WO2023058112A1 - Computing device and computing method - Google Patents

Computing device and computing method Download PDF

Info

Publication number
WO2023058112A1
WO2023058112A1 PCT/JP2021/036818 JP2021036818W WO2023058112A1 WO 2023058112 A1 WO2023058112 A1 WO 2023058112A1 JP 2021036818 W JP2021036818 W JP 2021036818W WO 2023058112 A1 WO2023058112 A1 WO 2023058112A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
information
balance
rotating body
rotation angle
Prior art date
Application number
PCT/JP2021/036818
Other languages
French (fr)
Japanese (ja)
Inventor
劉思辰
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to PCT/JP2021/036818 priority Critical patent/WO2023058112A1/en
Priority to TW111137766A priority patent/TW202317959A/en
Publication of WO2023058112A1 publication Critical patent/WO2023058112A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M1/00Testing static or dynamic balance of machines or structures
    • G01M1/14Determining unbalance

Definitions

  • the present invention relates to an arithmetic device and an arithmetic method that perform arithmetic operations based on information acquired from machine tools.
  • a field balancer is described in JP-A-03-251066.
  • a field balancer is a device for measuring the balance state of a rotationally driven object to be measured.
  • a machine tool is equipped with a rotating body that is driven to rotate.
  • the rotating body is, for example, a face plate.
  • the operator of the machine tool performs work for balancing the rotating body.
  • the operator attaches a weight for balance adjustment to the rotating body. Thereby, the balance state of the rotating body is adjusted.
  • An object of the present invention is to solve the above-described problems.
  • a first aspect of the present invention corrects the balance state of the rotating body of a machine tool comprising a rotating body that rotates about a rotating shaft and a moving body that moves along a movement axis perpendicular to the rotating shaft.
  • a calculation device for calculating the weight and mounting position of a correcting weight attached to the rotating body for the purpose of
  • a first balance information acquisition unit that acquires first balance information including the rotation angle of the rotating body when it becomes, and the rotation to which the temporary weight is further attached after acquiring the first balance information
  • a second balance information acquisition unit for acquiring second balance information including the maximum value of the positional deviation when the body is rotated and the rotation angle of the rotating body when the positional deviation reaches the maximum value.
  • a temporary weight information acquisition unit that acquires temporary weight information including the weight of the temporary weight and the mounting position of the temporary weight with respect to the rotating body; the first balance information, the second balance information, and the temporary weight and a first information generator for generating correction weight information including the weight of the correction weight for correcting the balance state of the rotating body and the mounting position of the correction weight based on the weight information.
  • a second aspect of the present invention corrects the balance state of the rotating body of a machine tool including a rotating body that rotates around a rotating shaft and a moving body that moves along a movement axis perpendicular to the rotating shaft.
  • a second balance information acquisition step of acquiring second balance information including a temporary weight information acquisition step of acquiring temporary weight information including the weight of the temporary weight and the mounting position of the temporary weight with respect to the rotating body; and correcting weight information including the weight of a correcting weight for correcting the balance state of the rotating body and the mounting position of the correcting weight based on the first balance information, the second balance information, and the temporary weight information. and a first information generating step of generating.
  • the burden on the operator in the work of correcting the balance of the rotating body provided in the machine tool is reduced.
  • FIG. 1 is a configuration diagram of an arithmetic system according to an embodiment.
  • FIG. 2 is an explanatory diagram of the rotating body and the first motor.
  • FIG. 3A is a first schematic diagram for explaining rotation angle detection by the first detector.
  • FIG. 3B is a second schematic diagram for explaining rotation angle detection by the first detector.
  • FIG. 4 is a schematic configuration diagram of the arithmetic device of the embodiment.
  • FIG. 5 is a graph exemplifying the phase of the rotation angle of the rotating body acquired by the rotation angle acquisition unit.
  • FIG. 6 is a graph exemplifying the phase of the positional deviation of the moving object acquired by the positional deviation acquiring unit.
  • FIG. 5 is a graph exemplifying the phase of the rotation angle of the rotating body acquired by the rotation angle acquisition unit.
  • FIG. 6 is a graph exemplifying the phase of the positional deviation of the moving object acquired by the positional deviation acquiring unit.
  • FIG. 7 is a graph illustrating a correspondence relationship between a plurality of rotation angles acquired by a rotation angle acquisition unit and position deviations corresponding to each of the plurality of rotation angles acquired by the rotation angle acquisition unit.
  • FIG. 8 is a flow chart illustrating the flow of the computation method of the embodiment.
  • FIG. 9 is a schematic configuration diagram of an arithmetic unit according to Modification 1. As shown in FIG. FIG. 10 is a schematic diagram for explaining the positional relationship between each of the two weight mounting portions and the mounting position of the correction weight. 11A and 11B are diagrams for explaining the generation of two pieces of decomposed correction weight information by the second information generation unit.
  • FIG. FIG. 12 is a schematic diagram for explaining the angular difference.
  • FIG. 13 is a schematic configuration diagram of an arithmetic unit according to Modification 4. As shown in FIG.
  • FIG. 1 is a configuration diagram of an arithmetic system 10 of the embodiment.
  • the X-axis and the Y-axis are directional axes perpendicular to each other.
  • the X-axis is the directional axis parallel to the horizontal plane.
  • the Y-axis is a directional axis parallel to the direction of gravity.
  • one direction along the axis is represented by a "+”.
  • the opposite direction to that direction is represented by "-”.
  • a direction toward one side along the X-axis is represented as "+X direction.”
  • the direction opposite to the +X direction is expressed as "-X direction”.
  • the arithmetic system 10 includes a machine tool 12 and an arithmetic device 14 (see FIG. 1).
  • the machine tool 12 is an industrial machine that processes the workpiece W based on instructions.
  • the machine tool 12 is, for example, an ultra-precision machine.
  • the command resolution of ultra-precision machines is 10 nanometers or less.
  • the machine tool 12 includes a rotating body 16 , a first motor 18 , a moving body 20 and a second motor 22 .
  • FIG. 2 is an explanatory diagram of the rotating body 16 and the first motor 18.
  • the Z-axis is illustrated in FIG.
  • the Z-axis is a directional axis perpendicular to each of the X-axis and the Y-axis.
  • the Z-axis is the horizontal directional axis.
  • the rotating body 16 is, for example, a face plate or a chuck that supports the workpiece W. As shown in FIG. The shape of the rotating body 16 in the XY plane view is circular. The rotating body 16 has a rotation axis (rotational axis) A16 . The axis of rotation A 16 is parallel to the Z-axis. The rotor 16 is rotatable around a rotation axis A16 . An arrow D R in FIG. 2 indicates the direction of rotation of the rotor 16 .
  • the rotating body 16 has a plurality of weight mounting portions 32 .
  • Each of the plurality of weight mounting portions 32 detachably holds the weight 30 .
  • a plurality of weight mounting portions 32 are provided on the side surface of the rotating body 16 (peripheral surface in XY plan view). A certain interval is provided between the weight mounting portions 32 adjacent to each other.
  • the plurality of weight mounting portions 32 have the same depth as screw holes.
  • the weight 30 is, for example, a screw (set screw).
  • each of the plurality of weight mounting portions 32 is a screw hole. That is, the weight 30 is attached to the rotor 16 by being inserted into the weight attachment portion 32 . Further, the weight 30 is removed from the rotating body 16 by being extracted from the weight mounting portion 32 . The balance state of the rotating body 16 is changed by attaching and detaching the weight 30 to and from the rotating body 16 . The insertion depth of the weight 30 inserted into the weight mounting portion 32 is determined in advance.
  • the operator attaches and detaches the weight 30 to and from the weight mounting portion 32 .
  • the robot may attach and detach the weight 30 to and from the weight mounting portion 32 .
  • the first motor 18 is an actuator that rotates the rotating body 16 .
  • the first motor 18 has a shaft 18a.
  • the shaft 18 a rotates according to the power supplied to the first motor 18 .
  • the shaft 18 a is connected to the rotor 16 . Thereby, the rotating body 16 rotates integrally with the shaft 18a.
  • the first motor 18 is, for example, a spindle motor.
  • the moving body 20 is a member that supports the rotating body 16 .
  • the moving body 20 is movable along a movement axis. Therefore, the rotating body 16 can move integrally with the moving body 20 .
  • the axis of movement is the directional axis orthogonal to the axis of rotation A16 .
  • the axis of movement in this embodiment is the X-axis. However, the movement axis may be the Y-axis.
  • the second motor 22 is an actuator that moves the moving body 20 .
  • the second motor 22 is, for example, a linear motor. Linear motors are preferable because they generate less vibration when driven.
  • the second motor 22 may be a servomotor.
  • the machine tool 12 further comprises a screw shaft and a nut.
  • the screw shaft is installed parallel to the movement axis. Moreover, the screw shaft rotates according to the driving of the second motor 22 .
  • the nut is screwed onto the screw shaft.
  • the nut is connected to the mobile body 20 .
  • the moving body 20 linearly moves according to the rotational force of the second motor 22 . In this case, the amount of rotation of the second motor 22 and the amount of movement of the moving body 20 are correlated.
  • the machine tool 12 further includes a first detector 24, a second detector 26, and a controller 28 (see FIG. 1).
  • a second detector 26 is a sensor for detecting the amount of movement of the moving body 20 .
  • the first detector 24 is a sensor for detecting the rotation angle RA of the rotor 16 .
  • the first detector 24 is, for example, a rotary encoder.
  • the first detector 24 is installed at a different position from the rotor 16 on a plane parallel to the XY plane. In the following, the position at which the first detector 24 is installed is also described as installation position P 24 .
  • the installation position P24 is preferably located on an extension of the straight line LX .
  • the straight line LX is an imaginary straight line passing through the rotation axis A16 .
  • the straight line LX is parallel to the movement axis.
  • the installation position P 24 is in the +X direction with respect to the rotor 16 .
  • the installation position P 24 may be in the ⁇ X direction from the rotating body 16 .
  • FIG. 3A is a first schematic diagram for explaining detection of the rotation angle RA by the first detector 24.
  • FIG. 3A is a first schematic diagram for explaining detection of the rotation angle RA by the first detector 24.
  • the body of revolution 16 has an origin P org (see FIG. 3A).
  • the origin P org is the reference point of the rotation angle RA (the point indicating zero degrees). That is, when the rotating body 16 rotates, the origin P org moves along the rotation direction DR .
  • the moving origin P org passes through the installation position P 24 in the direction of rotation D R .
  • the first detector 24 outputs a detection signal indicating zero degrees as the rotation angle RA.
  • FIG. 3B is a second schematic diagram for explaining detection of the rotation angle RA by the first detector 24.
  • FIG. 3B is a second schematic diagram for explaining detection of the rotation angle RA by the first detector 24.
  • FIG. 3B shows the case where the body of rotation 16 is rotated by ⁇ degrees along the direction of rotation D R after the origin P org passes through the installation position P 24 .
  • the first detector 24 outputs a detection signal indicating ⁇ degrees as the rotation angle RA.
  • the first detector 24 may output a detection signal corresponding to the rotation angle of the shaft 18a.
  • the first detector 24 may be attached to the first motor 18 .
  • the output signal of the first detector 24 is input to the control device 28.
  • the second detector 26 outputs a detection signal according to the position of the moving body 20 in the movement axis direction.
  • the second detector 26 is, for example, a linear scale.
  • the second detector 26 is not limited to a linear scale.
  • the second detector 26 may be a rotary encoder. This is because the amount of rotation of the second motor (servo motor) 22 and the amount of movement of the moving body 20 are correlated as described above. In this case, the second detector 26 outputs a detection signal corresponding to the rotation angle of the shaft of the second motor 22 .
  • a detection signal from the second detector 26 is input to the control device 28 .
  • the position of the moving body 20 indicates the position of the moving body 20 in the movement axis direction.
  • the control device 28 is an electronic device (computer) that controls the rotation of the rotating body 16 and the movement control of the moving body 20 .
  • the controller 28 is, for example, a numerical controller (CNC: Computerized Numerical Controller).
  • Controller 28 includes a processor and memory.
  • the memory of controller 28 stores a predetermined program for controlling machine tool 12 .
  • a processor of the control device 28 controls the machine tool 12 by executing a predetermined program. Neither the processor of the control device 28 nor the memory of the control device 28 are shown.
  • the control device 28 controls the first motor 18 in controlling the rotation of the rotating body 16 .
  • the control of the first motor 18 is performed based on the rotation angle RA of the rotor 16 . Therefore, the control device 28 calculates the rotation angle RA based on the detection signal of the first detector 24 .
  • the control device 28 controls the first motor 18 based on the calculated rotation angle RA.
  • the control device 28 feedback-controls the second motor 22. Feedback control of the second motor 22 is performed based on the position of the moving body 20 . Therefore, based on the detection signal of the second detector 26, the control device 28 calculates the actual position (hereinafter referred to as detection position) of the moving body 20 in the movement axis direction. The control device 28 feedback-controls the second motor 22 based on the calculated position of the moving body 20 .
  • Movement control of the moving body 20 includes position adjustment control of the moving body 20 based on the position deviation PD.
  • the position deviation PD is the deviation between the position of the moving body 20 based on the command (command position) and the calculated detected position. Therefore, the control device 28 calculates the position deviation PD based on the commanded position and the calculated detected position. Also, the control device 28 controls the second motor 22 based on the positional deviation PD. As a result, the deviation between the commanded position and the actual position of the moving body 20 is corrected.
  • the positional deviation PD is generated according to vibration of the machine tool 12, for example. Vibration of the machine tool 12 is generated according to the rotation of the rotating body 16, for example.
  • the rotating body 16 tends to generate the above-described vibration when it rotates in an unbalanced state.
  • the unbalanced state of the rotating body 16 is a state in which the position of the center of gravity of the rotating body 16 is deviated from the rotation axis A16 in at least one of the X direction and the Y direction.
  • the position of the center of gravity of the rotating body 16 moves along the rotation direction DR as the rotating body 16 rotates, like the origin P org described above.
  • the configuration of the machine tool 12 is not limited to the above.
  • the weight mounting portion 32 may be provided on the surface of the rotor 16 facing the +Z direction or the surface of the rotor 16 facing the ⁇ Z direction.
  • the actuator that rotates the rotating body 16 may include an air turbine.
  • the actuators that move the moving body 20 may include fluid bearings.
  • FIG. 4 is a schematic configuration diagram of the computing device 14 of the embodiment.
  • Computing device 14 is an electronic device.
  • the computing device 14 can obtain information from the control device 28 .
  • computing device 14 can communicate with controller 28 .
  • the calculation device 14 includes a display section 34, an operation section 36, a storage section 38, and a calculation section 40 (see FIG. 4).
  • the display unit 34 is a display device having a display screen. Information is appropriately displayed on the display screen of the display unit 34 .
  • the material of the display screen of the display unit 34 includes, for example, liquid crystal or OEL (Organic Electro-Luminescence).
  • the operation unit 36 is an input device that receives information input.
  • the operator can input information (instructions) to the computing device 14 via the operation unit 36 .
  • the operation unit 36 has, for example, an operation panel.
  • the operation unit 36 is not limited to the operation panel.
  • the operation unit 36 may appropriately have a keyboard, mouse, or touch panel.
  • the touch panel is installed, for example, on the display screen of the display unit 34 .
  • the storage unit 38 is a storage device that stores information.
  • the storage unit 38 has one or more memories.
  • the storage unit 38 appropriately has a RAM (Random Access Memory) and a ROM (Read Only Memory).
  • the storage unit 38 stores the calculation program 42 .
  • the calculation program 42 is a program for causing the calculation device 14 to execute the calculation method of the present embodiment.
  • Information stored in the storage unit 38 is not limited to the arithmetic program 42 .
  • the storage unit 38 appropriately stores various information as needed.
  • the computing unit 40 is a processing device (one or more processors) that processes information.
  • the calculation unit 40 appropriately includes, for example, a CPU (Central Processing Unit) and a GPU (Graphics Processing Unit).
  • the calculation unit 40 can appropriately refer to the storage unit 38 .
  • the calculation unit 40 includes a command output unit 44, a rotation angle acquisition unit 46, a position deviation acquisition unit 48, a balance measurement unit 50, a first balance information acquisition unit 52, and a second balance information acquisition unit 54. , a virtual weight information acquisition unit 56 and an information generation unit 58 (see FIG. 4). These units ( 44 , 46 , 48 , 50 , 52 , 54 , 56 , 58 ) are implemented by the operation unit 40 executing the operation program 42 .
  • the command output unit 44 issues a command to the machine tool 12 (control device 28).
  • This command includes contents to stop the moving body 20 at a predetermined position while rotating the rotating body 16 .
  • the rotating body 16 rotates based on the command from the command output unit 44 .
  • the rotation angle acquisition unit 46 acquires a plurality of rotation angles RA.
  • a plurality of rotation angles RA are obtained from the controller 28 .
  • the rotation angle acquisition unit 46 may acquire the detection signal of the first detector 24 . In that case, the rotation angle acquisition section 46 may calculate the rotation angle RA based on the detection signal of the first detector 24 .
  • the acquisition period of the rotation angle RA be as short as possible.
  • an acquisition cycle in which the rotation angle RA is acquired in units of 1 degree (0 degrees, 1 degree, 2 degrees, . , 0.2 degrees, . . . , 359.9 degrees) is preferable.
  • the acquisition cycle of the rotation angle RA is determined according to the detection cycle of the first detector 24 and the resolution of the first detector 24 .
  • FIG. 5 is a graph exemplifying the phase of the rotation angle RA of the rotating body 16 acquired by the rotation angle acquisition unit 46. As shown in FIG.
  • the graph of FIG. 5 has a vertical axis indicating rotation angle RA and a horizontal axis indicating time.
  • the graph of FIG. 5 shows multiple rotation angles RA plotted along a time series.
  • the rotation angle RA of the rotor 16 at time t1 is " ⁇ ".
  • the graph in FIG. 5 can be created based on the results of obtaining a plurality of rotation angles RA by the rotation angle obtaining unit 46.
  • FIG. Note that the range of the vertical axis in FIG. 5 is 0 degrees to 360 degrees. However, the range of the vertical axis in FIG. 5 is not limited to 0 degrees to 360 degrees.
  • the vertical axis of FIG. 5 may include a rotation angle RA of 361 degrees or more.
  • the rotating body 16 generates vibration by rotating. This vibration propagates to the moving body 20 . Therefore, the moving body 20 deviates from the predetermined position based on the command from the command output unit 44 according to the vibration of the rotating body 16 . As a result, a position deviation PD occurs between the position of the moving body 20 and a predetermined position. As the rotating body 16 continues to rotate, multiple position deviations PD occur.
  • the position deviation acquisition unit 48 acquires a plurality of position deviations PD.
  • a plurality of position deviations PD are obtained from the controller 28 .
  • the position deviation acquisition section 48 may calculate the position deviation PD based on the command from the control device 28 and the detection signal from the second detector 26 .
  • Each of the plurality of positional deviations PD includes many components corresponding to the vibration of the rotating body 16.
  • the vibration of the rotating body 16 changes according to the balance state of the rotating body 16 .
  • changes in the balance state of the rotating body 16 are strongly reflected in the plurality of positional deviations PD.
  • the acquisition cycle of the position deviation PD by the position deviation acquisition unit 48 and the acquisition cycle of the rotation angle RA by the rotation angle acquisition unit 46 are preferably synchronized. In this case, the correspondence between the rotation angle RA and the positional deviation PD (described later) is achieved with high accuracy. However, the acquisition cycle of the position deviation PD and the acquisition cycle of the rotation angle RA may be different from each other.
  • FIG. 6 is a graph exemplifying the phase of the position deviation PD of the moving body 20 acquired by the position deviation acquisition unit 48.
  • FIG. 6 is a graph exemplifying the phase of the position deviation PD of the moving body 20 acquired by the position deviation acquisition unit 48.
  • the graph of FIG. 6 has a vertical axis representing position deviation PD and a horizontal axis representing time.
  • the graph of FIG. 6 shows a plurality of positional deviations PD plotted along time series. For example, the position deviation PD at time t1 is "-r". Time t1 in FIG. 6 and time t1 in FIG. 5 are the same time.
  • the graph in FIG. 6 can be created based on the acquisition results of a plurality of positional deviations PD by the positional deviation acquisition unit 48.
  • plus and minus of the positional deviation PD indicate the direction of positional deviation (the same applies to FIG. 7).
  • a positive positional deviation PD in FIG. 6 indicates the positional deviation PD caused by the moving body 20 deviating from the commanded position in the ⁇ X direction.
  • the negative positional deviation PD indicates the positional deviation PD caused by the moving body 20 deviating from the command position in the +X direction.
  • the balance measurement unit 50 associates the rotation angle RA with the positional deviation PD.
  • the balance measuring section 50 measures the balance state of the rotating body 16 .
  • each of the plurality of rotation angles RA is associated with the corresponding positional deviation PD on the time axis.
  • the balance measurement unit 50 may associate the rotation angle RA and the position deviation PD that are acquired close to each other on the time axis.
  • the balance measurement unit 50 may associate the rotation angle RA with the interpolated position deviation PD by interpolating the position deviation PD. This interpolation is performed, for example, based on linear interpolation (linear interpolation).
  • the rotation angle RA can be more easily interpolated between the rotation angle RA of the rotating body 16 rotating at the commanded speed and the position deviation PD of the moving body 20 vibrating unstably. That is, it is because it is easy to improve the accuracy of interpolation.
  • the balance state of the rotor 16 is the balance state at the time when the rotor 16 vibrates.
  • the position deviation PD reflecting the balance state is observed after the time when the rotating body 16 vibrates.
  • the rotation angle RA and the positional deviation PD are associated with each other in consideration of the time difference. However, in order to simplify the explanation as much as possible, the time difference is ignored in this embodiment.
  • FIG. 7 is a graph illustrating a correspondence relationship between a plurality of rotation angles RA acquired by the rotation angle acquisition unit 46 and position deviations PD corresponding to each of the plurality of rotation angles RA acquired by the rotation angle acquisition unit 46. .
  • the graph in FIG. 7 has a vertical axis indicating the positional deviation PD and a horizontal axis indicating the rotation angle RA.
  • the range of the horizontal axis in FIG. 7 is 0 degrees to 360 degrees. That is, the range of the horizontal axis in FIG. 7 is one rotation of the rotor 16 .
  • the horizontal axis of FIG. 7 may include a rotation angle RA of 361 degrees or more.
  • the positional deviation PD representing the largest positional deviation of the moving body 20 is [-r].
  • the rotational position indicating the position of the center of gravity of the rotating body 16 is hereinafter also referred to as the "unbalanced position”.
  • the unbalanced position is on the straight line LX and reaches in the +X direction from the rotation axis A16 .
  • a field balancer has been used to check the unbalanced position.
  • the unbalance position is identified based on the correspondence relationship (graph in FIG. 7) between multiple rotation angles RA and multiple position deviations PD. That is, the arithmetic device 14 measures the balance state of the rotor 16 based on the rotation angle RA and the positional deviation PD. Therefore, no field balancer is required in this embodiment.
  • the first detector 24 of the present embodiment is installed on the straight line LX and in the +X direction from the rotation axis A16 .
  • the "rotational angle RA corresponding to the maximum value of the positional deviation PD in the +X direction” and the “rotational angle RA at which the unbalanced position reaches the installation position P24 in the rotational direction DR " match. This allows the operator to more easily grasp the unbalanced position.
  • the first balance information acquisition unit 52 acquires the first balance information I1 .
  • the first balance information I1 is information including the maximum value r0 and the rotation angle ⁇ 0 .
  • the maximum value r0 indicates the maximum value of the positional deviation PD when the rotating body 16 is rotated.
  • the rotation angle ⁇ 0 indicates the rotation angle RA corresponding to the maximum value r 0 on the time axis.
  • the first balance information I1 is obtained based on the measurement result of the balance state of the rotor 16 .
  • the acquired first balance information I1 is stored in the storage unit 38 .
  • the second balance information acquisition unit 54 acquires the second balance information I2 .
  • the second balance information I2 is information including the maximum value r1 and the rotation angle ⁇ 1 .
  • the maximum value r1 indicates the maximum value of the positional deviation PD when the rotor 16 on which the temporary weight 30 temp is mounted is rotated.
  • Temporary weight 30 temp indicates weight 30 with weight w1 .
  • the temporary weight 30 temp is attached to one of the plurality of weight attachment portions 32 .
  • the temporary weight 30 temp is attached to the rotating body 16 after the first balance information I1 is acquired by the first balance information acquisition unit 52 .
  • the rotation angle ⁇ 1 indicates the rotation angle RA corresponding to the maximum value r1 on the time axis.
  • the second balance information I2 is acquired based on the measurement result of the balance state of the rotating body 16 to which the temporary weight 30 temp is attached.
  • the acquired second balance information I2 is stored in the storage unit 38 .
  • the provisional weight information acquisition unit 56 acquires provisional weight information I temp .
  • the temporary weight information I temp is information including the weight w 1 and the mounting position ⁇ 1 of the temporary weight 30 temp .
  • the temporary weight information I temp is input to the arithmetic unit 14 via the operation unit 36, for example.
  • the obtained temporary weight information I temp is stored in the storage unit 38 .
  • the information generation unit 58 generates corrected spindle information I fix .
  • the correction weight information I fix is information including the weight w x of the correction weight 30 fix and the mounting position ⁇ x of the correction weight 30 fix .
  • the correction weight 30 fix is the weight 30 for correcting the balance state of the rotor 16 .
  • the weight w x and the mounting position ⁇ x are calculated by the information generator 58 .
  • the information generator 58 calculates the weight wx based on the following formula (1).
  • the values indicated by each character in the formula (1) are as follows. That is, “r 0 : the maximum value of the positional deviation PD indicated by the first balance information I 1 ". "r 1 : the maximum value of the positional deviation PD indicated by the second balance information I 2 ". It is “ ⁇ 0 : rotation angle RA indicated by the first balance information I 1 ". " ⁇ 1 : rotation angle RA indicated by the second balance information I 2 ". It is "w 1 : the weight of the temporary weight 30 temp indicated by the temporary weight information I temp ".
  • the information generator 58 calculates the mounting position ⁇ x based on the following formula (2).
  • the values indicated by each character in the formula (2) are as follows. That is, "r 0 : the maximum value of the positional deviation PD indicated by the first balance information I 1 ". "r 1 : the maximum value of the positional deviation PD indicated by the second balance information I 2 ". It is “ ⁇ 0 : rotation angle RA indicated by the first balance information I 1 ". " ⁇ 1 : rotation angle RA indicated by the second balance information I 2 ". It is “ ⁇ 1 : attachment position of temporary weight 30 temp indicated by temporary weight information I temp ". It is "w' x : content of absolute value symbol in formula (1) [see formula (1)]".
  • the corrected weight information I fix is stored in the storage unit 38 . Also, the corrected weight information I fix is shown to the operator via the display unit 34 . The operator attaches a correction weight 30 fix of weight w x to the attachment position ⁇ x of the rotating body 16 . Thereby, the balance state of the rotating body 16 is preferably corrected.
  • the configuration example of the arithmetic unit 14 of the present embodiment is as above.
  • FIG. 8 is a flowchart illustrating the flow of the calculation method of the embodiment.
  • the calculation method of FIG. 8 is executed by the calculation device 14.
  • the calculation method of FIG. 8 includes a first balance measurement step S1, a first balance information acquisition step S2, and a temporary weight attachment step S3.
  • 8 includes a second balance measurement step S4, a second balance information acquisition step S5, a temporary weight information acquisition step S6, and an information generation step (first information generation step) S7. Including further.
  • the balance measurement unit 50 measures the balance state of the rotating body 16. More specifically, the first balance measurement step S1 includes a first command output step S11, a first rotation angle acquisition step S12, a first position deviation acquisition step S13, and a first association step S14. including.
  • the command output unit 44 issues a command to the machine tool 12. Thereby, the rotating body 16 rotates. Also, the movement of the moving body 20 is restricted.
  • the rotation angle acquisition unit 46 acquires the rotation angle RA.
  • the rotation angle acquisition unit 46 acquires a plurality of rotation angles RA.
  • a plurality of rotation angles RA are acquired in the range of 0 degrees to 360 degrees, for example.
  • the positional deviation obtaining unit 48 obtains the positional deviation PD. Acquisition of a plurality of rotation angles RA by the rotation angle acquisition unit 46 (S12) and acquisition of a plurality of position deviations PD by the position deviation acquisition unit 48 (S13) may be performed in parallel.
  • the balance measurement unit 50 associates the rotation angle RA and the position deviation PD on the time axis. Thereby, the balance state of the rotating body 16 is measured.
  • the first balance information acquisition unit 52 acquires the first balance information I1 .
  • the rotating body 16 is attached with the temporary weight 30 temp .
  • the temporary weight attachment step S3 may be performed before the first balance information acquisition step S2 as long as it is after the first association step S14.
  • the rotating body 16 may temporarily stop during execution of the temporary weight attaching step S3.
  • the second balance measurement step S4 the balance measurement unit 50 measures the balance state of the rotating body 16.
  • the second balance measurement step S4 includes a second command output step S41, a second rotation angle acquisition step S42, a second position deviation acquisition step S43, and a second association step S44.
  • the second command output step S41 to second association step S44 are executed in the same flow as the first command output step S11 to first association step S14. However, the second command output step S41 to the second association step S44 are executed with the temporary weight 30 temp attached to the rotating body 16 .
  • the second balance information acquisition unit 54 acquires the second balance information I2 .
  • the provisional weight information acquisition unit 56 acquires the provisional weight information I temp .
  • the temporary weight information acquisition step S6 is executed before the information generation step S7. As far as this is concerned, the execution timing of the temporary weight information acquisition step S6 is not limited to that shown in FIG.
  • the information generating section 58 generates corrected weight information I fix .
  • the corrected weight information I fix is generated based on the first balance information I1 , the second balance information I2 , and the temporary weight information I temp .
  • the arithmetic device 14 and the arithmetic method that reduce the burden on the operator in the work of correcting the balance of the rotating body 16 provided in the machine tool 12 are provided.
  • FIG. 9 is a schematic configuration diagram of an arithmetic unit 14A of Modification 1.
  • FIG. 9 is a schematic configuration diagram of an arithmetic unit 14A of Modification 1.
  • the computing device 14A includes the components of the computing device 14 of the embodiment (see FIG. 4). Arithmetic device 14A further includes a second information generator 60 , an instruction receiver 62 , and a table 64 .
  • the table 64 stores the position of each of the multiple weight mounting portions 32 .
  • the position of each of the plurality of weight mounting portions 32 is represented by a rotation angle RA along the rotation direction DR with respect to the origin Porg .
  • the table 64 is referred to by the second information generator 60 as appropriate.
  • FIG. 10 is a schematic diagram for explaining the positional relationship between each of the two weight mounting portions 32A and 32B and the mounting position ⁇ x of the correction weight 30 fix .
  • the instruction receiving unit 62 receives an operator's instruction operation.
  • This instruction operation includes designation of two of the plurality of weight mounting portions 32 .
  • one of the two designated weight mounting portions 32 is also referred to as weight mounting portion 32A.
  • the other of the designated two weight mounting portions 32 is also described as a weight mounting portion 32B.
  • the weight mounting portion 32A and the weight mounting portion 32B sandwich an imaginary straight line L ⁇ (FIG. 10).
  • the imaginary straight line L ⁇ is an imaginary straight line passing through the mounting position ⁇ x and the rotation axis A 16 .
  • the second information generation unit 60 decomposes the corrected weight information I fix to generate two pieces of decomposed corrected weight information I' fix (I' fix A, I' fix B) (second information generation step ).
  • the resolved corrected weight information I' fix A is information including a position ⁇ 2 and a weight w 2 .
  • the position ⁇ 2 indicates the position of the weight mounting portion 32A.
  • the weight w2 indicates the weight of the correction weight 30 fix A attached to the weight mounting portion 32A.
  • the resolved corrected weight information I' fix B is information including the position ⁇ 3 and the weight w3 .
  • the position ⁇ 3 indicates the position of the weight mounting portion 32B.
  • the weight w 3 indicates the weight of the correction weight 30 fix B attached to the weight mounting portion 32B.
  • Each of position ⁇ 2 and position ⁇ 3 is specified based on the contents of table 64 .
  • Weight w 2 and weight w 3 are calculated by the second information generator 60 . A method of calculating the weight w2 and the weight w3 will be described below.
  • FIG. 11A and 11B are diagrams for explaining the generation of the two pieces of decomposed correction weight information I′ fix by the second information generation unit 60.
  • FIG. 11A and 11B are diagrams for explaining the generation of the two pieces of decomposed correction weight information I′ fix by the second information generation unit 60.
  • FIG. 11 illustrates vector U x (w x , ⁇ x ), vector U 2 (w 2 , ⁇ 2 ), and vector U 3 (w 3 , ⁇ 3 ).
  • a vector U x (w x , ⁇ x ) expresses the corrected weight information I fix by a vector.
  • the vector U x (w x , ⁇ x ) includes a component representing the weight w x and a component representing the mounting position ⁇ x .
  • a vector U 2 (w 2 , ⁇ 2 ) expresses the decomposed corrected weight information I′ fix A as a vector.
  • Vector U 2 (w 2 , ⁇ 2 ) includes a component representing weight w 2 and a component representing position ⁇ 2 .
  • a vector U 3 (w 3 , ⁇ 3 ) expresses the resolved corrected weight information I′ fix B in a vector.
  • Vector U 3 (w 3 , ⁇ 3 ) includes a component representing weight w 3 and a component representing position ⁇ 3 .
  • Vector U 2 (w 2 , ⁇ 2 ) and vector U 3 (w 3 , ⁇ 3 ) are obtained by vector decomposition of vector U x (w x , ⁇ x ). That is, weight w 2 and weight w 3 are obtained by vector decomposition of vector U x (w x , ⁇ x ). In the following, vector decomposition is also simply described as decomposition.
  • Weight w 2 and weight w 3 are calculated based on the following equations (3) to (7). Note that the absolute value of the difference between ⁇ 2 and ⁇ 3 is not 0 degrees in Equations (3) to (7). In addition, in Equations (3) to (7), the absolute value of the difference between ⁇ 2 and ⁇ 3 is not even 180 degrees.
  • the two pieces of resolved corrected weight information I' fix are stored in the storage unit 38 . Further, the resolved correction weight information I' fix is displayed to the operator via the display section 34. FIG.
  • the operator mounts the correction weight 30 fix A on the weight mounting portion 32A. Also, the operator mounts the correction weight 30 fix B on the weight mounting portion 32B. As a result, the balance state of the rotating body 16 is corrected in the same manner as when the correction weight 30 fix is attached to the mounting position ⁇ x . Therefore, the balance state of the rotating body 16 is preferably corrected.
  • the calculation unit 40 may automatically select at least one of the weight mounting portion 32A and the weight mounting portion 32B.
  • the second information generator 60 may further decompose at least one of the vector U 2 (w 2 , ⁇ 2 ) and the vector U 3 (w 3 , ⁇ 3 ). In this case, three or more pieces of decomposed correction weight information I' fix are generated.
  • the second information generation unit 60 may use the temporary weight information I temp as one of the two or more pieces of decomposed correction weight information I' fix .
  • the second information generator 60 uses, for example, the vector U 2 (w 2 , ⁇ 2 ) as a vector whose components are the weight w 1 of the temporary weight 30 temp and the mounting position ⁇ 1 .
  • the second information generating unit 60 generates vector U 2 (w 1 , ⁇ 1 ), vector U x (w x , ⁇ x ), and based on equations (3) to (7), vector Calculate U 3 (w 3 , ⁇ 3 ). Accordingly, the operator can correct the balance state of the rotating body 16 by further attaching the correction weight 30 fix B to the rotating body 16 to which the temporary weight 30 temp is attached. In other words, the operation of attaching and detaching the correction weight 30 fix A is substantially omitted. As a result, the operator's burden is further reduced.
  • Computing device 14 may reside in controller 28 .
  • the computing device 14 of the embodiment includes a command output section 44 , a rotation angle acquisition section 46 , a position deviation acquisition section 48 and a balance measurement section 50 .
  • the configuration of the arithmetic unit 14 is not limited to this.
  • an electronic device including the command output unit 44, the rotation angle acquisition unit 46, the position deviation acquisition unit 48, and the balance measurement unit 50 may be configured.
  • This balance measuring device is an electronic device separate from the computing device 14 .
  • the command output unit 44, the rotation angle acquisition unit 46, the position deviation acquisition unit 48, and the balance measurement unit 50 may be omitted from the computing device 14.
  • the first balance information acquiring section 52 acquires the first balance information I1 from the balance measuring device. Also, the second balance information acquiring unit 54 acquires the second balance information I2 from the balance measuring device.
  • the angular difference AD indicates the magnitude of positional deviation between the predetermined position P24pre and the actual installation position P'24 .
  • the predetermined position P 24pre is the installation position (P 24 ) of the first detector 24 described in the embodiment. That is, the predetermined position P 24pre indicates a position on the straight line LX and in the +X direction from the rotating body 16 .
  • the actual installation position P' 24 indicates the actual installation position of the first detector 24 in this modified example. That is, the first detector 24 that should be installed at the predetermined position P 24pre may be installed at a position different from the predetermined position P 24pre .
  • an angular difference AD occurs.
  • the angular difference AD is represented by an angle (rotational angle RA) along the rotational direction DR .
  • FIG. 12 is a schematic diagram for explaining the angle difference AD.
  • FIG. 12 A specific example of the angle difference AD is shown in FIG.
  • the actual installation position P'24 is a position shifted by "- ⁇ " degrees from the predetermined position P24pre along the rotational direction DR .
  • the balance measurement of the rotating body 16 described in the embodiment produces an error according to the angular difference AD.
  • the rotation angle ⁇ + ⁇ is associated with the positional deviation ⁇ r.
  • the arithmetic unit 14B will be described below.
  • FIG. 13 is a schematic configuration diagram of an arithmetic device 14B of Modification 4.
  • FIG. 13 is a schematic configuration diagram of an arithmetic device 14B of Modification 4.
  • the computing device 14B includes the components of the computing device 14 of the embodiment (see FIG. 4). Further, the calculation device 14B further includes a correction section 66 .
  • the rotating body of a machine tool (12) comprising a rotating body (16) rotating around a rotating axis (A 16 ) and a moving body (20) moving along a moving axis orthogonal to the rotating axis
  • a first balance including the maximum value (r 0 ) of the positional deviation (PD) of the moving body when the positional deviation reaches the maximum value (r 0 ) and the rotation angle ( ⁇ 0 ) of the rotating body when the positional deviation becomes the maximum value
  • a first balance information acquisition unit (52) that acquires information (I 1 ), and after acquiring the first balance information, the rotating body to which the temporary weight (30 temp ) is further attached is rotated.
  • an arithmetic device is provided that reduces the burden on the operator in the work of correcting the balance of the rotating body provided in the machine tool.
  • the first information generation unit may calculate the weight of the correction weight based on formula (1), and calculate the mounting position of the correction weight based on formula (2). Thereby, the first information generator can calculate the corrected weight information.
  • a plurality of weight mounting portions (32) for mounting the correction weights are provided in advance on the rotating body, and the computing device includes a table (64) storing the positions of the plurality of weight mounting portions, By decomposing the correction weight information using the table, the positions of two or more weight mounting portions among the plurality of weight mounting portions and the correction weights attached to each of the two or more weight mounting portions and a second information generator (60) for generating two or more pieces of resolved corrected weight information (I' fix ) including the weight of . Thereby, the operator can suitably correct the balance state of the rotating body based on two or more pieces of resolved correction weight information.
  • the computing device may further include an instruction receiving section (62) that receives an operator's instruction operation for designating the two or more weight mounting sections. This allows the operator to designate two or more weight mounting portions to which the correction weights are to be mounted.
  • an instruction receiving section (62) that receives an operator's instruction operation for designating the two or more weight mounting sections. This allows the operator to designate two or more weight mounting portions to which the correction weights are to be mounted.
  • the second information generation unit generates the resolved corrected weight information by decomposing a vector (U x ) whose components are the weight of the corrected weight indicated by the corrected weight information and the mounting position of the corrected weight. may be generated. Thereby, the operator can appropriately correct the balance state of the rotating body based on the disassembled correction weight information.
  • the second information generator may use the provisional weight information as one of the two or more pieces of the decomposed correction weight information. This makes it possible to substantially omit the work of attaching and detaching one of the plurality of correction weights (30 fix ).
  • the computing device includes a rotation angle acquisition unit (46) for acquiring the rotation angle, a position deviation acquisition unit (48) for acquiring the position deviation, and a plurality of the rotation angles and corresponding to each of the plurality of rotation angles. and a balance measuring unit (50) that associates the positional deviation with the positional deviation, wherein the first balance information acquiring unit and the second balance information acquiring unit measure the rotation angle and the positional deviation obtained by the balance measuring unit. You may acquire said 1st balance information and said 2nd balance information based on matching with. Thereby, the computing device also serves as a balance measuring device. Moreover, in the balance measurement, there is no need for a field balancer in which an acceleration sensor separate from the machine tool must be attached to the rotating body.
  • the rotating body of a machine tool (12) including a rotating body (16) rotating about a rotating axis (A 16 ) and a moving body (20) moving along a moving axis orthogonal to the rotating axis
  • This provides a calculation method that reduces the burden on the operator when correcting the balance of the rotating body of the machine tool.
  • the weight of the correction weight may be calculated based on Equation (1), and the mounting position of the correction weight may be calculated based on Equation (2). Thereby, corrected spindle information can be generated.
  • a plurality of weight mounting portions (32) for mounting the correcting weights are provided in advance on the rotating body, and the calculation method is to determine the number of two or more weight mounting portions among the plurality of weight mounting portions. It may further include a second information generating step of generating two or more resolved corrected weight information (I' fix ) including a position and a weight attached to each of said two or more weight mounts. Thereby, the operator can appropriately correct the balance state of the rotating body based on the disassembled correction weight information.
  • the computing method may further include, before the second information generating step, an instruction receiving step of receiving an operator's instruction operation for designating the two weight mounting portions. This allows the operator to designate two weight mounting portions to which the correction weights are to be mounted.
  • the resolved corrected weight information is generated by decomposing a vector whose components are the weight of the corrected weight indicated by the corrected weight information and the mounting position of the corrected weight. good. Thereby, the operator can appropriately correct the balance state of the rotating body based on the disassembled correction weight information.
  • the first balance measurement step includes a first command output step (S11) for rotating the rotating body, a first rotation angle acquisition step (S12) for acquiring the rotation angle, and a position deviation acquisition step. a first positional deviation obtaining step (S13);
  • the second balance measurement step includes a second command output step (S41) for rotating the rotating body, a second rotation angle acquisition step (S42) for acquiring the rotation angle, and a second rotation angle acquisition step (S42) for acquiring the positional deviation.
  • the calculation method includes a balance measurement method. Moreover, in the balance measurement, there is no need for a field balancer in which an acceleration sensor separate from the machine tool must be attached to the rotating body.

Abstract

A computing device (14) comprises: a first balance information acquiring unit (52) for acquiring first balance information (I1) relating to a rotating body (16); a second balance information acquiring unit (54) for acquiring second balance information (I2) relating to the rotating body (16) with a temporary weight (30temp) attached; and a first information generating unit (58) for generating correcting weight information (Ifix) including a weight (wx) of a correcting weight (30fix) and an attachment position (γx) thereof, on the basis of the first balance information (II), the second balance information (I2), and temporary weight information (Itemp) relating to the temporary weight (30temp).

Description

演算装置および演算方法Arithmetic device and method
 本発明は、工作機械から取得される情報に基づいて演算を行う演算装置および演算方法に関する。 The present invention relates to an arithmetic device and an arithmetic method that perform arithmetic operations based on information acquired from machine tools.
 特開平03-251066号公報に、フィールドバランサが記載される。フィールドバランサは、回転駆動する測定対象のバランス状態を測定するための装置である。 A field balancer is described in JP-A-03-251066. A field balancer is a device for measuring the balance state of a rotationally driven object to be measured.
 工作機械は、回転駆動する回転体を備える。回転体は、例えば面盤である。ここで、回転体のバランス状態が悪いと、工作機械が加工に失敗するおそれが大きくなる。したがって、工作機械のオペレータは、回転体のバランス状態を整えるための作業を行う。その作業において、オペレータは、回転体にバランス調整用の錘を取り付ける。これにより、回転体のバランス状態が調整される。 A machine tool is equipped with a rotating body that is driven to rotate. The rotating body is, for example, a face plate. Here, if the rotating body is in a poorly balanced state, there is a greater possibility that the machine tool will fail in machining. Therefore, the operator of the machine tool performs work for balancing the rotating body. In the work, the operator attaches a weight for balance adjustment to the rotating body. Thereby, the balance state of the rotating body is adjusted.
 しかし、錘の取り付け位置と、錘の重量との各々が不適切である場合、回転体のバランス状態は改善されない。したがって、オペレータは、回転体のバランス状態が整うまで試行錯誤を繰り返さなければならない。 However, if the mounting position of the weight and the weight of the weight are each inappropriate, the balance of the rotating body will not be improved. Therefore, the operator must repeat trial and error until the rotating body is balanced.
 本発明は、上述した課題を解決することを目的とする。 An object of the present invention is to solve the above-described problems.
 本発明の第1の態様は、回転軸を中心に回転する回転体と、前記回転軸と直交する移動軸に沿って移動する移動体と、を備える工作機械の前記回転体のバランス状態を修正するために前記回転体に取り付ける修正錘の重量および取り付け位置を演算する演算装置であって、前記回転体を回転させたときの前記移動体の位置偏差の最大値と、前記位置偏差が最大値になったときの前記回転体の回転角度とを含む第1のバランス情報を取得する第1のバランス情報取得部と、前記第1のバランス情報を取得した後にさらに仮錘が取り付けられた前記回転体を回転させたときの前記位置偏差の最大値と、前記位置偏差が最大値になったときの前記回転体の回転角度とを含む第2のバランス情報を取得する第2のバランス情報取得部と、前記仮錘の重量と前記仮錘の前記回転体に対する取り付け位置とを含む仮錘情報を取得する仮錘情報取得部と、前記第1のバランス情報、前記第2のバランス情報および前記仮錘情報に基づいて、前記回転体のバランス状態を修正する修正錘の重量と前記修正錘の取り付け位置とを含む修正錘情報を生成する第1の情報生成部と、を備える。 A first aspect of the present invention corrects the balance state of the rotating body of a machine tool comprising a rotating body that rotates about a rotating shaft and a moving body that moves along a movement axis perpendicular to the rotating shaft. A calculation device for calculating the weight and mounting position of a correcting weight attached to the rotating body for the purpose of A first balance information acquisition unit that acquires first balance information including the rotation angle of the rotating body when it becomes, and the rotation to which the temporary weight is further attached after acquiring the first balance information A second balance information acquisition unit for acquiring second balance information including the maximum value of the positional deviation when the body is rotated and the rotation angle of the rotating body when the positional deviation reaches the maximum value. a temporary weight information acquisition unit that acquires temporary weight information including the weight of the temporary weight and the mounting position of the temporary weight with respect to the rotating body; the first balance information, the second balance information, and the temporary weight and a first information generator for generating correction weight information including the weight of the correction weight for correcting the balance state of the rotating body and the mounting position of the correction weight based on the weight information.
 本発明の第2の態様は、回転軸を中心に回転する回転体と、前記回転軸と直交する移動軸に沿って移動する移動体と、を含む工作機械の前記回転体のバランス状態を修正するために前記回転体に取り付ける修正錘の重量および取り付け位置を演算する演算方法であって、前記回転体を回転させる第1のバランス測定ステップと、前記回転体を前記第1のバランス測定ステップにより回転させたときの前記移動体の位置偏差の最大値と、前記位置偏差が最大値になったときの前記回転体の回転角度とを含む第1のバランス情報を取得する第1のバランス情報取得ステップと、前記第1のバランス情報取得ステップの後に、前記回転体に仮錘を取り付ける仮錘取り付けステップと、前記仮錘取り付けステップの後に、前記回転体を回転させる第2のバランス測定ステップと、前記仮錘が取り付けられた前記回転体を前記第2のバランス測定ステップにより回転させたときの前記位置偏差の最大値と、前記位置偏差が最大値になったときの前記回転体の回転角度とを含む第2のバランス情報を取得する第2のバランス情報取得ステップと、前記仮錘の重量と前記仮錘の前記回転体に対する取り付け位置とを含む仮錘情報を取得する仮錘情報取得ステップと、前記第1のバランス情報、前記第2のバランス情報および前記仮錘情報に基づいて、前記回転体のバランス状態を修正する修正錘の重量と前記修正錘の取り付け位置とを含む修正錘情報を生成する第1の情報生成ステップと、を含む。 A second aspect of the present invention corrects the balance state of the rotating body of a machine tool including a rotating body that rotates around a rotating shaft and a moving body that moves along a movement axis perpendicular to the rotating shaft. A calculation method for calculating the weight and mounting position of a correction weight to be attached to the rotating body in order to first balance information acquisition for acquiring first balance information including a maximum positional deviation of the moving body when it is rotated and a rotation angle of the rotating body when the positional deviation reaches the maximum value a step of attaching a temporary weight to the rotating body after the first balance information acquiring step; and a second balance measuring step of rotating the rotating body after the step of attaching the temporary weight; a maximum value of the positional deviation when the rotating body to which the temporary weight is attached is rotated by the second balance measurement step; and a rotation angle of the rotating body when the positional deviation reaches the maximum value. a second balance information acquisition step of acquiring second balance information including a temporary weight information acquisition step of acquiring temporary weight information including the weight of the temporary weight and the mounting position of the temporary weight with respect to the rotating body; and correcting weight information including the weight of a correcting weight for correcting the balance state of the rotating body and the mounting position of the correcting weight based on the first balance information, the second balance information, and the temporary weight information. and a first information generating step of generating.
 本発明の各態様によれば、工作機械に備わる回転体のバランス修正作業におけるオペレータの負担が低減される。 According to each aspect of the present invention, the burden on the operator in the work of correcting the balance of the rotating body provided in the machine tool is reduced.
図1は、実施形態の演算システムの構成図である。FIG. 1 is a configuration diagram of an arithmetic system according to an embodiment. 図2は、回転体と、第1のモータとの説明図である。FIG. 2 is an explanatory diagram of the rotating body and the first motor. 図3Aは、第1の検出器による回転角度の検出を説明するための第1の模式図である。図3Bは、第1の検出器による回転角度の検出を説明するための第2の模式図である。FIG. 3A is a first schematic diagram for explaining rotation angle detection by the first detector. FIG. 3B is a second schematic diagram for explaining rotation angle detection by the first detector. 図4は、実施形態の演算装置の概略構成図である。FIG. 4 is a schematic configuration diagram of the arithmetic device of the embodiment. 図5は、回転角度取得部が取得する回転体の回転角度の位相を例示するグラフである。FIG. 5 is a graph exemplifying the phase of the rotation angle of the rotating body acquired by the rotation angle acquisition unit. 図6は、位置偏差取得部が取得する移動体の位置偏差の位相を例示するグラフである。FIG. 6 is a graph exemplifying the phase of the positional deviation of the moving object acquired by the positional deviation acquiring unit. 図7は、回転角度取得部が取得した複数の回転角度と、回転角度取得部が取得した複数の回転角度の各々に対応する位置偏差との対応関係を例示するグラフである。FIG. 7 is a graph illustrating a correspondence relationship between a plurality of rotation angles acquired by a rotation angle acquisition unit and position deviations corresponding to each of the plurality of rotation angles acquired by the rotation angle acquisition unit. 図8は、実施形態の演算方法の流れを例示するフローチャートである。FIG. 8 is a flow chart illustrating the flow of the computation method of the embodiment. 図9は、変形例1の演算装置の概略構成図である。FIG. 9 is a schematic configuration diagram of an arithmetic unit according to Modification 1. As shown in FIG. 図10は、2つの錘装着部の各々と、修正錘の取り付け位置との位置関係について説明するための模式図である。FIG. 10 is a schematic diagram for explaining the positional relationship between each of the two weight mounting portions and the mounting position of the correction weight. 図11は、第2の情報生成部による2つの分解修正錘情報の生成について説明するための図である。11A and 11B are diagrams for explaining the generation of two pieces of decomposed correction weight information by the second information generation unit. FIG. 図12は、角度差を説明するための模式図である。FIG. 12 is a schematic diagram for explaining the angular difference. 図13は、変形例4の演算装置の概略構成図である。FIG. 13 is a schematic configuration diagram of an arithmetic unit according to Modification 4. As shown in FIG.
 [実施形態]
 図1は、実施形態の演算システム10の構成図である。
[Embodiment]
FIG. 1 is a configuration diagram of an arithmetic system 10 of the embodiment.
 図1には、演算システム10のみならず、X軸線とY軸線とが図示される。X軸線と、Y軸線とは、互いに直交する方向軸線である。X軸線は、水平面と平行する方向軸線である。また、Y軸線は、重力方向に平行する方向軸線である。X軸線とY軸線との各々の軸線について、軸線に沿う一方向は「+」で表される。また、その方向の反対方向は「-」で表される。例えば、X軸線に沿って一方に向かう方向は、「+X方向」と表される。また、+X方向の反対方向は、「-X方向」と表される。 In FIG. 1, not only the computing system 10 but also the X-axis and the Y-axis are illustrated. The X-axis and the Y-axis are directional axes perpendicular to each other. The X-axis is the directional axis parallel to the horizontal plane. Also, the Y-axis is a directional axis parallel to the direction of gravity. For each of the X and Y axes, one direction along the axis is represented by a "+". Also, the opposite direction to that direction is represented by "-". For example, a direction toward one side along the X-axis is represented as "+X direction." Also, the direction opposite to the +X direction is expressed as "-X direction".
 演算システム10は、工作機械12と、演算装置14とを備える(図1参照)。 The arithmetic system 10 includes a machine tool 12 and an arithmetic device 14 (see FIG. 1).
 工作機械12は、指令に基づいて加工対象物Wに加工を施す産業機械である。工作機械12は、例えば超精密加工機である。超精密加工機の指令の分解能は、10ナノメートル以下である。工作機械12は、回転体16と、第1のモータ18と、移動体20と、第2のモータ22とを備える。 The machine tool 12 is an industrial machine that processes the workpiece W based on instructions. The machine tool 12 is, for example, an ultra-precision machine. The command resolution of ultra-precision machines is 10 nanometers or less. The machine tool 12 includes a rotating body 16 , a first motor 18 , a moving body 20 and a second motor 22 .
 図2は、回転体16と、第1のモータ18との説明図である。 FIG. 2 is an explanatory diagram of the rotating body 16 and the first motor 18. FIG.
 図2には、Z軸線が図示される。Z軸線は、X軸線とY軸線との各々に直交する方向軸線である。Z軸線は水平の方向軸線である。 The Z-axis is illustrated in FIG. The Z-axis is a directional axis perpendicular to each of the X-axis and the Y-axis. The Z-axis is the horizontal directional axis.
 回転体16は、例えば加工対象物Wを支持する面盤またはチャック部である。XY平面視における回転体16の形状は円形状である。回転体16は、回転軸線(回転軸)A16を有する。回転軸線A16はZ軸線と平行である。回転体16は、回転軸線A16を中心に回転可能である。図2の矢印Dは、回転体16の回転方向を示す。 The rotating body 16 is, for example, a face plate or a chuck that supports the workpiece W. As shown in FIG. The shape of the rotating body 16 in the XY plane view is circular. The rotating body 16 has a rotation axis (rotational axis) A16 . The axis of rotation A 16 is parallel to the Z-axis. The rotor 16 is rotatable around a rotation axis A16 . An arrow D R in FIG. 2 indicates the direction of rotation of the rotor 16 .
 回転体16は、複数の錘装着部32を有する。複数の錘装着部32の各々は、錘30を着脱可能に保持する。複数の錘装着部32は、回転体16の側面(XY平面視での周面)に設けられる。互いに隣り合う錘装着部32同士の間には、一定の間隔がおかれる。なお、複数の錘装着部32は、ネジ穴としての深さが統一される。 The rotating body 16 has a plurality of weight mounting portions 32 . Each of the plurality of weight mounting portions 32 detachably holds the weight 30 . A plurality of weight mounting portions 32 are provided on the side surface of the rotating body 16 (peripheral surface in XY plan view). A certain interval is provided between the weight mounting portions 32 adjacent to each other. The plurality of weight mounting portions 32 have the same depth as screw holes.
 錘30は、例えばネジ(イモネジ)である。この場合、複数の錘装着部32の各々は、ネジ穴である。すなわち、錘30は、錘装着部32に挿入されることで、回転体16に装着される。また、錘30は、錘装着部32から抜出されることで、回転体16から取り外される。錘30が回転体16に着脱されることで、回転体16のバランス状態が変化する。なお、錘装着部32に挿入される錘30の挿入深さは、予め決められている。 The weight 30 is, for example, a screw (set screw). In this case, each of the plurality of weight mounting portions 32 is a screw hole. That is, the weight 30 is attached to the rotor 16 by being inserted into the weight attachment portion 32 . Further, the weight 30 is removed from the rotating body 16 by being extracted from the weight mounting portion 32 . The balance state of the rotating body 16 is changed by attaching and detaching the weight 30 to and from the rotating body 16 . The insertion depth of the weight 30 inserted into the weight mounting portion 32 is determined in advance.
 錘30は、オペレータが錘装着部32に着脱させる。ただし、ロボットが錘装着部32に錘30を着脱させてもよい。 The operator attaches and detaches the weight 30 to and from the weight mounting portion 32 . However, the robot may attach and detach the weight 30 to and from the weight mounting portion 32 .
 第1のモータ18は、回転体16を回転させるアクチュエータである。第1のモータ18は、シャフト18aを備える。シャフト18aは、第1のモータ18に供給される電力に応じて回転する。シャフト18aは、回転体16に連結される。これにより、回転体16は、シャフト18aと一体的に回転する。なお、第1のモータ18は、例えばスピンドルモータである。 The first motor 18 is an actuator that rotates the rotating body 16 . The first motor 18 has a shaft 18a. The shaft 18 a rotates according to the power supplied to the first motor 18 . The shaft 18 a is connected to the rotor 16 . Thereby, the rotating body 16 rotates integrally with the shaft 18a. Note that the first motor 18 is, for example, a spindle motor.
 移動体20は、回転体16を支持する部材である。移動体20は、移動軸線に沿って移動可能である。したがって、回転体16は、移動体20と一体的に移動可能である。移動軸線は、回転軸線A16と直交する方向軸線である。本実施形態の移動軸はX軸線である。ただし、移動軸線は、Y軸線でもよい。 The moving body 20 is a member that supports the rotating body 16 . The moving body 20 is movable along a movement axis. Therefore, the rotating body 16 can move integrally with the moving body 20 . The axis of movement is the directional axis orthogonal to the axis of rotation A16 . The axis of movement in this embodiment is the X-axis. However, the movement axis may be the Y-axis.
 第2のモータ22は、移動体20を移動させるアクチュエータである。第2のモータ22は、例えばリニアモータである。リニアモータは、駆動したときに生じる振動が小さい点で好ましい。ただし、第2のモータ22はサーボモータであってもよい。第2のモータ22がサーボモータである場合、工作機械12は、ネジ軸と、ナットとをさらに備える。ネジ軸は移動軸線に平行に設置される。また、ネジ軸は第2のモータ22の駆動に応じて回転する。ナットはネジ軸に螺合する。ナットは移動体20に連結される。これにより、第2のモータ22の回転力に応じて、移動体20が直動する。この場合、第2のモータ22の回転量と移動体20の移動量とが相関する。 The second motor 22 is an actuator that moves the moving body 20 . The second motor 22 is, for example, a linear motor. Linear motors are preferable because they generate less vibration when driven. However, the second motor 22 may be a servomotor. When the second motor 22 is a servomotor, the machine tool 12 further comprises a screw shaft and a nut. The screw shaft is installed parallel to the movement axis. Moreover, the screw shaft rotates according to the driving of the second motor 22 . The nut is screwed onto the screw shaft. The nut is connected to the mobile body 20 . As a result, the moving body 20 linearly moves according to the rotational force of the second motor 22 . In this case, the amount of rotation of the second motor 22 and the amount of movement of the moving body 20 are correlated.
 工作機械12は、第1の検出器24と、第2の検出器26と、制御装置28とをさらに備える(図1参照)。第2の検出器26は、移動体20の移動量を検出するためのセンサである。 The machine tool 12 further includes a first detector 24, a second detector 26, and a controller 28 (see FIG. 1). A second detector 26 is a sensor for detecting the amount of movement of the moving body 20 .
 第1の検出器24は、回転体16の回転角度RAを検出するためのセンサである。第1の検出器24は、例えばロータリエンコーダである。第1の検出器24は、XY平面と平行な面において回転体16とは異なる位置に設置される。以下において、第1の検出器24が設置される位置は設置位置P24とも記載される。 The first detector 24 is a sensor for detecting the rotation angle RA of the rotor 16 . The first detector 24 is, for example, a rotary encoder. The first detector 24 is installed at a different position from the rotor 16 on a plane parallel to the XY plane. In the following, the position at which the first detector 24 is installed is also described as installation position P 24 .
 設置位置P24は、直線Lの延長上に位置すると好ましい。その理由は後述する。直線Lは、回転軸線A16を通る仮想直線である。直線Lは、移動軸線と平行である。 The installation position P24 is preferably located on an extension of the straight line LX . The reason will be described later. The straight line LX is an imaginary straight line passing through the rotation axis A16 . The straight line LX is parallel to the movement axis.
 本実施形態において、設置位置P24は回転体16よりも+X方向である。ただし、設置位置P24は回転体16よりも-X方向でもよい。 In this embodiment, the installation position P 24 is in the +X direction with respect to the rotor 16 . However, the installation position P 24 may be in the −X direction from the rotating body 16 .
 図3Aは、第1の検出器24による回転角度RAの検出を説明するための第1の模式図である。 FIG. 3A is a first schematic diagram for explaining detection of the rotation angle RA by the first detector 24. FIG.
 回転体16は、原点Porgを有する(図3A参照)。原点Porgは、回転角度RAの基準点(ゼロ度を示す点)である。すなわち、回転体16が回転すると、回転方向Dに沿って原点Porgが移動する。移動する原点Porgは、回転方向Dにおいて設置位置P24を通過する。回転方向Dにおいて原点Porgが設置位置P24に到達した場合、第1の検出器24は、回転角度RAとしてゼロ度を示す検出信号を出力する。 The body of revolution 16 has an origin P org (see FIG. 3A). The origin P org is the reference point of the rotation angle RA (the point indicating zero degrees). That is, when the rotating body 16 rotates, the origin P org moves along the rotation direction DR . The moving origin P org passes through the installation position P 24 in the direction of rotation D R . When the origin P org reaches the installation position P 24 in the rotation direction D R , the first detector 24 outputs a detection signal indicating zero degrees as the rotation angle RA.
 図3Bは、第1の検出器24による回転角度RAの検出を説明するための第2の模式図である。 FIG. 3B is a second schematic diagram for explaining detection of the rotation angle RA by the first detector 24. FIG.
 図3Bは、原点Porgが設置位置P24を通過した後に、回転体16が回転方向Dに沿ってα度だけ回転した場合を示す。この場合、第1の検出器24は、回転角度RAとしてα度を示す検出信号を出力する。 FIG. 3B shows the case where the body of rotation 16 is rotated by α degrees along the direction of rotation D R after the origin P org passes through the installation position P 24 . In this case, the first detector 24 outputs a detection signal indicating α degrees as the rotation angle RA.
 なお、本実施形態では、回転体16の回転とシャフト18aの回転とが一体的である。したがって、第1の検出器24は、シャフト18aの回転角度に応じた検出信号を出力してもよい。この場合、第1の検出器24は、第1のモータ18に取り付けられてもよい。 Note that in this embodiment, the rotation of the rotating body 16 and the rotation of the shaft 18a are integrated. Therefore, the first detector 24 may output a detection signal corresponding to the rotation angle of the shaft 18a. In this case, the first detector 24 may be attached to the first motor 18 .
 第1の検出器24の出力信号は、制御装置28に入力される。 The output signal of the first detector 24 is input to the control device 28.
 第2の検出器26は、移動軸線方向における移動体20の位置に応じた検出信号を出力する。第2の検出器26は、例えばリニアスケールである。ただし、第2の検出器26はリニアスケールに限定されない。例えば第2のモータ22がサーボモータである場合、第2の検出器26はロータリエンコーダでもよい。前述の通り、第2のモータ(サーボモータ)22の回転量と移動体20の移動量とは相関するからである。この場合、第2の検出器26は、第2のモータ22のシャフトの回転角度に応じた検出信号を出力する。 The second detector 26 outputs a detection signal according to the position of the moving body 20 in the movement axis direction. The second detector 26 is, for example, a linear scale. However, the second detector 26 is not limited to a linear scale. For example, if the second motor 22 is a servomotor, the second detector 26 may be a rotary encoder. This is because the amount of rotation of the second motor (servo motor) 22 and the amount of movement of the moving body 20 are correlated as described above. In this case, the second detector 26 outputs a detection signal corresponding to the rotation angle of the shaft of the second motor 22 .
 第2の検出器26の検出信号は、制御装置28に入力される。なお、以下の説明では、特に断らない限り、移動体20の位置とは、移動体20の移動軸線方向における位置を示す。 A detection signal from the second detector 26 is input to the control device 28 . In the following description, unless otherwise specified, the position of the moving body 20 indicates the position of the moving body 20 in the movement axis direction.
 制御装置28は、回転体16の回転制御と、移動体20の移動制御とを行う電子装置(コンピュータ)である。制御装置28は、例えば数値制御装置(CNC : Computerized Numerical Controller)である。制御装置28は、プロセッサと、メモリとを備える。制御装置28のメモリは、工作機械12を制御するための所定のプログラムを記憶する。制御装置28のプロセッサは、所定のプログラムを実行することで、工作機械12を制御する。なお、制御装置28のプロセッサと、制御装置28のメモリとは、いずれも不図示である。 The control device 28 is an electronic device (computer) that controls the rotation of the rotating body 16 and the movement control of the moving body 20 . The controller 28 is, for example, a numerical controller (CNC: Computerized Numerical Controller). Controller 28 includes a processor and memory. The memory of controller 28 stores a predetermined program for controlling machine tool 12 . A processor of the control device 28 controls the machine tool 12 by executing a predetermined program. Neither the processor of the control device 28 nor the memory of the control device 28 are shown.
 回転体16の回転制御において、制御装置28は、第1のモータ18を制御する。第1のモータ18の制御は、回転体16の回転角度RAに基づいて行われる。したがって、制御装置28は、第1の検出器24の検出信号に基づいて回転角度RAを算出する。制御装置28は、算出した回転角度RAに基づいて、第1のモータ18を制御する。 The control device 28 controls the first motor 18 in controlling the rotation of the rotating body 16 . The control of the first motor 18 is performed based on the rotation angle RA of the rotor 16 . Therefore, the control device 28 calculates the rotation angle RA based on the detection signal of the first detector 24 . The control device 28 controls the first motor 18 based on the calculated rotation angle RA.
 移動体20の移動制御において、制御装置28は、第2のモータ22をフィードバック制御する。第2のモータ22のフィードバック制御は、移動体20の位置に基づいて行われる。したがって、制御装置28は、第2の検出器26の検出信号に基づいて、移動軸線方向における移動体20の実際の位置(以下、検出位置)を算出する。制御装置28は、算出した移動体20の位置に基づいて、第2のモータ22をフィードバック制御する。 In the movement control of the moving body 20, the control device 28 feedback-controls the second motor 22. Feedback control of the second motor 22 is performed based on the position of the moving body 20 . Therefore, based on the detection signal of the second detector 26, the control device 28 calculates the actual position (hereinafter referred to as detection position) of the moving body 20 in the movement axis direction. The control device 28 feedback-controls the second motor 22 based on the calculated position of the moving body 20 .
 移動体20の移動制御は、位置偏差PDに基づく移動体20の位置調整制御を含む。位置偏差PDは、指令に基づく移動体20の位置(指令位置)と、算出された検出位置との偏差である。したがって、制御装置28は、指令位置と、算出された検出位置とに基づいて、位置偏差PDを算出する。また、制御装置28は、位置偏差PDに基づいて、第2のモータ22を制御する。これにより、指令位置と、移動体20の実際の位置とのずれが是正される。なお、位置偏差PDは、例えば工作機械12の振動に応じて発生する。工作機械12の振動は、例えば回転体16の回転に応じて発生する。特に、回転体16は、アンバランス状態において回転すると、上記振動を発生させやすい。回転体16のアンバランス状態とは、X方向とY方向との少なくとも一方向に関して、回転体16の重心の位置が回転軸線A16からずれた状態である。この場合、回転体16の重心の位置は、前述の原点Porgと同様に、回転体16の回転に伴い回転方向Dに沿って移動する。 Movement control of the moving body 20 includes position adjustment control of the moving body 20 based on the position deviation PD. The position deviation PD is the deviation between the position of the moving body 20 based on the command (command position) and the calculated detected position. Therefore, the control device 28 calculates the position deviation PD based on the commanded position and the calculated detected position. Also, the control device 28 controls the second motor 22 based on the positional deviation PD. As a result, the deviation between the commanded position and the actual position of the moving body 20 is corrected. Note that the positional deviation PD is generated according to vibration of the machine tool 12, for example. Vibration of the machine tool 12 is generated according to the rotation of the rotating body 16, for example. In particular, the rotating body 16 tends to generate the above-described vibration when it rotates in an unbalanced state. The unbalanced state of the rotating body 16 is a state in which the position of the center of gravity of the rotating body 16 is deviated from the rotation axis A16 in at least one of the X direction and the Y direction. In this case, the position of the center of gravity of the rotating body 16 moves along the rotation direction DR as the rotating body 16 rotates, like the origin P org described above.
 工作機械12の構成例に関する説明は以上である。ただし、工作機械12の構成は、上記に限定されない。例えば、回転体16のうち+Z方向を向く面、または回転体16のうち-Z方向を向く面に、錘装着部32が設けられてもよい。また、回転体16を回転させるアクチュエータは、エアタービンを含んでもよい。移動体20を移動させるアクチュエータは、流体軸受を含んでもよい。 The explanation about the configuration example of the machine tool 12 is above. However, the configuration of the machine tool 12 is not limited to the above. For example, the weight mounting portion 32 may be provided on the surface of the rotor 16 facing the +Z direction or the surface of the rotor 16 facing the −Z direction. Also, the actuator that rotates the rotating body 16 may include an air turbine. The actuators that move the moving body 20 may include fluid bearings.
 図4は、実施形態の演算装置14の概略構成図である。 FIG. 4 is a schematic configuration diagram of the computing device 14 of the embodiment.
 工作機械12の説明を踏まえ、以下では演算装置14が説明される。演算装置14は電子装置である。演算装置14は、制御装置28から情報取得可能である。例えば演算装置14は、制御装置28と通信可能である。演算装置14は、表示部34と、操作部36と、記憶部38と、演算部40とを備える(図4参照)。 Based on the explanation of the machine tool 12, the calculation device 14 will be explained below. Computing device 14 is an electronic device. The computing device 14 can obtain information from the control device 28 . For example, computing device 14 can communicate with controller 28 . The calculation device 14 includes a display section 34, an operation section 36, a storage section 38, and a calculation section 40 (see FIG. 4).
 表示部34は、表示画面を有する表示装置である。表示部34の表示画面には、情報が適宜表示される。表示部34の表示画面の材料は、例えば液晶またはOEL(Organic Electro-Luminescence)を含む。 The display unit 34 is a display device having a display screen. Information is appropriately displayed on the display screen of the display unit 34 . The material of the display screen of the display unit 34 includes, for example, liquid crystal or OEL (Organic Electro-Luminescence).
 操作部36は、情報入力を受け付ける入力装置である。オペレータは、操作部36を介して、演算装置14に情報(指示)を入力可能である。操作部36は、例えば操作盤を有する。ただし、操作部36は操作盤に限定されない。例えば操作部36は、キーボード、マウス、またはタッチパネルを適宜有してもよい。タッチパネルは、例えば表示部34の表示画面に設置される。 The operation unit 36 is an input device that receives information input. The operator can input information (instructions) to the computing device 14 via the operation unit 36 . The operation unit 36 has, for example, an operation panel. However, the operation unit 36 is not limited to the operation panel. For example, the operation unit 36 may appropriately have a keyboard, mouse, or touch panel. The touch panel is installed, for example, on the display screen of the display unit 34 .
 記憶部38は、情報を記憶する記憶装置である。記憶部38は、1以上のメモリを有する。例えば記憶部38は、RAM(Random Access Memory)と、ROM(Read Only Memory)とを適宜有する。 The storage unit 38 is a storage device that stores information. The storage unit 38 has one or more memories. For example, the storage unit 38 appropriately has a RAM (Random Access Memory) and a ROM (Read Only Memory).
 記憶部38は、演算プログラム42を記憶する。演算プログラム42は、本実施形態の演算方法を演算装置14に実行させるためのプログラムである。なお、記憶部38が記憶する情報は演算プログラム42に限定されない。記憶部38は、必要に応じて種々の情報を適宜記憶する。 The storage unit 38 stores the calculation program 42 . The calculation program 42 is a program for causing the calculation device 14 to execute the calculation method of the present embodiment. Information stored in the storage unit 38 is not limited to the arithmetic program 42 . The storage unit 38 appropriately stores various information as needed.
 演算部40は、情報を処理する処理装置(1以上のプロセッサ)である。演算部40は、例えばCPU(Central Processing Unit)と、GPU(Graphics Processing Unit)とを適宜有する。演算部40は、記憶部38を適宜参照可能である。 The computing unit 40 is a processing device (one or more processors) that processes information. The calculation unit 40 appropriately includes, for example, a CPU (Central Processing Unit) and a GPU (Graphics Processing Unit). The calculation unit 40 can appropriately refer to the storage unit 38 .
 演算部40は、指令出力部44と、回転角度取得部46と、位置偏差取得部48と、バランス測定部50と、第1のバランス情報取得部52と、第2のバランス情報取得部54と、仮錘情報取得部56と、情報生成部58とを備える(図4参照)。これらの各部(44、46、48、50、52、54、56、58)は、演算部40が演算プログラム42を実行することにより、実現される。 The calculation unit 40 includes a command output unit 44, a rotation angle acquisition unit 46, a position deviation acquisition unit 48, a balance measurement unit 50, a first balance information acquisition unit 52, and a second balance information acquisition unit 54. , a virtual weight information acquisition unit 56 and an information generation unit 58 (see FIG. 4). These units ( 44 , 46 , 48 , 50 , 52 , 54 , 56 , 58 ) are implemented by the operation unit 40 executing the operation program 42 .
 指令出力部44は、工作機械12(制御装置28)に指令を出す。この指令は、回転体16を回転させつつ、移動体20を所定の位置で停止させる内容を含む。 The command output unit 44 issues a command to the machine tool 12 (control device 28). This command includes contents to stop the moving body 20 at a predetermined position while rotating the rotating body 16 .
 回転体16は、指令出力部44の指令に基づいて回転する。ここで、回転角度取得部46は、複数の回転角度RAを取得する。複数の回転角度RAは、制御装置28から取得される。ただし、回転角度取得部46は、第1の検出器24の検出信号を取得してもよい。その場合、回転角度取得部46は、第1の検出器24の検出信号に基づいて回転角度RAを算出してもよい。 The rotating body 16 rotates based on the command from the command output unit 44 . Here, the rotation angle acquisition unit 46 acquires a plurality of rotation angles RA. A plurality of rotation angles RA are obtained from the controller 28 . However, the rotation angle acquisition unit 46 may acquire the detection signal of the first detector 24 . In that case, the rotation angle acquisition section 46 may calculate the rotation angle RA based on the detection signal of the first detector 24 .
 回転角度RAの取得周期は、できるだけ短い方が好ましい。例えば、回転角度RAが1度単位(0度、1度、2度、…359度)で取得される取得周期と、回転角度RAが0.1度単位(0.0度、0.1度、0.2度、…359.9度)で取得される取得周期とでは、後者の方が好ましい。回転角度RAの取得周期が短い場合、回転体16のバランス状態が精度よく測定される。ただし、回転角度RAの取得周期は、第1の検出器24の検出周期と、第1の検出器24の分解能とに応じて決められる。 It is preferable that the acquisition period of the rotation angle RA be as short as possible. For example, an acquisition cycle in which the rotation angle RA is acquired in units of 1 degree (0 degrees, 1 degree, 2 degrees, . , 0.2 degrees, . . . , 359.9 degrees), the latter is preferable. When the rotation angle RA is acquired at a short period, the balance state of the rotor 16 can be accurately measured. However, the acquisition cycle of the rotation angle RA is determined according to the detection cycle of the first detector 24 and the resolution of the first detector 24 .
 図5は、回転角度取得部46が取得する回転体16の回転角度RAの位相を例示するグラフである。 FIG. 5 is a graph exemplifying the phase of the rotation angle RA of the rotating body 16 acquired by the rotation angle acquisition unit 46. As shown in FIG.
 図5のグラフは、回転角度RAを示す縦軸線と、時間を示す横軸線とを有する。図5のグラフは、時系列に沿ってプロットされた複数の回転角度RAを示す。例えば、時点tにおける回転体16の回転角度RAは、「θ」である。図5のグラフは、回転角度取得部46による複数の回転角度RAの取得結果に基づいて作成可能である。なお、図5の縦軸線の範囲は、0度~360度である。ただし、図5の縦軸線の範囲は、0度~360度に限定されない。例えば図5の縦軸線は、361度以上の回転角度RAを含んでもよい。 The graph of FIG. 5 has a vertical axis indicating rotation angle RA and a horizontal axis indicating time. The graph of FIG. 5 shows multiple rotation angles RA plotted along a time series. For example, the rotation angle RA of the rotor 16 at time t1 is "θ". The graph in FIG. 5 can be created based on the results of obtaining a plurality of rotation angles RA by the rotation angle obtaining unit 46. FIG. Note that the range of the vertical axis in FIG. 5 is 0 degrees to 360 degrees. However, the range of the vertical axis in FIG. 5 is not limited to 0 degrees to 360 degrees. For example, the vertical axis of FIG. 5 may include a rotation angle RA of 361 degrees or more.
 回転体16は、回転することで、振動を発生する。この振動は、移動体20に伝搬する。したがって、移動体20は、回転体16の振動に応じて、指令出力部44の指令に基づく所定の位置からずれる。その結果、移動体20の位置と、所定の位置との位置偏差PDが生じる。回転体16が回転を継続することで、複数の位置偏差PDが生じる。ここで、位置偏差取得部48は、複数の位置偏差PDを取得する。 The rotating body 16 generates vibration by rotating. This vibration propagates to the moving body 20 . Therefore, the moving body 20 deviates from the predetermined position based on the command from the command output unit 44 according to the vibration of the rotating body 16 . As a result, a position deviation PD occurs between the position of the moving body 20 and a predetermined position. As the rotating body 16 continues to rotate, multiple position deviations PD occur. Here, the position deviation acquisition unit 48 acquires a plurality of position deviations PD.
 複数の位置偏差PDは、制御装置28から取得される。ただし、位置偏差取得部48は、制御装置28の指令と、第2の検出器26の検出信号とに基づいて、位置偏差PDを算出してもよい。 A plurality of position deviations PD are obtained from the controller 28 . However, the position deviation acquisition section 48 may calculate the position deviation PD based on the command from the control device 28 and the detection signal from the second detector 26 .
 複数の位置偏差PDの各々は、回転体16の振動に応じた成分を多く含む。回転体16の振動は、回転体16のバランス状態に応じて変化する。つまり、複数の位置偏差PDには、回転体16のバランス状態の変化が、強く反映される。 Each of the plurality of positional deviations PD includes many components corresponding to the vibration of the rotating body 16. The vibration of the rotating body 16 changes according to the balance state of the rotating body 16 . In other words, changes in the balance state of the rotating body 16 are strongly reflected in the plurality of positional deviations PD.
 位置偏差取得部48による位置偏差PDの取得周期と、回転角度取得部46による回転角度RAの取得周期とは、同期していると好ましい。この場合、回転角度RAと位置偏差PDとの対応付け(後述)が精度良く達成される。ただし、上記位置偏差PDの取得周期と、上記回転角度RAの取得周期とは、互いに異なってもよい。 The acquisition cycle of the position deviation PD by the position deviation acquisition unit 48 and the acquisition cycle of the rotation angle RA by the rotation angle acquisition unit 46 are preferably synchronized. In this case, the correspondence between the rotation angle RA and the positional deviation PD (described later) is achieved with high accuracy. However, the acquisition cycle of the position deviation PD and the acquisition cycle of the rotation angle RA may be different from each other.
 図6は、位置偏差取得部48が取得する移動体20の位置偏差PDの位相を例示するグラフである。 FIG. 6 is a graph exemplifying the phase of the position deviation PD of the moving body 20 acquired by the position deviation acquisition unit 48. FIG.
 図6のグラフは、位置偏差PDを示す縦軸線と、時間を示す横軸線とを有する。図6のグラフは、時系列に沿ってプロットされた複数の位置偏差PDを示す。例えば、時点tでの位置偏差PDは「-r」である。図6の時点tと、図5の時点tとは、同時点である。図6のグラフは、位置偏差取得部48による複数の位置偏差PDの取得結果に基づいて作成可能である。 The graph of FIG. 6 has a vertical axis representing position deviation PD and a horizontal axis representing time. The graph of FIG. 6 shows a plurality of positional deviations PD plotted along time series. For example, the position deviation PD at time t1 is "-r". Time t1 in FIG. 6 and time t1 in FIG. 5 are the same time. The graph in FIG. 6 can be created based on the acquisition results of a plurality of positional deviations PD by the positional deviation acquisition unit 48. FIG.
 なお、図6において、位置偏差PDのプラスマイナスは、位置ずれの方向を示す(図7も同様)。例えば、図6において正数の位置偏差PDは、移動体20が指令位置よりも-X方向にずれることで生じた位置偏差PDを示す。図6において負数の位置偏差PDは、移動体20が指令位置よりも+X方向にずれることで生じた位置偏差PDを示す。 In addition, in FIG. 6, plus and minus of the positional deviation PD indicate the direction of positional deviation (the same applies to FIG. 7). For example, a positive positional deviation PD in FIG. 6 indicates the positional deviation PD caused by the moving body 20 deviating from the commanded position in the −X direction. In FIG. 6, the negative positional deviation PD indicates the positional deviation PD caused by the moving body 20 deviating from the command position in the +X direction.
 バランス測定部50は、回転角度RAと位置偏差PDとを対応付ける。これにより、バランス測定部50は、回転体16のバランス状態を測定する。ここで、複数の回転角度RAの各々は、時間軸上において対応する位置偏差PDと対応付けられる。例えば、図5の回転角度RA=θは、時点tで取得される。また、図6の位置偏差PD=-rも、時点tで取得される。この場合、バランス測定部50は、回転角度RA=θと、位置偏差PD=-rとを対応付ける。 The balance measurement unit 50 associates the rotation angle RA with the positional deviation PD. Thereby, the balance measuring section 50 measures the balance state of the rotating body 16 . Here, each of the plurality of rotation angles RA is associated with the corresponding positional deviation PD on the time axis. For example, the rotation angle RA=θ in FIG. 5 is obtained at time t1 . The position deviation PD=-r in FIG. 6 is also acquired at time t1 . In this case, the balance measuring unit 50 associates the rotation angle RA=θ with the positional deviation PD=−r.
 ただし、位置偏差取得部48による位置偏差PDの取得周期と、回転角度取得部46による回転角度RAの取得周期とが同期していない場合がある。この場合、互いに同時点で取得される回転角度RAと位置偏差PDとの組が存在しない可能性が生じる。この場合、バランス測定部50は、取得時点が時間軸上で互いに近い回転角度RAと位置偏差PDとを対応付けてもよい。または、バランス測定部50は、位置偏差PDを補間することで、回転角度RAと、補間された位置偏差PDとを対応付けてもよい。この補間は、例えば直線補間(線形補間)に基づいて行われる。また、上記回転角度RAの取得周期と上記位置偏差PDの取得周期とを同期させることが難しい場合、上記回転角度RAの取得周期よりも上記位置偏差PDの取得周期の方をできるだけ短くすると好ましい。その理由は、指令された速度で回転する回転体16の回転角度RAと、不安定に振動する移動体20の位置偏差PDとでは、回転角度RAの方が容易に補間できるからである。すなわち、補間の精度を高めやすいからである。 However, there are cases where the acquisition cycle of the position deviation PD by the position deviation acquisition unit 48 and the acquisition cycle of the rotation angle RA by the rotation angle acquisition unit 46 are not synchronized. In this case, there may be no set of rotation angle RA and position deviation PD that are obtained at the same time. In this case, the balance measurement unit 50 may associate the rotation angle RA and the position deviation PD that are acquired close to each other on the time axis. Alternatively, the balance measurement unit 50 may associate the rotation angle RA with the interpolated position deviation PD by interpolating the position deviation PD. This interpolation is performed, for example, based on linear interpolation (linear interpolation). If it is difficult to synchronize the acquisition cycle of the rotation angle RA and the acquisition cycle of the position deviation PD, it is preferable to make the acquisition cycle of the position deviation PD as short as possible than the acquisition cycle of the rotation angle RA. The reason is that the rotation angle RA can be more easily interpolated between the rotation angle RA of the rotating body 16 rotating at the commanded speed and the position deviation PD of the moving body 20 vibrating unstably. That is, it is because it is easy to improve the accuracy of interpolation.
 また、回転体16に振動が生じる時点と、その振動が移動体20に伝搬する時点とには時間差がある。すなわち、回転体16のバランス状態は、回転体16に振動が生じた時点におけるバランス状態である。これに対し、そのバランス状態を反映した位置偏差PDが観測されるのは、回転体16に振動が生じた時点よりも後である。回転角度RAと位置偏差PDとの対応付けは、上記時間差を考慮して行うことが理想的である。ただし、説明をできるだけ簡易にするため、本実施形態において上記時間差は無視される。 Also, there is a time difference between the time when the rotating body 16 vibrates and the time when the vibration propagates to the moving body 20 . That is, the balance state of the rotor 16 is the balance state at the time when the rotor 16 vibrates. On the other hand, the position deviation PD reflecting the balance state is observed after the time when the rotating body 16 vibrates. Ideally, the rotation angle RA and the positional deviation PD are associated with each other in consideration of the time difference. However, in order to simplify the explanation as much as possible, the time difference is ignored in this embodiment.
 図7は、回転角度取得部46が取得した複数の回転角度RAと、回転角度取得部46が取得した複数の回転角度RAの各々に対応する位置偏差PDとの対応関係を例示するグラフである。 FIG. 7 is a graph illustrating a correspondence relationship between a plurality of rotation angles RA acquired by the rotation angle acquisition unit 46 and position deviations PD corresponding to each of the plurality of rotation angles RA acquired by the rotation angle acquisition unit 46. .
 図7のグラフは、位置偏差PDを示す縦軸線と、回転角度RAを示す横軸線とを有する。図7の横軸線の範囲は、0度~360度である。すなわち、図7の横軸線の範囲は、回転体16の一回転分である。ただし、図7の横軸線は、361度以上の回転角度RAを含んでもよい。 The graph in FIG. 7 has a vertical axis indicating the positional deviation PD and a horizontal axis indicating the rotation angle RA. The range of the horizontal axis in FIG. 7 is 0 degrees to 360 degrees. That is, the range of the horizontal axis in FIG. 7 is one rotation of the rotor 16 . However, the horizontal axis of FIG. 7 may include a rotation angle RA of 361 degrees or more.
 図7のグラフのうち、移動体20の最も大きな位置ずれを表す位置偏差PDは、[-r]である。位置偏差PD=-rは、回転角度RA=θに対応する。すなわち、+X方向の位置偏差PDは、回転角度RA=θの場合に、最も大きくなる。その理由は、回転角度RA=θの場合に、回転体16の重心の位置(前述)が、直線L上であって回転軸線A16より+X方向の位置となるからである。ここで、回転体16の重心の位置を示す回転位置は、以下において「アンバランス位置」とも記載される。また、位置偏差PD=-rのマイナス符号は、移動体20が指令位置から+X方向にずれたことを表す。 In the graph of FIG. 7, the positional deviation PD representing the largest positional deviation of the moving body 20 is [-r]. The position deviation PD=-r corresponds to the rotation angle RA=θ. That is, the positional deviation PD in the +X direction is the largest when the rotation angle RA=θ. The reason is that when the rotation angle RA=θ, the position of the center of gravity of the rotor 16 (described above) is on the straight line LX and in the +X direction from the rotation axis A 16 . Here, the rotational position indicating the position of the center of gravity of the rotating body 16 is hereinafter also referred to as the "unbalanced position". Also, the minus sign of the positional deviation PD=-r indicates that the moving body 20 has deviated from the commanded position in the +X direction.
 以上を踏まえ、アンバランス位置は、回転角度RA=θの場合に、直線L上であって、回転軸線A16よりも+X方向に到達する。ここで、従来においては、アンバランス位置を調べるためにフィールドバランサが用いられていた。しかし、本実施形態によれば、アンバランス位置は、複数の回転角度RAと複数の位置偏差PDとの対応関係(図7のグラフ)に基づいて特定される。すなわち、演算装置14は、回転角度RAと、位置偏差PDとに基づいて、回転体16のバランス状態を測定する。したがって、本実施形態においてフィールドバランサは不要である。 Based on the above, when the rotation angle RA=θ, the unbalanced position is on the straight line LX and reaches in the +X direction from the rotation axis A16 . Here, conventionally, a field balancer has been used to check the unbalanced position. However, according to the present embodiment, the unbalance position is identified based on the correspondence relationship (graph in FIG. 7) between multiple rotation angles RA and multiple position deviations PD. That is, the arithmetic device 14 measures the balance state of the rotor 16 based on the rotation angle RA and the positional deviation PD. Therefore, no field balancer is required in this embodiment.
 また、本実施形態の第1の検出器24は、直線L上であって、回転軸線A16よりも+X方向に設置される。この場合、「+X方向の位置偏差PDの最大値に対応する回転角度RA」と、「アンバランス位置が回転方向D上で設置位置P24に到達する回転角度RA」とが一致する。これにより、オペレータは、より容易にアンバランス位置を把握することができる。 Also, the first detector 24 of the present embodiment is installed on the straight line LX and in the +X direction from the rotation axis A16 . In this case, the "rotational angle RA corresponding to the maximum value of the positional deviation PD in the +X direction" and the "rotational angle RA at which the unbalanced position reaches the installation position P24 in the rotational direction DR " match. This allows the operator to more easily grasp the unbalanced position.
 第1のバランス情報取得部52は、第1のバランス情報Iを取得する。第1のバランス情報Iは、最大値rと、回転角度θとを含む情報である。ここで、最大値rは、回転体16を回転させた場合における、位置偏差PDの最大値を示す。回転角度θは、最大値rに時間軸上で対応する回転角度RAを示す。 The first balance information acquisition unit 52 acquires the first balance information I1 . The first balance information I1 is information including the maximum value r0 and the rotation angle θ0 . Here, the maximum value r0 indicates the maximum value of the positional deviation PD when the rotating body 16 is rotated. The rotation angle θ 0 indicates the rotation angle RA corresponding to the maximum value r 0 on the time axis.
 第1のバランス情報Iは、回転体16のバランス状態の測定結果に基づいて取得される。取得された第1のバランス情報Iは、記憶部38に記憶される。 The first balance information I1 is obtained based on the measurement result of the balance state of the rotor 16 . The acquired first balance information I1 is stored in the storage unit 38 .
 第2のバランス情報取得部54は、第2のバランス情報Iを取得する。第2のバランス情報Iは、最大値rと、回転角度θとを含む情報である。ここで、最大値rは、仮錘30tempを装着した回転体16を回転させた場合における、位置偏差PDの最大値を示す。仮錘30tempは、重量wを有する錘30を示す。仮錘30tempは、複数の錘装着部32のうち一つに装着される。仮錘30tempは、第1のバランス情報Iが第1のバランス情報取得部52により取得された後に、回転体16に装着される。回転角度θは、最大値rに時間軸上で対応する回転角度RAを示す。 The second balance information acquisition unit 54 acquires the second balance information I2 . The second balance information I2 is information including the maximum value r1 and the rotation angle θ1 . Here, the maximum value r1 indicates the maximum value of the positional deviation PD when the rotor 16 on which the temporary weight 30 temp is mounted is rotated. Temporary weight 30 temp indicates weight 30 with weight w1 . The temporary weight 30 temp is attached to one of the plurality of weight attachment portions 32 . The temporary weight 30 temp is attached to the rotating body 16 after the first balance information I1 is acquired by the first balance information acquisition unit 52 . The rotation angle θ1 indicates the rotation angle RA corresponding to the maximum value r1 on the time axis.
 第2のバランス情報Iは、仮錘30tempが装着された回転体16のバランス状態の測定結果に基づいて取得される。取得された第2のバランス情報Iは、記憶部38に記憶される。 The second balance information I2 is acquired based on the measurement result of the balance state of the rotating body 16 to which the temporary weight 30 temp is attached. The acquired second balance information I2 is stored in the storage unit 38 .
 仮錘情報取得部56は、仮錘情報Itempを取得する。仮錘情報Itempは、重量wと、仮錘30tempの取り付け位置γとを含む情報である。仮錘情報Itempは、例えば操作部36を介して演算装置14に入力される。取得された仮錘情報Itempは、記憶部38に記憶される。 The provisional weight information acquisition unit 56 acquires provisional weight information I temp . The temporary weight information I temp is information including the weight w 1 and the mounting position γ 1 of the temporary weight 30 temp . The temporary weight information I temp is input to the arithmetic unit 14 via the operation unit 36, for example. The obtained temporary weight information I temp is stored in the storage unit 38 .
 取り付け位置γは、回転角度RAにより表される。すなわち、取り付け位置γは、回転体16のうち回転方向Dに沿って回転角度RA=γの位置に、仮錘30tempが装着されたことを示す。 The mounting position γ1 is represented by the rotation angle RA. That is, the mounting position γ 1 indicates that the temporary weight 30 temp is mounted at a position of the rotation angle RA=γ 1 along the rotation direction DR in the rotor 16 .
 情報生成部58は、修正錘情報Ifixを生成する。修正錘情報Ifixは、修正錘30fixの重量wと、修正錘30fixの取り付け位置γとを含む情報である。ここで、修正錘30fixは、回転体16のバランス状態を修正するための錘30である。取り付け位置γは、回転体16のうち回転方向Dに沿った回転角度RA=γの位置を示す。重量wと取り付け位置γとは、情報生成部58により算出される。 The information generation unit 58 generates corrected spindle information I fix . The correction weight information I fix is information including the weight w x of the correction weight 30 fix and the mounting position γ x of the correction weight 30 fix . Here, the correction weight 30 fix is the weight 30 for correcting the balance state of the rotor 16 . The mounting position γ x indicates the position of the rotating body 16 at the rotation angle RA=γ x along the rotation direction DR . The weight w x and the mounting position γ x are calculated by the information generator 58 .
 情報生成部58は、下記の数式(1)に基づいて重量wを算出する。数式(1)中の各文字が示す値は次のとおりである。すなわち、「r:第1のバランス情報Iが示す位置偏差PDの最大値」である。「r:第2のバランス情報Iが示す位置偏差PDの最大値」である。「θ:第1のバランス情報Iが示す回転角度RA」である。「θ:第2のバランス情報Iが示す回転角度RA」である。「w1:仮錘情報Itempが示す仮錘30tempの重量」である。 The information generator 58 calculates the weight wx based on the following formula (1). The values indicated by each character in the formula (1) are as follows. That is, "r 0 : the maximum value of the positional deviation PD indicated by the first balance information I 1 ". "r 1 : the maximum value of the positional deviation PD indicated by the second balance information I 2 ". It is "θ 0 : rotation angle RA indicated by the first balance information I 1 ". "θ 1 : rotation angle RA indicated by the second balance information I 2 ". It is "w 1 : the weight of the temporary weight 30 temp indicated by the temporary weight information I temp ".
Figure JPOXMLDOC01-appb-M000005
 
Figure JPOXMLDOC01-appb-M000005
 
 情報生成部58は、下記の数式(2)に基づいて取り付け位置γを算出する。数式(2)中の各文字が示す値は次のとおりである。すなわち、「r:第1のバランス情報Iが示す位置偏差PDの最大値」である。「r:第2のバランス情報Iが示す位置偏差PDの最大値」である。「θ:第1のバランス情報Iが示す回転角度RA」である。「θ:第2のバランス情報Iが示す回転角度RA」である。「γ:仮錘情報Itempが示す仮錘30tempの取り付け位置」である。「w’:数式(1)の絶対値記号の中身[数式(1)参照]」である。 The information generator 58 calculates the mounting position γ x based on the following formula (2). The values indicated by each character in the formula (2) are as follows. That is, "r 0 : the maximum value of the positional deviation PD indicated by the first balance information I 1 ". "r 1 : the maximum value of the positional deviation PD indicated by the second balance information I 2 ". It is "θ 0 : rotation angle RA indicated by the first balance information I 1 ". "θ 1 : rotation angle RA indicated by the second balance information I 2 ". It is "γ 1 : attachment position of temporary weight 30 temp indicated by temporary weight information I temp ". It is "w' x : content of absolute value symbol in formula (1) [see formula (1)]".
Figure JPOXMLDOC01-appb-M000006
 
Figure JPOXMLDOC01-appb-M000006
 
 修正錘情報Ifixは、記憶部38に記憶される。また、修正錘情報Ifixは、表示部34を介してオペレータに示される。オペレータは、回転体16のうちの取り付け位置γに、重量wの修正錘30fixを取り付ける。これにより、回転体16のバランス状態が好適に修正される。 The corrected weight information I fix is stored in the storage unit 38 . Also, the corrected weight information I fix is shown to the operator via the display unit 34 . The operator attaches a correction weight 30 fix of weight w x to the attachment position γ x of the rotating body 16 . Thereby, the balance state of the rotating body 16 is preferably corrected.
 本実施形態の演算装置14の構成例は以上である。 The configuration example of the arithmetic unit 14 of the present embodiment is as above.
 図8は、実施形態の演算方法の流れを例示するフローチャートである。 FIG. 8 is a flowchart illustrating the flow of the calculation method of the embodiment.
 図8の演算方法は、演算装置14により実行される。図8の演算方法は、第1のバランス測定ステップS1と、第1のバランス情報取得ステップS2と、仮錘取り付けステップS3とを含む。また、図8の演算方法は、第2のバランス測定ステップS4と、第2のバランス情報取得ステップS5と、仮錘情報取得ステップS6と、情報生成ステップ(第1の情報生成ステップ)S7とをさらに含む。 The calculation method of FIG. 8 is executed by the calculation device 14. The calculation method of FIG. 8 includes a first balance measurement step S1, a first balance information acquisition step S2, and a temporary weight attachment step S3. 8 includes a second balance measurement step S4, a second balance information acquisition step S5, a temporary weight information acquisition step S6, and an information generation step (first information generation step) S7. Including further.
 第1のバランス測定ステップS1では、バランス測定部50が、回転体16のバランス状態を測定する。より詳細に、第1のバランス測定ステップS1は、第1の指令出力ステップS11と、第1の回転角度取得ステップS12と、第1の位置偏差取得ステップS13と、第1の対応付けステップS14とを含む。 In the first balance measurement step S1, the balance measurement unit 50 measures the balance state of the rotating body 16. More specifically, the first balance measurement step S1 includes a first command output step S11, a first rotation angle acquisition step S12, a first position deviation acquisition step S13, and a first association step S14. including.
 第1の指令出力ステップS11では、指令出力部44が工作機械12に指令を出す。これにより、回転体16が回転する。また、移動体20の移動が制限される。 In the first command output step S11, the command output unit 44 issues a command to the machine tool 12. Thereby, the rotating body 16 rotates. Also, the movement of the moving body 20 is restricted.
 第1の回転角度取得ステップS12では、回転角度取得部46が回転角度RAを取得する。ここで、回転角度取得部46は、複数の回転角度RAを取得する。複数の回転角度RAは、例えば0度~360度の範囲で取得される。 In the first rotation angle acquisition step S12, the rotation angle acquisition unit 46 acquires the rotation angle RA. Here, the rotation angle acquisition unit 46 acquires a plurality of rotation angles RA. A plurality of rotation angles RA are acquired in the range of 0 degrees to 360 degrees, for example.
 第1の位置偏差取得ステップS13では、位置偏差取得部48が位置偏差PDを取得する。回転角度取得部46による複数の回転角度RAの取得(S12)と、位置偏差取得部48による複数の位置偏差PDの取得(S13)とは、並行して実行されてもよい。 In the first positional deviation obtaining step S13, the positional deviation obtaining unit 48 obtains the positional deviation PD. Acquisition of a plurality of rotation angles RA by the rotation angle acquisition unit 46 (S12) and acquisition of a plurality of position deviations PD by the position deviation acquisition unit 48 (S13) may be performed in parallel.
 第1の対応付けステップS14では、バランス測定部50が、回転角度RAと位置偏差PDとを時間軸上で対応付ける。これにより、回転体16のバランス状態が測定される。 In the first association step S14, the balance measurement unit 50 associates the rotation angle RA and the position deviation PD on the time axis. Thereby, the balance state of the rotating body 16 is measured.
 第1のバランス情報取得ステップS2では、第1のバランス情報取得部52が第1のバランス情報Iを取得する。 In the first balance information acquisition step S2, the first balance information acquisition unit 52 acquires the first balance information I1 .
 仮錘取り付けステップS3では、回転体16に仮錘30tempが装着される。なお、仮錘取り付けステップS3は、第1の対応付けステップS14の後であれば、第1のバランス情報取得ステップS2より先に実行されてもよい。仮錘取り付けステップS3の実行中において、回転体16は一旦停止してもよい。 In the temporary weight attaching step S3, the rotating body 16 is attached with the temporary weight 30 temp . Note that the temporary weight attachment step S3 may be performed before the first balance information acquisition step S2 as long as it is after the first association step S14. The rotating body 16 may temporarily stop during execution of the temporary weight attaching step S3.
 第2のバランス測定ステップS4では、バランス測定部50が、回転体16のバランス状態を測定する。第2のバランス測定ステップS4は、第2の指令出力ステップS41と、第2の回転角度取得ステップS42と、第2の位置偏差取得ステップS43と、第2の対応付けステップS44とを含む。 In the second balance measurement step S4, the balance measurement unit 50 measures the balance state of the rotating body 16. The second balance measurement step S4 includes a second command output step S41, a second rotation angle acquisition step S42, a second position deviation acquisition step S43, and a second association step S44.
 第2の指令出力ステップS41~第2の対応付けステップS44は、第1の指令出力ステップS11~第1の対応付けステップS14と同様の流れで実行される。ただし、第2の指令出力ステップS41~第2の対応付けステップS44は、回転体16に仮錘30tempが装着された状態で実行される。 The second command output step S41 to second association step S44 are executed in the same flow as the first command output step S11 to first association step S14. However, the second command output step S41 to the second association step S44 are executed with the temporary weight 30 temp attached to the rotating body 16 .
 第2のバランス情報取得ステップS5では、第2のバランス情報取得部54が第2のバランス情報Iを取得する。 In the second balance information acquisition step S5, the second balance information acquisition unit 54 acquires the second balance information I2 .
 仮錘情報取得ステップS6では、仮錘情報取得部56が仮錘情報Itempを取得する。なお、仮錘情報取得ステップS6は、情報生成ステップS7よりも前に実行される。この限りにおいて、仮錘情報取得ステップS6の実行タイミングは、図8に限定されない。 In the provisional weight information acquisition step S6, the provisional weight information acquisition unit 56 acquires the provisional weight information I temp . Note that the temporary weight information acquisition step S6 is executed before the information generation step S7. As far as this is concerned, the execution timing of the temporary weight information acquisition step S6 is not limited to that shown in FIG.
 情報生成ステップS7では、情報生成部58が修正錘情報Ifixを生成する。修正錘情報Ifixは、第1のバランス情報Iと、第2のバランス情報Iと、仮錘情報Itempとに基づいて生成される。 In the information generating step S7, the information generating section 58 generates corrected weight information I fix . The corrected weight information I fix is generated based on the first balance information I1 , the second balance information I2 , and the temporary weight information I temp .
 本実施形態の演算方法の構成例の説明は以上である。 The above is the description of the configuration example of the calculation method of the present embodiment.
 以上の通り、本実施形態によれば、工作機械12に備わる回転体16のバランス修正作業におけるオペレータの負担を低減する演算装置14および演算方法が提供される。 As described above, according to the present embodiment, the arithmetic device 14 and the arithmetic method that reduce the burden on the operator in the work of correcting the balance of the rotating body 16 provided in the machine tool 12 are provided.
 [変形例]
 以下には、上記実施形態に係る変形例が記載される。ただし、上記実施形態と重複する説明は、以下の説明では可能な限り省略される。上記実施形態で説明済の構成要素の参照符号は、特に断らない限り、上記実施形態から流用される。
[Modification]
Modifications of the above embodiment will be described below. However, explanations overlapping with the above embodiment will be omitted as much as possible in the following explanation. Unless otherwise specified, the reference numerals of the components already explained in the above embodiments are used from the above embodiments.
 (変形例1)
 回転体16のバランス状態は、取り付け位置γに修正錘30fixが装着されることで修正される。しかし、錘装着部32の位置と、取り付け位置γとは、必ずしも一致しない。したがって、取り付け位置γに修正錘30fixを装着できない場合が有り得る。また、重量wの修正錘30fixをオペレータが所有していない場合が有り得る。この場合、回転体16のバランス状態を修正することは、オペレータにとって困難である。以上を踏まえ、本変形例の演算装置14(14A)が説明される。
(Modification 1)
The balance state of the rotating body 16 is corrected by mounting a correction weight 30 fix at the mounting position γ x . However, the position of the weight mounting portion 32 and the mounting position γ x do not necessarily match. Therefore, there may be a case where the correction weight 30 fix cannot be attached to the attachment position γ x . Also, the operator may not have the correction weight 30 fix of weight wx . In this case, it is difficult for the operator to correct the balance state of the rotating body 16 . Based on the above, the arithmetic device 14 (14A) of this modified example will be described.
 図9は、変形例1の演算装置14Aの概略構成図である。 FIG. 9 is a schematic configuration diagram of an arithmetic unit 14A of Modification 1. FIG.
 演算装置14Aは、実施形態の演算装置14の構成要素(図4参照)を備える。また、演算装置14Aは、第2の情報生成部60と、指示受付部62と、テーブル64とをさらに備える。 The computing device 14A includes the components of the computing device 14 of the embodiment (see FIG. 4). Arithmetic device 14A further includes a second information generator 60 , an instruction receiver 62 , and a table 64 .
 テーブル64は、複数の錘装着部32の各々の位置を記憶する。複数の錘装着部32の各々の位置は、原点Porgを基準とする回転方向Dに沿った回転角度RAにより表される。例えば、ある錘装着部32の位置は、回転角度RA=αと表される。この場合、その錘装着部32の位置は、原点Porgから回転方向Dに沿って回転角度RA=αの位置である。テーブル64は、第2の情報生成部60により適宜参照される。 The table 64 stores the position of each of the multiple weight mounting portions 32 . The position of each of the plurality of weight mounting portions 32 is represented by a rotation angle RA along the rotation direction DR with respect to the origin Porg . For example, the position of a certain weight mounting portion 32 is expressed as rotation angle RA=α. In this case, the position of the weight mounting portion 32 is the position of the rotation angle RA=α along the rotation direction DR from the origin Porg . The table 64 is referred to by the second information generator 60 as appropriate.
 図10は、2つの錘装着部32A、32Bの各々と、修正錘30fixの取り付け位置γとの位置関係について説明するための模式図である。 FIG. 10 is a schematic diagram for explaining the positional relationship between each of the two weight mounting portions 32A and 32B and the mounting position γ x of the correction weight 30 fix .
 指示受付部62は、オペレータの指示操作を受け付ける。この指示操作は、複数の錘装着部32のうちの2つの指定を含む。以下において、指定された2つの錘装着部32のうちの一方は、錘装着部32Aとも記載される。また、指定された2つの錘装着部32のうちの他方は、錘装着部32Bとも記載される。錘装着部32Aと、錘装着部32Bとは、仮想直線Lγを挟み合う(図10)。仮想直線Lγは、取り付け位置γと、回転軸線A16とを通る仮想的な直線である。 The instruction receiving unit 62 receives an operator's instruction operation. This instruction operation includes designation of two of the plurality of weight mounting portions 32 . In the following, one of the two designated weight mounting portions 32 is also referred to as weight mounting portion 32A. The other of the designated two weight mounting portions 32 is also described as a weight mounting portion 32B. The weight mounting portion 32A and the weight mounting portion 32B sandwich an imaginary straight line (FIG. 10). The imaginary straight line L γ is an imaginary straight line passing through the mounting position γ x and the rotation axis A 16 .
 第2の情報生成部60は、修正錘情報Ifixを分解することで、2つの分解修正錘情報I’fix(I’fixA、I’fixB)を生成する(第2の情報生成ステップ)。分解修正錘情報I’fixAは、位置γと、重量wとを含む情報である。ここで、位置γは、錘装着部32Aの位置を示す。重量wは、錘装着部32Aに取り付ける修正錘30fixAの重量を示す。また、分解修正錘情報I’fixBは、位置γと、重量wとを含む情報である。ここで、位置γは、錘装着部32Bの位置を示す。重量wは、錘装着部32Bに取り付ける修正錘30fixBの重量を示す。 The second information generation unit 60 decomposes the corrected weight information I fix to generate two pieces of decomposed corrected weight information I' fix (I' fix A, I' fix B) (second information generation step ). The resolved corrected weight information I' fix A is information including a position γ 2 and a weight w 2 . Here, the position γ2 indicates the position of the weight mounting portion 32A. The weight w2 indicates the weight of the correction weight 30 fix A attached to the weight mounting portion 32A. Further, the resolved corrected weight information I' fix B is information including the position γ3 and the weight w3 . Here, the position γ3 indicates the position of the weight mounting portion 32B. The weight w 3 indicates the weight of the correction weight 30 fix B attached to the weight mounting portion 32B.
 位置γと、位置γとの各々は、テーブル64の内容に基づいて特定される。重量wと、重量wとは、第2の情報生成部60により算出される。以下では、重量wと、重量wとの算出方法が説明される。 Each of position γ 2 and position γ 3 is specified based on the contents of table 64 . Weight w 2 and weight w 3 are calculated by the second information generator 60 . A method of calculating the weight w2 and the weight w3 will be described below.
 図11は、第2の情報生成部60による2つの分解修正錘情報I’fixの生成について説明するための図である。 11A and 11B are diagrams for explaining the generation of the two pieces of decomposed correction weight information I′ fix by the second information generation unit 60. FIG.
 図11に、ベクトルU(w,γ)と、ベクトルU(w,γ)と、ベクトルU(w,γ)とが例示される。ベクトルU(w,γ)は、修正錘情報Ifixをベクトルで表現する。ベクトルU(w,γ)は、重量wを示す成分と、取り付け位置γを示す成分とを含む。 FIG. 11 illustrates vector U x (w x , γ x ), vector U 2 (w 2 , γ 2 ), and vector U 3 (w 3 , γ 3 ). A vector U x (w x , γ x ) expresses the corrected weight information I fix by a vector. The vector U x (w x , γ x ) includes a component representing the weight w x and a component representing the mounting position γ x .
 ベクトルU(w,γ)は、分解修正錘情報I’fixAをベクトルで表現する。ベクトルU(w,γ)は、重量wを示す成分と、位置γを示す成分とを含む。 A vector U 2 (w 2 , γ 2 ) expresses the decomposed corrected weight information I′ fix A as a vector. Vector U 2 (w 2 , γ 2 ) includes a component representing weight w 2 and a component representing position γ 2 .
 ベクトルU(w,γ)は、分解修正錘情報I’fixBをベクトルで表現する。ベクトルU(w,γ)は、重量wを示す成分と、位置γを示す成分とを含む。 A vector U 3 (w 3 , γ 3 ) expresses the resolved corrected weight information I′ fix B in a vector. Vector U 3 (w 3 , γ 3 ) includes a component representing weight w 3 and a component representing position γ 3 .
 ベクトルU(w,γ)と、ベクトルU(w,γ)とは、ベクトルU(w,γ)をベクトル分解することで求まる。すなわち、ベクトルU(w,γ)をベクトル分解することで、重量wと、重量wとが求まる。なお、以下において、ベクトル分解は、単に分解とも記載される。 Vector U 2 (w 2 , γ 2 ) and vector U 3 (w 3 , γ 3 ) are obtained by vector decomposition of vector U x (w x , γ x ). That is, weight w 2 and weight w 3 are obtained by vector decomposition of vector U x (w x , γ x ). In the following, vector decomposition is also simply described as decomposition.
 重量wと、重量wとは、次の各数式(3)~数式(7)に基づいて算出される。なお、数式(3)~数式(7)において、γとγとの差の絶対値は、0度でない。また、数式(3)~数式(7)において、γとγとの差の絶対値は、180度でもない。 Weight w 2 and weight w 3 are calculated based on the following equations (3) to (7). Note that the absolute value of the difference between γ 2 and γ 3 is not 0 degrees in Equations (3) to (7). In addition, in Equations (3) to (7), the absolute value of the difference between γ2 and γ3 is not even 180 degrees.
 γ=0度である場合、重量wは、次の数式(3)に基づいて求まる。 When γ 2 =0 degrees, the weight w 2 is obtained based on the following formula (3).
Figure JPOXMLDOC01-appb-M000007
 
Figure JPOXMLDOC01-appb-M000007
 
 γ=0度である場合、重量wは、次の数式(4)に基づいて求まる。 When γ 2 =0 degrees, the weight w 3 is obtained based on the following equation (4).
Figure JPOXMLDOC01-appb-M000008
 
Figure JPOXMLDOC01-appb-M000008
 
 γ=180度である場合、重量wは、次の数式(5)に基づいて求まる。 When γ 2 =180 degrees, the weight w 2 is obtained based on the following formula (5).
Figure JPOXMLDOC01-appb-M000009
 
Figure JPOXMLDOC01-appb-M000009
 
 γ=180度である場合、重量wは、前述の数式(4)に基づいて求まる。 When γ 2 =180 degrees, the weight w 3 is obtained based on the above-described formula (4).
 γ=0度ではなく、且つ180度でもない場合、重量wは、次の数式(6)に基づいて求まる。なお、数式(6)中の重量wは、後述の数式(7)に基づいて求まる。 If γ 2 is neither 0 degrees nor 180 degrees, the weight w 2 is obtained based on the following equation (6). Note that the weight w3 in the formula (6) is obtained based on the formula (7) described later.
Figure JPOXMLDOC01-appb-M000010
 
Figure JPOXMLDOC01-appb-M000010
 
 γ=0度ではなく、且つ180度でもない場合、重量wは、次の数式(7)に基づいて求まる。 If γ 2 is not 0 degrees and is not 180 degrees, the weight w 3 is obtained based on the following equation (7).
Figure JPOXMLDOC01-appb-M000011
 
Figure JPOXMLDOC01-appb-M000011
 
 2つの分解修正錘情報I’fixは、記憶部38に記憶される。また、分解修正錘情報I’fixは、表示部34を介してオペレータに示される。 The two pieces of resolved corrected weight information I' fix are stored in the storage unit 38 . Further, the resolved correction weight information I' fix is displayed to the operator via the display section 34. FIG.
 オペレータは、錘装着部32Aに修正錘30fixAを装着する。また、オペレータは、錘装着部32Bに修正錘30fixBを装着する。これにより、回転体16のバランス状態は、取り付け位置γに修正錘30fixを装着した場合と同様に修正される。したがって、回転体16のバランス状態が好適に修正される。 The operator mounts the correction weight 30 fix A on the weight mounting portion 32A. Also, the operator mounts the correction weight 30 fix B on the weight mounting portion 32B. As a result, the balance state of the rotating body 16 is corrected in the same manner as when the correction weight 30 fix is attached to the mounting position γ x . Therefore, the balance state of the rotating body 16 is preferably corrected.
 なお、演算部40(CPU)は、錘装着部32Aと、錘装着部32Bとの少なくとも一方を自動的に選択してもよい。また、第2の情報生成部60は、ベクトルU(w,γ)と、ベクトルU(w,γ)との少なくとも一方をさらに分解してもよい。この場合、3つ以上の分解修正錘情報I’fixが生成される。また、第2の情報生成部60は、2つ以上の分解修正錘情報I’fixのうちの一つとして仮錘情報Itempを用いてもよい。この場合、第2の情報生成部60は、例えばベクトルU(w,γ)を、仮錘30tempの重量wと取り付け位置γとを成分とするベクトルとして用いる。すなわち、ベクトルU(w,γ)に関して、w=w、且つγ=γである。この場合、第2の情報生成部60は、ベクトルU(w,γ)と、ベクトルU(w,γ)と、数式(3)~数式(7)とに基づいてベクトルU(w,γ)を算出する。これにより、オペレータは、仮錘30tempが取り付けられた回転体16に、修正錘30fixBをさらに取り付けることで、回転体16のバランス状態を修正できる。つまり、修正錘30fixAの着脱作業が実質的に省略される。その結果、オペレータの負担がより低減される。 Note that the calculation unit 40 (CPU) may automatically select at least one of the weight mounting portion 32A and the weight mounting portion 32B. Also, the second information generator 60 may further decompose at least one of the vector U 2 (w 2 , γ 2 ) and the vector U 3 (w 3 , γ 3 ). In this case, three or more pieces of decomposed correction weight information I' fix are generated. Also, the second information generation unit 60 may use the temporary weight information I temp as one of the two or more pieces of decomposed correction weight information I' fix . In this case, the second information generator 60 uses, for example, the vector U 2 (w 2 , γ 2 ) as a vector whose components are the weight w 1 of the temporary weight 30 temp and the mounting position γ 1 . That is, w 2 =w 1 and γ 21 for vector U 2 (w 2 , γ 2 ). In this case, the second information generating unit 60 generates vector U 2 (w 1 , γ 1 ), vector U x (w x , γ x ), and based on equations (3) to (7), vector Calculate U 3 (w 3 , γ 3 ). Accordingly, the operator can correct the balance state of the rotating body 16 by further attaching the correction weight 30 fix B to the rotating body 16 to which the temporary weight 30 temp is attached. In other words, the operation of attaching and detaching the correction weight 30 fix A is substantially omitted. As a result, the operator's burden is further reduced.
 (変形例2)
 演算装置14は、制御装置28に備わってもよい。
(Modification 2)
Computing device 14 may reside in controller 28 .
 (変形例3)
 実施形態の演算装置14は、指令出力部44と、回転角度取得部46と、位置偏差取得部48と、バランス測定部50とを備える。演算装置14の構成はこれに限定されない。例えば、指令出力部44と、回転角度取得部46と、位置偏差取得部48と、バランス測定部50とを備える電子装置(バランス測定装置)が構成されてもよい。このバランス測定装置は、演算装置14とは別個の電子装置である。
(Modification 3)
The computing device 14 of the embodiment includes a command output section 44 , a rotation angle acquisition section 46 , a position deviation acquisition section 48 and a balance measurement section 50 . The configuration of the arithmetic unit 14 is not limited to this. For example, an electronic device (balance measuring device) including the command output unit 44, the rotation angle acquisition unit 46, the position deviation acquisition unit 48, and the balance measurement unit 50 may be configured. This balance measuring device is an electronic device separate from the computing device 14 .
 この場合、指令出力部44と、回転角度取得部46と、位置偏差取得部48と、バランス測定部50とは、演算装置14から省略されてもよい。 In this case, the command output unit 44, the rotation angle acquisition unit 46, the position deviation acquisition unit 48, and the balance measurement unit 50 may be omitted from the computing device 14.
 この場合、第1のバランス情報取得部52は、バランス測定装置から第1のバランス情報Iを取得する。また、第2のバランス情報取得部54は、バランス測定装置から第2のバランス情報Iを取得する。 In this case, the first balance information acquiring section 52 acquires the first balance information I1 from the balance measuring device. Also, the second balance information acquiring unit 54 acquires the second balance information I2 from the balance measuring device.
 (変形例4)
 本変形例では、「角度差AD」が説明される。また、その説明を踏まえて、演算装置14(14B)が説明される。
(Modification 4)
In this modified example, the “angle difference AD” will be explained. Also, based on that description, the arithmetic device 14 (14B) will be described.
 角度差ADは、所定位置P24preと、実設置位置P’24との位置ずれの大きさを示す。所定位置P24preは、実施形態で説明される第1の検出器24の設置位置(P24)である。すなわち、所定位置P24preは、直線L上であって、回転体16よりも+X方向の位置を示す。これに対し、実設置位置P’24は、本変形例において第1の検出器24の実際の設置位置を示す。すなわち、所定位置P24preに設置されるはずの第1の検出器24は、所定位置P24preとは異なる位置に設置される場合がある。その結果、角度差ADが生じる。角度差ADは、回転方向Dに沿った角度(回転角度RA)により表される。 The angular difference AD indicates the magnitude of positional deviation between the predetermined position P24pre and the actual installation position P'24 . The predetermined position P 24pre is the installation position (P 24 ) of the first detector 24 described in the embodiment. That is, the predetermined position P 24pre indicates a position on the straight line LX and in the +X direction from the rotating body 16 . On the other hand, the actual installation position P' 24 indicates the actual installation position of the first detector 24 in this modified example. That is, the first detector 24 that should be installed at the predetermined position P 24pre may be installed at a position different from the predetermined position P 24pre . As a result, an angular difference AD occurs. The angular difference AD is represented by an angle (rotational angle RA) along the rotational direction DR .
 図12は、角度差ADを説明するための模式図である。 FIG. 12 is a schematic diagram for explaining the angle difference AD.
 角度差ADの具体例が図12に示される。図12の例において、実設置位置P’24は、回転方向Dに沿って所定位置P24preよりも「-β」度だけずれた位置である。この場合、角度差AD=-βである。 A specific example of the angle difference AD is shown in FIG. In the example of FIG. 12, the actual installation position P'24 is a position shifted by "-β" degrees from the predetermined position P24pre along the rotational direction DR . In this case, the angle difference AD=-β.
 実施形態で説明された回転体16のバランス測定は、角度差ADに応じて誤差を生じる。例えば図7の例において、角度差AD=-βが生じる場合がある。この場合、回転角度θ+βと位置偏差-rとが対応付けられる。その結果、取り付け位置γが角度差AD=-βの分だけずれる。この場合、取り付け位置γに修正錘30fixが装着されても、回転体16のバランス状態は好適に修正されない。以上の説明を踏まえ、以下では演算装置14Bが説明される。 The balance measurement of the rotating body 16 described in the embodiment produces an error according to the angular difference AD. For example, in the example of FIG. 7, an angular difference AD=-β may occur. In this case, the rotation angle θ+β is associated with the positional deviation −r. As a result, the mounting position γ x is shifted by the angular difference AD=-β. In this case, even if the correction weight 30 fix is mounted at the mounting position γ x , the balance state of the rotating body 16 is not properly corrected. Based on the above description, the arithmetic unit 14B will be described below.
 図13は、変形例4の演算装置14Bの概略構成図である。 FIG. 13 is a schematic configuration diagram of an arithmetic device 14B of Modification 4. FIG.
 演算装置14Bは、実施形態の演算装置14の構成要素(図4参照)を備える。また、演算装置14Bは、補正部66をさらに備える。 The computing device 14B includes the components of the computing device 14 of the embodiment (see FIG. 4). Further, the calculation device 14B further includes a correction section 66 .
 補正部66は、角度差ADに基づいて、取り付け位置γ(修正錘情報Ifix)を補正する。例えば角度差AD=-βである場合、補正部66は、取り付け位置γを示す角度を、「-β」度だけ補正する。これにより、角度差ADを原因とする取り付け位置γのずれが是正される。なお、角度差ADは、記憶部38に予め記憶される(図13参照)。 The correction unit 66 corrects the mounting position γ x (correction weight information I fix ) based on the angle difference AD. For example, when the angle difference AD=-β, the correction unit 66 corrects the angle indicating the mounting position γ x by "-β" degrees. This corrects the deviation of the mounting position γx caused by the angular difference AD. Note that the angle difference AD is stored in advance in the storage unit 38 (see FIG. 13).
 なお、本発明は、上述した実施形態、および変形例に限らず、本発明の要旨を逸脱することなく、種々の構成を取り得る。 It should be noted that the present invention is not limited to the above-described embodiments and modifications, and can take various configurations without departing from the gist of the present invention.
 [実施形態から得られる発明]
 上記実施形態および変形例から把握し得る発明について、以下に記載する。
[Invention obtained from the embodiment]
Inventions that can be grasped from the above embodiments and modifications will be described below.
 <第1の発明>
 回転軸(A16)を中心に回転する回転体(16)と、前記回転軸と直交する移動軸に沿って移動する移動体(20)と、を備える工作機械(12)の前記回転体のバランス状態を修正するために前記回転体に取り付ける修正錘(30fix)の重量(w)および取り付け位置(γ)を演算する演算装置(14、14A)であって、前記回転体を回転させたときの前記移動体の位置偏差(PD)の最大値(r)と、前記位置偏差が最大値になったときの前記回転体の回転角度(θ)とを含む第1のバランス情報(I)を取得する第1のバランス情報取得部(52)と、前記第1のバランス情報を取得した後にさらに仮錘(30temp)が取り付けられた前記回転体を回転させたときの前記位置偏差の最大値(r)と、前記位置偏差が最大値になったときの前記回転体の回転角度(θ)とを含む第2のバランス情報(I)を取得する第2のバランス情報取得部(54)と、前記仮錘の重量(w)と前記仮錘の前記回転体に対する取り付け位置(γ)とを含む仮錘情報(Itemp)を取得する仮錘情報取得部(56)と、前記第1のバランス情報、前記第2のバランス情報および前記仮錘情報に基づいて、前記回転体のバランス状態を修正する修正錘(30fix)の重量(w)と前記修正錘の取り付け位置(γ)とを含む修正錘情報(Ifix)を生成する第1の情報生成部(58)と、を備える。
<First invention>
The rotating body of a machine tool (12) comprising a rotating body (16) rotating around a rotating axis (A 16 ) and a moving body (20) moving along a moving axis orthogonal to the rotating axis A calculation device (14, 14A) for calculating the weight (w x ) and mounting position (γ x ) of a correction weight (30 fix ) attached to the rotating body to correct the balance state, and rotating the rotating body A first balance including the maximum value (r 0 ) of the positional deviation (PD) of the moving body when the positional deviation reaches the maximum value (r 0 ) and the rotation angle (θ 0 ) of the rotating body when the positional deviation becomes the maximum value A first balance information acquisition unit (52) that acquires information (I 1 ), and after acquiring the first balance information, the rotating body to which the temporary weight (30 temp ) is further attached is rotated. a second balance information (I 2 ) including the maximum value (r 1 ) of the positional deviation and the rotation angle (θ 1 ) of the rotating body when the positional deviation reaches the maximum value; a balance information acquisition unit (54) of and temporary weight information for acquiring temporary weight information (I temp ) including the weight (w 1 ) of the temporary weight and the mounting position (γ 1 ) of the temporary weight with respect to the rotating body an acquisition unit (56), and a weight (w x ) of a correction weight (30 fix ) for correcting the balance state of the rotating body based on the first balance information, the second balance information and the temporary weight information and a first information generator (58) for generating correction weight information (I fix ) including the mounting position (γ x ) of the correction weight.
 これにより、工作機械に備わる回転体のバランス修正作業におけるオペレータの負担を低減する演算装置が提供される。 As a result, an arithmetic device is provided that reduces the burden on the operator in the work of correcting the balance of the rotating body provided in the machine tool.
 前記第1の情報生成部は、前記修正錘の重量を数式(1)に基づいて算出し、前記修正錘の取り付け位置を数式(2)に基づいて算出してもよい。これにより、第1の情報生成部は、修正錘情報を算出することができる。 The first information generation unit may calculate the weight of the correction weight based on formula (1), and calculate the mounting position of the correction weight based on formula (2). Thereby, the first information generator can calculate the corrected weight information.
 前記回転体には、前記修正錘を取り付けるための複数の錘装着部(32)が予め設けられており、前記演算装置は、複数の前記錘装着部の位置を記憶したテーブル(64)と、前記テーブルを用いて前記修正錘情報を分解することで、複数の前記錘装着部のうちの2つ以上の錘装着部の位置と前記2つ以上の錘装着部の各々に取り付けられる前記修正錘の重量とを含む2つ以上の分解修正錘情報(I’fix)を生成する第2の情報生成部(60)と、をさらに備えてもよい。これにより、オペレータは、2つ以上の分解修正錘情報に基づいて、回転体のバランス状態を好適に修正することができる。 A plurality of weight mounting portions (32) for mounting the correction weights are provided in advance on the rotating body, and the computing device includes a table (64) storing the positions of the plurality of weight mounting portions, By decomposing the correction weight information using the table, the positions of two or more weight mounting portions among the plurality of weight mounting portions and the correction weights attached to each of the two or more weight mounting portions and a second information generator (60) for generating two or more pieces of resolved corrected weight information (I' fix ) including the weight of . Thereby, the operator can suitably correct the balance state of the rotating body based on two or more pieces of resolved correction weight information.
 前記演算装置は、前記2つ以上の錘装着部を指定するオペレータの指示操作を受け付ける指示受付部(62)をさらに備えてもよい。これにより、オペレータは、修正錘を取り付ける2つ以上の錘装着部を自分で指定することができる。 The computing device may further include an instruction receiving section (62) that receives an operator's instruction operation for designating the two or more weight mounting sections. This allows the operator to designate two or more weight mounting portions to which the correction weights are to be mounted.
 前記第2の情報生成部は、前記修正錘情報が示す前記修正錘の重量と、前記修正錘の取り付け位置とを成分とするベクトル(U)を分解することにより、前記分解修正錘情報を生成してもよい。これにより、オペレータは、分解修正錘情報に基づいて、回転体のバランス状態を好適に修正することができる。 The second information generation unit generates the resolved corrected weight information by decomposing a vector (U x ) whose components are the weight of the corrected weight indicated by the corrected weight information and the mounting position of the corrected weight. may be generated. Thereby, the operator can appropriately correct the balance state of the rotating body based on the disassembled correction weight information.
 前記第2の情報生成部は、2つ以上の前記分解修正錘情報のうちの一つとして前記仮錘情報を用いてもよい。これにより、複数の修正錘(30fix)のうち一つの着脱作業を実質的に省略することが可能になる。 The second information generator may use the provisional weight information as one of the two or more pieces of the decomposed correction weight information. This makes it possible to substantially omit the work of attaching and detaching one of the plurality of correction weights (30 fix ).
 前記演算装置は、前記回転角度を取得する回転角度取得部(46)と、前記位置偏差を取得する位置偏差取得部(48)と、複数の前記回転角度と複数の前記回転角度の各々に対応する前記位置偏差とを対応付けるバランス測定部(50)と、をさらに備え、前記第1のバランス情報取得部および前記第2のバランス情報取得部は、前記バランス測定部による前記回転角度と前記位置偏差との対応付けに基づいて前記第1のバランス情報および前記第2のバランス情報を取得してもよい。これにより、演算装置は、バランス測定装置を兼ねる。しかも、バランス測定において、工作機械とは別途の加速度センサを回転体に取り付けなければならないフィールドバランサは不要である。 The computing device includes a rotation angle acquisition unit (46) for acquiring the rotation angle, a position deviation acquisition unit (48) for acquiring the position deviation, and a plurality of the rotation angles and corresponding to each of the plurality of rotation angles. and a balance measuring unit (50) that associates the positional deviation with the positional deviation, wherein the first balance information acquiring unit and the second balance information acquiring unit measure the rotation angle and the positional deviation obtained by the balance measuring unit. You may acquire said 1st balance information and said 2nd balance information based on matching with. Thereby, the computing device also serves as a balance measuring device. Moreover, in the balance measurement, there is no need for a field balancer in which an acceleration sensor separate from the machine tool must be attached to the rotating body.
 <第2の発明>
 回転軸(A16)を中心に回転する回転体(16)と、前記回転軸と直交する移動軸に沿って移動する移動体(20)と、を含む工作機械(12)の前記回転体のバランス状態を修正するために前記回転体に取り付ける修正錘(30fix)の重量(w)および取り付け位置(γ)を演算する演算方法であって、前記回転体を回転させる第1のバランス測定ステップ(S1)と、前記回転体を前記第1のバランス測定ステップにより回転させたときの前記移動体の位置偏差(PD)の最大値(r)と、前記位置偏差が最大値になったときの前記回転体の回転角度(θ)とを含む第1のバランス情報(I)を取得する第1のバランス情報取得ステップ(S2)と、前記第1のバランス情報取得ステップの後に、前記回転体に仮錘(30temp)を取り付ける仮錘取り付けステップ(S3)と、前記仮錘取り付けステップの後に、前記回転体を回転させる第2のバランス測定ステップ(S4)と、前記仮錘が取り付けられた前記回転体を前記第2のバランス測定ステップにより回転させたときの前記位置偏差の最大値(r)と、前記位置偏差が最大値になったときの前記回転体の回転角度(θ)とを含む第2のバランス情報(I)を取得する第2のバランス情報取得ステップ(S5)と、前記仮錘の重量(w)と前記仮錘の前記回転体に対する取り付け位置(γ)とを含む仮錘情報(Itemp)を取得する仮錘情報取得ステップ(S6)と、前記第1のバランス情報、前記第2のバランス情報および前記仮錘情報に基づいて、前記回転体のバランス状態を修正する修正錘(30fix)の重量(w)と前記修正錘の取り付け位置(γ)とを含む修正錘情報(Ifix)を生成する第1の情報生成ステップ(S7)と、を含む。
<Second invention>
The rotating body of a machine tool (12) including a rotating body (16) rotating about a rotating axis (A 16 ) and a moving body (20) moving along a moving axis orthogonal to the rotating axis A calculation method for calculating the weight (w x ) and mounting position (γ x ) of a correction weight (30 fix ) attached to the rotating body to correct the balance state, the first balance rotating the rotating body a measuring step (S1), a maximum value (r 0 ) of the positional deviation (PD) of the moving body when the rotating body is rotated in the first balance measuring step, and the positional deviation reaching the maximum value; After the first balance information acquisition step (S2) of acquiring first balance information (I 1 ) including the rotation angle (θ 0 ) of the rotating body when the a temporary weight attaching step (S3) of attaching a temporary weight (30 temp ) to the rotating body; a second balance measuring step (S4) of rotating the rotating body after the temporary weight attaching step; The maximum value (r 1 ) of the positional deviation when the rotating body to which the is attached is rotated by the second balance measurement step, and the rotation angle of the rotating body when the positional deviation reaches the maximum value a second balance information acquisition step (S5) for acquiring second balance information (I 2 ) including (θ 1 ) ; a temporary weight information acquisition step (S6) for acquiring temporary weight information (I temp ) including the position (γ 1 ), and based on the first balance information, the second balance information and the temporary weight information, First information generation for generating correction weight information (I fix ) including the weight (w x ) of the correction weight (30 fix ) for correcting the balance state of the rotating body and the mounting position (γ x ) of the correction weight. and a step (S7).
 これにより、工作機械に備わる回転体のバランス修正作業におけるオペレータの負担を低減する演算方法が提供される。 This provides a calculation method that reduces the burden on the operator when correcting the balance of the rotating body of the machine tool.
 前記第1の情報生成ステップでは、前記修正錘の重量を数式(1)に基づいて算出し、前記修正錘の取り付け位置を数式(2)に基づいて算出してもよい。これにより、修正錘情報を生成することができる。 In the first information generating step, the weight of the correction weight may be calculated based on Equation (1), and the mounting position of the correction weight may be calculated based on Equation (2). Thereby, corrected spindle information can be generated.
 前記回転体には、前記修正錘を取り付けるための複数の錘装着部(32)が予め設けられており、前記演算方法は、複数の前記錘装着部のうちの2つ以上の錘装着部の位置と前記2つ以上の錘装着部の各々に取り付けられる重量とを含む2つ以上の分解修正錘情報(I’fix)を生成する第2の情報生成ステップをさらに含んでもよい。これにより、オペレータは、分解修正錘情報に基づいて、回転体のバランス状態を好適に修正することができる。 A plurality of weight mounting portions (32) for mounting the correcting weights are provided in advance on the rotating body, and the calculation method is to determine the number of two or more weight mounting portions among the plurality of weight mounting portions. It may further include a second information generating step of generating two or more resolved corrected weight information (I' fix ) including a position and a weight attached to each of said two or more weight mounts. Thereby, the operator can appropriately correct the balance state of the rotating body based on the disassembled correction weight information.
 前記演算方法は、前記第2の情報生成ステップの前に、前記2つの錘装着部を指定するオペレータの指示操作を受け付ける指示受付ステップをさらに含んでもよい。これにより、オペレータは、修正錘を取り付ける2つの錘装着部を自分で指定することができる。 The computing method may further include, before the second information generating step, an instruction receiving step of receiving an operator's instruction operation for designating the two weight mounting portions. This allows the operator to designate two weight mounting portions to which the correction weights are to be mounted.
 前記第2の情報生成ステップでは、前記修正錘情報が示す前記修正錘の重量と、前記修正錘の取り付け位置とを成分とするベクトルを分解することにより、前記分解修正錘情報を生成してもよい。これにより、オペレータは、分解修正錘情報に基づいて、回転体のバランス状態を好適に修正することができる。 In the second information generating step, the resolved corrected weight information is generated by decomposing a vector whose components are the weight of the corrected weight indicated by the corrected weight information and the mounting position of the corrected weight. good. Thereby, the operator can appropriately correct the balance state of the rotating body based on the disassembled correction weight information.
 前記第1のバランス測定ステップは、前記回転体を回転させる第1の指令出力ステップ(S11)と、前記回転角度を取得する第1の回転角度取得ステップ(S12)と、前記位置偏差を取得する第1の位置偏差取得ステップ(S13)と、複数の前記回転角度と複数の前記回転角度の各々に対応する前記位置偏差とを対応付ける第1の対応付けステップ(S14)と、を含み、前記第2のバランス測定ステップは、前記回転体を回転させる第2の指令出力ステップ(S41)と、前記回転角度を取得する第2の回転角度取得ステップ(S42)と、前記位置偏差を取得する第2の位置偏差取得ステップ(S43)と、複数の前記回転角度と複数の前記回転角度の各々に対応する前記位置偏差とを対応付ける第2の対応付けステップ(S44)と、を含み、前記第1のバランス情報取得ステップでは、前記第1の対応付けステップによる前記回転角度と前記位置偏差との対応付けに基づいて前記第1のバランス情報を取得し、前記第2のバランス情報取得ステップでは、前記第2の対応付けステップによる前記回転角度と前記位置偏差との対応付けに基づいて前記第2のバランス情報を取得してもよい。これにより、演算方法は、バランス測定方法を含む。しかも、バランス測定において、工作機械とは別途の加速度センサを回転体に取り付けなければならないフィールドバランサは不要である。 The first balance measurement step includes a first command output step (S11) for rotating the rotating body, a first rotation angle acquisition step (S12) for acquiring the rotation angle, and a position deviation acquisition step. a first positional deviation obtaining step (S13); The second balance measurement step includes a second command output step (S41) for rotating the rotating body, a second rotation angle acquisition step (S42) for acquiring the rotation angle, and a second rotation angle acquisition step (S42) for acquiring the positional deviation. and a second associating step (S44) of associating a plurality of the rotation angles with the positional deviations corresponding to each of the plurality of rotation angles, wherein the first In the balance information obtaining step, the first balance information is obtained based on the association between the rotation angle and the positional deviation in the first association step, and in the second balance information obtaining step, the first balance information is obtained. The second balance information may be acquired based on the correspondence between the rotation angle and the positional deviation in step 2 of association. Accordingly, the calculation method includes a balance measurement method. Moreover, in the balance measurement, there is no need for a field balancer in which an acceleration sensor separate from the machine tool must be attached to the rotating body.
12…工作機械            14、14A、14B…演算装置
16…回転体             20…移動体
24…第1の検出器          30…錘
32、32A、32B…錘装着部    46…回転角度取得部
48…位置偏差取得部         50…バランス測定部
52…第1のバランス情報取得部    54…第2のバランス情報取得部
56…仮錘情報取得部
58…情報生成部(第1の情報生成部) 60…第2の情報生成部
62…指示受付部           64…テーブル
fix…修正錘情報          I’fix…分解修正錘情報
temp…仮錘情報          PD…位置偏差
RA…回転角度
DESCRIPTION OF SYMBOLS 12... Machine tool 14, 14A, 14B... Arithmetic device 16... Rotating body 20... Moving body 24... 1st detector 30... Weights 32, 32A, 32B... Weight mounting part 46... Rotation angle acquisition part 48... Position deviation acquisition Unit 50 Balance measurement unit 52 First balance information acquisition unit 54 Second balance information acquisition unit 56 Temporary weight information acquisition unit 58 Information generation unit (first information generation unit) 60 Second information Generating unit 62 Instruction receiving unit 64 Table I fix Corrected weight information I' fix Disassembled corrected weight information I temp Temporary weight information PD Position deviation RA Rotation angle

Claims (13)

  1.  回転軸(A16)を中心に回転する回転体(16)と、前記回転軸と直交する移動軸に沿って移動する移動体(20)と、を備える工作機械(12)の前記回転体のバランス状態を修正するために前記回転体に取り付ける修正錘(30fix)の重量(w)および取り付け位置(γ)を演算する演算装置(14、14A)であって、
     前記回転体を回転させたときの前記移動体の位置偏差(PD)の最大値(r)と、前記位置偏差が最大値になったときの前記回転体の回転角度(θ)とを含む第1のバランス情報(I)を取得する第1のバランス情報取得部(52)と、
     前記第1のバランス情報を取得した後にさらに仮錘(30temp)が取り付けられた前記回転体を回転させたときの前記位置偏差の最大値(r)と、前記位置偏差が最大値になったときの前記回転体の回転角度(θ)とを含む第2のバランス情報(I)を取得する第2のバランス情報取得部(54)と、
     前記仮錘の重量(w)と前記仮錘の前記回転体に対する取り付け位置(γ)とを含む仮錘情報(Itemp)を取得する仮錘情報取得部(56)と、
     前記第1のバランス情報、前記第2のバランス情報および前記仮錘情報に基づいて、前記回転体のバランス状態を修正する修正錘(30fix)の重量(w)と前記修正錘の取り付け位置(γ)とを含む修正錘情報(Ifix)を生成する第1の情報生成部(58)と、
     を備える、演算装置。
    The rotating body of a machine tool (12) comprising a rotating body (16) rotating around a rotating axis (A 16 ) and a moving body (20) moving along a moving axis orthogonal to the rotating axis A computing device (14, 14A) for computing the weight (w x ) and mounting position (γ x ) of the correction weight (30 fix ) attached to the rotating body to correct the balance state,
    The maximum value (r 0 ) of the positional deviation (PD) of the moving body when the rotating body is rotated and the rotation angle (θ 0 ) of the rotating body when the positional deviation reaches the maximum value are a first balance information acquisition unit (52) for acquiring first balance information (I 1 ) including
    After the first balance information is acquired, the maximum value (r 1 ) of the positional deviation when the rotating body to which the temporary weight (30 temp ) is attached is further rotated, and the positional deviation reaches the maximum value. a second balance information acquisition unit (54) for acquiring second balance information (I 2 ) including the rotation angle (θ 1 ) of the rotating body when the
    a temporary weight information acquisition unit (56) for acquiring temporary weight information (I temp ) including the weight (w 1 ) of the temporary weight and the mounting position (γ 1 ) of the temporary weight with respect to the rotating body;
    Based on the first balance information, the second balance information, and the temporary weight information, the weight (w x ) of the correction weight (30 fix ) for correcting the balance state of the rotating body and the mounting position of the correction weight. a first information generator (58) for generating corrected weight information (I fix ) including (γ x );
    A computing device.
  2.  請求項1に記載の演算装置であって、
     前記第1の情報生成部は、
     前記修正錘の重量を下記の数式(1)に基づいて算出し、
     前記修正錘の取り付け位置を下記の数式(2)に基づいて算出する、演算装置。
     (w:修正錘の重量、r:第1のバランス情報が示す位置偏差の最大値、r:第2のバランス情報が示す位置偏差の最大値、θ:第1のバランス情報が示す回転角度、θ:第2のバランス情報が示す回転角度、w:仮錘情報が示す仮錘の重量、γ:修正錘の取り付け位置、γ:仮錘情報が示す仮錘の取り付け位置)
    Figure JPOXMLDOC01-appb-M000001
     
    Figure JPOXMLDOC01-appb-M000002
     
    The computing device according to claim 1,
    The first information generation unit is
    Calculate the weight of the correction weight based on the following formula (1),
    A computing device that calculates the mounting position of the correction weight based on the following formula (2).
    (w x : weight of correction weight, r 0 : maximum positional deviation indicated by first balance information, r 1 : maximum positional deviation indicated by second balance information, θ 0 : first balance information Rotation angle indicated, θ 1 : rotation angle indicated by second balance information, w 1 : weight of temporary weight indicated by temporary weight information, γ x : mounting position of correction weight, γ 1 : temporary weight indicated by temporary weight information mounting position)
    Figure JPOXMLDOC01-appb-M000001

    Figure JPOXMLDOC01-appb-M000002
  3.  請求項1または2に記載の演算装置(14A)であって、
     前記回転体には、前記修正錘を取り付けるための複数の錘装着部(32)が予め設けられており、
     前記演算装置は、
     複数の前記錘装着部の位置を記憶したテーブル(64)と、
     前記テーブルを用いて前記修正錘情報を分解することで、複数の前記錘装着部のうちの2つ以上の錘装着部の位置と前記2つ以上の錘装着部の各々に取り付けられる前記修正錘の重量とを含む2つ以上の分解修正錘情報(I’fix)を生成する第2の情報生成部(60)と、
     をさらに備える、演算装置。
    A computing device (14A) according to claim 1 or 2,
    A plurality of weight mounting portions (32) for mounting the correcting weight are provided in advance on the rotating body,
    The computing device is
    a table (64) storing the positions of the plurality of weight mounting portions;
    By decomposing the correction weight information using the table, the positions of two or more weight mounting portions among the plurality of weight mounting portions and the correction weights attached to each of the two or more weight mounting portions a second information generator (60) for generating two or more pieces of resolved corrected weight information (I' fix ) including the weight of
    A computing device, further comprising:
  4.  請求項3に記載の演算装置であって、
     前記2つ以上の錘装着部を指定するオペレータの指示操作を受け付ける指示受付部(62)をさらに備える、演算装置。
    The computing device according to claim 3,
    A computing device, further comprising an instruction receiving section (62) that receives an operator's instruction operation for designating the two or more weight mounting sections.
  5.  請求項3または4に記載の演算装置であって、
     前記第2の情報生成部は、前記修正錘情報が示す前記修正錘の重量と、前記修正錘の取り付け位置とを成分とするベクトル(U)を分解することにより、前記分解修正錘情報を生成する、演算装置。
    The arithmetic device according to claim 3 or 4,
    The second information generation unit generates the resolved corrected weight information by decomposing a vector (U x ) whose components are the weight of the corrected weight indicated by the corrected weight information and the mounting position of the corrected weight. A computing device that generates.
  6.  請求項3~5のいずれか1項に記載の演算装置であって、
     前記第2の情報生成部は、2つ以上の前記分解修正錘情報のうちの一つとして前記仮錘情報を用いる、演算装置。
    The arithmetic device according to any one of claims 3 to 5,
    The second information generation unit uses the provisional weight information as one of the two or more pieces of the decomposed correction weight information.
  7.  請求項1~6のいずれか1項に記載の演算装置であって、
     前記回転角度を取得する回転角度取得部(46)と、
     前記位置偏差を取得する位置偏差取得部(48)と、
     複数の前記回転角度と複数の前記回転角度の各々に対応する前記位置偏差とを対応付けるバランス測定部(50)と、
     をさらに備え、
     前記第1のバランス情報取得部および前記第2のバランス情報取得部は、前記バランス測定部による前記回転角度と前記位置偏差との対応付けに基づいて前記第1のバランス情報および前記第2のバランス情報を取得する、演算装置。
    The arithmetic device according to any one of claims 1 to 6,
    a rotation angle acquisition unit (46) for acquiring the rotation angle;
    a position deviation acquisition unit (48) for acquiring the position deviation;
    a balance measuring unit (50) that associates the plurality of rotation angles with the positional deviations corresponding to each of the plurality of rotation angles;
    further comprising
    The first balance information acquisition section and the second balance information acquisition section obtain the first balance information and the second balance information based on the association between the rotation angle and the positional deviation by the balance measurement section. A computing device that acquires information.
  8.  回転軸(A16)を中心に回転する回転体(16)と、前記回転軸と直交する移動軸に沿って移動する移動体(20)と、を含む工作機械(12)の前記回転体のバランス状態を修正するために前記回転体に取り付ける修正錘(30fix)の重量(w)および取り付け位置(γ)を演算する演算方法であって、
     前記回転体を回転させる第1のバランス測定ステップ(S1)と、
     前記回転体を前記第1のバランス測定ステップにより回転させたときの前記移動体の位置偏差(PD)の最大値(r)と、前記位置偏差が最大値になったときの前記回転体の回転角度(θ)とを含む第1のバランス情報(I)を取得する第1のバランス情報取得ステップ(S2)と、
     前記第1のバランス情報取得ステップの後に、前記回転体に仮錘(30temp)を取り付ける仮錘取り付けステップ(S3)と、
     前記仮錘取り付けステップの後に、前記回転体を回転させる第2のバランス測定ステップ(S4)と、
     前記仮錘が取り付けられた前記回転体を前記第2のバランス測定ステップにより回転させたときの前記位置偏差の最大値(r)と、前記位置偏差が最大値になったときの前記回転体の回転角度(θ)とを含む第2のバランス情報(I)を取得する第2のバランス情報取得ステップ(S5)と、
     前記仮錘の重量(w)と前記仮錘の前記回転体に対する取り付け位置(γ)とを含む仮錘情報(Itemp)を取得する仮錘情報取得ステップ(S6)と、
     前記第1のバランス情報、前記第2のバランス情報および前記仮錘情報に基づいて、前記回転体のバランス状態を修正する修正錘(30fix)の重量(w)と前記修正錘の取り付け位置(γ)とを含む修正錘情報(Ifix)を生成する第1の情報生成ステップ(S7)と、
     を含む、演算方法。
    The rotating body of a machine tool (12) including a rotating body (16) rotating about a rotating axis (A 16 ) and a moving body (20) moving along a moving axis orthogonal to the rotating axis A calculation method for calculating the weight (w x ) and the mounting position (γ x ) of the correction weight (30 fix ) attached to the rotating body to correct the balance state,
    a first balance measurement step (S1) of rotating the rotating body;
    The maximum value (r 0 ) of the positional deviation (PD) of the moving body when the rotating body is rotated by the first balance measurement step, and the rotating body when the positional deviation reaches the maximum value a first balance information acquisition step (S2) for acquiring first balance information (I 1 ) including the rotation angle (θ 0 );
    After the first balance information acquisition step, a temporary weight attaching step (S3) of attaching a temporary weight (30 temp ) to the rotating body;
    a second balance measurement step (S4) of rotating the rotating body after the step of attaching the temporary weight;
    The maximum value (r 1 ) of the positional deviation when the rotating body to which the temporary weight is attached is rotated by the second balance measurement step, and the rotating body when the positional deviation reaches the maximum value a second balance information acquisition step (S5) for acquiring second balance information (I 2 ) including the rotation angle (θ 1 ) of
    a temporary weight information acquisition step (S6) for acquiring temporary weight information (I temp ) including the weight (w 1 ) of the temporary weight and the mounting position (γ 1 ) of the temporary weight with respect to the rotating body;
    Based on the first balance information, the second balance information, and the temporary weight information, the weight (w x ) of the correction weight (30 fix ) for correcting the balance state of the rotating body and the mounting position of the correction weight. a first information generating step (S7) for generating corrected weight information (I fix ) including (γ x );
    Arithmetic method, including
  9.  請求項8に記載の演算方法であって、
     前記第1の情報生成ステップでは、
     前記修正錘の重量を下記の数式(1)に基づいて算出し、
     前記修正錘の取り付け位置を下記の数式(2)に基づいて算出する、演算方法。
     (w:修正錘の重量、r:第1のバランス情報が示す位置偏差の最大値、r:第2のバランス情報が示す位置偏差の最大値、θ:第1のバランス情報が示す回転角度、θ:第2のバランス情報が示す回転角度、w:仮錘情報が示す仮錘の重量、γ:修正錘の取り付け位置、γ:仮錘情報が示す仮錘の取り付け位置)
    Figure JPOXMLDOC01-appb-M000003
     
    Figure JPOXMLDOC01-appb-M000004
     
    The calculation method according to claim 8,
    In the first information generating step,
    Calculate the weight of the correction weight based on the following formula (1),
    A calculation method for calculating the mounting position of the correction weight based on the following formula (2).
    (w x : weight of correction weight, r 0 : maximum positional deviation indicated by first balance information, r 1 : maximum positional deviation indicated by second balance information, θ 0 : first balance information Rotation angle indicated, θ 1 : rotation angle indicated by second balance information, w 1 : weight of temporary weight indicated by temporary weight information, γ x : mounting position of correction weight, γ 1 : temporary weight indicated by temporary weight information mounting position)
    Figure JPOXMLDOC01-appb-M000003

    Figure JPOXMLDOC01-appb-M000004
  10.  請求項8または9に記載の演算方法であって、
     前記回転体には、前記修正錘を取り付けるための複数の錘装着部(32)が予め設けられており、
     前記演算方法は、
     複数の前記錘装着部のうちの2つ以上の錘装着部の位置と前記2つ以上の錘装着部の各々に取り付けられる重量とを含む2つ以上の分解修正錘情報(I’fix)を生成する第2の情報生成ステップをさらに含む、演算方法。
    The calculation method according to claim 8 or 9,
    A plurality of weight mounting portions (32) for mounting the correcting weight are provided in advance on the rotating body,
    The calculation method is
    two or more pieces of disassembled corrected weight information (I' fix ) including positions of two or more weight mounting portions among the plurality of weight mounting portions and weights attached to each of the two or more weight mounting portions; The method of computation, further comprising the step of generating second information.
  11.  請求項10に記載の演算方法であって、
     前記第2の情報生成ステップの前に、前記2つ以上の錘装着部を指定するオペレータの指示操作を受け付ける指示受付ステップをさらに含む、演算方法。
    11. The calculation method according to claim 10,
    The computing method further comprising, prior to the second information generating step, an instruction receiving step of receiving an operator's instruction operation designating the two or more weight mounting portions.
  12.  請求項10または11に記載の演算方法であって、
     前記第2の情報生成ステップでは、前記修正錘情報が示す前記修正錘の重量と、前記修正錘の取り付け位置とを成分とするベクトルを分解することにより、前記分解修正錘情報を生成する、演算方法。
    The calculation method according to claim 10 or 11,
    In the second information generating step, the resolved corrected weight information is generated by decomposing a vector whose components are the weight of the corrected weight indicated by the corrected weight information and the mounting position of the corrected weight. Method.
  13.  請求項8~12のいずれか1項に記載の演算方法であって、
     前記第1のバランス測定ステップは、
     前記回転体を回転させる第1の指令出力ステップ(S11)と、
     前記回転角度を取得する第1の回転角度取得ステップ(S12)と、
     前記位置偏差を取得する第1の位置偏差取得ステップ(S13)と、
     複数の前記回転角度と複数の前記回転角度の各々に対応する前記位置偏差とを対応付ける第1の対応付けステップ(S14)と、
     を含み、
     前記第2のバランス測定ステップは、
     前記回転体を回転させる第2の指令出力ステップ(S41)と、
     前記回転角度を取得する第2の回転角度取得ステップ(S42)と、
     前記位置偏差を取得する第2の位置偏差取得ステップ(S43)と、
     複数の前記回転角度と複数の前記回転角度の各々に対応する前記位置偏差とを対応付ける第2の対応付けステップ(S44)と、
     を含み、
     前記第1のバランス情報取得ステップでは、前記第1の対応付けステップによる前記回転角度と前記位置偏差との対応付けに基づいて前記第1のバランス情報を取得し、
     前記第2のバランス情報取得ステップでは、前記第2の対応付けステップによる前記回転角度と前記位置偏差との対応付けに基づいて前記第2のバランス情報を取得する、演算方法。
    The calculation method according to any one of claims 8 to 12,
    The first balance measurement step includes:
    a first command output step (S11) for rotating the rotating body;
    a first rotation angle acquisition step (S12) for acquiring the rotation angle;
    a first positional deviation obtaining step (S13) for obtaining the positional deviation;
    a first associating step (S14) of associating the plurality of rotation angles with the positional deviations corresponding to each of the plurality of rotation angles;
    including
    The second balance measurement step includes:
    a second command output step (S41) for rotating the rotating body;
    a second rotation angle acquisition step (S42) for acquiring the rotation angle;
    a second positional deviation obtaining step (S43) for obtaining the positional deviation;
    a second associating step (S44) of associating the plurality of rotation angles with the positional deviations corresponding to each of the plurality of rotation angles;
    including
    In the first balance information acquisition step, the first balance information is acquired based on the association between the rotation angle and the positional deviation in the first association step;
    The computing method, wherein the second balance information acquisition step acquires the second balance information based on the association between the rotation angle and the positional deviation in the second association step.
PCT/JP2021/036818 2021-10-05 2021-10-05 Computing device and computing method WO2023058112A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/036818 WO2023058112A1 (en) 2021-10-05 2021-10-05 Computing device and computing method
TW111137766A TW202317959A (en) 2021-10-05 2022-10-05 Computing device and computing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/036818 WO2023058112A1 (en) 2021-10-05 2021-10-05 Computing device and computing method

Publications (1)

Publication Number Publication Date
WO2023058112A1 true WO2023058112A1 (en) 2023-04-13

Family

ID=85803265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/036818 WO2023058112A1 (en) 2021-10-05 2021-10-05 Computing device and computing method

Country Status (2)

Country Link
TW (1) TW202317959A (en)
WO (1) WO2023058112A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5240358A (en) * 1990-11-27 1993-08-31 Balance Dynamics Corporation Method and apparatus for tool balancing
JP2002219629A (en) * 2001-01-24 2002-08-06 Seiwa Seiki Kk Method of correcting rotation balance of rotor
JP2006035360A (en) * 2004-07-26 2006-02-09 Yamazaki Mazak Corp Method of computing balancer mounting angle for machine tool, and machine tool
JP2009162655A (en) * 2008-01-08 2009-07-23 Toshiba Corp Adjusting device of rotary machine, adjustment method of rotary machine, and manufacturing method of x-ray ct device
JP2015137875A (en) * 2014-01-20 2015-07-30 ファナック株式会社 Rotational deflection and dynamic balance adjusting mechanism of rotary tool

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5240358A (en) * 1990-11-27 1993-08-31 Balance Dynamics Corporation Method and apparatus for tool balancing
JP2002219629A (en) * 2001-01-24 2002-08-06 Seiwa Seiki Kk Method of correcting rotation balance of rotor
JP2006035360A (en) * 2004-07-26 2006-02-09 Yamazaki Mazak Corp Method of computing balancer mounting angle for machine tool, and machine tool
JP2009162655A (en) * 2008-01-08 2009-07-23 Toshiba Corp Adjusting device of rotary machine, adjustment method of rotary machine, and manufacturing method of x-ray ct device
JP2015137875A (en) * 2014-01-20 2015-07-30 ファナック株式会社 Rotational deflection and dynamic balance adjusting mechanism of rotary tool

Also Published As

Publication number Publication date
TW202317959A (en) 2023-05-01

Similar Documents

Publication Publication Date Title
JP6199003B1 (en) Machine motion trajectory measuring device
EP3090832B1 (en) Low-rigidity workpiece machining assistance system
JP4819665B2 (en) Non-circular shape processing equipment
WO2013073436A1 (en) Cutting force detection device for machine tool, cutting force detection method, processing anomaly detection method, and processing condition control system
JP6064723B2 (en) Gear processing equipment
JP2019053598A (en) Numeric control device and numeric control method of machine tool
JP2013152698A (en) Locus display device having correction data taken into account
EP1886771B1 (en) Rotation center point calculating method, rotation axis calculating method, program creating method, operation method, and robot apparatus
WO2023058112A1 (en) Computing device and computing method
JP5277946B2 (en) Robot control device and robot system
JP5265274B2 (en) Positioning control method and positioning control device for numerically controlled machine tool
CN108732998A (en) The control system of lathe
JP6978457B2 (en) Information processing equipment and information processing method
WO2020217282A1 (en) Servo control device
JP5622178B2 (en) How to obtain influence coefficient
JP2577713B2 (en) Control device for robot
JP2009104316A (en) The position control method for rotating structure
WO2022149572A1 (en) Observation device and observation method
US20240053723A1 (en) Observation device and observation method
WO2022071078A1 (en) Machine tool
JP2007179364A (en) Apparatus for correcting amount of displacement of main shaft
JP2000322116A (en) Servo controller and positioning device
JP7096455B1 (en) Observation equipment and method
WO2022149571A1 (en) Observation device and observation method
WO2023218648A1 (en) Control device of machine tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21959854

Country of ref document: EP

Kind code of ref document: A1