 and the second shape portion P42 is cut so that the longitudinal sensor section 14 side is separated.
  • the fourth flexible board FP4 is bent along bending lines L1, L2, and L3 shown in FIG. Folding lines L1 and L3 are indicated by dashed lines and are valley folds.
  • a fold line L2 is indicated by a dotted line and is folded in a mountain.
  • the fourth flexible board FP4 is valley-folded along the folding line L1.
  • the fourth flexible board FP4 is mountain-folded along the folding line L2.
  • the fourth flexible board FP4 is valley-folded along the folding line L3.
  • the sensor section 14 is sandwiched between the ends of the first shape portion P41 and the second shape portion P42.
  • the connector CNa is connected to the A-system terminal Ta of the sensor section 14
  • the connector CNb is connected to the B-system terminal Tb of the sensor section 14
  • the connector CNd is connected to the data processing circuit.
  • FIG. 18 is an outline drawing showing the outline of the fifth flexible board FP5.
  • FIG. 19 is a state diagram showing a bent state of the fifth flexible board FP5.
  • the fifth flexible board FP5 has a shape including a first shape portion P51, a second shape portion P52 and a third shape portion P53.
  • the first shape portion P51 has a rectangular parallelepiped shape whose longitudinal direction is the direction in which the sensor section 14 and the data processing circuit are connected.
  • a connector CNd is provided at the data processing circuit side end in the longitudinal direction of the first shape portion P51.
  • the second shape portion P52 and the third shape portion P53 are shaped so as to protrude from the first shape portion P51 toward the sensor section 14 side.
  • a connector CNb is provided at the end of the second shape portion P52 on the sensor section 14 side.
  • a connector CNa is provided at the end of the third shape portion P53 on the sensor section 14 side.
  • the fifth flexible board FP5 is bent along the bending line L4 shown in FIG. 18, and is in the state shown in FIG.
  • a fold line L4 is indicated by a dashed line and is valley-folded.
  • the sensor section 14 is sandwiched between the ends of the second shape portion P52 and the third shape portion P53.
  • the connector CNa is connected to the A-system terminal Ta of the sensor section 14
  • the connector CNb is connected to the B-system terminal Tb of the sensor section 14
  • the connector CNd is connected to the data processing circuit.
  • the fifth flexible board FP5 is not limited to the shape shown in FIG. 18, and may be deformed into various shapes.
  • the fifth flexible board FP5a may be deformed into the shape shown in FIG.
  • the fifth flexible board FP5a shown in FIG. 20 has a thinner rectangular parallelepiped first shape portion P51a than the fifth flexible board FP5 shown in FIG.
  • one longitudinal side of each of the first shape portion P51a and the second shape portion P52a is connected so as to form one straight line.
  • the cut-shaped space formed between the first shape portion P51a and the second shape portion P52a may be arbitrarily deformed.
  • the space of this notch shape may be made smaller, and the connecting portion between the first shape portion P51a and the second shape portion P52a may be increased.
  • the redundant 2 it is possible to suppress the difference in detection accuracy between the two detection circuits.
  • the A-system detection circuit and the B-system sensor elements 21a to 21d and the B-system sensor elements 22a to 22d are arranged on separate surfaces of one strain-generating body 20 so that the A-system sensor elements 21a to 21d and the B-system sensor elements 22a to 22d are arranged in the same manner via the strain-generating body 20, respectively.
  • the data representing the distortion detected by each of the A system detection circuit and the B system detection circuit can be approximated so as to be the same.
  • FIG. 21 is a top view showing the configuration of the sensor section 14A according to the second embodiment of the invention.
  • FIG. 22 is a bottom view showing the configuration of the sensor section 14A according to this embodiment.
  • FIG. 23 is a side view showing the configuration of the sensor section 14A according to this embodiment.
  • the torque sensor 10 according to the present embodiment is different from the torque sensor 10 according to the first embodiment except that the arrangement of the sensor elements 21a to 21d and 22a to 22d in the strain body 20 of the sensor section 14 is changed. is similar to the embodiment of
  • the A-system sensor elements 21a to 21d are arranged separately at two corners of the upper surface Pt of the strain body 20 on the second structure 12 side.
  • the first A-system sensor element 21a and the second A-system sensor element 21b are provided close to each other within a non-contact range so as to maintain an electrical insulation distance, and are oriented in substantially the same direction.
  • the third A-system sensor element 21c and the fourth A-system sensor element 21d are provided close to each other within a non-contact range so as to maintain an electrical insulation distance, and are oriented in substantially the same direction.
  • the first A-system sensor element 21a is disposed inclined with respect to the longitudinal direction of the strain body 20 so that the end on the second structure 12 side faces outward.
  • the second A-system sensor element 21b is arranged inside the first A-system sensor element 21a.
  • the fourth A-system sensor element 21d is arranged so as to be symmetrical with the first A-system sensor element 21a with respect to the center line that halves the strain-generating body 20 in the longitudinal direction.
  • the third A-system sensor element 21c is arranged inside the fourth A-system sensor element 21d. That is, the third A-system sensor element 21c is arranged so as to be line-symmetrical with the second A-system sensor element 21b with respect to the center line that halves the strain-generating body 20 in the longitudinal direction.
  • the first to fourth B system sensor elements 22a to 22d are arranged on the lower surface Pu of the strain generating body 20 in the same manner as the first to fourth A system sensor elements 21a to 21d, as in the first embodiment. be done. As a result, the first to fourth B-system sensor elements 22a to 22d and the first to fourth A-system sensor elements 21a to 21d are positioned via the strain-generating body 20, respectively.
  • the sensor elements 21a to 21d and 22a to 22d of the two redundant detection circuits are arranged on both sides of the strain body 20 on the side of the second structure 12 (or the side of the first structure 11). With this configuration, the same effects as those of the first embodiment can be obtained.
  • the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the constituent elements without departing from the gist of the present invention at the implementation stage.
  • various inventions can be formed by appropriate combinations of the plurality of constituent elements disclosed in the above embodiments. For example, some components may be omitted from all components shown in the embodiments. Furthermore, components across different embodiments may be combined as appropriate.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

This sensor (10) comprises: an annularly-formed first structure (11); an annularly-formed second structure (12) formed on the inner circumferential side of the first structure (11); a strain-generating body (20) provided between the first structure (11) and the second structure (12); a plurality of first sensor elements (21a-21d) that form a first system detection circuit, that are provided on the upper surface of the strain-generating body (20), and that detect strain; and a plurality of second sensor elements (22a-22d) that form a second system detection circuit which is redundant with the first system detection circuit, are arranged on the lower surface of the strain-generating body (20) in manner corresponding to the arrangement of the plurality of first sensor elements (21a-21d) with the strain-generating body (20) interposed therebetween, and detect strain.

Description

センサsensor
 本発明の実施形態は、力を検出するセンサに関する。 Embodiments of the present invention relate to sensors that detect force.
 複数の歪センサを含むブリッジ回路が、第1構造体と第2構造体との間に伝達される力を検出するトルクセンサが知られている。例えば、複数の歪センサを含む2つのブリッジ回路の出力電圧の差に基づいて、異常を検出するトルクセンサが開示されている(例えば、特許文献1参照)。
 しかしながら、歪センサを用いた検出回路(ブリッジ回路等)を二重化する場合、2つの歪センサを同一箇所に配置することは物理的にできない。このため、二重化された検出回路の歪センサの配置が異なることにより、それぞれの検出回路の検出精度に差が生じる。このように、二重化された検出回路のそれぞれの検出精度が異なることは、センサとして望ましくない。
Torque sensors are known in which a bridge circuit containing a plurality of strain sensors detects forces transmitted between a first structure and a second structure. For example, a torque sensor that detects an abnormality based on the difference in output voltages of two bridge circuits including a plurality of strain sensors has been disclosed (see, for example, Patent Document 1).
However, when a detection circuit (such as a bridge circuit) using strain sensors is duplicated, it is physically impossible to arrange two strain sensors at the same location. Therefore, a difference in the arrangement of the strain sensors in the duplicated detection circuits causes a difference in the detection accuracy of the respective detection circuits. It is not desirable for the sensor to have different detection accuracies of the duplicated detection circuits.
特開2018-132313号公報JP 2018-132313 A
 本実施形態の目的は、二重化された検出回路のそれぞれの検出精度の差を低減するセンサを提供することにある。
 本発明の実施形態のセンサは、環状に形成される第1構造体と、前記第1構造体の内周側に環状に形成される第2構造体と、前記第1構造体と前記第2構造体との間に設けられた起歪体と、第1系検出回路を構成し、前記起歪体の上面に配置された歪みを検出する複数の第1センサ素子と、前記第1系検出回路と二重化される第2系検出回路を構成し、前記複数の第1センサ素子の配置と前記起歪体を介して一致するように、前記起歪体の下面に配置された歪みを検出する複数の第2センサ素子とを備える。
An object of the present embodiment is to provide a sensor that reduces the difference in detection accuracy between duplicated detection circuits.
A sensor according to an embodiment of the present invention comprises: a first structure formed in a ring shape; a second structure formed in a ring shape on an inner peripheral side of the first structure; a strain-generating body provided between a structure, a plurality of first sensor elements constituting a first system detection circuit and arranged on an upper surface of the strain-generating body for detecting strain, and the first system detection A second-system detection circuit duplicated with the circuit is configured to detect strain placed on the lower surface of the strain-generating body so as to match the arrangement of the plurality of first sensor elements via the strain-generating body. and a plurality of second sensor elements.
図1は、第1実施形態に係るトルクセンサのセンサ部付近を拡大した斜視図である。FIG. 1 is an enlarged perspective view of the vicinity of the sensor portion of the torque sensor according to the first embodiment. 図2は、第1実施形態に係るトルクセンサの構成を示す上面図である。FIG. 2 is a top view showing the configuration of the torque sensor according to the first embodiment. 図3は、第1実施形態に係るセンサ部の構成を示す上面図である。FIG. 3 is a top view showing the configuration of the sensor section according to the first embodiment. 図4は、第1実施形態に係るセンサ部の構成を示す下面図である。4 is a bottom view showing the configuration of the sensor unit according to the first embodiment. FIG. 図5は、第1実施形態に係るセンサ部の構成を示す側面図である。FIG. 5 is a side view showing the configuration of the sensor section according to the first embodiment. 図6は、第1実施形態に係るトルクセンサの取り付け状態を示す正面図である。FIG. 6 is a front view showing the mounting state of the torque sensor according to the first embodiment. 図7は、図6に示すトルクセンサ取付板をA-A線で切断した断面図である。FIG. 7 is a cross-sectional view of the torque sensor mounting plate shown in FIG. 6 taken along line AA. 図8は、第1実施形態に係るトルクセンサ取付板に外部負荷が生じている時のトルクセンサの状態を示す簡易図である。FIG. 8 is a simplified diagram showing the state of the torque sensor when an external load is applied to the torque sensor mounting plate according to the first embodiment. 図9は、第1実施形態に係る第1のフレキシブル基板の上面を示す上面図である。9 is a top view showing the top surface of the first flexible substrate according to the first embodiment. FIG. 図10は、第1実施形態に係るセンサ部に第1のフレキシブル基板を取り付けた状態を第1構造体側から見た側面図である。FIG. 10 is a side view of the state in which the first flexible substrate is attached to the sensor unit according to the first embodiment, viewed from the first structure side. 図11は、第1実施形態に係るセンサ部に第2及び第3のフレキシブル基板を取り付けた状態の上面を示す上面図である。FIG. 11 is a top view showing the upper surface of the sensor unit according to the first embodiment with the second and third flexible substrates attached thereto. 図12は、第1実施形態に係るセンサ部に第2及び第3のフレキシブル基板を取り付けた状態の下面を示す下面図である。FIG. 12 is a bottom view showing the bottom surface of the sensor unit according to the first embodiment, to which the second and third flexible substrates are attached. 図13は、第1実施形態に係るセンサ部に第2及び第3のフレキシブル基板を取り付けた状態の側面を示す側面図である。FIG. 13 is a side view showing a state in which the second and third flexible substrates are attached to the sensor section according to the first embodiment; 図14は、第1実施形態に係る第4のフレキシブル基板の外形を示す外形図である。FIG. 14 is an outline drawing showing the outline of the fourth flexible substrate according to the first embodiment. 図15は、第1実施形態に係る第4のフレキシブル基板の第1の状態を示す状態図である。FIG. 15 is a state diagram showing the first state of the fourth flexible substrate according to the first embodiment. 図16は、第1実施形態に係る第4のフレキシブル基板の第2の状態を示す状態図である。FIG. 16 is a state diagram showing a second state of the fourth flexible substrate according to the first embodiment. 図17は、第1実施形態に係る第4のフレキシブル基板の第3の状態を示す状態図である。FIG. 17 is a state diagram showing a third state of the fourth flexible substrate according to the first embodiment; 図18は、第1実施形態に係る第5のフレキシブル基板の外形を示す外形図である。FIG. 18 is an outline drawing showing the outline of the fifth flexible substrate according to the first embodiment. 図19は、第1実施形態に係る第5のフレキシブル基板の折り曲げた状態を示す状態図である。FIG. 19 is a state diagram showing a folded state of the fifth flexible substrate according to the first embodiment. 図20は、第1実施形態に係る第5のフレキシブル基板の外形を変形した例を示す外形図である。FIG. 20 is an outline view showing an example in which the outline of the fifth flexible substrate according to the first embodiment is modified. 図21は、本発明の第2実施形態に係るセンサ部の構成を示す上面図である。FIG. 21 is a top view showing the configuration of the sensor section according to the second embodiment of the present invention. 図22は、第2実施形態に係るセンサ部の構成を示す下面図である。FIG. 22 is a bottom view showing the configuration of the sensor section according to the second embodiment. 図23は、第2実施形態に係るセンサ部の構成を示す側面図である。FIG. 23 is a side view showing the configuration of the sensor section according to the second embodiment.
 (第1実施形態) 
 図1は、第1実施形態に係るトルクセンサ10のセンサ部14付近を拡大した斜視図である。図2は、本実施形態に係るトルクセンサ10の構成を示す上面図である。図面において、同一部分には、同一符号を付している。
(First embodiment)
FIG. 1 is an enlarged perspective view of the vicinity of the sensor section 14 of the torque sensor 10 according to the first embodiment. FIG. 2 is a top view showing the configuration of the torque sensor 10 according to this embodiment. In the drawings, the same parts are given the same reference numerals.
 なお、トルクセンサ10は、ここで説明するものに限らず、様々な形状又は構成に変更してもよい。また、トルクセンサ10は、少なくともトルク(z軸モーメントMz)を検出するセンサであれば、力覚センサなどの他の名称のセンサでもよい。例えば、力覚センサは、図2に示す直交する3軸(x軸、y軸、z軸)のそれぞれの並進力Fx,Fy,Fz及びモーメントMx,My,Mzを検出する。 Note that the torque sensor 10 is not limited to the one described here, and may be changed into various shapes or configurations. Also, the torque sensor 10 may be a sensor with another name such as a force sensor as long as it detects at least torque (z-axis moment Mz). For example, the force sensor detects translational forces Fx, Fy, Fz and moments Mx, My, Mz of the three orthogonal axes (x-axis, y-axis, z-axis) shown in FIG.
 トルクセンサ10は、第1構造体11、第2構造体12、複数の第3構造体13、複数のセンサ部14、ケース15、及び、ケーブル16を備える。 The torque sensor 10 includes a first structure 11, a second structure 12, a plurality of third structures 13, a plurality of sensor units 14, a case 15, and a cable 16.
 第1構造体11、第2構造体12及び第3構造体13は、1つの弾性体として一体形成される。第1構造体11、第2構造体12及び第3構造体13は、ステンレス鋼等の金属により構成されるが、印加されるトルク等の力に対して機械的に十分な強度があれば、金属以外の材料(樹脂等)を使用してもよい。 The first structure 11, the second structure 12 and the third structure 13 are integrally formed as one elastic body. The first structure 11, the second structure 12 and the third structure 13 are made of metal such as stainless steel. Materials other than metal (resin, etc.) may also be used.
 第1構造体11及び第2構造体12は、環状に形成される。第2構造体12の径は、第1構造体11の径より小さい。第2構造体12は、第1構造体11と同心円上で内周側に配置される。複数の第3構造体13は、放射状に配置され、第1構造体11と第2構造体12を接続する梁として設けられる。なお、第3構造体13は、いくつ設けられてもよい。 The first structure 11 and the second structure 12 are formed in an annular shape. The diameter of the second structure 12 is smaller than the diameter of the first structure 11 . The second structure 12 is arranged on the inner peripheral side concentrically with the first structure 11 . A plurality of third structures 13 are radially arranged and provided as beams connecting the first structures 11 and the second structures 12 . Any number of third structures 13 may be provided.
 第3構造体13の厚さ(z軸方向の長さ)は、第1構造体11及び第2構造体12の厚さよりも薄い。具体的には、第3構造体13の厚さは、第1構造体11又は第2構造体12に接続される両端部から中央に向けて薄くなるように傾斜し、中央部分は均一の厚さ(平面)である。第3構造体13は、厚さ(z軸方向の長さ)を幅(周方向の長さ)より長くすることで、トルクを検出し易くしているが、これに限らず、第3構造体13の厚さ及び幅は、任意に決定してよい。 The thickness (the length in the z-axis direction) of the third structure 13 is thinner than the thicknesses of the first structure 11 and the second structure 12 . Specifically, the thickness of the third structure 13 is inclined so as to become thinner toward the center from both ends connected to the first structure 11 or the second structure 12, and the central portion has a uniform thickness. It is flat. The thickness (length in the z-axis direction) of the third structure 13 is made longer than the width (length in the circumferential direction) to facilitate torque detection. The thickness and width of body 13 may be arbitrarily determined.
 ケース15は、第2構造体12の中心部分に設けられた中空部を覆うように設けられる。中空部には、各センサ部14により検出されたデータを処理するためのデータ処理回路が設けられる。データ処理回路は、各センサ部14とフレキシブル基板(flexible printed circuit board)で電気的に接続される。データ処理回路は、ケーブル16を介して、電源が供給され、データ処理したセンサ信号を外部に出力する。 The case 15 is provided so as to cover the hollow portion provided in the central portion of the second structure 12 . A data processing circuit for processing data detected by each sensor unit 14 is provided in the hollow portion. The data processing circuit is electrically connected to each sensor unit 14 via a flexible printed circuit board. The data processing circuit is supplied with power through the cable 16 and outputs the data-processed sensor signal to the outside.
 センサ部14は、第1構造体11と第2構造体12が相対的に動くことで生じる歪みを検出する。センサ部14により検出された歪みを示すデータは、電気信号としてデータ処理回路に送信される。データ処理回路は、センサ部14で検出された歪みに基づいて、トルク等の印加された力を検出する。ここでは、センサ部14は、円周方向に等間隔(90度間隔)で4つ設けた構成を示したが、センサ部14は、いくつ設けてもよい。 The sensor unit 14 detects strain caused by relative movement of the first structure 11 and the second structure 12 . Data indicating the strain detected by the sensor unit 14 is transmitted to the data processing circuit as an electrical signal. The data processing circuit detects the applied force such as torque based on the strain detected by the sensor section 14 . Although four sensor units 14 are provided at equal intervals (90 degree intervals) in the circumferential direction here, any number of sensor units 14 may be provided.
 センサ部14は、起歪体20、4つのA系センサ素子21a,21b,21c,21d、4つのB系センサ素子22a,22b,22c,22d、及び、2つの端子部Ta,Tbを備える。 The sensor unit 14 includes a strain body 20, four A-system sensor elements 21a, 21b, 21c, and 21d, four B- system sensor elements 22a, 22b, 22c, and 22d, and two terminal portions Ta and Tb.
 センサ部14は、第1構造体11と第2構造体12の間を跨ぐように設けられる。センサ部14の両端は、それぞれ第1構造体11及び第2構造体12に固定される。第1構造体11及び第2構造体12には、センサ部14の両端を固定するために、他の部分よりも厚さが薄い凹部11a,12aが形成される。例えば、防水及び防塵などの外部因子からセンサ部14を保護するためのカバーがセンサ部14の上面の凹部11a,12aに嵌め込まれる。センサ部14の下面も同様にカバーが設けられてもよい。 The sensor section 14 is provided so as to span between the first structure 11 and the second structure 12 . Both ends of the sensor section 14 are fixed to the first structure 11 and the second structure 12, respectively. The first structure 11 and the second structure 12 are formed with recesses 11a and 12a that are thinner than the other portions in order to fix both ends of the sensor section 14 . For example, a cover for protecting the sensor section 14 from external factors such as waterproofing and dustproofing is fitted into the concave portions 11a and 12a on the upper surface of the sensor section 14 . The lower surface of the sensor section 14 may be similarly provided with a cover.
 起歪体20の両端を第1構造体11及び第2構造体12に固定することで、センサ部14が取り付けられる。具体的には、起歪体20の両端をそれぞれ上面から抑えるように固定プレート31を配置し、固定プレート31と共に起歪体20の両端をそれぞれ第1構造体11及び第2構造体12にネジ32で固定する。なお、センサ部14は、どのように取り付けられてもよい。 By fixing both ends of the strain generating body 20 to the first structure 11 and the second structure 12, the sensor section 14 is attached. Specifically, a fixing plate 31 is arranged so as to hold both ends of the strain body 20 from above, and both ends of the strain body 20 together with the fixing plate 31 are screwed to the first structure 11 and the second structure 12, respectively. 32 to fix. Note that the sensor unit 14 may be attached in any way.
 A系センサ素子21a~21d及びB系センサ素子22a~22dは、起歪体20の第1構造体11と第2構造体12の間に配置される。A系センサ素子21a~21dは、起歪体20の上面(表面)に配置される。B系センサ素子22a~22dは、起歪体20の下面(裏面)に配置される。A系センサ素子21a~21d及びB系センサ素子22a~22dは、A系検出回路及びB系検出回路をそれぞれ形成するように配線される。2つの検出回路は、トルク等を検出するための二重化された検出回路であり、それぞれ独立してトルク等を検出する。トルクセンサ10は、2つの検出回路による検出データに基づいて、検出結果としてトルク等を出力する。なお、トルクセンサ10は、2つの検出回路の内1つの検出データに基づいて、検出結果としてのトルク等を決定してもよい。 The A system sensor elements 21 a to 21 d and the B system sensor elements 22 a to 22 d are arranged between the first structure 11 and the second structure 12 of the strain body 20 . The A-system sensor elements 21 a to 21 d are arranged on the upper surface (surface) of the strain body 20 . The B-system sensor elements 22 a to 22 d are arranged on the lower surface (back surface) of the strain generating body 20 . The A-system sensor elements 21a-21d and the B-system sensor elements 22a-22d are wired to form an A-system detection circuit and a B-system detection circuit, respectively. The two detection circuits are redundant detection circuits for detecting torque and the like, and detect torque and the like independently. The torque sensor 10 outputs torque or the like as a detection result based on detection data from the two detection circuits. Note that the torque sensor 10 may determine the torque or the like as the detection result based on the detection data of one of the two detection circuits.
 ここでは、A系センサ素子21a~21d及びB系センサ素子22a~22dは、歪ゲージとし、検出回路は、フルブリッジ回路とするが、これに限らない。例えば、各系の検出回路は、起歪体20に設けられた2つの歪ゲージ、及び、トルク等の印加で実質的に変形しない箇所(例えば、第2構造体12に設けられたデータ処理回路)に設けられた参照抵抗により構成されたブリッジ回路でもよい。具体的には、各系の4つのセンサ素子21a~21d,22a~22dの内任意に選択された2つのセンサ素子とデータ処理回路に設けられた2つの参照抵抗によりブリッジ回路を構成してもよい。以降の実施形態についても、フルブリッジ回路に限らず、同様のブリッジ回路を構成してもよい。 Here, the A system sensor elements 21a to 21d and the B system sensor elements 22a to 22d are strain gauges, and the detection circuit is a full bridge circuit, but the present invention is not limited to this. For example, the detection circuit of each system includes two strain gauges provided on the strain generating body 20, and a portion that does not substantially deform due to the application of torque (for example, the data processing circuit provided on the second structure 12). ) may be a bridge circuit composed of reference resistors provided in the . Specifically, two sensor elements arbitrarily selected from among the four sensor elements 21a to 21d and 22a to 22d of each system and two reference resistors provided in the data processing circuit may constitute a bridge circuit. good. The following embodiments are not limited to full bridge circuits, and similar bridge circuits may be configured.
 図3は、本実施形態に係るセンサ部14の構成を示す上面図である。図4は、本実施形態に係るセンサ部14の構成を示す下面図である。図5は、本実施形態に係るセンサ部14の構成を示す側面図である。なお、各センサ素子21a~21d,22a~22dの配線は、ここで説明する構成に限らず、どのように配線してもよい。 FIG. 3 is a top view showing the configuration of the sensor section 14 according to this embodiment. FIG. 4 is a bottom view showing the configuration of the sensor section 14 according to this embodiment. FIG. 5 is a side view showing the configuration of the sensor section 14 according to this embodiment. The wiring of the sensor elements 21a to 21d and 22a to 22d is not limited to the configuration described here, and may be wired in any way.
 起歪体20は、上面Pt及び下面Puが長方形の板形状である。センサ素子21a~21d,22a~22dは、上面及び下面が長方形の板形状である。起歪体20の上面PtにおけるA系センサ素子21a~21dの配置は、起歪体20の下面PuにおけるB系センサ素子22a~22dの配置と一致する。具体的には、第1から第4のA系センサ素子21a~21dのそれぞれの位置には、起歪体20を介して、それぞれに対応する第1から第4のB系センサ素子22a~22dが位置する。 The strain-generating body 20 has a rectangular plate shape with an upper surface Pt and a lower surface Pu. The sensor elements 21a to 21d and 22a to 22d are plate-shaped with rectangular upper and lower surfaces. The arrangement of the A system sensor elements 21 a to 21 d on the upper surface Pt of the strain body 20 matches the arrangement of the B system sensor elements 22 a to 22 d on the lower surface Pu of the strain body 20 . Specifically, first to fourth B-system sensor elements 22a to 22d corresponding to the respective positions of the first to fourth A-system sensor elements 21a to 21d are provided via the strain-generating body 20. is located.
 ここで、第1から第4のA系センサ素子21a~21dと第1から第4のB系センサ素子22a~22dは、それぞれ対応する。A系センサ素子21a~21dとB系センサ素子22a~22dが対応するとは、例えば、A系の検出回路(例えば、ブリッジ回路)におけるA系センサ素子21a~21dが設けられた電気回路上の位置と、B系の検出回路(例えば、ブリッジ回路)におけるB系センサ素子22a~22dが設けられた電気回路上の位置が同じであることを意味する。 Here, the first to fourth A system sensor elements 21a to 21d correspond to the first to fourth B system sensor elements 22a to 22d, respectively. The correspondence between the A system sensor elements 21a to 21d and the B system sensor elements 22a to 22d is, for example, the position on the electric circuit where the A system sensor elements 21a to 21d are provided in the A system detection circuit (for example, bridge circuit). means that the positions on the electric circuit where the B-system sensor elements 22a to 22d are provided in the B-system detection circuit (eg, bridge circuit) are the same.
 第1のA系センサ素子21a及び第2のA系センサ素子21bは、起歪体20の第1構造体11側の2つの隅にそれぞれ配置される。第1及び第2のA系センサ素子21a,21bは、第1構造体11側の端部が外側に向くように、起歪体20の長手方向に対して傾けて配置される。第1のA系センサ素子21aは、起歪体20を長手方向に半分にする中心線に対して、第2のA系センサ素子21bと線対称になるように配置される。 The first A-system sensor element 21a and the second A-system sensor element 21b are arranged at two corners of the strain body 20 on the first structure 11 side. The first and second A-system sensor elements 21a and 21b are arranged at an angle with respect to the longitudinal direction of the strain generating body 20 so that the ends on the first structure 11 side face outward. The first A-system sensor element 21a is arranged so as to be symmetrical with the second A-system sensor element 21b with respect to the center line that halves the strain generating body 20 in the longitudinal direction.
 第3のA系センサ素子21c及び第4のA系センサ素子21dは、起歪体20の第2構造体12側の2つの隅にそれぞれ配置される。第3及び第4のA系センサ素子21c,21dは、第2構造体12側の端部が外側に向くように、起歪体20の長手方向に対して傾けて配置される。第3のA系センサ素子21cは、起歪体20を長手方向に半分にする中心線に対して、第4のA系センサ素子21dと線対称になるように配置される。第3及び第4のA系センサ素子21c,21dは、起歪体20を短手方向(長手方向と垂直の方向)に半分にする中心線に対して、第1及び第2のA系センサ素子21a,21bと線対称になるように配置される。 The third A-system sensor element 21c and the fourth A-system sensor element 21d are arranged at two corners of the strain body 20 on the second structure 12 side. The third and fourth A-system sensor elements 21c and 21d are arranged at an angle with respect to the longitudinal direction of the strain generating body 20 so that the ends on the second structure 12 side face outward. The third A-system sensor element 21c is arranged so as to be line-symmetrical to the fourth A-system sensor element 21d with respect to the center line that halves the strain-generating body 20 in the longitudinal direction. The third and fourth A-system sensor elements 21c and 21d are arranged relative to the center line that halves the strain-generating body 20 in the lateral direction (perpendicular to the longitudinal direction) relative to the first and second A-system sensor elements. It is arranged so as to be symmetrical with the elements 21a and 21b.
 A系端子部Taは、起歪体20の上面の長手方向の中央に配置され、各端子が短手方向に隣接して並べられた構成である。A系センサ素子21a~21dの各端子は、A系端子部Taの中央に位置する端子と2つの配線Waで電気的に接続される。なお、A系センサ素子21a~21dの各端子は、A系端子部Taのどの端子に接続してもよい。 The A-system terminal portion Ta is arranged in the center of the upper surface of the strain-generating body 20 in the longitudinal direction, and each terminal is arranged side by side in the lateral direction. Each terminal of the A-system sensor elements 21a to 21d is electrically connected to a central terminal of the A-system terminal portion Ta by two wirings Wa. Each terminal of the A-system sensor elements 21a to 21d may be connected to any terminal of the A-system terminal portion Ta.
 第1から第4のB系センサ素子22a~22d及びB系端子部Tbは、起歪体20の下面Puに、第1から第4のA系センサ素子21a~21d及びA系端子部Taと同様に配置される。これにより、第1から第4のB系センサ素子22a~22dは、起歪体20を介して、それぞれ第1から第4のA系センサ素子21a~21dが位置する。B系端子部Tbは、起歪体20を介して、A系端子部Taが位置する。即ち、起歪体20の下面PuにおけるB系センサ素子22a~22dのそれぞれの位置は、起歪体20の上面PtにおけるA系センサ素子21a~21dのそれぞれの位置を、長手方向を上下方向として左右反転させたものである。 The first to fourth B-system sensor elements 22a to 22d and the B-system terminal portion Tb are arranged on the lower surface Pu of the strain generating body 20 with the first to fourth A-system sensor elements 21a to 21d and the A-system terminal portion Ta. similarly arranged. As a result, the first to fourth B-system sensor elements 22a to 22d and the first to fourth A-system sensor elements 21a to 21d are positioned via the strain-generating body 20, respectively. The A-system terminal portion Ta is located at the B-system terminal portion Tb with the strain-generating body 20 interposed therebetween. That is, the positions of the B-system sensor elements 22a to 22d on the lower surface Pu of the strain-generating body 20 correspond to the positions of the A-system sensor elements 21a to 21d on the upper surface Pt of the strain-generating body 20, with the longitudinal direction being the vertical direction. It is left-right reversed.
 図6及び図7を参照して、トルクセンサ10を取り付けた状態について説明する。図6は、トルクセンサ10の取り付け状態を示す正面図である。図7は、図6に示すトルクセンサ取付板41をA-A線で切断した断面図である。なお、図7では、アダプタ42、減速機43及びモータ44を簡易的に示している。 A state where the torque sensor 10 is attached will be described with reference to FIGS. FIG. 6 is a front view showing the mounting state of the torque sensor 10. FIG. FIG. 7 is a cross-sectional view of the torque sensor mounting plate 41 shown in FIG. 6 taken along line AA. Note that FIG. 7 simply shows the adapter 42, the speed reducer 43, and the motor 44. As shown in FIG.
 トルクセンサ10は、トルクセンサ取付板41に取り付けられる。これにより、トルクセンサ10の第1構造体11は、トルクセンサ取付板41に固定される。トルクセンサ取付板41は、トルク等が印加される構造体に取り付けられる部材である。 The torque sensor 10 is attached to the torque sensor mounting plate 41 . Thereby, the first structure 11 of the torque sensor 10 is fixed to the torque sensor mounting plate 41 . The torque sensor attachment plate 41 is a member attached to a structure to which torque or the like is applied.
 トルクセンサ10の第2構造体12は、アダプタ42を介して、モータ44に連結された減速機43に固定される。モータ44が駆動することで、モータ44から出力されるトルクが、減速機43、アダプタ42及びトルクセンサ10を介して、トルクセンサ取付板41に印加される。これにより、トルクセンサ取付板41及びこれが取り付けられた構造体が、モータ44から出力されるトルクにより動作する。 The second structure 12 of the torque sensor 10 is fixed to a speed reducer 43 connected to a motor 44 via an adapter 42 . By driving the motor 44 , torque output from the motor 44 is applied to the torque sensor mounting plate 41 via the reduction gear 43 , the adapter 42 and the torque sensor 10 . As a result, the torque sensor mounting plate 41 and the structure to which it is mounted are operated by torque output from the motor 44 .
 なお、トルクセンサ10の第2構造体12がトルク等を印加される側(トルクセンサ取付板41等)に取り付けられ、トルクセンサ10の第1構造体11がトルク等を印加する側(モータ44等)に取り付けられてもよい。 The second structure 12 of the torque sensor 10 is attached to the side to which torque or the like is applied (torque sensor mounting plate 41 or the like), and the first structure 11 of the torque sensor 10 is attached to the side to which torque or the like is applied (motor 44 etc.).
 図6及び図8を参照して、トルクセンサ取付板41に外部負荷(荷重等)Fwが生じた場合について説明する。図8は、トルクセンサ取付板41に外部負荷が生じている時のトルクセンサ10の状態を示す簡易図である。図6及び図8では、4つのセンサ部14の2つの配置パターンP1,P2が示されており、センサ部14は、2つの配置パターンP1,P2のうちいずれか一方の配置パターンで取り付けられる。なお、センサ部14は、これらの2つの配置パターンP1,P2に限らず、その他の配置パターンを採用してもよい。 A case where an external load (such as a load) Fw is applied to the torque sensor mounting plate 41 will be described with reference to FIGS. FIG. 8 is a simplified diagram showing the state of the torque sensor 10 when an external load is applied to the torque sensor mounting plate 41. As shown in FIG. 6 and 8 show two layout patterns P1 and P2 of the four sensor units 14, and the sensor units 14 are attached in one of the two layout patterns P1 and P2. Note that the sensor unit 14 is not limited to these two layout patterns P1 and P2, and other layout patterns may be employed.
 図8に示すように、トルクセンサ取付板41に矢印のような下向きの外部負荷Fwが生じると、トルクセンサ取付板41の上辺側には、引張応力が生じ、トルクセンサ取付板41の下辺側には、圧縮応力が生じる。 As shown in FIG. 8, when a downward external load Fw is generated on the torque sensor mounting plate 41 as indicated by an arrow, a tensile stress is generated on the upper side of the torque sensor mounting plate 41, causing the lower side of the torque sensor mounting plate 41 to generate a tensile stress. is subject to compressive stress.
 トルクセンサ取付板41の変形により、トルクセンサ10の弾性体(第1構造体11、第2構造体12及び第3構造体13)は、点線で示す円形から実線で示す楕円のような形状に変形する。変形後の弾性体を楕円形とすると、弾性体は、長軸方向に引っ張られ、短軸方向に圧縮される。 Due to the deformation of the torque sensor mounting plate 41, the elastic bodies (the first structure 11, the second structure 12, and the third structure 13) of the torque sensor 10 change from the circular shape indicated by the dotted line to the elliptical shape indicated by the solid line. transform. If the elastic body after deformation is elliptical, the elastic body is pulled in the long axis direction and compressed in the short axis direction.
 弾性体の変形により、いずれの配置パターンP1,P2の各センサ部14も、点線で示す長方形から実線で示す四角形に変形する。このように、外部負荷Fwが生じている場合、いずれの配置パターンP1,P2でも、センサ部14は、配置された位置毎に外部負荷Fwにより受ける応力は異なる。 Due to the deformation of the elastic body, each sensor unit 14 of both arrangement patterns P1 and P2 is also deformed from the rectangle indicated by the dotted line to the quadrangle indicated by the solid line. As described above, when the external load Fw is generated, the stress received by the external load Fw differs depending on the position where the sensor section 14 is arranged in any of the arrangement patterns P1 and P2.
 トルクセンサ10では、各センサ部14に、二重化されたA系検出回路及びB系検出回路をそれぞれ構成するA系センサ素子21a~21d及びB系センサ素子22a~22dが設けられている。このため、各センサ部14で受ける応力が異なる場合でも、各系の検出回路のそれぞれの検出精度は、ほぼ同じになる。 In the torque sensor 10, each sensor unit 14 is provided with A-system sensor elements 21a to 21d and B-system sensor elements 22a to 22d that respectively constitute a duplicated A-system detection circuit and B-system detection circuit. Therefore, even if the stress received by each sensor unit 14 is different, the detection accuracy of each detection circuit of each system is substantially the same.
 これに対して、本実施形態のトルクセンサ10とは異なり、配置パターンP1にA系検出回路のみが設けられたセンサ部14を配置し、配置パターンP2にB系検出回路のみが設けられたセンサ部14を配置して、二重化された検出回路を設けた場合を考える。 On the other hand, unlike the torque sensor 10 of the present embodiment, the sensor unit 14 having only the A system detection circuit is arranged in the layout pattern P1, and the sensor unit 14 having only the B system detection circuit is arranged in the layout pattern P2. Consider the case where the unit 14 is arranged to provide a duplicated detection circuit.
 外部負荷Fwが全く生じずに、トルクセンサ10に理想的なトルクが印加されれば、各配置パターンP1,P2の各センサ部14で受ける応力は、ほぼ同じである。即ち、各センサ部14の起歪体20は、ほぼ同じように変形する。したがって、各系で検出される歪みはほぼ同じになるため、二重化された2つの検出回路の検出精度に差はあまり生じない。 If an ideal torque is applied to the torque sensor 10 without any external load Fw, the stresses received by the sensor portions 14 of the arrangement patterns P1 and P2 are substantially the same. That is, the strain-generating body 20 of each sensor section 14 deforms in substantially the same manner. Therefore, since the distortion detected by each system is almost the same, there is little difference in detection accuracy between the two duplicated detection circuits.
 一方、外部負荷Fwが生じた場合、トルクセンサ10に理想的なトルクが印加されても、上述したように、センサ部14の配置された位置に起因して、センサ部14が受ける応力は異なる。即ち、各センサ部14の起歪体20は、それぞれ異なる変形をする。したがって、2つの系で検出される歪みは異なるため、二重化された2つの検出回路の検出精度に大きな差が生じる可能性がある。例えば、二重化された2つの検出回路の差で、異常を検出する機能を設けた場合、正常なトルク等の力が印加されても、意図しない異常を検出する可能性がある。 On the other hand, when an external load Fw is generated, even if an ideal torque is applied to the torque sensor 10, the stress received by the sensor unit 14 differs depending on the position where the sensor unit 14 is arranged, as described above. . That is, the strain-generating body 20 of each sensor section 14 deforms differently. Therefore, since the strains detected by the two systems are different, there is a possibility that a large difference will occur in the detection accuracy of the two duplicated detection circuits. For example, if a function is provided to detect an abnormality based on the difference between two redundant detection circuits, an unintended abnormality may be detected even if a force such as normal torque is applied.
 次に、データ処理回路と接続するためのフレキシブル基板をセンサ部14の2つの端子部Ta,Tbに取り付ける方法について説明する。なお、端子部Ta,Tbは、データ処理回路とどのように電気的に接続されてもよく、ここで説明するフレキシブル基板以外のフレキシブル基板を用いてもよいし、フレキシブル基板を全く用いずに配線してもよい。 Next, a method for attaching a flexible substrate for connection to the data processing circuit to the two terminal portions Ta and Tb of the sensor portion 14 will be described. The terminal portions Ta and Tb may be electrically connected to the data processing circuit in any way, a flexible substrate other than the flexible substrate described here may be used, or wiring may be performed without using a flexible substrate at all. You may
 図9及び図10を参照して、第1のフレキシブル基板FP1による第1の取り付け方法について説明する。図9は、第1のフレキシブル基板FP1の上面を示す上面図である。
図10は、センサ部14に第1のフレキシブル基板FP1を取り付けた状態を第1構造体11側から見た側面図である。
A first mounting method using the first flexible board FP1 will be described with reference to FIGS. 9 and 10. FIG. FIG. 9 is a top view showing the top surface of the first flexible board FP1.
FIG. 10 is a side view of the state in which the first flexible substrate FP1 is attached to the sensor section 14, viewed from the first structure 11 side.
 第1のフレキシブル基板FP1は、センサ部14とデータ処理回路を接続する方向を長手方向とし、長手方向のセンサ部14側の端部が幅広に延びたT字形状である。第1のフレキシブル基板FP1は、4つのコネクタCNa,CNb1,CNb2,CNdを備える。 The first flexible board FP1 has a T-shape in which the longitudinal direction is the direction in which the sensor section 14 and the data processing circuit are connected, and the end portion on the sensor section 14 side in the longitudinal direction extends wide. The first flexible board FP1 has four connectors CNa, CNb1, CNb2 and CNd.
 コネクタCNaは、第1のフレキシブル基板FP1の幅広に延びる部分の中央に位置する。コネクタCNb1,CNb2は、幅広に延びる部分のそれぞれ両端に位置する。コネクタCNdは、第1のフレキシブル基板FP1の長手方向のデータ処理回路側の端部に位置する。 The connector CNa is located in the center of the wide extending portion of the first flexible board FP1. Connectors CNb1 and CNb2 are located at both ends of the widened portion. The connector CNd is located at the longitudinal end of the first flexible board FP1 on the side of the data processing circuit.
 コネクタCNaは、起歪体20の上面Ptに設けられたA系端子部Taに接続される。
コネクタCNb1,CNb2は、第1のフレキシブル基板FP1の幅広に延びる部分を起歪体20の側面を覆うようにして、起歪体20の下面Puに設けられたB系端子部Tbに接続される。コネクタCNdは、データ処理回路と接続される。
The connector CNa is connected to the A-system terminal portion Ta provided on the upper surface Pt of the strain generating body 20 .
The connectors CNb1 and CNb2 are connected to the B system terminal portion Tb provided on the lower surface Pu of the strain generating body 20 so that the wide extending portion of the first flexible substrate FP1 covers the side surface of the strain generating body 20. . Connector CNd is connected to a data processing circuit.
 図11~13を参照して、第2のフレキシブル基板FP21及び第3のフレキシブル基板FP22による第2の取り付け方法について説明する。図11は、センサ部14に2つのフレキシブル基板FP21,FP22を取り付けた状態の上面を示す上面図である。図12は、センサ部14に2つのフレキシブル基板FP21,FP22を取り付けた状態の下面を示す下面図である。図13は、センサ部14に2つのフレキシブル基板FP21,FP22を取り付けた状態の側面を示す側面図である。 A second attachment method using the second flexible board FP21 and the third flexible board FP22 will be described with reference to FIGS. FIG. 11 is a top view showing the top surface of the sensor section 14 with the two flexible boards FP21 and FP22 attached. FIG. 12 is a bottom view showing the bottom surface of the sensor unit 14 with the two flexible boards FP21 and FP22 attached. FIG. 13 is a side view showing a state in which two flexible boards FP21 and FP22 are attached to the sensor section 14. FIG.
 第2のフレキシブル基板FP21及び第3のフレキシブル基板FP22は、センサ部14とデータ処理回路を接続する方向を長手方向とした直方形状である。第3のフレキシブル基板FP22の長手方向の長さは、第2のフレキシブル基板FP21の長手方向の長さよりも長いものが望ましいが、同じ長さでもよいし、短くてもよい。 The second flexible board FP21 and the third flexible board FP22 have a rectangular parallelepiped shape whose longitudinal direction is the direction in which the sensor section 14 and the data processing circuit are connected. The length in the longitudinal direction of the third flexible board FP22 is preferably longer than the length in the longitudinal direction of the second flexible board FP21, but may be the same length or shorter.
 第2のフレキシブル基板FP21の長手方向の一方の端部には、コネクタCNaが設けられ、もう一方の端部には、コネクタCNdが設けられる。第3のフレキシブル基板FP22の長手方向の一方の端部には、コネクタCNbが設けられ、もう一方の端部には、コネクタCNdが設けられる。 A connector CNa is provided at one end in the longitudinal direction of the second flexible board FP21, and a connector CNd is provided at the other end. A connector CNb is provided at one end in the longitudinal direction of the third flexible board FP22, and a connector CNd is provided at the other end.
 第2のフレキシブル基板FP21は、コネクタCNaを起歪体20の上面Ptに設けられたA系端子部Taに接続し、コネクタCNdをデータ処理回路に接続する。第3のフレキシブル基板FP22は、第2のフレキシブル基板FP21の上に重ねるように配置される。第3のフレキシブル基板FP22のコネクタCNb側部分を起歪体20の側面に巻き付けるようにして、コネクタCNbを起歪体20の下面Pu側に回す。このようにして、コネクタCNbをB系端子部Tbに接続する。第3のフレキシブル基板FP22のコネクタCNdは、データ処理回路に接続される。 The second flexible board FP21 connects the connector CNa to the A-system terminal portion Ta provided on the upper surface Pt of the strain-generating body 20, and connects the connector CNd to the data processing circuit. The third flexible board FP22 is arranged so as to overlap the second flexible board FP21. The connector CNb side portion of the third flexible board FP22 is wound around the side surface of the strain body 20 so that the connector CNb is turned toward the lower surface Pu of the strain body 20 . In this manner, the connector CNb is connected to the B system terminal portion Tb. A connector CNd of the third flexible board FP22 is connected to a data processing circuit.
 図14~17を参照して、第4のフレキシブル基板FP4による第3の取り付け方法について説明する。図14は、第4のフレキシブル基板FP4の外形を示す外形図である。図15~17は、第4のフレキシブル基板FP4の第1から第3の状態を示す状態図である。 A third attachment method using the fourth flexible board FP4 will be described with reference to FIGS. FIG. 14 is an outline drawing showing the outline of the fourth flexible board FP4. 15 to 17 are state diagrams showing first to third states of the fourth flexible board FP4.
 第4のフレキシブル基板FP4は、第1形状部分P41及び第2形状部分P42を含む形状である。第1形状部分P41は、センサ部14とデータ処理回路を接続する方向を長手方向とした直方形状である。第1形状部分P41の長手方向のセンサ部14側の端部には、コネクタCNbが設けられる。 The fourth flexible board FP4 has a shape including a first shape portion P41 and a second shape portion P42. The first shape portion P41 has a rectangular parallelepiped shape whose longitudinal direction is the direction in which the sensor section 14 and the data processing circuit are connected. A connector CNb is provided at the longitudinal end of the first shape portion P41 on the sensor section 14 side.
 第2形状部分P42は、センサ部14とデータ処理回路を接続する方向を長手方向とし、長手方向のセンサ部14側の端部が、短手方向で第1形状部分P41と反対側に突き出たL字形状である。第2形状部分P42の突き出た部分の端部には、コネクタCNaが設けられる。第2形状部分P42の長手方向のデータ処理回路側の端部には、コネクタCNdが設けられる。 The second shape portion P42 has a longitudinal direction in a direction in which the sensor portion 14 and the data processing circuit are connected, and an end portion of the longitudinal direction on the sensor portion 14 side protrudes to the side opposite to the first shape portion P41 in the lateral direction. It is L-shaped. A connector CNa is provided at the end of the projecting portion of the second shape portion P42. A connector CNd is provided at the data processing circuit side end in the longitudinal direction of the second shape portion P42.
 第1形状部分P41と第2形状部分P42は、長手方向が隣接して並ぶように接続される。第1形状部分P41と第2形状部分P42の接続部分は、長手方向のセンサ部14側が切り離されるように切り込みが入れられる。第4のフレキシブル基板FP4は、図14に示す折り曲げ線L1,L2,L3で折り曲げられ、センサ部14の2つの端子部Ta,Tbに接続される。折り曲げ線L1,L3は、一点鎖線で示され、谷折りにされる。折り曲げ線L2は、点線で示され、山折りにされる。 The first shape portion P41 and the second shape portion P42 are connected so that they are aligned side by side in the longitudinal direction. A connection portion between the first shape portion P41 and the second shape portion P42 is cut so that the longitudinal sensor section 14 side is separated. The fourth flexible board FP4 is bent along bending lines L1, L2, and L3 shown in FIG. Folding lines L1 and L3 are indicated by dashed lines and are valley folds. A fold line L2 is indicated by a dotted line and is folded in a mountain.
 図15に示すように、第4のフレキシブル基板FP4は、折り曲げ線L1で谷折りにされる。次に、図16に示すように、第4のフレキシブル基板FP4は、折り曲げ線L2で山折りにされる。次に、図17に示すように、第4のフレキシブル基板FP4は、折り曲げ線L3で谷折りにされる。このように折り曲げられた状態では、センサ部14は、第1形状部分P41と第2形状部分P42のそれぞれの端部で挟まれた状態になる。この状態で、コネクタCNaは、センサ部14のA系端子部Taに接続され、コネクタCNbは、センサ部14のB系端子部Tbに接続され、コネクタCNdは、データ処理回路に接続される。 As shown in FIG. 15, the fourth flexible board FP4 is valley-folded along the folding line L1. Next, as shown in FIG. 16, the fourth flexible board FP4 is mountain-folded along the folding line L2. Next, as shown in FIG. 17, the fourth flexible board FP4 is valley-folded along the folding line L3. In such a bent state, the sensor section 14 is sandwiched between the ends of the first shape portion P41 and the second shape portion P42. In this state, the connector CNa is connected to the A-system terminal Ta of the sensor section 14, the connector CNb is connected to the B-system terminal Tb of the sensor section 14, and the connector CNd is connected to the data processing circuit.
 図18,19を参照して、第5のフレキシブル基板FP5による第4の取り付け方法について説明する。図18は、第5のフレキシブル基板FP5の外形を示す外形図である。図19は、第5のフレキシブル基板FP5の折り曲げた状態を示す状態図である。 A fourth attachment method using the fifth flexible board FP5 will be described with reference to FIGS. FIG. 18 is an outline drawing showing the outline of the fifth flexible board FP5. FIG. 19 is a state diagram showing a bent state of the fifth flexible board FP5.
 第5のフレキシブル基板FP5は、第1形状部分P51、第2形状部分P52及び第3形状部分P53を含む形状である。第1形状部分P51は、センサ部14とデータ処理回路を接続する方向を長手方向とした直方形状である。第1形状部分P51の長手方向のデータ処理回路側の端部には、コネクタCNdが設けられる。 The fifth flexible board FP5 has a shape including a first shape portion P51, a second shape portion P52 and a third shape portion P53. The first shape portion P51 has a rectangular parallelepiped shape whose longitudinal direction is the direction in which the sensor section 14 and the data processing circuit are connected. A connector CNd is provided at the data processing circuit side end in the longitudinal direction of the first shape portion P51.
 第2形状部分P52及び第3形状部分P53は、第1形状部分P51からセンサ部14側にそれぞれ突き出たような形状である。第2形状部分P52のセンサ部14側の端部には、コネクタCNbが設けられる。第3形状部分P53のセンサ部14側の端部には、コネクタCNaが設けられる。 The second shape portion P52 and the third shape portion P53 are shaped so as to protrude from the first shape portion P51 toward the sensor section 14 side. A connector CNb is provided at the end of the second shape portion P52 on the sensor section 14 side. A connector CNa is provided at the end of the third shape portion P53 on the sensor section 14 side.
 第5のフレキシブル基板FP5は、図18に示す折り曲げ線L4で折り曲げられ、図19に示す状態になる。折り曲げ線L4は、一点鎖線で示され、谷折りにされる。このように折り曲げられた状態では、センサ部14は、第2形状部分P52と第3形状部分P53のそれぞれの端部で挟まれた状態になる。この状態で、コネクタCNaは、センサ部14のA系端子部Taに接続され、コネクタCNbは、センサ部14のB系端子部Tbに接続され、コネクタCNdは、データ処理回路に接続される。 The fifth flexible board FP5 is bent along the bending line L4 shown in FIG. 18, and is in the state shown in FIG. A fold line L4 is indicated by a dashed line and is valley-folded. In such a bent state, the sensor section 14 is sandwiched between the ends of the second shape portion P52 and the third shape portion P53. In this state, the connector CNa is connected to the A-system terminal Ta of the sensor section 14, the connector CNb is connected to the B-system terminal Tb of the sensor section 14, and the connector CNd is connected to the data processing circuit.
 なお、第5のフレキシブル基板FP5は、図18に示す形状に限らず、様々な形状に変形してもよい。例えば、第5のフレキシブル基板FP5aは、図20に示す形状に変形してもよい。図20に示す第5のフレキシブル基板FP5aは、図18に示す第5のフレキシブル基板FP5と比較して、第1形状部分P51aがより細い直方形状である。また、第1形状部分P51aと第2形状部分P52aのそれぞれの長手方向の一辺が1つの直線になるように接続される。第1形状部分P51aと第2形状部分P52aの間に形成される切り込み形状の空間は、任意に変形してよい。例えば、この切り込み形状の空間を小さくし、第1形状部分P51aと第2形状部分P52aの接続部分を増やしてもよい。 Note that the fifth flexible board FP5 is not limited to the shape shown in FIG. 18, and may be deformed into various shapes. For example, the fifth flexible board FP5a may be deformed into the shape shown in FIG. The fifth flexible board FP5a shown in FIG. 20 has a thinner rectangular parallelepiped first shape portion P51a than the fifth flexible board FP5 shown in FIG. Further, one longitudinal side of each of the first shape portion P51a and the second shape portion P52a is connected so as to form one straight line. The cut-shaped space formed between the first shape portion P51a and the second shape portion P52a may be arbitrarily deformed. For example, the space of this notch shape may be made smaller, and the connecting portion between the first shape portion P51a and the second shape portion P52a may be increased.
 本実施形態によれば、二重化された2つの検出回路の各系のセンサ素子21a~21d,22a~22dを同じセンサ部14に設けることで、外部負荷Fwが生じた場合でも、二重化された2つの検出回路の検出精度の差を抑制することができる。 According to this embodiment, by providing the sensor elements 21a to 21d and 22a to 22d of each system of the two redundant detection circuits in the same sensor unit 14, even when an external load Fw occurs, the redundant 2 It is possible to suppress the difference in detection accuracy between the two detection circuits.
 また、A系センサ素子21a~21dとB系センサ素子22a~22dが起歪体20を介して同じ配置になるように、1つの起歪体20の別々の面にそれぞれA系検出回路とB系検出回路を設けることで、A系検出回路とB系検出回路のそれぞれで検出される歪みを示すデータが同じになるように近付けることができる。 Further, the A-system detection circuit and the B-system sensor elements 21a to 21d and the B-system sensor elements 22a to 22d are arranged on separate surfaces of one strain-generating body 20 so that the A-system sensor elements 21a to 21d and the B-system sensor elements 22a to 22d are arranged in the same manner via the strain-generating body 20, respectively. By providing the system detection circuit, the data representing the distortion detected by each of the A system detection circuit and the B system detection circuit can be approximated so as to be the same.
 (第2実施形態) 
 図21は、本発明の第2実施形態に係るセンサ部14Aの構成を示す上面図である。図22は、本実施形態に係るセンサ部14Aの構成を示す下面図である。図23は、本実施形態に係るセンサ部14Aの構成を示す側面図である。
(Second embodiment)
FIG. 21 is a top view showing the configuration of the sensor section 14A according to the second embodiment of the invention. FIG. 22 is a bottom view showing the configuration of the sensor section 14A according to this embodiment. FIG. 23 is a side view showing the configuration of the sensor section 14A according to this embodiment.
 本実施形態に係るトルクセンサ10は、第1実施形態に係るトルクセンサ10において、センサ部14の起歪体20におけるセンサ素子21a~21d,22a~22dの配置を変更した点以外は、第1の実施形態と同様である。 The torque sensor 10 according to the present embodiment is different from the torque sensor 10 according to the first embodiment except that the arrangement of the sensor elements 21a to 21d and 22a to 22d in the strain body 20 of the sensor section 14 is changed. is similar to the embodiment of
 次に、センサ部14Aの起歪体20におけるセンサ素子21a~21d,22a~22dの配置について説明する。ここでは、第1実施形態に係るセンサ部14と異なる点について主に説明する。 Next, the arrangement of the sensor elements 21a to 21d and 22a to 22d in the strain generating body 20 of the sensor section 14A will be described. Here, differences from the sensor unit 14 according to the first embodiment are mainly described.
 A系センサ素子21a~21dは、起歪体20の上面Ptの第2構造体12側の2つの隅に分けて配置される。第1のA系センサ素子21a及び第2のA系センサ素子21bは、電気絶縁距離を保つように接触しない範囲で近接して、ほぼ同一方向の向きで設けられる。第3のA系センサ素子21c及び第4のA系センサ素子21dは、電気絶縁距離を保つように接触しない範囲で近接して、ほぼ同一方向の向きで設けられる。 The A-system sensor elements 21a to 21d are arranged separately at two corners of the upper surface Pt of the strain body 20 on the second structure 12 side. The first A-system sensor element 21a and the second A-system sensor element 21b are provided close to each other within a non-contact range so as to maintain an electrical insulation distance, and are oriented in substantially the same direction. The third A-system sensor element 21c and the fourth A-system sensor element 21d are provided close to each other within a non-contact range so as to maintain an electrical insulation distance, and are oriented in substantially the same direction.
 第1のA系センサ素子21aは、第2構造体12側の端部が外側に向くように、起歪体20の長手方向に対して傾けて配置される。第2のA系センサ素子21bは、第1のA系センサ素子21aよりも内側に配置される。 The first A-system sensor element 21a is disposed inclined with respect to the longitudinal direction of the strain body 20 so that the end on the second structure 12 side faces outward. The second A-system sensor element 21b is arranged inside the first A-system sensor element 21a.
 第4のA系センサ素子21dは、起歪体20を長手方向に半分にする中心線に対して、第1のA系センサ素子21aと線対称になるように配置される。第3のA系センサ素子21cは、第4のA系センサ素子21dよりも内側に配置される。即ち、第3のA系センサ素子21cは、起歪体20を長手方向に半分にする中心線に対して、第2のA系センサ素子21bと線対称になるように配置される。 The fourth A-system sensor element 21d is arranged so as to be symmetrical with the first A-system sensor element 21a with respect to the center line that halves the strain-generating body 20 in the longitudinal direction. The third A-system sensor element 21c is arranged inside the fourth A-system sensor element 21d. That is, the third A-system sensor element 21c is arranged so as to be line-symmetrical with the second A-system sensor element 21b with respect to the center line that halves the strain-generating body 20 in the longitudinal direction.
 第1から第4のB系センサ素子22a~22dは、第1の実施形態と同様に、起歪体20の下面Puに、第1から第4のA系センサ素子21a~21dと同様に配置される。これにより、第1から第4のB系センサ素子22a~22dは、起歪体20を介して、それぞれ第1から第4のA系センサ素子21a~21dが位置する。 The first to fourth B system sensor elements 22a to 22d are arranged on the lower surface Pu of the strain generating body 20 in the same manner as the first to fourth A system sensor elements 21a to 21d, as in the first embodiment. be done. As a result, the first to fourth B-system sensor elements 22a to 22d and the first to fourth A-system sensor elements 21a to 21d are positioned via the strain-generating body 20, respectively.
 ここでは、全てのセンサ素子21a~21d,22a~22dを起歪体20の第2構造体12側に配置する構成について説明したが、起歪体20の第1構造体11側に配置してもよい。例えば、図21~23に示すセンサ素子21a~21d,22a~22dの配置を、起歪体20を短手方向に半分にする中心線に対して、線対称になるように配置を変更してもよい。 Here, the configuration in which all the sensor elements 21a to 21d and 22a to 22d are arranged on the second structure 12 side of the strain body 20 has been described. good too. For example, the arrangement of the sensor elements 21a to 21d and 22a to 22d shown in FIGS. good too.
 本実施形態によれば、二重化された2つの検出回路のセンサ素子21a~21d,22a~22dを起歪体20の両面の第2構造体12側(又は、第1構造体11側)に配置した構成で、第1実施形態と同様の作用効果を得ることができる。 According to this embodiment, the sensor elements 21a to 21d and 22a to 22d of the two redundant detection circuits are arranged on both sides of the strain body 20 on the side of the second structure 12 (or the side of the first structure 11). With this configuration, the same effects as those of the first embodiment can be obtained.
 その他、本発明は上記各実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記各実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。 In addition, the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the constituent elements without departing from the gist of the present invention at the implementation stage. Also, various inventions can be formed by appropriate combinations of the plurality of constituent elements disclosed in the above embodiments. For example, some components may be omitted from all components shown in the embodiments. Furthermore, components across different embodiments may be combined as appropriate.

Claims (7)

  1.  環状に形成される第1構造体と、
     前記第1構造体の内周側に環状に形成される第2構造体と、
     前記第1構造体と前記第2構造体との間に設けられた起歪体と、
     第1系検出回路を構成し、前記起歪体の上面に配置された歪みを検出する複数の第1センサ素子と、
     前記第1系検出回路と二重化される第2系検出回路を構成し、前記複数の第1センサ素子の配置と前記起歪体を介して一致するように、前記起歪体の下面に配置された歪みを検出する複数の第2センサ素子と
    を備えることを特徴とするセンサ。
    a first structure formed in an annular shape;
    a second structure annularly formed on the inner peripheral side of the first structure;
    a strain-generating body provided between the first structure and the second structure;
    a plurality of first sensor elements constituting a first system detection circuit and arranged on the upper surface of the strain generating body to detect strain;
    A second system detection circuit that is duplicated with the first system detection circuit is arranged on the lower surface of the strain body so as to match the arrangement of the plurality of first sensor elements via the strain body. A sensor comprising a plurality of second sensor elements for detecting strain.
  2.  前記複数の第1センサ素子は、線対称に配置され、
     前記複数の第2センサ素子は、線対称に配置されたこと
    を特徴とする請求項1に記載のセンサ。
    The plurality of first sensor elements are arranged line-symmetrically,
    2. The sensor of claim 1, wherein the plurality of second sensor elements are arranged line-symmetrically.
  3.  前記複数の第1センサ素子は、それぞれ他の第1センサ素子に近接して配置され、
     前記複数の第2センサ素子は、それぞれ他の第2センサ素子に近接して配置されたこと
    を特徴とする請求項2に記載のセンサ。
    The plurality of first sensor elements are arranged in proximity to each other first sensor element,
    3. The sensor of claim 2, wherein each of said plurality of second sensor elements is positioned in close proximity to each other second sensor element.
  4.  前記第1系検出回路及び前記第2系検出回路により検出された歪みを示すデータを処理するデータ処理回路と、
     フレキシブル基板を用いて、前記データ処理回路と前記第1系検出回路及び前記第2系検出回路とを接続する接続手段と、
    を備えることを特徴とする請求項1に記載のセンサ。
    a data processing circuit for processing data indicating distortion detected by the first detection circuit and the second detection circuit;
    connection means for connecting the data processing circuit, the first system detection circuit, and the second system detection circuit using a flexible substrate;
    2. The sensor of claim 1, comprising:
  5.  前記接続手段は、前記フレキシブル基板により、前記起歪体の上面で前記第1系検出回路と接続され、前記起歪体の下面で前記第2系検出回路と接続されること
    を特徴とする請求項4に記載のセンサ。
    The connection means is connected to the first system detection circuit on the upper surface of the strain-generating body and is connected to the second-system detection circuit on the lower surface of the strain-generating body by the flexible substrate. Item 5. The sensor according to item 4.
  6.  前記フレキシブル基板は、前記第2系検出回路と接続する部分が前記起歪体の上面から下面に配置されるように折り曲げられたこと
    を特徴とする請求項5に記載のセンサ。
    6. The sensor according to claim 5, wherein the flexible substrate is bent such that a portion connected to the second system detection circuit is arranged from the upper surface to the lower surface of the strain generating body.
  7.  前記接続手段は、1つの前記フレキシブル基板で、前記第1系検出回路及び前記第2系検出回路にそれぞれ接続すること
    を特徴とする請求項5又は請求項6に記載のセンサ。
    7. The sensor according to claim 5, wherein said connecting means is connected to said first system detection circuit and said second system detection circuit through one said flexible substrate.
PCT/JP2022/032718 2021-10-08 2022-08-31 Sensor WO2023058361A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-166174 2021-10-08
JP2021166174A JP2023056768A (en) 2021-10-08 2021-10-08 sensor

Publications (1)

Publication Number Publication Date
WO2023058361A1 true WO2023058361A1 (en) 2023-04-13

Family

ID=85803335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032718 WO2023058361A1 (en) 2021-10-08 2022-08-31 Sensor

Country Status (2)

Country Link
JP (1) JP2023056768A (en)
WO (1) WO2023058361A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10176964A (en) * 1996-12-17 1998-06-30 Yamato Scale Co Ltd Load cell
JP2016070673A (en) * 2014-09-26 2016-05-09 株式会社レプトリノ Force sensor
WO2020129069A1 (en) * 2018-12-20 2020-06-25 Ezmems Ltd. Sensors based on multiple strain gauges, design and methods of manufacture thereof
JP2020165899A (en) * 2019-03-29 2020-10-08 株式会社レプトリノ Force sensor
WO2021070665A1 (en) * 2019-10-09 2021-04-15 日本電産コパル電子株式会社 Strain-sensor fixing device, and torque sensor using same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10176964A (en) * 1996-12-17 1998-06-30 Yamato Scale Co Ltd Load cell
JP2016070673A (en) * 2014-09-26 2016-05-09 株式会社レプトリノ Force sensor
WO2020129069A1 (en) * 2018-12-20 2020-06-25 Ezmems Ltd. Sensors based on multiple strain gauges, design and methods of manufacture thereof
JP2020165899A (en) * 2019-03-29 2020-10-08 株式会社レプトリノ Force sensor
WO2021070665A1 (en) * 2019-10-09 2021-04-15 日本電産コパル電子株式会社 Strain-sensor fixing device, and torque sensor using same

Also Published As

Publication number Publication date
JP2023056768A (en) 2023-04-20

Similar Documents

Publication Publication Date Title
JP6308605B1 (en) Force sensor
US9200969B2 (en) Force sensor
US8220343B2 (en) Force sensing device
CN111801559B (en) Fixing device of strain sensor and torque sensor using same
JP6404514B2 (en) Force sensor
KR20190093556A (en) Torque sensor
WO2020158166A1 (en) Elastic body and force sensor using same
JP7343450B2 (en) force sensor
JP6494056B2 (en) Force sensor
JP7059138B2 (en) Torque sensor mounting structure
EP3816580B1 (en) Inertial measurement apparatus and mechanical device
US20190360879A1 (en) Displacement detection type force sensor
JP2019179039A (en) Force sensor
JP7396731B2 (en) Multi-axis tactile sensor
WO2023058361A1 (en) Sensor
JP2018087781A (en) Force sensor and robot
WO2023013316A1 (en) Sensor
TWI818989B (en) Torque sensor
JP5884456B2 (en) Intervening sensor and robot
KR20230017187A (en) force and torque transducers
JP6999587B2 (en) Elastic body and force sensor using it
WO2022149340A1 (en) Torque sensor
JP7295067B2 (en) force sensor
JP7432976B1 (en) force sensor
JP7062540B2 (en) Torque sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22878232

Country of ref document: EP

Kind code of ref document: A1